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“If you are not completely confused by quantum mechanics, you do not understand it.”

John Wheeler
“I think I can safely say that nobody understands quantum mechanics.”

Richard Feynman
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Abstract
Institut Galilée

Laboratoire d’Informatique de Paris Nord
UMR 7030 CNRS-USPN

Doctor of Computer Science

Quantum Enhanced Machine Learning

by Kaoutar BENLAMINE

Cette thèse se situe à la frontière entre l’informatique quantique et l’apprentissage
artificiel et a pour objectif le traitement des données en grandes dimensions.

L’apprentissage artificiel quantique est un nouveau domaine d’étude avec de ré-
cents travaux sur les versions quantiques d’algorithmes supervisés et non supervisés.
Ces dernières années, de nombreux algorithmes d’apprentissage artificiel quantique
ont été proposés afin d’améliorer le temps de traitement des algorithmes classiques.

La première contribution de cette thèse est de donner un aperçu sur le domaine
quantique en apprentissage artificiel. Ensuite, la quantification des algorithmes
classiques.

Nous avons proposé une analyse et une comparaison des différentes distances
pour les algorithmes de clustering basés sur des protoptypes. Pour un ordinateur
conventionnel, calculer les distances euclidiennes est facile, mais pour le faire de
la même manière sur un ordinateur quantique serait beaucoup plus compliqué et
exigerait plus de qubits que ce que nous pouvons nous permettre. Pour définir une
distance quantique, nous utiliserons la nature probabiliste des qubits pour mesurer
les amplitudes probabiliste. Pour les algorithmes de clustering quantique, les dis-
tances sont nécessaires mais ne doivent pas nécessairement être proportionnelles à la
distance réelle, elles doivent avoir qu’une corrélation positive avec elle.

Tous les algorithmes de clustering basés sur des prototypes pourraient être réso-
lus en utilisant ces distances. Comme application, nous avons présenté la version
quantique de K-means qui est un algorithme de clustering. L’algorithme K-means
quantique donne une bonne classification tout comme sa version classique, la seule
différence réside dans la complexité: alors que la version classique de K-means
prend du temps polynomial, la version quantique ne prend que du temps loga-
rithmique. Nous avons également proposé la version quantique de la factorisation
matricielle semi-non négative ainsi que la version collaborative de ces algorithmes
à savoir: K-means quantique collaboratif et la factorisation matricielle semi-non
négative quantique collaborative qui se basent sur la combinaison de plusieurs solu-
tions de clustering pour obtenir une meilleure solution en termes de clustering et de
complexité.
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Quantum Enhanced Machine Learning

by Kaoutar BENLAMINE

The goal of this thesis is on the borderline between quantum computing and
machine learning and deals with data processing in very large dimensions.

Quantum machine learning is a new area of study with the recent work on
quantum versions of supervised and unsupervised algorithms. In recent years, many
quantum machine learning algorithms have been proposed providing a speed-up
over the classical algorithms.

The first contribution of this thesis is to give an overview of the field. Afterwards,
the quantization of classical algorithms.

We proposed an analysis and a comparison of different distances for protoptypes-
based clustering algorithms. For a conventional computer, calculating Euclidean
distances is easy, but doing it in the same way on a quantum computer would be
much more complicated and would require more qubits than we can afford. To define
a quantum distance, we will use the probabilistic nature of qubits to measure phase
differences and probability amplitudes. For quantum clustering algorithms, distances
are necessary but does not need to be proportional to the real distance, but it must
only have a positive correlation with it.

All prototypes based clustering algorithms could be solved using these distances.
As an application of this task, we presented a quantum K-means version which is
a prototype based clustering algorithm. This quantum K-means algorithm gives a
good classification just like its classical version, the only difference resides in the com-
plexity: while the classical version of K-means takes time polynomial, the quantum
version takes only time logarithmic especially in large datasets. We also proposed
the quantum version of Semi Non-negative Matrix Factorization. Likewise, we pro-
posed the quantum collaborative version of these algorithms; quantum collaborative
K-means and quantum collaborative Semi Non-negative Matrix Factorization. These
collaborative algorithms are based on combining several clustering solutions to get a
better solution in terms of clustering and also complexity.
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Introduction

Les techniques d’apprentissage artificiel sont appliquées pour résoudre une grande
variété de problèmes tels que : le tri, la régression et la classification. En apprentissage
artificiel supervisé, l’apprenant reçoit un ensemble d’exemples avec des caractéris-
tiques présentées sous la forme de vecteurs en haute dimension et avec des étiquettes
correspondantes pour marquer les catégories. L’objectif est de classer de nouveaux
exemples en utilisant les connaissances extraites à partir de ces ensembles de données.
En apprentissage non supervisé, la machine essaie de trouver une structure cachée
dans des données non étiquetées.

La quantité de données générées dans notre société augmente de plus en plus,
c’est pour cela qu’il est nécessaire de disposer de moyens plus puissants pour traiter
ces informations. C’est la raison pour laquelle des études et applications récentes
se concentrent sur le problème de l’apprentissage artifiel à grande échelle. De nom-
breux travaux ont été consacrés à l’apprentissage artificiel quantique. Par exemple, le
développement de procédures quantiques pour l’algèbre linéaire comme : la multipli-
cation matricielle, le calcul des vecteurs propres et des valeurs propres et l’estimation
des distances entre des états quantiques. Des efforts ont également été faits pour ré-
soudre le problème de la reconnaissance des formes et pour développer des versions
quantiques des réseaux de neurones artificiels largement utilisés en apprentissage
automatique. Le clustering pourrait poser un défi pour les ordinateurs classiques,
en particulier avec la croissance de la taille des données. Si les données sont dans
des espaces vectoriels de dimension N, cela prendrait du temps O(polyN) sur les
ordinateurs classiques, alors qu’avec des ordinateurs quantiques, cela prendrait un
temps O(log N). Ainsi, le clustering quantique peut fournir des accélérations expo-
nentielles pour les problèmes impliquant de grandes masses de données en haute
dimensionnalité.

Dans cette thèse, nous nous sommes concentrés sur la transformation d’algorithmes
classiques non supervisés en algorithmes quantiques, nous détaillons les différentes
étapes qu’un algorithme quantique devrait suivre, en particulier l’algorithme QK-
means, le clustering collaboratif et la factorisation matricielle semi non négative
quantique. Et comme la tâche principale de l’algorithme d’apprentissage automa-
tique est d’analyser la similitude entre les données, nous proposerons une estimation
de la distance pour le clustering à base de prototypes quantiques qui se fait à travers
l’évaluation de la distance et des produits scalaires entre les données.

Guide de la thèse

Cette thèse est structurée en six chapitres et organisée comme suit:

Chapter 1: Aperçu sur le calcul quantique
Les ordinateurs quantiques et classiques essayent de résoudre des problèmes,

mais la manière dont ils manipulent les données pour obtenir des réponses est fonda-
mentalement différente. C’est pourquoi nous avons fourni ce chapitre afin de donner
une explication de ce qui rend les ordinateurs quantiques uniques. Nous introduisons
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les concepts de base de la mécanique quantique, afin de comprendre comment fonc-
tionnent les algorithmes quantiques et comment la mécanique quantique sera utilisée
pour accélérer les algorithmes d’apprentissage artificiel. Ce chapitre présentera les
concepts et les éléments les plus utiles en calcul quantique comme : le qubit, la
superposition, l’intrication, ... Et aussi la description des algorithmes quantiques les
plus connus.

En effet, la mécanique quantique semble contre-intuitive même pour les physi-
ciens qui la traitent quotidiennement. Et cela est dû au fait que tout dans l’univers est
à la fois une nature de particules et d’ondes. Comme l’écrivait Albert Einstein: «Il
semble que nous devions parfois utiliser l’une et parfois l’autre, alors que parfois nous
pouvons utiliser l’une ou l’autre. Nous sommes confrontés à un nouveau type de
difficulté. Nous avons deux images contradictoires de la réalité ; séparément aucune
d’elles n’explique complètement les phénomènes de la lumière, mais ensemble elles
le font ".

Chapter 2: Etat de l’art des algorithmes d’apprentissage quantiques
Dans ce chapitre, nous présentons les algorithmes d’apprentissage classiques et

quantiques et nous faisons une comparaison entre ces différents algorithmes. Nous
décrivons les algorithmes les plus utilisés en apprentissage artificiel tels que : K-
means, K-median, l’analyse en composantes principales (ACP), les séparateurs à
vastes marges (SVM) et les réseaux de neurones. Nous présentons pour chaque
algorithme sa version quantique. Enfin, nous comparons les performances des algo-
rithmes d’apprentissage artificiel classiques et quantiques en termes de complexité.

Chapter 3: Clustering quantique à base d’un seul modèle
Les principales étapes des algorithmes de clustering à base de prototypes sont

bien connues, mais quand nous en arrivons à la version quantique cela nécessite
des adaptations. C’est pourquoi, nous optons pour l’introduction d’un chapitre qui
montre en détail les principales étapes des algorithmes de clustering quantiques
afin de facilter la lecture des chapitres qui suivent, après on a présenté la version
quantique de k-means et la factorisation matricielle semi non-négative.

Dans ce chapitre, nous avons décrit les différentes manières de transformer les
données à un état quantique. Ensuite, nous avons présenté la fidélité qui est une
mesure de similarité. Cette dernière va permettre de calculer la distance entre les
états quantiques. Cette distance est totalement différente de la version classique et
ceci est dû à l’instabilité de la distance dans le cas quantique.

Nous présentons l’algorithme de Grover qui est un algorithme quantique qui
effectue une recherche sur des données non ordonnées et offre une accélération
quadratique par rapport à la version classique. Ce dernier nous aidera dans la
classification quantique car nous pouvons rechercher le centroïde le plus proche
d’une donnée.

Ensuite, nous montrons l’évaluation de l’indice quantique que nous avons adapté
afin d’évaluer la qualité du clustering dans le cas quantique "Quantum Davies
Bouldin".

Nous complétons le chapitre par une série d’évaluations empiriques afin d’évaluer
les distances quantiques et leur comportement par rapport à la stabilité durant la
recherche des centres les plus proches dans le bon ordre.

Au sein de ce chapitre, une analyse de la distance quantique sera effectuée ; car
cette distance est instable (elle change d’une itération à une autre entre les mêmes
données). Cette analyse est cruciale puisqu’elle permettra de développer tout algo-
rithme de clustering à base de prototypes. La version quantique de K-means donne
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une bonne classification tout comme sa version classique. La principale différence
réside dans la complexité ; alors que la version classique de K-means prend un temps
polynomial, la version quantique ne prend qu’un temps logarithmique, en particulier
dans le cas des grands ensembles de données.

Nous décrivons aussi la version classique et quantique de la factorisation ma-
tricielle semi non-négative (SNMF). La version quantique de SNMF pourrait être mise
en œuvre en utilisant la descente de gradient quantique. La factorisation matricielle
semi non-négative quantique (QSNMF) donne une accélération exponentielle par
rapport à sa version classique. L’idée principale de cette descente de gradient quan-
tique est d’améliorer la fonction objectif afin d’avoir une forme algébrique. En effet,
les fonctions homogènes et non homogènes sur de grands espaces dimensionnels
peuvent être optimisées en utilisant la descente de gradient quantique [Reb+16].
Ensuite, nous utilisons plusieurs copies de l’état quantique actuel |current〉 pour pro-
duire plusieurs copies d’un autre nouvel état quantique |new〉 en utilisant la fonction
objectif du gradient qui a été optimisé.

Chapter 4: Clustering quantique à base de plusieurs modèles (approche col-
laborative)

Ce chapitre est consacré à l’approche collaborative. En particulier, nous présen-
terons la version classique et la version quantique de collaborative K-means et La
factorisation matricielle semi non-négative collaborative.

K-means quantique collaboratif vise à collaborer avec différents modèles de K-
means afin d’obtenir un meilleur clustering par rapport aux QK-means et de gagner
en vitesse par rapport à sa version classique.

Nous abordons également dans ce chapitre la factorisation matricielle semi non-
négative collaborative quantique qui consiste à faire collaborer les différentes méth-
odes de clustering. Cette version de SNMF collaborative quantique n’a pas seulement
l’avantage de rapidité mais aussi en collaborant plusieurs solutions de clustering,
chacune avec ses propres biais et imperfections, on obtient une meilleure solution en
termes de qualité de clustering.

Chapter 5: Autres directions de recherche: Apprentissage collaboratif pour
améliorer la non-unicité de NMF

Dans ce chapitre, nous étudions la version classique de NMF collaborative afin
d’améliorer son unicité. Nous proposons une nouvelle stratégie pour contrôler la vari-
abilité des résultats dans les modèles NMF. Cette stratégie repose sur l’apprentissage
collaboratif entre plusieurs modèles NMF suivi d’un consensus entre les différentes
solutions obtenues. Les poids de la procédure de collaboration de plusieurs NMF sont
définis en utilisant Karush-Kuhn-Tucker (KKT), de cette façon nous réduisons l’erreur
de reconstruction standard et nous évitons également la collaboration négative entre
les modèles. En effet, la solution NMF n’est pas unique : une matrice et son inverse
peuvent être utilisés pour changer la factorisation. C’est à dire que l’algorithme NMF
est instable : si nous exécutons NMF pour les mêmes données, nous obtenons une
factorisation différente pour chaque exécution. Pour faire face à ce problème, nous
avons proposé une nouvelle approche qui se base sur la collaboration entre plusieurs
NMF et puis un consensus entre ces différentes collaborations. Enfin, les résultats
expérimentaux ont montré l’efficacité de notre approche proposée qui est la réduction
de l’erreur de reconstruction standard dans le modèle NMF. En effet, les résultats
obtenus montrent que l’erreur de reconstruction standard tend vers zéro lorsque le
nombre de modèles NMF impliqués tend vers l’infini. Comme futur travail, nous
avons l’intention d’étudier la stabilité de NMF dans la version quantique.
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Introduction

Machine learning techniques are applied for solving a large variety of problems such
as: sorting, regression and classifying information. In supervised machine learning,
the learner is provided a set of training examples with features presented in the
form of high-dimensional vectors and with corresponding labels to mark its category.
The aim is to classify new examples based on these training sets. In unsupervised
learning, the machine tries to find a hidden structure in unlabeled data.

As the amount of data generated in our society is increasing more and more, it is
necessary to have more powerful ways of handling information. That’s why recent
studies and applications are focusing on the problem of large-scale machine learning.
A lot of works have been devoted to quantum machine learning. For example, the
development of quantum procedures for linear algebra as: matrix multiplication,
eigenvectors and eigenvalues of matrices and estimating distances between quantum
states. Efforts have also been made to solve the problem of pattern recognition and to
develop the quantum version of artificial neural networks widely used in machine
learning. Clustering could pose a challenge for classical computers especially with
the current speed growing data size. If our vectors are in N dimensional vector
spaces, this would take time O(polyN) on classical computers, while with quantum
computers this would take time O(log N). Thus, quantum clustering can provide
exponential speed-ups for problems involving large vectors.

In this dissertation, we were focused on transforming unsupervised classical
algorithms to quantum one, we give in details the different steps that a quantum
algorithm should follow, in particular QK-means, quantum collaborative K-means
and quantum Semi Non negative matrix factorization. And as the main task of ma-
chine learning algorithm is to analyze the similarity between the vectors, we give
the estimation of the distance for quantum prototypes based clustering that is done
through the evaluation of the distance and the inner products between the large
vectors.

Guide to the Dissertation

This dissertation is structured in six chapters and organized as follows:

Chapter 1: Scope and overview of quantum computation
Quantum and classical computers both try to solve problems, but the way they

manipulate data to get answers is fundamentally different. That’s why we provided
this chapter in order to give an explanation of what makes quantum computers
unique by introducing the basic concepts of quantum mechanics, so as to understand
how quantum algorithms work and how quantum mechanics is used to speed-up
machine learning algorithms. In particular, this chapter will include the most useful
concepts in quantum computation as: qubit, superposition, entanglement, ... And
also the description of the most known quantum algorithms.

Indeed, quantum mechanics seems to be counter-intuitive even for the physicists
who deal with it every day. And this is due to the fact that everything in the universe
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has both particle and wave nature, at the same time. As Albert Einstein wrote: "It
seems as though we must use sometimes the one theory and sometimes the other,
while at times we may use either. We are faced with a new kind of difficulty. We have
two contradictory pictures of reality; separately neither of them fully explains the
phenomena of light, but together they do".

Chapter 2: State of the art of Quantum Machine Learning algorithms
In this chapter, we present the classical and quantum machine learning algorithms

and we make a comparison between these different algorithms. We explained the
most used algorithms in machine learning such as: K-means, K-median, principal
component analysis, support vector machine and neural networks. We try to explain
the quantum version of these algorithms. Finally, we compare the performance of
classical and quantum machine learning algorithms in terms of complexity.

Chapter 3: Quantum one model clustering
The main steps for prototype based clustering are well known but when we come

to the quantum version of prototype based clustering it’s yet unclear. That’s why,
we opt for introducing a chapter that shows in detail the main steps of quantum
prototype based clustering algorithms and then we present the quantum version of
K-means and Semi Non-negative matrix Factorization.

We showed the different manner to transform the data to quantum states. Then,
we describe fidelity which is a similarity measure. This latter will allow to compute
the distance between states. This distance is totally different from the classical version
and this is due to the instability of the quantum distance.

Therefore, we present Grover’s algorithm which is a quantum algorithm that
performs a search over unordered data and gives a quadratic speed-up over the
classical version. This latter will help us in quantum clustering as we can search for
the closest centroid to a given data.

Then, we showed the quantum index evaluation that we have adapted in order to
evaluate the clustering of the quantum algorithm "quantum Davies bouldin".

We complete the chapter with a series of empirical evaluations in order to evaluate
the quantum distances and its behavior versus the stability to find the nearest centers
in the right order.

During this chapter, an analysis of quantum distance will be done because the
notion of distance in quantum computing is different from the classical one; as the
distance in quantum mechanics is unstable (it changes from an iteration to another).
This analysis is so crucial as it will help to solve any prototype based clustering
algorithm.

The quantum version of K-means has given a good classification just like its
classic version, the experimental results show the effectiveness of that. Indeed, the
main difference resides in complexity; while the classic version of K-means takes
polynomial time, the quantum version only takes logarithmic time, especially in large
data sets.

We also described the Semi Non-negative matrix factorization and we showed
also its quantum version. The quantum version of SNMF could be implemented
using quantum gradient descent. Quantum Semi Non-negative Matrix Factorization
(QSNMF) gives an exponential speedup compared to its classical version. The main
idea of this quantum gradient descent is to improve the objective function in order to
have an algebraic form. Indeed, both homogeneous and inhomogeneous function
over large dimensional spaces can be optimized by using quantum gradient descent
[Reb+16]. Then, we use multiple copies of the current quantum state |current〉 to
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produce multiple copies of another new quantum state |new〉 by using the objective
function of the gradient that has been optimized.

Chapter 4: Quantum Multi-models clustering (collaborative approach)
This chapter will be devoted to describe the quantum collaborative approach

more specifically; we will describe the collaborative version of K-means and SNMF in
both the classical and the quantum version. Finally, we made a comparison between
the classical and the quantum version of these algorithms in terms of computational
time complexity.

Collaborative quantum K-means aims to collaborate different K-means models
in order to get a better clustering compared to QK-means and to get a speed up
compared to its classical version.

We also tackle in this chapter the quantum collaborative semi non-negative matrix
factorization which consists on the collaboration of different clustering methods, in
order to reach an agreement on the partitioning of a common dataset. This latter
doesn’t have only the advantage of speed up but also by collaborating several clus-
tering solutions, each one with its own bias and imperfections, one will get a better
overall solution in terms of classification.

Chapter 5: Other research direction: Collaborative learning to improve the non
uniqueness of NMF

In this chapter, we study the classical and quantum version of collaborative NMF
in order to improve its uniqueness. We propose a novel strategy to control the
variability results in the NMF models. This strategy is based on the collaborative
learning between several NMF models followed by a consensus between the different
solutions obtained. The weights of the collaboration procedure of several NMF is
defined by using Karush-Kuhn-Tucker (KKT), in this way we reduce the standard
reconstruction error and also we avoid the negative collaboration between the models.
Indeed, NMF solution is not unique: a matrix and its inverse can be used to transform
the two factorization matrices. That’s to say that NMF algorithm is unstable: if we
run NMF for the same data we get different factorization between each run. To tackle
that problem, we have proposed a new approach which is adapted for collaboration
between several NMF and finding a consensus between these different collaborations.
Finally, the experimental results showed the effectiveness of our proposed approach
which is the reducing of the standard reconstruction error in NMF model. The
obtained results show that the standard reconstruction error go to zero when the
number of involved NMF models go to infinity.

As a future work, we are intending to study the non-uniqueness of NMF in the
quantum version.
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1.1 Context

Despite the success of machine learning in different tasks as clustering, data genera-
tion and reinforcement learning, the increasing size of datasets makes the treatment
of all that information very tough by taking a long time.

Recently, the availability of a large amount of data and also the increased com-
putational power makes machine learning (ML) algorithms achieve a remarkable
success in different areas such as face recognition, self driving, entertainment services
and finance investment. However, this revolution starts to face increasing challenges.
With the increasing size of datasets constantly, we might soon reach a point where
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the current computational tools will no longer be sufficient. Although tailored hard-
ware architectures, like graphics processing units (GPUs) and tensor processing units
(TPUs), can significantly improve performance, they might not offer a structural
solution to the problem. That’s why a number of researchers are interested in the field
of quantum computation which is a computational paradigm based on the laws of
quantum mechanics, in order to use its power to speed up classical machine learning
algorithms. Therefore, quantum computer can be the solution for that problem; it can
efficiently solve selected problems that are believed to be hard for classical machines.

The power of quantum computers resides on manipulating large numbers of high-
dimensional vectors in a time faster than classical computers. Indeed, the operations
like dot products, overlaps, norms, etc., that take a polynomial time in the classical
machine learning algorithms, take only a logarithmic time in the quantum version.
That’s why quantum computers are a powerful tool for manipulating large amounts
of data.

• A quantum algorithm must be faster, computationally less complex than any
known classical algorithm to the same purpose.

• Privacy of the owners of the data.

• Quantum machine learning also provides advantages in terms of privacy: the
data base itself is of size O(MN), but the owner of the data base supplies only
O(log MN) quantum bits to the user who is performing the quantum machine
learning algorithm.

• Quantum neural networks exploit the superposition of quantum states to ac-
commodate gradual membership of data instances.

• Gain in terms of complexity and speed.

• These clustering algorithms offer a speedup compared to their classical counter-
parts, but they do not improve the quality of the resulting clustering process.

This is based on the belief that finding the optimal solution for a clustering
problem is NP-hard, then quantum computers would also be unable to solve
the problem exactly in polynomial time.

Example:
The rate of generation of electronic data generated per year is estimated to 1018 ≈

260 bits. This entire data set could be represented by a quantum state using 60 qubits,
and the clustering analysis could be performed using a few hundred operations.

Even if the number of bits to be analyzed were to expand to the entire information
content of the universe within the particle horizon, O(1090 ≈ 2300) bits.

1.2 A rough description of a quantum system

We will start a bit abruptly by defining what a quantum system is. To keep it easy
as possible, so that every one can understand; we will try not to use mathematical
notions in this first description of a quantum system and its state. Let’s roughly say
that a quantum system is a system (think of it as a computational unit), characterized
by:

• The number of qubits n (for the moment, think of computer bits, but they are
quite different),
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• Its initial state, which is represented as a complex vector in C2n
.

• A collection of registers, each one of which is associated with a qubit (thus, we
must have at least n in our architecture), and each one directly interacts with
all or a subset of the rest registers (qubits), based on a couple mapping of the
quantum computer architecture.

When we say "quantum computing", we very roughly mean that:

• We have access to a quantum computer.

• We start from a specific state, that we choose. Essentially, the initial state is the
input to the quantum computer.

• We carefully select a series of operations, that often correspond to multiply-
ing a quantum state with a unitary matrix. The result of each multiplication
corresponds to an intermediate quantum state.

• The combination of the initial state and the set of operations we choose cor-
respond roughly to a definition of an algorithm, through quantum tools and
nomenclature.

• The final state is the output of the system, that we measure and that we hope is
the answer to the problem we want to solve.

1.3 Quantum computation

In order to understand how quantum algorithms work and how quantum mechanics
is used to speed-up machine learning algorithms, we provide this section to describe
the basic concepts of quantum mechanics, we tried to explain it mathematically. We
follow [YM08].

A long time ago, physicists thought that the universe is made of tiny particles or
consists of waves. But after, they discovered that all matter in the world has both
particle-like and wave-like behavior. This is a somewhat counter-intuitive approach
to the reality that’s why quantum mechanics is considered to be counter-intuitive
even for the physicists who deal with it every day.

In the macroscopic world, we know that:
(i) electricity may go or not through a circuit,
(ii) a proposition is true or false, etc.
The above can be easily described through a "bit": a bit quantify the information

that we are in a particular state among two states. There are different ways to
represent this information. Here, we will use the following representation of a bit:

|state〉 =
[

state is 0
state is 1

]
Observe that in our macroscopic world, the state cannot be in both situations. More
rigorously, let us represent the state 0 as:

|0〉 =
[

1
0

]
and the state 1 as:

|1〉 =
[

0
1

]
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We can see that these two representations are orthogonal: Therefore, we are ex-
clusively in one of the basic states 0 and 1. This situation change in the quantum
context.

1.3.1 Qubit

The basic unit of quantum computation is the qubit, which is an elementary quantum
system such as an atom or a nuclear spin with two basic physical states.

As we will see shortly, a quantum bit is actually a generalization of the classical
bit. Using the notation above, a quantum bit can be described as:[

c0
c1

]
where, as always, |c0|2 + |c1|2 = 1.

Here is some examples:[
1√
2

1√
2

]
=

1√
2
· |0〉+ 1√

2
· |1〉 = |0〉+ |1〉√

2

and [
1√
2

− 1√
2

]
=

1√
2
· |0〉 − 1√

2
· |1〉 = |0〉 − |1〉√

2

Therefore the two states |0〉 and |1〉 form a computational basis and any other
state |ψ〉 of the qubit can be written as linear combination:

|ψ〉 = c0 |0〉+ c1 |1〉

where c0 , c1 ∈ C and |c0|2 + |c1|2 = 1. When the state |ψ〉 is measured, either |0〉
or |1〉 is observed, with probability |c0|2 or |c1|2 respectively. Equivalently, |ψ〉 is a
column vector representing a quantum state living in some Hilbert space, here the
space C.

FIGURE 1.1: The Bloch sphere

By definition the qubits are connected to complex numbers, by representing the
complex numbers on the unit complex sphere in three dimensions, the called the
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Bloch sphere [Blo46], see Figure 1.1, we give a geometric explanation to single qubit
operations.

Remark 1 Parameters representation
Consider the case of a quantum state: |ψ〉 = c0 · |0〉+ c1 · |1〉 .
Reminder: |c0|2 + |c1|2 = 1, where ci ∈ C. Using the polar representation of a complex

number, we have the following equivalent representations:

|ψ〉 = r0eiϕ0 · |0〉+ r1eiϕ1 · |1〉

where ri are the amplitudes and ϕi are the angles. Until here to describe the state |ψ〉 we need
4 parameters. As complex numbers, in the case of quantum bits, we know that a quantum
state does not change if we multiply it with any number of unit norm; i. e., |ψ〉 = e−ϕ0 |ψ〉
Then, our (equivalent) state is:

e−iϕ0 · |ψ〉 = e−iϕ0 ·
(

r0eiϕ0 · |0〉+ r1eiϕ1 · |1〉
)
= r0 · |0〉+ r1ej(ϕ1−ϕ0) · |1〉 (1.1)

From 4 parameters, now we end up with 3 parameters, which are: r0, r1 and ϕ where
ϕ := ϕ1 − ϕ0.

We know that |c0|2 + |c1|2 = 1, so we deduce that: r2
0 + r2

1 = 1, which allow to reduce
the number of parameters to 2.

Using the angle representation and setting r0 = cos θ
2 and r1 = sin θ

2 , we get:

|ψ〉 = cos
θ

2
· |0〉+ eiϕ sin

θ

2
· |1〉 ,

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, these two parameters define a point on the surface of the
Bloch sphere. In other words, a different interpretation of the above is that we care only about
the relative phase between the two states, not their actual phase; moreover, without loss of
generality, we can assume that one of the states has real coefficient.

The notion of qubit has a natural extension, which is the quantum register. To
define a quantum register of n-different qubits, let us denote |ei〉 the i-th vector of the
canonical basis in Cn. For suitable known complex weights ci, 1 ≤ i ≤ n, satisfying
∑n

i=1 |ci|2 = 1, the quantum register register |ψ〉 has the following form:

|ψ〉 =
n

∑
i=1

ci |ei〉 ,

Since each state is described by two complex numbers ci, the total number required
to describe a n register qubit system is C2n

, a 2n dimensional Hilbert space. Therefore,
a quantum register from a mathematical point of view is a vector in C2n

.
To conclude this paragraph note that generally the classical computer store the

information in the form of bits which can store either 1 or 0. From the remark above a
qubit can store both 1 and 0 at the same time. So, 1 qubit = 2 bits, 2 qubits = 4 bits
and n qubits = 2n bits. Thus, n qubits can store 2n bits information which is very high.
This shows that quantum computer code information 2 times higher than classical
computer.

1.3.2 Dirac notation

The state in quantum physics contains statistical information about a quantum system.
As already mentioned it is represented by a vector in C2n

. In quantum mechanics
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we use the Dirac notation [Dir39]: the vector ψ is denoted by |ψ〉 (ket notation) and
represents column vectors. The dual of a ket is a bra. Mathematically, it represents a
Hermitian conjugate of a ket, and thus it is a row vector defined by:

|ψ〉 = 〈ψ|T

The standard notation for inner product in the bra-ket notation is:

〈ϕ′ |ψ〉 ≡
(
〈ϕ′|

)
· (|ψ〉) =

[
ϕT

1 ϕT
2 . . . ϕT

n

]
·


ψ1
ψ2
...

ψn

 .

Similarly, the standard notation for the outer product is: |ϕ〉 〈ψ| ∈ Cn×n. Some
properties: 〈ϕ|T = |ϕ〉 and |ϕ〉T = 〈ϕ|. Note that bras and kets can added and bras
and kets can be multiplied by scalars following the same rules as complex vectors.

1.3.3 Superposition

In quantum physics, that is to say on the scale of the atom and the electron, certain
particles can be in different states at the same time: it is the ability of a quantum
system to be in multiple states at the same time until it is measured.

To be more precise let us introduce the following simplistic scenario: consider
a set of discrete points as possible positions of some particle. Each point position
determined by it’s cartesian coordinates corresponds to a state of the particle. The
particle being in the state xi is going to be denoted with the Dirac "ket" notation
|xi〉 . Moreover, let us make the following association of states with vectors in the
n-dimensional complex space:

|xi〉 −→ e>i

where ei is the canonical basis in this space. From the classical mechanics perspective,
this is what we all need in order to be able to characterize where exactly the states of
the particle lies in the macroscopic world, by observing and determining it’s Cartesian
coordinates. While in the microscopic quantum world, this is no longer true: we have
to define all possible combinations of states as possible states. In particular, let |ψ〉 be
an arbitrary state, that can be described as a linear combination of all the above states.
For suitable known complex weights c1, c2, . . . , cn, |ψ〉 can be written as:

|ψ〉 = c1 |x1〉+ c2 |x2〉+ · · ·+ cn|xn〉. (1.2)

In this case, given that we know the "basis" with respect to xi’s, we can represent the
state |ψ〉 by just knowing the coefficients ci. This state is called the "superposition" of
all the basic states |xi〉. In the quantum context, we can say that |ψ〉 is on all states
simultaneously.

Note that once we observe (measure) |ψ〉, the state collapses to one of the basic
states. This state will be the one selected with probability |ci |2

||ψ〉|2 , for some i. In other
words, the (normalized) modulus squares of the complex numbers ci play the role of
the probabilities of the state being collapsed to that basic state i.

From a mathematical point of view it’s quite true: an electron is mathematically
in several places at once, because we use probability calculations to know its position.
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Each position is associated with a probability coefficient. From a physical point of
view, there are two schools: the first one is the Copenhagen School, which says that
quantum superposition should not be illustrated, because the quantum superposition
must not be interpreted physically. The phenomenon must remain a mathematical
concept. the second one is Everett’s School which tells us that concretely there may
be parallel universes for each a superposed state.

Note that in order to write n qubit system 2n complex numbers are required,
whereas on classical computer only n zeros or ones are required to fully describe n
bit system. The effect increases exponentially with the number of qubits, much more
n is big much complex numbers are needed to emulate quantum state on a classical
machine. Superposition of states is one of the two quantum mechanical effects that
quantum algorithms exploit to outperform classical algorithms. The second one effect
is the so called entanglement which is described in the next paragraph.

1.3.4 Entanglement

Entanglement is a type of correlation that has no classical analog, that’s why, it’s not
easy to simulate it classically and therefore it creates a quantum advantage comparing
to the classical version.

In the previous paragraph, we limited the presentation to the case of a single
particle which is in one of n different states in n-dimensional space. We can use this
simple case to assembly and model multi-particle quantum systems. For example,
let’s consider the case where we have particles instead of only one particle. Suppose
that we have two particles that lies in two different sets of points in the space.

Assuming we have the basic states X = {x0, x1, . . . , xn} and Y = {y0, y1, . . . , ym}
we can create the assembly of states by using the tensor product symbol X ⊗ Y ,
where the possible states are in the set:

{|xi〉 ⊗ |yj〉; forall 0 ≤ i ≤ n, and for all 0 ≤ j ≤ m}

Here, |xi〉 ⊗ |yj〉means that the first particle is in state i of X and the second particle
is in state j of Y . Using all possible combinations, we can write down the state of two
particles as a superposition of the basic states such as:

|ψ〉 = c0,0 · |x0〉 ⊗ |y0〉+ · · ·+ cn,m · |xn〉 ⊗ |ym〉. (1.3)

So far we indicate that the state of an assembly of simpler quantum systems can be
described as the tensor product of the states of each individual system. i. e., we can
describe the overall system by looking into the constituents. However, this is not
always true for quantum systems. Here, we will just describe this via an example.

Example 1 Let us consider n = m = 2 and assume that the current state |ψ〉 satisfies:

|ψ〉 = |x0〉 ⊗ |y0〉+ |x1〉 ⊗ |y1〉
= 1 · |x0〉 ⊗ |y0〉+ 0 · |x0〉 ⊗ |y1〉+ 0 · |x1〉 ⊗ |y0〉+ 1 · |x1〉 ⊗ |y1〉 .

Let us see whether we can describe the above state as the tensor product of the basic states
of single particles. Remember that the state using only the first particle can be described
as: c0 · |x0〉 + c1 · |x1〉 , and the state using only the second particle can be described as:
c′0 · |y0〉+ c′1 · |y1〉. Let us create the states of the two particle system by "assembling the
simple systems: i. e., we compute the tensor product of their states".
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In particular, we have:

(c0 · |x0〉+ c1 · |x1〉)⊗
(
c′0 · |y0〉+ c′1 · |y1〉

)
=

c0c′0 · |x0〉 ⊗ |y0〉+ c0c′1 · |x0〉 ⊗ |y1〉+ c1c′0 · |x1〉 ⊗ |y0〉+ c1c′1 · |x1〉 ⊗ |y1〉 .

We need to choose the coefficients in order to create |ψ〉 . However, this means that:

c0c′0 = c1c′1 = 1

and
c0c′1 = c1c′0 = 0.

