
UNIVERSITÉ SORBONNE PARIS NORD
INSTITUT GALILÉE

LABORATOIRE DE PHYSIQUE DES LASERS

Thèse présentée par

Joseph Seaward

Pour obtenir le grade de

Docteur de l’Université
Sorbonne Paris Nord

Sujet :

Unidimensional gas with tunable interactions

Soutenue le 20 novembre 2020 devant le jury composé de :

Mme Patrizia VIGNOLO Rapporteuse
M. Carlos GARRIDO ALZAR Rapporteur
Mme Juliette BILLY Examinatrice
M. Sébastien CHÉNAIS Examinateur
M. Maxim OLSHANII Examinateur
Mme Hélène PERRIN Directrice de thèse
M. Aurélien PERRIN Membre invité, co-encadrant





Contents

Acknowledgements 7

General introduction 9

I Sodium experiment 15

1 Introduction: a one-dimensional quantum gas with tunable interactions 17
1.1 Basics of quantum Bose gases . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Condensation without interactions . . . . . . . . . . . . . . . . . . . . 19
1.1.2 Contact interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 One-dimensional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.1 Reducing the dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.2 One-dimensional interaction regimes . . . . . . . . . . . . . . . . . . . 28
1.2.3 Correlations and fluctuations . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.4 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.3 Microwave Fano–Feshbach resonance . . . . . . . . . . . . . . . . . . . . . . . 37
1.3.1 Basics of cold collisions . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.3.2 Fano–Feshbach resonance . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.3 Microwave induced Fano–Feshbach resonance . . . . . . . . . . . . . . 39

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Experimental overview 43
2.1 Experimental goals and considerations . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Overview of the setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Computer control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Laser and optical setup . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.3 Cooling stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.4 Quadrupole magnetic trap . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.5 Current imaging setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.6 Transport chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.7 Science chamber and chip enclosure . . . . . . . . . . . . . . . . . . . . 58



4 CONTENTS

2.3 Measurements to collect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3.1 Density profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.2 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.3 Bragg spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Atom chip with coplanar waveguide for a one-dimensional trap 65
3.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Trapping with wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.2 Evaporative cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.3 Coplanar microwave guide . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Chip and support design and construction . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Chip mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 Chip and sub-chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Electrical test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1 On-chip wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Coplanar microwave guide . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.3 “Z”-wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.4 Evaporation coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Objective lens design 83
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Physical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.2 Optical formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Low magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.1 Lens design and performance . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 High magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 Lens design and performance . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Magnetic transport optimization 101
5.1 Theory and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.1 A single quadrupole trap . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.2 Quadrupole trap chains . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.3 Time profile definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Thermodynamic properties of the cloud . . . . . . . . . . . . . . . . . . . . . 111
5.2.1 Temperature measurement . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.2 Collision rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Experiment and simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

II Counters and ergodicity 123

Introduction: counters and ergodicity 125



CONTENTS 5

6 Background 127
6.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.1.2 Systems with memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Billiards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2.2 Encoding one-dimensional systems . . . . . . . . . . . . . . . . . . . . 132

6.3 Irrational rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.1 Rational approximants . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.2 Rational rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3.3 Irrational rotations and how we will use them . . . . . . . . . . . . . . 140

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 Parity counters 143
7.1 Wang-Casati-Prosen counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1.1 Note on numerical methods . . . . . . . . . . . . . . . . . . . . . . . . 147
7.1.2 Explanation of the results . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2 Product or parity counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.2.1 Notation and mathematical grounding . . . . . . . . . . . . . . . . . . 151
7.2.2 Error introduced by rational approximation . . . . . . . . . . . . . . . 154
7.2.3 Notes on the numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2.4 Counter growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.5 Specifics of our choice of irrational . . . . . . . . . . . . . . . . . . . . 163
7.2.6 Fractal nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Conclusion 169

Appendices 173

A Tables of notations and symbols 175

B Electric test data 179
B.1 On-chip wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
B.2 Z-wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
B.3 Evaporation coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C Objective lens schematics 187

D Supplementary transport profiles 189

E One-dimensional time-of-flight density profile 191

Bibliography 192





Acknowledgements

I begin by thanking Maxim Olshanii, whose Mathematical Methods for Physicists class I
more-or-less walked into off the street — he has stuck by me since then; telling me about this
PhD position and even introducing me to the problem in the second part of this thesis. I
would also like to thank Hélène Perrin for being so generous with her time, energy and home
as well as applying the pressure making those demands of exactness that a serious student
needs. And then there is Aurélien Perrin, whose kindness and availability should make him a
legend among graduate students forever.

I would also like to thank the rest of my committee: Juliette Billy, for her kind and
insightful questions, Sébastien Chénais for presiding over my defense, and in particular the
two reporters, Patrizia Vignolo and Calos Garrido Alzar for their thorough reading of this
thesis.

Not to be forgotten are those without whose help none of this would be possible, the
administrative team: Maryse, Carole, and the skilled Solen.

Thanks go out to Thomas Badr and also an apology for always forgetting how funny he
is and so missing his jokes.

Then there are the comrades-in-science, David Rey chief among them, who have made this
work something far different from a chore: Ali, Karim, Louis, Biplab, Yanliang, Mohammed,
the poet Guesswho, Mathieu, Kaci, and Christelle. Callum Duncan deserves particular men-
tion for the sound advice and warm welcome he offered me from the store of these things laid
up in his home country.

There are those scientists who outrank me, whose encouragement, kindness, advice and
support have helped me more than they realize: Félix Werner and Jim Bales.

I have had some teachers, not directly involved with this work, who nevertheless I would
not be doing it without: Steve Arnason and Bala Sundaram. Maxim told me that you put in
a good word for me.

Thanks also to the people not sharing in the struggle of physics, French and otherwise,
who made me feel welcome here: Kenzy, Victor, Miguel, Delphine, and Vanessa with her ant
lions.

Then there are my own ones: of whom Lilly is the first, whose letters have been such a
nourishing treat while I have been doing this work, followed by Molly and Oscar, Xa, and
Ian.

Thanks S.C. for the sweater, and everything.
And Mom, of course.





General Introduction

This thesis treats two separate but related pieces of work dealing in different ways with
one-dimensional systems. One part is experimental work, following on from the thesis of
D. Ben Ali [1], to bring online an ultra-cold sodium gas experiment. This involved preparing
mounting and testing our atom chip; designing imaging objectives for absorption imaging; and
optimizing a magnetic transport based on chained coils modeled after the one introduced by
Greiner et al. [2]. Vacuum problems with the experiment left me time for a small theoretical
collaboration with M. Olshanii which is dealt with in the other part. This work begins
formulating a way to study the ergodicity [3] of one-dimensional systems by defining a certain
kind of counter over dynamical systems [4] and determining the growth of that counter. While
they both relate to one dimensional systems, they arise out of fairly different scientific contexts
so I will have to recount their lineages separately.

Background of the experimental work

The phenomenon of Bose–Einstein condensation — macroscopic occupation of the ground
state due to the saturation of excited states at low temperature — was first described in two
papers by A. Einstein in 1924-5 [5, 6]. He was looking at the consequence of a method of
deriving Planck’s law published by S. N. Bose in 1924 [7]. Bose’s derivation relies on the
quantum statistics that arise when exchanging particles does not give rise to a new state.
This is a distinguishing property of the particles which bear his name, bosons, which have
integer spin, may share a quantum state, and whose many-body wave function is symmetrical
under particle exchanges. These stand in contrast to fermions which have half-integer spin,
obey the Pauli exclusion principle [8], and whose many-body wave-function is anti-symmetric
under exchange of particles.

Einstein described this condensate phase of matter only in principle; it would occur with
particles which followed Bose’s statistics at very low temperatures. However, he could not
give a concrete example in Nature. In 1938 F. London proposed that a phase transition to a
superfluid in liquid helium, known to occur at 2.19K, was the phase transition predicted by
Einstein [9], albeit distorted by interaction forces which were neglected in Einstein’s descrip-
tion, his being the treatment of an ideal gas. It would be many decades until experimental
techniques advanced enough to produce condensates from the gas phase and allow experi-
menters to manipulate and probe them.

Those experimental breakthroughs began in the 1980s with the development of the Zeeman



slower for slowing jets of atoms [10] and methods for cooling and trapping atoms [11–13].
These developments won S. Chu [14], C. Cohen-Tannoudji [15], and W. Phillips [16] the 1997
Nobel Prize in Physics. With these techniques (and one or two others [17,18]) experimentalists
could trap and cool dilute gases of atoms to very low temperatures. This led to the first
condensate from a gas in 1995 when the group of C. E. Wieman and E. Cornell formed
a condensate of rubidium-87 atoms [19], followed shortly by W. Ketterle’s group making
one from sodium that same year [19]. These three were awarded the 2001 Nobel Prize in
Physics for these accomplishments [20,21]. Since then many atoms, including the formidable
cesium atom [22], have been condensed as well as molecules [23], phonons [24] magnetons [25],
photons [26], and exciton polaritons [27, 28]. Aside from studying basic physics, they have
been used for applications as widely ranging as information processing [29] and simulating
the expanding universe [30].

A large part of the appeal of Bose–Einstein condensates is that they are systems of macro-
scopic size with their quantum effects intact. In the case of condensates of alkali atoms, they
offer a variety of ways for the experimenters to control and interact with them [31]. One
important mechanism of control they make available is control over the strength of their in-
teractions. This is typically done via the mechanism called Fano–Feshbach resonance [32].
This also has its roots in early twentieth century physics, going back to O. K. Rice explaining
the broadening of certain spectral lines due to transitions that occur when the potential ener-
gies of different electron states are equal [33]. This was extended to the coupling of discrete,
bound states to states where the atoms may separate by H. Feshbach [34] and U. Fano [35]
in 1958 and 1961, respectively. A way such resonances might arise in quantum gases in mag-
netic fields dates back to 1976 and W. Stwalley [36], well before the creation of the first
trapped condensates formed from dilute gases. Once the cooling and trapping techniques
began to develop, the use of these as a method of control was pointed out by Tiesinga et
al. in 1993 [37] and was experimentally demonstrated in 1995 by Moerdijk et al. [38] with
sodium and by Courteille et al. [39] with rubidium. Feshbach resonance can change attractive
interactions into repulsive ones, and vice-versa, and was key to making the condensate of
cesium stable [22]. It has become a standard tool and remains an object of study [40]

But magnetic fields are not the only way to couple bound and free states. It can also be
done with photons [41,42]. In 2010, Papoular et al. introduced a Feshbach resonance induced
by microwaves [43]. This has yet to be experimentally confirmed and it is something we not
only hope to demonstrate, but to use to control the atoms in our experiment. That is part of
our motivation for choosing to make our final trap with an atom chip [44,45]. These are chips
made from layers of gold, laid down in wires of various configurations, that produce magnetic
fields that can trap and control the atoms. They can accomplish two important things for us:
incorporate a coplanar microwave guide [46] to deliver the microwaves to tune the interaction
strength; and produce very elongated magnetic traps that will confine the dynamics of the
gas to one dimension [47].

What we are interested in testing are theoretical predictions about systems where mo-
tion or excitations can only occur along one direction. When bosons in one dimension have
interactions strong enough that the interaction energy is sufficient to correlate the parti-
cles (excluding the possibility that two or more can be found at the same spot) well-known
mean-field theories break down. However, in this strongly-interacting regime there are exact
solutions such as the Lieb and Liniger model [48, 49] and its extension to finite temperature
by Yang and Yang [50]. There has yet to be a direct, experimental test of these solutions
— one which studies a single, one-dimensional gas of strongly-interacting bosons at uniform



density. Tests have been done with arrays of gases [51–53], which change either the longi-
tudinal confinement or the depth of a lattice on the longitudinal axis. These are capable of
probing the strongly-interacting regime after one averages over the array. Tests on chips have
just barely reached the strongly interacting regime in an individual tube in the group of I.
Bouchoule who used a current-modulation technique to bring the cloud very close the surface
of her chip, producing very strong gradients, while overcoming the roughness of the wires that
would interrupt the potential if the current through them was direct [54]. However there are
limitations on this method [55] and they could not go very far into the strongly-interacting
regime. One of the goals of this experiment will be to probe deep into the strongly interacting
regime by tuning the interaction strength of the atoms with this novel Feshbach resonance,
independent of the density, and make comparisons to the models as exact as possible.

The different regimes of the one-dimensional gas are distinguished by differences in their
second-order correlation function [56]. This is one way to distinguish the strongly-interacting
gas from the ideal gas from a “quasi-condensate,” [57] all of which have interesting physical
characteristics I will talk about later in this thesis. Because they are distinguished by correla-
tions in fluctuations, many instances must be taken in order to build up meaningful statistics.
Thus, minimizing the time between preparations of the gas is a worthwhile investment of
experimental energy and is one of the reasons that our atoms undergo initial cooling in a
chamber separate from our atom chip. That way we can cool one sample while we perform
experiments on another. This means that the atoms must be transported from one chamber
to the other and the optimization of that transport was a significant part of this thesis project.

Background for the theoretical project

The actual loading of the chip and preparation of a one-dimensional sample was significantly
delayed by vacuum problems in the science chamber containing the chip. The HelicoflexTM

gaskets used for the windows did not sustain the bake-out process very well, but it was many
months before we found that they were the point of failure. This left me with some time to
devote to a theoretical and numerical project with my old adviser, M. Olshanii, related to
ergodic theory.

Ergodicity is a question that goes back to L. Boltzmann [58]. He says himself that he
considers the probability of a system being found in a certain state to be the average amount
of time it spends in that state, while J. C. Maxwell (whose work he is commenting on) considers
it the portion of an ensemble of equivalent systems in all possible initial states.1 To say that
a system is ergodic is, then, to say that these views are equivalent. Boltzman knew he could
prove this if he could show that in infinite time, the phase trajectory of the gas visited every
point in its phase space. It was pointed out to him that it is impossible for a one-dimensional
trajectory to fill a higher dimensional space completely and it was later proved that this
specific notion of ergodicity is impossible under Newton’s laws [60, 61]. But the notion of
“quasi-ergodicity” (of a trajectory densely filling the phase space after infinite time [62]) was
shown by J. von Neumann [63] and G. Birkhoff [64] to be sufficient for the convergence of
the averages in infinite time. When considering the ergodicity of quantum systems this must
be formulated slightly differently [65, §7.2] since the natural objects in quantum systems are
operators and Hilbert spaces, instead of functions defined on phase spaces.

This is a key aspect in the study of dynamical systems, an exceedingly broad topic. It
comprises systems which can be described by a phase space and an updating rule which maps

1. Paraphrased from [59, p.582] as quoted in [58].



each point in the phase space to the point which is “next” in time. As you may guess this
encompasses a great many physical systems. A smaller and simpler subset of these systems are
know as billiards [66], which can be thought of as a point moving at a constant velocity inside
of a shape, elastically colliding with the sides. These can model one-dimensional systems by
a coordinate transform which maps collisions with the sides to collisions between the one-
dimensional particles. A billiard of dimension 𝑁 can encode a system of 𝑁 − 1 particles and
in certain cases [67] exact quantum solutions can be obtained for these systems [68] which,
unlike the Lieb–Liniger solution, can contain a mixture of masses and interaction strengths
(See [69] and references therein.).

The inspiration for the theoretical project presented here came from a paper by Wang et
al. [70] where they count events in a billiard in a particular way. Over time this counter tends
to stay near its initial value and hence seems to suggest that the system is not ergodic. It
must be said that counters are not observables (they count events in the phase space, they are
not functions of the points in phase space) and the fact that they do not behave ergodically is
not proof that the underlying system is not ergodic. Still, arguments can be made from how
the counters grow to how averages of the observables converge. We hope to develop a family
of counters that can tell us by their growth whether a system or observable is ergodic. The
work is in the early stages and what is presented here is a rule by which the kind of counter
we are interested in can be expected to grow.

Outline of this thesis

Part I covers the experimental work in five chapters while Part II covers the theoretical and
numerical work in two chapters, not counting a brief introduction.

Chapter 1 covers the theoretical basis for the experiment. I begin with the Bose–Einstein
condensation of an ideal gas in three dimensions, add contact interactions, then reduce the
dimension, and discuss some of the physics to be expected there. Most important are the
different regions of the phase diagram of the one-dimensional gas that we want to explore,
so I discuss the behavior of correlations in those regions. Then I outline the mechanism by
which we will change the interactions and reach these different regions: the microwave-induced
Feshbach resonance.

Chapter 2 gives an outline of the experimental setup, its current state and what will be
done with it. It is meant to let the reader understand the rest of Part I without looking up
the thesis of D. Ben Ali [1] which covers the design and construction in much more detail. It
will make clear the motivations for our experimental choices and cover the relatively minor
updates put in place since D. Ben Ali’s graduation. This chapter will also cover what we
intend to measure and how, since this has direct bearing on the objective lenses I designed.

Chapter 3 details the atom chip, fabricated for us by M. Stüwe in the group of J. Schmiedmayer.
It covers how it forms the fields for magnetic trapping, cooling, and microwave dressing, as
well as the design and construction of the chip and its support. The main result of this chapter
is the outcome of the electrical tests performed on the chip; they are presented along with
everything necessary to estimate what kind of fields and traps the chip can be expected to
generate.

Chapter 4 describes the designs for imaging objectives I prepared for imaging the atoms
in the science chamber. There is a low-magnification one, and a high-magnification one that
can be converted to an even higher magnification for imaging the atoms still in the trap on
the chip. To begin I present the basic optics needed to understand the compromises that had



to be made in designing the objectives. Then I go over how those compromises were made
and what software simulations suggest will be the performance of the objectives. Performance
tests are being carried out now so data are not yet available to check the simulations.

Chapter 5 presents the work done optimizing the magnetic transport. The theory of
operation for these types of transports is reviewed and the loss mechanisms we must deal
with are discussed. What we optimized specifically was the trajectory we used to move the
atoms; the ones that make for the most relevant comparison are defined, with some others
being included in Appendix D. Simulations were used to distinguish between loss mechanisms
for the different profiles. I review them, and what they tell us about the experimental data.
Details about the thermodynamics of the gas in the magnetic trap are also given here, as we
want to transport the cloud while heating it as little as possible.

Chapter 6 is the first full chapter of the second part. It contains all the background and
definitions needed to understand the work detailed therein, starting with what I will rely on
from ergodic theory. I then deal with billiards, making links to one dimensional systems where
I can. Then I talk about the dynamical system we used as a test case: irrational rotations.
This involves talking about rotations generally, and how we approximate irrationals.

Chapter 7 gives the meat of the theoretical and numerical project. The case that inspired
it is analyzed, and our numerical methods are discussed and compared. The counter we
studied is defined, and we try to estimate its growth and also its range of validity. A rule
for counters of this type is found that will hold for irrationals that can be well-approximated
by rationals (a notion I define in Chapter 6). Difficulties and prospects for generalizing our
results are dealt with here.

Finally I review my results and put them in their scientific contexts and discuss the future
prospects for these projects.





Part I

Sodium experiment





Chapter 1
Introduction: a one-dimensional
quantum gas with tunable interactions

Part I of this thesis is devoted to an experiment whose goal is the production of a single
species quasi-condensate in a single (or pair of) strongly confining traps which reduce the
dynamics to one dimension with controllable interaction strength. In this chapter I will lay
out the theory necessary to define and discuss such a system, and give a picture of the physics
we hope to explore. This theory, along with some sketches of the current state of the art, will
make the motivations for our experimental choices clear, including our decision to work with
sodium.

First I will give the basics I will need regarding quantum gases and condensation in three
dimensions. I will work from the most general case of non-interacting bosons and then add
in the elements we will need to discuss one-dimensional, contact-interacting systems and
their phases. For my most basic facts, I will draw mostly from the textbooks of Landau
and Lifshitz [71, 72]. For things more particular to cold atoms and the general structure
of Section 1.1 I follow [73], but borrow from a lecture by H. Perrin [74]. Then I will deal
with the specifics of those one-dimensional gases, the models, and the previous experiments
we will be relying on for guidance as we explore the phase diagram. Then I will treat the
specific tool we will be using to do that, the as-yet unobserved microwave-induced Fano–
Feshbach resonance [43]. This is an extension of the more well-established procedure of
using Fano–Feshbach resonances [33–35] [32, for a review] based on magnetic fields [38] and
optical couplings [41] [42, for a review] to tune the interaction strength. This, along with
laser [10, 11, 75] and evaporative [19] cooling techniques will allow us drive the gas into its
different regimes.

For this chapter I rely on two excellent reviews: one by Bouchoule et al. [47], particularly
useful for its review of the experimental work being done on atom chips; and one by Bloch et
al. [76] with an extensive bibliography of seminal papers on many topics. Other reviews and
textbooks will provide the structure for specific sections and I will cite them therein.
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1.1 Basics of quantum Bose gases

As mentioned in the general introduction, Bose-Einstein condensates (BECs) are useful for
producing (comparatively) large-scale quantum objects. In order to do this, they must be
made of bosons, particles of integer spin that are not prevented from occupying the same
quantum state. The atom we are working with is 23Na and it has a nuclear spin of 3/2 and a
net electron spin of 1/2. These sum to an integer under any combination of signs, therefore
the atom behaves as a boson and does not obey the Pauli exclusion principle, and a number
of atoms may share the same state.

Since the phenomenon we are examining involves the particle occupation numbers of
different states, we work in the grand canonical ensemble. Let the system have chemical
potential 𝜇, and comprise states indexed by 𝑘, each state containing 𝑁𝑘 particles, each particle
having energy 𝐸𝑘. We want to know the occupation number of the 𝑘th state and then see
under which conditions one of these occupation numbers will grow to be macroscopic. In
the grand canonical ensemble, the chemical potential is fixed but the particle number may
change. The grand partition function then reads [73, Eqn. 3.2]

𝒵(𝛽, 𝜇) =
∞∑︁

𝑁𝑘=0

𝑒𝛽𝜇𝑁𝑘𝑄𝑁𝑘
(𝛽), (1.1)

where 𝛽 = 1/𝑘𝐵𝑇 with 𝑘𝐵 being the Boltzmann constant and 𝑇 is the temperature of the
system, and 𝑄𝑁𝑘

(𝛽) =
∑︀

𝑘 𝑒
−𝛽𝐸𝑘 is the canonical partition function for the 𝑘th state.

If one considers the 𝑘th state alone, having 𝑁𝑘 particles, the grand partition function just
for that state is,

𝒵𝑘(𝛽, 𝜇) =
∑︁
𝑁𝑘

𝑒𝛽𝑁𝑘(𝜇−𝐸𝑘). (1.2)

For bosons, the sum over 𝑁𝑘 must run from zero to infinity (as opposed to 𝑁𝑘 = 0, 1 for
fermions) since the number of particles per state is unbounded. This makes 𝒵𝑘 the sum
over a geometric series with a common ratio of 𝑒𝛽(𝜇−𝐸𝑘). In order for this to converge,
each exponential term must be less than unity, even at 𝐸𝑘 = 0. This means we must have
𝜇 < 01 in order to have a system with any well-defined thermodynamic properties at all. The
most relevant quantity for us will be the average occupation number when the system is in
equilibrium. This can be obtained from the grand partition function [73, Eqn. 3.14],

⟨𝑁𝑘⟩ =
1

𝛽

𝜕

𝜕𝜇
ln𝒵𝑘 =

1

𝑒𝛽(𝐸𝑘−𝜇) − 1
, (1.3)

where ⟨·⟩ indicates the ensemble average. Summing equation (1.3) over 𝑘 must give the
average of the total number of particles in all the states, ⟨𝑁⟩ ≡

∑︀
𝑘 ⟨𝑁𝑘⟩.

When the states are close enough in energy that they can be integrated over, one can
make a semiclassical approximation where summing over ⟨𝑁𝑘⟩ should give the same answer
as taking the number of particles in each energy state, ⟨𝑁(𝐸)⟩; multiplied by the density of
states, 𝜌(𝐸), giving the number of atoms having energy between 𝐸 and 𝐸 + d𝐸; and then
integrating over the energy. That is to say

⟨𝑁⟩ =
∞∑︁
𝑘=0

1

𝑒𝛽(𝐸𝑘−𝜇) − 1
=

∫︁
𝜌(𝐸) ⟨𝑁(𝐸)⟩ d𝐸 , (1.4)

1. To be precise, 𝜇 < 𝐸0, the energy of the ground state, but 𝐸0 = 0 is a relevant, limiting case of a free
particle [77, §1.1].
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Condensed fraction

Figure 1.1 – Condensed fraction, 𝑁0/𝑁 , as a function of the ratio of the temperature
to the critical temperature, 𝑇/𝑇𝑐.

when the states are close in energy. The density of states, 𝜌(𝐸), will generally depend on the
dimension. This will be critical later in Section 1.2 when we want to reduce the dimension
below three.

1.1.1 Bose-Einstein condensation in a non-interacting gas

Since bosons can occupy the same quantum state, if there is not enough energy to keep
all the particles in excited states — i.e., the excited states become saturated containing all
the particles they can at that energy — the occupation number of the ground state will
start to grow. When the occupation of the ground state becomes macroscopic, this forms a
condensate. Since there is no interaction energy, only the thermal energy can keep the atoms
excited. Therefore, let us write the total average particle number as the sum of the average
occupancy of the condensate, ⟨𝑁0⟩, and of the rest of gas, called the thermal component,
⟨𝑁𝑇 ⟩. That is

⟨𝑁⟩ = ⟨𝑁0⟩ + ⟨𝑁𝑇 ⟩ =
1

𝑒𝛽(𝐸0−𝜇) − 1
+

∞∑︁
𝑘=1

1

𝑒𝛽(𝐸𝑘−𝜇) − 1
(1.5)

where the rightmost expression is just an explicit writing-out of the two terms of the middle
expression.

For a given, finite temperature, ⟨𝑁0⟩ will be one or less until 𝜇 → 𝐸−
0 , in which case

it diverges. This is just the point at which ⟨𝑁𝑇 ⟩ reaches a finite maximum, 𝑁ub(𝑇 ) =
⟨𝑁𝑇 ⟩ (𝑇, 𝜇 = 𝐸0), since 𝜇 < 𝐸0 < 𝐸𝑘>1, ensuring the sum converges. This gives an upper
bound on the number of particles that can be in the excited states. If the given temperature is
such that 𝑁ub(𝑇 ) > ⟨𝑁⟩, then ⟨𝑁0⟩ can remain low and the average overall particle number,
⟨𝑁⟩, can be distributed among the higher states. When 𝑁ub(𝑇 ) drops below ⟨𝑁⟩, however,
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the excited states become saturated and the rest of the particles are forced into the ground
state. As the temperature decreases (𝛽 rises), so does 𝑁ub and particles are driven out
of the thermal component and into the condensed component. Thus, ⟨𝑁0⟩ diverges. The
temperature at which particles must start to be forced into the ground state is the critical
temperature, 𝑇𝑐, defined as the temperature such that [73, Eqn. 3.20]

𝑁ub(𝑇𝑐) = ⟨𝑁⟩ . (1.6)

If the temperature drops below this, particles must start populating the ground state and
condensation begins. As the temperature decreases further, 𝑁ub(𝑇 ) decreases further and
more particles are forced into the condensate as shown in Figure 1.1.

To see how the density of states will affect 𝑁ub(𝑇 ), let us rewrite ⟨𝑁𝑘⟩ for 𝑘 ≥ 1 using the
formula for a geometric sum. This reads

⟨𝑁𝑘⟩ =
1

𝑒𝛽(𝐸𝑘−𝜇) − 1
=

∞∑︁
𝑢=1

𝑒−𝑢𝛽(𝐸𝑘−𝜇) for 𝑘 ≥ 1, (1.7)

which could be cast as an integral of 𝜌(𝐸) using a semi-classical approximation.
To say more we need to introduce the specifics of the system so we can talk more precisely

about the energy levels and the density of states.