These two equations have no solution: therefore we cannot use the basic states and the tensor
product to generate the current state.

Following this example, Let us consider the state using only the first data vector, it
can be described as:

|x〉 = c0 · |x0〉+ c1 · |x1〉+ · · ·+ cn · |xn〉,

and the state using only the second data vector can be described as:

|y〉 = c′0 · |y0〉+ c′1 · |y1〉+ · · ·+ c′m · |ym〉.

Let us compute the tensor product of the states.
In particular, we have:

(c0 · |x0〉+ c1 · |x1〉+ · · ·+ cn · |xn〉)⊗
(
c′0 · |y0〉+ c′1 · |y1〉+ · · ·+ c′m · |ym〉

)
(1.4)

In order to determine the states of the two data vectors by "assembling" the simple
systems we need to choose the coefficients in order to create |ψ〉. However, this means
that the system of equations formed by identification of the coefficients in Equation
(1.3) with the coefficients in Equation (1.4) is completely determined and has always
a solution. This is not always the case, as in our Example, therefore we cannot use the
basic states and the tensor product to generate the state |ψ〉. In this case, we say that
the two data states |x〉 and |y〉 are "entangled". In other words: an entangled state
can not be written as a tensor product of its constituent qubits states or an entangled
state is any state that cannot be tensor-factorized. On the other hand, if two |x〉 and
|y〉 are viewed as a single quantum state, this combined state is equal to the tensor
product of the constituent qubits. Any state that can be written as a tensor product
from the constituent subsystems are called separable states.

How is entanglement used

To see what it means in practice, let us consider the following: Assume we measure
the first particle and we find it in position x0. Can we use this information to infer the
state of the other particle?

Yes. We can see that the component |x0〉 ⊗ |y1〉 has coefficient 0 in the expression
of the state of the two particles. This means that, if we found first particle in x0, we
will find the second particle in state y0. The surprising fact is that the two particles
could be light years away and they can still infer the state of the individual particles
by observing one of them. To wrap it up: if we can infer some information of some
particles by looking some others, we say that the particles are entangled. If this is not
the case, then the particles are separable.
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Therefore entanglement describes the way that particles can become correlated to
predictably interact with each other regardless of how far apart they are. Particles,
such as photons, electrons, or qubits that have interacted with each other retain a
type of connection and can be entangled with each other in pairs, in the process
known as correlation. As we already mentioned, knowing the spin state of one
entangled particle allows one to know that the spin of its mate is in the opposite
direction. For example, when two spinning particles are entangled their spins are
correlated not only in one direction but in all directions. Then no matter how great
the distance between the correlated particles, they will remain entangled as long as
they are isolated.

1.3.5 Dynamics of a quantum system

Let us introduce the notion of time in a quantum system, through the sequence of
operators we apply to it. The evolution of a quantum system over time is necessarily
unitary. Geometrically, a unitary transformation is a rigid body rotation of the Hilbert
space, therefore resulting in a transformation of the state vector that doesn’t change
its length. We differentiate the notion of observables from the notion of evolution of a
quantum system.

As an example: if our system lies at state |ψt〉 at the time t and at state |ψt+1〉 at
the time t + 1, this transition can be described as:

|ψt+1〉 = U|ψt〉

for some unitary matrix U with the dimensions are given by the context. The dif-
ference between observables and generic unitary transformations is that the latter
satisfy:

• the product of two unitary matrices is always unitary (in any order);

• the inverse of a unitary matrix is unitary.

These properties are important because they allow "traversing" the quantum
system states over time. That is, we can apply sequentially:

U0|ψ〉, U1U0|ψ〉, . . . ,
T

∏
i=0

Ui|ψ〉

to get the evolution. The key property of unitary transformations is that they preserve
the energy of the quantum system. Let us revisit the rough description of quantum
computing: we start at a state and we apply a sequence of carefully selected unitary
transformations that reflects the algorithm we want to implement. Then, when we
are done, we measure the output to get the final state.

The discussion of how to select the unitary transformations involve the introduc-
tion of the Schrodinger equation.

1.3.6 Schrodinger equation

A basic postulate of quantum mechanics is that a closed system evolves in time via
the Schrodinger equation. It is the most fundamental equation in quantum mechanics,
the equation is named after Erwin Schrodinger, who won the Nobel Prize along with
Paul Dirac in 1933 for their contributions to quantum physics.
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Schrodinger’s equation describes the wave function of a quantum mechanical
system, which gives probabilistic information about the location of a particle and
other observable quantities such as its momentum.

The Schrodinger equation describes the evolution of a quantum state in a similar
way to Newton’s laws in classical mechanics. It is considered as a wave equation for
the wave function of the particle in question, and so the use of the equation to predict
the future state of a system is sometimes called wave mechanics. The wave function
is one of the most important concepts in quantum mechanics, because every particle
is represented by a wave function ψ and it depends on position and time.

The equation itself derives from the conservation of energy and is built around an
operator called the Hamiltonian. In its simplest form, it’s written like that:

ih̄
d |ψ(t)〉

dt
= H |ψ(t)〉 (1.5)

where H is the Hamiltonian of the system, which is some Hermitian operator and h̄ is
the reduced Planck constant ( h̄ = h

2 π with h the Planck constant, allowing conversion
from energy to frequency units). We know that the global energy is preserved in an
isolated system, throughout its evolution. Energy is an observable and, for a quantum
system, we can use a Hermitian matrix to represent it. This matrix is also known
as the hamiltonian matrix. Then, the Schrodinger equation describes that the rate
of variation from a state to another is proportional to the energy expressed via the
hamiltonian matrix. Solving this equation with some initial conditions, we get the
evolution.

The wave function is one of the most important concepts in quantum mechanics,
because every particle is represented by a wave function ψ and it depends on position
and time. When you have an expression for the wave function of a particle, it tells
you everything that can be known about the physical system, and different values for
observable quantities can be obtained by applying an operator to it.

FIGURE 1.2: Particle as a wave

For a time-independent Hamiltonian the solution to the Schrodinger equation is

|ψ(t)〉 = e−iHt |ψ(0)〉

with |ψ(0)〉 the initial state of the system. This is a unitary evolution, which follows
easily from one of the defining properties of a Hermitian operator: HT

= H
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1.3.7 Quantum gates

A quantum gate or quantum logic gate is an elementary quantum circuit that operates
on a small number of qubits. For quantum computers, these are analogous to the
classical logic gates for conventional computers.

For example: consider the classic NOT gate. i.e., the input is a single classical bit;
the output is its inverse. Using ket notation, let us use as input |0〉. Then, the NOT
gate can be represented as:[

0 1
1 0

]
︸ ︷︷ ︸
NOT gate

·|0〉 =
[

0 1
1 0

]
·
[

0
1

]
=

[
1
0

]
= |1〉

Similar logic applies for other gates such as AND, NOR, XOR, NAND. In all cases,
we can represent the application of the gate on an input as a matrix-vector product.
For the gates with an input more than a single bit, we can represent the input as
the vertical concatenation of bits. Finally, when we have more than one gate in
sequence, we can represent the sequence of matrices as a sequence of matrix-matrix
multiplications, before we apply the input. Also, gates in parallel can be represented
as Kronecker products of matrices.

A qubit does more than just sit around in the |0〉 ground state. To put it into the
|1〉 excited state, we need a quantum gate.

Quantum gates, or operations, are typically represented as matrices. A gate that
acts on one qubit is represented by a 2× 2 unitary matrix. Since quantum operations
must be reversible and preserve probability amplitudes, the matrices must be unitary.
The result of the quantum gate is found by multiplying the matrix representing the
gate with the vector representing the quantum state.

|ψ′〉 = U |ψ〉 , where UUT = 1

Pauli matrices are a set of three 2× 2 complex matrices which are Hermitian and
unitary.

X ≡ σx =

[
0 1
1 0

]
, Y ≡ σy =

[
0 −i
i 0

]
, Z ≡ σz =

[
1 0
0 −1

]
.

Note that since each Pauli matrix is a Hermitian matrix this ensure the information
preservation, and together with the identity matrix form a basis for the space of 2× 2
Hermitian matrices.

The Pauli X gate is known as an Xπrotation. It flips the zero to a one, or vice versa
(this is why it is also commonly referred to as a bit-flip). Y gave you an excited state
and Z did not do anything.

Here, we will present the most useful quantum gates (that we use it in our algo-
rithms): Hadamard gate for superposition and Control-SWAP gate for entanglement.

Hadamard gate

This is one of the most used quantum gates. It can be used to convert the basis state
|0〉 to |0〉+|1〉√

2
and |1〉 to |0〉−|1〉√

2
, thus creating a superposition of the two states. The

schematic representation of Hadamard gate is presented in Figure 1.3.

H|0〉 = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=
|0〉+ |1〉√

2
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and

H|1〉 = 1√
2

[
1 1
1 −1

] [
0
1

]
=

1√
2

[
1
−1

]
=
|0〉 − |1〉√

2

FIGURE 1.3: Hadamard gate

Note that two Hadamard gates in series restore a qubit to its original state.

FIGURE 1.4: Hadamard gate in series

By using 3 Hadamard gates in parallel we define the Hadamard transform

FIGURE 1.5: Hadamard gate in parallel

U3 gate

Let us define the generator matrix U3(θ, φ, λ), where:

U3(θ, φ, λ) =

[
cos(θ/2) −ejλ sin(θ/2)

ejφ sin(θ/2) ej(φ+λ)cos(θ/2)

]
The U2 gate is the U3 gate with θ = π/2. The U1 gate has θ = φ = 0. Then, the
Hadamard matrix is H = U3(π/2, 0, π), S = U3(0, 0, π/2), and T = U3(0, 0, π/4).
All the above operations are connected through the following properties:

• X2 = Y2 = Z2 = I,

• H = 1√
2
(X + Z) ,

• X = HZH,

• Z = HXZ,

• S = T2.
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Controlled-NOT gate

The C-Not gate operates on a quantum register consisting of two qubits (Figure 1.6),
the C-Not gate flips the second qubit if and only if the first qubit is in the state |1〉.
The schematic representation of C-Not is as follows:

FIGURE 1.6: C-Not gate

This gate operates as follows: the top input goes through the gate as it is, and
we observe it at the output. However, the top signal "controls" the bottom signal: if
the top signal is |0〉, then the input |y〉 will be output as it is; if the top signal is |1〉,
then the gate reverses the bottom signal. We can see that the operation on the bottom
signal is similar to an XOR gate, that’s why we use the symbol

⊕
. The C-Not gate

can be represented by the matrix :

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


In general, the inputs are allowed to be a linear superposition of {|0〉, |1〉}. The C-Not
gate transforms the quantum state:

a|00〉+ b|01〉+ c|10〉+ d|11〉 into a|00〉+ b|01〉+ c|11〉+ d|10〉

Swap gate

The Swap gate represented in Figure 1.7 is two-qubit operation. Expressed in basis
states, the Swap gate swaps the state of the two qubits involved in the operation.
With respect to the basis |00〉 , |01〉 , |10〉 , |11〉, it is represented by the matrix:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



FIGURE 1.7: Swap Gate
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CSWAP gate (Fredkin gate)

The Fredkin gate has three input qubits, but only one is for control. If the control bit
is set to one, the target qubits are swapped, otherwise the state is not modified.

FIGURE 1.8: Fredkin gate

Only the top input operates as a controller:
if it is |0〉, then the other two inputs output their values as they are;
if it is |1〉, then the outputs of the two other signals are "switched": we see

|y′〉 = |z〉 and |z′〉 = |y〉.

1.3.8 EPR paradox and Bell states

Bell states

We can generate the Bell states 1√
2
(|00〉+ |11〉) with the following quantum circuit

consisting of a Hadamard and CNOT gate [SL09]:

FIGURE 1.9: Quantum circuit of Bell states

The first qubit is passed through a Hadamard gate and then both qubits are
entangled by a CNOT gate. If the input to the system is |0〉 ⊗ |0〉, then the Hadamard
gate changes the state to

1√
2
(|0〉+ |1〉)⊗ |0〉 = 1√

2
(|00〉+ |10〉)

And after the CNOT gate the state becomes the Bell state: 1√
2
(|00〉+ |11〉).

Notice that the action of the CNOT gate is not so much copying, as our classical in-
tuition would suggest, but rather to entangle. The four Bell basis states are maximally
entangled states on two qubits, they form an orthonormal basis for C4:

1√
2
(|00〉+ |11〉)
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1√
2
(|00〉 − |11〉)

1√
2
(|01〉+ |10〉)

1√
2
(|01〉 − |10〉)

EPR Paradox

Created in 1935 by Albert Einstein, Boris Podolsky, and Nathan Rosen, hence "EPR"
[Sch35]. The Einstein’s famous quote "God does not play dice with the Universe", is a
summary of the following passage from Einstein’s 1926 letter to Max Born: "Quantum
mechanics is certainly imposing. But an inner voice tells me that it is not yet the real
thing. The theory says a lot, but does not really bring us any closer to the secret of the
Old One. I, at any rate, am convinced that He does not throw dice." Even until the
end of his life, Einstein maintained the idea that quantum physics is an incomplete
theory and that one day we would learn a more complete and satisfying theory that
describes nature.

In what sense did Einstein consider quantum mechanics to be incomplete? To
better understand this, imagine that we formulate a theory which would explain
the act of throwing a coin. A simple heads or tails model is that its result is random
(head 50 % of the time and head 50 % of the time). This model seems to be in
perfect harmony with our experience of throwing a coin, but it is incomplete. A
more complete theory would say that if we could determine the initial conditions
of the coin with perfect precision (position, momentum), we could solve Newton’s
equations to determine with certainty the final result of the coin. The coin flip
amplifies our lack of knowledge about the initial conditions and makes the result
completely random. Likewise, Einstein believed that the randomness of the quantum
measurement results reflected our lack of knowledge about the additional degrees of
freedom of the quantum system.

Einstein refined this line of reasoning in an article he wrote with Podolsky and
Rosen in 1935, where they presented the famous Bell states. Remember that for
Bell state 1√

2
(|00〉 + |11〉), when you measure the first qubit, the second qubit is

determined. However, if two qubits are distant, the second qubit must have had a
determined state within a certain time interval before the measurement, as the speed
of light is finite. By the rotational symmetry of the Bell state, this fact is verified
on all basis. This seems analogous to the example of the coin flipping. Therefore,
EPR suggested that there is a more complete theory where “God does not throw
dice”. Until his death in 1955, Einstein tried to formulate a more complete "theory of
local hidden variables" that would describe the predictions of quantum mechanics,
but without reclassifying it as probabilistic results. However in 1964, almost three
decades after the publication of the EPR, John Bell showed that the properties of Bell
states (EPR) were not just fodder for philosophical discussion, but had verifiable
consequences: the local hidden variables are not the answer. He showed that there
exists a particular experiment which could be carried out on two qubits entangled in
Bell states, so that no theory of the local hidden variables could not correspond to
the result envisaged by quantum mechanics. Bell’s experiment was performed with
increasing precision, and the results have always been consistent with the predictions
of quantum mechanics and incompatible with local theories of hidden variables.
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1.3.9 The non-cloning theorem

The non cloning theorem [WZ82] is a result of quantum mechanics which forbids
the creation of identical copies of an arbitrary unknown quantum state. It was stated
by Wootters, Zurek, and Dieks in 1982, and has profound implications in quantum
computing and related fields. The theorem follows from the fact that all quantum
operations must be unitary linear transformation on the state (and potentially an
ancilla).

The idea is that a cloning machine can accept an arbitrary input state and copy it
with the same fidelity for all possible states.

Quantum cloning is the process that takes an arbitrary, unknown quantum state
and makes an exact copy without altering the original state in any way. Quantum
cloning is forbidden by the laws of quantum mechanics as shown by the no cloning
theorem.

In contrast, the no cloning theorem is a vital ingredient in quantum cryptog-
raphy, as it forbids eavesdroppers from creating copies of a transmitted quantum
cryptographic key.

Fundamentally, the no-cloning theorem protects the uncertainty principle in
quantum mechanics. If one could clone an unknown state, then one could make as
many copies of it as one wished, and measure each dynamical variable with arbitrary
precision, thereby bypassing the uncertainty principle. This is prevented by the
non-cloning theorem.

Though perfect quantum cloning is not possible, it is possible to perform imper-
fect cloning, where the copies have a non-unit fidelity with the state being cloned.
This can be done by coupling a larger auxiliary system to the system that is to be
cloned, and applying a unitary transformation to the combined system. If the unitary
transformation is chosen correctly, several components of the combined system will
evolve into approximate copies of the original system. Imperfect cloning can be used
as an eavesdropping attack on quantum cryptography protocols, among other uses
in quantum information science.

Cloning means making an exact copy, where two identical systems result, the
original and the copy. Consider a single particle in state |φ〉 that is cloned, leaving
the two-particle state |φ〉 |φ〉. This state does not make sense because two particles
are prohibited from occupying the same state.

Proof
Suppose we have a quantum bit in an unknown state, and we wish to make a

copy of this sate:
|ψ〉 = c1 |x1〉+ c2 |x2〉 . (1.6)

Is it possible to make a copy of this quantum state? In other words, we are asking
whether it is possible to start with two qubits in state |ψ〉 ⊗ |0〉 and transform them
to the state |ψ〉 ⊗ |ψ〉.

To do so, we need to have a unitary transformation U such that:

U |ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉 .

The no cloning theorem says that this isn’t physically possible. Only sets of
mutually orthogonal states can be copied by a single unitary operator. We will show
that no unitary transformation can achieve this simultaneously for two orthogonal
states |ψ〉 and |φ〉.
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Recall that a unitary transformation is a rotation of the Hilbert space, and therefore
necessarily preserves angles.

Consider that we have the two quantum states |ψ〉 and |φ〉, such that:

|ψ〉 = c1 |x1〉+ c2 |x2〉

and
|φ〉 = c′1 |x1〉+ c′2 |x2〉 .

The cosine of the angle between them is given by (the absolute value of) their inner
product: c1c′1 + c2c′2.

Thus, the inner product of 〈ψ|φ〉2 is (c1c′1 + c2c′2)
2.

Assume we have a unitary operator U and the two quantum states |ψ〉 and |φ〉:

|ψ〉 ⊗ |0〉 −→ |ψ〉 ⊗ |ψ〉

|φ〉 ⊗ |0〉 −→ |φ⊗ |φ〉〉

Then 〈ψ|φ〉 is 0 or 1.

〈ψ|φ〉 = (〈ψ| ⊗ 〈0|)(|φ〉 ⊗ |0〉) = (〈ψ| ⊗ 〈ψ|)(|φ〉 ⊗ |φ〉) = 〈ψ|φ〉2 (1.7)

1.3.10 Quantum parallelism

In the world of classical computers, parallelism refers to parallel (simultaneous)
processing of different information in different processors. Quantum parallelism
refers to simultaneous processing of different information or inputs in the same
processor.

The quantum speed-up of algorithm comes from the quantum parallelism ob-
tained by the superposition of qubits. The quantum parallelism is a feature of many
quantum algorithms and in simple words it allows to evaluate the function on many
inputs simultaneously. Quantum parallelism arises from the ability of a quantum
memory register to exist in a superposition of base states. Each component of this
superposition may be thought of as a single argument to a function. A function
performed once on the register in a superposition of states is performed on each of
the components of the superposition. Since the number of possible states is 2N where
N is the number of qubits in the quantum register, you can perform in one operation
on a quantum computer what would take an exponential number of operations on a
classical computer, which is amazing.

Suppose that f is a binary function:

f : {0, 1}n → {0, 1}

and also suppose that O is a reversible quantum operator that performs the following
operation:

O|x〉|0〉 = |x〉| f (x)〉

Applying O to a uniform quantum superposition performs the following:
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1√
N

N−1

∑
x=0
|x〉|0〉 → 1√

N

N−1

∑
x=0
|x〉| f (x)〉

in a single computational step.
A quantum computer is able to encode all input strings of length N simultaneously

into a single computational step. In other words, the quantum computer is able to
pursue simultaneously 2N classical paths, indicating that a quantum computer is
significantly more powerful than a classical one.

1.3.11 Quantum Random Access Memory

Memory consists of cells that can store information. Each cell has an address, or
word-line, to find the cell location. A memory with n cells has an address of 0 to n− 1
bits. All cells contain the same amount of bits for the address.

A random access memory allows addressing memory cells in a classical computer:
it is an array in which each cell of the array has a unique numerical address.

In order to access memory in a quantum system there needs to be a quantum
equivalent to classical RAM. This quantum equivalent is referred to as QRAM. A
quantum random access memory (QRAM) serves a similar purpose [GLM08]. A
random access memory has an input register to address the cell in the array, and an
output register to return the stored information. In a QRAM, the address and output
registers are composed of qubits. The address register contains a superposition
of addresses 1√

N ∑N
j=1 |j〉, and the output register will contain a superposition of

information, correlated with the address register: 1√
N ∑N

j=1 |j〉 |vj〉.

1√
N

N

∑
j=1
|j〉 → 1√

N

N

∑
j=1
|j〉 |vj〉

The output register is entangled with input register.
While a random access memory (RAM) uses n bits to randomly address N = 2n

distinct memory cells, a quantum random access memory (QRAM) uses n qubits to
address any quantum superposition of N memory cells.

1.3.12 Measurements

Until so far we discussed that the collection of states of a system could be at some
fixed time. We recall now the notion of observables which correspond to the physical
quantities that can be observed in each state of the state space. More precisely
assuming that the system is in the state |ψ〉 ∈ Cn, let us define an observable operator
O ∈ Cn×n. The action of the observable is denoted as O|ψ〉 and it is by itself a state.

In quantum mechanics, each observable-linear operator is Hermitian. Therefore
as Hermitian operator has real eigenvalues. Then, the eigenvalues of an observable
are the only possible values the observable can take, as a result of measuring it on a
given state. In other words, given a state and assuming the observable is seen as a an
action on the system, the eigenvalues of the observable are the possible outputs.

The act of measuring is about an action that gives a definite answer. So far,
through observables, we can only assume that one of the eigenvalues will be the
result of an observable operator. Further, even for this case, we are not sure which
of the eigenvalues we will observe. Finally, our framework so far does not tell us
anything about what happens if we actually observe the eigenvalues.
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Unlike the macroscopic world, quantum systems get perturbed and modified by
the time we measure them. Further, only the probability of observing specific values
can be calculated. It turns out that the following holds: Let O be an observable and
|ψ〉 be a state of the system. If the result of measuring O is its eigenvalue λ, then the
state, after the measurement, is collapsed to the eigenvector of O that corresponds to
the eigenvalue λ, that we will "land" (as the next state). For the specific eigenvector
|e〉 the probability is given by |〈ei|ψ〉|2.

The state vector evolves deterministically as the continuous solution of the wave
equation. Meanwhile, the state vector is in a superposition of component states.
However, once we measure the state it looses this superposition and we return to the
classical version.

FIGURE 1.10: Measurement

Therefore measurements are irreversible actions because when we perform a
measurement the state of the system collapses to whichever value (|0〉 or |1〉) has
been observed, thus losing all memory of former amplitudes c0 and c1 [FF13].

With the exception of measurements, all other operations allowed by quantum
mechanics are unitary operations on the Hilbert space in which our qubits live. They
are represented by quantum gates, much as in a classical circuit.

1.4 Quantum Algorithms

Quantum algorithm is an algorithm which can be performed on a quantum computer
and achieve a speedup, or other efficiency improvement, over any possible classical
algorithm. In principle it is possible to run all classical algorithms on a quantum
computer. Quantum algorithms use at least one of the steps is distinctly "quantum",
using superposition or entanglement.

The advantage of a quantum computer is that it can do things which cannot
be done by any machine based only on the laws of classical physics. Eventual
applications of quantum computing range from breaking cryptographic systems to
the design of new medicines.

Although large-scale quantum computers do not yet exist, the theory of quantum
algorithms has been an active area of study for over 20 years. Here we aim to give
a broad overview of quantum algorithmics, by giving some examples of quantum
algorithms such as: Shor, Deutsch Josza, Grover and Simon’s algorithm. In what
follows, we will explain each of these algorithms in details.

1.4.1 Shor’s algorithm

In the early 1990s, it was known that a quantum computer could be more efficient
than any conventional computer for certain tasks in the Complexity-Theoretical
Church-Turing thesis. However, surveys in these areas have been largely motivated
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by academic curiosity. There were not many economic reasons for people to spend a
lot of money or time trying to build a quantum computer.

That has been changed in 1994, when Peter Shor, a scientist working for Bell Labs,
devised a polynomial time algorithm to factor large numbers on a quantum computer.
The algorithm was considered as an important task as the difficulty of factoring large
numbers is relied upon for many cryptographic systems. If an efficient method of
factoring large numbers is implemented, most of many encryption schemes would
be practically useless to protect their data from prying eyes. Although it has not
been proven that factoring large numbers can not be archived on a conventional
computer in polynomial time, in 2015 the fastest publicly available algorithm for
factoring large numbers runs in O(exp( 64

9 n/3(log n)2/3) operations, where n is the
number of bits used to represent the number: this runtime exceeds polynomial time.
On the contrary of Shor’s algorithm which runs in O((log n)2 log n) on a quantum
computer, and then must perform O(log n) steps of post processing on a classical
computer. Overall then this time is polynomial. This discovery propelled the study
of quantum computing forward, because such an algorithm is in high demand.

Shor’s algorithm [Sho94] is based on a result of number theory. This result is:
The function F (a) = xa mod n is a periodic function, where x is an integer

coprime to n. In the context of Shor’s algorithm n will be the number we wish to
factor. When two numbers are coprime it means that their greatest common divisor
is 1. Calculating this function for an exponential number of a would take exponential
time on a classical computer. Shor’s algorithm utilizes quantum parallelism to
perform the exponential number of operations in one step.

The reason why this function is useful for factoring large numbers is as follows:
Since F (a) is a periodic function, it has some period r. We know that x0modn= 1,

so xrmodn= 1, and x2rmodn= 1 and so on since the function is periodic. Given this
information and through the following algebraic manipulation:

xr ≡ 1 mod n (1.8)

(xr/2)2 = xr ≡ 1 mod n (1.9)

(xr/2)2 − 1 ≡ 0 mod n (1.10)

and if r is an even number

(xr/2 − 1)(xr/2 + 1) ≡ 0 mod n (1.11)

We can see that the product (xr/2− 1)(xr/2 + 1) is an integer multiple of n, the number
to be factored. So long as xr/2 is not equal to ±1, then at least one of (xr/2 − 1)
or (xr/2 + 1) must have a nontrivial factor in common with n. So by computing
gcd(xr/2 − 1, n), and gcd(xr/2 + 1, n), we will obtain a factor of n, where gcd is the
greatest common denominator function.

Shor’s algorithm tries to find r, the period of xa mod n, where n is the number
to be factored and x is an integer coprime to n. To do this, Shor’s algorithm creates
a quantum memory register with two parts. In the first part, the algorithm places a
superposition of the integers which are to be a′s in the xa mod n function. We will
choose our a′s to be the integers 0 through q− 1, where q is the power of two such that
n2 ≤ q < 2n2. Then the algorithm calculates xa mod n, where a is the superposition
of the states, and places the result in the second part of the quantum memory register.

Next the algorithm measures the state of the second register, the one that contains
the superposition of all possible outcomes for xa mod n. Measuring this register
has the effect of collapsing the state into some observed value, say k. It also has the
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side effect of projecting the first part of the quantum register into a state consistent
with the value measured in the second part. Since we have partitioned our quantum
register into two parts measurement of the second part collapses that part into exactly
one value, while the other partition collapses into a state consistent with the observed
value in the other portion of the register. It is still possible for the non measured
part of the register to exist in a superposition of base states, as long as each of those
base states are consistent with the measured value in the other part of the register.
What this means in this instance is that after this measurement the second part of the
register contains the value k, and the first part of the register contains a superposition
of the base states which when plugged into xa mod n produce k. Since we know
xa mod n is a periodic function, we know that the first part of the register will
contain the values c, c + r, c + 2r... and so on, where c is the lowest integer such that
xc mod n = k

The next step is to perform a discrete Fourier transform on the contents of the
first part of the register (the one containing all integers such that xa mod n = k)
and to put the result back into register one. The application of the discrete Fourier
transformation has the effect of peaking the probability amplitudes of the first part of
the register at integer multiples of the quantity q/r.

Now measuring the first part of the quantum register will yield an integer multiple
of the inverse period. Once this number is retrieved from the quantum memory
register, a classical computer can do some analysis of this number, make a guess as to
the actual value of r, and then compute the possible factors of n.

1.4.2 Deutsch-Jozsa algorithm

A simple problem

Let us consider the following problem:
There is a univariate function f , defined over the binary alphabet {0, 1}, with out-

put range in the same alphabet {0, 1}. i. e., f : {0, 1} −→ {0, 1}. Without assumptions
about f , there are four possible configurations for the function f :

• Both inputs 0, 1 are mapped to the output 0: f (0) = f (1) = 0.

• Both inputs 0, 1 are mapped to the output 1: f (0) = f (1) = 1.

• Inputs pass through f unchanged: f (0) = 0 and f (1) = 1.

• Inputs are exchanged after passing through f : f (0) = 1 and f (1) = 0.

We will consider that the first two cases f as being "constant" (i. e., whatever
input we insert, the function behaves the same way), and the last two cases of f as
being "balanced". The problem is the following [Cle+98]:

Given a function f : {0, 1} −→ {0, 1} and without knowing anything more than
that, determine whether f is a constant or a balanced function with the minimum
number of function evaluations.

Let us consider the following circuit in the diagram:
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FIGURE 1.11: Deutsch Jozsa circuit

We start with the state:
|ϕ0〉 = |0, 1〉.

Both inputs go through a Hadamard gate, which gives:

|ϕ1〉 = |H · 0, H · 1〉 = |0〉+ |1〉√
2
⊗ |0〉 − |1〉√

2
.

In the next step, we go through the function f (remember that this function uses
the top input to define the output). So far, the top input has the form:

|0〉+ |1〉√
2

.

By using the abstract description of the output of f , a different way to write that
output is:

(−1) f (x) |x, 0〉 − |x, 1〉√
2

= (−1) f (x)|x〉 ⊗ |0〉 − |1〉√
2

.

Then, using this information in our new circuit, we obtain altogether:

|ϕ2〉 =
(−1) f (0)|0〉+ (−1) f (1)|1〉√

2
⊗ |0〉 − |1〉√

2
.

Let’s see what happens when we take the cases of f : in our case, f (0) = 1 and
f (1) = 0.

Thus:

|ϕ2〉 =
(−1)1|0〉+ (−1)0|1〉√

2
⊗ |0〉 − |1〉√

2
= (−1)

|0〉 − |1〉√
2
⊗ |0〉 − |1〉√

2
.

Repeating the above procedure for all cases of f (constant or balanced) and using
the same circuit architecture, we get the following behavior for |ϕ2〉:

|ϕ2〉 =

(±1) |0〉+|1〉√
2
⊗ |0〉−|1〉√

2
, if f is constant,

(±1) |0〉−|1〉√
2
⊗ |0〉−|1〉√

2
, if f is balanced.

Now, as a final step, we apply again the Hadamard gate to transform the top qubit as
follows:

|ϕ3〉 =

(±1)|0〉 ⊗ |0〉−|1〉√
2

, if f is constant,

(±1)|1〉 ⊗ |0〉−|1〉√
2

, if f is balanced.
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Then by just measuring the first qubit we can distinguish whether the function is
balanced or constant and only by one function evaluation. This example shows why
a quantum algorithm can achieve exponential acceleration, compared to classical
computers.

The algorithm

The above example can be extended to multivariate functions. Consider functions
f : {0, 1}n → {0, 1}. Notice that in this case, the cardinality of input values is
exponential: there are 2n different input configurations.

As before, we are interested in distinguishing whether f is constant or balanced.
Here, constant f is defined as the case where all the inputs are mapped to either 0 or
1. Balanced f is denoted to the case where the half of the input go to 0, and the other
half goes to 1.

Let’s assume that we are assured that the function is either balanced or constant.
We will briefly describe without much detail, how we would solve this problem using
quantum systems with a single function evaluation. Similarly to the univariate input
case, we will consider a circuit where the top input is a n-dimensional binary string,
say x, and the top input is a single qubit y. The function evaluation is again denoted
with its matrix U f and the outputs are represented in the following circuit:

FIGURE 1.12: Circuit of Deutsch Josza algorithm

Similarly to the univariate case, we will need Hadamard matrices to put inputs
into superposition. We can define multidimensional Hadamard matrices, by com-
bining single qubit Hadamard matrices. The pattern of defining a n-dimensional
Hadamard matrix, say H⊗n, is through its Kronecker product with itself. e.g., given

H = 1√
2

[
1 1
1 −1

]
we can compute:

H⊗2 = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Now, we have all the required tools to solve the problem. We will just represent the
final circuit that allows to distinguish between a constant vs. balanced binary valued
function in just one function evaluation. Here it is:
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FIGURE 1.13: Deutsch Josza algorithm

This circuit defines the Deutsch-Jozsa algorithm [DJ92]: i. e., the generalization
of the Deutsch algorithm for the multivariate binary case. The final outcome is that
if we measure the top qubit in the circuit above, we will only get |0〉 if the function
is constant. In any other case, it is balanced. And we did so with only one function
evaluation, an exponential speed-up is gained.

1.4.3 Grover’s Algorithm

In mathematical terms, the standard way to find a specific element in a given set of n
elements, is to do an exhaustive search. which means to look into each individual
entries in the list and report the solution when we find that particular entry. This
exhaustive search has O(n) computational complexity. Indeed, this search can be
done in a time much more faster [Gro96].

Grover’s algorithm [Gro97] claims to solve the problem "with high probability"
in O(

√
n ) time. Note the "high probability" statement, since the algorithm is not

deterministic.
To achieve our goals, there are two main steps: which are "phase inversion" and

"inversion about the mean". At first sight, these may be irrelevant to the problem we
discuss, but their combination is crucial for Grover’s algorithm.

Phase inversion

The main idea behind the phase inversion is to change the phase of the (complex)
weight/probability that corresponds to the element we are looking for.

Inversion about the mean

The "inversion about the mean" is exactly what it implies: we are asked to find a
different sequence of numbers such that:

(i) the new numbers (summed up together) have the same distance as before from
the mean, but inverted around the mean,

(ii) the new sequence has the same mean.
As can be easily proved, the second part is automatically proven if the first part is

true.
We can easily observe that the combination of phase and mean inversion in

sequence stretches the distance between the entry of interest and the rest of the entries
in the vector. i. e., in a way we are forcing the element of interest to stand out
compared to the rest of the entries.
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FIGURE 1.14: Grover’s algorithm

Phase and mean inversion as quantum gates

In what follows, we will describe these two main steps, let’s see how we can represent
them in Grover algorithm. Remember that in the initial definition of the function f ,
we take as an input binary strings with length n and we output a binary number,
with 1 only in the case where the input sequence matches the number we look for.
One way to represent the phase and mean inversions together is as follows:

(−I + 2A) =


−1 + 2

2n
2
2n . . . 2

2n
2
2n −1 + 2

2n . . . 2
2n

...
...

. . .
...

2
2n

2
2n . . . −1 + 2

2n


where A = 1

2n · 12n×2n is the matrix with all entries equal to 1
2n . The matrix A is the

matrix that computes the mean. We can also easily prove that the transformation
(−I + 2A), is actually unitary; thus it could be implemented as a quantum gate.

Putting all the ingredients together: the algorithm

Grover’s algorithm can be described with a quantum circuit as follows Fig 1.14 : The
algorithm performs the following motions:

- Set top input to |0〉

- Apply the Hadamard transform to put in superposition all possible outcomes,
with equal probability.