1.1.1.1 Confined particles

Consider particles of mass 𝑚 moving freely in a box with periodic boundary conditions. Let
the side length be 𝐿. This makes the momenta 𝑝𝑘 = 2𝜋~𝑘/𝐿, where 𝑘 is a vector whose
components are integers, 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧. The eigenvalues for the energy are 𝐸𝑘 = 𝑝2𝑘/2𝑚.
Since 𝑘 can be all zeros, 𝐸0 = 0 and 𝜇 must be negative. The dispersion relation gives a
density of states that is a power law, proportional to 𝐸𝑑/2−1 where 𝑑 is the dimension. If the
states are close together in energy we may then write ⟨𝑁𝑇 ⟩ as an integral like

⟨𝑁𝑇 ⟩ ∝
∞∑︁
𝑘=1

𝑒𝑘𝛽𝜇
∫︁ ∞

0
𝐸𝑑/2−1𝑒−𝑘𝛽𝐸d𝐸. (1.8)

The integral being summed over is equal to the Γ factorial function [78, Eqn. 6.1.1, 2nd line]

Γ(𝑧) ≡ 𝑠𝑧
∫︁ ∞

0
𝑡𝑧−1𝑒−𝑠𝑡 d𝑡 (1.9)

with argument 𝑧 = 𝑑/2 and an extra factor of (𝑘𝛽)−𝑑/2 in front to take care of the prefactor
of 𝑠𝑧 in (1.9). Since Γ(𝑑/2) is a constant over the sum we can leave it out and rewrite (1.8)
as

⟨𝑁𝑇 ⟩ ∝
∞∑︁
𝑘=1

𝑒𝑘𝛽𝜇

(𝛽𝑘)𝑑/2
=
𝑔𝑑/2(𝑒

𝛽𝜇)

𝛽𝑑/2
(1.10)

where 𝑔𝑑/2(𝑧) is the polylogarithm function of order 𝑑/2. The polylogarithm of order 𝑏 is
defined for a complex argument, 𝑧, as [79, Eqn. 7.1],

𝑔𝑏(𝑧) ≡
∞∑︁
𝑛=1

𝑧𝑛

𝑛𝑏
. (1.11)
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In equation (1.10), 𝑧 = 𝑒𝛽𝜇 is called the fugacity [73, p. 17]. Working out the density of states
gives the constant of proportionality, we may say [73, Eqn. 3.23]

⟨𝑁𝑇 ⟩ =
𝐿3

𝜆3𝑇
𝑔𝑑/2(𝑒

𝛽𝜇) (1.12)

where

𝜆𝑇 =

√︃
2𝜋~2
𝑚𝑘𝐵𝑇

(1.13)

is the thermal de Broglie wavelength [73, Eqn. 3.24].
To find the upper bound on the number of particles in the excited states, 𝑁ub, set 𝜇,

𝐸0 = 0. Then the fugacity goes to one, while 𝑔𝑏 becomes the Riemann zeta function, 𝜁(𝑏) [78,
Eqn. 23.2.1]. This means that whether or not condensation occurs depends on the dimension.
In three dimensions 𝑔3/2(1) = 𝜁(3/2) = 2.612 . . ., a finite constant. That means by lowering
the temperature, 𝜆𝑇 can be increased and the limit on the number of particles in the excited
states can be driven down, pushing the rest into the condensate for a given ⟨𝑁⟩.

But in two dimensions, the argument of the zeta function, 𝑑/2 = 1 and so the function
diverges [78, Eqn. 23.2.12]. When its argument falls below one, 𝜁(−2 < 𝑧 < 1) < 0, mean-
ing that condensation of non-interacting particles in a box of less than three dimensions is
impossible at any finite temperature.

However, with different dispersion relations, the density of states can change, changing
the exponent of 𝐸 in equation (1.8) and thereby the order of the polylogarithm, potentially
allowing condensation at lower dimension.

Since the trap we will be working with is a harmonic trap, consider the Hamiltonian

�̂� = − ~
2𝑚

∇2 +
𝑚

2

∑︁
𝑖=𝑥,𝑦,𝑧

𝜔2
𝑖 𝑟

2
𝑖 . (1.14)

For the moment, let 𝜔𝑥 = 𝜔𝑦 = 𝜔𝑧 = 𝜔. The energies are 𝐸𝑘 = ~𝜔(𝑘𝑥 + 𝑘𝑦 + 𝑘𝑧 + 3/2) and
since the energy levels along each direction are evenly spaced by ~𝜔, the density of states is
𝜌(𝐸) ∝ 𝐸𝑑−1/(~𝜔)𝑑 ∝ 𝐸𝑑−1. Now the polylogarithm function in (1.10) is of order 𝑑. This
means condensation is possible for dimension 𝑑 ≥ 2 in a harmonic trap, the function still
being the divergent 𝑔1(1) = 𝜁(1) = ∞ for one dimension.

The particles in the single-particle ground state are in another phase of matter character-
ized by an order parameter. An order parameter is zero outside of a certain order or phase (as
in “phase diagram” or “phase transition” instead of “phase space”) of the system and nonzero
inside it. They are associated with the presence or absence of some symmetry. When they
are non-zero, they are keeping track of some property of the system that was accounted for
by a symmetry outside of the phase for which they serve as the order parameter [72, p. 449].
In a condensate, the particles share the same single-particle state, Ψ0(𝑟), and the modulus of
this can be taken as the order parameter. The symmetry that is broken inside the condensate
is the gauge symmetry associated with the choice in the phase of Ψ0(𝑟). The Hamiltonian
(1.14) and all other observables of the system are invariant when multiplied by a constant
phase factor. But when a significant number of particles are in the state Ψ0(𝑟) and a value,
including a phase, must be chosen for it, this symmetry is broken [73, p. 12]. As we will see
later, there can be regimes in a phase diagram where the system will have different charac-
teristics, but an order parameter cannot be defined because no symmetry is broken. We can
use the correlations however, as I will discuss in § 1.2.3.



22 Introduction

1.1.2 Contact interactions and the Gross–Pitaevskii equation

Now that we understand how condensates can form in gases without interactions we can move
closer to our experimental conditions by looking at what happens when there are interactions.
If the particles are not in constant contact so that one can consider the particles as undergoing
a series of two-body collisions then those collisions can be treated with general scattering
theory [71, §122]. This separation is what it means for the gas to be dilute, which I will define
more precisely in a moment. In quantum scattering theory, all of the results of the interaction
are encoded in the far-field behavior of the wave function of a single particle interacting with
an effective potential which encodes their relative motion. The goal then is to calculate the
scattering amplitude for all angles giving the probability that the particle will scatter into
that angle. At low relative momenta,2 𝑝𝑟 → 0, the scattering amplitude converges to a single
value for all angles [73, §9.2], equal in magnitude to a quantity called the s-wave scattering
length or just scattering length, denoted 𝑎. In this case, the effective potential in the scattering
problem is a hard sphere of radius 𝑎 [71, p. 502]. Since the scattering amplitude as a function
of the scattering angle encodes everything about the collision, and in the condensate all of
the particles have momenta that are very low, the scattering amplitude converges to a value
independent of the scattering angle. Then everything about the interactions in the condensate
should be able to be described in terms of the scattering length.

Although particles can interact in any number of ways, (including some that lead to exactly
solvable systems in one-dimension, see [80] and references therein.), our neutral sodium atoms
do not affect each other at long ranges. Thus we only need consider contact interactions, that
is that the “far field” in the scattering problem is any non-vanishing distance. That means
the interactions can be described by a delta function

𝑔3D𝛿(𝑟 − 𝑟′) (1.15)

where the 𝑔3D parameter3 is the amplitude of the delta function and so is called the three-
dimensional interaction strength.

Now I can be more precise about what it means to be “dilute.” It means that the scattering
length is much less than the average inter-particle distance, that is

|𝑎| ≪ 𝑛−1/𝑑. (1.16)

The absolute value is necessary since scattering length can be positive or negative, depending
on the phase shift imparted by the interaction. Negative scattering lengths are typically asso-
ciate with attractive interactions. Since all properties of the interaction should be expressible
in terms of 𝑎, we can write 𝑔3D as [73, Eqn. 4.11]

𝑔3D =
4𝜋~2𝑎
𝑚

. (1.17)

Now that we have the interaction strength, it would be nice to have a way to describe
the interacting gas in a way that does not involve just summing over all the particle pairs,

2. This is when 𝜆𝑇 is large compared to the distance of the inter-atomic interaction. Taking the Bohr
radius, 𝑎0 ∼ 10−10 m to give this length scale, this happens when 𝑇 . 1K.

3. I use three different 𝑔s to be consistent with the literature. Those with a numerical subscript 𝑔𝑛(𝑧),
are polylogarithmic functions of order 𝑛; those with a subscript like 𝑔𝑛D are real numbers giving the
𝑛-dimensional interaction strength; and those with a parenthetical superscript, 𝑔(𝑛), are correlation
functions of order 𝑛.
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as this would quickly become intractable — it would be worse than an Ising model where
only neighbors can interact. Ising models have so far resisted analytic solutions in three
dimensions [81]. Instead the gas is treated with a mean-field method, one of replacing the
quantum operator, Ψ̂(𝑟, 𝑡), with a classical field, the wave function of the condensate, Ψ0(𝑟, 𝑡),
and neglecting particle correlations. This is why mean-field theories break down in strongly-
interacting systems: strong interactions lead to strong correlations between the particles.
For example, if the particles have very strong repulsive interactions, finding a particle at a
position excludes the possibility of finding another particle at that same position. So finding
a particle gives definite information about the location of other particles and so they are
strongly correlated and neglecting correlations will lead to poor approximations. Neglecting
these correlations leads to the Hartree–Fock approximation of the many-body wave function,
where it is written as a product of a single single-particle wave function at different locations.
This reads

Φ0(𝑟1, 𝑟2, . . . , 𝑟𝑁 ) =

(︂
Ψ0(𝑟1)√

𝑁

)︂(︂
Ψ0(𝑟2)√

𝑁

)︂
. . .

(︂
Ψ0(𝑟𝑁 )√

𝑁

)︂
. (1.18)

This should work to describe the condensate. As long as the condensed fraction is sig-
nificant and interactions are weak, and we may say Ψ0 = ⟨Ψ̂⟩, this should in turn provide
a good description of the overall gas. As long as the external, confining potential does not
vary significantly over the range of inter-particle forces, it will not appreciably affect the in-
teractions or interaction energy, and the assumptions that lead to 𝑔3D will still hold. Then,
for the condensate at any point, the interaction energy should just depend on the interaction
strength and the field density, |Ψ0(𝑟, 𝑡)|2. This density times the interaction strength will give
the interaction energy. In an external potential 𝑉 (𝑟, 𝑡), the Hamiltonian will then be [82,83]

�̂� =
−~2

2𝑚
∇2 + 𝑉 (𝑟, 𝑡) + 𝑔3D |Ψ0(𝑟, 𝑡)|2 . (1.19)

Considering stationary states, Ψ0(𝑟, 𝑡) = Ψ0(𝑟)𝑒
−𝑖𝜇𝑡/~ [73, Eqn. 5.16], (1.19) yields the

time-independent Gross–Pitaevskii equation [73, Eqn. 5.18][︂
−~2

2𝑚
∇2 + 𝑉 (𝑟) + 𝑔3D |Ψ0(𝑟)|2

]︂
Ψ0(𝑟) = 𝜇Ψ0(𝑟), (1.20)

where |Ψ0(𝑟)|2 = 𝑛(𝑟), the density of the condensate at 𝑟. The appearance of the chemical
potential 𝜇 is not surprising if one remembers that the condensate is an eigenstate of the
single-particle Hamiltonian and if the energy of a particle in the condensate changes, it must
change the energy of the condensate by 𝜇. The particle number and the chemical potential
are then related by 𝜇 = 𝜕𝐸/𝜕𝑁 where 𝑁 is the total particle number and 𝐸 is given by the
energy functional [73, Eqn. 5.8]

𝐸 =

∫︁ [︂
~2

2𝑚
|∇Ψ0|2 + 𝑉 (𝑟)|Ψ0|2 +

𝑔3D
2

|Ψ0|4
]︂
d𝑟 . (1.21)

Then fixing either 𝜇 or 𝑁 , will fix the other and we have an equation we can solve for the
wave function of the condensate.

Having a term in the Hamiltonian that depends on the density of the condensate makes
it natural to ask over what length scale the density can be expected to change. This is called
the healing length, 𝜉, which reads [73, Eqn.4.37]

𝜉 =
~√

2𝑚𝑛𝑔3D
. (1.22)



24 Introduction

This is the length scale associated with the point at which the excitations of the gas
reach the energy scale of the interaction energy. Bogoliubov theory describes the low-energy
excitations of a weakly-interacting condensate as non-interacting quasi-particles [84]. The
dispersion relation of these excitations is [73, 4.31]

𝜖(𝑝) =

√︃
𝑔3D𝑛

𝑚
𝑝2 +

(︂
𝑝2

2𝑚

)︂2

. (1.23)

There is a linear part for low-momentum excitations, and a quadratic part for higher-energy
ones which have a particle-like 𝜖(𝑝) = 𝑝2/2𝑚 dispersion relation. The latter should dominate
over the former when 𝑝2/2𝑚 ∼ 𝑔3D𝑛. Setting 𝑝2/2𝑚 = 𝑔3D𝑛 and associating a length scale
with this momentum, 𝑝 = ~/𝜉, one obtains (1.22).

It should be noted that equation (1.20) is based on a number of assumptions and approxi-
mations and only describes the behavior of the condensate, neglecting the particles in excited
states. If a significant part of the gas is still excited, i.e. if 𝑁/𝑁0 differs significantly from
one, then interactions with this thermal part will be significant and neglected by (1.20). It
also relies on there being many particles in the ground state to average over so only applies if
𝑁 is large. It also will break down if the interactions are too strong since this will cause cor-
relations. What is more, if the scattering length is on the order of the inter-particle distance,
the diltue condition (1.16) breaks down and equation (1.20) cannot be used. I will discuss
further differences in regimes in § 1.2.2 and following.

Now we have what we need to start talking in more detail about one-dimensional systems
with interactions.

1.2 One-dimensional systems

The basic trick behind making a one-dimensional system in the real, three-dimensional world
is to make excitations in two of the dimensions so energetically costly, and make the overall
energy so low, that there is not enough energy in the entire system to excite even one trans-
verse mode. This way, all excitations are in the longitudinal mode, transverse dynamics are
prevented, particles cannot get past each other without interacting, and the system is effec-
tively one dimensional. This was first realized experimentally by Görlitz et al. [85], although
theoretical research into one-dimensional Bose gases goes back much further [48,86,87]. Even
before this “freezing out” of the dynamics in two dimensions there are regimes where phase
fluctuations start to dominate in elongated traps [88] giving a picture of what will happen in
the one-dimensional regime even before it is reached.

Because, as mentioned above, there is no condensation in one dimension at the thermo-
dynamic limit, so there can be no true phase transitions in one-dimensional systems. This
means we cannot break the phase diagram up into different phases via an order parameter.
However there can be different regions of the phase diagram where different features dominate
(e.g. kinetic vs. interaction energy) and the system has different behaviors. These can be
characterized by differences in the fluctuations in different regions.

While one dimensional systems are amenable to approximate techniques like Bogoliubov
and mean-field theory where they are applicable, they have the attractive feature of admitting
exact solutions. Apart from the theoretical interest, they offer experimentalists excellent
points of comparison. Precise predictions for experimentally testable quantities can be made
and properties of the system can be extracted by fits to analytical formulae.
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Transverse energy scales in the effectively 1-D harmonic trap

𝐸⊥

𝐸⊥
0

𝐸⊥
1

𝐸⊥
2

𝑥, 𝑦

𝜇

𝑘𝐵𝑇 ~𝜔⊥

Figure 1.2 – Energy given to the atoms by the transverse confinement, 𝐸⊥, where 𝐸⊥
𝑛

is the 𝑛th energy level in the transverse harmonic trap. This is the non-interacting case
so 𝜇 < 𝐸⊥

0 . With even weak interactions, 𝜇 would rise above this level (1.28).

First I will explain in more detail how to make an effectively one-dimensional system and
relate its interaction strength to the more general and well-studied scattering length, 𝑎. Then
I will need to establish a way to tell different regimes of the gas apart. Then I will discuss some
of those means uniquely available in one dimension: exact solutions for the wave function and
properties of the gas. In each of these sections I will point out crossovers they predict. Then
I will sketch an outline of the phase diagram we want to explore in our experiment, giving
the characteristics of its different regions.

1.2.1 Reducing the dimension

The method for producing a gas that behaves as if it is one-dimensional is to confine it with
an external potential so strongly in the other two dimensions, and reduce the energy in the
system so much, that excitations in the transverse direction are inaccessible [89]. In the
experiments that have made one-dimensional gases, from the first experiment [85] to ones at
weak [90] or variable [91,92] effective interaction strengths all use harmonic transverse trapping
potentials. This has another advantage of making the ground state in the transverse direction
a Gaussian and an effective, one-dimensional scattering length can be calculated from the
three dimensional scattering length [93]. So I will discuss this case where the longitudinal
potential is homogeneous, but the transverse confining potential is harmonic.

The energetic scheme for confinement is illustrated in Figure 1.2. The transverse potential
is harmonic in both directions, 𝑥 and 𝑦, with frequency 𝜔⊥, making the transverse energy
levels 𝐸⊥

𝑛 = (𝑛 + 1/2)~𝜔⊥ where 𝑛 = 0, 1, . . .. If 𝑘𝐵𝑇 < 𝐸⊥
1 , there will not be enough

kinetic energy in the system to form any transverse excitations. And if 𝜇 < 𝐸⊥
1 then a

particle entering or leaving the condensate will also not impart enough energy to excite the
first excited transverse state. In this way we can be sure that all the atoms are in the ground
state in the transverse direction and that all the dynamics are happening in the longitudinal
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direction 𝑧. In practice, temperatures this low are not always achieved with the temperature
ranging from 𝑘𝐵𝑇 ≃ .9~𝜔⊥ [91] or 1.45~𝜔⊥ [92], which would keep the thermal energy below
the first excited state with 𝐸⊥

1 = 1.5~𝜔⊥, to 𝑘𝑘𝐵𝑇 = 2.4~𝜔⊥ [91] or 2.75~𝜔⊥ [94]. This means
that some fraction of the atoms still have three-dimensional dynamics, but certain features of
one-dimensional systems can be present as in [92] if the longitudinal dynamics are dominant.

Since higher transverse frequencies mean the one-dimensional regime can be reached at
higher temperature, 𝜔⊥/2𝜋 / 3 kHz are typical [91,92,94] but ones as low as 𝜔⊥/2𝜋 ≈ 360Hz
have been used [85].

It would be conceptually useful to have a one-dimensional Hamiltonian; one where all of
the motion is in one dimension, 𝑧, and the interactions are still contact interactions. This is
called the Lieb–Liniger Hamiltonian [48]. For 𝑁 particles, it has the form

�̂� = − ~2

2𝑚

𝑁∑︁
𝑖=1

𝜕2

𝜕𝑧2
+ 𝑔1D

∑︁
{𝑖,𝑗}

𝛿(𝑧𝑖 − 𝑧𝑗) (1.24)

where 𝛿 is the Dirac delta-function, {𝑖, 𝑗} represents distinct particle pairs, and 𝑔1D is a one-
dimensional interaction strength, analogous to 𝑔3D in 1.20, that we must relate to the more
well-measured three-dimensional interaction properties, i.e. the scattering length, 𝑎. To do
this we will make a one-dimensional version of the Gross-Pitaevskii equation (1.20) for the
cylinder trap and then extend it to an elongated harmonic trap.

As mentioned above, in a cylindrical trap, where the transverse confinement is har-
monic but the longitudinal one is homogeneous, it is in the transverse direction that the
system is expected to appear in the ground state. Thus, it is possible to rewrite Ψ0 as
Ψ0 =

√
𝑛1D𝑓(𝜌⊥)/𝑎⊥, a function of the one-dimensional radius, 𝑛1D = 𝑁/𝐿 where 𝑁 the

total atom number and 𝐿 is the length of the trap; transverse radius, 𝜌⊥ = 𝑟⊥/𝑎⊥, where 𝑟⊥
is just the radial distance from the central axis; and 𝑎⊥ =

√︀
~/𝑚𝜔⊥ is the length scale associ-

ated with transverse harmonic oscillator. It then becomes possible to write a one-dimensional
version of 1.20 as in terms of this function, 𝑓(𝜌⊥). This reads [73, Eqn. 17.3][︂

−1

2

𝜕2

𝜕𝜌2⊥
− 1

2𝜌⊥

𝜕

𝜕𝜌⊥
+

1

2
𝜌2⊥ + 4𝜋𝑎𝑛1D𝑓

2

]︂
𝑓(𝜌⊥) =

𝜇

~𝜔⊥
𝑓(𝜌⊥) (1.25)

with the normalization condition that

2𝜋

∫︁
𝜌⊥|𝑓(𝜌⊥)|2 d𝜌⊥ = 1. (1.26)

From here we can get the limit where we expect the cross-over to the one-dimensional regime
and from there the chemical potential in those regimes. Then we can get the effective one-
dimensional interaction strength with which particles moving in the longitudinal direction will
interact, since this is not the same as 𝑔3D.

When 𝑎𝑛1D ≫ 1, the interaction energy in (1.25) will dominate and the system is in the
Thomas–Fermi regime in the radial direction.4 Here, excitations of the transverse harmonic
oscillator are expected and the transverse density should take the form of a parabola (the
Thomas–Fermi profile). Since interactions dominate, in the ground state, the kinetic energy
term in (1.25) can be neglected. Using this and (1.26) one can find the chemical potential

4. The Thomas–Fermi approximation is a more general construction with broader applicability then one-
dimensional systems [71, §70], even within cold atom physics [73, § 5.2].
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where the system is expected to cross between the one-dimensional regime and the Thomas–
Fermi one. This is just is [73, Eqn. 17.4]

𝜇

~𝜔⊥
= 2

√
𝑎𝑛1D. (1.27)

In the case where 𝑎𝑛1D ≪ 1, the transverse profile will be in the Gaussian ground state of the
harmonic oscillator, and we are in a weakly interacting one-dimensional system. The chemical
potential is then [73, Eqn. 17.6]

𝜇

~𝜔⊥
= 1 + 2𝑎𝑛1D. (1.28)

The factor of unity on the right-hand side is from the transverse ground state. If one wants
to define a 𝜇1D for the one-dimensional system, this can be omitted.

By separation of variables into axial and radial components in the harmonic trap and
breaking the wave function up into odd and even components, it is possible to define a one-
dimensional effective scattering length in terms of the three-dimensional scattering length [73,
Eqn. 17.35],

𝑎1D =
𝑎2⊥
𝑎
. (1.29)

This behaves as the three dimensional scattering length, giving the phase shift in the wave
scattered by a hard-sphere potential and giving a way to define the interaction parameters.
The one-dimensional interaction strength can then be defined in terms of the one-dimensional,
or three-dimensional, scattering length as [73, p. 332]

𝑔1D =
2~2

𝑚𝑎1D
=

2~2

𝑚

𝑎

𝑎2⊥
. (1.30)

See [93] for details of the calculation of the two quantities above.
Because these one-dimensional interaction parameters are derived from the Gross-Pitaevskii

equation, which relies on mean-field theory, the above forms require that 𝑎≪ 𝑎⊥. If this con-
dition is not met, they must be renormalized [93].

Adding a harmonic confinement in the longitudinal direction, 𝑉 (𝑧) = 𝑚𝜔2
𝑧𝑧

2/2, means
the density, and hence the interaction energy, will no longer be uniform in the longitudinal
direction. Instead, the one-dimensional density will be function of the longitudinal position,
𝑛1D = 𝑛1D(𝑧) and if the longitudinal trapping potential is still smooth, we can make a local
density approximation for the chemical potential,

𝜇(𝑛1D(𝑧)) + 𝑉 (𝑧) = 𝜇0 (1.31)

where 𝜇0 is the overall chemical potential which is still fixed by insisting that
∫︀
𝑛1D(𝑧) d𝑧 = 𝑁 ,

where 𝑁 is the total atom number. This means we assume that the density, and properties
dependent on it, are fixed at any particular 𝑧 + d𝑧, but may vary with 𝑧. The transition
between the radial Thomas-Fermi regime and being in the radial ground state then depends
on whether the quantity [73, Eqn. 17.8]

𝑁
𝜔𝑧

𝜔⊥

𝑎

𝑎⊥
(1.32)

is large or small compared to unity. If 𝑁𝜔𝑧𝑎/𝜔⊥𝑎⊥ ≫ 1 then the system is in the Thomas–
Fermi regime and if 𝑁𝜔𝑧𝑎/𝜔⊥𝑎⊥ ≪ 1 then it is the radial ground state.
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Schematics of the many-body wave function

Figure 1.3 – Top — Absolute value of the one-dimensional many-body wave function
with all but one particle fixed, Φ0(𝑧; 𝑧1, 𝑧2, . . . , 𝑧𝑁 ) (1.18), in the strongly-interacting
regime. Here, Φ0 → 0 at the location of the atoms, the wave function is strongly bent and
the healing length (1.22) is shortened. Bottom — Similar in the weakly-interacting regime.
Here Φ0 need not reach zero and the healing length is longer. Adapted from [47, Fig. 2]

These, and (1.25) tell us that in order to keep the chemical potential low enough to be
in the one-dimensional regime, we want the energy associated with interactions, 𝑎𝑛1D to be
small compared to the energy associated with the transverse confinement, ~𝜔⊥. This can
occur when the interactions are weak, that is 𝑎 is small, but this limits the systems one can
explore and exclude some exactly solvable systems [69] whose solutions rely on the atoms
being impenetrable. So, the usual thing is to work in very elongated traps to keep 𝜔𝑧/𝜔⊥ low.
Typically this means a confining frequency aspect ratios of 𝜔𝑧/𝜔⊥ ∼ 1/100 [47, 85, 91]. For
comparison, a sodium atom in a harmonic trap of 𝜔⊥ = 2kHz will yield the ratio 𝑎/𝑎⊥ ≈ 1/500
and a typical atom number for the one-dimensional regime would be 𝑁 ∼ 104 [85].

1.2.2 One-dimensional interaction regimes

From the above discussions it should be clear that much depends on the energy associated
with interactions, which scales like 𝑔1D𝑛1D, which gives the interaction energy per unit length
and so depends both on the interaction strength and the density. Since there is no true
condensate in one dimension except at 𝑔3D and 𝑇 = 0, there will always be excitations of some
kind. Whether these excitations are due to kinetic or interaction energy is the distinguishing
feature between the strongly- and weakly-interacting regimes.

1.2.2.1 Strong vs. weak interactions

In one dimension the average inter-particle separation will be by definition 1/𝑛1D. Since
kinetic energy is given by −~2/2𝑚 · 𝜕2𝜓

⧸︀
𝜕𝑧2 , it is greater the more steeply bent the wave

function is and will also depend on the density. At the points where the atoms collide, |Ψ| will
reach a minimum. If the particles are hard-cored, meaning 𝑔1D → ∞, then |Ψ| → 0 where the
particles meet, as in the upper panel of Figure 1.3. For finite values of 𝑔1D, the minimum will
be higher as in the lower panel. For a given interaction strength, the average kinetic energy
in a given length will also depend on the density; the “valleys” caused by the particles become
both more frequent, and steeper, as the number of particles per length increases. Consider a
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the example of the ground state between two hard-core particles separated by a length 1/𝑛1D.
The ground state wave function between the two particles will be that of a particle in a box
of length 1/𝑛1D. That is, 𝜓(𝑧) ∝ sin(𝜋𝑧𝑛1D). The kinetic energy operator will then yield

−~2

2𝑚

𝜕2𝜓

𝜕𝑧2
∝ ~2

2𝑚
𝑛21D sin(𝜋𝑧𝑛1D). (1.33)

Therefore, the kinetic energy scale for the ground state should go like the linear density squared
[48, Eq. 3.] and we can associate an energy scale with the kinetic energy of 𝐸kin = ~2𝑛21D/2𝑚.
When one of either 𝐸kin or 𝑔1D𝑛1D dominates over the other, we can say whether we are in a
regime dominated by interactions or not. So let their ratio be the dimensionless parameter

𝛾 =
𝑚𝑔1D
~2𝑛1D

, (1.34)

where 𝑛1D will depend on 𝑧 if the longitudinal trapping is inhomogeneous.
This 𝛾 is the Lieb–Liniger parameter from [48] used to characterize the strength of the

interactions. When 𝛾 ≪ 1 we can be sure that the kinetic energy will dominate over the
interaction energy and we are in the weakly-interacting regime (Figure 1.3, below) where the
Gross–Pitaevskii equation and mean-field theories can be used. When 𝛾 ≫ 1 we can be sure
that interaction energy will dominate and we are in the strongly-interacting regime (Figure 1.3
above) where the interaction is strong enough to act like the Pauli exclusion principle does for
fermions. Here the particle locations are correlated, they cannot be found in the same place
and tend not to be found near each other. Therefore, the Hartree–Fock approximation (1.18)
breaks down and the Gross–Pitaevskii equation does not hold but exact solutions become
tractable [95].

I will go into more detail about these regimes in § 1.2.4. Because they involve systems
with significant interaction energies, mean-field theory will be insufficient to discuss them all.
Fortunately in one dimension, we have exact solutions we can appeal to that are valid for
strong interactions.

1.2.2.2 Strong interactions and exact solutions

One dimensional systems are unique in the study of quantum many-body problems in that
they admit exact solutions (see [80] and references therein). These are theoretically gratifying
and serve as points of departure for other theories and approximations to widen their scope.
The importance for our experiment is that they make some predictions that do not arise in
approximate theories like Bogoliubov theory and the local density approximation.

The exact solutions I will be talking about will be ones for systems interacting via contact
interactions although other exact models do exist [96]. First I will treat systems at zero
temperature with the Lieb and Liniger model [48] which makes use of the Bethe ansatz.
Then I will touch on the Yang-Yang generalization of this [50] with gives the thermodynamic
properties of a system at finite temperature.

At zero temperature: the Lieb and Liniger model Three years after Girardau solved
the problem for impenetrable bosons by mapping them to fermions in 1960 [86], Lieb and
Liniger [48] found an exact solution for systems of particles with repulsive interactions, in a
periodic box, obeying the Hamiltonian (1.24).

Their method relies on the Bethe ansatz [68, 97]. The essence of the ansatz is to assume
that the wave function, Ψ, is a sum of plane waves. It must be the case that Ψ is symmetric
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or anti-symmetric under exchange of particle labels if the particles are bosons or fermions,
respectively. This lets one turn a single valid sum of plane waves, corresponding to a certain
ordering of particles, into the whole set of plane waves that must be summed over by permuting
over all of the possible particle orderings. In a closed system, such as they treated, this means
the action of the entire permutation group and includes every possible ordering. In an open
system, such as those solved by J. B. McGuire [87] and later by B. Sutherland [98] and
M. Olshanii [99], the system undergoes a particular set of collisions defining a particular set
of permutations.5

The solutions obtained via the Bethe ansatz method have the form

Ψ(𝑥1, 𝑥2, . . . , 𝑥𝑁 ) =
∑︁
{𝒫}

𝑏(𝒫)𝒫 exp

⎛⎝𝑖 𝑁∑︁
𝑗=1

𝑘𝑗𝑥𝑗

⎞⎠ (1.35)

where {𝒫} is the set of operators that each give a different permutation of the particles; {𝑘}
is the set of quasi-momenta that respect the relationship

~2

2𝑚

∑︁
𝑗

𝑘2𝑗 = 𝐸 (1.36)

and {𝑏} is a set of coefficients, one fore each permutation, that must be solved for. This can
be done by turning the 𝛿-potential interaction into boundary conditions on Ψ; namely that Ψ
is continuous but there is a jump of size 𝑔1D in the derivative whenever particles collide. This,
the symmetry conditions on Ψ under exchange of particles, and (1.36) yield a set of parallel
equations large enough to solve for all 𝑏 values and construct the exact solution (1.35).

The spectrum predicted by Lieb in a second, concurrent paper [49], is shown in Figure 1.4.
It predicts a second branch in the excitation spectrum, in addition to the excitations predicted
by Bogoliubov theory. This Lieb II branch comprises the “hole excitations”, so called because
they are gaps in the energy spectrum. The Bogoliubov excitations are also predicted as the
Lieb I branch “particle excitations”, not to be confused with the higher-momentum, particle-
like part of the Bogoliubov spectrum. These spectra are compared in Figure 1.4.

Both the Lieb I excitations [101] and the Lieb II excitations [102] have different spectra
in different regimes of the zero temperature gas, defined by momentum of the excitations and
the interaction strength. These spectra can be probed via Bragg spectroscopy which I will
outline in Chapter 2.

This solution holds at any non-negative interaction strength, it is only valid at zero tem-
perature, when all of the kinetic energy is contained in coherent excitations.

At finite temperature: the Yang-Yang model In 1969 Yang and Yang extended the
applicability of this model to systems of finite temperature at thermal equilibrium [50]. They
proved that the equations given by Bethe’s ansatz are applicable at all temperatures and so
wave functions constructed by that method are valid at finite temperature. This method also
gives the thermodynamic properties of the gas at equilibrium and the excitation spectra at
finite temperature.

This model gives different predictions for the behavior of a gas at finite temperature
than the local density approximation, which have been verified by experiment [91]. Starting
from the Yang-Yang results for a gas at equilibrium, the extension to the dynamics of out-of

5. I will come back to this briefly in 6.2.2.2 since billiards provide a method of generating these permutations.
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Excitation spectrum of the Lieb–Liniger model

Figure 1.4 – Excitation spectrum predicted by the Lieb and Liniger solution (solid lines)
compared to the Bogoliubov mean-field spectrum (equation (1.23), dashed line). Notice
that the Lieb and Liniger solution predicts a second branch of excitations. These are
associated with “hole excitations.” The momentum and energy have been scaled by the
Fermi momentum, 𝑝𝐹 = 𝜋~𝑛1D, and the Fermi energy, 𝐸𝐹 = 𝑝2𝐹 /2𝑚 respectively [73,
p. 334]. Adapted from [100, Fig. 24.6].

equilibrium systems was made, going under the name generalized hydrodynamics [103, 104]
which also seems to give closer description of experimental results than the local density
approximation and mean-field theories [105].

1.2.3 Correlations and fluctuations

Beyond the division between strong and weak interactions, the phase diagram of a one-
dimensional gas can be broken up into smaller regions. These will exhibit differences in
their correlation function or degree of coherence. This notion arose in the context of quan-
tum optics [106] and these functions are proportional to the average correlations within (or
between) a field (or fields). They are also perfectly well defined for quantum field operators
such as Ψ̂𝑘 = �̂�𝑘𝜓𝑘, where �̂�𝑘 is the annihilation operator for a particle in state 𝑘 and 𝜓𝑘 is
that state’s wave function. In general, they can measure correlations in space and time. I will
only consider stationary states so I drop the time dependence. As we will see, these provide
a method for distinguishing different regions of the phase diagram that is more granular than
an order parameter. An order parameter will distinguish between truly different phases of a
system, characterized by a broken symmetry but there can exist different regimes with dif-
ferent physical properties that will have different correlation characteristics even if they have
the same symmetries.

I will discuss the first two degrees of coherence, the first being associated with correla-
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tions in the phase fluctuations and the second being associated with correlations in density
fluctuations.

1.2.3.1 First-order correlation function

Let Ψ̂𝑘(𝑟) be the field operator for state 𝑘. This lets us define the average number density
𝑛(𝑟) = ⟨Ψ̂†(𝑟)Ψ̂(𝑟)⟩ where Ψ̂(𝑟) =

∑︀
𝑘 �̂�𝑘𝜓𝑘(𝑟)/

√
𝑉 is the field operator in the second-

quantization picture for a system of volume 𝑉 . Then the first-order correlation function may
be written [107, Eqn. 2.16]

𝑔(1)(𝑟, 𝑟′) =
⟨Ψ̂†(𝑟)Ψ̂(𝑟′)⟩√︀
𝑛(𝑟)𝑛(𝑟′)

(1.37)

where the average is taken over the position, 𝑟, 𝑟′. This measures phase correlations since the
average density will be normalized off, leaving only the overlap of the phases.

It is common to also define 𝑔(1)(𝑟) where 𝑟′ = 𝑟0, the position of maximum density, serves
as a fixed point of comparison and is left out of the argument.

Far from degeneracy, in the cylinder trap, with no interactions, 𝐸0 − 𝜇 ≫ 𝑘𝐵𝑇 , making
⟨𝑁𝑇 ⟩ ≪ 𝑁ub, or equivalently, the de Broglie wavelength is much smaller than even the smallest
average inter-particle distance, 𝜆𝑇 ≪ 1/𝑛. Here the correlations will be on the scale of the de
Broglie wavelength and (1.37) can be approximated as [47, Eqn. 17]

𝑔(1)(𝑧) ≃ 𝑒−𝛿𝑧2/4𝜋𝜆2
𝑇 , (1.38)

where 𝛿𝑧 = |𝑧−𝑧0| and 𝑧 is the long axis of the cylindrical potential. In the degenerate regime,
𝐸0 − 𝜇 ≪ 𝑘𝐵𝑇 , the fugacity in (1.12) goes to one, and many particles are found within a de
Broglie wave length from each other, i.e. 𝜆𝑇 ≫ 1/𝑛. This puts the correlation length on the
scale of 𝑛𝜆2𝑇 . Now (1.37) is approximately [47, Eqn. 18]

𝑔(1)(𝑧) ≃ 𝑒−2𝜋𝛿𝑧/𝑛𝜆2
𝑇 . (1.39)

In one dimension, even at 𝑇 = 0, 𝑁ub is divergent and so particles can always populate
the excited states, if they can find the energy. At zero temperature, interaction energy can be
enough to kick particles from the ground state into the excited states. This means for systems
of finite temperature or with appreciable interactions there will always be populations in
multiple states of different phases, which will be proportional to the ground-state population
even in the thermodynamic limit. Then there will be significant fluctuations in the phase [108]
and phase correlations will fall off exponentially [109], as in (1.39), but the correlation length
will no longer be the de Broglie wavelength but ℓ𝜑, some function of the temperature and the
chemical potential [88]. Then (1.39) has a more general form and reads

𝑔(1)(𝑧) ∼ 𝑒
−𝛿𝑧
ℓ𝜑 . (1.40)

1.2.3.2 Second-order correlation function

Once can define a second-order or two-point correlation function [107, Eqn. 2.17],

𝑔(2)(𝑟, 𝑟′) =
⟨Ψ̂†(𝑟′)Ψ̂†(𝑟)Ψ̂(𝑟)Ψ̂(𝑟′)⟩

𝑛(𝑟)𝑛(𝑟′)
. (1.41)

This is proportional to finding an actual particle at 𝑟′ if one has already found one at 𝑟; it
measures the correlations in the fluctuations around the density at 𝑟.
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Let me rewrite (1.41) in the form used by Kheruntsyan et al. in [56] from whom I take
my definition of the phase regimes. This will also make the connection to density fluctuations
clearer. This will be for a one-dimensional gas with the long dimension along 𝑧. The field
operator Ψ̂(𝑧) has the commutation relation [71, Eqn. 64.22][︁

Ψ̂(𝑧), Ψ̂†(𝑧′)
]︁
= 𝛿(𝑧 − 𝑧′). (1.42)

Therefore at 𝑧′ = 𝑧, (1.41) reads

𝑔(2)(𝑧, 𝑧) =

⟨
Ψ̂†Ψ̂Ψ̂†Ψ̂

⟩
−
⟨
Ψ̂†Ψ̂

⟩
𝑛2

, (1.43)

where the argument of Ψ̂ has been dropped for neatness. Defining the variance of the density
as
⟨︀
𝛿𝑛2(𝑧)

⟩︀
=
⟨︀
𝑛2(𝑧)

⟩︀
−⟨𝑛(𝑧)⟩2 and inserting 0 = ⟨𝑛(𝑧)⟩2−⟨𝑛(𝑧)⟩2 into equation (1.43) yields

𝑔(2)(𝑧) ≡ 𝑔(2)(𝑧, 𝑧) = 1 +

⟨︀
𝛿𝑛2(𝑧)

⟩︀
− ⟨𝑛(𝑧)⟩

𝑛(𝑧)2
. (1.44)

It is this form I will use to distinguish the regions of the phase diagram, in line with [56].
When 𝑧 is set to zero, where the density is maximum, this becomes 𝑔(2)(0) and it is this we
will use to distinguish phase regions.

This correlation function can be calculated empirically by measuring fluctuations and cal-
culating (1.44). This is a key consideration in our experimental design. In order to say things
about correlations and fluctuations, statistics must be gathered over a significant number of
experimental realizations. The higher the repetition rate on the experiment is, the more in-
stances can be averaged over and the more reliable the statistics can be. Many of our major
choices in experimental design were made with the goal of increasing the repetition rate and
I will point them out in Chapter 2.

1.2.4 Phase diagram and correlations in different regimes

Equation (1.44) is proportional to the likelihood of finding two particles in the same place.
When finding the second one is statistically independent of finding the first, 𝑔(2)(𝑧) = 1, while
𝑔(2)(𝑧) = 0 indicates a certainty that no second particle will be found. Clearly this should tell
us something about interactions. When the particles do not interact, particles can be found
in the same location. If the phases are incoherent, as at higher temperatures, detecting a
particle at 𝑟 location does not diminish the chances of finding another particle at nearby 𝑟′.
In fact, it makes it more likely because the probability amplitudes for detecting each boson
at the other location interfere constructively. This becomes even more true as 𝑟′ → 𝑟. This
is the Hanbury Brown and Twiss effect [110, 111], also known as bunching. It is expected to
be maximal in a thermal, ideal Bose gas where 𝑔(2)(𝑧) = 2. Interactions impose an energy
cost to particles being near each other so finding a particle at 𝑟 makes it less likely to bring
another there. If the interactions become very strong, it becomes impossible and 𝑔(2)(𝑧) → 0
if 𝛾 → ∞ and the temperature is not so high as to overcome this interaction energy cost.
Aside from these there is the quasi-condensate regime. Here, the temperature is low enough
and the interactions are present, but weak enough, so that finding a particle at 𝑟 does not
give very much information about finding another one at 𝑟′ and 𝑔(2)(𝑧) ≈ 1.

The regions can be further divided by whether fluctuations from the interaction energy or
kinetic energy is more prevalent. I will examine the case for uniform density. In the harmonic
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Phase diagram of a one-dimensional Bose gas

Figure 1.5 – One-dimensional phase diagram. Axes are defined in the inset from (1.34)
and (1.45). Regimes are discussed in § 1.2.4. Recall that the boundaries between regions
are not true phase transitions associated with broken symmetries and are instead smooth
crossovers and boundary lines on the graph are meant to serve as guides.

trap with inhomogeneous density, different parts of the gas can be in different regimes but
a local density approximation, 𝑛 → 𝑛(𝑧), can be made. To tell which kind of fluctuations
dominate, it will be useful to define a temperature scale relative to the kinetic energy to go
with 𝛾 (defined in equation (1.34)) which defines the interaction regime. To this end, we
define the reduced temperature, 𝜏 , [56] as the thermal energy scaled by the kinetic energy
scale, 𝐸kin. This reads

𝜏 =
𝑘𝐵𝑇

𝐸kin
=

2𝑚𝑘𝐵𝑇

~2𝑛21D
(1.45)

where 𝐸kin = ~2𝑛21D/2𝑚 as before. This should give a sense of the energy of thermal fluctua-
tions in the gas without counting coherent excitations.

It will also be useful to have a length scale, 𝑙𝑐, on which we expect correlations to decay.
This will be different depending on the regime which the gas is in and I will give values for
the different regimes in the relevant sections.

Now we have everything we need to talk about the different regimes that the gas can be
in and how the correlation functions behave in them. At finite temperature there are three
overall regimes labeled in bold text in Figure 1.5, two of which have sub-domains related to
what kind fluctuations are giving rise to the value of 𝑔(2)(𝑧) which characterizes the region. I
will discuss the full phase diagram at finite temperature, touching upon the transition to the
classical gas, and then discuss a few features of the zero temperature case since apart from
these features it is just a sub-domain of the finite-temperature case. I will use the 𝑔(2)(𝑧 = 0),
at the point of maximum density to characterize the regions, but the reader should be aware
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that in an inhomogeneous gas could have different parts in different phase regimes. Details
are in [56].

Strongly interacting regime This is also called the strong coupling or Tonks-Girardeau
regime when it is in one dimension after the physicists who first characterized one dimensional
gases of hard spheres in the classical [112] and quantum [86] cases respectively. This is where
𝛾 & 1 or

√
𝜏 , whichever is larger. Here, the energy cost imposed by interactions is high, so

particles tend to spread out from each other, reducing correlations and 𝑔(2)(0) → 0 for 𝛾 → ∞.
The length scale 𝑙𝑐 ∼ 1/𝑛1D because the particles should be evenly spaced. It should be noted
that particles can be spread out both by high interaction energy or by low density. This is
captured by 𝛾 (1.34) depending on the density. In this regime, it is possible to make a map
to fermions [86] since it is so unlikely to find two particles at the same position, it functions
like the Pauli exclusion principle. It is in this region where 𝛾 is high that the Lieb II branch
excitations are expected to be the most prominent, taking up more of the kinetic energy for
a given momentum as 𝛾 is increased [49, Fig. 3].

Systems of strongly interacting bosons have been made in arrays of tubes [51, 53] with
lattices along the long axis that lead to quasi-particles moving in one dimension with strong
effective interactions by increasing the effective mass [113]; or in tubes where the longitudinal
confinement is tuned to change 𝛾, which depends on the one-dimensional density [52, 114].
Currently, it is difficult to go deep into the strongly interacting regime with atom chip ex-
periments. The crossover has been probed on an atom chip [54]. That experiment relied on
special techniques to increase the transverse trapping frequency [55]. They decrease 𝑎⊥ and
drive up the interaction strength (1.30). However these techniques cannot drive it arbitrarily
high and have not produced systems deep in the strongly interacting regime. The hope is
that the experiment presented in the thesis will provide a way to directly probe a gas of a
single species of boson well in the strongly interacting regime.

Quasi-condensate regime This is also called the intermediate coupling, weakly interacting,
or Gross–Pitaevskii regime since it is the regime where the Gross–Pitaevskii equation (1.25) is
valid. It is characterized by more than just weak interactions, since the ideal Bose gas would
also have weak interactions (i.e. none in the strict sense of “ideal”). This regime also requires
that the temperature be low such that 𝜏2 . 𝛾 . 1. In this regime, changes can be expected
on the order of the healing length, 𝑙𝑐 = 𝜉 given in equation (1.22), since that is what it was
defined for. As discussed above, the phase fluctuates and the phase correlations 𝑔(1)(0) fall
off as in equation (1.40). How the phase coherence length is determined depends on whether
the fluctuations that cause it to fall off are quantum or thermal fluctuations. In the quantum
degenerate regime, where 𝜏 ≪ 𝛾 . 1, quantum fluctuations suppress the phase coherence
and [57]

ℓ𝜑 ∼ 𝜉 exp(𝜋/
√
𝛾). (1.46)

When 𝜏 ≫ 𝛾 ≫ 𝜏2 the phase coherence is destroyed by thermal fluctuations, the gas is in the
thermal degenerate regime or is a thermal quasi-condensate, and ℓ𝜑 = ~2𝑛1D/𝑚𝑘𝐵𝑇 [115]. In
both cases, ℓ𝜑 ≫ 𝑙𝑐 = 𝜉 and there will be some noticeable (if not long-range) phase coherence.
This will make 𝑔(2)(0) ≈ 1 with different corrections depending on whether the decoherence
is caused by thermal or quantum fluctuations. In the quantum case, the correlation function
will be

𝑔(2)(0) = 1− 2

√
𝛾

𝜋
+

𝜋𝜏2

24𝛾3/4
for 𝜏 ≪ 𝛾 ≪ 1. (1.47)
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While in the thermal condensate regime

𝑔(2)(0) = 1 +
𝜏

2
√
𝛾

for 𝛾 ≪ 𝜏 ≪ √
𝛾. (1.48)

All of the trailing terms are small.
This regime, with both weak interactions and quantum degeneracy has generated consid-

erable interest. Because the gas is degenerate, it still has quantum features like short-scale
phase coherence and long-range density correlations. Because the interactions are weak, mean-
field theory applies and the Gross–Pitaevskii equation (1.25) can be used This makes this an
attractive regime for experiments to search for phase coherence [92, 116–119], test the ex-
citation spectrum predicted by Bogoliubov theory [120], look for excitation phenomena like
solitons [121,122] and study superfluidity [123,124].

Decoherent regime This is also called the nearly-ideal gas regime because fluctuations of
both density and phase have taken over coherence of either kind and the gas behaves almost
like an ideal, non-interacting, gas. This happens when 𝛾 . 𝜏2 or

√
𝜏 whichever is lower. If

𝜏 < 1 the gas is still in the decoherent quantum regime, where kinetic excitations dominate
over thermal fluctuations, while when 𝜏 > 1 the gas is in the decoherent classical regime.
Wick’s theorem [125] can be used to show that the correlation function of free, non-interacting
bosons should be 𝑔(2)(0) = 2. The classical or quantum subdomains of the decoherent regime
correspond to different corrections to this figure. In the decoherent quantum regime

𝑔(2)(0) = 2− 4𝛾

𝜏2
for

√
𝛾 ≪ 𝜏 ≪ 1 (1.49)

while in the classical regime

𝑔(2)(0) = 2− 𝛾

√︂
2𝜋

𝜏
for 𝜏 ≫ 1, 𝛾2. (1.50)

In the decoherent classical regime, the de Broglie wavelength (1.13) becomes smaller than the
one-dimensional scattering length (1.29) and so quantum interaction effects disappear and the
gas can be treated classically.

Zero temperature transitions At zero temperature, the gas will be degenerate, that is, in
one of the two coherent regimes listed above, with one crossover between the strong and weakly
interacting regimes around 𝛾 = 1. At zero temperature there is not enough energy to thermally
excite any particles and at zero interaction there can be no quantum depletion so all of the
particles are in the ground state even if the excited states are in-principle thermodynamically
accessible. Here, one gets something like a true BEC, even in the thermodynamic limit since
every single particle is in the ground state. It is not precisely the same however since it does
not come from the excited states being saturated. In the weakly interacting regime, there is
phase coherence which falls off as in equation (1.46), which means that the phase coherence
gets longer as interactions, 𝛾, get less significant. For a system of finite size, it is possible
to have a phase coherence length on order of the system size ℓ𝜑 & 𝐿 and therefore have
something that acts like a true condensate in practice, even if that description is not valid in
the thermodynamic limit [126].

None of the boundaries between these regions are associated with a phase transition except
the transition away from 𝛾, 𝑇 = 0 [56], and even this is arguable because there is no symmetry
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broken when they are crossed and so the regimes can blend smoothly into each other.6 To
experimentally determine which regime the gas is in, 𝑔(2)(0) must be calculated by gathering
many data points over which to average, as discussed previously, and its behavior matched
to the relations above. To do that, and to move between different phase regions, one needs
control over both the temperature and the interaction parameter 𝛾. Although 𝛾 can be
affected by the density at a fixed interaction strength (that is the approach taken in that
past in the experiments cited above) we hope to be able to control interaction strength 𝑔3D
directly, in a manner I will discuss in the next section. The cooling techniques we will use to
control the temperature and shift 𝜏 are fairly standard and I will touch on them in the next
chapter. The technique we will use to control the interaction strength, 𝑔3D and thereby 𝛾 at
all densities is what I will describe next.

1.3 Controlling interaction strength: microwave induced Fano–
Feshbach resonance

Fano–Feshbach resonance (FFR) or just Feshbach resonance is a term used to cover phenom-
ena resulting from the state of elastic collision between a pair of atoms being coupled in one
way or another to their bound molecular state. The location of the resonance refers to the
point where this coupling is strongest. The basic conception in cold-atom physics is that the
energy of a colliding state and a bound state must be brought very close together. This is
usually done by adjusting a background magnetic field which will affect the potential felt by
atoms in different spin states differently [37, 38, 127]. It can also be done by providing pho-
tons which couple the two states. In general this is called either an optical or photo-induced
Feshbach resonance (especially if the photons are in the visible wavelengths) or photoassoci-
ation (especially when it us used to produce molecules instead of just tune the interaction
strength). See the review by K. Jones et al. [42] for more details.

The novel Feshbach resonance we intend to use can be considered a kind of light-induced
Feshbach resonance but with the photons in the microwave range. It was proposed in 2010
by Papoular et al. [43] who calculated the location and width of the resonance for the alkali
metals up cesium. This is why we have included a microwave guide on the atom chip.

In § 1.3.1, I will be covering the bare minimum of background about cold collisions; just
enough to give some sense of what is being coupled to what. For these results I will be relying
on a course by J. Dalibard [128] with supplemental references where appropriate. Then, in
§ 1.3.2, I will talk about the usual magnetic Fano–Feshbach resonance widely used in cold atom
experiments, drawing on two reviews, one by C. Chin [32] and another by T. Kohler [129].
Then in the last part, § 1.3.3, I will deal with the specific case of microwave-induced Feshbach
resonance on which there is naturally very little literature apart from the paper by Papoular
et al. [43]. Implications for the experiment will be discussed at the end.

1.3.1 Basics of cold collisions

A cold collision is a quantum scattering problem (that is the collision part) at very low
kinetic energy (the “cold” part). For the basic framework of quantum scattering theory,
see [71, Ch. XVII] but the core of the method is to transform the problem of two particles

6. A symmetry cannot break smoothly as there is no sense in speaking of a “partially broken symmetry.” A
symmetry is either present or absent and if absent, whatever was accounted for by the symmetry must
be kept track of with the order parameter, no matter how small.
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Collision potentials and scattering length

Figure 1.6 – Left – Example inter-atomic potentials for atoms colliding at energy 𝐸𝑐.
The shallowest bound states are marked with horizontal lines. Right – Scattering length
𝑎2,−2, for 85Rb atoms with one in the |𝐹 = 2,𝑚𝐹 = +2⟩ state and, the other in the
|𝐹 = 2,𝑚𝐹 = −2⟩ state, given in terms of the scattering length in the open channel, 𝑎0,
where the open channel is when both atoms are in the |𝐹 = 2,𝑚𝐹 = −2⟩ state. The
location of the Feshbach resonance where the scattering length diverges is highlighted
with a dashed line. Adapted from [39].

of mass 𝑚1,𝑚2 scattering off each other into a problem of a single particle of mass �̃� =
𝑚1𝑚2/(𝑚1 +𝑚2) scattering off of a central potential, 𝑉 (𝑟). Here, 𝑟 is measured from the
center of mass of the two particles which is taken to be at rest. If the particles have no angular
momentum relative to each other, as will be the case when the relative momentum, 𝑘 → 0, the
potential 𝑉 (𝑟) will be radially symmetric and, if the collisions are elastic, the wave function
of the scattered states will be spherical harmonics with a phase shift relative to the wave
function of the incoming state. This phase shift will be the one imparted by scattering off a
hard sphere of radius 𝑎, the scattering length. That does not mean the potential itself is a
hard sphere. The picture is modified somewhat in low dimension since the trapping potential
is no longer symmetric. This means the angular momentum operator does no commute with
the Hamiltonian. This leads to some corrections due to coupling between states with the same
parity in their angular momentum [130]. At low relative momenta, these do not change the
overall picture radically.

One can then construct a one dimensional radial potential after separation of variables.
Let this be 𝑉 (𝑟), which will be the inter-atomic potential and depend on the internal atomic
states, resembling those depicted in Figure 1.6 and will depend on the internal state of the
atoms. For the sake of example let us say the atoms can be in one of two states, |↑⟩ and
|↓⟩, which can be thought of as spin states. The different combinations of these states lead
to different shapes for 𝑉 (𝑟). When the atomic states, for a given relative kinetic energy, are
such that 𝑟 → ∞ is possible, this is called an open channel. An example of such a state with
energy 𝐸𝑐 is marked on the left of Figure 1.6. Combinations of states where the atoms would
be bound for a given kinetic energy are called closed channels. An example would be the
𝑉↑,↓(𝑟) potential in the same figure. Atoms with relative kinetic energy 𝐸𝑐 would be bound
by this potential if they were in the |↑, ↓⟩ state. A Feshbach resonance consists of narrowing
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the energy gap between the open channel and a bound state of the closed channel. This is
typically done with static magnetic fields which change the energy of the atomic spin states.

This is the usual picture when dealing with a Feshbach resonance but the difference be-
tween the open channel and the closed one can be one of symmetry7 and “narrowing the
energy gap” may be accomplished by coupling with a photon.8 All that is required is that the
open channel be strongly coupled to a bound state of the closed channel.

1.3.2 Fano–Feshbach resonance

The fact that the open and the closed channels rely on a difference in spin states means that
they can be controlled via magnetic field using the Zeeman effect, the shifting of the energy
levels of spin states by magnetic field due to those states having different magnetic moments.
Then the gap between the asymptotic values of the potentials, Δ𝑉 , can be adjusted. For a
Feshbach resonance to occur, it must be a little more than the bound states in the closed
channel become energetically accessible at the collision energy, 𝐸𝑐. The energies must be
matched not just that 𝐸𝑐 is large enough. When this happens, the colliding state overlaps
with a bound state and the particles close enough to interact are in a superposition with
atoms bound in a molecule. If you think about what kind of radius a hard sphere would need
to give the appropriate phase shift for a “scattering” problem that results in a molecule, you
will see that at the resonance, the scattering length diverges.

For cold, elastic collisions, the dependence of the scattering length takes on the form [38]

𝑎(𝐵) = 𝑎0

(︂
1 +

Δ𝐵

𝐵 −𝐵0

)︂
(1.51)

where 𝑎0 is the scattering length far from resonance, Δ𝐵 is the resonance width, and 𝐵0 is
the resonance position where 𝑎 diverges. The width, Δ𝐵, can take a negative value and this
depends on which side of the resonance 𝑎 diverges positively and on which side it diverges
negatively. This results in relationships between scattering length and magnetic field that
take the form of the right hand side of Figure 1.6. At the resonance, the scattering length
diverges, to +∞ on one side and to −∞ on the other, and smoothly goes to the background
value, 𝑎0 far from the resonance, the speed of that return being given by the resonance width.