- Repeat
√

2n times:

- Apply phase inversion

- Apply mean inversion about the mean

- Measure output: with high probability, the result will be the entry required.
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Example

We will close this paragraph with an example, in order to show the power of Grover’s
algorithm.

Let’s consider that n = 3. The possible states are:

[000, 001, 010, 011, 100, 101, 110, 111].

Our function f is equal to 1 only at the state 101. Following the algorithm above we
have:

- Initially: |ϕ1〉 = [0 0 0 0 0 0 0 0]>.

- After applying the Hadamard transfrom, we get:

|ϕ2〉 =
[

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

]>
.

- In the inner loop:

- The phase inversion gives: |ϕ3a〉 =
[

1√
8

1√
8

1√
8

1√
8

1√
8
− 1√

8
1√
8

1√
8

]>
.

- The mean of the vector of probabilities is:

7 · 1√
8
− 1√

8√
8

=
3

4
√

8
.

- After inversion around the mean, our vector of probabilities becomes:

|ϕ3b〉 =
[

1
2
√

8
1

2
√

8
1

2
√

8
1

2
√

8
1

2
√

8
5

2
√

8
1

2
√

8
1

2
√

8

]>
.

- . . . (after one more iteration in the inner loop).

- Measuring the top output, we get:

|ϕ3b〉 =
[
− 1

4
√

8
− 1

4
√

8
− 1

4
√

8
− 1

4
√

8
− 1

4
√

8
11

4
√

8
− 1

4
√

8
− 1

4
√

8

]>
.

We can notice that the probability to measure 101 is: | 11
4
√

8
|2 = 0.9453125, while any

other entry appears in the output with probability: | 1
4
√

8
|2 = 0.0078125. Thus, even

with two iterations, we get the solution we want with probability close to 1.
Grover’s algorithm is probabilistic in the sense that it gives the correct answer

with a probability of less than 1. Though there is technically no upper bound on the
number of repetitions that might be needed before the correct answer is obtained, the
expected number of repetitions is a constant factor that does not grow with n.

1.4.4 Adiabatic algorithm

In this paragraph, we follow the lines of the P. Wittek’s book [Wit14] on "Quantum
machine learning". As Wittek mentionned, an adiabatic process changes conditions
gradually so as to allow the system to adapt its configuration. If the system starts
in the ground state of an initial Hamiltonian, after the adiabatic change, it will end
in the ground state of the final Hamiltonian. Consider a Hamiltonian H0 whose
unique ground state can be easily constructed, and another Hamiltonian, H1 , whose



1.4. Quantum Algorithms 27

ground state energy we are interested in. To find this ground state, one considers the
Hamiltonian:

H(λ) = (1− λ)H0 + λH1

with λ = λ(t) as a time-dependent parameter with a range in [0, 1]. The quantum
adiabatic theorem states that if we start in the ground state of H(0) = H0 and we
slowly increase the parameter λ, then the system will evolve to the ground state of
H1, if H(λ) is always gapped, that is, there is no degeneracy for the ground state
energy.

In adiabatic quantum computing [KN98], the aim is to find the global minimum
of a given function f : {0, 1}n → (0, ∞), where minx f (x) = f0 and f (x) = f0 if and
only if x = x0 , that is, there is a unique minimum. We seek to find x0. To do so, we
consider the Hamiltonian:

H1 = ∑ f (x) |x〉 〈x|

We take an initial Hamiltonian H0 and the Hamiltonian equation H(λ) = (1−
λ)H0 + λH1 to adiabatically evolve the system.

Thus, if we measure the system in the computational basis at the end of this
process, we obtain the minimum x0

1.4.5 The Harrow-Hassidim-Lloyd Algorithm

The quantum algorithm designed by Aram Harrow, Avinatan Hassidim, and Seth
Lloyd were formulated in 2009, [HHL09], in order to solve linear systems. The key
idea of HHL algorithm is to find an estimate of the result of a scalar measurement on
the solution vector of a fixed linear system of equations [HHL09].

The Harrow-Hassidim-Lloyd (HHL) algorithm is one of the main important
algorithms believed to provide an acceleration over their classical counterparts.

Solving systems of linear equations is one of the most basic problems you can
imagine, as well as one of the most important. The HHL algorithm allows us to
approximate this problem in polylog(N) time, since several hypotheses are met. It
is exponentially faster than any conventional algorithm for solving linear systems
(which must take at least poly(N) time), but it is not, strictly speaking, a completely
fair comparison, because the way the data is represented. In addition, the HHL
algorithm also requires some assumptions to be satisfied in order to reach the poly-
logarithmic running time.
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The problem statement of our linear system can be written as:

A~x = b

Where A is a Hermitian matrix, i.e. AT = A and b is a unit vector, and our
purpose is to find the solution of the vector ~x satisfying A~x = b.

The problem reduces to invert A. To solve this problem on a quantum machine,
we should represent both the inputs and outputs in terms of a quantum state. Thus
we assume that b is given in the form |b〉 as a log N qubit state, and the goal is to
produce an approximation of the following quantum state |x〉 which is the quantum-
mechanical representation of the desired solution vector x:

|x〉 = A−1 |b〉
||A−1 |b〉 ||

This is the solution to the linear system Ax = b in the quantum form.
Let’s transform the vectors in terms of a quantum state as:

A |x〉 = |b〉

Additionally, A is required to be sparse. This is not necessary for the algorithm
to give results, but it is required for the speedup with respect to the best classical
alternative holds.

This algorithm assumes that the user is not interested in the values of ~x itself, but
rather the result of applying some operator M onto x, 〈x|M|x〉.

• A is Hermitian

First of all, we represent the vector b as a quantum state of the form:

|b〉 =
N

∑
i=1

bi |i〉 ,

For a superposition of different times t, we use Hamiltonian simulation tech-
niques to apply the unitary operator eiAt to |b〉. We use the quantum phase
estimation in order to decompose |b〉 into the eigenbasis of A so as to find the
corresponding eigenvalues λj.

As A Hermitian, we can write:

A =
N

∑
j=1

λj |µj〉 〈µj| ,

where λj ∈ R are eigenvalues, and |µj〉 ∈ RN the respective eigenvectors.

The state of the system after this decomposition is approximately:

N

∑
j=1

β j |µj〉 |λj〉 ,

where |µj〉 is the eigenvector basis of A, and |b〉 = ∑N
j=1 β j |µj〉 |λj〉 .

Then, we will perform the linear map taking |λj〉 to Cλ−1
j |λj〉, where C is a

normalizing constant. The linear mapping operation is not unitary, so that
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would require a number of repetitions as it has some probability of failing.
After it succeeds, we uncompute the |λj〉 register:

N

∑
j=1

β jλ
−1
j |µj〉 = A−1 |b〉 = |x〉 ,

where |x〉 is a quantum-mechanical representation of the desired solution vector
x.

• A is not Hermitian

Normally, the algorithm requires that the matrix A is Hermitian so that it can
be converted into a unitary operator. In the case where A is not Hermitian, we
define a Hermitian matrix C as:

C =

(
0 A

AT 0

)
the algorithm can be solved using:

Cy =

(
b
0

)

to obtain y =

(
0
x

)
Then, the algorithm requires an efficient procedure to prepare |b〉. We suppose
that there exists a linear operator B which can take an arbitrary quantum
state |initial〉 to |b〉 efficiently or that this algorithm is a subroutine in a larger
algorithm and receives |b〉 as input. Any error in the preparation of state |b〉 is
ignored.

The algorithm can be also used as a subroutine in another quantum algorithm.
Generally when we want to solve linear systems of equations we don’t want just the
solution, but we want to do something with the solution. For example after using
HHL, we might want to calculate 〈x|F|x〉 for another matrix F - if F is an efficiently
implementable measurement, then we could estimate this quadratic form efficiently.

It would be like using the Quantum Fourier Transform. Even if the Fourier
transform is given as a quantum state in which it is difficult to extract a particular
Fourier coefficient, it is still remarkably useful for solving problems like factorization
of integers. If the algorithm using HHL also has an efficient way to generate the |b〉
needed during HHL then the representation of the data is no longer a problem and
could be in fact considered as an advantage.

1.5 Conclusion

As most researchers in computer science don’t know the basis of quantum physics,
this chapter was devoted to give an explanation of the most basic notions in quantum
computing, namely the notion of qubit, superposition, entanglement and so on.
We also described the well known algorithms in quantum computing like Shor’s
algorithm, Deutsch-Jozsa algorithm and Grover’s algorithm that we will use it in our
contributions.
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Machine learning is a branch of artificial intelligence that aims to learn from data
to give the correct predictions. It studies the techniques that allow the machine to
learn from past experiences. Unlike traditional computing where the machine is
explicitly programmed on how it should react according to each situation, machine
learning learns from examples of the past situations in order to be able to generalize
in the future to the new situations. It is used in a wide variety of applications to solve
problems like: clustering, text mining, regression, etc. There are two main types of
machine learning tasks: supervised and unsupervised machine learning.

In supervised machine learning, the learner is provided a set of training examples
with features presented in the form of high-dimensional vectors and with correspond-
ing labels to mark its category. The aim is to classify new examples based on these
training sets.

Given training set (x,y) that associates classifier labels y to each data point x. For
each new data point x assign the correct class y.



32 Chapter 2. State of the art of Quantum Machine Learning algorithms

In unsupervised machine learning, the system aims to classify the data into
different groups without prior information.

Given data x, find classes y that naturally partition the data.

Machine learning is fundamentally different from rote learning, where the ma-
chine would simply seek to memorize the examples presented without learning
anything from them. In fact, in machine learning the machine will not only be able to
recognize most of the examples that have been presented to it, but it will be also able
to generalize to cases not previously observed.

The increased computational power and data availability, as well as algorithmic
advances, have led machine learning techniques to impressive results in regression,
classification, data generation and reinforcement learning tasks.

Despite these successes,
with the ever increasing size of data sets, we may soon reach a point where

current computational tools will no longer be sufficient. While custom hardware
architectures, such as graphics processing units (GPUs) and tensor processing units
(TPUs), can dramatically improve performance, they may not offer a structural
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solution to the problem. That’s why a growing number of researchers want to explore
the possibility of harnessing the power of quantum computing to accelerate classical
machine learning algorithms. Quantum computers could be the solution as they
can effectively solve these problems which are considered to be difficult for classical
machines, in particular Quantum Machine Learning (QML) which is the intersection
between machine learning and quantum computation.

Here, we will present the most major advances in quantum machine learning;
we will explain each quantum machine learning algorithm which has been done in
literature.

Computational complexity studies the resources required to perform a given
computational task. One of the major objectives of this theory is to classify the
problems according to their time complexity, which roughly corresponds to the
number of elementary steps necessary to solve the problem according to the size
of the input. We define quantum acceleration as the runtime advantage obtained
by a quantum algorithm over classical methods for the same task. We quantify the
runtime with the asymptotic scaling of the number of elementary operations used by
the algorithm with respect to the size of the input.

One of the roots of the accelerations theorized in quantum computing is the
ability to process information in quantum superposition. Since machine learning
is ultimately about analyzing large amounts of data, it is important to ask how the
data is transformed into quantum superposition. There are two types of algorithms:
those which work on quantum data and those which seek to process data stored in a
classical memory. The first case is ideal for quantum machine learning. The data is
ready for analysis and we don’t have to spend computational resources to convert
the data into quantum form. The second case is more elaborate because it requires a
procedure which encodes classical information in a quantum state.

2.1 Quantum machine learning algorithms

2.1.1 Quantum K-means

K-means [Llo82] is a type of unsupervised algorithm that groups similar data into
clusters.It calculates the centroids of K clusters and assigns a data point to that cluster
having least distance between its centroid and the data point.

Its procedure follows a simple and easy way to classify a given data set through a
certain number of clusters, we assume that we have K clusters.

1. Choose a value of K, we randomly assign each data point to any of the K
clusters.

2. Compute cluster centroid for each of the clusters, and assign each point to the
closest cluster centroid.

3. Update the centroid of each cluster.

4. Repeat steps 2 and 3. Find the closest distance for each data point from new
centroids and get associated with new K clusters. Repeat this process until
convergence occurs which means until centroids does not change.

The quantum version of K-means [Ben+19b] algorithm provides an exponential
speed-up comparing to its classical version. The algorithm is basically based on
computing the distance between the quantum states using swap test and using
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Grover’s algorithm already described in the previous section to assign vectors to the
closest centroid of cluster.

In the quantum algorithm to calculate the distance between two vectors ~x and ~w,
we need to do the following:

• Generate two states, |ψ〉 and |φ〉 with an ancilla variable. Where

|ψ〉 = 1√
2
(|0〉 |x〉+ |1〉 |w〉)

|φ〉 = 1√
Z
(|~x| |0〉 − |~w| |1〉)

And Z = |~x|2 + |~w|2 is the sum of the squared norms of the two instances.

• Perform a projective measurement on the ancilla alone.

After generating the two states |ψ〉 and |φ〉, we perform a swap test on the ancilla
qubit. The swap test is composed of a Hadamard gate, Fredkin gate and another
Hadamard gate using the ancillary qubit |0〉.

After applying the swap test circuit, the distance is evaluated by:

2Z(2P(|0〉)− 1)

Which implies that if we get a probability P(|0〉) = 1
2 the states |ψ〉 and |φ〉

are orthogonal, whereas the probability P(|0〉) = 1 indicates that the states are
identical. The subroutine should be repeated several times to obtain a good estimator
of probability. The advantage of using swap test is that the states |ψ〉 and |φ〉 can be
unknown before procedure and simple measurement is performed on the control
qubit.

we can move on to the algorithm retrieving the euclidean distance |~x − ~w|2
between the two real valued vectors ~x and ~w.

As |x〉 = ~x
|~x| and |w〉 = ~w

|~w| , so we have |~x− ~w|2 = 2Z| 〈φ|ψ〉 |2
To sum up, we prepare the two states and we apply swap test circuit, we repeat

that procedure to obtain an acceptable estimate of probability. The classical algorithms
require O(N) to compute the euclidean distance between two vectors, while in the
quantum version we have an exponential speed-up. After computing the distance
between each centroid and data, we are ready to use Grover’s algorithm to choose
the closest centroid of cluster.

The quantum K-means algorithm provides an exponential speed-up compared
to classical K-means algorithm. The quantum parallelism is achieved thanks to the
clever calculation of distances between large dimensional vectors. Therefore, an
exponential speed-up is gained.

2.1.2 Quantum K-medians

K-medians [RK87] is a clustering algorithm that represent the variation of K-means
clustering where instead of calculating the mean for each cluster to determine its
centroid, one instead calculates the median. This has the effect of minimizing the
error over all clusters with respect to the 1-norm distance metric, as opposed to the
squared 2-norm distance metric which K-means does.

K-medians algorithm attempts to create K disjoint cluster that must be selected as
the cluster centers. The olgorithm follows the steps below:
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• Assign each point in the data set to its closest center. The points assigned to the
same center are then said to be in the same cluster, therefore they are added to
the same disjoint-set.

• Calculate the median to determine the updated value of the cluster’s center.

• Repeat the process until there isn’t a great change.

The K-medians algorithm is similar to the K-means algorithm, but instead of
defining new cluster centroid by computing the mean, we compute the median,
therefore, the representative element of a cluster is always a data instance. K-medians
is a variation of K-means. Indeed, the K-means algorithm has the disadvantage that
in some cases the calculated mean may lie outside the desired region, while the
cluster centroid calculated as the median still belongs to a set of training vectors.
In other words, the centroid in K-means rarely coincides with a data instance: it
lies in between the data points. Unlike K-means, K-medians may not converge: it
can oscillate between the medians. K-medians is more robust and less sensitive to
noise than K-means. The quantum version of K-medians algorithm requires the same
quantum subroutines as quantum K-means algorithm: swap test circuit, computing
the distance and Grover’s algorithm [ABG07].

Algorithm 1: Quantum K-median algorithm

Input: Set of vectors xn ∈ RM, n = {1, 2, ..., N}, initial centroids
w1, w2, ...., wK ∈ RM.

Output: The set of K clusters Ck, |Ck| is the number of vectors within the
cluster k.

repeat
Assignment step (clustering):
Compute the distance between each data and centroid, then use Grover
algorithm to assign each data to the nearest cluster.
Update step:
For all k = {1, 2, ..., K}, update the centroid wk of each cluster Ck by computing
the median.

until a stopping condition is satisfied.

The algorithm of K-medians is similar to quantum K-means algorithm, they have
approximately the same time complexity except the time complexity of the calculation
of medians and means. Comparing to its classical counterpart, we gain an exponential
speed with quantum computers.

2.1.3 Quantum Principal Component Analysis

Principal Component Analysis (PCA) [WEG87] is a statistical procedure that uses
an orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal compo-
nents. It is used to make data easy to explore and visualize by reducing the number
of variables.

The components are orthogonal and each component is a linear combination of
the original variables. This orthogonality between components indicates that the
correlation between these components is zero.

The first principal component captures the direction of the maximum variability
in the data. The second principal component captures the remaining variance in the
data but has variables uncorrelated with the first component. Similarly, all successive
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principal components (PC3, PC4 and so on) capture the remaining variance while
being uncorrelated with the previous component.

Principal component analysis is used in several applications like: compression,
simplifying data for easier learning, visualization. We should choose whether to go
forward with PCA or not because the domain of knowledge is very important. For
example, if the data is noisy, it is not suitable to use it as all the components of PCA
have quite a high variance.

PCA reduces the dimensionality by transforming the data to a new set of uncorre-
lated variables (the principal components) of which the first few retain most of the
variation present in the original dataset. The standard way to calculate the principal
components boils down to finding the eigenvalues of the data covariance matrix.

The different steps of Principal component analysis are:

• Construct the covariance matrix C.

• Diagonalize C.

• Cite the principal component.

These steps should be done in a quantum manner. To do so, first of all we will present
some properties of the density matrix that we will use it after.

Properties of density matrix

- A density matrix is Hermitian, that’s to say:

ρ = ρT

-
tr(ρ) = 1

Proof

tr(ρ) = tr(∑ pj |ψj〉 〈ψj|)
= ∑ pjtr(|ψj〉 〈ψj|)
= ∑ pj

= 1

The quantum version of PCA [LMR14] uses the same steps of the classical version
but working with quantum states:

• Transform the data into the quantum state.

• Construct the density matrix (covariance matrix).

• Find eigenvectors and eigenvalues.

To diagonalize a matrix A which is Hermitian we use the ability to perform
e−iAt |ψ〉 which gives us the eigenvectors+eigenvalues (using quantum simula-
tion).

– Turn data into Hamiltonian e−iρt |ψ〉 (Exponentiate the matrix).
ρ is Hermitian we should turn it into Hamiltonian

– Apply quantum phase algorithm
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The underlying idea is that, doing a lot of partial application of a swap gate (for a
small amount of time) and trace operations on two states and σ allow one to apply
e−iσt to ρ.

Recall: 1 In the Schrödinger representation, the evolution over time of a quantum system is
characterized (at the infinitesimal level) by the Hamiltonian operator.

ih̄
d |ψ(t)〉

dt
= H |ψ(t)〉

where ψ is the system’s wave function, and H is the Hamiltonian operator.
In a stationary state

|ψ(t)〉 = e−i Et
h |ψ(0)〉

where E is the energy of the stationary state.
We can easily see that a stationary state is an eigenvector of the Hamiltonian operator,

with energy as its eigenvalue.

Quantum principal component analysis uses multiple copies of an unknown
density matrix to construct the eigenvectors corresponding to the large eigenvalues
of the state. In particular, we show that multiple copies of the state ρ can be used
to implement the unitary operator e−iρt : that is, the state functions as an energy
operator or Hamiltonian, generating transformations on other states.

1. Transform data into quantum states

We assume that our data sets consists of arrays of vectors stored in a form of
complex vectors of dimension N = 2n.

We encode classical information into the norm of a quantum state, suppose we
have a vector vj ∈ Cd

|v〉 = 1
|~v|

N

∑
i=1

vi |i〉

2. Construct density matrix

In the classical version, we have:

C =
1
2n

N

∑
j=1

~vj~vT
j

The quantum version is:

ρ =
1
2n

N

∑
j=1
|vj〉 〈vj|

3. Find eigenvectors and eigenvalues

Note that if we can perform e−iAt |ψ〉 using quantum phase or model measure-
ment of Von Newman, we can find the eigenvectors and the eigenvalues. Thus
the question is how to perform e−iρt |ψ〉? Wich means how to take a density
matrix and turn it into Hamiltonian. We will try to make the density matrix
exponentiation.
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e−iS12∆tρ1 ⊗ σ2e−iS12∆t

Where:

S12 is the swap, that’s to say that: S12 |φ〉1 ⊗ |X〉2 = |X〉1 ⊗ |φ〉2,
S2

12 = 112
and e−iS12∆t = cos ∆t1− i sin ∆tS12

We have

cos ∆t112 − i sin ∆tS12ρ1 ⊗ σ2 cos ∆t1 + i sin ∆tS12 =

cos2 ∆tρ1 ⊗ σ2 − i sin ∆t[S12ρ1 ⊗ σ1] + sin2 ∆tS12σ1 ⊗ ρ2

So,

tr1 = cos2 ∆tσ− i sin ∆t[ρ, σ] + sin2 ∆tρ

= e−iρ∆tσeiρ∆t + o(∆t2)

Density matrix exponentiation now allows us to apply the quantum phase algo-
rithm to find the eigenvectors and eigenvalues of an unknown density matrix. If we
have n copies of ρ, we use the ability to apply e−iρt to perform the quantum phase
algorithm. In particular, the quantum phase algorithm uses conditional applications
of e−iρt for varying times t to take any initial state |ψ〉 |0〉 to ∑i ψ |vi〉 |ri〉, where vi are
the eigenvectors of ρ and ri are the corresponding eigenvalues.

2.1.4 Quantum Support vector machine

Support vector machines (SVM) [Hea+98] is a supervised learning methods used for
classification, regression and outliers detection. SVM constructs a hyperplane or set of
hyperplanes in a high or infinite dimensional space, it presents one of the most robust
prediction methods based on the statistical learning framework. Intuitively, support
vector machines search for the hyperplanes that divide a dataset into classes such
that the margin around the hyperplane is maximized, a good separation is achieved
by the hyperplane that has the largest distance to the nearest training data point of
any class (so-called functional margin), since in general the larger the margin, the
lower the generalization error of the classifier.

The advantages of support vector machines are:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number
of samples.

• Uses a subset of training points in the decision function (called support vectors),
so it is also memory efficient.

The disadvantages of support vector machines are:

• If the number of features is much greater than the number of samples, avoid
over-fitting in choosing Kernel functions and regularization term is crucial.

• SVMs do not directly provide probability estimates, these are calculated using
an expensive five-fold cross-validation.
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A support vector machine tries to find the optimal separating hyper-plane. It
maximizes the distance between the hyper-plane and closest data points called sup-
port vectors. The objective function could be convex or non-convex depending on the
kernel used in SVM algorithm. The non-convex functions tend to converge to a local
optimum, thus the classical SVM balances between optimization effectiveness and
the prediction accuracy. Quantum version of support vector machines [RML14] using
minimization quantum subroutine like Grover algorithm and provides convergence
to a global optimum for non-convex cost function [Ang+03].

Consider that we have M data points of {(~xj, yj) : j = 1, 2, ..., M}, where ~xj is a
N-dimensional vector in data feature space, and yj ∈ {−1,+1} is the label of the
data, which is +1 or -1. A support vector machine tries to find the optimal separating
hyper-plane ~w.~x + b = 0 that divides the data points into two categories as follows:

~w.~xj + b ≥ 1 when yj = +1

~w.~xj + b ≤ −1 when yj = −1

Indeed, the mathematical formulation of the optimisation problem of support
vector machines contains a kernel matrix K containing the inner product of the feature
vectors (K)pk = ~xp.~xk, where p, k = 1, ..., N as entries. Therefore, the evaluation of the
inner product in support vector machines is very important. That’s why, the quantum
version of SVM is based on calculating the inner product between the states.

The evaluation of the inner product can be done faster in quantum computers
[RML14]. The quantum evaluation of a classical inner product relies on the fact that
the quantum states are normalised as:

〈xp|xk〉 = ~xp.~xk

|~xp||~xk|

Therefore, the kernel matrix can be calculated as follows:

tr[|ξ〉 〈ξ|] = 1

∑2n

i=1 |~xi|2
2n

∑
p,k=1
〈xp|xk〉 |~xp||~xk| |p〉 〈k|

Where

|ξ〉 = 1√
∑2n

i=1 |~xi|2

2n

∑
i=1
|~xi| |i〉 |xi〉

To summarize, the quantum version of SVM computes the kernel matrix using
the inner product and perform the classification of the data. The complexity of the
quantum SVM is O(log(NM)), so we gain an exponential speed-up comparing the
classical version of SVM.

2.1.5 Quantum neural networks

The simplest definition of a neural network is provided by the inventor of one of
the first neuro-computers, Dr. Robert Hecht-Nielsen. He defines a neural network
as: "...a computing system made up of a number of simple, highly interconnected
processing elements, which process information by their dynamic state response to
external inputs" [Cau89].

Neural networks are a series of algorithms that imitate the operations of a human
brain to recognize relationships between vast amounts of data. It’s based on a set of
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connected units or nodes called artificial neurons, which loosely model neurons in a
biological brain. Each connection, like synapses in a biological brain, can transmit a
signal to other neurons. An artificial neuron that receives a signal then processes it
and can signal neurons connected to it. The output of each neuron is calculated by a
nonlinear function of the sum of its inputs. During learning process, neurons adjust
the weight by increasing or decreasing the strength of the signal at a connection.
Different layers may perform different transformations on their inputs.

Types of neural networks Neural networks are sometimes described in terms of
their depth, including how many hidden layers they have. This is why the term
neural network is used as a synonym of deep learning. They can also be described
by the number of hidden nodes the model has or in terms of how many inputs and
outputs each node has. Variations in the classic neural network design allow various
forms of forward and backward propagation of information between levels.

There are different types of artificial neural networks, like: feed-forward neural
networks, recurrent neural networks, convolutional neural networks, ...

Feed-forward neural networks are one of the simplest variants of neural networks.
They pass information in one direction, through various input nodes, until it reaches
the output node. The network may or may not have layers of hidden nodes, which
makes their functioning more interpretable. It is ready to handle large amounts of
noise. This type of neural network is used in technologies such as facial recognition
and computer vision.

Recurrent neural networks (RNN) are more complex. They save the output of
processing nodes and feed the result back into the model. This is how the model is
said to learn to predict the outcome of a layer. Each node in the RNN model acts as a
memory cell, continuing the computation and implementation of operations. This
neural network starts with the same front propagation as a feed-forward network, but
then goes on to remember all processed information in order to reuse it in the future.
If the network’s prediction is incorrect, then the system self learns and continues
working towards the correct prediction during backpropagation. This type of neural
network is frequently used in text-to-speech conversions.

Convolutional neural networks (CNN) are one of the most popular models used
today. This neural network uses a variation of multilayer perceptrons and contains
one or more convolutional layers that can be either entirely connected or pooled.
These convolutional layers create feature maps that record a region of image which is
ultimately broken into rectangles and sent out for nonlinear processing. The CNN
model is particularly popular in the realm of image recognition; it has been used
in many of the most advanced applications of artificial intelligence, such as: facial
recognition, natural language processing and image classification.

The advantages of artificial neural networks include:

• The network can perform more than one job at a time thanks to parallel pro-
cessing abilities.

• The ability to learn and model nonlinear, complex relationships helps model
the real life relationships between input and output.

• The ability to predict the output of unseen data.

• The ability to learn from events and make decisions based on the observations.

The disadvantages of neural networks are:

• The lack of rules for determining the appropriate neural network structure,
which means some tests should be done to find the right structure.
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• All problems must be translated into numerical values before they can be
presented to the neural network.

• The inability of explanations of how we get the results.

Artificial neural networks have been widely studied in the literature of quantum
machine learning and they are used in several fields such as: pattern recognition,
classification problems and financial time series prediction. They try to learn the
non-linear dependencies between an input and output data. The classical neural
networks algorithm uses the layers of connected neurons and selects the weights
in each layer so that the cost function is minimized. The neurons are represented
by activation functions such as sigmoid or softmax functions, which introduce the
non-linearity to the algorithm.

An artificial neural network is a graph where the nodes are called neurons and
their connections are the weights that represent the synaptic strengths between
neurons. An activation function defines the value of a neuron according on the
current value of all other neurons weighted by their weights, and the dynamics
of the neural network is given by successively updating the value of neurons via
the activation function. Therefore, an artificial neural network can be seen as a
computational device, the input is the initial values of the neurons and the output is
a stable state of the entire network. To program a neural network, we need to select
the weights and an activation function encoding a certain input-output relationship.
The power of artificial neural networks is that they can learn their weight from
training data, a fact that neuro-scientists consider to be the basic principle of how
our brains work by processing information. For pattern classification, we generally
consider what are known as feed-forward neural networks in which the neurons are
arranged in layers, and each layer feeds its values into the next layer. An input is
presented to a feed-forward neural network by initializing the input layer, and after
each layer successively updates its nodes. Indeed, feed-forward neural networks
are able to classify input models extremely well if an appropriate set of weighting
parameters is given. To evoke the desired generalization, the network is initialized
with training vectors, the output is compared to the correct output, and the weights
adjusted by gradient descent to minimize the classification error, this procedure is
called back-propagation. A challenge for classifying models with neural networks is
the computational cost of the back-propagation algorithm, even though we consider
improved training methods such as deep learning.

Major research direction have been focused on accelerating the training of clas-
sical models and on the development of networks where all the building blocks,
from single neurons to training algorithms, are executed on a quantum computer a
so-called quantum neural network. The first works on quantum neural networks
appeared in the 1990s and a number of articles have been published on the subject.
However, it should be noted that the field of neural networks has not reached a level
of scientific maturity comparable to the other areas of quantum machine learning
already explained above. This lack of progression is due to the linearity of quantum
mechanics and the non-linearity of elements in neural network.

The quantum version of neural networks is based on the principles of quantum
mechanics. A lot of proposals try to find a quantum equivalent to the perceptron
unit from which neural networks are built. One problem is that nonlinear activation
functions do not immediately correspond to the mathematical structure of quantum
theory, since a quantum evolution is described by linear operations and leads to prob-
abilistic observation. Ideas to imitate the activation function of the perceptron with
a quantum mechanical formalism reach from special measurements to postulating
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non-linear quantum operators. A direct implementation of the activation function
using the circuit-based model of quantum computation has recently been proposed by
Schuld, Sinayskiy and Petruccione based on the quantum phase estimation algorithm
[SSP14].

Recently several works attempt to build the quantum version of neural networks
whose elements and updating rules are only based on the laws of quantum mechanics,
however, there is no consensus on the defining its characteristics. Indeed, most of the
articles failed to reproduce the basic characteristics of neural networks, because the
biggest challenge for a quantum artificial neural network is that quantum mechanics
is linear but artificial neural networks require non-linearity [Cyb89].

Recently,some efforts [Wan+17] [ROAG17] have been done to encounter the prob-
lem of non linearity by using measurements and introducing a number of overhead
qubits into the input and output of each network node. However, these models don’t
afford a fully quantum neural network as it still lack some important features,such
as: the parameters of the model that are still remaining classic. The authors of the
papers recognize that, in their current forms, the most likely applications of these
models appear to be learning quantum objects rather than enhancing classical data
learning. We note that despite the several works done in quantum neural networks
[GZ01], [PK97] and [PM11] there is no attempt to model the non-linearity directly on
the amplitudes, which means that until now there is no proposal of a fully efficient
quantum neural network.

Finally, the benefits of quantum neural networks in comparison to the classical
algorithm are basically based on the speed-up that come from superposition.

2.2 Comparison of the performance of classical and quantum
machine learning algorithms

It is noticeable that in our days the theory of quantum computations are among the
most rapidly developing scientific areas. Quantum machine learning algorithms
require to encode the classical data into a quantum computer to make it accessible for
quantum information processing. Then, quantum information processing routines are
applied to finally make a measurement to get the final results. Recently, researchers
investigated if quantum computing can help to improve classical machine learning
algorithms.

Indeed, this quantization is done in order to improve the performance which
means to speed up the learning algorithms. Quantum computers has the natural
advantage of reducing the time complexity of a computation process.

Computational complexity studies the resources required to perform a given
computational task. One of the major goals of this theory is to classify problems
according to their time complexity, which roughly corresponds to the number of
elementary steps required to solve the problem according to the size of the input
[AB09]. The advantage obtained by a quantum algorithm over the classical ones is
the speed-up that we gain for the same tasks.

Quantum computers use effects such as superposition and entanglement to pro-
cess information in a way that classical computers don’t. recently, we have seen
a great progress in building more powerful quantum computers in order to take
advantage of quantum computing.

Quantum machine learning software uses quantum algorithms to process infor-
mation. Quantum algorithms can in principle surpass the most well-known classical
algorithms to solve certain problems especially in terms of acceleration.
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For example, quantum computers can search an unsorted database in exponential
time while in classical computer a polynomial time is required. Likewise, quantum
computers can perform Fourier transforms, invert sparse matrices, and find their
eigenvalues and eigenvectors in logarithmic time, while the most well-known algo-
rithms for classical computers take a polynomial time: the quantum computer has an
exponential speed compared to the best classical computer algorithms.

2.3 Conclusion

To recap, in this chapter we tried to give the state of the art of the quantum version of
the most important machine learning algorithms for data science, namely: quantum
K-means, QPCA, quantum SVM and quantum neural networks. It is noticeable that
the quantum version of these algorithms follow the same steps as the classical version
but these steps are done in a quantum manner.
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3.1 Components of quantum prototype based clustering al-
gorithm

Clustering is an unsupervised learning method which aims to divide the population
or data points into a number of groups such that data points in the same groups are
more similar to other data points in the same group and dissimilar to the data points
in other groups. It is basically a collection of objects on the basis of similarity and
dissimilarity between them.

In Data Science, we can use clustering analysis to gain valuable insights from
our data by seeing which groups the data points are in when we apply a clustering
algorithm.

It has a large number of applications spread across various domains, like: anomaly
detection, social network analysis, image segmentation and medical imaging.

In general, clustering can be divided into two groups :
Hard Clustering: In hard clustering, each data point either belongs to a cluster

completely or not. As an instance, we want the algorithm to read all of the tweets
and determine if a tweet is a positive or negative tweet.
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Soft Clustering: In soft clustering, instead of putting each data point into a
separate cluster, a probability or likelihood of that data point to be in those clusters is
assigned.

For example: The data points in the graph below clustered together can be
classified into one single group. In the figure below, we can easily distinguish the
clusters, and we can identify that there are 3 clusters.

FIGURE 3.1: Clustering

Clustering is very important as it determines the intrinsic structures among the
unlabeled data by forming clusters of similar groups.

Indeed, a clustering algorithm requires 5 elements, in this chapter we show the
different steps of clustering in a quantum manner. This table summarizes the main
difference between classical and quantum clustering.

Elts Classical Clustering Quantum Clustering
1 Data States
2 Similarity/distance Fidelity
3 Nearest centroid search Grover’s algorithm
4 Centroid update procedure Quantum update rule
5 Quality index Quantum quality index

TABLE 3.1: Classical & Quantum Clustering

In this chapter, we present our first contribution. We show the main steps of
prototype based clustering algorithms in quantum case:

First of all, we explain how to compute the distance between each state and
centroids; for this task we describe the fidelity which is a similarity measure and we
present how to transform the data to quantum states in different ways. Due to the
instability of the quantum distance, the estimation of the distance in the quantum
context is a totally different way of thinking about the way we estimate it between
points in the classical context.