1.3.3 Microwave induced Fano–Feshbach resonance

The idea behind microwave induced Fano–Feshbach resonance (mw-FFR) is similar to pho-
toassociation: the closed and open channel are not coupled by overlapping their wave functions
but by providing photons that make of the right polarization to virtually populate the closed
channel. The idea is illustrated on the left of Figure 1.7. This leads to the same kind of su-
perposition that causes the scattering length to diverge in the ordinary Feshbach resonance.
Recalling that this kind of resonance has been predicted for alkali atoms and taking a two-
channel model where the spin 𝑆 = −1/2 for both atoms in the singlet state in the open
channel and one of the atoms having 𝑆 = +1/2 in the closed channel, a formula similar to
equation (1.51) can be derived. It is in terms of the frequency of the photons provided and it
reads

𝑎(𝜔) = 𝑎0

(︂
1 +

Δ𝜔

𝜔 − 𝜔0

)︂
, (1.52)

7. In that case the resonance is called a shape resonance [32].
8. This is often called photoassociation [42]
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Collision potentials and scattering length

Figure 1.7 – Left – Potentials for the different collision channels and the microwave
photon of frequency 𝜔 and polarization 𝜎 coupling the colliding state to the bound state
of the closed channel. Right – Scattering length 𝑎, as a function of the detuning from
the resonance, plotted at different values for the magnitude of the microwave field, which
tends to broaden the resonance. Both from [43].

where the width of the resonance is now Δ𝜔 and its position is 𝜔0. This is plotted on the
right in Figure 1.7 at different strength of the microwave magnetic field amplitude, 𝐵, which
affects the width of the resonance. A full-channel model, where coupling between all states is
allowed, results in only small corrections to this, as long as the kinetic energy in the collision
is low enough.

Table 1.1 gives the main results from [43]. 𝐸𝑏 is the energy of shallowest bound level in
the closed channel. The splitting of the channel potentials is still subject to Zeeman effects,
so the exact behavior so the resonance position is at frequency ~𝜔0 ≈ Δ𝐸𝐻𝐹 − |𝐸𝑏| + 𝛼𝐵2

0

where Δ𝐸𝐻𝐹 is the energy difference between the 𝑆 = −1/2 and the 𝑆 = +1/2 sublevels and
the factor 𝛼 is related to the coupling between the channels in the absence of photons. Lastly,
Δ𝜔 is the resonance width which will scale with the amplitude of the microwave magnetic
field like 𝐵2.

Looking at Table 1.1 will help us find an alkali that will let us work with this resonance.
Cesium has the largest width but it is difficult to condense, in fact impossible in a purely
magnetic trap [22, 131]. The negative resonance width is clue to the fact that at zero mag-
netic field, the scattering length is negative [132], part of the difficulty in forming a stable
condensate. The next broadest is sodium, which presents no such difficulties,9 motivated our
choice to work with it.

1.4 Conclusion

This chapter makes clear the kind of system we are going to study, the physics we hope to test,
and give an idea of the ways we have to test them. We are going to make a one-dimensional
system by confining sodium atoms in an elongated harmonic trap, with very tight confinement

9. The first sodium BEC [133] used a magnetic trap with an optical “plug” to prevent spin-flip losses. We
prevent these by one trapping one spin state, see § 2.2.4.
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Microwave induced FFR critical values

7Li 23Na 41K 87Rb 133Cs

|𝐸𝑏|/ℎ (MHz) 12 000 200 140 25 110
𝜔0/2𝜋 (GHz) 12 1.6 0.12 6.8 9.1
𝛼 (kHz ·G−2) 0.33 6.8 21 120 30
Δ𝜔/2𝜋 (Hz) 6 1400 350 60 −4500

Table 1.1 – Reproduced from [43]. Quantities explained in the text. The resonance
width Δ𝜔 is given for when the microwave magnetic field amplitude is 1G

in two dimensions, and then cooling the system enough, so there will not be enough energy
to excite any atoms in the transverse, tightly confined direction. In this configuration, we
will not be able to achieve true Bose–Einstein condensation; there will always be particles
in excited states in the long direction since we will not be able to achieve a system with no
interaction and thermal energy. This means that phase coherence, measured by 𝑔(1)(0) (1.37),
will fall off exponentially. Still, there are some regimes, the quasi-condensate regime, where
the interactions are weak enough and the temperature low enough that the phase coherence
can be significant. The different regions of the phase diagram are closely associated with
different behavior of the density correlations measured by 𝑔(2)(0) which is around one in the
quasi-condensate regime; close to two when the gas is an ideal Bose gas, taking the value
two when the gas is perfectly ideal and non-interacting; and falls to zero in the strongly-
interacting Tonks-Girardeau regime, which has, so far, not been deeply probed directly using
a single species, but either in lattices [53] or just on the edge of the regime [94]. A single tube of
a single species, far in the strongly-interacting regime has yet to be made to compare with the
exact Lieb–Liniger solution. A yet closer comparison would be to make a one-dimensional box
potential. Then the local density approximation and generalized hydrodynamics can be done
away with and exact comparisons can be made. The correlation functions used to distinguish
the different regimes in the gas are defined via ensemble averages, so we will need to take
data over many instances of the system. This demands a high repetition rate, a consideration
which will drive many of our experimental choices.

To explore these different phase regions we will need to control the temperature and the
interaction strength, and measure the correlation functions. We will control the temperature
with the standard technique of evaporative cooling that I will say more about in the next
chapter. The interaction strength (1.34) we hope to control by directly tuning the scattering
length, as opposed to manipulating the density, via a predicted but yet to be confirmed
method: microwave induced Fano–Feshbach resonance, which motivated our choice to work
with sodium and on an atom chip. Atom chips trap atoms with magnetic fields close to
their surface. The magnetic fields needed to produce a Feshbach resonance in sodium require
magnetic fields over 100G [39] or even almost 1000G [127]. This can make it difficult for the
fields generated by the wires to compete and can make trapping difficult.





Chapter 2
Experimental overview

When I arrived, the experimental setup had been completed and put under vacuum up to the
valve (marked V in Figure 2.2) in the transport chain (F). This means the laser system (A
and B) was operational, the oven (C) and initial cooling stage (D and E) was operational,
and the magnetic transport could carry atoms from the initial trapping chamber (E, see page
51) to the valve (V) and back where they were imaged, albeit with a camera body intended
for other purposes (see § 2.3.1.3). What remained to be done was the cleaning, assembly and
installation of the science chamber (G); the manufacture, and assembly of the chip tower as
well as the mounting and testing of the atom chip (see Chapter 3). There were and are other
miscellaneous improvements I will point out where appropriate.

The purpose of this chapter is give a general overview of our experiment: orienting the
reader with respect to the machine, giving critical values, justifying our design choices, and
explaining what we will measure and what we hope that will tell us. For more technical details
on the construction, the reader is referred to the thesis of D. Ben Ali [1], the previous doctoral
student on the project, and to the paper [134] for particular treatment of the permanent-
magnet Zeeman slower. First, in Section 2.1 I will connect to the last chapter by describing
the pressures the physics we are trying to observe puts on our choices. Then in Section 2.2 I
will go through each section of the setup, noting key values and noting a few difficulties and
how they were resolved. Lastly in Section 2.3 I will describe some of the measurements we
hope to make, how we will make them and what we hope they will tell us.

2.1 Experimental goals and considerations

In a sentence, we want to explore the phase diagram of a one dimensional system using the pre-
dicted but yet-to-be observed microwave-induced Fano-Feshbach resonance (see Section 1.3)
to tune the interaction strength. Starting from this novel Feshbach resonance, one can see
from Table 1.1 that the alkali that has both a broad resonance and is relatively simple to
condense is sodium (see arguments against cesium in § 1.3.3). We chose to work on the
32S1/2 → 32P3/2 transition, called the D2 line. We chose this because of the presence of a
cycling transition, |𝐹 = 2⟩ ↔ |𝐹 ′ = 3⟩, absent in the D1, 32S1/2 → 32P1/2, transition [135].
The hyperfine structure of the chosen transition, along with the various frequencies we have
our lasers tuned to, is depicted in Figure 2.1. I will come back to these laser frequencies in
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Hyperfine structure of the sodium D2 transition
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Figure 2.1 – Level structure of sodium with our laser beam frequencies superimposed.
Adapted from [1, Fig. 1.1] and [135, Fig. 2].

§ 2.2.2 after I cover more general considerations.
We want to directly probe a system of bosons with one-dimensional dynamics. This

means that we must make an elongated potential, tightly confined in two dimensions (see
§ 1.2.1). There are a two main ways to do this: arrays of tubes made by interfering optical
beams [52, 136–139] or with an atom chip [44, 47, 92, 105, 120, 140, 141]; although there are
proposals to form highly elongated traps with thin films of permanent magnets that rely on
strong gradients near domain boundaries [142], which has the disadvantage of being impossible
to switch off, or to make optical dipole traps with Fresnel lenses [143]. In the tube array
experiments, the interaction parameter, 𝛾, (1.34) is determined by averaging over all of the
tubes in the array [144]. We want to directly probe a single system in the different phase
regimes rather than make inferences from averages, and we hope that we will be able to tune
the interaction strength itself with this novel Feshbach resonance rather than having to rely on
changing the strength of the confining potential, thus manipulating 𝑎1D = 𝑎⊥/𝑎 by changing
𝑎⊥ (1.29) [52]. This would suggest using an atom chip, which provides other advantages.
Since atom chips are made of gold wires laid down on a substrate, we can incorporate coplanar
waveguides (see 3.1.3) to deliver the microwaves as well as radio frequency wires that can dress
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the trap. We are also not strictly limited to a single tube and have incorporated a second
trapping wire so that we can make an elongated double-well potential in a manner similar
to [145] or using radio frequency fields as in [146].

The other major consideration for us, which should be clear from the last chapter, is the
repetition rate. We are trying to explore a phase diagram that will not have any true phase
transitions and is characterized entirely by smooth crossovers between regions marked out by
different values in the second order correlation function, 𝑔(2), (1.41). Since this is defined in
terms of an ensemble average, many instances of the system must be measured, that is to say,
the ensemble must be well-sampled.1

The small wires on the chip provide steep gradients but not very strong fields so the
atoms must be loaded onto the chip while already cold. Methods for loading atom chips can
be broken into two broad categories [45, §2.6]. One is the practice of loading the cold atoms
from a magneto-optical trap (MOT) right on top of the chip. A typical MOT comprises
six beams in three counter-propagating pairs, one for each axis. The ones made on chips
can use the surface of the chip to reflect some of the beams (a mirror MOT [147]). Often
these are used with some prior cooling stage like a two-dimensional MOT [148, 149] which
only confines in two dimensions and thus makes a beam of cold atoms. The other method
is to cool the atoms in a three-dimensional MOT in another chamber and transport the cold
atoms to the chip (see references in the first paragraph of Chapter 5). We have chosen this
latter option because it allows us to load a MOT for cooling at the same time as we are
condensing and performing observations on the atoms trapped by the chip. This is one reason
why the transport has a corner in it: to isolate the MOT chamber from the science chamber
and prevent light scatted by the MOT from reaching the atoms in the science chamber and
ejecting them from a magnetic trap in the chip chamber.

The next question is how to load the MOT in its own chamber. One way is to load that
MOT from a vapor cell [149–152] which begins with atoms at room temperature but requires
high density (and hence pressure) of the trapped atoms for efficient loading. This means
that the lifetime in the MOT will be very low, or the pressure must be pulsed somehow.
Attaining that high a pressure is also not easy for a sodium experiment since sodium has
a low vapor pressure compared to other alkali metals.2 As a rough comparison, K. Gibble
et al. loaded their MOT from cesium vapor in 0.2 s [151] but cesium has around ten times
the vapor pressure of sodium.2 In order to raise the pressure we would have to heat the
sodium, which would lower the capture rate which scales inversely with the most probable
speed cubed [151, Eqn. 1]. This low vapor pressure, however, makes sodium very well-suited
to putting into an oven and forming an atomic beam.

Then this beam can be slowed with a Zeeman slower [10], which uses the radiation pressure
from a laser to slow the atoms and a magnetic field to take advantage of the Zeeman effect
to keep the the atoms on-resonance as the Doppler shift they see in the light changes. While
loading from a vapor can be fast (from 0.2 s [151] to a second or two [149] as compared to our
loading times of around 10 s [1, Fig. 3.14]) we estimated that the technical challenge of getting
a two-dimensional MOT or a vapor cell working with the low vapor pressure of sodium was
not worth the effort when the time we will be loading, cooling, manipulating and imaging the
atoms on the chip will already be on the order of seconds anyway.

This gives the overall shape of the machine: we need a laser source that addresses various

1. If we could show that the system is ergodic, the main concern of Part II, we would only need to observe
the system for a long time, which would be a different set of challenges.

2. 89mbar at 950K [153] versus 437mbar for K [154], 500mbar at 925K for Rb [155], and 908mbar at
950K for Cs [156]
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Experimental setup

Figure 2.2 – Top-down schematic of the experimental setup. Optical fibers running
from the optical setup box to the experiment omitted for clarity.

transitions in the sub-structure of the sodium D2 line. We will feed a MOT with a Zeeman
slower, and this MOT will be disconnected as much as possible from the science chamber with
a method of transport between them that does not sacrifice the low temperature or number
of atoms attained by the MOT or lose us too much time. The atomic cloud will need to be
imaged at various stages of this process and the final experiments will be performed on an
atom chip in the science chamber. Let us go through these in a little more detail.

2.2 Overview of the setup

Here I name and briefly define all of the parts of our experimental setup. After a brief note
on experimental control, I follow the same structure as the labeling in Figure 2.2: starting
with the laser (A) and optical setup (B), then following the path of the atoms from the oven
(C) to the science chamber (G). For explanations of any of the optical elements, I recommend
the excellent textbook [157]. I will make references to this where I can and include other
references where appropriate.

2.2.1 Computer control

The experiment is programmed by a suite of MATLAB scripts written by A. Perrin which in
turn programs an ADwin-Pro-II control system from Jäger Computergesteuerte Messtechnik
GmbH. This system sends out analog signals and transistor–transistor logic (TTL) pulses
according to a sequence that is loaded into the memory of the ADwin by MATLAB. The analod
outputs handle things like the setting and ramping of frequencies for rf-drivers and voltages
for current supplies and the digital TTL signals send signals to switch states. Crucially, they
send the signal to switch between pairs of coils in the magnetic trap chain (e.g. the vertical
lines in the plot to the right in 5.4). Once the command to execute the sequence is given,
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the ADwin system sends out the sequence of signals with no further need for any input, thus
eliminating any delay or error that could come from a the PC or the USB connection. For
more details on the control interface see [1, §1.3.2].

2.2.2 Laser and optical setup

Our laser system [1, §1.1.2] is based on a tunable diode laser, from Toptica Photonics.3 This
makes a 1178 nm beam of around 50mW which provides the “signal” into a single frequency
visible Raman fiber amplifier system from MPB Communications.4 It includes the Raman
amplifier, the ytterbium fiber laser to “pump” it and a second harmonic generation (SHG)
device. A Raman fiber amplifier consists of a fiber and a pump laser with a different wave-
length from the signal [158, p. 755]. In the fiber, the photons undergo inelastic stimulated
Raman scattering where pump photons are converted into photons at the signal frequency,
thus boosting its power. The ytterbium fiber laser that pumps the amplifier comprises two
laser diodes, one of wavelength 0.9 µm and one of 1.0 µm, and a fibre doped with Yb3+ ions.
The light from the diodes excites the ions which emit at 1.12 µm which pumps the Raman
amplifier. The light emerges from the amplifier maintaining a wavelength of 1178 nm but now
having around 8W of power. This is fed into a crystal and undergoes second harmonic gen-
eration [158, §1.2.1], wherein two photons of one frequency are converted into one photon of
twice the frequency. The process is not perfect however and the beam emerges at 𝜆 = 589 nm
but with less than 2W of power. We typically use a beam of 1.27W and, according to the
manufacturer, 2W is the maximum power we could expect but we should not try to run it
above 1.8W.

This is fed into the optical setup [1, §1.1.4] (B in Figure 2.2) via a polarization preserving5

optical fiber. Upon exiting the second harmonic generation crystal and entering the optical
setup, the laser is locked to a frequency 267MHz below the |𝐹 = 2⟩ ↔ |𝐹 ′ = 3⟩ cycling
transition. I will follow D. Ben Ali’s convention of giving frequencies in terms of their offset
from the frequency of the cycling transition, 𝜈0. The beam is then drawn off into four separate
stages where its frequency is conditioned and, if necessary, it is split up further into the
different beams we need for the experiment. Polarizing beamsplitter cubes [157, §4.9.9] or
just polarizing beamsplitters (PBSs), half-wave (𝜆/2) plates [157, §6.9.3] are used to control
the splitting of the beam and various singlet lenses are used to keep the beam from spreading,
but these do not necessitate further remark.

First, around 385mW is siphoned off for the Zeeman beam. It passes through a cascade
of four acousto-optical modulators [157, §7.10.4] (AOMs). These devices set up a diffraction
grating of standing waves at a driving frequency, 𝜈𝐴. The beam emerges from them split into
different orders where the beam of the 𝑛th order is frequency shifted by 𝑛𝜈𝐴. Using a mirror
in a cat’s eye configuration we can make a double-pass AOM [159] which returns a beam back
along the path it came, shifted by double the driving frequency. We send the beam twice
through an AA Opto-electronic brand AOM.6 This is the AOM we tune when we want to
adjust the frequency of the Zeeman beam. We then send it through a cascade of three AOMs
from Gooch & Housego (G&H),7 passing twice through each. Two adjustable mirrors inject
the beam into a polarization preserving optical fiber; as it is with all our fiber injections.

3. Model DL100/pro design.
4. Model VRFA-P-1800-589-SF.
5. all of our fibers are polarization preserving so I will drop the modifier.
6. Model MT200-A0.5-VIS.
7. Model 3200-120.
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Adjustable 𝜆/2 plates let us ensure that the polarization of the beam is matched to axis of of
the fiber. If it is not, it can lead to poor stability of the polarization at the exit [157, §8.4.4].
This, in turn leads to poor stability in the intensity after the polarization necessary for the
experiment is filtered for.

All four of these AOMs have central frequency of 200MHz. Three are driven at around
205MHz while the one used to tune the Zeeman frequency is currently driven at 193MHz.
The negative first order is taken so this shifts the frequency of the Zeeman beam down by
just over 1.6GHz, putting it almost 1.9GHz below the cycling transition to be on resonance
with the atoms counter-propagating to the light at (870± 3)m · s−1 [1, Tbl. 2.3]. This large
detuning means that the Zeeman beam will not interact with the slower atoms in the MOT.
After all of these AOMs, around 80.3mW enters the fiber and just under 60mW makes it
into the beam. This long chain of AOMs is, in fact, cheaper and more practical than a single
AOM at 1.6GHz, which have to be custom-made, or running a 1.7GHz AOM 100MHz away
from its central frequency. This problem still motivates instrument research [160].

Next 700mW of the power for the imaging and MOT beams is taken. All of this is
passed twice though an AA Opto-electronic AOM8 tuned to 117MHz and the first order is
taken so that the beam comes out at 33MHz below 𝜈0, just the detuning needed for our
MOT [12] [1, Ch. 3]. The minimum amount allowed by our PBS and 𝜆/2 scheme, just under
30mW, is taken for the imaging beam. This is passed through a 𝜆/2-plate, a neutral density
filter which cuts the power by a factor of ten, a PBS, and then another 𝜆/2-plate. This
branch (like the others) is siphoned off of the main beam by being reflected off of a PBS. The
polarization of the reflected beam from a PBS is not always very pure [157, §4.9.9] and this
sandwich of 𝜆/2 wave plates is made to stabilize the polarization. It does this by taking from
a beam reflected by a PBS to a beam transmitted by one but keeping the same polarization
via the 𝜆/2-plates. The imaging beam must be very low power to avoid saturating pixels in
the CCD sensor and we wind up with 254 µW.

All the rest of the power in this branch is passed through a QUBIG9 electro-optic mod-
ulator [161, §18.1B] (EOM). An EOM is a device which uses a voltage across a crystal with
non-linear optical properties to apply a phase delay in proportion to the applied voltage. If
we vary the voltage sinusoidally with frequency 𝜔mod we will get a wave emerging from the
crystal which has the form

𝐸(𝑡) = 𝐴𝑒𝑖[𝜔𝑡+𝐵 sin(𝜔mod𝑡)] (2.1)

where 𝜔 is the frequency of the incoming wave and 𝐴 and 𝐵 are the amplitudes of the incoming
wave and the modulation respectively. Expanding this to first order [78, Eqn. 4.2.1] and using
the definition of the sine function [78, Eqn. 4.3.1] gives

𝐸(𝑡) = 𝐴

(︂
𝑒𝑖𝜔𝑡 +

𝐵

2
𝑒𝑖(𝜔+𝜔mod)𝑡 − 𝐵

2
𝑒𝑖(𝜔−𝜔mod)𝑡

)︂
, (2.2)

the original beam with two sidebands separated from the main beam by the modulation
frequency, one blue-shifted (that is up in frequency, toward the blue) and the other red-
shifted. This should hold since the amplitude of the modulation can be assumed to be much
smaller than the amplitude of the field associated with the laser.

By driving the EOM at 1.711GHz we can add a blue-shifted sideband (a red as well, but
this will be off-resonance with all transitions) to the MOT beam that will pump atoms from
the |𝐹 = 1⟩ state that would otherwise be a dark state, i.e. one that did not interact with

8. Model MT110-B50A1-VIS.
9. Model EO-Na23-3K.
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the light. This state is dark while others are not because it is well-separated from the nearest
state, |𝐹 = 2⟩ by thousands of MHz. By contrast, |𝐹 ′ = 2⟩ is only 58.3MHz from the |𝐹 ′ = 3⟩
state addressed by the laser. This closeness in the energy levels in the excited state means
that the probability of a photon resonant with the |𝐹 = 2⟩ → |𝐹 ′ = 3⟩ cycling transition
putting the atom in one of the other excited sub-levels is significant [135, Tbl. 8]. From here
they can fall into the |𝐹 = 1⟩ dark state and need photons that address that sublevel in order
to pump (or repump) them out to, for example the |𝐹 ′ = 3⟩ state where they can fall back
into the cycling transition. In the MOT this is accomplished by the sidebands induced by the
EOM. This MOT beam is fed into a fiber leading to a Schäfter-Kirchhoff brand “Fiber Port
Cluster 1 to 6 for 589 nm” which breaks it up into six beams in six fibers with the appropriate
polarizations. Each of these beams ends up with just under 30mW each. I will discuss the
functioning of the MOT in a little more detail in § 2.2.3.

The next branch of the optical setup is for the dedicated repumping beams for which
160mW is diverted. We use two: one to prepare the atoms before the Zeeman slower and
a recently-installed one for the MOT chamber to help with imaging. This entire branch
is passed twice through an AA Opto-electric brand10 AOM tuned to 100MHz. The first
order is taken so the beam is on the |𝐹 = 2⟩ → |𝐹 ′ = 2⟩ transition. It is then split into the
repumper/polarizer beam for the Zeeman slower and the dedicated repumping beam for the
MOT. The repumper/polarizer beam then passes through another QUBIG11 EOM which adds
sidebands at ±1.77GHz. This beam is to prepare the atoms for the Zeeman slower. Since it
has a magnetic field transverse to the path of the atoms, the atoms need to be prepared to
keep them on the |𝐹 = 2,𝑚𝐹 = −2⟩ → |𝐹 ′ = 3,𝑚𝐹 = −3⟩ transition in order to be cooled
efficiently (see [134] or [1, Ch. 2] for details). So they are driven into the lowest 𝑚𝐹 state with
𝜎− photons on the |𝐹 = 2⟩ → |𝐹 ′ = 2⟩ and pumped out of the dark state by the sidebands
on the |𝐹 = 1⟩ → |𝐹 ′ = 2⟩ transition. This arrives at the experiment with a little more than
15mW of power. The dedicated repumping beam passes through a Brimrose12 AOM, tuned
to 1.77GHz putting it on-resonance with the |𝐹 = 1⟩ → |𝐹 ′ = 2⟩ transition. This AOM has
a very low efficiency. It is rated at 15% efficiency, but we only manage to achieve 8% after
several weeks of work. The beam from this is then injected into a fiber that takes it to a beam
expander, from whence it is reflected downward, into the MOT, delivering 2mW.

The remaining power in the laser amounts to around 40mW and is fed into the saturated
absorption mechanism used to lock the laser [1, §1.1.3] using a technique from [162] using a
transition in iodine pointed out by [163]. As mentioned before, sodium has a very low vapor
pressure. This means in order to get a dense enough gas in a vapor cell to use saturated
absorption, we would need to heat the cell. Instead, we use a method that relies on the fact
that there is a transition in molecular iodine, 127I2, very close to the cycling transition in
sodium.13 A particular sub-level of this transition14 is only 467MHz above the cycling tran-
sition in sodium. We counter propagate two beams through an iodine cell, one higher-power
one to saturate the transition and a pair of lower powered probe beams, one that travels along
the path of the pump beam and one that does not. These two probe beams are measured
by ThorLabs 15 photodiodes and the difference between them taken using a simple, passive

10. Model MT110-B50A1-VIS.
11. Model EO-Na23-3K.
12. Model TEF-1700-350.
13. the P 38 (15-2) transition [163] from the second ro-vibrational sub-state of the molecular ground state,

𝑋 : 0+𝑔 (
1Σ+

𝑔 ), to the fifteenth ro-vibrational sub-state of the molecular excited state [164]
14. Specifically, the 𝑎1 sub-level by the notation of [164].
15. Model PDA36A.
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Cooling train

Figure 2.3 – Side view of the cooling train from the “cross” at the exit of the oven (a) to
the MOT chamber (d). The repumper/polarizer beam enters at (b) going into the plane
of the page, just before the permanent magnet Zeeman slower (c). A valve (v) keeps the
oven isolated from the rest of the vacuum system when the atomic beam is not needed.

analog circuit. This difference provides the signal for the laser locking mechanism. By scan-
ning the laser frequency using the piezoelectric crystal to adjust the cavity length and taking
the difference between the probe beams, one obtains the spectrum of the iodine transition
with peaks at the sub-levels where the beam that was traveling through the saturated io-
dine is brighter than the one which interacted with those transitions. The peak of the 𝑎1
sub-level can then be used to lock the laser at this frequency with the help of a laser locking
module from Toptica photonics.16 For further details about how the frequencies are filtered,
see [1, §1.1.3.4].

2.2.3 Cooling stage

Our oven is charged with pieces of metallic sodium. The procedure is described in [1, 1.2.4].
Absorption imaging can be done at the “cross” at the exit of the oven (marked “a” in Figure 2.3)
to see if the oven needs refilling. A well-charged oven should produce a beam that absorbs
≈ 18% of a low-intensity laser shined across it. The oven is operated at a temperature of
300 ∘C making an atomic beam with a velocity of (870± 3)m · s−1 [1, Tbl. 2.3]. When in
operation, the pressure in the oven is on the order of 10−6mbar. When not in use, it is cooled
down to 120 ∘C and the pressure falls to ∼ 10−8mbar. When shut completely off, the pressure
can fall to that of the MOT chamber, on the order of 10−10mbar or less. A valve (marked
“v” in Figure 2.3) can be closed to isolate the oven for reloading.

Atoms leave the oven and are collimated into a beam by being forced through an opening
4mm wide and then one 8mm wide. This also lets us maintain a differential pressure between
the oven and the rest of the vacuum system. The atoms then enter the Zeeman slower. This
slows them down from an average velocity of almost 900m · s−1 to just under 30m · s−1 [1,
Tbl. 2.3], slow enough to be captured by our MOT [12]. The MOT then further cools the atoms
to / 200 µK (see §5.2.1 for temperature measurements); the atoms, trapped in the MOT, now
having a well-defined temperature.The same coils that produce the magnetic field for the MOT
are also used to form a magnetic trap, which forms the first step in the transport from the
MOT chamber to the science chamber. The physics of Zeeman slowers [10] [75, §6.2.2] and
magneto-optical traps [12] [75, §11.4] are well-understood, so I will not cover them in depth
but rather point out a few particulars of our experiment so no large features go unexplained.

16. Model Digilock 110.
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Zeeman slower Our Zeeman slower uses an arrangement of permanent bar magnets to
generate a magnetic field that is transverse to the path of the atoms and increases in magnitude
as they go. The fact that it is built out of permanent magnets means that there is no
electrical power or coolant that needs to be supplied to it. However, because of the transverse
magnetic field, the laser cannot be purely circularly polarized, which would excite atoms to a
particular Zeeman level. This means that the laser can de-pump atoms into the dark state,
at least until they are well inside the magnetic field of the Zeeman slower and the Zeeman
splitting between the spin projection states becomes large. We minimize this by pumping
them into the |𝐹 = 2,𝑚𝐹 = −1⟩ ↔ |𝐹 ′ = 3,𝑚𝐹 = −3⟩ transition which is not coupled to the
|𝐹 = 1⟩ dark state. This is thanks to the selection rules [165, §2.2.1], which state that the
electron angular momentum, 𝐹 , cannot change by more than one in a single jump. They are
put on this transition by means of the repumping/polarizing beam mentioned above. This
crosses the atomic beam at the window marked “b” in Figure 2.3, 15 cm before the start of
the Zeeman slower, and takes the population of atoms that enter the Zeeman slower in the
|𝐹 = 2,𝑚𝐹 = −2⟩ state which will be efficiently cooled, from 3.7% to 31% [134]. This could be
improved if the goemetry of the setup allowed for moving the repumper closer to the entrance
of the Zeeman slower, giving the atoms less time to get de-pumped. Overall, the presence
of the repumper/polarizer adds a factor of between three and four to the number of atoms
trapped in the MOT. The fact that it is not a factor of eight is due to the fact that atoms
in 𝑚𝐹 ̸= −2 states will still be slowed, they just have a higher probability of falling into the
dark state. For further design particulars of our permanent magnet Zeeman slower, see [134].

MOT Chamber Our MOT is the typical one [12] using six counter-propagating beams, one
pair for each axis, with circular polarization of opposite orientations. These beams are slightly
red-detuned 20-30MHz from the cycling transition with sidebands, one of which extends to
the |𝐹 = 1⟩ sublevel to pump atoms out of the dark state. This bath of photons forms an
optical molasses [11] [75, Ch. 7] which provides a friction-like force on the atoms, slowing their
motion. Trapping atoms by light fields alone would violate Earnshaw’s theorem [166,167] but
a quadrupole magnetic field, one with a linear gradient and a magnetic zero at the center,
generated by a pair of wire coils circumvents this, modifying the effective detuning of the
atoms from the light to add a restoring force that traps them. When we are ready to transfer
the atoms into a purely magnetic trap, we ramp up the current in the coil creating the
quadrupole field from 5A to ∼ 70A taking the gradient of the magnetic field in the horizontal
plane from around 5G · cm−1 to 65G · cm−1. The pure magnetic trap will only hold certain
spin states (see § 5.1.1) so we drive the atoms into the |𝐹 = 1⟩ dark state by shutting off the
repumping sidebands. The decay rate from the excited state is 61.5× 106 s−1 [135, Tbl. 3] so
it only takes a few micro seconds to drive the vast majority of atoms to the dark state. When
the light is shut off, only the 𝑚𝐹 = −1 sub-state is trapped (again, see § 5.1.1) so two-thirds
of the atoms are lost. Now in the magnetic trap (this trap in the MOT chamber is what I
will refer to as “the magnetic trap” unless otherwise noted) the atoms can be held, imaged, or
moved into the magnetic transport that is the topic of Chapter 5. We can capture ≈ 6× 108

atoms in around 10 s with this MOT and the oven at 300 ∘C.
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2.2.4 Quadrupole magnetic trap

The magnetic trap works because an atom with a magnetic moment 𝜇 under the influence of
a magnetic field of 𝐵(𝑟) at position 𝑟 will have an interaction Hamiltonian written [165]

�̂�𝐵 = −�̂� ·𝐵(𝑟) (2.3)

where �̂� is the operator associated with 𝜇. If the magnetic field is so weak, and the magnetic
moment sufficiently small, that the energy associated with �̂�𝐵 is small compared to the
hyperfine splitting, then the energy levels of the atom can be described by 𝐹 = 𝐼 + 𝐽 , the
total angular momentum of the atom (the sum of the nuclear spin, 𝐼, and the electron’s total
angular momentum, 𝐽), and 𝑚𝐹 the projection of 𝐹 along the magnetic field which provides
a quantization axis.17 In this basis of hyperfine states, {|𝐹,𝑚𝐹 ⟩}, the magnetic moment of
the atom reads

�̂� = −𝑔𝐹𝜇𝐵
~

𝐹 (2.4)

where 𝑔𝐹 is the Landé 𝑔-factor for the total angular momentum, 𝜇𝐵 is the Bohr magneton.
As long as the magnetic moment of the atom adiabatically follows the magnetic field18 the
dot product in the interaction Hamiltonian (2.3) will project 𝐹 onto 𝐵 and yield a factor of
~𝑚𝐹𝐵(𝑟) and the potential felt by the atom at position 𝑟 will be

𝑉𝐵(𝑟) = 𝑔𝐹𝜇𝐵𝑚𝐹𝐵(𝑟). (2.5)

Atoms can then have internal states that are either low-field seeking (whose potential energy
is proportional to the strength of the magnetic field, i.e. 𝑔𝐹𝑚𝐹 > 0) or high-field seeking
(it is negatively proportional, i.e. 𝑔𝐹𝑚𝐹 < 0) [168]. Traps can then be formed by creating
regions of space with a field minimum (to trap low-field seeking atoms) or a field maximum
(to trap high-field seeking ones).

According to Wing’s theorem, no region of space can have a single field maximum unless it
contains a net charge [168]. Therefore, trapping high-field seeking atoms in our MOT chamber
would require a magnetic field maximum inside the chamber. There are no magnetic charges,
so we constructed a trap with a magnetic minimum and use atoms in low-field seeking states.
In the ground state of sodium there are three such states [135]

∙ |𝐹 = 1,𝑚𝐹 = −1⟩, 𝑔𝐹𝑚𝐹 = 1/2

∙ |𝐹 = 2,𝑚𝐹 = +1⟩, 𝑔𝐹𝑚𝐹 = 1/2

∙ |𝐹 = 2,𝑚𝐹 = +2⟩, 𝑔𝐹𝑚𝐹 = 1.

If we were to prepare the atoms in |𝐹 = 2⟩, we would have to polarize the atoms in the
|𝐹 = 2,𝑚𝐹 = +2⟩ state to avoid a mixture of 𝑚𝐹 = 1 and 𝑚𝐹 = 2 states in the trap.
Because, when these undergo collisions, it is possible for angular momentum to be exchanged
between them [169] and the spin to switch to an untrapped state, incurring losses. To avoid
these losses we prepare the atoms in the |𝐹 = 1⟩ state before transferring to the magnetic
trap.

To accomplish this, we turn off the EOM making the sideband on the MOT lasers which
address the |𝐹 = 1⟩ → |𝐹 ′ = 2⟩ transition. Since |𝐹 ′ = 3⟩ and |𝐹 ′ = 2⟩ are only 60MHz

17. If the magnetic field were stronger, it would force the electron spin, 𝑆, to be conserved separately from
the electron orbital angular momentum, ^̂

𝐿, and we could not use only 𝐽 = 𝑆 + �̂�.
18. If it does not, this can result in a Majorana spin flip which I will discus beginning on p4age 105
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Anti-Helmholtz coil and quadrupole magnetic field

Figure 2.4 – Left — Coils in the anti-Helmholtz configuration; from [1]. Right — The
magnetic field generated by such a pair.

apart, the main beam which addresses the |𝐹 = 2⟩ → |𝐹 ′ = 3⟩ cycling transition also puts
some atoms into the |𝐹 ′ = 2⟩ state. From there they fall into the |𝐹 = 1⟩ state, which is a
dark state now that the repumping sideband is turned off. In ∼ 10 µs all of the atoms have
fallen into the |𝐹 = 1⟩ state with their 𝐹 projections randomized among 𝑚𝐹 = 0,±1. Since
|𝐹 = 1,𝑚𝐹 = −1⟩ is the only trapped state left out of those remaining after this depumping
procedure, only atoms in that state are left in the magnetic trap and 2/3 of the atoms in
the MOT are lost when the magnetic trap is loaded, but the lifetime in the magnetic trap is
extended.

Our trapping field takes the form of a quadrupole magnetic field generated by a pair of
coils in an anti-Helmholtz configuration and is illustrated in Figure 2.4. An anti-Helmholtz
coil, or coil pair, is pair of wire loops or coils arranged parallel to each other with their centers
on an axis perpendicular to them, their centers separated such that the field between them
is as even as possible,19 connected in series so that equal amounts of current flows through
them in opposite directions. This last condition is what distinguishes it from the “Helmholtz”
configuration, where the current flows the same direction and the field more closely resembles
that of a solenoid. Each of the loops creates a magnetic flux through its center outward
from the space between them. Since the Maxwell-Thompson law requires that ∇ · 𝐵 = 0,
this flux must enter the region in between the coils from the sides and, along with symmetry
considerations, that a point where 𝐵 = 0 must lie at the geometric center of the coil pair,
taken as the origin. This is the low-field region our atoms will seek. Symmetry also ensures
that the gradient along the axis of the coils, 𝑧, is twice as large as that in the 𝑥, 𝑦-plane. Near
that zero, the field increases linearly with distance [170] and is written

𝐵(𝑥, 𝑦, 𝑧) ≃ 𝑏′ (−𝑥,−𝑦, 2𝑧) , (2.6)

where 𝑏′ is the magnitude of the gradient of the magnetic field in the 𝑥, 𝑦-plane and is pro-
portional to the current. The coordinates 𝑥, 𝑦, 𝑧 are measured relative to the trap center at
(𝑥0, 𝑦0, 𝑧0). Combining this with equation (2.5), which depends on the magnitude of equa-
tion (2.6), we can write the potential felt by an atom at 𝑟 near the zero of a quadrupole field

19. This separation works out to be approximately 1.25 times the radius of the coils [170].
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as
𝑉 (𝑟𝑎) ≃ 𝜅

√︀
𝑥2 + 𝑦2 + 4𝑧2 , (2.7)

where 𝜅 = 𝑔𝐹𝜇𝐵𝑚𝐹 𝑏
′. This will form a linear trap for atoms in low-field seeking states

near the magnetic zero. Very near this zero the trapping force becomes weak, but of course
the atom cannot leave the trap without passing through a region where it becomes stronger.
However, the spin can undergo non-adiabadic transitions to other, untrapped states. These
are the Majorana losses.

Majorana losses

The potential described in equation (2.5) relies on the on the atom moving in the magnetic
field adiabatically, that is to say, changes in the magnetic field the atom experiences are slow
compared to the internal dynamics of the atom. If this is not true, 𝑚𝐹 and therefore 𝜇 cannot
me considered constants of the motion and the Hamiltonian (2.3) becomes time-dependent
and the steps leading to a trapping potential (2.7) no longer hold. If an atom moves through
a region where the magnetic field is zero, this is more-or-less guaranteed to happen since the
quantization axis goes away and 𝑚𝐹 becomes ill-defined. When it renters a region where
there is a field, 𝑚𝐹 is not conserved and the atom may be in another spin state. E. Majorana
described the probability of these kinds of transitions when an atom moves near a region of
magnetic zero in 1932 [171], hence the name. If the atom experiences a magnetic field weak
enough, and changing quickly enough it can undergo one of these transitions to another spin
state which constitutes a spin-flip.

Because we are looking for a breakdown in the adiabadic condition, we are looking to
compare two time scales: one for the internal response of the atom to the magnetic field,
given by the Larmor period, and one for how it experiences changes in the magnetic field.
The Larmor period is just the inverse of the Larmor frequency [172], 𝜈𝐿 = 𝜇𝐵(𝑟)/ℎ. In
our quadrupole trap, the field strength, 𝐵(𝑟), increases linearly with 𝑟′, the magnitude of
𝑟′ ≡ (𝑥, 𝑦, 2𝑧), like 𝑏′. This means, that the Larmor period of an atom with magnetic moment
of magnitude 𝜇 a distance 𝑟′ in the trap is

𝜏𝐿(𝑟
′) =

ℎ

𝜇𝑟′𝑏′
. (2.8)

This is the period it takes the magnetic moment of the atom preceses around the magnetic
field line at 𝑟′ and serves as a time scale for the internal dynamics. If this is fast compared to
the time it takes the atom to see the direction of the magnetic field change, 𝜏𝐵, the adiabadic
condition is satisfied. This can be assumed to hold unless we are close to the trap center
where the field becomes weak and therefore 𝜏𝐿 becomes slow.

At the point where a 𝜏𝐿 is slowest and 𝜏𝐵 fastest, and a flip is most likely, the atom
will be going at a tangent to a surface of equipotential. So, in the frame of reference of the
atom, the only component of the magnetic field which changes is the one along its direction of
travel [171]. This makes the rate at which it sees the magnetic field change orientation linear
with the atom’s velocity but inversely proportional to the distance from the center since the
magnitude of all the components of 𝐵 increase linearly with distance from the magnetic zero.
This gives 𝜏𝐵(𝑟′) = 𝑟′/𝑣, where 𝑣 is the speed of the atom in the frame of the trap center.

The ratio of these two periods will give the adiabaticity condition. This reads

ϒMaj(𝑟, 𝑡) =
𝜏𝐵(𝑟

′)

𝜏𝐿(𝑟)
=

ℎ𝑣

𝜇𝑏′𝑟′2
. (2.9)



2.2 Overview of the setup 55

When this reaches unity, Majorana spin flips become very likely.
To calculate the exact probability of any particular spin transition, the overlap of those

quantum states must be calculated. For traps containing a mixture of spin states, a spin-
change need not imply a loss and a more complicated expression than (2.9) must be calculated
[173]. Since we have only one state in the trap, and the transitions allowed from it are to
untrapped states, (2.9) is sufficient for estimating of a loss due to a non-adiabatic spin change.

2.2.5 Current imaging setup

Currently, our imaging setup is designed to take absorption and florescence images of the
cloud in or released from the MOT or magnetic trap. Looking through the pictured porthole
of the MOT chamber (marked (d) in Figure 2.3), one is taking the point of view of our
camera and looking into the imaging beam. Details about the camera and lens are given
in Chapter 4. As the science chamber comes online, imaging systems will be installed there
including absorption imaging setups and, eventually, a light-sheet imaging system similar
to the one described in [174]. In anticipation of that, I removed the higher-precision PCO
“Pixelfly” CCD camera20 [1, § 1.3.3] from the setup and integrated an ImagingSource CMOS
camera.21 The Pixelfly has pixels 3.75 µm to a side, a true CCD charge-counting feature and
a double shutter feature that allows two images to be taken 1 µs apart. It will be used with
the lenses described in Chapter 4 to do absorption imaging in the science chamber while the
ImagingSource camera has pixels 4.4 µm to a side, no such extra features and will be used to
image clouds in the MOT chamber.

I integrated the ImagingSource camera with our current MATLAB-based experimental
control software using the MATLAB Image Acquisition toolbox. This toolbox provides con-
trols for the camera parameters such as exposure, frame rate, signal gain and color correction.
It is very important to suppress any kind of color correction since it can lead to the signals
from some pixels being artificially enhanced, even when the camera is monochrome since the
Image Acquisition toolbox will treat the signal as if it came from a color camera, even when
the camera is monochrome and the software is told to use a grayscale color format. This
means any color correction performed by the software will distort the signal.

We are trying to count photons and use that to deduce the number and distribution of
atoms in the image (in a manner I will explain shortly) so gain added by the software should
also be kept to a minimum. Gain is strictly defined as the ratio between the number of
electrons collected by the sensor and the number it outputs as a “count” [175, §2.2.7]. What
is given to the user to set under the label gain or gamma is a number, 𝜚 (I have used 𝛾
elsewhere), which relates the the signal, 𝑆 like [175, Eqn. 2.21]

𝑆 = 𝐴

(︂∫︁ 𝑡Exp

𝑡=0
𝐼(𝑡′) d𝑡′

)︂𝜚

, (2.10)

where 𝑡Exp is the exposure time, 𝐼 is the intensity falling on the sensor and 𝐴 is proportionality
constant. If 𝜚 is far from unity, more work is necessary to obtain an atom number per pixel
from 𝑆. There are methods [176], but they rely on knowing the ratio of the number of
electrons excited to incident photons which is not readily accessible on cameras like the one
from ImagingSource which do not provide a photoelectron count, although methods exist
to extract it [92, 176]. The utility of minimizing the post-processing by the camera control
software holds regardless of what kind of light signal is collected, fluorescence or absorption.

20. Model pco.pixelfly usb.
21. Model DMK 42BUC03.
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Absorption images and image tearing

Figure 2.5 – Top row — Typical absorption image of a cloud of 1.88× 108 atoms 6ms
after being released from the magnetic trap. Individually these are a.) absorption image of
the atoms, 𝐼(𝑥, 𝑦) in (2.14) b.) an image of the laser light without the atoms, 𝐼0(𝑥, 𝑦), c.)
a background image for correction, 𝐼dark(𝑥, 𝑧), and d.) the final, corrected and cropped
image representing 𝑛(𝑥, 𝑦). Bottom row — example of the imaging fault described in
§ 2.2.5.2 appearing in an image of very few atoms. From left to right: with atoms, no
atoms, and the corrected image. Notice how the a line of pixels in the background image
seems shifted.

Fluorescence imaging works by putting the atoms in the excited state and then collecting
the light they emit when they decay. This means we are only collecting the fraction of the
light emitted into the solid angle subtended by the lens so the signal tends to be weak unless
there are a large number of atoms and plenty of light, as in the MOT, when we use it for
verification and centering the magnetic trap bias. Our data about the atomic cloud comes
from absorption imaging. For details about fluorescence imaging, apart from the light-sheet
imaging method, see [1, §1.4.1].

2.2.5.1 Absorption imaging

Absorption imaging obtains the atom number and integrated distribution from an image of
the shadow of the atoms by taking advantage of the cloud’s constant absorption cross-section
in the low-saturation regime, where 𝐼 ≪ 𝐼Sat. In this regime, the atoms can be relied on to
be in the ground state because there not enough photons around to significantly populate
the excited state. Therefore the likelihood of an atom interacting with any photon is just
the absorption cross-section of the transition, 𝜎. This means that the likelihood of a photon
being absorbed in any particular part of its path, d𝑦, is equal to this cross-section times the
probability that it meets an atom in d𝑦 which is just d𝑦 times the linear density of the atoms.
This is exactly the case described by the Beer-Lambert law. Extending this conception from
a single photon to a beam of intensity 𝐼 means the linear atomic density is replaced by the
local atomic density, 𝑛(𝑥, 𝑦, 𝑧) and we must take into account the intensity itself, since the
more photons there are, the more likely they are to be lost. This makes the change in the
intensity over the path length d𝑦

d𝐼 (𝑥, 𝑦, 𝑧) = −𝜎𝐼(𝑥, 𝑦, 𝑧)𝑛(𝑥, 𝑦, 𝑧) d𝑦 (2.11)
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where the cross-section is given by

𝜎 = 𝒞
𝜎0

1 +
4𝛿2

Γ
2

(2.12)

where 𝒞 is the sum of the squares of the Clebsh-Gordon coefficients of the accessible transitions,
𝛿 is the detuning of the laser from the transition with resonant cross section 𝜎0 and natural
line width Γ. All of these are either set by us or obtained from [135]. Equation (2.11) suggests
that 𝐼 is an exponential function. Integrating over 𝑦 would give the intensity distribution as a
function of the initial intensity distribution, 𝐼0(𝑥, 𝑧), and by taking the natural logarithm we
can get an expression relating the initial and final intensities to the integrated density profile.
This reads

ln

[︂
𝐼(𝑥, 𝑧)

𝐼0(𝑥, 𝑧)

]︂
= −𝜎

∫︁ ∞

−∞
𝑛(𝑥, 𝑦, 𝑧) d𝑦 . (2.13)

The right-hand side is some function in 𝑥 and 𝑧 which we can obtain by measuring the intensity
distributions on the left-hand side.

In practice we do not just measure 𝐼(𝑥, 𝑧) after interacting with the atoms and 𝐼0(𝑥, 𝑧) of
our imaging beam not interacting with any atoms. There are all sorts of noise sources that can
affect the image such as the ambient light or even noise on the CCD itself [175, §7.1]. In order
to counter act this we take an additional image, in the absence of atoms and light giving an
“intensity distribution” of this noise. In fact, thanks to the Pixelfly’s double shutter function
we take this image twice, 1 µs apart. With the ImagingSource installed we still take two such
pictures, since the treatment software expects them, albeit they are taken further apart in
time. Call the “intensity distributions” of the background noise 𝐼dark(𝑥, 𝑧) and 𝐼 ′dark(𝑥, 𝑧).
Then we calculate

1

𝜎
ln

[︂
𝐼0(𝑥, 𝑧)− 𝐼dark(𝑥, 𝑧)

𝐼(𝑥, 𝑧)− 𝐼 ′dark(𝑥, 𝑧)

]︂
=

∫︁ ∞

−∞
𝑛(𝑥, 𝑦, 𝑧) d𝑧 (2.14)

to arrive at the two-dimensional density profile. Integrating this over again gives a on-
dimensional profile and a final integration gives the total atom number, 𝑁 . In the experiment,
these integrations about to performing discrete sums along all of the rows or columns.

In order for the distribution to have meaning, the intensity profiles cannot be distorted by
gain being non-linear with respect to the intensity of the light or by color correction changing
the response of the pixels unevenly. Thus we eliminate all of these corrections, leave the
shutter open to receive the laser and eliminate any problems with over-exposure by reducing
the power in our imaging beam.

2.2.5.2 Imaging faults

When I had integrated the ImagingSource camera, there started occurring experiments where
our atom number would drop to near zero in between instances of it being & 107 with little or
no change in parameters. One of the images in those case would often appear blank, as if we
had a triggering fault. Looking closer, some of the faulty images looked like those in the lower
register of Figure 2.5, with rows of pixels shifted or reading zero. This is at least superficially
similar to screen tearing where parts of one frame are drawn on top of another and it is usually
associated with overtaxed memory resources [177, §3.3]. The standard Microsoft "Resource
Monitor" tool on the computer controlling the camera showed large spikes in memory usage
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by our manufacturer-supplied laser control software coinciding with faulty images. Since this
software is only needed to change the laser parameters we can run the experiment without it
open and these image faults do not occur.

2.2.6 Transport chain

From the magnetic trap in the MOT chamber the atoms can be loaded into the transport
chain. The optimization of this is the focus of Chapter 5 so interested readers are referred
there but I will mention a few technical details about the control mechanisms here.

The current to magnetic transport is supplied by three Delta Elektronika power supplies,22

capable of supplying zero to 15V and up to 110A. These are governed by electronic switching
boxes, built by the electronic workshop at LPL. Exact schematics for these switch boxes can
be found in [1, App. D]. The cables from the magnetic transport, including the MOT chamber
are connected to three switching boxes that direct the current from the power supply to the
various pairs of cables that are attached to them. They receive a signal from a fourth, control
box which tells them which cable pair to direct the current to. When the control box receives a
TTL voltage-high pulse, it switches which configuration of switch boxes are supplying current
to which of their cable pairs. In this way we can control which coils in the transport chain
are receiving current and so move the magnetic trap (see § 5.1.2). Magnitude of the current
is set at the power supply.

The concept of using a right-angle magnetic transport to isolate parts of a cold-atoms
experiment is not original (we base our design on that of Greiner et al. [2]) but it is crucial for
us to achieve a high repetition rate and make studying fluctuations practical. It also ensures
that the MOT and the science chamber do not share any axes so they can be optically accessed
independently of each other. Flexible bellows were necessary in both legs of the transport to
compensate for small misalignments between the chambers and the corner. The valve marked
“V” in Figure 2.2 is just after the corner (reckoning along the path of the atoms on their way
to the science chamber) and kept the first leg of the transport isolated from the second leg
and the science chamber. This is what allowed us to optimize the transport before the science
chamber was installed and while the chip and its mount were being worked on.

2.2.7 Science chamber and chip enclosure

The chip and its mount, where we will perform the final evaporative cooling and trap the
quasi condensate, are the focus of Chapter 3 so here I will just mention a few things regarding
its assembly and the vacuum difficulties which allowed me to do the work in Part II.

The science chamber itself is an octagonal chamber manufactured by Astemec [1, §1.2.3].
On the bottom is a CF63 opening for a window through which we intend to do light-sheet
imaging as in [178]. The chip is mounted through the top with another CF63 connection.
After the chip had been mounted and tested as I describe in Chapter 3, it and its housing
had to be mounted on top of the science chamber. We accomplished this with the help of a
jug sling hitch [179, #1142].

There is a CF16 connection to the magnetic transport on one side and then seven CF40
connections, one for the valve and NEXTorr ion pump23 assembly and six for silica windows.
All the windows in the science chamber were originally sealed with HELICOFLEX R○ gaskets,24

22. Model SM15-100.
23. Model D 100
24. Model HNV200, a “Delta” model with small raised edges in the center of its faces where it make contact.
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one on each side of the window, sealing to either the chamber or the flange. These gaskets
are springs with metal sheathes around them that push back against the window and flange
ans so provide a tight seal [180]. These types of seals have been used successfully [181] and
unsuccessfully [182]. After baking the chamber a fairly low temperature (< 130 ∘C so as not
to cause a glass transition in PEEK material in the chip tower), we could not get the pressure
on the ion pump down even to ∼ 10−7mbar whereas we could maintain a pressure below
10−10mbar in both the science chamber and the chip housing prior to assembly and baking.
This was the start of a leak-hunting effort that took nearly a year, which involved many days of
changing the temperature at less than a few degrees per hour so as not to crack the windows.
In the end, we found that the HELICOFLEX R○ gaskets on three of the CF40 windows were
leaking and we replaced all the HELICOFLEX R○ gaskets with indium seals [183, p. 272]. I
can offer here a few small clues found searching for these failures.

First is that while cooling the chamber, and plotting temperature and pressure on the same
axis, it could be seen that during some periods where the temperature decreased the pressure
increased. This means that it cannot be an out-gassing phenomenon of any kind and suggests
it is a mechanical leak; the gap opens as the parts cool and contract. Second is that small
gaps (< 1mm) could be observed between the inside HELICOFLEX R○ gaskets and windows
that, in the end, where determined to be leaking. The gaps where barely visible to the eye,
but could be seen with an 𝑓 = 50mm singlet lens. They were small enough that they would
not have appeared significant if not compared with the seals on the windows next to them.
Lastly is to make sure there are no leaks in the pumping system when using a helium leak
detector. We have a Varian Sentorr turbo pumping group comprising a Pfeiffer25 primary
pump and a Varian turbo pump26 capable of reaching pressures as low as 10−8mbar. We
decided to use our Adixen27 helium detector as a primary pump. This would let us search for
leaks at a lower pressure and hopefully find smaller leaks. The only leaks that gave convincing
signals (& 108 ppm · L−1 · s−1) when He was released near them where the leaks in between
the turbo pump and the primary pump. When He was released near the chamber the helium
detector never measured much higher than ∼ 107 ppm ·L−1 · s−1 and the rise never happened
in significantly less than 30 s. We hypothesize that these leaks between the turbo pump and
the leak detector let the He escape because once we hooked the leak detector directly up to
the science chamber the leak detector gave readings of & 109 ppm · L−1 · s−1 within seconds
when He was released near the faulty windows. Even more decisive readings were obtained
by using He to inflate a latex glove taped around the window flange. With these new seals,
the chamber is holding at better that 10−10mbar, the lowest pressure measured by our ion
gauge, for many months.

2.3 Measurements to collect

All of the preceding is to describe a machine that traps and cools atoms for confinement
in an effectively one dimensional trap on an atom chip. In this section I will describe how
we intend to collect the data that will give us access to the physics described in Chapter 1.
The main thing we will use is density profiles, captured by absorption as well as light-sheet
fluorescence imaging. This is what we will use to study fluctuations and calculate the second
order correlation function (equation (1.41)) that can be used to characterize the different

25. Model XtraDry.
26. Model Turbo-V 70.
27. Model ASM 142D.
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phase regimes (see § 1.2.4). These kinds of imaging techniques give us access to the number
of atoms in the trap and therefore loss rates, which should increase when the scattering length
diverges at and near the Feshbach resonance we intend to demonstrate. Then there is Bragg
spectroscopy by which we will probe the excitation spectrum.

2.3.1 Density profiles

Density profiles are so crucial for measuring fluctuations because they not only let us calcu-
late the 𝑔(2) function, if they are taken after a time-of-flight, they give us access to phase
information about the trapped gas. This way we can compare both phase and density fluc-
tuations to identify, for example, the quasi-condensate phase where density fluctuations are
suppressed bringing 𝑔(2)(𝑟, 𝑟) close to unity but phase fluctuations allow phase coherence over
a length ℓ𝜑 (1.46). We will use three kinds of density profiles: time-of-flight profiles to access
phase information about the trapped gas; in-situ profiles of the trapped gas; and light sheet
fluorescence imaging which can give us single-atom resolution of the cloud after the time of
flight [174].