Therefore, we explain also how to search for the closest centroid to a given data
using Grover’s algorithm which is a quantum algorithm that perform a search over
unordered data and gives a quadratic speed-up over the classical version.

We also adapted a quantum criterion to the classical case which is quantum Davies
Bouldin. Because, we can not evaluate quantum algorithms by classical indexes.

Finally, a series of empirical evaluations will be done to evaluate the quantum
distances and its behavior versus the stability of finding the nearest centers in the
right order.
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3.1.1 How to estimate the distances between the different data and cen-
troids?

Distance measurements to the different centroids are necessary for a clustering al-
gorithm. To do this, how can we translate the idea of measuring distances into
something that can be easily and efficiently done on a quantum computer? For a
conventional computer, calculating Euclidean distances is easy, but doing it in the
same way on a quantum computer would be much more complicated and would
require more qubits than we can afford. On the other hand, the probabilistic nature
of qubits makes it easier to measure phase differences and probability amplitudes.

For clustering algorithms, distances are necessary just to assign data points to
different clusters. The objective is then to know which cluster is closest to a data
point. This measure does not need to be proportional to the real distance, but only in
positive correlation with it. Indeed, we only need the nearest centroid, not the exact
values of the real distances.

In quantum computing, many distance-type measurements are available when
we process qubits, such as the inner product between two (normalized) vectors and
the probabilities of measuring a qubit in the states |0〉 or |1〉.

Indeed, the estimation of the distance between states in the context of quantum
learning is totally different from the classical learning.

While in the classical version the distance computation involve coordinates, in
quantum learning we need to define the distance with respect to the probabilistic
nature of qubits. In quantum learning notions as phase differences or amplitudes of
different probabilities are easy to measure and quantify, unfortunately the estimation
of the distance between two states can not be directly defined because of its instability.

More precisely, let’s consider that w and x are two position vectors corresponding
to some centroid cluster in the available data and to some new data point for which
we want to decide the cluster assignment, respectively. In the quantum context, we
associate to those two vectors two quantum states denoted by |φ〉 and |ψ〉, we will
therefore estimate the so-called distance between the states |φ〉 and |ψ〉. As already
mentioned this can not be done directly.

In a nutshell, our strategy detailed below, consist to associate the inner product of
x and w to the probability that some ancillary qubit is measured on the state 0.

Then we starts by considering an ancillary qubit |0〉 and the two quantum states
|φ〉 and |ψ〉. In these two quantum states are stored the normalized position vector x
and w. Since we are in the quantum context the distance between the state |φ〉 and
the state |ψ〉 entangled with the ancillary qubit |0〉 will give us the distance between
x and w.

To this end, we apply a Hadamard gate to the ancillary qubit |0〉, to define the
superposition. After that, we use the entanglement between the states |φ〉 and |ψ〉
and the concerning ancillary qubit, and then we use a swap gate controlled on the
ancillary qubit between the quantum state |φ〉 and |ψ〉.

After that, we apply another Hadamard gate to the ancillary qubit, and finally we
measure the ancillary qubit. In this way we recover the inner product of x and w as
the ancillary probability.

Once, we have computed the distance between each state and centroids using
swap test circuit, we assign each state to the closest cluster centroid using Grover’s
algorithm [Gro98]. Finally, we update the centroids of each cluster. We detail the
described strategy in the sections below.
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Fidelity as a similarity measure

The history of the quantum fidelity (or the so-called Uhlmann-Jozsa Fidelity) can be
traced back to the late 70’s and early 80’s to the works of Uhlmann [Uhl76] and Alberti
[Alb83], who were studying generalizations of the quantum mechanical transition
probability between two states. In later years the fidelity was studied by Richard
Jozsa (who coined the term "Fidelity") [Joz94] and then by Benjamin Schumacher
[Sch95] in the context of quantum communications.

Most of the current applications of quantum fidelity take place in the context
of quantum technology. Since fidelity is a relative measure, the most appropriate
fidelity depends on the application proposed. These technologies generally have a
well-defined purpose. For example, it can be used to measure gravitational waves in a
more sensitive way as in Einstein-Poldosky-Rosen (EPR). As well as other applications
such as cryptography, quantum computing, quantum data processing and storage,
and the growing field of quantum thermodynamics.

Each of these areas has its own criteria for success. However, the components
of the technology ultimately depend on the achievement of certain quantum states
and their processing. Therefore, knowledge of fidelity can help to measure how
close one is to reaching the required quantum states that are used at a given stage
of a quantum process. This concept is also applicable more widely, in fundamental
physics problems such as quantum phase transitions. Fidelity is a vital concept of
quantum information. It provides a mathematical prescription to quantify the degree
of similarity of a pair of quantum states. Indeed, this comparison is useful in many
situations. For example, as any experimental preparation for a quantum state is
limited by imperfections and noise, we are generally interested in the proximity of
the state actually produced with the state for which the production was intended.
This is a common problem in quantum computing that arises in the context of the
entanglement quantification [GT09]: the closer a given quantum state is to the set of
the separable states, the less entangled it is and vice versa.

Measuring and calculating the fidelity between quantum states is at the heart of
various quantum information tasks. Recently, fidelity measure has also been widely
applied to study quantum phase transitions, see [Gu10].

In this chapter, we are using fidelity in order to measure the similarity between
two quantum states. In the case of two pure states |ψ〉 and |φ〉 fidelity can be defined
as:

Fid(|ψ〉 , |φ〉) = | 〈ψ|φ〉 |2

Fidelity is similar to a measure commonly used in classical information, called
cosine similarity. The properties of fidelity include:

Symmetry: Fid(|ψ〉 , |φ〉) = Fid(|φ〉 , |ψ〉).
Bounded values: The fidelity varies between 0 and 1, 0 ≤ Fid(|ψ〉 , |φ〉) ≤ 1.
If the states are orthogonal Fid(|ψ〉 , |φ〉) = 0 (that’s to say, perfectly distinguish-

able), and Fid(|ψ〉 , |φ〉) = 1 if the states are identical.
Invariance under unitary transformation: Fid(|Uψ〉 , |Uφ〉) = Fid(|φ〉 , |ψ〉).
This means that if we apply the same unitary transformation U to two quantum

states this does not change their fidelity.
Convexity: For any three quantum states |ψ〉, |φ〉 and |γ〉 and given p1 and p2 such

that p1 + p2 = 1, then Fid(|ψ〉 , p1 |φ〉+ p2 |γ〉) = p1Fid(|ψ〉 , |φ〉) + p2Fid(|ψ〉 , |γ〉).
Multiplicativity: Fid(|ψ1〉 ⊗ |ψ2〉 , |ψ3〉 ⊗ |ψ4〉) = Fid(|ψ1〉 , |ψ3〉)Fid(|ψ2〉 , |ψ4〉).
The fidelity | 〈ψ|φ〉 | [ABG06] of two quantum states |ψ〉 and |φ〉 as a similarity

measure can be obtained through the quantum circuit Swap test presented in Figure
3.2.
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FIGURE 3.2: Swap test circuit

The circuit of swap test allows to compare two quantum states. It is composed of
two Hadamard gates and a Control-Swap gate.
The control qubit is on the state :

|+〉 = |0〉+ |1〉√
2

After applying the Controlled Swap test, we get:

CSWAP |+〉 |ψ〉 |φ〉 → |0〉 |ψ〉 |φ〉+ |1〉 |φ〉 |ψ〉√
2

By applying the second Hadamard gate, we obtain:

CSWAP |+〉 |ψ〉 |φ〉 → |0〉 (|ψ〉 |φ〉+ |φ〉 |ψ〉) + |1〉 (|ψ〉 |φ〉 − |φ〉 |ψ〉)
2

While measuring the ancillary qubit, we get:

P(|0A〉) =
∣∣∣∣12 〈0|0〉 |ψ〉 |φ〉+ |φ〉 |ψ〉

∣∣∣∣2
=

1
4
||ψ〉 |φ〉+ |φ〉 |ψ〉|2

=
1
2
+

1
2
|〈ψ|φ〉|2

After measurement, we have P(|0A〉) = 1
2 + 1

2 | 〈ψ|φ〉 |2. A probability of 1/2
consequently shows that the two quantum states |ψ〉 and |φ〉 do not overlap at all
(they are orthogonal), while a probability of 1 indicates that they have maximum
overlap.

Destructive Swap test

Indeed, the swap test presented above could be presented in a form of another circuit
that contains no ancilla qubit and uses less gates.

In what follows, we will prove that the Swap test is equivalent to destructive
Swap test [GECP13]. This equivalence is useful to optimize the circuit: it reduces the
number of gates and we don’t need the ancillary qubit for measurement.

For that purpose, we will first of all explain some gates:
XOR: The XOR of two binary values is only true if one, and only one of them is

true. We have x⊕ x = 0 and x⊕ 0 = x.
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CNOT: The CNOT gate is a controlled NOT operation that flips the target value
if the control is in state |1〉. We have CNOT |x〉 |y〉 = |x〉 |x⊕ y〉.

Toffoli gate (CCNOT): The Toffoli gate is a controlled-controlled-NOT. The
target is only flipped if both control qubits are |1〉. We have CNOT |x〉 |y〉 |z〉 =
|x〉 |y〉 |(x.y)⊕ z〉.

After explaining these gates, we will now give the equivalence between the swap
test circuit and other circuits explained below: It’s very simple to show that the
CSwap gate can be replaced with a series of CNOTs (SWAP ≡ CNOT) :
|x〉 |y〉 → |x⊕ y〉 |y〉 → |x⊕ y〉 |y⊕ x⊕ y〉 = |x⊕ y〉 |x〉 → |x⊕ y⊕ x〉 |x〉 =

|y〉 |x〉
So, we can replace the CSwap gate in the Swap test by series of CNOT, we get

FIGURE 3.3: Cswap as CNOT

We know that a NOT gate is just a Z gate on another rotation axis. The rotation
axis can be changed by two surrounding Hadamard gates. By replacing it in the
circuit above we get:

FIGURE 3.4: CCNOT as CCZ

We observe that the controlled controlled Z operation defined by:

CCZ |x〉 |y〉 |z〉 = (−1)xyz |x〉 |y〉 |z〉

Therefore it can be implemented transversely, which means we can put the Z rotation
on any of the control qubit. Thus, we get the circuit below:

FIGURE 3.5: Symmetry of CCZ
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We can notice in the circuit above that there are some unnecessary gates for the
measurement on the ancilla qubit, that we can get rid of the circuit. By doing so, we
get the circuit below:

FIGURE 3.6: Removing useless gates

For another time, we use the equivalence between the X gate and HZH gate:

FIGURE 3.7: Rewriting CCZ as CCNOT

Thanks to the principle of deferred measurement [NC00], we can remove the
ancillary qubit, and measure the other two qubits instead. The probability of reading
1 in the ancillary qubit is equivalent to the probability of reading 1 in both the qubit
|x〉 and |y〉. Thus, here we get the final circuit:

FIGURE 3.8: Final circuit

The order of the input states is not relevant. The SWAP test should give the same
results for |φ〉 |ψ〉 and for |ψ〉 |φ〉, giving us two equivalent circuits.

FIGURE 3.9: Destructive Swap test circuit
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States construction to estimate the distance-type measurements

Several works have been made to compute the fidelity between two quantum states,
all these works use the swap test circuit to obtain the similarity measure but they use
different data preparation and construction of the states. In this section, we present
the preparation and the construction of the states |ψ〉 and |φ〉 of each method. Let’s
consider that we want to compute the distance between the two quantum states |x〉
and |w〉.

Wiebe et al. approach

1. Data preparation

Given N = 2n dimensional complex vectors~x and ~w with components xj = |xj|e−iαj

and wj = |wj|e−iβ j respectively. Assume that {|xj|, αj} and {|wj|, β j} are stored
as floating point numbers in quantum random access memory.

2. Construction of the states

An alternative representation of the states was suggested by Wiebe, Kapoor and
Svore [WKS18]. It aims to write the parameters into amplitudes of the quantum
states.

|ψ〉 = 1√
d

∑
j
|j〉

√1−
|xj|2
r2

max
e−iαj |0〉+

xj

rmax
|1〉

 |1〉

|φ〉 = 1√
d

∑
j
|j〉|1〉

√1−
|wj|2
r2

max
e−iβ j |0〉+

wj

rmax
|1〉


Where j = {1, ..., n}, and rmax is an upper bound on the maximum value of any
feature in the dataset. The input vectors are d-sparse, i.e., contain no more than
d non-zero entries.

Using the swap test, the inner product is evaluated by:

dq1(|x〉 , |w〉) = d2r4
max(2P(|0〉)− 1) (3.1)

Lloyd et al. approach

1. Data preparation

For the future of quantum machine learning, it may be vital to find quantum
ways of representing and extracting information. To use the forces of quantum
mechanics without being limited to the classical ideas of data encoding; Lloyd,
Mohseni and Rebentrost [LMR13] proposed a way to encode the classical vectors
into a quantum state.

Consider N = 2n dimensional complex vectors ~x and ~w, we have:

|x〉 = ~x
|~x| , |w〉 = ~w

|~w|

2. Construction of the states

Seth Lloyd and his co-workers proposed a way to construct the state |ψ〉 and
|φ〉. The idea is to adjoin an ancillary qubit to states creating an entangled state
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|ψ〉. The greater the difference between the states |x〉 and |w〉, the more the
resulting state is entangled [Cai+15].

|ψ〉 = 1√
2
(|0〉 |x〉+ |1〉 |w〉)

|φ〉 = 1√
Z
(|~x| |0〉 − |~w| |1〉)

Where Z = |~x|2 + |~w|2

After applying the swap test circuit, the distance is evaluated by:

dq2(|x〉 , |w〉) = 2Z(2P(|0〉)− 1) (3.2)

We can verify that the desired distance |~x− ~w| =
√

2Z| 〈φ|ψ〉 |2.

| 〈ψ|φ〉 |2 =
1

2Z
|(|~x| 〈0| − |w| 〈1|)(|0〉 |x〉+ |1〉 |w〉)|2

=
1

2Z
||~x| 〈0|0〉 |x〉+ |~x| 〈0|1〉 |w〉 − |w| 〈1|0〉) |x〉 − |w| 〈1|1〉) |w〉|2

=
1

2Z
|(|~x| |x〉 − |~w| |w〉)|2

=
1

2Z
|~x− ~w|2

The desired distance is dq2 = 2Z(2P(0)− 1), we can see that if vector ~x is identical
to the centroid of the cluster w the state |ψ〉 is orthogonal to |φ〉 and the success
probability of projective measurement is P(0) = 1/2, therefore the distance dq2 = 0.

Anagolum approach

1. Data preparation

For simplification, we assume that we are in 2-dimensional space. Let’s consider
that we have two vectors ~x(x0, x1) and ~w(w0, w1).

We can map data values to θ and α values using these equations.

For x we get:

α0 = (x0 + 1)
π

2
, θ0 = (x1 + 1)

π

2
(3.3)

Similarly for w we get:

α1 = (w0 + 1)
π

2
, θ1 = (w1 + 1)

π

2
(3.4)

2. Construction of the states

To construct the two states |ψ〉 and |φ〉 Anagolum uses U gate as follows
[Ana19]: (Note that this reference to Anagolum’s work is only a blog post)

|ψ〉 = U(θ0, α0, 0)|0〉 (3.5)

|φ〉 = U(θ1, α1, 0)|0〉 (3.6)
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Indeed, U gate implement the rotations we need to perform to encode our data
points.

U(θ, α, λ) =

 cos θ
2 −eiλ sin θ

2

eiαsin θ
2 eiλ+iα cos θ

2


This instruction would cause the qubit to move θ radians away from the positive
z-axis, and α radians away from the positive x-axis.

Using the swap test, the distance is evaluated by:

dq3(|x〉 , |w〉) = P(|1〉) (3.7)

3.1.2 How to search for the closest centroid to a given data?

In quantum computing, Grover’s algorithm allows to search for one or more element
in an unsorted database with N entries in O(

√
N) time. Grover’s algorithm begins

with a quantum register of n qubit initialized to |0〉, when n is the number necessary
to represent the search space, we have 2n = N which means |0〉⊗n = |0〉.

Equal superposition: The first step is to apply the Hadamard transform H⊗n to put
the system into an equal superposition of states:

|ψ〉 = H⊗n|0〉⊗n =
1√
2n

2n−1

∑
x=0
|x〉

Quantum oracle O: An oracle is a black-box function and a quantum oracle is a
quantum black-box, which means that it can observe and modify the system without
collapsing it to a classical state. It will recognize if the system is in the correct state: if
the system is in the correct state, then the oracle will rotate the phase by π radians,
otherwise it will do nothing. To create the circuit that represents this oracle it is
necessary to implement this transformation of |x〉:

|x〉 → (−1) f (x)|x〉

where f (x) = 1 if x is the correct state, and f (x) = 0 otherwise.
Diffusion transform: It performs inversion about the average, transforming the

amplitude of each state so that it is as far above the average as it was below the
average prior to the transformation, and vice versa. This part consists of another
application of the Hadamard transform H⊗n, followed by a conditional phase shift
that shifts every state except |0〉 by −1, followed by another Hadamard transform.
The diffusion transform can be represented by this equation, using the notation |ψ〉:

H⊗n[2|0〉〈0| − I]H⊗n = 2H⊗n|0〉〈0|H⊗n − I = 2|ψ〉〈ψ| − I

Giving the entire Grover iteration:

[2|ψ〉〈ψ| − I]O

The total runtime of a single Grover iteration is Θ(2n) from the two Hadamard
transforms, plus the cost of applying O(n) gates to perform the conditional phase
shift, is O(n). It follows that the runtime of Grover’s entire algorithm, performing
O(
√

N) = O(2
n
2 ) iterations each with a runtime of O(n), is O(2

n
2 ).
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FIGURE 3.10: Circuit of Grover’s algorithm

Algorithm 2: Grover’s algorithm
Input: A quantum oracle O which performs the operation

O|x〉 = (−1) f (x)|x〉, where f (x) = 0 for all 0 ≤ x < 2n except x0, for
which f (x0) = 1, n qubits initialized to the state |0〉

Runtime: O(
√

N) operations, with O(1) probability of success.
Output: x0
Procedure:
Initial state

|0〉⊗n

apply the Hadamard transform to all qubits

H⊗n|0〉⊗n =
1√
2n

2n−1

∑
x=0
|x〉 = |ψ〉

apply the Grover iteration R ≈ π
4

√
2n times

[(2|ψ〉〈ψ| − I)O]R|ψ〉 ≈ |x0〉

measure the register x0

3.1.3 Validation criteria

As we have already described, the notion of distance in quantum mechanics is not
stable. Therefore, the estimation of the distance in the classical version it’s not the
same as the quantum version. For example, if we take the distance between two
quantum states, after each measurement we get different values but the belonging of
the state to a cluster it would be all the time the same. This is a totally different way
of thinking about the way we estimate distances between points which can make the
quantum clustering algorithms faster than its classical counterpart.

Our purpose is to efficiently define the validation criteria in the context of quan-
tum learning in order to evaluate the goodness of clustering in quantum algorithms.

One of the most important considerations regarding the machine learning model
is assessing its performance which means the quality of the model. In the case of
supervised learning algorithms, evaluating the quality of the model is easy because
we already have labels for every example. However, in the case of unsupervised
learning algorithms, we are not that much blessed because we deal with unlabeled
data. But still, we have some metrics that give the practitioner insight into the
happening of change in clusters depending on the algorithm.

Indeed, there are several indices which are used to measure cluster validity. In
our case, we chose the Davies Bouldin index which is an internal index that used
clustering and the underlying data set to assess the quality of the clustering. It places
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similar objects in the same cluster and dissimilar objects in different clusters. In
what follows, we give the Davies-Bouldin (DB) index as a criteria of validation, and
we transform the classical Davies Bouldin index in the quantum version; quantum
Davies-Bouldin (QDB) index. This transformation is basically done by transforming
the classical distance to the quantum version.

In fact, a good clustering algorithm aims to create clusters whose:
The intra-cluster similarity is high (The data that is present inside the cluster is

similar to one another)
The inter-cluster similarity is less (Each cluster holds information that isn’t similar

to the other)

Classical Davies-Bouldin index

The Davies Bouldin index introduced by David L. Davies and Donald W. Bouldin in
1979 is a metric for evaluating clustering algorithms [DB79] that can be calculated
with the following formula:

DB =
1
K

K

∑
k=1

max
k 6=k′

dn(wk) + dn(wk′)

d(wk, wk′)
, (3.8)

where K is the number of clusters, dn is the average distance of all elements from
the cluster Ck to their cluster centre wk, d(wk, wk′) is the distance between clusters
centres wk and wk′ . Just like Silhouette score, Calinski-Harabasz index and Dunn
index, Davies-Bouldin index provide an internal evaluation schema. I.e. the score is
based on the cluster itself and not on external knowledge such as labels. This index
well evaluates the quality of unsupervised clustering because it’s based on the ratio
of the sum of within-clusters scatter to between-clusters separation. More the value
of DB is lower, means that we have a better cluster. The main objective is to evaluate
how well the clustering has been done.

Quantum Davies-Bouldin index

As we have already mentioned before, the notion of distance in quantum approaches
is different from the classical case. Quantum distance does not need to be proportional
to the real distance, but only have a positive correlation with it. We need only the
nearest centroid, not the exact value of the real distance. To evaluate the quality
of quantum clustering with a Davies-Bouldin index-type based on intra- and inter-
cluster distances, we propose to adapt it to the quantum case. To do this, we will
define the Quantum Davies-Bouldin (QDB) quality index as follows:

QDB =
1
K

K

∑
k=1

max
k 6=k′

δn(wk) + δn(wk′)

δ(wk, wk′)
, (3.9)

where

δn(wk) =
1
|Ck|

|Ck |

∑
i=1

dq(|xi〉xi∈Ck
, |wk〉) and δ(wk, wk′) = dq(|wk〉 , |wk′〉)

This index has been done by transforming the classical distances to the quantum
one as we have explained previously. Where K is the number of clusters, δn is the
quantum version of the distance dn and δ(wk, wk′) is the quantum distance between
clusters centres wk and wk′ .
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In fact, the estimation of the Davies Bouldin in the context of quantum learning is
totally different from the classical learning.

While in the classical version, the Davies Bouldin index gives a fix value, in
quantum learning the quantum DB will give different values as the distance change
from an iteration to another. Therefore, instead of having only one value of DB we
will get an interval of the QDB, this interval is due to the probabilistic nature of the
qubits and it represents the different variation of this index while it is in the quantum
state.

3.1.4 Experimental results

In this section, we compare the different quantum distances explained before in terms
of relevance and stability by answering these two questions through some empirical
evaluations:

• Which quantum distance has a high probability of finding the right nearest
centre?

• Which quantum distance has a high probability of finding the nearest centres in
the right order with a good stability?

Comparison of different quantum distances

Which quantum distance has a high probability of finding the right nearest centre?
Because of the probabilistic nature of the qubits, the distance between two states
is hard to compute as we will get a probabilistic result; the distance is unstable.
However, it’s easier to assign data points to different groups because we don’t need
the exact distances to each one but only the closest centroid. Thus, we can just put the
new data point in the cluster associated with the smallest value that our parameter
takes. To illustrate more our idea, we gave an example of two distributions. Fig. 3.11
and fig. 3.12 represent two distributions where the black dot X is the test data and
the three crosses are the centers (C1, C2, C3).

FIGURE 3.11: Distribution 1
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FIGURE 3.12: Distribution 2

From Table 3.2, we can notice that the distance changes from an iteration to
another but the assignment to the closest centroid is correct. Comparing the three
approaches in term of the confidence interval, we can notice that the Wiebe et al.
approach gives a higher confidence interval in a time lower than other approaches.

Distance Distribution C1 (times) C2 (times) C3 (times) Probability of success
Wiebe et al. approach 1 665 9322 13 [92.71%, 93.70%]

(dq1) 2 0 0 10000 [99.96%, 100%]
Lloyd et al. approach 1 2190 7620 190 [75.35%, 77.02%]

(dq2) 2 0 515 9485 [94.40%, 95.26%]
Anagolum approach 1 2722 6530 748 [64.36%, 66.22%]

(dq3) 2 2486 2175 5339 [52.41%, 54.36%]

TABLE 3.2: Distance-types Comparison

Which quantum distance has a high probability of finding the nearest centres
in the right order with a good stability? After analyzing the performance of the
different quantum distances in terms of the stability of the values allowing the choice
of the right center, we will study the behaviour of these quantum distances, but
this time in terms of the stability of the order of the nearest centers. In other words,
how far away is it possible to find the nearest centers in the right order whatever
the iteration? To do this, we carried out 10,000 searches for the nearest centers for
the two distributions studied. We analyzed the stability of the order of the nearest
centers found by each quantum distance. The results show that the distance dq1 is
the best one which offers a very good stability in the order of the nearest centers
in the case of the two distributions studied. As shown in Table 3.2, the distance dq1

shows a very good stability in the order of the nearest centers compared to the other
two quantum distances. For distribution 1, the correct order of the nearest centers
is [C2 C1 C3]. The distance dq1 finds this order with a probability of 85.32% (8532
times out of 10,000 searches), while the distance dq2 and dq3 find the order with a
probability of 53.26% (5326/10,000) and 26.10% (261/10,000) respectively. In the case
of distribution 2, the situation is more complicated because the test point is almost
halfway between two centers. This situation is confirmed by the results obtained in
fig. 3.14. Indeed, the distance dq1 always finds the right order of the nearest centers [2
0 1]. Nevertheless, this distance continues to provide the right solution but the order
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changes significantly [C3 C2 C1]. Compared to the other two quantum distances,
the distance dq1 seems much more stable in the order of the nearest centers. As can
be seen in both fig. 3.13 and fig. 3.14, the other two quantum distances dq2 and
dq3 change order quite often compared to the distance dq1 . Order stability is a very
relevant information on the behaviour of quantum distances.

FIGURE 3.13: Order of belonging distribution 1

FIGURE 3.14: Order of belonging distribution 2

3.2 Quantum K-means

3.2.1 Classical K-means

The K-means clustering [Mac+67] is a type of unsupervised clustering, one of the
most widely used clustering method early developed by Lloyd [LLo82]. Let X =
{x1, x2, . . . , xN} be the data set, each row vector xn ∈ RM, 1 ≤ n ≤ N is composed
of M attributes (features). The K-means clustering allows to divide the set of data X
into K clusters C = {C1, . . . , CK} by minimizing the following sum of squared errors:

R =
K

∑
k=1

∑
n∈Ck

‖xn − wk‖2 =
K

∑
k=1

N

∑
n=1

gnk ‖xn − wk‖2 , (3.10)
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where wk ∈ RM is the centroid of the data within the cluster Ck and G ∈ RN×K
+ is the

binary classification matrix defined by gnk = 1, if the data xn ∈ Ck, and 0 otherwise.
Firstly, the K-means algorithm initialize randomly K centroids w1, w2, ...., wK ∈ RM.
Then the algorithm usually iterativelly unfolds in two phases:

1. at first we go over every point and assign each to the cluster of the nearest
centroid.

2. at the second phase, the centroid of each cluster is updated.

The algorithm converges when there is no further change in the assignment of
instances to clusters. The idea behind K-means clustering is very natural. It just puts
every new data point you ask it to classify into the group that it is closest to.

Algorithm 3: K-means algorithm

Input: Set of vectors xn ∈ RM, n = {1, 2, ..., N}, initial centroids
w1, w2, ...., wK ∈ RM.

Output: The set of K clusters Ck, |Ck| is the number of vectors within the
cluster k.

repeat
Assignment step (clustering): Assign each data to the cluster Ck∗ , k∗ is
computed by:

k∗ = argmin
k∈{1,2,...,K}

‖xn − wk‖2

Update step: For all k = {1, 2, ..., K}, update the centroid wk of each cluster Ck
by:

wk =
1
|Ck|

N

∑
n=1

gnkxn

until a stopping condition is satisfied.

3.2.2 Quantum K-means

K-means clustering [Mac+67] is a type of unsupervised machine learning that aims
to find groups in the data by dividing the dataset into K clusters. In this section, we
give the algorithm of quantum K-means, this algorithm is adaptable for the three
approaches explained above.

We show the different steps of QK-means: first of all, we transform the data to
quantum states. Then, we compute the distance between each state and centroids.
Indeed, the estimation of the distance between states in the context of quantum
learning is totally different from the classical learning.

While in the classical version the distance computation involve coordinates, in
quantum learning we need to define the distance with respect to the probabilistic
nature of qubits. In quantum learning notions as phase differences or amplitudes of
different probabilities are easy to measure and quantify, unfortunately the estimation
of the distance between two states can not be directly defined because of its instability.

More precisely, let’s consider that w and x are two position vectors corresponding
to some centroid cluster in the available data and to some new data point for which
we want to decide the cluster assignment, respectively. In the quantum context, we
associate to those two vectors two quantum states denoted by |φ〉 and |ψ〉, we will
therefore estimate the so-called distance between the states |φ〉 and |ψ〉. As already
mentioned this can not be done directly.
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In a nutshell, our strategy detailed below, consist to associate the inner product of
x and w to the probability that some ancillary qubit is measured on the state 0.

Then we starts by considering an ancillary qubit |0〉 and the two quantum states
|φ〉 and |ψ〉. In these two quantum states are stored the normalized position vector x
and w. Since we are in the quantum context the distance between the state |φ〉 and
the state |ψ〉 entangled with the ancillary qubit |0〉 will give us the distance between
x and w.

To this end, we apply a Hadamard gate to the ancillary qubit |0〉, to define the
superposition. After that, we use the entanglement between the states |φ〉 and |ψ〉
and the concerning ancillary qubit, and then we use a swap gate controlled on the
ancillary qubit between the quantum state |φ〉 and |ψ〉.

After that, we apply another Hadamard gate to the ancillary qubit, and finally we
measure the ancillary qubit. In this way we recover the inner product of x and w as
the ancillary probability.

Once, we have computed the distance between each state and centroids using
swap test circuit, we assign each state to the closest cluster centroid using Grover’s
algorithm [Gro98]. Finally, we update the centroids of each cluster. We detail the
described strategy in the next paragraphs.

Data preparation and states construction

Normally, there are several methods to prepare the data and construct the states.
According to [Ben+19b] the method of Wiebe, Kapoor and Svore [WKS18] gives good
results in terms of clustering and also stability.

In what follows, we use this method for the preparation and the construction
of the states |ψ〉 and |φ〉 for the local phase and the states |γ(l)〉 and |δ(l′)〉 for the
collaborative phase.

Given N = 2n dimensional complex vectors x and w with components xj = |xj|e−iαj

and wj = |wj|e−iβ j respectively. Assume that {|xj|, αj} and {|wj|, β j} are stored as
floating point numbers in quantum random access memory.

Wiebe, Kapoor and Svore [WKS18] suggested a representation of the states that
aims to write the parameters into amplitudes of the quantum states.

With the definitions of x and w, we define the quantum states:

|ψ〉 = 1√
d

∑
j
|j〉

√1−
|xj|2
r2

max
e−iαj |0〉+

xj

rmax
|1〉

 |1〉
|φ〉 = 1√

d
∑

j
|j〉|1〉

√1−
|wj|2
r2

max
e−iβ j |0〉+

wj

rmax
|1〉

 ,

where j = {1, ..., n}, and rmax is an upper bound on the maximum value of any
feature in the dataset. The input vectors are d-sparse, i.e., contain no more than d
non-zero entries.

The idea behind this algorithm is to adjoin an ancillary qubit to the states creating
an entangled state |ψ〉. The bigger difference between the states |xn〉 and |wk〉, the
more entangled the resulting state is, and therefore we can use this entanglement to
estimate the distance between vectors [Cai+15].
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Cluster assignment

After computing the distance between each training state and each cluster centroid.
We assign each state |xn〉 to the closest centroid |wk〉 by using Grover’s algorithm
[Gro98]. More precisely, we should find the solution of the following minimization
problem:

argmin
w

D(|x〉 , |w〉) = argmin
C

K

∑
k=1

∑
|xn〉∈Ck

d2
q(|xn〉 , |wk〉) (3.11)

While the best classical algorithms for a search over unordered data requires
O(N) time, Grover’s algorithm performs the search on a quantum computer in only
O(
√

N) operations, which means a quadratic speed-up over its classical version. This
speed is done thanks to the superposition of states, in other words, the search is done
globally, which means a significant improvement in optimization routines.

Grover’s algorithm [Gro98] performs a search over an unordered set of 2N items
to find the unique element that satisfies some conditions. Its goal is to look in the
function inputs to check if the function returns true for that input. This function can
be represented as a quantum oracle and could be constructed from a large number of
combined quantum gates.

Update the centroid

Assume that we have a set of quantum states |X〉 = {|xn〉 ∈ CM, n = 1, ..., N},
and a set of K clusters Ck, |Ck| is the number of vectors within the cluster k. K-
means clustering aims to partition the N observations into K clusters Ck with |W〉 =
|w1〉 , |w2〉 , ...., |wK〉 centroids, so as to minimize the within-cluster variance. Formally,
the objective is to find:

argmin
W

D(|x〉 , |w〉) = argmin
C

K

∑
k=1

∑
|xn〉∈Ck

d2
qi
(|xn〉 , |wk〉) (3.12)

We compute the distance between each training state and each cluster centroid
using the swap test circuit 3.2. Then, we assign each state to the closest centroid using
Grover’s algorithm as explained before.

The second step of QK-means is updating the centroid of each cluster. To do so,
the update centroid of each cluster is given by:

|w(t+1)
k 〉 = |(Y(t)

k )TX〉

where

|Y(t)
k 〉 =

1√
|Ck|

N

∑
n=1

ynk |n〉 and ynk =

{
1 if xn ∈ Ck
0 else

We give the main steps of the proposed algorithm in the following. The distance
dqi(|xn〉 , |wk〉) is at the user’s choice, in our case we opt for the distance dq1 as it gives
the best result. For the stopping criterion, we use the relative distortion between two
iterations with respect to a threshold ε.
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The algorithm of QK-means [Ben+19b] is the following:

Algorithm 4: Quantum K-means algorithm

Input: |X〉 = {|xn〉 ∈ CM, n = 1, ..., N}, K number of clusters Ck, initial
centroids of the clusters at t = 0: |w(0)

1 〉 , |w(0)
2 〉 , ...., |w(0)

K 〉.
Output: K clusters Ck.

repeat
Assignment step (clustering): Each data is assigned to the cluster with the
nearest center using Grover’s search:

C(t)
k ←− {|xn〉 : d2

qi
(|xn〉 , |w(t)

k 〉) ≤ d2
qi
(|xn〉 , |w(t)

j 〉), ∀j, 1 ≤ j ≤ K}

where each |xn〉 ∈ |X〉 is assigned to exactly one C(t)
k , even if it could be assigned

to more of them.
Update step: The center of each cluster Ck is recalculated as being the average of
all data belonging to this cluster (following the previous assignment step):

|w(t+1)
k 〉 ←− |(Y(t)

k )TX〉

until Convergence is reached
Convergence can be considered as achieved if the relative value of the distortion
level D(|x〉 , |w(t)〉) falls below a small prefixed threshold ε:

D(|x〉 , |w(t−1)〉)− D(|x〉 , |w(t)〉)
D(|x〉 , |w(t)〉)

< ε

3.2.3 Experimental results

Datasets

The classical and quantum version of K-means was tested on three real world datasets
available for public use in the UCI Machine learning repository [DG17].