2.3.1.1 Time-of-flight imaging

A way to gather information about the trapped gas’ momentum distribution is to suddenly
switch off the trapping potential and allow the gas to expand. Because the gas is in the
transverse ground state of the trap, it will have a broad momentum distribution in this
direction due to the Heisenberg uncertainty principle. That means it will quickly become
much larger than the trapped gas and the initial spatial distribution will be dwarfed by the
distribution acquired by expansion and the initial spatial distribution will be lost in the image.
In the longitudinal direction, the velocity distribution is related to the phase in different parts
of the gas. This lets us turn phase fluctuations into density fluctuations which can be captured
with absorption imaging [88].

When the excitations in the trapped gas are of low energy (i.e. less than 𝜇), they are
phonons and the local velocity of the gas goes as the gradient of the phase like [73, Eqn. 6.16]

𝑣(𝑧) =
~
𝑚
∇𝜑(𝑧). (2.15)

When the trap is switched off, this becomes the initial velocity distribution. This will be
modified by interactions, but in the 𝑧 direction as soon as the particles are far enough apart,
the influence of interactions falls off within a timescale on the order of 1/𝜔⊥. This destroys
information about fluctuations up a scale of 𝜉𝜇/~𝜔⊥ ∼ 100 nm, a scale we do not hope to
resolve. This means that information in the 𝑧 direction is largely preserved. If the gas were
not strongly confined, interactions could appreciably affect the velocity [184]. From that
time on, the gas freely expands. This means that phase fluctuations translate into different
local velocities which then translate into density fluctuations, appearing as stripes in the final
absorption image [88,184].

This means that these time-of-flight images will contain information about the correlation
length, ℓ𝜑 [185]. The time-dependent correlation function reaches an asymptotic state with
fluctuations on the scale of ℓ𝜑 in a time 𝑡 ∼ 𝑚ℓ2𝜑/~. This is usually a short amount of time,
10ms corresponding to a coherence length of 5 µm (Cf. [184]). In the quasi-condensate regime,
these fluctuations are expected to be significant (see § 1.2.4).
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2.3.1.2 In-situ imaging

The most straightforward way, at least the way requiring the least deduction, to get the
density distribution of the trapped gas is to take a picture of it [92]. This is what the lens
conversion discussed in § 4.3.1.1 was designed for. This is a method of measuring the density
fluctuations used to calculate the 𝑔(2) function we will use to distinguish different regions of
the phase diagram.

At first glace, it is a straightforward absorption image taken of the long side of the gas.
In practice, it presents a number of experimental challenges over time-of-flight imaging. The
method of obtaining atomic distribution (2.14) assumed that the cloud was not optically dense
and that all the atoms along the path of the light have a chance to interact with it. In the trap,
this assumption may fail and then one needs a method to calculate an effective absorption
cross-section. Obtaining the effective cross-section involves probing the cloud with beams
of different intensities, below and above the saturation intensity (9.39mW · cm−2 for the
sodium D2 line [135]). The maximum optical depth of the sample is then calculated assuming
a different effective cross-section. In an ideal world, the correct effective cross-section would
give a maximum optical depth that did not vary with intensity. In the real world, a working
effective cross-section can be found by minimizing the variance in the maximal optical depth
as a function of intensity [186].

2.3.1.3 Light-sheet imaging

Both of these imaging techniques rely on forming an image on a CCD and so face the usual
limitations on resolution that come from objectives and finite pixel sizes. A way to greatly
increase the resolution is to use a light sheet, where, upon passing through, atoms will scatter
photons which we will collect with a lens. This kind of fluorescence imaging has the potential
for single-atom resolution [174]. As they will only scatter photons as they fall through the
light sheet, and only a small part of them will be scattered into our lens, it is necessary
to maximize the numerical aperture (NA) (see Figure 4.1) of any lens used for this kind of
imaging. This has an advantage, however, since high NA lenses tend to have very shallow
depths of field ((4.5) & (4.10)). If this shallow depth of field is matched with the thickness
of the light sheet, any spurious signal from outside the light sheet will fall out of focus. In
principle, wth a high frame-rate, we could use this to reconstruct the whole three-dimensional
cloud [111]. But in a one-dimensional gas, the two transverse directions are the same, so
reconstructing the vertical direction would not provide any additional information.

As a kind of fluorescence imaging, atoms emitting photons will recoil, undergoing random
walks in momentum space. In order to prevent a drift in the atoms due to light forces, the sheet
will be made up of two counter-propagating lasers of equal intensity, with perpendicular linear
polarizations to avoid setting up a standing wave. A repumping side-band, as in the MOT will
be added to keep atoms out of the dark state. To detect individual atoms, which will naturally
be well below the resolution limit of our imaging device, the single-atom autocorrelation
function is calculated. This discretized convolution of the corrected image signal, 𝑆, with
itself reads[p. 12] [174]

𝐴(Δ𝑥,Δ𝑦) =
∑︁
𝑥

∑︁
𝑦

𝑆(𝑥, 𝑦)𝑆(𝑥+Δ𝑥, 𝑦 +Δ𝑦) (2.16)

where Δ denotes the inter-pixel spacing in that direction. While the image of a single atom
will be spread over several pixels by our optics, as long as point spread function, which
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determines the image of a point source created by an optical system, does not distort the
image in such a way that the atom is not at the center (unlikely in a system with a round
aperture), the atom will be at the location where copies of its image overlap. At that location,
the autocorrelation function spikes (see [174, Fig. 5(b)]) and we have located the atom. This
lets us obtain resolution beyond that which the optics are capable of.

The full momentum distribution, especially at single atom resolution, is especially interest-
ing because it will have a high-momentum tail that will fall off like 𝒞/𝑘4 where 𝒞 will be Tan’s
contact [187]. This number contains much information about the interaction forces between
the atoms [188,189]. While it was originally worked out in a box potential it has recently been
characterized for harmonic potentials like those on our chip [190,191]. This is still a difficult
measurement since the high-momentum particles are fewer and produce a weaker signal and
“high”-momentum depends on the value of 𝒞, which increases with the interaction strength.
Since atoms are more likely to be lost at high interaction strength, this measurement poses
some challenges.

2.3.2 Losses

Losses due to interactions are called recombination or 𝑁 -body losses. This is where 𝑁 bodies
undergo an inelastic collision. Often, this results in a molecule and, typically, a free atom.
The two lowest orders are the most common [32, § III.A.2]: two-body losses where a pair
of atoms usually undergo spin-exchange as discussed in 2.2.428 and three-body losses where
three atoms interact to form a dimer and free atom carrying away the excess energy as kinetic
energy [193]. This kinetic energy is usually enough to expel the atom so all three atoms
will be lost. There are higher-order recombination losses, but the rate of 𝑁 -body losses falls
off like |𝑎|3𝑁−5/(3𝑁 − 5)(𝑁 − 1)! [194] where 𝑎 is the scatting length, typically in meters
and much less than one, even when “large.” These are all more likely with longer scattering
length. They increase drastically at Feshbach resonances and can be used to locate these
resonances [39,127,195,196].

Because we are using atoms trapped in a particular spin state (|𝐹 = 1,𝑚𝐹 = −1⟩ see
§ 2.2.4) and are inducing the resonance with photons of a particular polarization (see § 1.3.3)
we can say which order is more likely. In the lowest possible state (|𝐹 = 1,𝑚𝐹 = 1⟩ for
sodium), two-body recombination will be forbidden and three-body losses will dominate [127,
195].

2.3.3 Bragg spectroscopy

In order to probe the excitation spectrum, particularly in the strongly-interacting regime
which has not yet been directly accessed by experiment, we will use Bragg spectroscopy. It
was originally developed as a method to probe the structure of crystals by scattering photons
off the grating provided by the crystal structure [197]. In this context, it means scattering
atoms off of a grating created by a standing wave of light [198].

The setup we will use is similar to that of [199] and consists of two beams of light with
momenta 𝑘1 and 𝑘2, having an angle 𝜃 and frequency 𝛿𝜈 between them. Since 𝛿𝜈 ≪ 𝜈1, 𝜈2
we can take an average magnitude of the two momenta, 𝑘 = (𝑘1 + 𝑘2)/2, having associated
frequency 𝜈 and use it for certain purposes.

28. Dimer formation is also possible in some species such as cesium which has more complicated concessional
dynamics than lighter alkalis [192].
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Illustration of Bragg Spectroscopy

Trapped cloud

𝜃

𝑘1 𝑘2

𝑞 = 𝑘1 − 𝑘2

Figure 2.6 – Schematic of the two Bragg spectroscopy beams, having momenta 𝑘1 and
𝑘2 crossing over the trapped cloud at angle 𝜃. An atom absorbing a photon from beam
one and emitting into beam two will absorb a net excitation with momentum 𝑞.

Atoms interact with the two beams by absorbing a photon from one of them and un-
dergoing stimulated emission into the mode of the other. This makes an effective two-level
system where the ground state is coupled to a particular excited momentum state (or rather
two particular momentum states, which one depending on which beam it absorbs from) by
a two-photon process. The momentum on the other hand, assuming the atom interacts with
the beam having 𝑘1 first, will be 𝑞 = 𝑘1 − 𝑘2, or the other direction if they interact with the
other beam first. Either way, by vector addition, the momentum added will have a magnitude
of 𝑞 = 2𝑘 sin(𝜃/2) and a direction perpendicular to the bisector of the two beams since 𝛿𝜈
is small. We can align this direction with the axis of our trap (see Figure 2.6). The energy
imparted by this interaction will be 𝛿𝐸 = ℎ𝛿𝜈. Because we are probing excitations close to
the ground state, 𝛿𝜈 should be small, justifying the condition mentioned before. If one wants
to select a particular energy level to excite, the variability in 𝛿𝜈 should be less than the gaps
in the longitudinal excitation spectrum, ~𝜔𝑧 in the harmonic case.

The condition that atoms must meet to be resonant with this two-photon transition is (the
Bragg condition) that they have initial momentum 𝑘𝑖 satisfying ℎ𝜈 = 𝑞2/2𝑚+ ~𝑞𝑘𝑖/𝑚. This
lets one select different initial velocity classes to address by adjusting 𝜃 and hence 𝑞 [200,201].
It also lets one calculate the precision with which 𝜃 must be maintained such that variations
in ℎ𝜈 are small compared to the separation between the excitations one wants to address.

We are interested in using it to probe the excitation spectrum of the trapped gas in
different regimes. The excitation spectrum is defined by a dispersion relation, giving the
energy of the excitation as a function of its momentum. The excitations induced via Bragg
spectroscopy become fluctuations in the phase which become fluctuations in the density after
time-of-flight as mentioned in § 2.3.1.1. This essentially knocks the excited portion of the
gas out from the rest of the cloud and by measuring the atom number in this separated
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portion, the total momentum and momentum per atom transferred from the Bragg beams
can be determined [200]. By scanning the difference in frequency, 𝛿𝜈, and hence the energy
associated with this added momentum, the dispersion relation can be determined [202].

The excitation spectrum has been probed experimentally in three dimensions [199, 203],
and in one dimension by Meinert et al. [204], however the one-dimensional experiment relied
on an array of tubes. Mienert et al. used Bragg spectroscopy to excite excitations in an array
of tubes which they then averaged over. The distribution of excitation energies was so wide,
that it, as well as other results, were reckoned as evidence of the two branches of the excitation
spectrum. We hope to excite these branches directly and independently and reconstruct the
precise Lieb excitation spectrum [49]. This will not be trivial, since the excitations tend
to be a mixture of the two branches of the Lieb spectrum, with a bias toward the Lieb I
branch [205]. A perfect comparison will have to wait until we can make a box potential, but
in our harmonic trap we will have to take into account the variations in density over the
length of the trap [199].

2.4 Conclusion

The first goal of this experiment is to explore the phase diagram of a one-dimensional gas
of bosons using a novel way of inducing a Feshbach resonance. The different regimes are
characterized by differences in the correlations between their fluctuations from mean density.
This already starts to dictate our experimental choices. We need a reliable way to cool and
trap atoms, with a high repetition rate and a way to shine microwaves onto the trapped gas to
create the Feshbach resonance. A Zeeman slower and a MOT are well-tested technologies and
an atom chip can create the high gradients necessary for exploring one-dimensional physics and
can incorporate a coplanar microwave guide for the microwave induced Feshbach resonance.
A permanent magnet Zeeman slower even eliminates the need to supply coolant and electrical
power. Separating the MOT chamber from the chip chamber increases the repetition rate,
since we can load our MOT while we are conducting experiments on the chip while protecting
the atoms on the chip from light scattered by the MOT. This also give us more optical access
to the science chamber; all of the beams for the initial cooling and trapping will not be in the
way. This is especially helpful for when we will set up our Bragg spectroscopy which requires
a significant and adjustable angle in between the Bragg beams and an absorption imaging
system on top of that. But this separation raises the question of how to get the atoms from
the MOT chamber to the chip efficiently, hence the optimization of the magnetic transport
discussed in Chapter 5.

The current state of the experiment is that the vacuum chamber is complete, including
the chip chamber which is now holding a vacuum. We can load our MOT with ∼ 108 atoms
in < 10 s and transport one third of those to science chamber in around 1.2 s without much
heating (see Chapter 5). The chip is installed and next will be to load it, perform evaporative
cooling, and look for the Feshbach resonance by observing atom loss. From there, we will
explore the phase diagram, in particular the strongly interacting regime. We plan to probe
the Lieb–Liniger excitation spectrum via Bragg spectroscopy. To make the comparisons to
the Lieb–Liniger solution even more exact, we hope one day to construct a box potential so
we can do away with approximations like the local density approximation to account for our
harmonic longitudinal confinement. The idea would be to generate the strong, cylindrical
confinement with the chip wires and then to use repulsive, blue-detuned lasers to form the
ends, similar to how Meyrath et al. [206] formed the ends of their all-optical box.



Chapter 3
Atom chip with coplanar waveguide
for a one-dimensional trap

In order to get a single, one-dimensional trap to compare with theoretical results we have
elected to do our final trapping on an atom chip [45]. These use micro-fabrication techniques
to form metal wires on a substrate. Passing current through these wires will generate magnetic
fields that, when combined with external bias fields, will make steep gradients that can form
the kind of tight confinement we want to reach low dimension. This kind of magnetic trap
is compatible with a microwave Feshbach resonance where it would not be with a static
magnetic field one because a large magnetic field could move the trap relative too the chip.
If it moves it too far, the gradients become too shallow to maintain tight confinement. If
it moves too close, roughness in the trapping wires can lead to irregularities in the trapping
potential [207]. It can also be combined with optical trapping techniques to confine the atoms
in the longitudinal direction and create a homogeneous trapping potential that will allow for
more direct comparisons to the Lieb–Liniger model.

The chip itself is made of gold deposited on a silicon wafer via optical lithography tech-
niques [45, Ch. 3]. It incorporates two trapping wires, one 100 µm and another of 50 µm wide,
wires to deliver radio frequency (rf) oscillating fields to the trap, and a coplanar microwave
guide, as well as some other wires necessary for trapping. This collection of wires should give
us substantial control over the trapping potential and give the experiment a long working
lifetime. The immediate goal is to look for the microwave-induced Feshbach resonance and
explore the one-dimensional phase diagram. But the two trapping wires and radio-frequency
lines give us more control over the trap geometry (e.g. [146]) offering us the possibility to
explore other kinds of physics on the same apparatus.

The chip is fixed on a mount which must hold the chip at the correct position, carry
current to the wires on and around the chip, and act as a heat-sink. Since the chip is under
vacuum, all of the energy created by Joule heating must be carried away through the mount,
into the vacuum chamber walls where it can be dissipated into the air. At the same time,
shorts must be prevented; even the on-chip micro-wires are expected to carry in excess of an
ampere at times. Vacuum compatibility must be considered at every step when designing
and constructing the chip assembly. Vacuum compatible materials that do not out-gas at low
pressure must be used and care must be taken that no pockets of gas get trapped between
surfaces that can escape later when the pressure decreases.
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Generating a magnetic tube trap with a wire

Figure 3.1 – Current in the wire generates a magnetic field around it, then adding the
bias field creates a magnetic zero where low-field-seeking atoms will be trapped. This
creates a tube with open ends that will have high non-adiabadic spin-flip (Majorana)
losses (see page 105). Taken from [147].

The central content of this chapter is the results of the electrical tests performed on the chip
assembly by the ingénieur de recherche of our group at LPL, T. Badr, who was instrumental
in the design and fabrication of the chip and its mount, and myself. Therefore, in Section 3.1,
I will go over the theory needed to evaluate the data. Then in Section 3.2 I will discuss the
design and construction of the assembly in detail. Then in 3.3 I give our results. Finally in
Section 3.4 I make comparisons between the data and the expected field strengths and draw
my conclusions.

3.1 Theoretical background

Here I will go over the ideas needed to evaluate the data I gathered testing the electrical
properties of the atom chip. This means describing how to determine the magnetic field
strengths we are going to need. First I will go over how the trap is formed out of magnetic
fields generated partially by the wires on the chip. There are also bias fields generated by wire
coils outside the science chamber and the “Z”-wire under the chip that is used for loading the
trap on the chip. For this section I relied on a 2002 review by R. Folman et al. [208]. Then I
will talk briefly about the mechanism of evaporative cooling, since the chip mount incorporates
the antenna we will use for this. Lastly I will talk specifically about the microwave guide that
will generate the microwave field that will induce the resonance and make a few remarks about
how the modeling was done.

3.1.1 Trapping with wires

As discussed in § 2.2.4, an atom with a non-zero magnetic moment will have a magnetic term
like (2.3) and be subject to magnetic forces. As discussed in that sub-section, traps can be
created with magnetic fields, which the chip will generate with wires.

A straight wire, carrying current 𝐼, at points far enough from the ends so that they can
be neglected, will generate a magnetic field, 𝐵, a perpendicular distance 𝑟 from itself, having
a field vector

𝐵(𝑟) =
𝜇0
2𝜋

𝐼

𝑟
𝐼 × 𝑟 (3.1)
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where 𝜇0 is the permeability of the vacuum and 𝐼 and 𝑟 are unit vectors in the direction of the
current and the distance from the wire respectively. This is illustrated in the leftmost part of
Figure 3.1: equipotential rings going out from the wire, oriented according to the right-hand
rule, with the field strength diminishing like 1/𝑟.

Low-field seeking atoms can be trapped by adding a bias field, 𝐵𝑏 perpendicular to the
wire, as seen in Figure 3.1. This will cancel out the field on one side of the wire, putting
a magnetic zero at a distance 𝑟0 = 𝜇0𝐼/2𝜋𝐵𝑏 from the wire. This forms a two-dimensional
quadrupole field with a one-dimensional zero and a field which increases linearly as one moves
radially away from it. Low-field-seeking atoms will be trapped in this tube-shaped structure
but can undergo non-adiabatic spin flips into untrapped states near the magnetic zero, as
discussed in § 2.2.4. This can be avoided by a second bias field, 𝐵𝑖𝑝, along the axis of the trap
which lifts the degeneracy of the trapped and untrapped states and so prevents non-adiabatic
spin flips between them. This arrangement of fields is called an Ioffe–Pritchard trap [209,210].

This is the same kind of trap formed by the “Z”-wire (Figure 3.4, ¬). This is a very
heavy wire, the central part of which runs under and parallel to the trapping wires. Under
the influence of the bias field it forms a two-dimensional quadrupole field, just as the trapping
wire does, albeit farther away because the current through the “Z”-wire is much higher than
the trapping wire. This forms an intermediate trap to take the atoms from the last three-
dimensional quadrupole trap in the transport chain to the trap formed by the chip wires.

3.1.1.1 Forming the trap

There is still the problem that the wire is not infinitely long and the atoms can be lost out of
the ends of this tube. Let me characterize the tube and its gradients before I address closing
the ends to form a reliable trap.

In the tube, near the magnetic zero, the field will have a linear radial gradient [208, Eqn. 4],

d𝐵

d𝑟

⃒⃒⃒⃒
𝑟0

=
2𝜋

𝜇0

𝐵2
𝑏

𝐼
=
𝐵𝑏

𝑟0
(3.2)

where 𝐵𝑏 is the magnitude of the bias field. Adding the field, 𝐵𝑖𝑝, on the long axis of the
trap, to eliminate the zero at the center make an Ioffe-Pritchard trap, shifts the potential so
that is harmonic rather than linear. Now the field satisfies

d2𝐵

d𝑟2

⃒⃒⃒⃒
𝑟0

=

(︂
2𝜋

𝜇0

)︂2 𝐵4
𝑏

𝐵𝑖𝑝𝐼2
=

𝐵2
𝑏

𝑟20𝐵𝑖𝑝
. (3.3)

Low-lying energy states, which are the ones we are interested in, can be approximated by a
harmonic oscillator with ground-state frequency

𝜔⊥ =

√︂
𝜇𝐵𝑔𝐹𝑚𝐹

𝑚

d2𝐵

d𝑟2
∝ 𝐵𝑏

𝑟0

√︃
1

𝑚𝐵𝑖𝑝
. (3.4)

To make a trap with 𝜔⊥/2𝜋 = 2kHz, our intended confinement frequency, could be achieved,
for example, with 𝐵𝑏 = 20G, 𝐵𝑖𝑝 = 3G and current in the trapping wire of 𝐼 = 1A. This
would put the trap 100 µm from the wire (cf. [146] where it is 80 µm away). A lower current
at the same bias field would tend to increase the trapping frequency since it will move the
zero closer to the wire and increase the gradient.

There are several methods to close off the ends of the tube. For instance a set of coils can
make a separate trapping field around the wire [208, §II.A.4.a]. The trapping wire itself can
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be bent into a “U” or “Z” shape, for instance, with its ends going off in the same direction
or opposite directions respectively [147]. In these configurations, the bent ends make a linear
potential over the trapping region of the wire. In the “U” configuration , the field created this
way reaches a zero between the wires where the fields made by counter-propagating currents
cancel out. In the “Z” configuration, the fields add so there is no such zero. The bias field,
𝐵0, tends to smooth out the potential made by the bent wire. It does this by moving down
the elongated magnetic minimum which will move nearer the wire the further from the ends
since the fields made by the end wires are circular (Cf. [147, Fig. 2]).

We use a slightly different method. There are four “U”-wires on the chip that come close to
the trapping region, marked U1-4 in Figure 3.6. They have a portion on-axis with the trapping
wires, whose field will not strongly affect the trap and a portion which is perpendicular
to the trapping wire which will act like the bent portions of the trapping wires described
above. Because they are separate from the trapping wire however, current can be supplied to
them independently, and in either direction. This way we can make the kind of field usually
associated with a “Z” configuration with our “U” wires, avoiding a zero in the field that closes
the ends of the tube.

3.1.1.2 Loading the chip trap

Prior to be loaded into the trap on the chip, the atoms are held in the last quadrupole trap
(see § 5.1.1) of the magnetic transport. This is a trap with a linear potential and a zero which
should be at the geometric center of the science chamber which is (3.37± 0.10)mm below the
surface of the chip, or (5.07± 0.10)mm away from the surface of the “Z”-wire. Once there
the atoms need to be loaded into an intermediate, elongated trap formed by the “Z”-wire,
a large wire made from oxygen-free high-conductivity (OFHC) copper with a rectangular
cross-section mounted underneath the chip (labeled 1 in Figure 3.4). OFCH copper has less
than 5ppm oxygen [211, alloy #C10100], is not volatile (so is suitable for ultra-high vacuum
(UHV) environments), and posses excellent thermal (𝛼 ≃ 395W ·m−1 ·K−1 [211, Tbl. 7.4])
and electrical (𝜎 ≃ 64.4MS ·m−1 [211, p.8-4]) conductivity properties. This comes at the
cost of being difficult to machine without deformation. So we contracted final machining
to Aerosion, a company specializing in electrical discharge machining (EDM) [212], which
removes material by vaporizing it by arcing electricity between the part and the tool, thus
avoiding mechanical stresses which can deform the piece.

When current is run through the “Z”-wire and a bias field is applied, it creates an elongated
Ioffe–Pritchard as described above. But the “Z”-wire is large, (2.0± 0.5)mm× (2.0± 0.2)mm
at its narrowest point. This allows it to carry much higher current, allowing it to put the
center of the trap much further away. A current of 80A and a bias field of 32G is enough
to form a trap 5mm away from the wire, just where the center of the trap formed by the
transport chain should be. Then the transport trap can be shut off, and the current in the
chip wires switched on. This will shift the center of the trap slightly toward the chip. The
current in the “Z”-wire is then ramped down and the trap formed by the chip wires comes
to dominate. If the ramp-down happens slowly enough, the atoms will follow the potential
adiabatically and so be transferred from the large transport trap to the small chip trap.

This process can incur losses of hot atoms as the transfer occurs, especially if the maximum
of the trapping potential is less than ten times the average temperature [208, IV.B.2]. The
loss mechanism is hot atoms escaping the trap during the transfer so this will cool the cloud
somewhat. The maximum energy the trap can hold is the trap depth, defined as the difference
between the maximum and the minimum of the trapping potential. In this trap, the minimum
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potential occurs at 𝐵 = 0 and is zero itself. So the trap depth can be estimated by using
the gradient, (3.2), the distance to the surface, and a factor of |𝜇𝐵𝑔𝑓𝑚𝐹 | = 𝜇𝐵/2 because
|𝑔𝐹𝑚𝐹 | = 1/2 in our case. At this energy, atoms will crash into the chip surface. This can
be converted to a temperature by dividing by 𝑘𝐵. For the case of wires this will just be
𝜇𝐵𝐵𝑏/2𝑘𝐵 since the 𝑟0 factors will cancel. But for the case of the “Z”-wire, where the surface
of the chip is closer than the wire itself, this gives ≃ 1.3mK which is only 6.5 times a cloud
temperature of 200µK, so we can expect some looses this way. It is once the atoms are in
the trap on the chip that we plan to cool them below this with evaporative cooling, but this
process can begin in the quadrupole trap. It is not clear if the antenna we plan to use will be
able to cool the atoms in the quadrupole trap as configured, however (see § 3.3.4).

3.1.2 Evaporative cooling

The technique of evaporative cooling was key to forming the first BEC [19]. It involves
coupling high-energy states inside the trap to untrapped states [213]. We achieve this via
resonant coupling with radio waves emitted by an antenna of copper wire coiled around the
upper tower (3 in Figure 3.4). I will only address here how it is possible to cool atoms with
radio waves and enough of the theory explain a few experimental choices. For fuller treatments
see [214] or [75, Ch. 12].

The atoms are in a purely magnetic trap and so are subject to the Zeeman effect where
the degeneracy between the different spin projections is lifted and they take on their own
energy sub-levels. By addressing these transitions, we can flip the atoms from the trapped
state, |𝐹 = 1,𝑚𝐹 = −1⟩, to an untrapped one, |𝐹 = 1,𝑚𝐹 ̸= −1⟩, and eject them from the
trap. By addressing larger gaps we can eject faster-moving atoms because these reach regions
of higher magnetic field and so have larger splitting between the Zeeman sub-levels. In this
way, the higher-energy atoms are coupled to untrapped states and the remaining atoms re-
thermalize, they will do so a lower temperature. The photons that perform the coupling are
typically in the radio frequency range with the exact frequency depending on the scaling of
the Zeeman splitting with the field and the properties of the trapped cloud. If the frequency
of the photons is 𝜔𝑟𝑓 and the atoms are in a trap with a linear gradient, such as a quadrupole
trap, they will make the trap depth ~𝜔𝑟𝑓 |𝑚𝐹 | [17].

Allowing the remaining atoms to re-thermalize is critical to the technique. For the rea-
soning that higher-energy atoms reach regions of higher magnetic field to hold, the gas must
be sufficiently ergodic. This term will be defined in more generality in Chapter 6 but for now
it means that the atoms’ distribution in phase space depends only on their energy. This is
a picture where the motion of the atoms is classical and the cloud re-thermalizes quickly as
the atoms are ejected from the trap. These assumptions will be valid in the transport mag-
netic trap where the temperature is still much higher than the BEC transition temperature
(≈ 200 µK vs. ∼ 10 pK for a gas so dilute). So, in order to be sure that the rf-field is coupling
out the atoms we want, we must start it at a frequency that couples out the hottest atoms
in the trap and then ramp the frequency down over the course of tens of seconds, since the
thermalization time in the initial, hot cloud is around three seconds (see 5.2.2) but will go
down as the cloud cools and the phase space density increases.

Under weak magnetic field (a few hundred Gauss or less in the case of sodium in the
𝐹 = 1 state) the energy Zeeman of the sub-levels scales linearly to first order [135, p. 7]. The
Zeeman splittings between the 𝐹 = 1 sub-levels is 0.70MHz ·G−1 [135, Fig. 2]. The transport
trap has a horizontal gradient of 65G · cm−1 and the size of the cloud is approximately 1mm
in this direction. This means the gaps we will be addressing are around 4.5MHz and below
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Microwave guide

𝑥

𝑦

Figure 3.2 – End-on illustration of a microwave guide. Conductors in dark gray, insu-
lating substrate in lighter gray. Arrows indicate the general shape and direction of the
field lines. For a plot of the actual shape of the field lines see Figure 3.7.

(Cf. [17] where they swept from 30MHz down to 1MHz). We should be able to address at
least eight times the gap or 36MHz at around 100mG.

3.1.3 Coplanar microwave guide

Once the atoms have been cooled to a point where 𝜏 (1.45) is at a point we are interested in,
we can apply our other means of manipulation: the microwave-induced Feshbach resonance
(see Section 1.3). The microwaves that will produce the resonance will be supplied by an
arrangement of three of the wires on the chip that run straight down the center of the trapping
region and form a coplanar microwave guide [46, Ch. 2]. A coplanar waveguide (CPW) is a
type of transmission line, a structure designed to carry electricity, not just to get current
from one place to another but also for the sake of the fields that current creates. A coplanar
wave guide is a transmission line comprising a single, narrow strip of conductive material in
between two wider conductors that serve as ground planes. These are set on top of a dielectric
substrate, in our case the silicon wafer upon which our chip is constructed. When current is
sent down the line, it creates fields extending to the ground planes on either side. A rough
cross-sectional view is illustrated in Figure 3.2. If the current is oscillating, the field will
oscillate, this is how we will get the microwaves for the Feshbach resonance onto the atoms.

A large part of the work in designing a microwave guide is determining its electrical
characteristics such as impedance, capacitance, and coupling between the transmission line
and the ground planes that might make for cross-talk. Current can be lost to the silicon
substrat or through the substrate to the other wires [46, §8.4]. Skin effects, which are the
result of the distribution of charge near the outside of the conductors in a shell or skin of
finite depth, must be taken into account. Proximity effects, the effect the wires have on each
other such as forming capacitors between them, must also be considered. Only after taking all
of these into account can the fields generated by the currents be calculated [46, §8.2]. These
calculations were performed R. Dubessy and resulted in Figure 3.7.

The method relied on the Schwarz–Christoffel mapping [215]. This is a conformal map-
ping, meaning it preserves angles, from polygons in the complex plane to another shape,
including a straight line or open strip. Imagine taking the vertices of a polygon with some
coordinated structure defined inside it and moving them to several points on a line; as in 3.3
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Schwarz–Christoffel mapping from a rectangle to the half-plane

Figure 3.3 – An illustration of the Schwarz–Christoffel mapping that was used to esti-
mate the field generated by the coplanar micowave guide (cf. 3.7). Here a rectangle, in
which straight lines meet at right angles, is mapped to the half-plane with two corners are
mapped to the same point. In order to map the field generated by the waveguide, the map
would have to be to a piecewise constant line that matched the profile of the waveguide
(see [215, §5.2]). Adapted from [215].

where the coordinate stucture is a simple grid. The Schwarz–Christoffel mapping will map
the entire polygon to put the vertices at your chosen points and preserve angles between lines
of equal coordinates. This is tremendously useful in fluid mechanical problems where lines of
flux cannot cross and in electro-magnetic problems such as ours where lines of equipotential
and field lines must meet at right angles.

To go from the rough illustration of field lines in Figure 3.2 to the precisely plotted shapes
in Figure 3.7, one starts by taking the current as being carried in strips on the real axis of
the complex plane. Then one applies the dielectric properties and boundary conditions of
region (interior of the wires, vacuum above the substrate, dielectric substrate, or vacuum
region containing the substrate) and gets the field lines. Then, one calculates the map to the
rectangles corresponding to the cross-section of the wires. This takes the perpendicular filed
lines and lines of equipotential from their grid-like structure in a homogeneous region (and
the left side of Figure 3.3) to the curvilinear lines that meet at right angles as in the upper
register of Figure 3.7 (or the right side of Figure 3.3). This mapping is necessary not only to
determine the strength and geometry of the trapping fields, but is also useful for calculating
the proximity effects on capacitance and resistance since it applies to the inside of the wires
as well. For details see [46, §§8.2.1] and references therein.

3.2 Chip and support design and construction

Now that we have an idea of the kind of fields we want to make, let us discus the physical
structures we will use to make them. There is the chip mount which includes the OFHC copper
tower and rods which supply current to the “Z”-wire. There is the heat-sink the chip and sub-
chip are glued to, the chip and sub-chip themselves and the various connectors and conductors
that bring current between the chip and the outside of the vacuum chamber. All must be
manufactured out of materials that will not give off gasses when placed under vacuum and
careful attention must be paid to their thermal properties because the heat generated by the
currents passing through the chip must be dissipated through the tower and into the stainless
steel vacuum chamber housing. Electrical properties must be considered because there will be
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The chip support tower

Figure 3.4 – Left — The chip support tower. ¬ Z-wire (OFHC copper).  heat
sink (ShapalTM Hi M-soft). ® Upper tower (OFHC copper). ¯ Rod supports (PEEK).
° Rod conductors (OFHC copper). ± Lower tower (OFHC copper). ² Base (OFHC
copper). Right — Cutaway of the installed chip assembly. The red arrow indicated the
path the atoms take to the chip. Wires are not shown but the full circumference of the
copper gaskets in the CF joints is depicted. This tower is installed in the science chamber
upside down. Images courtesy of T. Badr.

high currents which must be isolated from the large structures of high-conductivity copper.
I will start with the housing and the chip mount comprising everything below the sub-chip
including the heat-sink. Then I will describe the chip in detail and cover a few points about
its construction and say few words about mounting it to the heat-sink and bonding it to the
sub-chip.

3.2.1 Chip mount

The entire chip assembly is housed in a two-part stainless steel case held together by CF1

joints with annealed copper gaskets. The electrical connections to the outside power supplies
are made through a DN 75 CF end cap. The connections for the two copper rods (Figure 3.4,
°) which power the “Z”-wire (Figure 3.4, ¬), pass through power pin feedthroughs from
Kurt J. Lesker Co. welded into the end cap. These rods will carry 150A. The evaporation
coil and coplanar microwave guide are powered through SMA connectors, also from Lesker,

1. ConflatTM.
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welded into the end cap which feed lengths of high-frquency cable from Allectra,2 rated up
to 18GHz. The cables and connectors are impedance-matched at 50Ω to avoid reflections
of signals at the connection [216, App. H]. The rest of the connectors for the other wires
on the chip are fed through a 32-pin multisignal feedthrough from Lesker welded into the
end cap. The wires that deliver current from this connector to the chip are single-strand
KaptonTM-coated 22 gauge copper. All wires are rated for 3A.

The wires had to be connected to these feedthroughs before making connections with the
chip, which meant that a certain amount of slack had to be left in the wires to make the final
connection. To take up this slack without bunching the wires up around the chip tower, a
10 cm DN 75 CF stand-off pipe is used between the end cap with the connectors and the blind
flange to which the base of the chip tower is bolted. Pieces of polyether ether ketone (PEEK),
a polymer suited to UHV environments, are placed around the copper rods (Figure 3.4, ¯)
and the wires here to avoid electrical contact with each other and the cavities cut into the
blind flange for them to pass through. This blind flange is where the heat generated by the
chip and “Z”-wire is dissipated to the rest of the vacuum housing and so to the environment.
It is from here that the distances must be exactly reckoned so as to place the chip just above
the center of the science chamber where the last magnetic trap will be formed. How tall the
tower needs to be depends on the exact length of the DN 75 CF to DN 63 CF reducer which
measures (90.27± 0.10)mm from flange to flange.

To this blind flange is bolted the base of the chip tower (Figure 3.4, ²). This is broader
than the rest of the tower to ensure good thermal contact. The tower itself is in three parts, a
long, main part (Figure 3.4, ±), a spacer, and the top part around which the evaporation coil
is wound(Figure 3.4, ®). The tower is constructed in parts because the machine which does
the wire bonding can only have ≈ 20 cm between the working surface and the bonding tip.
The chip and sub-chip must be glued to the ceramic heat-sink for the bonding to take place
which means the “Z” wire must also be in place. The ShapalTM ceramic the heat-sink is made
out of is quite brittle and fragile so this should be mounted on a stronger material like the
copper of the tower. If the evaporation coil is to be incorporated into the chip tower, it should
be in the upper part so it can interact with the atoms. Thus the decision to construct the
tower in parts, with a spacer that can be more easily machined/replaced to adjust the height.
All parts of the tower are held together by screws. All screws, except for the four right by
the chip are weakly-magnetic A316 stainless steel. The four by the chip are titanium to avoid
stray magnetic fields. Care must be taken, especially with this kind of design incorporating
multiple parts, that no pockets are left to trap air which could be released later when the
assembly is put under vacuum.

The rods that deliver current to the “Z”-wire are 6.35mm in diameter and are stabilized
against by PEEK braces screwed to the side of the tower. They are connected to the rods
coming from the feedthroughs by clips of OFHC copper ≈ 2 cm wide which are held tight by
screws and can pass large amounts of current. Where the rods pass through the blind flange,
they are shielded by PEEK sleeves. These PEEK components are one of the reasons we baked
at such a low temperature. PEEK has a glass transition at 143 ∘C [217] and we did not want
it to undergo this transition in the vacuum chamber.

The heat-sink under the chip is made from a ceramic, ShapalTM Hi M-soft, which is
electrically insulating but highly thermally conductive, having a thermal conductivity between
170 and 280W ·m−1 ·K−1 at 20 ∘C. The part has a channel for the “Z”-wire, screw holes and
recesses for the SMA connectors on the underside of the sub-chip. The chip is glued to this

2. Type 380-SMA18G-MM-300.
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The chip assembly

Figure 3.5 – Photograph of the elements discussed in this section. Compare with the
chip and sub-chip schematic in Figure 3.6. Here the conductors soldered to the sub-chip
and leading out of the vacuum chamber are clear.

with a two-component epoxy.3 This has its own thermal conductivity of 0.89W ·m−1 ·K−1.
The sub-chip and the “Z”-wire are glued the heat-sink with a UHV compatible epoxy.4

3.2.2 Chip and sub-chip

Continuing the discussion of assembly from the last section I will deal with the construction of
the chip and sub-chip and then detail the wires on the chip. This will lead into the electrical
tests I conducted on the chip wires, the results of which for the content of the next section.

3.2.2.1 Construction

The chip itself (shown in Figure 3.5 and drawn in blue in Figure 3.6) is a 14× 29mm piece
cut out of a two-inch diameter, 500 µm thick silicon wafer, coated at the Technical University
of Vienna by M. Stüwe. First, a 5 µm layer of photo-resist was applied by spin-coating. This
resist hardens under exposure to ultra-violet light. Then a mask, which lets light pass where
the wires should be is lain down and the sample exposed. The unexposed resist is then
removed by chemical etching. Next a 20 nm layer of titanium is lain down by evaporation to

3. EPO-TEK 920-FL from FTPolymer.
4. 330-GLUE3 from Allectra.
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improve bonding between the silicon and the gold. Then the 2µm layer of gold is deposited.
Lastly, the resist is pulled off, removing the gold from where it is not wanted. For a fuller
overview of chip fabrication the interested reader is referred to [45, Ch. 3].

The surface quality and regularity of the wires must first be verified by optical microscope.
This was done at the Université Paris Nord clean room, C(PN)2 with a Leica LWS3000 with
a range of lenses from 5x to 100x and a numerical aperture of 0.9 and a resolving power
of < 1 µm. We had difficulty focusing on the edge of the tracks, indicating that they were
trapezoidal rather than truly rectangular. This gold could have been removed when the resist
was etched off as the resist fills gaps between the tracks and is etched off from the air side
towards the substrate. That gold was removed somehow is also attested to by the fact that
the spaces between the gold tracks were, on average, 2µm wider than designed. Electrical
tests (Section 3.3) confirm that we should be able to get enough current through them, but
there is a reduced margin of safety.

Then the chip must be removed from the wafer. Silicon has a diamond cubic crystal
structure [218, § 2]. This means that can be cut by cleaving. The wafer is scored with a scribe
and then stressed such that it breaks along the scored line. The scoring must be done along
a crystal plane, otherwise the wafer will shatter. In our case, the crystal orientation relative
to the face of the wafer did not prove reliable so we resorted to sending the chips to GEM,
an Austrian company partnered with the Technical University of Vienna, to be cut out with
a micro-saw.

Since the wires running to the feedthroughs cannot be attached directly to the atom chip,
we designed the sub-chip, depicted in green in Figure 3.6. It consists of two identical double-
sided printed circuit boards (PCBs), designed by us and manufactured by PCB Electronics.
Special care was taken in the fabrication choices to make it suitable for UHV applications.
The substrate is not the typical one, which is often epoxy-impregnated paper or fiberglass, but
AD350TM from the Rogers Corporation, specifically designed for vacuum purposes. There is
no resistive material laid over the wires or silkscreen printing done on them as these materials
can out-gas. There is only a layer of nickel-gold laid on the 70 µm thick copper leads to prevent
corrosion. The leads run between pads around vias (i.e. through-holes), where we can solder
wires or SMA connectors, and 0.5 to 1mm to a side pads by the chip where we can bond gold
wires to carry current between the chip and the sub-chip. After the SMA sockets and wires
are soldered in place, the ends are filed down so that nothing will interfere with the atoms on
their way to the chip.

After the chip has been cut out, heat-sink, “Z”-wire and upper tower part can be assembled
and the chip glued to the raised portion of the heat sink designed to accommodate it. Then
the chip can be bonded to the sub-chip with gold wires. These wires have a 30× 13 µm2

rectangular cross section and are attached to the surfaces via ultra-sonic welding. A tip
containing the wire is manually lowered until it is brought into contact with the surface where
it vibrates fast enough to melt the surface and the wire together. Great care must be taken
not to press to hard or leave the tip in contact too long lest the surface melt away and no
bond be formed. The tip is then manually raised and lowered on to the other surface where
the other bond is made resulting in a connecting bridge 2 to 3mm long. Since this is a manual
skill, it requires much practice and we relied on the expertise of Thibaut Vacelet at LERMA,
Observatoire de Paris to perform the final bonding.

Each micro-wire can carry up to 0.6A, and since we want to be able to carry up to 2A
in some of the wires, multiple bonding wires must be used. As a rule, the wires on the chip,
which have the strongest constrains on their size, should be the limiting factor when it comes
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Schematic of the atom chip and sub-chip

Figure 3.6 – Schematic of the atom chip (in blue) and the sub-chip (in green). Bonding
between the two is indicated with a single red line. Labels on the sub-chip indicate the
chip wire they connect to. Numbers in brackets are the number of bonding wires. Note
how the “U”-wires pull away from the central trapping region where the wires run parallel
in the order listed in § 3.2.2.2.

to current. This is why we use up to seven bonding wires for some of the connections, allowing
up to 4.2A to pass through the bonding wires.

All of these parts, as well as the vacuum chamber, were subjected to various kinds of
chemical and ultra-sonic cleaning procedures that I do not think will be of interest to the
reader. It suffices to say that no trace of any substance that will give off particles at low
pressure should be left on any part that will be under vacuum. I will note that the micro-
wires that bond the chip to the sub-chip are so fragile that even ultra-sonic cleaning may
detach them. At that point one can only rely on gentile squirts of air or alcohol to remove
dust or other impurities from the chip surface.

3.2.2.2 Chip wires

Here I give the name, abbreviation in Figure 3.6, designed width, measured width5 if available,
and describe the function of the different wires on the chip. Reckoning from the top of
Figure 3.6 downward through the central trapping region, the wires are:

Radio frequency 1 (RF1) 10 µm (designed) — The two bonding wires can carry 1.2A.

5. Measurements performed via optical microscope and software by Christophe Manquest at MPQ,
Université Paris–Diderot
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This is one of four radio frequency wires on the chip. These act as microstrip transmission
lines [46, Fig. 3.5(d)] for delivering oscillating fields in the radio frequency range. These allow
us to dress the trap or traps above the chip and create dressed trapping potentials [146,219].
These wires can be thinner than the others since they are only expected to carry a few tens
of milliamperes.

Very briefly, the idea is that the radio frequencies can induce spin flips in the atoms,
changing the value of 𝑚𝐹 and hence the trapping potential (2.5). If this happens quickly
compared to the change the atoms see in the static magnetic field, the effective potential they
see is a combination of those in different 𝑚𝐹 sub-levels. See [220] for a review. This gives us
an extra degree of control over our trapping potentials.

Trapping wire (wide) (DC100) 100 µm (designed) — The six bonding wires can carry
3.6A

This is the larger of our two trapping wires that provide the direct current to form the
traps as described in 3.1.1. Having two such wires not only gives us a back-up in the case of
a failure, if the wires are too rough, the wider one will mitigate the effects of the roughness
on the potential [221]. Furthermore, two trapping wires allow us to create different trap
geometries, such as centering the trap over the CPW or creating double wells [145].

Radio frequency 2 (RF2) 10 µm (designed), 8.21 µm (measured) — Two bonding wires,
1.2A.

Coplanar waveguide ground plane (CPW) 37 µm (designed), 34.76 µm (measured) —
Six bonding wires, 3.6A.

The ground planes of the CPW are there to pull the field lines to them as in the top
register of Figure 3.7. As such they must be wide compared to the central microstrip so that
any field lines not shaped by them will be beyond the region of interest.

Coplanar waveguide microstrip (CPW) 6 µm (designed), 3.58 µm (measured) — Limited
by six bonding wires, 3.6A.

This is the transmission line that will actually deliver the oscillating field to the atoms
that will induce the Feshbach resonance.

Coplanar waveguide ground plane (CPW) 37 µm (designed), 35.18 µm (measured) —
Six bonding wires, 3.6A.

Radio frequecy 3 (RF3) 10 µm (designed), 7.79 µm (measured) — Two bonding wires,
1.2A.

Trapping wire (narrow) (DC50) 50 µm (designed) — The six bonding wires can carry
3.6A

Radio frequecy 4 (RF4) 10 µm (designed) — Two bonding wires, 1.2A.
Then there are the “U”-wires that do not cross the trapping region. They run along the

axis of the trap until they reach the region we expect the trap to be and then go at right
angles to the central axis, thus taking the form they need to close the ends of the tube. The
other bias fields will be generated with external coils.
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“U”-wires 1–4 (U1–4) 100µm (designed) — Six or seven bonding wires, 3.6 to 4.2A.

The rest of the gold on the surface of the chip acts as a ground-plane, with two or three
bonding wires making the connection. These are not expected to carry large amounts of
current but it is an unnecessary risk to use just one micro-wire.

3.3 Electrical test results

Here I will summarize the results of the tests I performed on the chip wires and the “Z”-wire.
More data, including oscilloscope readouts, can be found in Appendix B.

All of these tests were performed when the chip was installed in its housing and was
under a vacuum of better than 10−10mbar under the influence of our NEXTorr ion pump.
The pressure never rose above this minimum readable value, indicating a lack of disastrous
heating or out-gassing. This was necessary to test if the heat dissipation was sufficient. If
the wires rise in temperature, 𝑇 , their resistance, 𝑅, will rise according to the temperature
coefficient of resistance, 𝛼𝑇 , like

𝑅(𝑇 )

𝑅(𝑇0)
= 1 + 𝛼𝑇 (𝑇 − 𝑇0) (3.5)

where 𝑇0 is some reference temperature, such as room temperature, in Kelvin. We can detect
this change in resistance by measuring the voltage applied to pass a certain current. For copper
and 𝑇0 = 293K, 𝛼𝑇 = 3.9× 10−3K−1 [222]. For gold it is 𝛼𝑇 = 3.4× 10−3K−1 [223, Tbl. 6.8].

There are two pieces of information to gain by these tests: the resistance of the wires
and whether or not they will heat too much when the currents we expect to work with are
passed through them. The methods differ slightly between the on-chip wires and the “Z”-wire
because the resistance of the “Z”-wire is so much lower. These will be explained in their own
subsections. A second set of tests were conducted four months later by Thomas Badr. His
results do not differ significantly from my own. The lack of significant change in the results
is a good indication that neither my tests not intermediate manipulations had damaged the
chip. Fuller data and technical details can be found in Appendix B in sections that follow the
same structure as this section.

The voltage data was gathered with a Tektronix oscilloscope.6 Voltages used for calculat-
ing resistance are averages of fifty data values, corresponding to 200ms in the case of the ten
pulse series and 100ms in the case of the extended pulses.

3.3.1 On-chip wires

The on-chip wires had high enough resistance to be measured with a Keithley7 multi-meter in
four-wire mode. This measurement mode discounts the resistance of the wire leads between
the meter and whatever they are connected to, the break-out box connected to the 32-pin
multisignal connector in our case. The meter measures ≈ 5mΩ when the leads are connected
so should not be trusted with measurements close to that. The results of these measurements,
denoted Ω4, are shown in Table 3.1.

To test for heating current was applied across the wire in two patterns: a series of ten
one-second, high-current pulses nine seconds apart and two three-second pulses, one at low

6. Model TDS2014C.
7. Model 2110 5 1

2
.
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Resistances of on-chip wire circuits

Wire circuit DC50 DC100 U1 U2 U3 U4 RF1 RF2 RF3 RF4

Ω4 (Ω) 7.37 5.94 5.88 5.66 5.99 5.33 18.13 17.65 17.53 17.84
Ωℎ𝑖 (Ω) 8.2 6.47 6.73 6.35 6.53 6.0 20.4 19.7 19.4 20.1

Table 3.1 – Resistances of the on-chip wires as measured in four-wire mode (Ω4) and
calculated from the voltage at the end of a three-second high-current pulse (Ωℎ𝑖). “High-
current” is 0.5A for RF wires and 1.5A for the others.

current and one at high current. What constitutes “high” or ‘low” current has a different
meaning for the DC and “U”-wires (1.5A) than for the thinner RF wires (0.5A). For the
wider trapping and “U”-wires the single pulses were at 0.5A and 1.5A while for the narrower
RF wires they were at 0.15A and 0.5A. With the series of ten short pulses, the peaks should
all rise to the same height. This indicates that the heat is being dissipated quickly enough
while the current is off to return it to its original temperature after 9 s. For the single pulses
the voltage needed for a given current should stay constant over the pulse.

The series of ten 1 s pulses showed no rise in voltage. Neither did the lower-current
extended pulse of 3 s. The higher-current extended pulses did show an increase in resistance.
The resistance reached at the end of the high-current pulse is listed as Ωℎ𝑖 in Table 3.1. For
the larger wires this was on average (0.75± 0.15)Ω and (2.11± 0.19)Ω for the RF wires, at
least in the low-frequency limit. If all of this change in resistance is the heating of the gold
wires, this translates by equation (3.5) to an increase in temperature of (36± 6) ∘C which
was not significantly different between the RF and other wires. This indicates that the wires
cannot sustain these kinds of currents for extended periods but the lack of shorts or changes
in the resistance after such tests indicates that this was not enough to damage them.

3.3.2 Coplanar microwave guide

The calculations and simulations to model the CPW carried out by R. Dubessy based on data
collected by T. Badr with a Rohde & Schwarz8 vector network analyzer. It is the result of his
modeling that I present in 3.7.

Sodium has a mw-induced Feshbach resonance with width of 1.4 kHz when the strength
of the magnetic part of the microwave field, 𝐵𝑚𝑤 = 1G. This width scales like 𝐵2

𝑚𝑤 (see
Table 1.1 from [43]). Therefore, our calculations suggest that 1A through the central strip of
the CPW will give a resonance of about 100Hz wide at the location of our trap which should
not be too narrow to find.

3.3.3 “Z”-wire

The resistance of the “Z”-wire was too low to reliably measure with the multimeter so all of
the resistances must be deduced from current and voltage data. The current was supplied
by a Delta Elekronika power supply 9 driven by a Keysight10 function generator via it’s 𝐼𝑝𝑟𝑜𝑔
port. Current readings were taken from the power supply itself. Voltage was monitored on
the 𝑉𝑚𝑜𝑛𝑖𝑡𝑜𝑟 port of the power supply. This signal was noisy so I used a low-pass filter with

8. Model ZNB20.
9. Model SM 15-100.

10. Model 33220A.



80 Atom chip with coplanar waveguide

Waveguide magnetic fields

Figure 3.7 – Top — Plot of the field lines and surfaces of equipotential in half of the
coplanar waveguide. Left-hand edge corresponds to the y-axis in Figure 3.2 which is a plane
of symmetry. This was achieved with the Schwarz-Christoffel mapping of the complex
plane to the rectangular forms representing the profile of the waveguide wires. Bottom —
magnitude of the magnetic field a distance 𝑦 above the coplanar waveguide. Theoretical
prediction for the strength of the magnetic field a distance 𝑦 above the microwave guide,
carrying a current of 1A. Courtesy of R. Dubessy.

a cutoff frequency of 16Hz. T. Badr used a low-pass filter with 𝑓𝑐 = 700Hz, but our results
are comparable giving 5.2 to 5.7mΩ.

One test consisted of a series of ten, 2 s, 50A pulses 8 s apart. The idea is the same as
the pulse test in the chip wires: to see if the resistance rises over these pulses. The difference
between the resistances calculated by averaging over the first and last peaks comes to a
negligible 5.9 µΩ, less than the standard deviation within one of the peaks, ≃ 10 µΩ.

The other consisted of single, extended 4 s pulses ranging in current from 25 to 100A
in 25A increments and another one at maximum current, 112.4A. At currents of 75A and
below, the resistance did not rise significantly. Using the formula for Joule heating, 𝑃 = 𝐼2𝑅,
where 𝑃 is the power that goes into heating, the heat dissipation rate is somewhere close
to 30W. That assumes that all the heat generated 𝐼 = 75A is dissipated. At 100A and
above the resistance rose by a noticeable amount ≃ 10 µΩ. A linear regression of the data
from the oscilloscope give a slope of ≃ 1.8× 10−6Ω · s−1 implying a temperature increase of
0.08 ∘C · s−1 at 100A or 2.5× 10−6Ω · s−1 and 0.12 ∘C · s−1 at 112.4A. While this suggests
that the heat dissipation is adequate for our expected working currents of around 80A, it
was noted that at 100A and above, 16 s was not long enough to cool the piece down to its
original resistance. When the 20 s, 20% duty cycle was ran through multiple periods, the
initial voltage measured would increase very slightly (< 1mV) with each pulse.
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3.3.4 Evaporation coil

The evaporation antenna itself is a KaptonTM-coated 24 gauge copper wire wound in a single
layer of ten coils the recess cut into the upper tower measuring 5mm across. The center of
this coil is (18.9± 0.1)mm below where the atoms will be held in transport magnetic trap.
Two dummy coils were made to perform the tests: one with a core of wood an one with a core
of copper to see what effect this will have on the magnetic field strength. The probe consisted
of a small loop of copper wire and its transfer function was measured at different frequencies.
Then it was held at different heights above the coil, which was driven at a frequency 𝜈𝑟𝑓 , and
the probe voltage 𝑉𝑝 measured. The field strength is then

𝐵𝑟𝑓 (𝜈𝑟𝑓 ) =
𝜂𝑉𝑝
𝜈𝑟𝑓𝐴𝑝

(3.6)

where 𝜂 a factor given by the transfer function and 𝐴𝑝 is the area of the probe.
The result is that for 0.5W of power we expect 𝐵𝑟𝑓 . 10mG in the region of our trap in

the experiment at the relevant frequencies. With a wooden core, the data suggest that desired
field strength of ∼ 100mG could be achieved all the way up to ≃ 15MHz at 0.5W of power.
But the difference made by the copper core in the relevant frequencies is a factor of between
around ten at 20MHz to around fifty near 7MHz. The field strength is inversely proportional
to the distance from the coil and the field strength goes as the square-root of the power, as
expected. But even 8W of power was not enough to supply the desired field strength with a
copper core. In the event that we cannot get enough power to the trap this way, we will have
to construct external antennae.

3.4 Conclusions

The on-chip wires performed well under conditions that were harsher than they will be when
they are used during the experiment. We will be able to maintain a trap with 𝜔⊥/2𝜋 = 2kHz
by running 1A through the trapping wires for at least a second without adverse heating effects.
This will put the trap 100µm above the chip which should be far enough to avoid roughness in
the wires affecting the potential (Cf. [207] where the potential is relatively smooth at 107 µm).
The “U”-wires proved to be stable under similar currents and will be able to provide fields
of similar strength. The rf-wires will be able to carry 0.5A of current for one second, the
same time as the trapping wires and so should suffice to dress the trap (Cf. [146] where the
rf-wires carried 0.6A for times on the order of milliseconds). The CPW should provide a
strong enough field to make the resonance wide enough to find.

The heat dissipation for the high-current “Z”-wire also proved adequate, at least on short
time-scales. A heat-dissipation rate of 30W is inconsistent with the observation that the
voltage did not return to its original value on successive pulses of 100A or more as the heat
from such a pulse would be dissipated in under 8 s. If the flatness of the voltage during the
75A pulse is spurious (e.g. the rise could be hidden by noise) but the one at 50A is not, then
we can only be sure from the data that the rate of heat dissipation is just under 14W. Then
the heat generated in 4 s of 100A of current would take almost 16 s to dissipate, in keeping
with observation. The “Z”-wire is expected to carry ≃ 80A for 1 s every 30 s. This pulse
generates 35 J of energy so even 14W of heat dissipation is sufficient.