• Iris - Iris data set contains 3 classes of 50 instances each, where each class refers
to a type of iris plant.

• Wine - Wine is a dataset that is related to a chemical analysis of wines grown in
the same region in Italy but derived from different cultivars.

• Wisconsin Diagnostic Breast Cancer (WDBC) - This data has 569 instances with 32
variables (ID, diagnosis, 30 real-valued input variables). Each data observation
is labeled as benign (357) or malignant (212).

Clustering through quantum K-means

We used three different datasets to show the experimental results of QK-means. Fig.
3.15, 3.16 and 3.17 represent the projection of the datasets iris, wine and breast cancer
respectively using the principal component analysis. We can notice that the algorithm
of QK-means has identify the different clusters (groups) which are significantly
different (distant) from each other. Therefore, the quantum K-means gives a good
classification just like it’s classical version, but the advantage of the quantum version
is that it can deal with high dimensional spaces in a time much more quicker than the
classical version, which is crucial in nowadays.
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FIGURE 3.15: QK-means clustering on Iris data

FIGURE 3.16: QK-means clustering on Wine data

FIGURE 3.17: QK-means clustering on Breast Cancer data

For each data set we compare the Davies-Bouldin (DB) index for both the classical
and the quantum version of K-means. These results are represented in Table 3.3. DB
and QDB index are not calculated with the same distances. Direct comparison is
therefore difficult, but we can see that QDB shows a decreasing behaviour during
different iterations of learning process, indicating an improvement in the quality of



3.2. Quantum K-means 65

quantum clustering. We can therefore consider that QDB is a good quality indicator
for quantum clustering.

Dataset K-means (DB) QK-means (QDB)
Iris 0.66 [0.37, 0.56]

wine 0.53 [0.40, 0.59]
Breast Cancer 0.50 [0.38, 0.57]

TABLE 3.3: K-means & QK-means using DB index

FIGURE 3.18: Davies-Bouldin Variation

FIGURE 3.19: QDavies-Bouldin Variation

3.2.4 Computational time complexity of K-means

Let us consider the K-means problem of assigning N vectors to K clusters such that the
average distance from each cluster centroid to all points of the cluster is minimized.

After randomly choosing the initial centroids, the standard method to solve
this minimization problem suppose two different steps (i) assign each vector to the
closest centroid and (ii) update all the centroids. This strategy is repeated until the
assignment become stationary. The euclidian distance to the centroids in some N-
dimensional is obtained in O(N). Therefore each iteration of the classical algorithm
takes time O(K×M× N2). The factor M arises since each vector is tested eventually
for some reassignment. This complexity analysis is valid for classical K-means.



66 Chapter 3. Quantum One-model clustering

Let us now analyze the quantum version of the K-means algorithm. In our
strategy the assignment step in quantum version is based on the application of several
quantum gates. Instead to compute the euclidean distance based on the coordinates
list of two different points in RN , in quantum version we directly compare the two
quantum states. Also finding the problem of the closest centroid is optimized since is
based on Grover’s algorithm [Gro98].

The cluster assignment in the quantum context is no more a list of the different
cluster assignments as in the classical K-means problem. The assignment is a quantum
state which contains the different clusters labels correlated with the corresponding
cluster assignments by using a quantum superposition.

Therefore the unsupervised quantum K-means has a complexity of order O(K×
log(M× N)).

It is noticeable that this would take time polynomial time on classical computers,
while with quantum computers this would takes time logarithmic.

K-means QK-means
Time computational complexity O(K×M× N2) O(K× log(M× N))

TABLE 3.4: Time computational complexity of classical & quantum
K-means

3.3 Quantum Semi Non-negative Matrix Factorization

Introduction

Clustering has received a lot of attention as an important problem with many applica-
tions, and a wide range of different algorithms and methods have emerged over the
years. Much interest has been shown using NMF for clustering of non-negative data
[Sha+06] [CP09], it has been applied in different areas such as pattern recognition,
segmentation, clustering and text mining. SNMF is an unsupervised algorithm for
clustering where a data matrix is factorized into (usually) two matrices with the
property that the matrix G is constrained to be non negative whereas the data matrix
X and the basis vectors of F are unconstrained, in order to make the interpretation of
the resulting matrices much more easier. This factorization leads to two matrices one
of them contains the prototypes of a data set while the other one is a data partition
matrix.

NMF [LS99] [PT94a] is equivalent to K-means clustering, more details in [DHS05].
Kim and Park [KP08] proposed sparse NMF algorithm for data clustering and they
compare it with K-means. They showed that their algorithm outperforms the K-
means and the ordinary NMF in terms of the consistency of the results.

Clustering could pose a challenge for classical computers especially with the cur-
rent speed growing data size. If our vectors are in N dimensional vector spaces, this
would take time O(polyN) on classical computers, while with quantum computers
this would take time O(log N). Thus, quantum clustering can provide exponential
speed-ups for problems involving large vectors.

In this section, we are interested in the quantum version of SNMF that we can
implement using quantum gradient descent. Quantum Semi Non-negative Matrix
Factorization (QSNMF) gives an exponential speedup compared to its classical ver-
sion. The main idea of this quantum gradient descent is to improve the objective
function in order to have an algebraic form. Indeed, both homogeneous and inhomo-
geneous function over large dimensional spaces can be optimized by using quantum
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gradient descent [Reb+16]. Then, we use multiple copies of the current quantum state
|current〉 to produce multiple copies of another new quantum state |new〉 by using
the objective function of the gradient that has been optimized.

In this part, we will show the different steps of Quantum Semi Non-negative
Matrix Factorization (QSNMF).

Let X = (x1, x2, . . . , xN) ∈ RM×N
+ , be a non-negative data matrix with M rows

and N columns, here xn ∈ RM×1
+ represents the nth column of X. In what follows,

‖ · ‖ stays for the Euclidean norm and ‖ · ‖F for the Frobenius norm. Let K be a fixed
input parameter.

3.3.1 Semi Non-negative Matrix Factorization

The Semi Non-negative Matrix Factorization (SNMF) [DLJ08] relaxes the non-negativity
constrains of NMF and allows the data matrix X and the loadings matrix F to have
mixed signs, while restricting only the features matrix G to comprise of strictly
non-negative components. More precisely we define the following optimization:

(F, G) = argmin
G≥0

L(X, F, G), where L(X, F, G) = ‖X− FG‖2
F. (3.13)

Note that the domain of the real valued functional L is RM×N ×RM×K ×RK×N . The
SNMF also allows to define a clustering algorithm that aims to factorize a given
matrix into (usually) two matrices, where we consider one of the matrices as a matrix
containing the prototypes of a data set and the other one as a data partition matrix.

The aim of clustering is to cluster the columns of X, so as to optimize the dif-
ference between X and the clustered matrix revealing significant block structure.
More formally, we seek to partition the set of columns {1, . . . , N} into K clusters
C = {C1, . . . , CK}. The partitioning naturally induces clustering prototypes ma-
trix F ∈ RM×K, and a reduced partition matrix G ∈ RK×N

+ specifying the cluster
representation. Basically, we can interpret X to be a linear combination of some
columns of F, where each column in F is a component, and each row in G contains
the corresponding coefficient for each component.

To solve the optimization problem (3.13), with the only matrix constraint G ≥ 0,
we use gradient descent, which starts with a random initialization of F and after
usually unfolds in two phases: at first the functional is minimized with respect to G
while in the second phase, the functional is minimized with respect to F.

Let us point out several peculiar properties of the binary indicator matrix G. If the
clusters C1, . . . , CK have distinct cluster centroids f1, . . . , fK, each of the N columns of
G will contain a single 1 and K− 1 elements that are 0. Accordingly, the columns of
G will sum to one

K

∑
k=1

gkn = 1, for all column n. (3.14)

and its row sums will indicate the number of elements per cluster

N

∑
n=1

gkn = nk, for all row k. (3.15)

It follows that the rows of G are pairwise perpendicular because gkngk′n = δkk′ , δ
being the Kronecker symbol, which is then to say that the matrix GGT is a diagonal
matrix where: (GGT)kk′ = nkδkk′ for all k, k′ = 1, . . . , K.
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Our strategy is to write the problem in terms of polynomial optimization. Then
we use several results of [Reb+16] to derive our quantum algorithm.

Problem statement
In this section, we formulate the gradient descent procedure which will be there-

after simulated in the quantum context. Here, we use some general linear algebra
results and also some well known results about the NMF [LS01]. The gradient descent
method unfolds in the two following phases:

F = F− ηF ◦ [∇F(‖X− FG‖2
F)] and G = G− ηG ◦ [∇G(‖X− FG‖2

F)]. (3.16)

Due to the symmetric role of F and G we will detail only the phase corresponding to
the optimization with respect to the matrix F. Also, in order to include G ≥ 0 at each
step of the optimization process, all the negative entries of G are redefined as 0.

Lemma 1 The gradient of [∇F(‖X− FG‖2
F)] is composed of two terms: the gradient of the

homogenous quadratic form with a diagonal matrix and the gradient of an inhomogenous
affine form.

Proof: 1 Let us remark that as squared Frobenius norm of a matrix difference, the real valued
functional L can be written as:

‖X− FG‖2
F = tr[(FG)T(FG)]− 2tr[XT FG] + tr[XTX]

= [vec(F)]TBTBvec(F)− 2vec(X)TBvec(F) + tr[XTX],

where B = (GT ⊗ IM) is the MN ×MK matrix the Kronecker product of the matrix GT

with IM the M dimensional identity matrix. Also for any M× N matrix A, vec(A) is the
MN × 1 column vector; the vectorization of A which obtained by stacking the columns of the
matrix A on top of one another.

Note that BTB ∈ RMK×MK
+ symmetric matrix by construction. Moreover we have:

BTB = (GT ⊗ IM)T(GT ⊗ IM) = (G⊗ IM)(GT ⊗ IM) = (GGT ⊗ IM IM),

where we have used the mixed product property of the Kronecker product. Since GGT is
diagonal, see Equations (39) and (38), it follows that BTB is diagonal. We also have:

∇F[[vec(F)]TBTBvec(F)] = 2vec(F)BTB = 2BTBvec(F). (3.18)

Therefore the gradient of the quadratic function acts as an operator on F. By construction
vec(X)TBvec(F) + tr[XTX] is an affine form with respect to F, we have:

∇F[−2vec(X)TBvec(F) + tr[XTX]] = −2vec(X)TB. (3.19)

Note that [vec(F)]TBTBvec(F) is a quadratic form with BTB symmetric matrix and that
vec(X)TBvec(F) + tr[XTX] is an affine form which prove our claim.

The same conclusion stays for the gradient of [∇G(‖X− FG‖2
F)] which will be com-

posed of two terms: the gradient of the homogenous quadratic form with a diagonal
matrix and the gradient of an inhomogenous affine form. There exists a difference
between the two computations since FFT is no more diagonal, nevertheless FFT is
diagonalizable as real symmetric matrix. Then to estimate G we will work with the
diagonal form of FFT.
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3.3.2 Quantum gradient descent algorithm for SNMF

In this section, we present the gradient descent strategy to estimate F, the same
strategy could be used to estimate G. Let us denote y = vec(F) ∈ RMK×1, A =
2BTB ∈ RMK×MK

+ , CT = −2vec(X)TB ∈ RMK×1.
So the functional L(X, F, G) for fixed G could be written as f : RMK×1 → R

where:
f (y) =

1
2

yT Ay + CTy + tr[XTX], (3.20)

where A is diagonal. To estimate G the functional L(X, F, G) for fixed F has the same
form as the functional in Equation (3.20) with the matrix A is no more diagonal but
sparse.

• Data preparation: from a vector to a quantum state

To implement a quantum version of the gradient descent algorithm we assume
that our data sets consist of N data vectors stored as M dimensional column
vectors, i.e.: X = (x1, x2, . . . , xN) ∈ RM×N

+ . We also assume without loss of
generality that MK = 2n0 where n0 is an integer. A vector not satisfying this
condition can be always padded to 2n0 as long as the corresponding entries of
A in Equation (3.20) are set to 0.

Therefore the data matrix X elements are presented as the amplitudes of a n0
qubit quantum state (see [RML13] [LMR13]) as follows:

|x〉 = 1
|x|

n0

∑
i=1

xi |i〉 ,

where |i〉 is the ith computational basis state. In what follows, all the produced
vectors y0 by the quantum algorithm are normalized by ∑n0

i=1 |y0
i |2 = 1, this

constraint is known as spherical constraint. We make the following main
assumptions:

A1 We assume that there exists a quantum algorithm such that the operation
|0〉 → |y0〉 performs n0 qubits. Recall that the initial quantum state |y0〉 is
defined via amplitude encoding.

A2 Let j, k = 1, . . . , MK. We assume that there exists a quantum algorithm that
performs the operation |j, k〉 |0〉 → |j, k〉 |Aj,k〉 on 2n0 + nα qubits where
Aj,k is encoded to accuracy α = 2−n0. We assume that the accuracy error is
smaller than other errors involved in the optimization. To take advantage
of sparsity, we also assume the following oracle, which allows to choose
the non-zero matrix elements.

A3 The input matrix is sparse, in order to use the sparsity of A, let j =
1, . . . , MK and l = 1, . . . , K, and we assume that there exists a function
gA(j, l) which compute the column index of the l-th non-zero element of
row j of matrix A. Then we assume that the operation|j, l〉 → |j, gA(j, l)〉
performs on 2n0 qubits.

The goal of these assumptions is to ensure an efficient simulation of e−iAt, e.g.:
[RML13] [LMR13].

• Computing the gradient
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By using Lemma (1) we have:

f = fhom + finhom, where fhom =
1
2

yT Ay and finhom = CTy + tr[XTX]. (3.21)

We want to simulate the time evolution under the respective gradient of the
function f . More precisely we assume that we have multiple copies of the state
y(t) at step t we want to define the state:

|y(t+1)〉 = |y(t)〉 − η |∇y f (y)〉 (3.22)

with some given accuracy. Again by using Lemma (1) we have:

∇y f = ∇y fhom +∇y finhom, where ∇y fhom = Ay and ∇y finhom = CT. (3.23)

Therefore the simulation of the time evolution is based on quantum state expo-
nentiation and the use of additional subroutines to simulate terms that contain
inner products and outer products.

Computing ∇y fhom:

Note that fhom = 1
2 yT Ay can be written as:

〈yT| A |y〉 = tr(Aρ)

where ρ = |y〉 〈y| is the corresponding density matrix, and tr is the trace
operator. By using Lemma (1) the gradient D = ∇y fhom is an operator applied
to y. Thus, the gradient operator D can be implemented as a Hamiltonian and
it can be represented as:

D = tr{(ρ⊗ I)A}

where ρ is the joint quantum state of one copy of ρ. The matrix exponential
e−iAτ can be simulated efficiently on a quantum computer.

The idea is to implement the matrix exponentiation e−iD∆t [LMR14]. So, we can
exponentiate D by the mapping from D to A and the exponentiation of A. For
a short time ∆t, multiple copies of ρ are used and matrix exponentiation of M is
performed. In the reduced space of the last copy of ρ, we have:

tr{e−iA∆tρ⊗2eiA∆t} = e−iD∆tρ⊗2eiD∆t + ε

Where ε is the error term that contains the error simulation of e−iA∆t and the
error of the Hamiltonian simulation.

The multiplication D |y〉 = |∇ f (y)〉 can be implemented via phase estima-
tion. We implement series of powers of the exponential in the equation above
controlled on a time register in order to extract the eigenvalues of D. By con-
ditional rotating and measuring an extra ancilla qubit [HHL09], the matrix
multiplication with D is performed:

∑
j

λj(D)β j |uj(D)〉

Where |y〉 = ∑j β j |uj(D)〉 is the original state |y〉 written in the eigenbasis
{|uj(D)〉} of D, and λj(D) is the additional register encoding the corresponding
eigenvalue in binary representation.

Computing ∇y finhom:
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The optimization of functions containing terms of the form finhom can be per-
formed via additional simulation terms and vector additions. In order to
perform the inhomogeneous updates we require the following ingredients.

1. We perform additional vector additions related to the states C . For ex-
ample in the gradient of the inhomogenous part requires one additional
vector addition by C. Before adding the vectors we have to conditionally
apply the gradient operator to the y and CTrespectively. This requires
in each iteration a number of copies of the cij and yj. As we require in
every state another copy of the states this adds another tree of states to the
resource requirements, since we need to build these in parallel to the main
algorithm.

2. We perform operations similar to the homogeneous step matrix-vector
multiplications and matrix inversions via a conditional rotations on the
eigenvalue registers and post selection. This will result in different success
probabilities for the gradient operator than presented above.

3. Finally we perform a measurement in the yes/no-basis as before and
perform the vector addition of the current solution and the step update.

• Gradient descent procedure

Assume we have multiple copies of the state y(t) at step t with an accuracy
ε(t). Our purpose is to prepare the state |y(t+1)〉 = |y(t)〉 − η |∇ f (y)〉 with an
accuracy ε(t) ≥ ε(t+1). Let’s begin by preparing the state:

|y(t)〉 (cos θ |0〉 − i sin θ |1〉)

where θ is an external parameter determining the gradient step size and an
ancilla qubit is used for the gradient step in the second register.

Conditioned on the first ancilla being in state |1〉, we multiply the operator D
by |y(t)〉. After the conditional phase estimation, we obtain:

|ψ〉 = cos θ |y〉 |0〉 − i sin θ ∑
j

λj(D) |1〉 β j |uj(D)〉

Where |uj(D)〉 are the eigenstates of D and λj(D) are the eigenvalues.

We use another ancilla initialized to |1〉, and perform a joint measurement
of the final two ancillas. The first ancilla is measured in the basis |yes〉 =

1√
2
(|0〉+ i |1〉) and |no〉 = 1√

2
(i |0〉+ |1〉) and the second ancilla is measured in

the state |1〉:
cos θ |y(t)〉 − ξD sin θD |y(t)〉

Where ξD ≥ η and θ can be chosen like:

cos θ =
1√

1 + η2

ξ2
D

, sin θ =
η

ξD

√
1 + η2

ξ2
D

To obtain the state:

|y(t+1)〉 = 1
C(t+1)

|y(t)〉 − η |∇ f (y)〉
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where η is the learning rate and:

(C(t+1)
D )2 = 1− 2η 〈y(t)|D |y(t)〉+ η2 〈y(t)|D2 |y(t)〉 .

The success probability of the measurement of |yes〉 |1〉 is given by:

P =
1

2(1 + η2

ξ2
D
)
(C(t+1))2

The quantum state |y(t+1)〉 is an approximation to the classical vector y(t+1).
The error of the updated step is O(ε(t) + ηε

(t)
D ).

3.3.3 Complexity of Semi non-negative matrix factorization

We presented the quantum version of the gradient descent for polynomial optimiza-
tion for SNMF. In order to analyze the complexity of the procedure, we first note that
the sparsity factor (the number of non-zero matrix elements in each row and column)
of order K of A is O(K) by definition of A. Moreover the L2 norm of A is bounded by
‖A‖ ≤ 2KMN, again by definition of A.

Assume the setting of optimization of polynomials. Let the task is to use the
quantum gradient descent method for T ≥ 0 steps to prepare a solution |y(t+1)〉
to final accuracy 0 < δ < 1, with step-size schedule η>0. Assume that a quantum
algorithm exists at every step 0 < t < T and the error ε ≥ 0. We also assume that the
space explored with the algorithms is bounded by a constant, i.e. Tηt = O(1). By
using Result 3 (Multiple gradient steps) from [Reb+16], we have: that there exists a
quantum algorithm for multiple gradient steps that requiresO(poly(K, MN)T) copies
of the initial state |y(0)〉. The gate requirement is O(poly(K, MN)Tn0) quantum gates.

Recall that the computational complexity for the classic Semi-NMF is of order
TO(K(MN)) see [DLJ08], T recall is the maximum number of iterations. It follows
that:

SNMF QSNMF
Time computational complexity O(KMN) O(Kpolylog(MN))

TABLE 3.5: QSNMF versus SNMF

3.4 Conclusion

In this chapter, we present the general skim of quantum prototype based clustering
algorithm where we analyzed three different methods to estimate the distance for
quantum prototypes based clustering algorithms. Through this analysis, we noticed
that the notion of distance in quantum computing is different from the classical one.
Because what counts in the quantum computation is the correlation not the real
values of the distance. This analysis is so crucial as it can solve any prototype based
clustering algorithm. We validate the comparison of the three different approaches
by performing a series of empirical evaluations regarding the quantum distance
estimation and its behavior versus the stability of finding the nearest centers in the
right order.

We also implemented a new logarithmic time complexity quantum algorithm for
K-means clustering. As well, we propose quantum SNMF using quantum gradient
descent. We showed how an improvement in terms of complexity can be gained
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through quantum computation. We used alternate optimization method for quantum
gradient descent for both homogeneous and inhomogeneous part of the objective
function. Our algorithm Quantum Semi Non-negative Matrix Factorization (QSNMF)
leads to an exponential speed-up compared to its classical version: the complexity of
the problem becomes O(Kpolylog(MN)) instead of O(KMN) where M and N are
the dimension of the matrix and K is the number of clusters.
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4.1 Quantum Collaborative K-means

4.1.1 Classical Collaborative K-means

Clustering is one of the main exploratory task in Machine Learning. Indeed, there is
a large number of existing clustering algorithms that can give very different results
with the same data, and choosing between several clustering results is often difficult.
This task could be solved by asking an expert to choose the most adapted method
and the parameters that will work best for a specific data set. This kind of decision
requires a deep knowledge of both the data to be analyzed, and also the huge number
of algorithms that are available. Unfortunately, even with a good expert having a
decent knowledge of both the data and the algorithms, it is still difficult to make
the right choices when it comes to clustering. In order to resolve this problem, the
scientific community has suggested several ways of combining the results of different
algorithms. The goal was then to use the results of several methods to reach a
consensus or a synthesis. These works are based on the intuition that combining
results from several sources or experts can help finding a better solution for a given
problem.

The general collaborative methods consists of two steps:
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1. Local step: Each algorithm will process the data it has access to and produce a
clustering result, e.g. a “summary” and a partition of the data set.

2. Collaborative step: The algorithms share their results and try to confirm or
improve their models with the goal of finding better clustering solutions.

There are three types of collaborative clustering: vertical collaborative clustering,
horizontal collaborative clustering and hybrid collaborative clustering.

• Vertical collaboration refers to the situation where several algorithms look for
clusters in different data sets described by the same features but containing
different objects. The collaboration is said to be vertical because the data set
is split alongside the data and thus the information is exchanged vertically. It
is closely related to knowledge transfer and transfer learning. It can also be
applied to large data sets by splitting them and processing each subset with
different algorithms exchanging their information.

FIGURE 4.1: Vertical collaborative clustering

• Horizontal collaboration is about several algorithms working on the same
objects that may be represented in different feature spaces. The collaboration
is said to be horizontal because the data set is split alongside the features and
thus the information is exchanged horizontally. It can be applied to multi-
view clustering, multi-expert clustering, clustering of high dimensional data, or
multi-scale clustering.
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FIGURE 4.2: Horizontal collaborative clustering

• Hybrid collaborative clustering is when both horizontal and vertical approaches
are used at the same time.

FIGURE 4.3: Hybrid collaborative clustering

Generally speaking, horizontal collaboration and vertical collaboration are both
difficult but in different ways: for horizontal collaboration, the difficulty comes from
the fact that the algorithms may not be in the same feature space and thus can not
exchange prototypes or information based on the features of the data. However, since
it is the same data that are split between different sites, comparing the partitions
found by different algorithms is a little bit easy. In the case of vertical collaboration,
the difficulty lies precisely in the fact that without any common data, comparing
the partitions of different algorithms is impossible and voting systems can not be
used. But, given that all collaborators are prototype-based algorithms and that the
data distribution between the different sites are similar enough, vertical collaboration
makes it very easy to exchange prototypes and other information on the structures of
the clusters between the different collaborators. However, the clusters must first be
mapped, and this task can be difficult if the distributions are a bit different from one
site to another, if the number of cluster is different, or if the algorithms found very
different clusters.
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The aim of collaborative clustering is to make different clustering methods collab-
orate, in order to reach an improvement on each partitioning of some dataset. One
of the first collaborative clustering algorithm was introduced in 2002 by Pedrycz
[Ped02; Ped05] under the name "Collaborative Fuzzy Clustering" (CoFC). This method
was designed for the specific case of distributed data where the information cannot
be shared between the different sites. This method was based on a modified version
of the Fuzzy C-Means algorithm [Ped02]. In collaborative clustering [Cor+18], the
group of algorithms solve together learning problems, affecting an individual task
to each learner. Interactions are recurrent between each algorithms, responsibility is
collective, the action of each algorithm is geared to the performance of the group and
vice versa.

The hope is that by collaborating several clustering solutions, each one with
its own bias and imperfections, we will achieve a better overall solution. There
are three main types of collaboration: horizontal, vertical and hybrid collaboration
[Cor+18; GB10]. Horizontal collaborative clustering: all datasets describe the same
observations, so all the collaborative datasets have the same number of observations
but a different number of variables. Vertical collaborative clustering: all datasets have
the same variables. Hybrid collaborative clustering: when we use the two approaches
vertical and horizontal collaborative clustering at the same time.

As K-means is not stable, so in our approach we generate L instances of K-means
and we make a collaboration between these different instances in the context of
quantum learning.

Suppose that we have L instances of K-means algorithm. The general collaborative
clustering scheme consists of two phases:

- Phase 1: Generating a local K-means algorithm L times on the data set X. The
number of clusters would be the same for all data sets. K-means identifies K
cluster centers for each data set. The objective function to minimize on the first
phase is:

R(l) =
N

∑
n=1

K

∑
k=1

(
g(l)nk

)2
‖x(l)n − w(l)

k ‖
2, (4.1)

where l refers to the data set where the local cluster analysis is performed
l = 1, 2, . . . , L.

- Phase 2: After the local phase where each instance gets an initial set of cluster
centroids w(l)

k , l = 1, 2, . . . , L. In the second phase, we perform a collaboration
between the solutions of each instance algorithm. The goal is that after the
collaboration, if an observation of the X(l)-th data set is projected onto the
l′-th centroid of the l-th instance algorithm, then the same observation of the
X(l′)-th data set is projected on the same l′ centroid. The collaborative function
to minimize is:

C(l) =
L

∑
l′=1,
l′ 6=l

βl,l′
N

∑
n=1

K

∑
k=1

(
g(l)nk − g(l

′)
nk

)2
‖w(l)

k − w(l′)
k ‖

2, (4.2)

where βl,l′ is the weight of the pairwise collaborative C(l) term between the
instances l and l′, and it’s a non-negative coefficient that represents the intensity
of collaboration whose value is provided by the user.
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Therefore, the global objective function to minimize is given in the following form:

RColl =
L

∑
l=1

(
R(l) + C(l,l′)

)
. (4.3)

The objective function RColl consists of two terms. The first term represents the sum
of objective functions used by L instances of K-means clustering. The second term
reflects the impact of the clustering structures found in other instances. To obtain the
update rule for the prototypes let us consider:

R(l)
Coll =

N

∑
n=1

K

∑
k=1

(
g(l)nk

)2
‖x(l)n − w(l)

k ‖
2

+
L

∑
l′=1,
l′ 6=l

βl,l′
N

∑
n=1

K

∑
k=1

(
g(l)nk − g(l

′)
nk

)2
‖w(l)

k − w(l′)
k ‖

2.
(4.4)

In the calculations of the prototypes, the necessary condition for the minimum of the
objective function is in the form:

∂R(l)
Coll

∂w(l)
mk

= 0

Recall that, by definition we have:

‖x(l)n −w(l)
k ‖

2 =
M

∑
m=1

(x(l)mn − w(l)
mk)

2. (4.5)

By using (4.5) and by differentiation with respect to w(l)
mk we get:

∂R(l)
Coll

∂w(l)
mk

= −2
N

∑
n=1

(
g(l)nk

)2
(x(l)mn − w(l)

mk)

− 2
L

∑
l′=1,
l′ 6=l

N

∑
n=1

βl,l′(w
(l)
mk − w(l′)

mk )
(

g(l)nk − g(l
′)

nk

)2 (4.6)

Therefore, the straightforward computation gives the following update rule for
centroids:

w(l)
k =

N
∑

n=1

(
g(l)nk

)2
x(l)n +

L
∑

l′=1,
l′ 6=l

N
∑

n=1
βl,l′

(
g(l)nk − g(l

′)
nk

)2
x(l)n

N
∑

n=1

(
g(l)nk

)2
+

L
∑

l′=1,
l′ 6=l

N
∑

n=1
βl,l′

(
g(l)nk − g(l

′)
nk

)2
, (4.7)

where k = 1, . . . , K.
Collaborative K-means clustering algorithm is presented in Algorithm 5.
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Algorithm 5: Collaborative Clustering algorithm
Phase 1: Local phase
foreach X(l) , l = 1 to L do

Minimize the objective function of K-means:

R(l) =
N

∑
n=1

K

∑
k=1

(
g(l)nk

)2
‖x(l)n − w(l)

k ‖
2

end
Phase 2: Collaboration phase
foreach X(l) , l = 1 to L do

Minimize the objective function of collaborative clustering:

R(l)
coll =

N

∑
n=1

K

∑
k=1

(
g(l)nk

)2
‖x(l)n − w(l)

k ‖
2

+
L

∑
l′=1,
l′ 6=l

βl,l′
N

∑
n=1

K

∑
k=1

(
g(l)nk − g(l

′)
nk

)2
‖w(l)

k − w(l′)
k ‖

2

Update the centroids by using Equation (4.7).
end

4.1.2 Quantum Collaborative K-means

In this section, we study the collaboration between several clustering results, in
particular the collaboration between several models of quantum K-means [Ben+20].

The general quantum collaborative clustering scheme consists of two phases:

Phase 1: Generating l = 1, 2, . . . , L clusters without collaboration, using a local
QK-means algorithm on the dataset as we explained previously. QK-means
minimizes the following objective function R(l)

Q .

R(l)
Q = d2r4

max |(G2
k )

T〉 | 〈φ(l)|ψ(l)〉 |2 (4.8)

where

|G2
k 〉 =

1√
|Ck|

N

∑
n=1

g2
nk |n〉

and

g2
nk =


1 if xn ∈ Ck

0 otherwise.

Phase 2: In the second phase, we perform a quantum collaboration between
different clusters. In collaborative QK-means algorithm, when a data instance
is presented from the clustering l, the optimization is done to minimize the dis-
tance between that instance and the centroids of each local QK-means iteration
l′ 6= l. Therefore the pairwise collaborative C(l)

Q term between the QK-means
clustering l and l′ is:
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C(l)
Q = d′2r′4max ×

L

∑
l′=1,
l′ 6=l

βl,l′ |
(
(G(l)

k − G(l′)
k )2

)T
〉 | 〈γ(l)|δ(l′)〉 |2 (4.9)

Where |γ(l)〉 and |δ(l′)〉 are the two states that are associated to the vectors w(l)

and w(l′) .The preparation of the data and the construction of the states |γ(l)〉 and
|δ(l′)〉 follows the same steps as explained previously for the states |ψ〉 and |φ〉.

|γ(l)〉 = 1√
d′

∑
c
|c〉

√1− |w
(l)
c |2

r′2max
e−iαc |0〉+ w(l)

c

r′max
|1〉

 |1〉
|δ(l′)〉 = 1√

d′
∑

c
|c〉|1〉

√1− |w
(l′)
c |2

r′2max
e−iβc |0〉+ w(l′)

c

r′max
|1〉


Where c = {1, ..., k}, and r′max is an upper bound on the maximum value of any

feature in the dataset. The input vectors are d′-sparse.
For simplification, let’s assume in what follows that Z = d2r4

max and Z′ = d′2r′4max.
So, the objective function to minimize is:

R(l)
QColl = Z |(G2

k )
T〉 | 〈φ(l)|ψ(l)〉 |2 + Z′

L

∑
l′=1,
l′ 6=l

βl,l′ |
(
(G(l)

k − G(l′)
k )2

)T
〉 | 〈γ(l)|δ(l′)〉 |2

(4.10)
The objective function presented in Equation (4.10) is composed of two terms, the

first one corresponds to the local phase which is the sum of L instances of QK-means
and the second one corresponds to the collaborative phase.

The idea of collaboration is to make the algorithms share their results with the goal
of getting a better clustering results, and this can be done by adding a collaborative
term to constraint the similarity between clustering elements. Where βl,l′ is a non-
negative matrix coefficient that represents the intensity of collaboration whose value
is provided by the user.

Finally, the computation of the gradient of R(l)
QColl gives the following update rule

of the centroid [Reb+19]:

|w(l)
k 〉 =

Z |(G2
k )

TX〉+ Z′
L
∑

l′=1,
l′ 6=l

βl,l′ |
(
(G(l)

k − G(l′)
k )2

)T
X〉

Z |(G2
k )

T〉+ Z′
L
∑

l′=1,
l′ 6=l

βl,l′ |
(
(G(l)

k − G(l′)
k )2

)T
〉

(4.11)
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Quantum collaborative K-means clustering [Ben+20] is presented in Algorithm 6.

Algorithm 6: Quantum Collaborative Clustering algorithm
Phase 1: Local phase
foreach X(l) , l = 1 to L do

Minimize the objective function of QK-means:

R(l)
Q = Z |(G2

k )
T〉 | 〈φ(l)|ψ(l)〉 |2

end
Phase 2: Collaboration phase
foreach X(l) , l = 1 to L do

Minimize the objective function of collaborative clustering:

R(l)
QColl = Z |(G2

k )
T〉 | 〈φ(l)|ψ(l)〉 |2 +Z′

L

∑
l′=1,
l′ 6=l

βl,l′ |
(
(G(l)

k − G(l′)
k )2

)T
〉 | 〈γ(l)|δ(l′)〉 |2

Update the centroids using Equation (4.11).
end

4.1.3 Experimental results

The quantum version of collaborative K-means was tested on three real world datasets
available for public use in the UCI Machine learning repository [DG17], namely: iris,
wine and breast cancer.

Clustering through collaborative quantum K-means

We used three different datasets to compare the quantum Davies-Bouldin (QDB) index
for quantum K-means before and after collaboration. These results are represented in
Table 4.1. For example in the Iris dataset, we can notice that QDB of the collaboration
shows a decreasing behaviour compared to QK-means2 which means that the quality
of clustering increases. However, if we compare the collaboration with QK-means1,
we see that QDB increases which is normal because the collaboration isn’t all the time
beneficial for both collaborators it could be good for one as in our case QK-means2
and doesn’t improve the quality of the other collaborator QK-means1.

Dataset QK-means1 QK-means2 QK-meanscoll
Iris [0.35,0.57] [0.63, 1.36] [0.47, 0.84]

wine [0.49, 0.56] [0.43, 0.60] [0.47, 0.59]
Breast Cancer [0.48, 0.77] [0.53, 0.97] [0.52, 0.66]

TABLE 4.1: QK-means & QK-meanscoll using QDB index

Figure 2 and 3 represent the projection of iris dataset using the principal com-
ponent analysis. These figures shows the classical collaborative K-means and the
quantum collaborative K-means respectively. We can notice that the algorithm of
collaborative QK-means has identified the different clusters which are different from
each other. Therefore, the quantum collaborative K-means gives a good classification
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just like it’s classical version, the main difference resides in that with a quantum
version the clustering can be done in a time faster than the classical version.

FIGURE 4.4: Collaborative K-means clustering

FIGURE 4.5: Collaborative QK-means clustering

4.1.4 Computational time complexity of collaborative K-means

As we have seen before, to assign N vectors to K clusters the algorithm of K-means
takes time O(K ×M× N2). In the case of collaboration of L instances of K-means
algorithm the complexity is therefore O(K×M× L× N2).

Let us now analyze the quantum version of the collaborative K-means algorithm;
as we have already explained the quantum K-means has a complexity of order
O(K× log(M× N)), therefore the collaborative version of the quantum K-means we
get at most O(K× L× log(M× N)).

Compared to the classical version of collaborative K-means, we notice that we
have an exponential speed up. Indeed, classical machine learning algorithms take
time polynomial in manipulating and classifying large numbers of vectors in high
dimensional spaces. On the contrary of quantum computers that can manipulate
high dimensional vectors in large tensor product spaces in logarithmic time.



84 Chapter 4. Quantum Multi-models clustering (collaborative approach)

K-meanscoll QK-meanscoll
Time computational complexity LO(K×M× N2) LO(K× log(M× N))

TABLE 4.2: Time computational complexity of classical & quantum
collaborative k-means

4.2 Quantum Collaborative Semi Non-negative Matrix Fac-
torization

4.2.1 Classical Collaborative Semi Non-negative Matrix Factorization

Non-negative matrix factorizations are more and more used as tools for unsupervised
classification and visualization of multidimensional datasets, as they allow for the
projection of these large data onto small, generally two-dimensional spaces. In this
work, we study the collaboration between several clustering results, in particular the
collaboration between several models of Non-negative Matrix Factorization (NMF).
Each dataset is clustered through an NMF-based clustering approach. We are inter-
ested in horizontal collaboration that is very close to multi-view clustering because
the data to be collaborated is the same but described by different variables.

4.2.2 General principle

In the context of horizontal collaborative learning, we consider a finite number of L
clustering views A(1), ...,A(L) working on different attributes of a data set made
of M numerical attributes X = {x1, ..., xN} with xn ∈ RM×1. We note X(l) =

{x(l)1 , ..., x(l)N }, x(l)n ⊆ xn the subset of attributes processed by a given viewA(l). We are
in the discrete case and each observation x(l)n is a vector belonging to a Ml-dimensional
euclidean feature space RMl×1. Each clustering view A(l) uses a NMF factorization.
Therefore the corresponding functional for the A(l) algorithm writes:

L(l)(F(l), G(l)) = ‖X(l) − F(l)(G(l))T‖2 (4.12)

Here F(l) = (f(l)1 , f(l)2 , . . . , f(l)K ) ∈ R
Ml×K
+ represents the matrix of cluster centroids and

G(l) = (g(l)
1 , g(l)

2 , . . . , g(l)
K ) ∈ RN×K

+ represents the matrix clusters indicators obtained
by the A(l).

From there, in the collaborative NMF algorithm, when a data unit is presented
from the view l, the optimization is done to minimize the distance between that unit
and the centroids of each local NMF view l′ 6= l. We would like that after the collabo-
ration: if an observation of the X(l)-th data set is projected onto the k-th centroid of
the l-th NMF view, then the same observation viewed as an observation in the X(l′)-th
data set is projected on the same unit k centroid. In order to define the functional in
the collaborative part we introduce the matrix D(l) of the euclidean distances of each
data in X to the set of centroids F(l) in local instance l-th, more specifically we have
D(l)

kn = ‖x(l)n − f(l)k ‖. Therefore we define the pairwise collaborative Cl,l′ term between
the l-th and l′-th NMF’s as follows:

Cl,l′(F(l), G(l)) = ‖(G(l) − G(l′)) ◦ D(l)‖2
F. (4.13)

The idea of collaboration is to add a collaborative matching term to constraint the
similarity between clustering elements of different databases, has obviously showed
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its ability to produce improved clustering solutions. To exchange the clustering
information, all local solutions in the collaboration process share common structures
see [Ped02]. Therefore the set of centroids F(l) is estimated iteratively by minimizing
the objective function:

C(F(l), G(l)) = L(l)(F(l), G(l)) + ∑
l′ 6=l

βl,l′ · Cl,l′(F(l), G(l)) (4.14)

Here L(l) is the lth local term defined in Equation (4.12), β = (βl,l′)l,l′ is the weight of
the collaboration fixed by the user satisfying ∑l′ 6=l βl,l′ = 1. We could also define a
global functional as follows:

C(F, G) =
L

∑
l=1

(
L(l)(F(l), G(l)) + ∑

l′ 6=l
βl,l′ · Cl,l′(F(l), G(l))

)
(4.15)

Let us first remark that the cost function defined in Equation (4.15) is continuously
first differentiable in all variables. Therefore a minimum always exists and could
be found by nonlinear programming. The minimization of the global functional
should satisfy the constraints: (G(l))TG(l) = I for all l ∈ {1, . . . , L} since G(l) is
a partition matrix. Therefore a minimum always exists and could be found by
nonlinear programming. The minimization of the global functional should satisfy
the constraints: (G(l))TG(l) = I for all l ∈ {1, . . . , L} since G(l) is a partition matrix.
We compute the gradient of the functional in Equation (5.17) see Appendix Section
.1.7. Having obtained both gradients for the gradient descent algorithm the update
formulates for collaborative NMF writes:{

G(l) = G(l) − ηG(l) ◦ [∇G(l)C(l)],
F(l) = F(l) − ηF(l) ◦ [∇F(l)C(l)].

(4.16)

We then obtain the multiplicative rules:

F(l) = F(l) ◦
X
(

G(l)
)T

+ ∑
l′ 6=l

βl,l′X
[
(G(l) − G(l′))◦2

]T

F(l)G(l)
(
G(l)

)T
+ ∑

l′ 6=l
βl,l′1M×N

[
(G(l) − G(l′))◦2

]T ◦ F(l)
, (4.17)

and

G(l) = G(l) ◦

(
F(l)
)T

X + ∑
l′ 6=l

βl,l′
[

G(l′) ◦ (D(l))◦2
]

(
F(l)
)T F(l)G(l) + ∑

l′ 6=l
βl,l′G(l) ◦

(
D(l)

)◦2 . (4.18)

The division here is component wise matrix division and where ◦2 means element-
wise power.

The formulaes in Equation (4.17) and Equation (4.18) correspond to the case of
classic NMF. By relaxing the constraints on the positivity of X and F(l) we obtain the
semi NMF case. We have in the following multiplicative rule to update F(l) while G(l)

is fixed.
F(l) = XG(l)((G(l))TG(l))−1 (4.19)

Note (G(l))TG(l) is a K× K positive semidefinite matrix. The inversion of this small
matrix is trivial. In the case of G(l) the formula is more involved. We first introduce
the notations A+ = (|A| + A)/2 and A− = (|A| − A)/2, where all the involved
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computations are component wise element operations. We also denote

W(l) =
(

F(l)
)T

X + ∑
l′ 6=l

βl,l′
[

G(l′) ◦ (D(l))◦2
]

and

H(l) =
(

F(l)
)T

X + ∑
l′ 6=l

βl,l′
[

G(l′) ◦ (D(l))◦2
](

F(l)
)T

F(l)G(l) + ∑
l′ 6=l

βl,l′G(l) ◦
(

D(l)
)◦2

.

We get the following update rule of G(l) while F(l) is fixed:

G(l) = G(l) ◦

√
(W(l))+(H(l))−

W(l))−(H(l))+
. (4.20)

Here all the database share the same units but described by different attributes. In
this case, the number and the size of centroid vectors for all the NMF factorizations
will be the same. That’s why the objective function of the classical NMF has been
modified in order to introduce this constraint on the different factorizations during
the collaboration step. The collaborative term is expressed by Cl,l′(F) which guaranty
that the structure of other databases matches with the current database. Our modified
version of the NMF algorithm for horizontal collaboration is shown in Algorithm 7
below.

Algorithm 7: NMF horizontal collaboration Algorithm

Initialization: Initialize all the centroids sets F randomly and β.
Local step:
forall algorithms A(l) do

Minimize the objective function of the NMF.
end
Collaborative step:
forall algorithms A(l) do

Update the partitions matrix of all algorithms (4.19).
Update the centroids of all algorithms (4.20).

end

4.2.3 Quantum Collaborative Semi Non-negative Matrix Factorization

We have already explained in the last two sections the different steps of quantum semi-
non negative matrix factorization, and the classic collaborative semi non-negative
matrix factorization. This part will be devoted to the quantum collaborative version
of the semi non-negative matrix factorization. As we can notice, the collaborative
function is composed of two terms: the first one is the local term and the second one
is the collaborative term. The objective function to minimize for the (l) instance is:

C(F(l), G(l)) = L(l)(F(l), G(l)) + ∑
l′ 6=l

βl,l′ · Cl,l′(F(l), G(l)) (4.21)

We have already explained the quantum version of the first term. In what follows,
we will show the quantum version of the collaborative term:

L(l)(F(l), G(l)) = ‖X(l) − F(l)(G(l))T‖2
F (4.22)
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And
Cl,l′(F(l), G(l)) = ‖(G(l) − G(l′)) ◦ D(l)‖2

F. (4.23)

In words the Cl,l′ term is the weighted sum of Euclidean distances between the
observed data x(l)n and all the centroids in F(l), with the weight defined by G(l) −G(l′).
Note that when G(l) and G(l′) agree then the collaborative term is equal to zero and
only the local l-th NMF is take into account in the optimization. Note also that by
construction Cl,l′ ≥ 0 and by definition D(l) ≥ 0 therefore Cl,l′(F(l), G(l)) = 0 if and
only if G(l) − G(l′) = 0 i.e. the data x(l)n in the l′-th data set is projected on the same
centroid. By computing the Frobenius norm in Equation’s (4.22) and (4.23) we have:

L(l)(F(l), G(l)) = Tr[XTX− 2XT F(l)(G(l))T + G(l)(F(l))T(F(l))(G(l))T],

Cl,l′(F(l), G(l)) = Tr[((G(l) − G(l′)) ◦ D(l))T((G(l) − G(l′)) ◦ D(l))].

4.2.4 Problem Statement in Quantum Setting

In this section we formulate the gradient descent procedure which will be thereafter
simulated in quantum context. We make uses here of some general linear algebra
results and also some well know results about the NMF [LS01]. The gradient descent
method unfolds in two following phases:{

F(l) = F(l) − ηF(l) ◦ [∇F(l)(C(F(l), G(l)))],
G(l) = G(l) − ηG(l) ◦ [∇G(l)(C(F(l), G(l)))].

(4.25)

In the collaborative case the role of F(l) and G(l) are no more symmetric role and we
will detail both gradients.

Lemma 2 The gradient of ∇F(l)(C(F(l), G(l))) is composed of two terms: the gradient of the
homogenous quadratic form with a diagonal matrix and the gradient of an inhomogenous
affine form.

Proof: 2 Note that the gradient of ∇F(l)(C(F(l), G(l))) is the addition of ∇F(l)(‖X(l) −
F(l)(G(l))T‖2

F) and [∇F(l)Cl,l′(F(l), G(l)). We now compute ∇F(l)(‖X(l) − F(l)(G(l))T‖2
F).

Recall that the ∇F(l)(‖X(l) − F(l)(G(l))T‖2
F) is obtained in Lemma 1 and is given by

= [vec(F(l))]T(B(l)
F )T(B(l)

F )vec((F(l)))− 2vec(X)T(B(l)
F )vec((F(l))) + tr[XTX],

where B(l)
F = (GT ⊗ IM) is the MN × MK matrix the Kronecker product of the matrix

(G(l))T with IM the M dimensional identity matrix. Also for any M× N matrix A, vec(A)
is the MN × 1 column vector the vectorization of A which obtained by stacking the columns
of the matrix A on top of one another.

Note that as in Lemma 1 (B(l)
F )T(B(l)

F ) ∈ RMK×MK
+ is symmetric matrix by construction.

Moreover we have:

(B(l)
F )T(B(l)

F ) = G(l)(G(l))T ⊗ IM IM)

where we have used the mixed-product property of the Kronecker product. Since G(l)(G(l))T

is diagonal, it follows that (B(l)
F )T(B(l)

F ) is diagonal. Again as in Lemma Lemma 1 note that
[vec(F(l))]T(B(l)

F )T(B(l)
F )vec(F(l)) is a quadratic form with (B(l)

F )T(B(l)
F ) symmetric matrix

and that vec(X)T(B(l)
F )vec(F(l)) + tr[XTX] is an affine in F(l).
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Analogously we compute ∇G(l)(‖X(l) − F(l)(G(l))T‖2
F) and we get that

= [vec(G(l))]T(B(l)
G )T(B(l)

G )vec((F(l)))− 2vec(X)T(B(l)
G )vec((F(l))) + tr[XTX],

where B(l)
G = (FT⊗ IN) is the MN×KN matrix the Kronecker product of the matrix (F(l))T

with IN the N dimensional identity matrix.
As before note that

[vec(G(l))]T(B(l)
G )T(B(l)

F )vec(G(l))

is a quadratic form with (B(l)
G )T(B(l)

G ) symmetric matrix and that vec(X)T(B(l)
G )vec(G(l)) +

tr[XTX] is an affine in G(l).
We now compute the collborative gradients terms, we start with [∇F(l)Cl,l′(F(l), G(l)).

We compute:

∇F(l)Tr[((G(l) − G(l′)) ◦ D(l))T((G(l) − G(l′)) ◦ D(l))]

Recall that D(l) is constructed by using F(l). Note that we have by definition:

∇F(l)Cl,l′(F(l), G(l)) = −2X
[
(G(l) − G(l′))◦2

]T

+ 21M×N

[
(G(l) − G(l′))◦2

]T
◦ F(l),

(4.26)

where 1M×N is is an M× N one’s matrix and where ◦2 means element-wise power of the
matrix. We also have that:

∇G(l)Cl,l′(F(l), G(l)) = 2(G(l) − G(l′)) ◦ (D(l))◦2. (4.27)

We need now to write these gradients by using the forms vec(F(l)), vec(G(l)) respectively.
Therefore we have:

∇F(l)Cl,l′(F(l), G(l)) = −2vec
(

X
[
(G(l) − G(l′))◦2

]T
)

+ 2vec
(

1M×N

[
(G(l) − G(l′))◦2

]T
)
◦ vec(F(l)),

(4.28)

We also have that:

∇G(l)Cl,l′(F(l), G(l)) = 2vec(G(l) − G(l′)) ◦ vec
(

D(l))◦2
)

. (4.29)

Note that the gradients in the Equations do not contains quadratic terms in vec(F(l)), vec(F(l))
respectively.

To conclude the proof it remains to precise that the quadratic term for∇F(l)(C(F(l), G(l)))
is given by:

[vec(F(l))]T(B(l)
F )T(B(l)

F )vec(F(l)) (4.30)

with (B(l)
F )T(B(l)

F ) symmetric matrix, and the affine term is given by:

vec(X)T(B(l)
F )vec(F(l))

+tr[XTX]− 2vec
(

X
[
(G(l) − G(l′))◦2

]T
)

+2vec
(

1M×N

[
(G(l) − G(l′))◦2

]T
)
◦ vec(F(l))

(4.31)
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Analogously for ∇F(l)(C(F(l), G(l))) we have the quadratic term:

[vec(G(l))]T(B(l)
G )T(B(l)

F )vec(G(l)) (4.32)

with (B(l)
G )T(B(l)

G ) symmetric matrix, while the affine term is given by:

vec(X)T(B(l)
G )vec(G(l)) + tr[XTX]

2vec(G(l) − G(l′)) ◦ vec
(

D(l))◦2
)

.
(4.33)

This Lemma shows that both gradients ∇F(l)(C(F(l), G(l))) and ∇F(l)(C(F(l), G(l)))
respectively are of the form

[vec(F(l))]T AFvec(F(l)) + CFvec(F(l)) + DF

and
[vec(F(l))]T AGvec(F(l)) + CGvec(F(l)) + DG

respectively. Therefore the descent gradient procedure described in the Paragraph
3.3.2 directly applied. We conclude with some remarks on the complexity of quantum
collaborative approach.

4.2.5 Complexity of Collaborative Semi non-negative matrix factorization

As in the Section 3.3.3 recall that the computational complexity for the classic Semi-
NMF is of order TO(K(MN)) see [DLJ08], T is the maximum number of iterations.
By tacking into account L the number of collaborators we get that the computational
complexity for the classic colaborative Semi-NMF is of order LTO(K(MN)). With the
same considerations the quantum version of semi NMF is O(Kpolylog(MN)). In the
case of collaborative approach with L the number of collaborators it follows that:

SNMFcoll QSNMFcoll
Time computational complexity LO(KMN) LO(Kpolylog(MN))

TABLE 4.3: QSNMFcoll versus SNMFcoll

4.3 Conclusion

In this chapter, we proposed a new approach called Quantum Collaborative K-means
which is based on combining several clustering models based on quantum K-means.
This collaboration consists of exchanging the information of each algorithm locally in
order to find a common underlying structure for clustering.

Comparing the classical version collaborative K-means clustering to its quantum
version, we notice that we had a good classification, the only difference is its complex-
ity; we have an exponential speed up: while the classical version takes polynomial
time, the quantum version only takes logarithmic time, especially in large data sets.
Our proposed approach is illustrated on various databases and the experimental
results have shown very promising performance.

We also proposed the quantum version of collaborative Semi Non-negative Matrix
Factorization which consists on the collaboration of different clustering methods, in
order to reach an agreement on the partitioning of a common dataset. This latter
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doesn’t have only the advantage of speed up but also by collaborating several clus-
tering solutions, each one with its own bias and imperfections, one will get a better
overall solution in terms of classification.
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Other research directions:
Collaborative learning to improve
the non uniqueness of NMF
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5.1 Introduction

Data clustering is an unsupervised task where the goal is to determine a finite set of
categories (groups) to describe a data set according to similarities among its objects.
Faced to the difficulty of designing a general purpose of clustering algorithm and
choosing a satisfactory or even perfect clustering, the solution is to make several
clustering algorithms collaborate. The aim of this collaboration is by combining
several clustering solutions, each one with its own bias and imperfection, we expect
to get a better overall solution.

The fundamental concept of collaboration is that the clustering algorithms oper-
ate locally (on individual subsets) and then collaborate by exchanging information
about their structures and results in order to improve their models. Collaborative
clustering is a promising field with results that offers several solutions for specific
issues (e.g. [Ped05], [FGW10], [FWG07]). The objective of collaborative clustering is
to make different clustering methods collaborate, so as to reach an agreement on the
partitioning of a common dataset.
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There are three main types of collaboration: horizontal, vertical and hybrid
collaboration. Horizontal collaborative clustering: all datasets describe the same
observations, so all the collaborative datasets have the same number of observations
but a different number of variables. This approach can be considered as a multi-
view clustering where the treatment is done on multi-represented data. Vertical
collaborative clustering: all datasets have the same variables but with different
objects. Hybrid collaborative clustering: is the combination of both vertical and
horizontal collaborative clustering approaches.

NMF has received a significant amount of attention as an important problem
in different areas such as language modeling, feature extraction, computer vision,
clustering and text mining [Sha+06] [Cic+09]. NMF [PT94b] is a machine learning
technique that is used to decompose large data matrices imposing the non-negativity
constraints on the factors. This non-negativity makes the resulting matrices easier to
interpret. Frequently, the datasets to be analyzed are non-negative, and sometimes
they also have a sparse representation. In machine learning, non-negativity is related
to probability distributions while sparseness is related to feature selection.

While applying NMF we get generally a factorization of two matrices, we consider
one of the matrices as a matrix containing the centroids of a data set and the other
one as a data partition matrix.

NMF solution is not unique: a matrix and its inverse can be used to transform
the two factorization matrices by : X = FGT = FBB−1GT. If the two new matrices
FB and B−1GT non-negative, they form another solution for factorization. The non-
negativity of FB and B−1GT is verified if B is a non-negative matrix. More control on
the non-uniqueness of FB and B−1GT can be obtained with parsimony constraints
(sparsity).

In fact, NMF is an unstable algorithm; which means that if we run NMF for the
same data we get different factorization between each run. Stability has been widely
used in different applications as heuristics for adjusting parameters of clustering
algorithms, such as the number of clusters, or the stopping criteria, see [DF02] and
[BHEG01].

The first article investigating the uniqueness of NMF is Donoho and Stodden
[DS03]. They show that the NMF solution is unique in some situations by using
convex duality.

An important result for the NMF uniqueness is due to [Plu02] which shows that
in most cases the NMF solutions has a special form.

The article [Lau+08] is another relevant result for the NMF uniqueness study, they
obtain necessary and sufficient conditions for the uniqueness. The two conditions are
the boundary close and the sufficiently spread property of the column space of the
data matrix. They also show that NMF is robust to additive noise under the same
conditions.

To tackle the problem of non uniqueness of NMF, we propose in this paper a
new approach based on collaborating several Non-negative Matrix Factorization
(NMF) models then find a consensus of different collaborations by using Karush-
Kuhn-Tucker (KKT) conditions in order to have a solution more stable and solve the
problem of non uniqueness of NMF.

The rest of this chapter is organized as follows: in section 2, we describe the Non-
negative Matrix Factorization principle and its instability. In section 3, we explain the
stability of NMF using collaboration where we describe Karush-Kuhn-Tucker (KKT)
optimization problem. The experimental results for stability of NMF are presented in
section 4. Finally the chapter ends with a conclusion.
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5.2 Non uniqueness of NMF

In this section, we shortly describe the classical Non Negative Matrix Factorisation
and its instability (non uniqueness of NMF).

Let X = (x1, x2, . . . , xn) ∈ RM×N
+ , be a non-negative data matrix with M rows and

N columns, here xn ∈ RM×1
+ represents the nth column of X. In what follows ‖ · ‖

stays for the Euclidean norm and ‖ · ‖F for the Frobenius norm. Let K be a fixed input
parameter.

5.2.1 Classical and Convex NMF

The NMF gives a low rank approximation of X by the product of two non-negative ma-
trices FG where the factors are F = (f1, f2, . . . , fk) ∈ RM×K

+ , G = (g1, g2, . . . , gK)
T ∈

RK×N
+ and T denotes the transpose operator. The NMF decomposition could be

formulated as a constrained optimization problem by minimizing the following error
function:

(F, G) = argmin
F,G

‖X− FG‖2
F. (5.1)

The non-negativity constraints problem in the matrix form are F, G ≥ 0.
The NMF decomposition has been studied early by Golub and Paatero [PT94b],[XHP99].

Several families of algorithms are proposed to solve this matrix approximation prob-
lem. The approach proposed by Lee and Seung [LS01] is based on a gradient descent
strategy which start with a random initialization of F and after usually unfolds in
two phases: at first the functional is minimized with respect to G while in the second
phase, the functional is minimized with respect to F. In the Lee and Seung’s approach,
this algorithm could converge to a stationary point which is not necessarily local
minima. Another solution is to use alternate least square strategy. There is no guarantee
that we can exactly recover the original matrix from F and G, so we will approximate
it as best as possible in terms of the approximation error measured in Frobenius norm.
The work of Lee and Seung [LS01] revealing that NMF has an inherent clustering
property, i.e., it automatically clusters the columns of input matrix X since the matrix
columns vector factor (f1, f2, . . . , fk) could be considered as cluster centroids while
the the matrix rows vector factor (g1, g2, . . . , gK)

T could be considered as cluster
indicators. This fact brought much attention to NMF in machine learning and data
mining communities.

The aim of clustering is to cluster the columns of X, so as to optimize the difference
between X and the clustered matrix revealing significant block structure. To this end
the so-called convex NMF was studied (see [DHS05]). In this context we ask that the
columns of the cluster centroids matrix F are the convex combination of the rows of
the input matrix X. More precisely we want to find W a positive matrix weight such
that F = XW. With this additional constraint the functional in Equation (5.1) writes:

(W, G) = argmin
W,G

L(X, W, G), where L(X, W, G) = ‖X− XWG‖2
F. (5.2)

When G is an orthogonal matrix GTG = I, the resulting non-negative matrix fac-
torization (NMF) is equivalent to relaxed K-means clustering (see [DHS05]). The
K-means clustering is one of the most widely used clustering method early developed
by Lloyd [LLo82]. To summarize, K-means clustering problem can be formulated as
a matrix approximation problem [LS01] where the clustering aim is to minimize the
approximation error between the original data X and the reconstructed matrix based
on the cluster structures.
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5.2.2 Proposed strategies to reduce the instability of NMF

In the literature, the term "stability" is used for various meanings, which are not
all equivalent. In our case, the stability of a NMF algorithm refers to its ability to
regularly give similar factorization solutions for the same input. Let us consider

(W∗, G∗) = argmin
W,G

L(X, W, G), (5.3)

with L defined in Equation (5.2), and F∗ = X∗W∗ and let B ∈ RK×K
+ be an inversible

matrix then (F∗B−1, BG∗) is still a solution of the problem in Equation (5.3) with ex-
actly the same residual. Therefore we have non-uniqueness of the solution in the non
negative matrix factorization optimization problem defined above by construction.
When G is an orthogonal matrix GTG = I we have the uniqueness of the solution
(see [DHS05]).

As mentionned before the optimization procedure to solve the problem (5.3) starts
with the random initialization of F therefore by running several NMF on the same data
or data drawn from the same source repeatedly, we get different results factorization
between each execution due to this initialization. The statistic information, as the
expectation and the variance, on the solutions obtained for several NMF’s live on a
bidimensional manifold. Due to the variability of these statistics this manifold is not
well concentrated showing the the instability of NMF algorithm.

That’s why that in our work we are intending to deal with the problem of instabil-
ity of NMF. Our purpose is to propose strategies to obtain a more compact manifold
corresponding to the solutions statistics of NMF; which means for the same data if
we run NMF several times we will get the almost the same factorization. We obtain
by reducing the instability a near stable optimal factorization algorithm.

There are many strategies to reduce the instability of unsupervised algorithms. In
the last decade two notables approaches was developed: ensemble clustering [SG02]
and collaborative clustering [Ped02]. Their idea was based on the hypothesis that
combining large and diverse sets of clustering can produce a more stable and precise
solution .

The main difference between ensemble clustering and collaborative clustering
[VR11] is that clustering ensemble learning methods aim at finding a single consensus
partition, while collaborative clustering does not have this final goal. In short, the
field of collaborative clustering is concerned with finding algorithms and functions
that allow algorithms to share information and to improve their results based on each
other similarities, while the field of ensemble learning is more concerned with finding
algorithms and methods to merge the solutions or find a consensus between them.

Since both strategies reduce the instability of unsupervised algorithms, we used
ensemble/collaborative clustering techniques to deal with the problem of instability
of NMF, based on the hypothesis that combining different clustering solutions can
produce a more stable and accurate solution.

The idea behind of ensemble/ collaboration clustering is to minimize an adapted
functional defined on the similarity between different clustering results of the same
database, which allows to exchange clustering solution informations in order to
produce improve clustering solutions. Our strategy to reduce the instability follows
the steps: first for the same input we run a finite number of NMF instance, secondly,
by using an optimization KKT procedure we combine the different solutions into a
single consensus solution clustering, thirdly we use a collaborative approach on the
obtained solutions in the first step to improve all these solutions and finally by using
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the same KKT procedure we define an optimized clustering solution bases on the
collaborative solutions obtained previously.

We will show that the both solutions obtained in the second and fourth step will
reduce the instability of NMF. We will also compare these two solutions to show the
advantage to use collaborative approach to improve stability in clustering.

5.3 Theoretical background for Exchange Information Strate-
gies

This Section describes the details of the strategies to information exchange between
different NMF clustering solutions. We also present the KKT optimization procedure
used to define the unique optimal clustering solution associated to several existing
solutions. We start by presenting the general principle of our approach.

5.3.1 General principle

Let L be a finite integer and X = {x1, ..., xN} the data matrix. For some fixed run
l ∈ {1, . . . , L} of NMF we obtain the solutions :

(W(l), G(l)) = argmin
W(l),G(l)

L(X, W(l), G(l)). (5.4)

Here F(l) = (f(l)1 , f(l)2 , . . . , f(l)k ) = X(l)W(l) ∈ R
Ml×K
+ represents the matrix of cluster

centroids and G(l) = (g(l)
1 , g(l)

2 , . . . , g(l)
K ) ∈ RK×N

+ represents the matrix clusters in-
dicators obtained by the l-th run NMF. The matrix G(l) as partition matrix is a a
matrix of binary indicator such that g(l)kn = 1 if x(l)n ∈ C(l)

k , and gkn = 0 otherwise,

the C(l)
k being the k-th cluster. Note that, if the clusters C(l)

1 , . . . , C(l)
K have distinct

cluster centroids f(l)1 , f(l)2 , . . . , f(l)k each of the N columns of G(l) will contain a single
1 and K − 1 elements that are 0. Accordingly, the columns of G(l) will sum to one
and its row sums will indicate the number elements per cluster. Moreover, since
g(l)kn ∈ {0, 1} and each column of G(l) only contains a single 1, the rows of G(l) are
pairwise perpendicular which is then to say that the matrix G(l)(G(l))T is a diagonal
matrix.

To minimize the functional in Equation (5.4) we unfold recursively the following
steps: {

W(l) = argminW(l)) L(X, W(l), G(l))

F(l) = argminF(l) L(X, W(l), G(l))
(5.5)

Following the same gradient descent strategy as Lee and Seung for the optimization
problems we first compute the gradients:

∇W(l)(‖X− XW(l)G(l)‖2
F) = −2X(G(l))T + 2XW(l)G(l)(G(l))T, (5.6)

and that

∇G(l)(‖X− XW(l)G(l)‖2
F) = −2(XW(l))TX + 2(XW(l))TXW(l)G(l). (5.7)
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By using adaptative descent rates in the gradient descent strategy, we get the matrix
update multiplicative formula: G(l) = G(l) ◦ (XW(l))T X

(XW(l))T XW(l)G(l)

W(l) = W(l) ◦ XT X(G(l))T

XT XW(l)G(l)(G(l))T .
(5.8)

The exchange information between different solutions, consensus or collaborative
based will be casted as different optimization problems and will be described next.

5.3.2 Consensus based Exchange Information

In context of consensus clustering or aggregation clustering, we are concerned with
the situation in which we have a finite number of different clusterings solutions
obtained for a particular dataset and we want to find an unique (consensus) clustering
which better fit with respect to some well defined criteria than the existing clusterings.
Since NMF has random initialization by using the consensus strategy we test the
NMF sensitivity to the initial conditions. This strategy across multiple runs of the
NMF algorithm, allows to show the stability of the discovered clusters. Note that as
optimization problem, consensus clustering is known to be NP-complete, even for
small number of solutions clusterings.

Since we want that the consensus solution represents the median solution between
all the different solutions F(l), G(l) we consider a weighted average between the error
of the median solution ‖X−XWG‖F and all the errors ‖X−XW(l)G(l)‖F, l = 1, . . . , L
and we define then the functional:

E(W, G) =
L

∑
l=1

αl · El(W, G), with
L

∑
l=1

αl = 1, (5.9)

where El(W, G) is the delta between the two errors corresponding to that median/consensus
solution and the solution obtained by the run l:

El(W, G) = (‖X− XWG‖F − ‖X− XW(l)G(l)‖F)
2. (5.10)

Before giving the optimization detail we note that the functional is well defined
and due to the convexity of the quadratic function, a minimum always exists. The
minimization is realized by using the gradient descent procedure. The gradients
computation are given in Appendix Section .1.6. In order to respect the non-negativity
contraint on the desired solution we define adaptative rates learning in order to
eliminate any subtraction from the update rule as follows:

ηW =
XW

(‖X− XWG‖F) XWGGT +

(
L
∑

l=1
αl · ‖X− XW(l)G(l)‖F

)
XWGT

, (5.11)

and

ηG =
G

(‖X− XWG‖F) (XW)TXWG +

(
L
∑

l=1
αl · ‖X− XW(l)G(l)‖F

)
(XW)TX

.

(5.12)
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Once the rates learning defined we write the multiplicative rules:

W = W ◦
(‖X− XWG‖F) XTXGT +

(
L
∑

l=1
αl · ‖X− XW(l)G(l)‖F

)
XTXWGGT

(‖X− XWG‖F) XTXWGGT +

(
L
∑

l=1
αl · ‖X− XW(l)G(l)‖F

)
XTXGT

(5.13)
and

G = G ◦
(‖X− XWG‖F) (XW)TX +

(
L
∑

l=1
αl · ‖X− XW(l)G(l)‖F

)
(XW)TXWG

(‖X− XWG‖F) (XW)TXWG +

(
L
∑

l=1
αl · ‖X− XW(l)G(l)‖F

)
(XW)TX

.

(5.14)
Let us comment these formula in Equation (5.13) and (5.14). Note that the resulting
matrix of centroids F is weighted averages of all F(l) by construction. The resulting
partition matrix G in the consensus matrix contains a relative average of the number
of times of points were clustered together by the different runs of NMF.

The first algorithm NMFconsensus is based on defined for L, NMF models then
making a consensus between these runs, see Algorithm 8 below. The algorithm has
two steps: Local step in which we consider the data matrix X and we learn a NMF for
a fixed integer K and for a large number of runs L-th. and the second step Consensus:
in which we compute a consensus solution from the different L NMF models.

Algorithm 8: NMF consensus algorithm

Initialization: Initialize all the centroids sets randomly and P number of
realizations.

For all realizations
Local step:
forall algorithms A(l) do

Minimize the objective function of the NMF (5.4).
end
Consensus step:
Compute the consensus weight α forall algorithms A(l) do

Update the partitions matrix of all algorithms (5.14).
Update the centroids matrix of all algorithms (5.13).

end

5.3.3 Collaborative Approach to Exchange Information

In the collaborative NMF context, when a data unit is presented in the l-th NMF, the
optimization is done to minimize the distance between that unit and the centroids of
each local NMF l′ 6= l. We would like that after the collaboration: if an observation of
the X-th data set is projected onto the k-th centroid of the l-th NMF, then the same
observation viewed as an observation in the X-th data set is projected on the same
unit k centroid. To this end we introduce a global functional as follows:

C(W, G) =
L

∑
l=1

(
αlL(W(l), G(l)) + ∑

l′ 6=l
βl,l′ · Cl,l′(W(l), G(l))

)
(5.15)
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We have used the notations F = (F(l))l , G = (G(l))l , l = 1, . . . , L. Here L is the lth

local term defined in Equation (5.4).
In order to define the functional in the collaborative part we introduce the matrix

D(l) of the euclidean distances of each data in X to the set of centroids F(l) in local
instance l-th, more specifically we have D(l)

kn = ‖x(l)n − f(l)k ‖. Therefore we define the
pairwise collaborative Cl,l′ term between the l-th and l′-th NMF’s as follows:

Cl,l′(W(l), G(l)) = ‖(G(l) − G(l′)) ◦ D(l)‖2
F. (5.16)

In words the Cl,l′ term is the weighted sum of Euclidean distances between the
observed data x(l)n and all the centroids in F(l), with the weight defined by G(l) −G(l′).
Note that when G(l) and G(l′) agree then the collaborative term is equal to zero and
only the local l-th NMF is take into account in the optimization. Note also that by
construction Cl,l′ ≥ 0 and by definition D(l) ≥ 0 therefore Cl,l′(W(l), G(l)) = 0 if and
only if G(l) − G(l′) = 0 i.e. the data x(l)n in the l′-th data set is projected on the same
centroid.

Therefore, the set of centroids F(l) is estimated iteratively by minimizing the
objective function:

C(l) = L(W(l), G(l)) + ∑
l′ 6=l

βl,l′ · Cl,l′(W(l), G(l)) (5.17)

Here β = (βl,l′)l,l′ is the weight of the collaboration fixed by the user satisfying
∑

l′ 6=l
βl,l′ = 1. To get the update formula for F(l), G(l) we use the gradient descent

strategy for the functional defined in Equation (5.15). Let us first remark that the cost
function defined in Equation (5.15) is continuously first differentiable in all variables.
Therefore a minimum always exists and could be found by nonlinear programming.
The minimization of the global functional should satisfy the constraints: (G(l))TG(l) =
I for all l ∈ {1, . . . , L} since G(l) is a partition matrix. We compute the gradient of
the functional in Equation (5.17) see Appendix Section .1.7. Having obtained both
gradients for the gradient descent algorithm the update formulates for collaborative
NMF writes: {

G(l) = G(l) − ηG(l) ◦ [∇G(l)C(l)],
W(l) = W(l) − ηW(l) ◦ [∇W(l)C(l)].

(5.18)

Note that the scalar 2 can be ignored, since we can consider that it is absorbed into
the learning rates. In conventional gradient descent, all the elements of the learning
rates ηG(l) and ηW(l) are positive. Due to the subtraction present in both update rules,
this can produce negative elements, violating the non-negativity constraint. To avoid
this, Lee and Seung proposed in 2001 [LS01] to use data-adaptive learning rates that
would make it impossible to obtain negative elements. The trick is to define the
learning rates so that any subtraction disappears from the update rule as follows:

ηW(l) =
XW(l)

XW(l)G(l)
(
(G(l)

)T
+ ∑

l′ 6=l
βl,l′1M×N

(
[(G(l) − G(l′))◦2

]T ◦ XW(l)
, (5.19)

and

ηG(l) =
G(l)(

XW(l)
)T XW(l)G(l) + ∑

l′ 6=l
βl,l′G(l′) ◦

(
D(l)

)◦2 . (5.20)
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We then obtain the multiplicative rules:

W(l) = W(l) ◦
XTX

(
G(l)

)T
+ ∑

l′ 6=l
βl,l′XTX

[
(G(l) − G(l′))◦2

]T

XTXW(l)G(l)
(
G(l)

)T
+ ∑

l′ 6=l
βl,l′1M×N

[
(G(l) − G(l′))◦2

]T ◦ XTXW(l)
,

(5.21)
and

G(l) = G(l) ◦

(
XW(l)

)T
X + ∑

l′ 6=l
βl,l′

[
G(l′) ◦ (D(l))◦2

]
(
XW(l)

)T XW(l)G(l) + ∑
l′ 6=l

βl,l′G(l) ◦
(

D(l)
)◦2 . (5.22)

The division here is component wise matrix division and where ◦2 means element-
wise power. Here all the database share the same units but described by different
attributes. In this case, the number and the size of centroid vectors for all the NMF
factorizations will be the same. That’s why the objective function of the classical NMF
has been modified in order to introduce this constraint on the different factorizations
during the collaboration step. The collaborative term is expressed by Cl,l′ which
guaranty that the structure of other databases matches with the current database.

5.3.4 Optimized weights for the collaborative NMF to improve stability

In this section, we showed that collaborating several NMF improve its stability.
In other words, by collaborating several NMF then making a consensus of these
collaboration we get a stable NMF. We propose a different collaborative approach in
which we modify the objective function using a weighting strategy to reduce the risk
of negative collaboration: we study how to optimize the weights of the combination
of functions of the type (5.15) can lead to an optimal value of the global function
and reduce the risk of negative collaboration by further optimizing weight factors
between the algorithms.

Since n βl,l′ ≥ 0, let us consider the weight of the collaboration βl,l′ = τ2
l,l′ in

what follows. We are mainly interested in finding the positive weights τ2
l,l′ that

will determine the strength of the collaborative term. The minimization of the col-
laborative functional is based on the dual form of the problem. We do so under
the Karush-Kuhn-Tucker conditions (KKT) [KT51] assuming that the weights τl,l′

respect the condition ∀l
L
∑

l′ 6=l
τ2

l,l′ = 1. The results of the optimization under the

Karush-Kuhn-Tucker conditions are shown below in Equations (5.23). For all l′ 6= l
we have:

βl,l′ =
|Cl,l′ |(

L
∑

l′′=1
|Cl′′,l′ |

) (5.23)

The interpretation of these results is the following: in the context of horizontal col-
laborative clustering, the global results should be better if each individual algorithm
gives higher weights to algorithms that have the most similar solutions compared
with the local one (high τ2

l,l′ value for a given NMF run l). Going deeper, we see that
the degree to which one algorithm should collaborate with other collaborators that
have dissimilar solutions depends on the degree of normalization. From Equation
(5.23), each algorithm would mostly collaborate with the algorithms that have the
most similar solutions. If several algorithms have the same most similar solution,
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they would be given the same weight. The algorithms with the most similar solu-
tions would still be favored to optimize the cost function of the global collaborative
framework. But the solutions of algorithms which have a lesser degree of similarity
would still be taken into consideration locally. Let us detail the calculus for the
Karush-Kuhn-Tucker optimization problem. Given the Cl,l′ ≥ 0, we are trying to
optimize the matrix {τl,l′}L×L as shown in the system below:

argminτ

L
∑

l=1

(
L(W(l), G(l)) + ∑

l′ 6=l
τ2

l,l′ · Cl,l′(W(l), G(l))

)
∀l

L
∑

l′ 6=l
(τl,l′)

2 = 1,

∀(l, l′) τl,l′ ≥ 0

(5.24)

From the previous system, by using Lagrange multipliers, we get the following KKT
conditions:

∀(l, l′), l 6= l′



(1) τl,l′ ≥ 0

(2)
L
∑

l′ 6=l
(τl,l′)

2 = 1

(3) λl,l′ ≥ 0
(4) τl,l′ · λl,l′ = 0
(5) νl′ · (2 · (τl,l′))− Cl,l′ − λl,l′ = 0

(5.25)

Let’s begin by considering the case where λl,l′ 6= 0 in (4). Then, we would have
τl,l′ = 0 and with (5): Cl,l′ = −λl,l′ ≤ 0. Since the Cl,l′ have been defined as non-
negative, this case is not possible, therefore we will only consider the case τl,l′ 6= 0
and λl,l′ = 0. Then, with (5), we have:

Cl,l′ = 2 · τ2
l,l′ · νl′ (5.26)

From Equation (5.26) and (2) from (5.25), we have:

1 = (2 · νl′)
−1 ∑

l′′ 6=l′
(Cl′′,l′) (5.27)

By using νl′ into Equation (5.26) we get:

τ2
l,l′ =

|Cl,l′ |(
L
∑

l′′=1
|Cl′′,l′ |

) (5.28)

And thus we have proved the results of Equation (5.23).
The second algorithm NMFcoll+consensus (see algorithm 9 below) is based on run-

ning L-th collaborative NMF then making collaboration between these L models
followed by a consensus between these L collaborative solutions. The second al-
gorithm has three steps the Local step the Collaborative step in which we consider
the L-th models with our proposed beta-optimization by using Eq. 5.15 to get L-th
collaborative solutions. and the Consensus step in which we compute a collaborative
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consensus solution from the l-th collaborative solutions.
Algorithm 9: NMF horizontal collaboration + consensus algorithm

Initialization: Initialize all the centroids sets randomly and P number of
realizations.

For all realizations
Local step:
forall algorithms A(l) do

Minimize the objective function of the NMF (5.4).
end
Collaborative step:
Compute the optimized β with Equation (5.23)
forall algorithms A(l) do

Update the partitions matrix of all algorithms (5.22).
Update the centroids matrix of all algorithms (5.21).

end
Consensus step:
Compute the consensus weight α forall algorithms A(l) do

Update the partitions matrix of all algorithms (5.14).
Update the centroids matrix of all algorithms (5.13).

end

5.4 Experimental results

In the previous section, we explained the different steps of consensus and collabora-
tion. The consensus and/or collaboration will be used in order to stabilize NMF. Our
purpose in this work is to have a solution more stable which means for the same data
matrix X we will get usually the factors F and G having a reduced standard error
and stable mean over large number of NMF solution.

To this end, we run NMF several times and we get different results of decom-
position (because of its instability), then, we collaborate the outputs of the multiple
models of NMF of the same dataset. Afterwards, we make a consensus between these
different collaboration in order to address the problem of instability. The experimental
protocols are based on the P runs of the two Algorithms (8) and (9).

5.4.1 Validation

Our goal is to show that consensus an/or collaboration allow to reduce the mean,
standard error of the reconstruction error solution obtained for P NMF solutions
NMF. Note that in the case of consensus solution for L computed NMF the mean and
the standard error of the reconstruction error are estimated as simply the average
over the reconstruction error vector of length L. Over P models of our algorithms the
mean and the standard error of the reconstruction error are estimated as simply the
average over the reconstruction error vector of length P.

We then compare the reconstruction error between the consensus solution and
the collaborative consensus solution and we show the behaviour of the mean and the
standard error of the reconstruction error.

We aim to prove the following proposition that show the behaviour of the standard
error for increasing L.

Proposition 1 Let us assume the errors are bounded and normal distributed over the L
models. It follows that the mean standard error over L goes to 0 when L go to infinity.
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Proof:
This proposition can be proved in several ways. On the one hand, it can be proved by
logical reasoning, and on the other hand by experimentation. We will proceed to its
demonstration by both ways.

The process of collaboration between the different NMF models is by design an
approach that avoids negative collaboration, see Equations (5.15) and (5.23). That is to
say, the proposed collaborative approach can only improve the quality of reconstruc-
tion for each model after collaboration with the others. In case where collaboration
degrades the performance of a model, it is rejected and the model keeps its initial pa-
rameters. Indeed the optimization process in Equation (5.15) has a minimal solution
that minimizes the standard error for each model. From the optimization problem in
Equation (5.23) we deduce that when the pairwise collaborative term Cl,l′ is bigger
than other collaborative terms then the weight βl,l′ is bigger than the other different
weights. Moreover, with Equation (5.23), for collaborative terms with smaller βl,l′

-will give a bigger weight to their local term and therefore these models will kept
their local parameters.

Therefore, the collaboration process can only improve the performance of each
model. Moreover, the greater the number of collaborators, the greater the amount of
disponible knowledges. And the more knowledges available, the better the perfor-
mance of the models after collaboration. This improved performance is reflected in
a decrease of the reconstruction error of each model. We can therefore deduce that
the more the number of relevant collaborators increases, the more the reconstruction
error of each collaborator decreases after collaboration. In other words, when the
number of relevant collaborators tends towards infinity, the reconstruction error of
the different models tends towards 0. We verify this proposition experimentally
afterwards. �

5.4.2 Data sets

To evaluate the interest of the proposed collaborative/consensus approach we used
several datasets of different size and complexity: Iris, Wine, Wisconsin Diagnostic
Breast Cancer (WDBC) and Waveform. In particular, we will give a more detailed
analysis on the WDBC dataset results so that we can better demonstrate the efficiency
of our proposed method. The datasets used in our experiments are from the UCI
website: Iris, Wine, Wisconsin Diagnostic Breast Cancer (WDBC) and Waveform data set .

• Iris - Iris data set contains 3 classes of 50 instances each, where each class refers
to a type of iris plant.

• Wine - Wine is a dataset that is related to a chemical analysis of wines grown in
the same region in Italy but derived from different cultivars.

• Wisconsin Diagnostic Breast Cancer (WDBC) - This data has 569 instances with 32
variables (ID, diagnosis, 30 real-valued input variables). Each data observation
is labeled as benign (357) or malignant (212).

• Waveform - Waveform is an artificial dataset containing 5000 samples separated
in 3 classes of waves. Each wave is described by 40 features among which 19
are all noise with mean 0 and standard error 1. Each class is generated from a
combination of 2 of 3 "base" waves.

As criteria to validate our approach, we test for P = 106 the mean reconstruction
and we also compute the of the reconstruction error over the P sample of reconstruc-
tion error. In all the experiments the number of NMF iterations is restricted to 300,
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also the number of iterations is fixed to 300. The number of NMF models involved
in consensus or collaboration is fixed to L = 102. In the Figures below we visualize

Dataset NMF Mean Rec. Error Mean Std. Error
Iris intial 3.621 0.513

consensus 2.192 0.437
collab + consensus 2.201 0.352

Wine intial 4.766 1.451
consensus 3.534 1.769

collab + consensus 3.632 1.405
WDBC intial 9.756 2.382

consensus 6.963 1.819
collab + consensus 6.812 1.417

Waveform intial 3.216 1.311
consensus 2.125 1.118

collab + consensus 2.024 1.028

TABLE 5.1: Experimental results on different datasets with P = 106

and L = 102 NMF models

these results for the considered data bases.

FIGURE 5.1: Iris (1)
Initial (2) Consensus
and (3) Collabora-

tion+Consensus

FIGURE 5.2: Wine (1)
Initial (2) Consensus
and (3) Collabora-

tion+Consensus

FIGURE 5.3: WDBC
(1) Initial (2) Consen-
sus and (3) Collabora-

tion+Consensus

FIGURE 5.4: Wave (1)
Initial (2) Consensus
and (3) Collabora-

tion+Consensus

In Figures 5.1,5.2,5.3 and 5.4 we show boxplots with P = 106 and L = 102 NMF
models and different data bases Iris, Wine, WDNC and Wave form respectively. In
order to study the dependency on L we do the same experimental protocols for
P = 106 and for different L = 2 · 102, L = 5 · 102 and L = 10 · 102.
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Dataset NMF Mean Rec. Error Mean Std. Error
Iris intial 3.421 0.343

consensus 2.089 0.324
collab + consensus 2.091 0.212

Wine intial 3.676 1.411
consensus 3.484 1.269

collab + consensus 3.312 1.205
WDBC intial 7.856 2.124

consensus 5.863 1.219
collab + consensus 4.922 1.117

Waveform intial 3.014 1.023
consensus 2.025 1.088

collab + consensus 1.924 1.011

TABLE 5.2: Experimental results on different datasets with P = 106

and L = 2 · 102 NMF models

Dataset NMF Mean Rec. Error Mean Std. Error
Iris intial 3.152 0.234

consensus 2.019 0.224
collab + consensus 2.012 0.192

Wine intial 3.476 1.321
consensus 3.174 1.165

collab + consensus 3.104 1.091
WDBC intial 6.163 2.411

consensus 4.964 1.139
collab + consensus 4.895 1.080

Waveform intial 2.141 1.013
consensus 1.995 1.043

collab + consensus 1.897 1.009

TABLE 5.3: Experimental results on different datasets with P = 106

and L = 5 · 102 NMF models

Dataset NMF Mean Rec. Error Mean Std. Error
Iris intial 3.054 0.143

consensus 2.011 0.122
collab + consensus 2.010 0.072

Wine intial 3.268 1.221
consensus 3.165 1.071

collab + consensus 3.097 1.001
WDBC intial 5.978 2.119

consensus 4.663 1.091
collab + consensus 4.597 1.010

Waveform intial 2.091 0.093
consensus 1.897 0.056

collab + consensus 1.821 0.005

TABLE 5.4: Experimental results on different datasets with P = 106

and L = 10 · 102 NMF models
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FIGURE 5.5: Iris (1)
Initial (2) Consensus
and (3) Collabora-

tion+Consensus

FIGURE 5.6: Wine (1)
Initial (2) Consensus
and (3) Collabora-

tion+Consensus

FIGURE 5.7: WDBC
(1) Initial (2) Consen-
sus and (3) Collabora-

tion+Consensus

FIGURE 5.8: Wave (1)
Initial (2) Consensus
and (3) Collabora-

tion+Consensus

In Figures 5.5,5.6,5.7 and 5.8 we show boxplots with P = 106 and L = 10 · 102

NMF models and different data bases Iris, Wine, WDNC and Wave form respectively.

Interpretation

From the numerical results we notice that both algorithms allows to mainly reduce
the mean average of the reconstruction error compared with the initial mean average
of L NMF independent models. We also notice that the standard error of the recon-
struction error is reduced by consensus. We also notice that the strategy based on the
collaboration followed by a consensus reduce in almost cases the standard error of
the final result.

Why these improvements ? The mean average is reduced by the consensus
procedure since the consensus procedure is based on a convex combination of the
different results. We also notice that mean reconstruction error are very siimilar for
the two procedures. Indeed this is due to the fact that the partition matrix in the
consensus procedure is a weighted average over the different NMF partition matrix.
We notice an improvement the the standard error is reduced. The interest of the
collaborative strategy is the reduced standard error in the results. To explain the
reduced standard error in the collaborative approach we refer to Equation (5.23).

As explained in Proposition 1 from Equation (5.23), we can get the following:
For NMF model l and any other NMF model l′, when the pairwise collaborative
term Cl,l′ is big comparatively with the other collaborative terms then the associated
collaborative weight βl,l′ is big comparatively with the other different collaborative
weights. This means that any NMF model l should give a stronger collaborative
weight to other NMF algorithms having similar results. Moreover, with Equation
(5.23), we can interpret in more details the fact that algorithms with relatively weak
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collaboration links βl,l′ -which are not close to any other results- should give a stronger
weight to their local term.

If we think about the goal of collaboration, these results make sense: the goal of
collaboration is to have the NMF algorithms helping each other. Therefore, when
several algorithms find solutions that are similar, it is most likely that they have
actually found a structure in the data. As such, collaborating with algorithms that
have solutions similar to the local partitioning is a convenient way to avoid the risk of
negative collaboration. These results can also be linked to recent works on clustering
stability [BDLP06; Lux10]. A clustering is said to be stable if the partitioning remains
similar when the data set or the clustering process are perturbed. With this proposed
weighting method, the algorithms that will have the strongest collaboration links will
be these with the most similar solutions. It matches with the definition of stability:
the solutions that feature structures and clusters found through several feature spaces
by the different NMF are the most stable.

5.5 Conclusion

In this Chapter we study the non-uniqueness of the NMF models. We propose a
novel strategy to control the variability results in the NMF models. This strategy
is based on the collaborative learning between several NMF models followed by a
consensus between the different s obtained solutions. The weights of the collaboration
procedure of several NMF is defined by using Karush-Kuhn-Tucker (KKT), in this
way we reduce the standard reconstruction error and also we avoid the negative
collaboration between the models. Afterwards, we described in detail our proposed
approach which is adapted for collaboration between several NMF and finding a
consensus between these different collaborations. Finally, the experimental results
showed the effectiveness of our proposed approach which is the reducing of the
standard reconstruction error in NMF model. The obtained results show that the
standard reconstruction error tends to zero when the number of involved NMF
models tends to infinity.
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Conclusion

The main purpose of that thesis is to understand why we need quantum computers
in the future and how we could transform a classical algorithm to a quantum one, in
particular unsupervised algorithms of clustering.

The first chapter presented an overview of quantum computation where we
present the principal notions of quantum computation as qubit, superposition, en-
tanglement, and so on. We also described some well known quantum algorithms
as Shor’s algorithm and Grover’s algorithm which are known by their spectacular
results in quantum computing as they are faster than any known classical algorithm:
the first one by factoring integers in an exponential time and the second one by
searching over an unordered data in a quadratic time.

The second chapter is devoted to the state of the art of quantum machine learning
algorithms where we described the classical and the quantum version of the most used
algorithms in machine learning, namely: K-means, K-medians, principal component
analysis, support vector machine and artificial neural networks. Indeed, the steps
that follow these algorithms stay the same whether for the classical or the quantum
version. The main difference resides in complexity; the quantum version gives an
exponential speed-up compared to its classical version.

The third chapter concerns the quantum one-model clustering where we give
the different steps that follow a quantum algorithm and we give an analysis of
three different methods that estimate the distance for quantum prototypes based
clustering algorithms. This analysis is so crucial as it can solve any prototype based
clustering algorithm. Through this analysis, we notice that the notion of distance
in quantum computing is different than the classical one. Because what counts in
the quantum computation is the correlation not the real values of the distance. We
also proposed a quantum index to evaluate the quality of clustering in quantum
algorithms. We called this index quantum Davies Bouldin as it’s the adaptation of the
classical Davies Bouldin in the quantum version. This adaptation was so crucial to
give a good evaluation of clustering as we can not evaluate a quantum algorithm with
classical indexes. We also present the quantum version of K-means and Semi Non-
negative Matrix Factorization using quantum gradient descent. We used alternate
optimization method for quantum gradient descent for both homogeneous and
inhomogeneous part of the objective function. The Quantum Semi Non-negative
Matrix Factorization (QSNMF) algorithm leads to an exponential speed-up compared
to its classical version: the complexity of the problem becomes O(Kpolylog(MN))
instead of O(KMN) where M and N are the dimension of the matrix and K is the
number of clusters.

The fourth chapter is about the quantum collaborative approach; we implement
the quantum version of collaborative K-means algorithm using quantum opera-
tions,where we show the different steps of implementing the quantum version of
collaborative K-means algorithms; from the preparation of the datasets by transform-
ing it to quantum states and the construction of these states, to the clustering in the
quantum version, and also measuring the quality of clustering by adapting a classical
criterion to the quantum case. Finally, some experimental results have been done to
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compare the quantum algorithms with their classical version. We also present the
complexity of each algorithm and we show that quantum algorithms give results in a
time much more faster than the classical version.

We also give the quantum collaborative version of semi non-negative matrix
factorization where we describe the classical collaborative approach and then we give
the quantum version and finally we give the complexity of the quantum collaborative
algorithm of semi non-negative matrix factorization.

Other research directions were presented in the fifth chapter where we tried to use
the collaborative learning approach to improve the non uniqueness of NMF which
means to solve the problem of instability of NMF. The purpose was while running
NMF for the same data set, we need to get the same decomposition (factorization).
For that purpose, we used a collaboration between several NMF then we made
a consensus between these collaborations. The experimental results showed the
effectiveness of our approach by giving a reconstruction error near to zero for the
same data set. We are intending for future work to test this stability in the quantum
version.

To sum up, quantum algorithms give a good classification just like their classical
version, the only difference is their complexity: while the classic version takes poly-
nomial time, the quantum version only takes logarithmic time, especially in large
data sets. Our focus was on unsupervised methods for pattern clustering tasks, we
showed how an improvement in terms of complexity can be gained through quantum
computation.

Future work

This thesis offers an opening for future lines of research. Two principal per-
spectives can be applied; the first one concerns the quantum algorithms namely
unsupervised algorithms and neural networks and the second one concerns the
collaborative approach in the quantum context.

The quantum version of neural networks need to be explored by making a study
between the classical neural networks and their quantum version. In this context,
we will make as an application text mining as we have already done this work in
classical computers [Ben+18].

We are intending also to explore the instability of NMF in the quantum version
that’s why we did the sixth chapter which is based on improving the non-uniqueness
of NMF. The study of the stability of NMF will be based on the collaborative approach
which consists on the collaboration of different clustering methods, in order to reach
an agreement on the partitioning of a common dataset [Ben+19a]. This latter doesn’t
have only the advantage of speed up but also by collaborating several clustering
solutions, each one with its own bias and imperfections, one will get a better overall
solution in terms of classification and also stability.

Other perspectives are also considered:

• Studying the relationship between quantum K-means and quantum NMF.

As we have already explained, there is an equivalence between K-means hard
clustering and orthogonal NMF [DHS05]. We have already defined the algo-
rithm of both NMF and K-means in the quantum context. As future work, we
are intending to explore their equivalence in the quantum context.
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• Combine horizontal and vertical approaches to get a new hybrid collaboration
approach in the quantum context.

The hybrid approach is when both collaborative clustering approaches, to know:
vertical and horizontal are used at the same time. This could be interesting
as we can find a situation where patterns from various sources give rise to
common subsets of data as well as being positioned in the same feature space.

• Quantum neural networks

It is found that none of the proposals for a potential quantum neural network
[Tót+96] [AA02] [PM11] model fully exploits both the advantages of quantum
physics and computing in neural networks. Schuld et al.[SSP14] provides a
critical overview of the different strategies employed to construct a quantum
artificial neural network and highlights how most approaches do not meet the
requirements of what can be reasonably defined as a quantum artificial neural
network. That’s why, we think that this field should be more explored by trying
to construct a full artificial quantum neural network. The reason for this is
that the nonlinear dissipative dynamics of neural computation [Rab+06] are
fundamentally different to the linear, unitary dynamics of quantum computing
[NC01], which means that the greatest challenge to a quantum artificial neural
network is that the quantum mechanics is linear but the classical neural net-
works require the non linearity. Indeed, two requirements should be taken into
consideration to construct a fully quantum neural network, which are:

1. The bases of neural network theory.

2. The use and the consistency with quantum theory.

• Parameter optimisation of quantum learning algorithms

The optimisation of parameters in quantum learning algorithms have not yet
been explored and could be seen as a perspective of our future work. Different
approaches to quantum computing can be investigated for this purpose. In
quantum computing based on unitary quantum gates, the challenge would be
to parameterize and gradually adapt the unitary transformations that define
the algorithm. Several ideas in that direction have been already investigated
[Bis+10] [GM09] [GM13].

Adiabatic quantum computing could be a solution for the optimisation problem
[PL13], or measurement-based quantum computing [Bri+09] could also provide
an interesting framework for quantum learning.

To summarize, although there is still a lot of work to be done, quantum machine
learning remains a very promising emerging area of research with many potential
applications and great theoretical variety.
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Appendix

.1 Supplementary Material

In this Appendix we analyze the construction of the collaborative NMF objective
function and show the relation with the collaborative K−means objective function
introduced by Pedrycz [Ped05].

.1.1 Hard K means and NMF

The K-means clustering is one of the most used clustering methods early developed by
Lloyd [LLo82]. The K-means clustering allows to divide the set of columns {1, . . . , N}
into K clusters C = {C1, . . . , CK} by minimizing the objective function defined by the
following sum of squared errors:

JK =
K

∑
k=1

∑
n∈Ck

‖xn − fk‖2 (29)

Let G ∈ RK×N
+ be the binary classification matrix defined by gkn = 1, if the column

xn ∈ Ck, and 0 otherwise. Therefore the functional in Equation (29) writes:

JK =
K

∑
k=1

N

∑
n=1

gkn ‖xn − fk‖2 (30)

For a fixed partition C = {C1, . . . , CK} we consider nk = |Ck| the number of elements
within the cluster k. Then the cluster centroids F = (f1, f2, . . . , fk) are:

fk =
1
nk

X · gk, k = 1, . . . , K (31)

and the indicator clustering matrix (g1, g2, . . . , gK)
T ∈ RK×N

+ are given by:

gk =
1√
nk

(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
nk

, 0, . . . , 0)T ∈ R1×N
+

Ding et al. [DHS05] showed that the K-means clustering problem can be formulated
as a matrix approximation problem where the clustering aim is to minimize the
approximation error between the original data X and the reconstructed matrix based
on the cluster structures.

Over the past years, several authors have pointed out that k-means clustering can
be understood as a constrained matrix factorization problem. However, it appears
as if most authors consider this fact self explanatory and hardly discuss it in detail.
Since this may confuse our goal here is to rigorously establish the following equalities
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for the objective function of hard K-means clustering:

K

∑
k=1

N

∑
n=1

gkn ‖xn − fk‖2 = ‖X− FG‖2
F =

∥∥∥X− XGT(GGT)−1G
∥∥∥2

F
, (32)

where

X ∈ RM×N is a matrix of vectors xn ∈ RM×1 (33)

F ∈ RM×K is a matrix of cluster centroids fk ∈ RM×1 (34)

G ∈ RK×Nis a matrix of binary indicator variables such that : (35)

gkn =

{
1 , if xn ∈ Ck
0 , otherwise

(36)

Throughout, we write xn to denote n-th column vector of a matrix X. To refer to the
(m, n) element of a matrix X, we either write xmn or (X)|mn. The Euclidean norm of a
vector will be written as ‖x‖ and the Frobenius norm of a matrix as ‖X‖F. Regarding
the squared Frobenius norm of a matrix, we recall the following properties:

‖X‖2
F =

M

∑
m=1

N

∑
n=1

x2
mn =

N

∑
n=1
‖xn‖2 =

N

∑
n=1

xT
n xn =

N

∑
n=1

(XTX)nn = tr(XTX) (37)

Finally, subscripts or summation indices k will be understood to range from 1 to K
(the number of clusters), subscripts or summation indices n will range from 1 up to N
(the number of data vectors), subscripts or summation indices m will range from 1 up
to M (the dimension of data vectors) and subscripts or summation primes indices will
be used to expand inner products between vectors or rows and columns of matrices.

To substantiate the claim in Equation (32), we first point out several peculiar
properties of the binary indicator matrix G. If the clusters C1, . . . , CK have distinct
cluster centroids f1, . . . , fK, each of the N columns of G will contain a single 1 and
K− 1 elements that are 0. Accordingly, the columns of G will sum to one

K

∑
k=1

gkn = 1, for all column n. (38)

and its row sums will indicate the number elements per cluster

N

∑
n=1

gkn = nk, for all row k. (39)

Moreover, since gkn ∈ {0, 1} and each column of G only contains a single 1, the rows
of G are pairwise perpendicular because gkngk′n = δkk′ , δ being the Kronecker symbol,
which is then to say that the matrix GGT is a diagonal matrix where

(GGT)kk′ =
N

∑
n=1

(G)kn(GT)nk′
N

∑
n=1

gkn(g)k′n = nkδkk′ .

Having familiarized ourselves with these properties of the indicator matrix, we are
now positioned to establish the equalities in Equation (32) which we will do in a step
by step manner.
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We begin our derivation by expanding the conventional K-means objective func-
tional on the left of Equation (32). For this expression, we have

K

∑
k=1

N

∑
n=1

gkn ‖xn − fk‖2 =
K

∑
k=1

N

∑
n=1

gkn(xT
n xn − 2xT

n fk + fT
k fk) (40a)

=
K

∑
k=1

N

∑
n=1

gknxT
n xn (40b)

− 2
K

∑
k=1

N

∑
n=1

gknxT
n fk (40c)

+
K

∑
k=1

N

∑
n=1

gknfT
k fk (40d)

First of all, for the term (40b) we find:

K

∑
k=1

N

∑
n=1

gknxT
n xn =

K

∑
k=1

N

∑
n=1

gkn‖xn‖2 =
K

∑
k=1

N

∑
n=1
‖xn‖2 = tr(XTX),

where we have used (38). Second of all, for the term (40c) we observe :

K
∑

k=1

N
∑

n=1
gknxT

n fk =
K
∑

k=1

N
∑

n=1
gkn

M
∑

m=1
xmn fmk

=
M
∑

m=1

N
∑

n=1
xmn

K
∑

k=1
fmkgkn

=
N
∑

n=1

M
∑

m=1
(XT)nm(FG)mn

=
N
∑

n=1
(XT FG)nn

= tr(XT FG).

Third of all, for the term (40d) we note that:

T3 =
K

∑
k=1

N

∑
n=1

gknfT
k fk =

K

∑
k=1

N

∑
n=1

gkn‖fk‖ =
K

∑
k=1
‖fk‖nk,

where we have used (39).
Next, we look at the second expression in Equation (32). As a squared Frobenius

norm of a matrix difference, it can be written as:

‖X− FG‖2
F = tr[(X− FG)T(X− FG)] (41a)

= tr[XTX] (41b)

− 2tr[XT FG] (41c)

+ tr[(FG)T(FG)] (41d)

Given our earlier results, we immediately recognize that (40b)=(41b) and (40c)=(41c).
Regarding the term (41d), we note that, because of the cyclic permutation invariance
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of the trace operator, we have

tr[(FG)T(FG)] = tr[GT FT FG] = tr[FT FGGT]

=
K
∑

k=1
(FT FGGT)kk

=
K
∑

k=1

N
∑

n=1
(FT F)kn(GGT)nk

=
K
∑

k=1
(FT F)kk(GGT)kk

=
K
∑

k=1
‖fk‖nk,

(42)

where we used the fact that GGT is diagonal. This result, however, shows that
(40d)=(41d) and consequently, that (40) and (41) really are equivalent.

Finally, to establish the equality on the right of Equation (32) we ask for the matrix
F that, for a given G, would minimize

∂

∂F
‖X− FG‖2

F =
∂

∂F

(
tr[XTX]− 2tr[XT FG] + tr[(FG)T(FG)]

)
. (43)

Which, upon equation to 0, leads to:

F = XGT(GGT)−1, (44)

which beautifully reflects the fact that each of the K−means cluster centroids ‖fk‖
coincides with the mean of the corresponding cluster Ck, namely:

‖fk‖ =

N
∑

n=1
gknxn

N
∑

n=1
gkn

=
1
nk

∑
xn∈Ck

xn.

Using tedious yet straightforward algebra, we have shown the the problem of hard
K-means clustering can be understood as a constrained matrix factorization problem.

For the functional of NMF decomposition defined in Equation (5.1) by definition
we have:

‖X− FG‖2
F =

K
∑

k=1

(
N
∑

n=1
gnk ‖xn − fk‖

)2

=
K
∑

k=1

(
N
∑

n=1
g2

kn ‖xn − fk‖2 + ∑
n′ 6=n

Hnn′

)
=

K
∑

k=1

(
N
∑

n=1
g2

kn ‖xn − fk‖2
)

,

(45)

where we have used:

Hnn′ = gkngkn′(xn − fk)
T(xn′ − fk) = 0, (46)

since G is an orthogonal matrix GGT = I [DHS05]. Ding et al. [DHS05] showed
that (46) are close to zero and therefore L(X, FGT) is well approximated by JK in the
following sense: ∣∣∣∣∣L(X, FGT)−

N

∑
n=1

K

∑
k=1

g2
nk ‖xn − fk‖2

∣∣∣∣∣ ≤ JK. (47)
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The NMF decomposition has been studied early by Golub and Paatero [PT94b],[XHP99].
Several families of algorithms are proposed to solve this matrix approximation prob-
lem. In other words, the factorization FG characterizes the information of X that can
be described by the cluster structures contained in F with the indicators contained
in G. This formulation of the K-means objective function highlights some good
properties of the matrices F and G [RLN13]. These interesting properties are rich in
opportunities, in fact, the consideration of these constraints on G allows us to develop
different variants of NMF algorithms.

.1.2 The Collaborative approach – Computations

The pairwise collaborative Cl term between the NMF views l and the others views
l′ 6= l writes:

J (l) =
N

∑
n=1

K

∑
k=1

(
g(l)kn

)2 ∥∥∥x(l)n − f(l)k

∥∥∥2
+ ∑

l′ 6=l
βl,l′Cl,l′(F(l), G(l)) (48)

where

Cl,l′(F(l), G(l)) =
N

∑
n=1

K

∑
k=1

(
g(l)kn − g(l

′)
kn

)2 ∥∥∥x(l)n − f(l)k

∥∥∥2
(49)

We consider the functional C(F(l), G(l)) defined in Equation (48). Note that G(l) ∈ U
where U is a family of all fuzzy partition matrices:

U =

{
g(l)nk ∈ {0, 1};

K

∑
k=1

g(l)kn = 1, ∀n, 0 ≤
N

∑
n=1

g(l)kn ≤ N, ∀k

}
(50)

We solve the following optimization under contraints problem:

minJ (l) such that G(l) ∈ U and ∑
l′ 6=l

βl,l′ = 1. (51)

The corresponding Laplacian writes:

L(F(l), G(l), λ, ν) = J (l)− λ

(
K

∑
k=1

g(l)nk − 1

)
− ν

(
∑
l′ 6=l

βl,l′ − 1

)

where λ and ν are Lagrange multipliers and where: The necessary conditions leading
to the local minimum are:

∂L(F(l),G(l),λ,ν)
∂λ = 0, ∂L(F(l),G(l),λ,ν)

∂ν = 0,
∂L(F(l),G(l),λ,ν)

∂g(l)kn

= 0, ∂L(F(l),G(l),λ,ν)

∂ f (l)mk

= 0.
(52)

The first two conditions in Equation (52) return the normalization conditions:

K

∑
k=1

g(l)kn = 1 and ∑
l′ 6=l

βl,l′ = 1. (53)

We have for some s ∈ {1, . . . , K} and some t ∈ {1, . . . , N} we have

∂L(F(l), G(l), λ, ν)

∂g(l)st

=
∂J (l)

∂g(l)st

− λ
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Note that
∂

∂g(l)st

(
g(l)kn

)2
= 2g(l)kn δskδtn,

and that
∂

∂g(l)st

(
g(l)kn − g(l

′)
kn

)2
= 2(g(l)kn − g(l

′)
kn )δskδtn.

Therefore

∂L(F(l), G(l), λ, ν)

∂g(l)st

= 2g(l)st ‖x
(l)
t − f(l)s ‖2 + 2 ∑

l′ 6=l
βl,l′

(
g(l)st − g(l

′)
st

)
‖x(l)t − f(l)s ‖2 − λ.

Solving of ∂L(F(l),G(l),λ,ν)

∂g(l)st
= 0 we get:

g(l)st =

λ + 2 ∑
l′ 6=l

βl,l′g
(l′)
st ‖x

(l)
t − f(l)s ‖2

2(‖x(l)t − f(l)s ‖2 + ∑
l′ 6=l

βl,l′‖x
(l)
t − f(l)s ‖2)

(54)

g(l)st =

λ + 2 ∑
l′ 6=l

βl,l′g
(l′)
st ‖x

(l)
t − f(l)s ‖2

4‖x(l)t − f(l)s ‖2
(55)

By using ∑K
s=1 g(l)st = 1 we get:

λ = 4

(
1− 1

2

(
∑
l′ 6=l

βl,l′
K

∑
s=1

g(l
′)

st

))(
K

∑
s=1

1

‖x(l)t − f(l)s ‖2

)−1

(56)

By plugging the above expression into Equation (54) the following we get Equations
(57).

g(l)st =
1
2

(
L

∑
l′ 6=l

βl,l′g
(l′)
st

)
+ w(l)

st

(
1− 1

2

(
L

∑
l′ 6=l

βl,l′
K

∑
c=1

g(l
′)

tc

))
(57)

where

w(l)
st =

(
K

∑
c=1

‖x(l)t − f(l)s ‖2

‖x(l)t − f (l)c ‖2

)−1

To compute the update of the prototypes for some s ∈ {1, . . . , K} and some t ∈
{1, . . . , M}, the necessary condition for the minimum of the objective function is of
the form:

∂L(F(l), G(l), λ, ν)

∂ f (l)ts

= 0 (58)

By using the definition of ‖x(l)n − f(l)k ‖2 in (52) and by differentiation with respect to

f (l)ts we get:
∂

∂ f (l)ts

M

∑
m=1

(
x(l)mn − f (l)mk

)2
= −2

(
x(l)mn − f (l)mk

)
δksδmt. (59)
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Therefore we have:

∂

∂ f (l)ts

‖x(l)n − f(l)k ‖
2 = −2

N

∑
n=1

(
x(l)tn − f (l)ts

)
. (60)

and also that

∂J (l)

∂ f (l)ts

= −2
L

∑
l′ 6=l

N

∑
n=1

βl,l′
(

g(l)sn − g(l
′)

sn

)2 (
x(l)tn − f (l)ts

)
. (61)

For t = 1, . . . , M and s = 1, . . . , K, solving the Equation (58) we get the following
update rule for centroids:

f (l)ts =

N
∑

n=1

(
g(l)sn

)2
x(l)tn +

L
∑

l′ 6=l

N
∑

n=1
βl,l′

(
g(l)sn − g(l

′)
sn

)2
x(l)tn

N
∑

n=1

(
g(l)sn

)2
+

L
∑

l′ 6=l

N
∑

n=1
βl,l′

(
g(l)sn − g(l

′)
sn

)2
, (62)

.1.3 NMF–Computations

The NMF functional is the squared Frobenius norm of a matrix difference, it can be
written as:

‖X− FG‖2
F = tr[(X− FG)T(X− FG)] (63a)

= tr[XTX] (63b)

− tr[XT FG] (63c)

− tr[GT FTX] (63d)

+ tr[GT FT FG] (63e)

To derive the update rules for F, G we use the gradient descent method:{
G = G− ηG ◦ [∇G(‖X− FG‖2

F)],
F = F− ηF ◦ [∇F(‖X− FG‖2

F)].
(64)

We now compute the gradients [∇G(‖X− FG‖2
F)] and [∇F(‖X− FG‖2

F)]. In order to
compute these gradients in matrix form we make use of the following properties of
the gradient of traces of product with constant matrix A:

∇Xtr(AX) = AT (65a)

∇Xtr(XT A) = A (65b)

∇Xtr(XT AX) = (A + AT)X (65c)

∇Xtr(XAXT) = X(A + AT) (65d)

For the term in Equation (63b) we have ∇Gtr(XTX) = 0since the term does not
depend on G. For the second term, in Equation (63c), we use Equation (65a) to obtain:

∇Gtr(XT FG) = (XT F)T = FTX. (66)
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For the third term, in Equation (63d), we use Equation (65b) to obtain:

∇Gtr(GT FTX) = FTX. (67)

For the last term, in Equation (63e) we notice that FT F is constant with respect to G
and we use Equation (65c) to write:

∇Gtr(GT FT FG) = [FT F + (FT F)T]G = 2FT FG. (68)

Putting all the terms in Equations (66), (67) and (68) together with the appropriate
signs of Equation (63), we finally get:

∇G(‖X− FG‖2
F) = −2FTX + 2FT FG. (69)

To compute∇F(‖X− FG‖2
F), we proceed analogously. First, we also have∇Ftr(XTX) =

0. For the second term, in Equation (63c), we use the cyclic permutation property of
the trace tr(ABC) = tr(CAB) = tr(BCA) and also we use Equation (65a) to obtain:

∇Ftr(XT FG) = ∇Ftr(GXT F) = (GXT)T = XGT. (70)

For the third term, in Equation (63d), we use a permutation in Equation (65b) to
obtain:

∇Ftr(GT FTX) = ∇Ftr(XGT FT) = XGT. (71)

For the last term, in Equation (63e) we permute twice and we notice that GGT is
constant with respect to F and we use Equation (65d) to write:

∇Ftr(GT FT FG) = ∇Ftr(FGGT FT) = F[(GGT)T + GGT] = 2FGGT. (72)

And putting the terms in Equations (70), (71) and (72) together we get:

∇F(‖X− FG‖2
F) = −2XGT + 2FGGT. (73)

We define the learning rates so that any subtraction dissapears from the update rule
as follows: {

ηF = F
FGGT ,

ηG = G
FT FG .

(74)

The additive update rules have thus been transformed into multiplicative update
rules, which cannot generate negative elements since all values are positive and only
multiplications and divisions are involved at each update:{

F = F ◦ XGT

FGGT ,
G = G ◦ FT X

FT FG .
(75)

.1.4 Remark on NMF collaborative approach

Let us recall the pairwise collaborative Cl,l′ term between the NMF views l-th and l′

given by:
Cl,l′(F(l), G(l)) = ‖(G(l) − G(l′)) ◦ D(l)‖2

F. (76)
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Let us write the element wise this functional which is the Frobenius norm of a K× N.
matrix. The (k, n) element of this matrix writes:(

(G(l) − G(l′)) ◦ D(l)
)

kn
=
(

g(l)kn − g(l
′)

kn

) ∥∥∥x(l)n − f(l)k

∥∥∥
By definition of the Frobenius norm we have:

‖(G(l) − G(l′)) ◦ D(l)‖2
F =

K

∑
k=1

N

∑
n=1

(
g(l)kn − g(l

′)
kn

)2 ∥∥∥x(l)n − f(l)k

∥∥∥2
(77)

Note also that the local functional writes

‖X(l) − F(l)G(l)‖2
F =

K

∑
k=1

N

∑
n=1

(
g(l)kn

)2 ∥∥∥x(l)n − f(l)k

∥∥∥2
(78)

By adding the functional in (78) with the functional in (77) we get the collaborative
functional proposed by Pedrycz [Ped05] for fuzzy C-means.

.1.5 Remarks on NMF gradients

We first recall the gradients of the local term.

∇F(l)(‖X(l) − F(l)G(l)‖2
F) = −2X(l)(G(l))T + 2F(l)G(l)(G(l))T, (79)

and that

∇G(l)(‖X(l) − F(l)G(l)‖2
F) = −2(F(l))TX(l) + 2(F(l))T F(l)G(l). (80)

Let us consider t ∈ {1, . . . , M} and some s ∈ {1, . . . , K} arbitrary fixed The element
wise equivalent for the gradient in Equation (79) is given by:

∂

∂ f (l)ts

‖X(l) − F(l)G(l)‖2
F = −2

N

∑
n=1

x(l)tn g(l)sn + 2
N

∑
n=1

g(l)sn

K

∑
k=1

f (l)tk g(l)kn (81)

Let us consider now t ∈ {1, . . . , N} and some s ∈ {1, . . . , K} arbitrary fixed The
element wise equivalent for the gradient in Equation (80) is given by:

∂

∂g(l)st

‖X(l) − F(l)G(l)‖2
F = −2

M

∑
m=1

f (l)ms x(l)mt + 2
M

∑
m=1

f (l)ms

K

∑
k=1

f (l)mk g(l)kt (82)

Note that the gradient of the collaborative functional Cl,l′(F(l), G(l)) with respect to
F(l) writes as follows: Note that we have by definition:

∇F(l)Cl,l′(F(l), G(l)) = −2X(l)[(G(l) − G(l′))◦2]T

+ 21M×N [(G(l) − G(l′))◦2]T ◦ F(l),
(83)

Let us consider t ∈ {1, . . . , M} and some s ∈ {1, . . . , K} arbitrary fixed. Let us write
this gradient element wise. We first note that:

∂

∂ f (l)ts

‖x(l)n − f (l)k ‖
2 = −2

N

∑
n=1

(
x(l)tn − f (l)ts

)
(84)
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Therefore we get:

∂Cl,l′(F(l), G(l))

∂ f (l)ts

= −2
N

∑
n=1

(
g(l)sn − g(l

′)
sn

)2 (
x(l)tn − f (l)ts

)
. (85)

and
∇G(l)J (l) = −2(F(l))TX(l) + 2(F(l))T F(l)G(l)

− 2 ∑
l′ 6=l

βl,l′ [G(l) − G(l′) ◦ (D(l))◦2]. (86)

.1.6 Convex NMF Consensus gradients

We compute the gradients in consensus context. We have:

∇WE(W, G) =
L
∑

l=1
βl · ∇W El(W, G)

= 2
L
∑

l=1
βl · (‖X− XWG‖F − ‖X− XW(l)G(l)‖F)∇W(‖X− XWG‖2

F)

= 2
L
∑

l=1
βl · (‖X− XWG‖F − ‖X− XW(l)G(l)‖F)(−2XGT + 2XWGGT)

(87)
and

∇GE(W, G) =
L
∑

l=1
βl · ∇GEl(W, G)

= 2
L
∑

l=1
βl · (‖X− XWG‖F − ‖X− XW(l)G(l)‖F)∇G(‖X− XWG‖2

F)

= 2
L
∑

l=1
βl · (‖X− XWG‖F − ‖X− XW(l)G(l)‖F)(−2(XW)TX + 2(XW)TXWG)

(88)
Note that ∇W(‖X− XWG‖2

F and ∇G(‖X− XWG‖2
F are given by Equation (5.6) and

Equation (5.7) respectively. It follows that:

∇WE(W, G) = − 4
(

L
∑

l=1
βl · ‖X− XWG‖F

)
XGT

− 4
(

L
∑

l=1
βl · ‖X− XW(l)G(l)‖F

)
XWGGT

+ 4
(

L
∑

l=1
βl · ‖X− XWG‖F

)
XWGGT

+ 4
(

L
∑

l=1
βl · ‖X− XW(l)G(l)‖F

)
XGT

(89)

and that:

∇GE(W, G) = − 4
(

L
∑

l=1
βl · ‖X− XWG‖F

)
(XW)TX

− 4
(

L
∑

l=1
βl · ‖X− XW(l)G(l)‖F

)
(XW)T FG

+ 4
(

L
∑

l=1
βl · ‖X− XWG‖F

)
(XW)TXWG

+ 4
(

L
∑

l=1
βl · ‖X− XW(l)G(l)‖F

)
(XW)TX

(90)
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.1.7 Convex NMF Collaborative gradients

We will now compute the gradient of the functional in Equation (5.17). We have:
∇W(l)C(l) = ∇W(l)L(W(l), G(l)) + ∑

l′ 6=l
βl,l′ · ∇W(l)Cl,l′(W(l), G(l))

∇G(l)C(l) = ∇G(l)L(W(l), G(l)) + ∑
l′ 6=l

βl,l′ · ∇G(l)Cl,l′(W(l), G(l))
(91)

We first notice that ∇W(l)(‖X − F(l)G(l)‖2
F) and ∇G(l)(‖X − F(l)G(l)‖2

F) are given by
by Equation (5.6) and Equation (5.7) respectively. It remains to compute the gradient
of Cl,l′(W(l), G(l)). Note that we have by definition:

∇W(l)Cl,l′(W(l), G(l)) = −2X
[
(G(l) − G(l′))◦2

]T

+ 21M×N

[
(G(l) − G(l′))◦2

]T
◦ XW(l),

(92)

where 1M×N is is an M× N one’s matrix and where ◦2 means element-wise power of
the matrix. We also have that:

∇G(l)Cl,l′(W(l), G(l)) = 2(G(l) − G(l′)) ◦ (D(l))◦2. (93)

By adding all these partial gradient computations we get:

∇W(l)C(l) = −2X(G(l))T + 2XW(l)G(l)(G(l))T

− 2 ∑
l′ 6=l

βl,l′X
[
(G(l) − G(l′))◦2

]T

+ 2 ∑
l′ 6=l

βl,l′1M×N

[
(G(l) − G(l′))◦2

]T
◦ XW(l).

(94)

and
∇G(l)C(l) = −2(XW(l))TX + 2(XW(l))TXW(l)G(l)

− 2 ∑
l′ 6=l

βl,l′
[
(G(l) − G(l′)) ◦ (D(l))◦2

]
. (95)
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Domain name recommendation
based on neural network

.2 Abstract

The number of website is increasing speedily, and clients purchase their website from
the enterprise that suggests them the best domain name with a good price. In order
to give the relevant domain name, enterprise is always eager to have a good system
of suggestion that suits the client request.

Recommender system has been an effective key solution to guide users in a
personalized way for discovering the domain name they might be interested in from
a large space of possible suggestion. They have become fundamental applications
that provides to users the best domain name that meet their needs and preferences.

In this work, we will use a recommender system based on neural network as it
is capable to solve many complex tasks and gives better customer satisfaction. We
proposed two approaches to recommend domain name, both of these approaches are
based on neural network. The first one consists on discovering the similarity between
the vocabulary of domain name, while the second one is finding the relevant Top
Level Domain corresponding to the context of the domain name. First experiments
on GANDI datasets shows the effectiveness of the proposed approaches.

.3 Introduction

Recommender systems can be defined as programs which attempt to recommend the
most suitable items, products or services to particular users by predicting a user’s
interest in an item based on related information about the items, the users and the
interactions between items and users. The aim of developing recommender systems
is to reduce information overload by retrieving the most relevant information and
services from a huge amount of data, thereby providing personalized services. The
most important feature of a recommender system is its ability to guess a user’s
preferences and interests by analyzing the behavior of this user or the behavior of
other users to generate personalized recommendations.

Various recommender system techniques have been proposed, and many sorts of
recommender system software have been developed recently for a variety of appli-
cations. Researchers recognize that recommender systems offer great opportunities
and challenges for business, government, education, and other domains, with more
recent successful developments of recommender systems for real-world applications
becoming apparent.

The past few decades have witnessed the tremendous successes of the use of
neural network in many application domains such as speech recognition, image anal-
ysis and natural language processing. Applying neural network into recommender
system has been gaining momentum thanks to its state-of-the-art performances and
high-quality recommendations. In contrast to traditional recommendation models,
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neural network provides a better understanding of user’s demands, item’s character-
istics and historical interactions between them.

In this paper, we suggest a system of recommendation of fully qualified domain
name based on neural network. When a customer wants to purchase a domain name
he rarely knows his qualified domain name, therefore, we will make a system of
recommendation to suggest to the customer both the domain name and the extension
that suits his recommend by referring to his localization and his research.

The first part is the state of the art where we will present the existing methods
concerning text similarity, through three approaches: Probabilistic-based approach,
Prediction-based approach and Hybrid approach which is the combination of the two
previous approaches.

The second part is the description of the two models for suggesting domain name
that are based on neural network: the first method tries to find similarity based on
neighbors, while the second one predicts the TLD (Top Level Domain) corresponding
to the context of domain name.

The third part concerns the experiment results for the two models based on the
real purchase database of GANDI.

.4 State of the art

In this state of the art, we will present the most used methods to find text similarity,
based on three approaches: 1) Probabilistic-based approach which is based on proba-
bilistic models, and consists on searching in the whole corpus to find text similarity,
2) Prediction-based approach that more commonly known as embeddings or neural
language models, which consists on looking for the neighbors of the text to find
text similarity, 3) Hybrid approach which is the combination of the two previous
approaches.

.4.1 Probabilistic-based approach

Probabilistic-Based approach is based on probabilistic models, this approach gives a
sparse vector that can be easily interpretable by humans. However, the sparse vector
can not be very efficient to detect the semantic meaning of the word.

Latent Semantic Indexing

Latent Semantic Indexing (LSI) [Dee+90] is a well-known method that allows to dis-
cover hidden concepts in a document. It represents the documents and terms in a way
to express the semantic relationship between document/term, document/document
or term/term. LSI constructs a term-document matrix from a large piece of text,
this matrix describes the occurrences of terms in documents, it is a sparse matrix
whose rows correspond to terms and whose columns correspond to documents. As
an example of the weighting of the elements of the matrix is tf-idf (term frequency
inverse document frequency): the weight of an element of the matrix is proportional
to the number of times the terms appear in each document.

After the construction of the occurrence matrix, LSI uses Singular Value Decompo-
sition (SVD) to the term-document matrix in order to reduce the number of rows while
preserving the similarity structure among columns. Then, the similarity between
words could be compared using cosine similarity.
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Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [BNJ03] is a generative probabilistic model for
collections of discrete data such as text corpora. LDA consider that documents are
represented as random mixtures over latent topics, where each topic is characterized
by a distribution over words. In other words, LDA allows to discover topics in text
documents, where each topic is characterized by a list of words. The generative
process for each document in the corpus is:

1. Choose a distribution over topics θ ∼ Dir(α)

2. For each word in the document:

- Choose a topic from the distribution over topics zn ∼ Multinomial(θ)

- Choose a word from the vocabulary wn ∼ Multinomial(φzn)

Each document gives the topic with certain probabilities, each topic in the docu-
ment has some words with certain probabilities, these words are similar as they share
the same context.

Global Vectors for Word Representation (Glove)

Glove [PSM14] is an unsupervised learning algorithm that gives vector representa-
tions of words. This algorithm is designed to take the advantages of the two major
families of learning word vectors: global matrix factorization methods such as Latent
Semantics Analysis [Dee+90] and local context window methods such as Skip gram
model [MYZ13]. Glove uses ratios of co-occurrence probabilities, rather than the
co-occurrence probabilities themselves, as the ratios between the probabilities of
words appearing next to each other carry more information than considering those
probabilities individually.

.4.2 Prediction-based approach

Prediction-based approach is more commonly known as embeddings or neural lan-
guage models, this approach gives a dense vector that gives a good result in the
semantic field of the word. However, this dense vector can not be easily interpretable
by humans.

word2vec

Word2vec [Mik+13a] is a model for learning vector representations of words, called
"word Embeddings".
Word embeddings are a way to capture similarity across words based on the contexts
in which they appear [Ron14][Mey16]. The intuition is that words with similar
meanings often occur near each other in texts. There are two principal models in
word2vec:

• Continuous Bag of Words (CBOW) : Predicting the current word based on the
context.

• Skip gram : Predicting the context based on the current word.
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FIGURE 9: The skip gram model

In skip-gram model, we choose a window size C (often this window size is equal
to five). Then, we train the neural network to do the following: Given the current
word (input word), look at the C words nearby (C words behind and C words ahead).
We train the neural network in the vocabulary in order to get the weights of the two
matrix between the input/hidden layer (W) and hidden/output layer (W ′).

Figure 9 shows the schema of the skip gram model. Let’s consider that the
vocabulary size is V, and the hidden layer size is N. The input is a one-hot encoded
vector, which means for a given input word, only one out of V units, x1, ..., xV , will be
1, and all other units are 0.
The units on adjacent layers are fully connected.

Finally, we will obtain two representations of each word in the vocabulary which
are the rows of W and W ′. Our goal was to obtain the weights of two matrix WV∗N
and W ′N∗V to be able to get the vector representation of words. After getting the
vector representation of each word we can measure similarity between words in the
vocabulary using cosine similarity.

Paragraph Vector (Doc2vec)

Paragraph Vector [LM14] is an unsupervised algorithm that models variable-length
pieces of texts, such as sentences, paragraphs or documents. The algorithm is an
adaptation of word2vec, while word2vec can generate word vector, paragraph vector
can generate both document vector and word vector depending on a context (topic).

Paragraph Vector has two approaches that are similar to the models of Word2Vec
[Mik+13a] (Continuous Bag of Words (CBOW) and Skip-gram).

• Distributed Memory Model of Paragraph Vectors (PV-DM)

This approach is similar to CBOW, the only difference is that an additional input
representing the paragraph id is added. PV-DM attempts to predict a word
given its surrounding words and the context (topic) provided by the paragraph
id.
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PV-DM uses the concept of memory, it remembers what is missing from the
current context (topic) of the paragraph, which wasn’t part of Word2vec. For
example, a text that contains words about mathematics is more likely to use
scientific words.

• Distributed Bag of Words version of Paragraph Vector (PV-DBOW)

This model is similar to Skip-gram, the only difference is that it takes paragraph
id as input and it predicts words in the window without any restriction on word
order. PV-DBOW attempts to predict words randomly given the paragraph id.

Paragraph Vector has the potential to overcome the weaknesses of many machine
learning algorithms as bag-of-words models [Har54]. Its robustness resides in:

- Taking word order into account.

- Taking the semantic of words into consideration.

- Representing the text input as a variable length vector.

- Learning from unlabeled data.

Skip-Thought Vectors

Skip-Thought Vectors [Kir+15] is a model that allows to get sentence vector and it
doesn’t require labeled data to train (unsupervised sentence vectors). This model
inspires from skip-gram model [Mik+13b] and attempts to extend it to sentences. So,
instead of having a word to predict its context, Skip-Thought vectors have a sentence
to predict the sentences around it. This model follows the encoder-decoder model
that is so pervasive in neural machine translation [Cho+14]. Encoder maps words to
a sentence vector and decoder is used to generate the surrounding sentences.

Skip-thought model uses an RNN encoder with GRU activations and an RNN
decoder with a conditional GRU. Gated Recurrent Unit (GRU) model [Chu+14] is
simpler than Long Short Term Memory networks (LSTM) models [HS97], and has
been shown to perform as well as LSTM on sequence modeling tasks.

There are one encoder and two decoders, all of them are constructed from recur-
rent neural networks (RNN). The encoder takes as input a sentence and outputs a
vector. The two decoders take the vector as input: The first attempts to predict the
previous sentence and the second attempts to predict the next sentence.
While training, Skip-Thought vectors uses two separate models: the first one "uni-
skip" is unidirectional encoder (reads the sentence in the forward direction) while
the other one "bi-skip" is bidirectional model with forward and backward encoders
(reads the sentence forwards and backwards and concatenates the results). Another
experiment "combine-skip" was added by using a combined model which consists of
the concatenation of the vectors from uni-skip and bi-skip.

Figure 10 illustrates the model of Skip Thought, it shows the input sentence and
the two predicted sentences. We are given a sentence tuple (si−1, si, si+1). with si the
i-th sentence of a book, the sentence si is encoded and tries to reconstruct the previous
sentence si−1 and next sentence si+1. In this example, the input is the sentence triplet :

- A door confronted her.

- She stopped and tried to pull it open.
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- It didn’t budge.

Unattached arrows are connected to the encoder output. Colors indicate which
components share parameters. < eos > is the end of sentence token.

FIGURE 10: The Skip Thought model

Skip-Thought framework proves to be a robust way of modeling the semantic
content of sentences through the following tasks:

- Semantic relatedness

- Paraphrase detection

- Image-sentence ranking

- Classification benchmarks

.4.3 Hybrid approach

The question is whether distributional word representations are best learned from
Probabilistic-based models or from Prediction-based models?

Probabilistic-based approach tend to form documents as a sparse mixed-membership
of topics while Prediction-based approach tend to model documents as dense vectors.
The former is simpler to interpret as the vector is sparse while the second one is better
in giving the semantic of the word but the vector is uninterpretable.

To take advantages of both approaches, hybrid approach combines the best part
of the two previous approaches.

LDA2vec

Lda2vec [Moo16] is a model that mixes two models: the dirichlet topic model (LDA)
and word embeddings (word2vec). LDA [BNJ03] is able to create document (and
topic) representations that are not so flexible but quite interpretable to humans. While
word2vec [Mik+13b] create vector representations of words that can model seman-
tic similarity between words but the vectors are uninterpretable by humans. Thus,
Lda2vec aims to solve this by embedding both words and document vectors into the
same space and trains both representations simultaneously.

Inspiring from the idea of Tomas Mikolov [Mik+13a] that word vectors can be
summed together to form a semantically meaningful combination of both words. We
will add word and document vectors to each other to construct a meaningful context
vector of them.
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For example, taking the word Germany and a document about airlines. Then the
predicted similar words for Germany will be France, Spain, and Austria. But if we apply
lda2vec, instead of predicting tokens similar to Germany alone, the predictions will
be similar to both the document and the word, which will give as a result: Lufthansa,
Condor Flugdienst, and Aero Lloyd.

Topic2vec

Topic2vec [Niu+15] is an approach that learns topic representations in the same
semantic vector space with words. This model is inspired by word2vec, it is also
separated in two models: CBOW which predicts both a word and topic vector using
the context words, and Skip gram that predicts the context given the current word
and its assigned topic by LDA.

FIGURE 11: The architectures of Topic2Vec where
(wt−2, wt−1, wt+1, wt+2) are context words and wt is the current

word paired with a topic zt

Topic2Vec aims at learning topic representations along with word representations.
When training, given a word-topic sequence of a document D = w1 : z1, ..., wN : zN ,
where wi is the word and zi is the topic inferred from LDA. The learning objective
function for CBOW and Skip gram can be defined as follows:

FCBOW(D) =
1
M

M

∑
i=1

(log p(wi|wcxt) + log p(zi|wcxt))

FSkip−gram(D) =
1
M

M

∑
i=1

∑
−k6c6k

(log p(wi+c|wi) + log p(wi+c|zi))

Thus, topic representations are learned in the same semantic vector space with
words.



130 Domain name recommendation based on neural network

.5 The proposed approaches

In this section, we present two approaches: the first one aims to find similarity
between the vocabulary while the second one is finding the TLD that corresponds to
the context of domain name.

.5.1 First approach

This approach is based on training the neural network to do the following: looking
for the neighbors for each word in the purchase database in order to find similarity
between words of the domain name.

First of all, we will preprocess on the purchase data; we will retrieve the purchase
data to tokenize the domain name. Then, we will remove all the noise (stop words).
After this, we will build the vocabulary which will be the fully qualified domain
name which means the union of the domain name and TLD.

After this, we will train this model on the purchase database which will allow us
to get the word vector for each word in the vocabulary.

Finally, we will make a scoring between the domain name and each TLD and we
will suggest the TLD with a score above to γ.

Learning phase

We choose a window size C, which means, for each word in the vocabulary (domain
name, TLD) we will look for the C words behind and the C words ahead. We will
train the neural network to do the following: Given the input word, look at the C
words nearby.

The input and output for the first approach is a list of vectors that has the size
of the vocabulary, each word is represented as a one hot vector, which means, for a
given input word, only one out of the words in the vocabulary will be 1, and all other
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words are 0). The vocabulary is composed of domain name and TLD.

Algorithm 10: First approach
Learning phase
Choose a window size C.
Look at the C words nearby.
parameter :Parameter for the algorithm
C: window size
n: neurones

hi: hidden layer
er: error threshold
γ: score threshold
W: weights (initialize randomly)
Input :A list of vectors that has the size of the vocabulary.
Output :The same list of input (vocabulary).

Choose a couple (Input, Output).
Calculate the state of the network by propagation.
Determine the cost.
Apply gradient descent.
Adjust the weights W.
Repeat until obtaining an error equal to er.
Prediction phase
Applying cosine similarity between the vector of domain name and each TLD.
Recommend the TLD with the score above of γ.

Prediction phase

After training the neural network, we will get the word vector for each word in the
vocabulary (Domain name and TLD).

The prediction of TLD will be done by making a score between the domain name
and every TLD. Then, we will recommend the TLD with a score above γ (fixed in the
output).

.5.2 Second approach

This approach is based on constructing a neural network that takes as input the
domain name and outputs a TLD. We will train the neural network on the purchase
data in order to suggest the relevant TLD corresponding to the context of the domain
name.

This approach is divided into two parts: the first part is training the neural
network to predict the context of the domain name while the second part is based on
classifying the TLD using an unsupervised learning method.

First of all, we will preprocess on the purchase data; we will retrieve the purchase
data to tokenize the domain name. Then, we will remove all the noise (stop words).
After this, we will build the vocabulary.

Learning phase

• Learn to predict the context of the domain name
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After building the vocabulary, we will train the neural network on that vocabu-
lary, in order to find the context of the domain name. The neural network will
be trained to do the following: Taking the domain name as input and outputs
the TLD corresponding to the context of the domain name.

The input for the second approach is a list of vectors where each vector is
represented as a one hot vector and each vector has the dimension of the
vocabulary of the domain name. The output is a list of vectors where each
vector is represented as a one hot vector and each vector has the dimension of
the vocabulary of the TLD.

Algorithm 11: Second approach
Learning phase
Prediction of the context of domain name
Classification of TLD
parameter :Parameter for the algorithm

n: neurones
hi: hidden layer
er: error threshold
W: weights (initialize randomly)
Input :A list of vectors (Domain Name).
Output :A list of vectors (TLD).

Choose a batch of the couple (Input, Output).
Calculate the state of the network by propagation.
Determine the cost.
Apply gradient descent.
Adjust the weights.
Repeat until obtaining an error equal to er.
Prediction phase
Look for the cluster of the predicted TLD.
Apply cosine similarity between the predicted TLD and each TLD in the

cluster.
Recommend the top K TLD.

• Classification of TLD

To classify TLDs, we will take the word vector for each TLD from the model
of the first approach that we have already trained it. After getting the word
vector for each TLD, we will calculate the TLD similarity matrix. Then, we will
classify TLDs using an unsupervised learning method.

We used an orthogonal transformation to convert a set of observations of possi-
bly correlated variables into a set of values of linearly uncorrelated variables.

This transformation is defined in such a way that the first component has the
largest possible variance (that is, accounts for as much of the variability in
the data as possible), and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal to the preceding
components. The resulting vectors are an uncorrelated orthogonal basis set.

K-means is an unsupervised machine learning algorithm that groups a dataset
into a specified number (k) of clusters. The algorithm is somewhat naive as it
clusters the data into k clusters, even if k is not the right number of clusters
to use. Therefore, when using k-means clustering, users need some way to
determine whether they are using the right number of clusters.
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So, here we will present how to choose the optimal number of clusters using
elbow method [KM13], then we will apply k-means clustering.

– Determine optimal number of clusters (K)

The technique to determine the number of clusters(K), is called the elbow
method. The idea of the elbow method is that it looks at the percentage
of variance explained as a function of the number of clusters: One should
choose a number of clusters so that adding another cluster doesn’t give
much better modeling of the data.
Figure 12 shows an elbow, it is called an elbow method because the curve
looks like a human arm and the elbow point gives us the optimum number
of clusters. So, we will take the elbow point value as the final number of
clusters, which is K=24.

FIGURE 12: The elbow method

– Applying K-means clustering

After choosing the right K (number of clusters), we will apply K-means
clustering with K=24.
Figure 13 shows the clusters of TLDs:
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FIGURE 13: Clusters of TLDs

Prediction phase

After training the neural network, we will use it to predict the TLD that corresponds to
the context of the domain name. Then, we will search for the cluster that corresponds
to the predicted TLD, and we will make cosine similarity between the predicted TLD
and each TLD in the cluster, Then we will suggest the top K TLDs, which means the
one who has high cosine similarity, and we will save the decreasing order as the client
could see the relevant TLD in the beginning.

.6 Experimental results

In this section, we will present the experimental results that we get from the two
approaches. In this experiment, the sample was taking from Gandi database, the real
purchases that has been done.

1. First approach

In this approach, we took a sample from the purchase database of Gandi that
has 10 million purchase, and we test the accuracy. The accuracy was based on :
if the predicted TLD coincide with the 10 TLD that has the highest score.

Dataset Domain Name TLD accuracy
10M 6.293.598 386 3,98%

TABLE 5: The evaluation of the first approach

Indeed, the goal of this approach is to find similarity among the purchase data
not the context of the domain name that will give the relevant TLD, that’s why
we took all the domain name that were purchased not only the one that were
bought with GTLD (Generic Top Level Domain). This low accuracy is probably
due to the domain name that has been purchased with ccTLD (Country Code
Top Level Domain).
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2. Second approach

In this approach we took a sample of 10.000 purchase domain name, to be able
to make a setting on the neural network in order to choose the best parameters
that will give the best results.

Dataset Domain Name TLD
10K 7873 45

TABLE 6: The evaluation of the second approach

The activation function is a node that we add to the output end of any neural
network. It is used to determine the output of neural network like yes or no. It
maps the resulting values in between 0 to 1 or -1 to 1 etc. (depending upon the
function).

To train the neural network, we tested three activation function for the hidden
layers : sigmoid function, tanh (hyperbolic tangent), Relu (Rectified Linear
Unit).

Sigmoid ( 1
1+e−x ) Relu (max(0, x)) tanh ( 2

1+e−2x − 1)

One hot vector 96.9% 96.76% 96.89%
Vector using indexes 81.71% 80.67% 81.08%

TABLE 7: Accuracy by comparing different activation functions on 10K
sample

Figure 16 shows the accuracy and the cross entropy using one hot vector with
sigmoid function while figure 19 shows the accuracy and cross entropy using
a vector with indexes with sigmoid function. It is noticeable that when the
cross entropy goes down the accuracy increases until reaching a predefined
threshold.

The axis of abscissa represents the number of iteration while the axis of the
ordinate represents the accuracy (left) and the cross entropy (right).

Results with one hot vector is much better than using vector with indexes, as
the accuracy is much better and also the number of iteration is lower than the
one used by the vector with indexes.
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FIGURE 14: Accuracy

FIGURE 15: Error

FIGURE 16: Results using one hot vector and sigmoid function
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FIGURE 17: Accuracy

FIGURE 18: Error

FIGURE 19: Results using vector with indexes and sigmoid function

.7 Conclusion

In this work, we have proposed two approaches based on neural network to suggest
a relevant domain name. The first approach consists on finding similarity between
words of domain name, while the second one is predicting TLD corresponding to
the context of domain name. Experiments on GANDI database has shown efficient
results for the second approach.
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