The evaporation coil is the only part tested that presents difficulties. The presence of
OFHC copper as a core for the antenna significantly reduces its power. If this results in
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excessively long evaporation times, even at high rf-power, other solutions, such as external
rf-antenna must be sought.

The starting point parameters for the trap will be to run 𝐼 = 1A with a transverse bias field
of magnitude 𝐵𝑏 = 20G and a longitudinal trapping bias field of magnitude 𝐵𝑖𝑝 = 3G. This
will make an elongated harmonic trap with a transverse trapping frequency of 𝜔⊥/2𝜋 = 2kHz
and an aspect ratio of 𝜔⊥/𝜔𝑥 & 100. This will sit around 100 µm from the chip. At this
distance 1A of current in the CPW will give the magnetic field component of the microwave
field a magnitude of just under 100mG (see lower register of Figure 3.7). If this makes the
resonance too narrow (recall Δ𝜔 ∝ 𝐵2

0) the first thing to try is to lower the current in the
trapping wire and move the trap closer to the chip since the etching process has already
reduced the width of the CPW microstrip by almost half its designed width. We do not have
quantitative data about the roughness of our wires which would allow us to estimate how it
would effect the trap at different distances [221], but there are tricks relying on alternating
current to deal with the effect of wire roughness on the trapped cloud [224] that could let us
get us get within ∼ 10 µm of the chip surface, and get as much microwave power as we need.

The chip has everything we need to trap and manipulate the atoms and look for the
Feshbach resonance that will be the first goal of the experiment. The second trapping wire and
the four rf-wires interleaved between the other wires on the chip should give the experiment a
long lifetime. These give us options to explore other physics such as double-wells and adiabatic
rf-fressed traps. This is before we add any optical equipment and try to make a homogeneous
box potential for direct comparison to the Lieb–Liniger model. And we should not need to
break vacuum if we have chosen our materials and constructed the parts well enough.



Chapter 4
Objective lens design

This chapter is devoted to the design of three objective lenses that will be used in the science
chamber. It is best thought of as a pair of lenses: a low-magnification objective and a high-
magnification objective that can be converted for in-situ imaging. The low-magnification lens
will be for imaging the cloud in, or released from, the transport magnetic trap in the science
chamber, before it has been loaded into the trap on the atom chip. The high magnification
objective will be needed for time-of-flight (ToF) imaging after the gas has been released from
the atom chip to measure density fluctuations that arise from phase fluctuations in the trapped
gas [184]. The conversion to in-situ imaging is useful, but this is ancillary to the ToF imaging
which will give us our most important data in the early phases of the experiment. The planned
imaging setup is a typical absorption imaging one [31, §3.2]. I took for my starting point set
of lenses described in [225, §2.1.3] and I will be taking a few formulae from his appendix on
optics and imaging. For foundational optics, including geometrical optics, see [226].

The problem can be conceived as an optimization problem on a function of many variables.
One wants as much resolution over as much of three dimensional space as possible. But, as
a general rule, one must trade off one thing for another. A simple example would be that
if the magnification is increased, less area in object space can be imaged. The foundation
of this design work was finding a region in this parameter space where all the performance
characteristics where acceptable.

I designed the lenses in the Zemax lens design software to be constructed using commer-
cially available lenses and optomechanical parts. The only exception being the apertures for
the high-magnification and in-situ lenses which can be machined from simple metal blanks.
This saves the cost of custom-made parts and lenses. Another simplifying feature is that the
lenses are infinite systems (or nearly so) meaning they collimate the light at some point and
they can be thought of as having a front collimating group and a rear refocusing group. This
means that the distance between these groups is arbitrary, to the extent the beams are colum-
nated. This provides a little ease of construction in that the lengths between the groups, as
well as the location of the apertures, need not be constructed to precise tolerances but care
would need to be taken in the focusing if they were placed very far apart (e.g. using a mirror
and having a track length of meters as in [225]). It also gives some conceptual simplicity in
designing them as it means the overall magnification of the lens will just be the ratio of the
effective focal length of refocusing group to the effective focal length of the collimating group.

In Section 4.1 I go over the background needed to understand the design decisions and
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Ray optics definitions

L
y

𝑦d
𝑑𝜃 𝜃′

𝛼

Figure 4.1 – A simple (i.e. single) magnifying lens of radius L with two different nu-
merical apertures: NA𝑜𝑏𝑗 = sin 𝜃 and NA𝑖𝑚𝑔 = sin 𝜃′. Rays leaving a point in the object
plane a distance d from the lens in object space will meet at the image plane a distance
𝑑 from the lens in image space. The size of the image, 𝑦, is determined by the chief ray,
traced from the edge of the object, a distance y from the optic axis, through the center of
the lens to the image plane. Since this ray passes through the lens without deviation it
forms an angle 𝛼 with the optic axis in both object and image space.

simulation data. In Sections 4.2 and 4.3 I detail the two lenses and give their expected
performance. The conversion of the high-magnification objective for in-situ imaging will
be covered in the section covering the high-magnification lens. Finally, in 4.4 I draw my
conclusions. Performance charts are at the end of the chapter. Lens schematics including
part numbers can be found in Appendix C.

4.1 Background

First I will go over the physical considerations such as the constraints of the science chamber.
Then I will give the definitions and formulas necessary to design and understand these lenses.

4.1.1 Physical parameters

The science chamber is a stainless steel octagon about 17 cm across with circular windows of
diameter 35.1mm at the air-side flange. The flange is held in place by bolts with heads 5mm
thick whose centers are around 60mm apart across the window. I add an extra 3mm to the
thickness of the bolt heads to let the retaining rings, of thickness around 2.5mm, sit in the
lens tube. The atoms are held in the center of the chamber 81.8mm away from the inside of
the window glass. This gives the window passing light from the atoms a numerical aperture,
NA, (see next section) of 0.2. The atom chip is suspended from the top of the chamber with
its surface about 3mm above the center of the window. Our camera is a Pixelfly1 comprising
a 1392× 1040 sensor of 6.45 µm square pixels making it roughly 9× 6.7mm2 in size. A lens
whose housing is less than 50 cm long is preferable as the shorter the overall length of the
lens, the less susceptibility to vibration and the easier to fit on the table.
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4.1.2 Optical formulae

Here I lay out definitions and concepts I will use throughout this chapter. Throughout I will
use unprimed symbols in roman type to indicate quantities in object space (the side of lens
where the object is) and primed or italic symbols to indicate quantities in image space (the
side of the lens where the sensor is).

First is the numerical aperture, NA, which is the sine of the half the angle made by the
cone of light either emitted from a point on the optic axis and entering on the object side
(NA𝑜𝑏𝑗) of a lens or leaving it and being focused to a point on the optic axis on the image
side (NA𝑖𝑚𝑔.) This will, in general, depend on where on the optic axis these points falls and
not just on the lens. The NA gives us a convenient way of defining magnification, 𝑀 , and
translating between lengths in image space and object space. Magnification is the ratio of the
size of an image to the size of its object, so 𝑀 ≡ 𝑦

y in Figure 4.1. Since the angle made by
the chief ray to the optic axis, 𝛼, is the same on both sides of the lens tan𝛼 = 𝑦

𝑑 = y
d . And

since the radius of the lens, L, is the same on both sides of the lens

tan 𝜃

tan 𝜃′
=

�L

d

𝑑

�𝐿
. (4.1)

In the paraxial approximation, the angles 𝜃 and 𝜃′ are assumed to be small so tan 𝜃 ≈ sin 𝜃.
Indeed, our largest NA is .2 meaning our largest 𝜃 = arcsin (.2) = .2014 and tan 𝜃 = .2041.
Putting all this all together we get 𝑀 ≡ 𝑦

y = 𝑑
d = tan 𝜃

tan 𝜃′ ≈ sin 𝜃
sin 𝜃′ and recalling NA ≡ sin 𝜃

allows the magnification to be defined in terms of the numerical aperture

𝑀 ≡
NA𝑜𝑏𝑗

NA𝑖𝑚𝑔
. (4.2)

This definition also saves us from having to put absolute value marks around every instance
of 𝑀 but it should be noted that these lenses are inverting and so have negative magnification
when defined as the ratio of displacement in image space to displacement in object space.

A few words on the modulation transfer function (MTF) will also be useful for understand-
ing this chapter. If one images a series of black and white bars of various spatial frequencies
one will not get a perfect reproduction of pure black and pure white bars. Obviously, at some
high frequency the bars will be unsolvable, but even before that the edges will blur and the
bars will appear more and more gray as the frequency rises. The average of the ratio between
the “black” of black bar and the “white” of the white bar next to it is called the contrast ratio
and when this is plotted against spatial frequency one obtains the MTF. Where this reaches
zero is called the cutoff frequency [225, A.21],

𝜈𝑐 = 2
NA

𝜆
(4.3)

for incoherent light,2 and is one way of discussing the smallest resolvable object. To get an
idea how the lens behaves off-focus one can define a through-focus MTF where a particular
spatial frequency is picked and the contrast ratio is plotted against the object’s position as
it is moved along the optic axis. This is a way of looking at the how things fall out of focus
on-axis for a particular spatial frequency or feature size.

Zemax has some idiosyncrasies to how it plots its modulation transfer functions such
as those presented here. The MTFs used here are called fast Fourier transform (FFT) MTF

1. Model PF-M-QE from PCO
2. for coherent light it is half this number.
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because Zemax calculates them by taking the FFT of the system’s pupil function, the function
which describes the image the system forms of the stop aperture. The horizontal axis of
the MTF graphs Zemax produces (see Figure 4.5 and Figure 4.6 (d.)) are given in inverse
millimeters in image space. If one wants to know what spatial frequency this corresponds to
in object space one must multiply by the magnification of the lens. This is all the knowledge
of the MTF I will be calling on here. For more details see [225, §A.5.1] and references therein.

A key piece of data output by Zemax is the spot diagram. To make a spot diagram one
(Zemax in the present case) traces some set rays originating at a point and traveling through
the stop aperture of the lens; making sure to include the marginal rays (i.e. the rays passing
the edge of the aperture). The diagram then consists of all the points where a ray lands on the
image surface. This captures all of the geometric or spatial (as opposed to phase or wavefront)
aberrations the lens introduces to the light path. When done in Zemax there is an option to
plot the Airy disk formed by the lens as a black circle. If all the points on the spot diagram
fall within this circle, the aberrations can be more or less ignored as all the points originating
from a point are falling within the smallest circle that point could be imaged as. One can
do this for different points in the object plane, which Zemax calls “fields” and enumerates
beginning with “field 1,” to get a sense of how the lens behaves off-axis.

I will be using several image quality parameters such as resolution and depth of field (DoF)
in order to evaluate my designs. In the paraxial approximation, if rays from a point in the
focal plane form a point in the image plane, basic geometry shows that the rays from a point
located a distance, dx, away from the lens, along the optic axis will form a circle in image
space of diameter, 𝑑𝑧, whose formula would be written

𝑑𝑧 = 2 sin 𝜃 dx𝑀

=⇒ dx =
𝑑𝑧

2𝑀 NA𝑜𝑏𝑗
.

(4.4)

It is easy to see why this should be NA𝑜𝑏𝑗 for a simple lens but in that case it makes no
difference as there is no magnification and so both numerical apertures are equal. But take
the case of an infinite system: it is the objective NA which determines how far from collimation
an object’s rays will deviate and thus how far from being focused by the refocusing group
focus it will be. If 𝑑𝑧 is taken to be the maximum acceptable spot size, the pixel size, or pixel
pitch, in image space, 𝑙𝑝𝑥, for instance, then dx becomes the minimum geometric depth of
field, DoF𝑔, on one side of the plane of best focus. Doubling this gives what I will use as the
entire geometric DoF,

DoF𝑔 =
𝑙𝑝𝑥

𝑀 NA𝑜𝑏𝑗
. (4.5)

This is in fact a little pessimistic. This insists that the circle of confusion be split evenly be-
tween two pixels in the worst case. This would be (naively) expected to give an MTF/contrast
ratio of 0.5, still perfectly legible. So one can expect the actual depth of field to extend some
ways beyond this.

If one instead imagines a point in object space being imaged as a spot at the center of a
pixel and moves that point object in the focal plane off the optic axis by an amount dy, this
will move its image in the image plane by an amount 𝑀dy. If one insists that the minimum
acceptable change in image space is a pixel one obtains the geometrically limited resolution

dy𝑚𝑖𝑛(𝑀) =
𝑙𝑝𝑥
𝑀

. (4.6)
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This is only an estimate. One could argue, just for example, for a minimum change in image
space of

√
2
2 𝑙𝑝𝑥 as a point is, at worst, imaged in the center of a pixel and further than

√
2
2 𝑙𝑝𝑥

would put the new image on a pixel diagonally adjacent; again the worst case scenario. Of
course lenses do not form point-like images even of infinitesimal objects, but Airy disks, so
this formula is more useful in conjunction with (4.5) for getting a general estimate of whether
diffraction or geometric effects limit the resolution.

The formula for the angular diameter of an Airy disk formed by light of wavelength 𝜆
passing through a circular aperture,

𝛼𝐴 =
1.22𝜆

𝐷
, (4.7)

is well known. Here 𝛼𝐴 is the angle subtended by the ring of the first minimum of the Airy
disk and 𝐷 is the aperture diameter. Since numerical aperture can be defined in terms of
the angle marginal rays focused from infinity make with optic axis we may divide this by 2
and construct the Airy radius in terms of the NA by taking tan 𝜃 ≈ sin 𝜃 for small 𝜃 and
sin 𝜃 = NA𝑖𝑚𝑔 since the Airy disk forms on the image side of the lens. In air one obtains

𝑟𝐴 =
0.61𝜆

NA𝑖𝑚𝑔
. (4.8)

Not that NA in equation (4.8) must be NA𝑖𝑚𝑔 not NA𝑜𝑏𝑗 as is often stated in the literature
on microscopes. If one takes the Rayleigh criterion for resolution, two resolved airy disks are
separated by this 𝑟𝐴, and this becomes the smallest resolvable image. To find the smallest
resolvable object one simply takes NA𝑖𝑚𝑔 → NA𝑜𝑏𝑗 . This gives the formula for diffraction
limited resolution the form

dy𝑚𝑖𝑛(NA) =
0.61𝜆

NA𝑜𝑏𝑗
. (4.9)

The MTF cutoff frequency will imply a smallest resolvable object just slightly smaller than
this due to the contrast ratio being slightly above zero at the Rayleigh condition.

Off-focus, the lens will not form a perfect, diffraction limited Airy disk but will lose
resolution in non-trivial ways and one can define various criteria for being no longer resolved.
I take R. Bücker’s formula [225, Eq. A.24] for the diffractive depth of field, DoF𝑑, where things
fall out of focus due to diffractive effects with one modification. R. Bücker gives the distance
from the plane of best focus where detail is lost, I double this to get the total depth of an
object that can be held in focus. This gives

DoF𝑑(NA) =
𝜆

NA2
𝑜𝑏𝑗

. (4.10)

These figures of merit which indicate whether the DoF and resolution are limited by
diffractive or geometric effects are plotted in Figure 4.2.

Since designing a lens is a constant compromise, it is nice to have ways to put limits
on quantities, beyond which they are not useful and can be given up for something else. A
limiting balance can be precisely constructed between the magnification and the numerical
aperture using the Nyquist-Shannon sampling theorem [227]. This puts a limit on the spatial
frequency which can be uniquely reconstructed, called the Nyquist limit, 𝜈𝑁 = 𝜈𝑠/2, given a
sampling frequency 𝜈𝑠. This limit can be used to determine how much magnification is needed
to uniquely reconstruct a signal appearing in object space, any more being redundant. If one
imagines the diffraction limited image as a series (or grid but our problem is symmetrical so
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Depth of field and resolution comparisons

Figure 4.2 – Plots of the DoF equations (4.5) and (4.10) and the resolution equations
(4.6) and (4.9) for various values of NA and 𝑀 . These are not hard limits and are most
useful for finding what is limiting the DoF or resolution. Left — Take the smaller value at
any point to determine whether geometrical or diffractive effects limit the DoF. Note that
geometrical effects limit the DoF for all 𝑀 ' 2, NA ≤ 0.2. Right — Take the larger of the
smallest resolvable objects at any point to determine whether geometrical or diffractive
effects limit the resolution.

I take only one dimension) of Airy disks separated by 𝑟𝐴, this will give an image with spatial
frequency of 𝑟−1

𝐴 . The optimal magnification will put two pixels inside each of these cycles of
one Airy radius. Then one can substitute equation (4.2) into equation (4.8) multiplied by two
to obtain a formula for the ideal magnification for a given numerical aperture. For a sensor
with pixels 𝑙𝑝𝑥 square this formula reads

𝑀max =
2NA𝑜𝑏𝑗𝑙𝑝𝑥

0.61𝜆
. (4.11)

Magnification beyond this limit can be called empty magnification and can be traded off for
either more diffraction limited resolution or DoF but, by the equations above, not both.

To treat questions related to the field of view (FoV) as well as DoF, one needs some
criterion for what needs to be kept in frame or in focus. Let the four sigma edge point or just
edge of a cloud be the point in the density distribution two standard deviations away from
the center, the location of maximum density. If one can image both of these edges one can
see upwards of 95% of the atoms and should be able to extract a reliable fit of the profile.

For discussions and explanations on kinds of aberrations, coma, spherical, astigmatism
and so forth, see [225, §A.2] or [226, §4.5ff.]. The distinctions are not critical to this thesis as
long as one accepts that aberrations are undesirable and cannot be ignored when they cause
rays from a point to fall outside of the lens’ Airy disk and thus a affect the image.

4.2 Low magnification

The low magnification objective will be used to image the “hot” (. 200 µK) cloud in, or
released from, a magnetic trap centered ≈ 3mm below the surface of the atom chip. It will
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Time-of-flight size for the hot cloud

Figure 4.3 – Dispersion of a “hot” cloud at various temperatures after time of flight in
the horizontal and vertical directions in order to determine the required field of view. Here
the cloud edge is defined as the point in the density distribution two standard deviations
(calculated with (4.13) and its vertical analog) away from the cloud center. If both these
points are visible, enough of the distribution should be visible to perform meaningful curve
fitting. Left — Vertical position of the top and bottom edges of the cloud after time of
flight along with the bottom of the window and the chip surface. Right — Horizontal
position of the left and right edges of the cloud after time of flight along with the window
edges which curve inward towards the cloud as it falls.

be used for absorption imaging in order to see the general shape and location of the cloud
and to extract an atom number/density profile. The cloud itself will be on the around two
centimeters in size on its long axis (see Figure 4.3) so resolution on the order of a millimeter
will suffice. Extracting an overall atom number only relies on imaging all the light that is
absorbed by the cloud and extracting a temperature requires only obtaining variances of the
expanding density profiles and fitting with equation (4.13) or fitting the density profile of
a single image (see Appendix E). In any case, resolution is not critical and need only be a
little below a millimeter. Because resolution is not critical, single lenses or lens groups (i.e.
doublets etc.) should suffice for the front and rear groups.

The more important consideration for this lens is that the entire cloud is imaged; the
wings of the distribution being most critical for fitting with a unique Gaussian. If one has 𝑁
thermalized atoms, each of mass 𝑚, in a linear trapping potential 𝑉 (𝑟), one may write the
density at temperature 𝑇 as

𝑛(𝑟) = 𝐶 exp

(︂
−𝑉 (𝑟)

𝑘𝐵𝑇

)︂
, (4.12)

where 𝐶 is a normalization constant such that
∫︀
𝑛(𝑟)𝑑𝑟 = 𝑁 and 𝑘𝐵 is Boltzmann’s constant.

See § 5.1.1 for details about the potential. The density distribution after ToF, 𝑡, will be
this density distribution convolved with a Boltzmann velocity distribution to model the free
expansion. The collision rate of the cloud in the magnetic trap is around once per second (see
5.2.2) so it can be assumed that the atoms do not interact in the few milliseconds after they
are released from the trap. Therefore the variance along the 𝑥-axis after 𝑡 separates into two
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Low-magnification objective

Surface Radius Thickness Glass Semi-Dia.
1 Object ∞ 81.8 vacuum —
2 Window glass ∞ 6 Silica 18.35
3 Window flange ∞ 6.5 17.55
4 Bolt heads ∞ 8 30
5 Air gap ∞ 196.411 —
6 300mm doublet 557.4 2 SF2 12.7
7 137.09 4 N-BK7 12.7
8 -165.2 (20) 12.7
9 Stop ∞ (20) (3.00)
10 100mm doublet 62.75 4 N-BK7 12.7
11 -45.71 2.5 SF5 12.7
12 -128.23 79.535 12.7
13 Camera opening ∞ 17.526 12.7
14 Sensor ∞ — —

Table 4.1 – Surface specifications for the low-magnification objective. All units are millimeters.
Lengths in parentheses are variable.

parts, reading

⟨︀
(𝑥− 𝑥0)

2
⟩︀
=
𝑁

𝛼2
+𝑁

𝑘𝐵𝑇

𝑚
𝑡2, (4.13)

where 𝛼 = 𝑔𝐹 𝑚𝐹 𝜇𝐵 𝑏
′/(𝑘𝐵𝑇 ) with, in our case, 𝑔𝐹 the Landé factor of −1/2, 𝑚𝐹 the total

spin projection on the quantization axis of −1, 𝜇𝐵 the Bohr magneton and 𝑏′ the horizontal
magnetic field gradient of 65G · cm−1. In the vertical direction, the magnetic gradient is twice
as large so the first factor on the right-hand side, accounting for the initial distribution, will
be divided by four. There will also be a factor of 𝑔2/4 in the last term for the acceleration
due to gravity.

Equation (4.13) allows us to find the four sigma edge point of the cloud and plot the
evolution of these end points at various temperatures in Figure 4.3. From this we can see that
the camera is best oriented landscape-wise with the long axis horizontal and that the limiting
distance will be in the vertical direction and correspond to a length of around 20mm. Given
that the short axis of our sensor is 6.7mm this gives a desired magnification 𝑀 = .335. This
would give a horizontal FoV of ≈ 27mm, corresponding to an ample ToF of 20ms for even
the highest temperature clouds plotted in 4.3. A typical cloud in our magnetic trap is 185 µK,
just about in the middle of the range of temperatures plotted. For comparison typical ToF,
such as in Figure 2.5, is around 6ms.

4.2.1 Lens design and performance

The compromise when choosing lenses for the low magnification system is between choosing
lenses so long that the whole setup is too far away and choosing lenses so short that they
introduce aberrations and vignetting. The choice presented here of an 𝑓 = 300mm achromatic
doublet for a collimating lens represents the shortest, readily available choice which allows for a
refocusing lens that is both short enough to give the desired magnification, 𝑓 = 100mm =⇒
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𝑀 ≈ .333, without also introducing too much aberration at a convenient lens diameter,
𝐷 = 1” ≈ 25.4mm, the diameter of the C-mount lens aperture of our camera.

With this arrangement and a stop aperture of 𝐷 = 12mm, the largest allowed by an
in-tube diaphragm of the correct tube size, showed significant astigmatism away from the
optic axis with this setup. Image simulation in Zemax indicated a reduction in image quality
at the corners of the sensor. This implies that it would be ill-advised to move to a shorter
lens combination or a wider aperture as these would only worsen the aberrations. Choosing
longer lenses is inconvenient as the next 1:3 ratio up in ThorLabs’ catalog would be an
𝑓 = 250mm, 𝐷 = 1” imaging lens and an 𝑓 = 750mm, 𝐷 = 2” collimating lens. But since a
lower resolution causes far less difficulty, I just reduced the aperture opening to 6mm, taking
NA𝑜𝑏𝑗 from .02 to .01, and expect the results shown in Figure 4.5. There remains some
astigmatism outside of the Airy disk in the very corner of the sensor (field 4,) but not enough
to change the cutoff of the MTF and everywhere else is diffraction limited.

By comparing equations (4.5) and (4.10) one can see that geometric effects still dominate
the DoF, given our demanding circle of confusion criterion. But even on the condition that
the circle of confusion fit on a pixel this lens will still give a DoF𝑔 ≥ 1.9mm. This reduction
in aperture does result in some loss of resolution, changing in the cutoff frequency of the MTF
𝜈𝑐 ≈ 200mm−1 → 𝜈 ′𝑐 ≈ 100mm−1 which corresponds to a doubling of the size of the smallest
resolvable object from ≈ 15 µm to ≈ 30 µm. This is in close agreement with equation (4.9),
which gives 36 µm, and not exactly catastrophic.

But even taking this absolute resolution limit to be a bit optimistic the performance is
fine. Taking a 50% contrast ratio as being where an object will be clearly imaged, one can
see from Figure 4.5 a) that for an aperture of 6mm this corresponds to ≈ 40mm−1 in image
space or an object size of ≈ 75 µm; plenty of detail. A variable iris aperture allows some
flexibility: either stopping down to gain more DoF at the cost of resolution for a larger cloud,
or opening up to gain more resolution on a smaller cloud at the cost of aberrations on the
corners where the cloud is less likely to be anyway. Although not completely clear from
Figure 4.2 (b), the resolution is in fact diffraction limited as equation (4.5) gives a geometric
resolution dy𝑚𝑖𝑛(𝑀) ≈ 20 µm.

The final design is laid out in table 4.1 and figures (4.5) and (C.1) and can be constructed
entirely from parts ordered from Thorlabs and assembled in their 𝐷 = 1” SM1 lens tubes (see
Figure C.1 for details.) Given the tube choices from the Thorlabs catalog and the requirement
of having an iris in between the lenses with enough room to spare on the front to be safe,
the final design amounts to 6" or about 150mm as seen in Figure C.1. As designed, Zemax
gives the NA𝑜𝑏𝑗 = .01 and |𝑀 | = .3325 almost exactly the ideal derived at the end of the last
section.

4.3 High magnification

The high magnification objective will be used to photograph along the transverse axis of
expanding gas after the trap on the atom chip has been switched off and the atoms are
allowed to fall and expand freely. The structures to be imaged are the density fluctuations on
the order of ℓ𝜑 ∼ 10 µm [88, 116]. To get clear images of them we would like a resolution of
around 1µm, but a resolution up to 3.5 µm is acceptable so long as it allows for sufficient DoF
to let the atoms expand for 5 to 10ms. This will render a feature of 10 µm at a “resolution”
of three distinct objects and 10ms is enough time to allow phase fluctuations in the trap to
become density fluctuations in the cloud and to make the cloud diffuse enough to be imaged
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Cold cloud ToF before leaving focus

Figure 4.4 – Necessary depths of field given by different numerical apertures and mag-
nifications needed to contain both edges of a 1-D gas released from a 𝜔⊥/2𝜋 = 2kHz trap
(right axis) and the corresponding times at which those edges fall out of focus (left axis.)
Right and left vertical axes denote equation (4.15) and its inverse, respectively.

by absorption. If this does not occur, high resolution is useless.
Diffraction limited resolution, equation (4.9), is maximized by maximizing the numerical

aperture which involves having the widest possible aperture and a collimating group situated
as close as possible to the science chamber. Geometric resolution, equation (4.6), is achieved
with a high magnification which involves having a short lens group near the object and
refocusing with a longer one near the sensor. However, the longer the rear lens group, the
longer the overall length of the lens and therefore the more sensitive to vibration and less
convenient to fit on the optical bench. This means that I want the shortest possible front
group so that the front group need not be too far away nor the rear group prohibitively long.
Given the constraints of our geometry and readily available lenses the front group presented
here is the shortest possible (see next section for details).

The importance of resolution does not mean one can ignore how much of the cloud we
image but, for all practical purposes, the cloud will always be smaller than the image frame.
And since high resolution implies a shallow DoF, the limiting factor will be the cloud falling out
of focus along the optic axis rather than out of the FoV. Looking ahead to equation (4.15), the
ToF for reaching the edge frame is around 14ms for even an absurd magnification of 𝑀 = 10.
The DoF in that case would be 6.4 µm implying a ToF of under a millisecond. So it can be
safely disregarded in favor of the DoF, whose requirements depend on the properties of the
expanding gas.

In the trap, the confinement in the transverse axis is much stronger than in the longitudinal
one, thus expansion in the transverse directions (𝑦, vertical axis, and 𝑥, parallel to optic axis)
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is expected to be much more rapid than expansion along the longitudinal axis, 𝑧. I further
assume that it is in the one-dimensional regime so all of the atoms are in the ground state
of the transverse trap with a trapping frequency of 𝜔⊥/2𝜋 = 2kHz. Then from [228] I take
the wave function for the ground state of a harmonic trap quickly switched off and allowed
to fall along the 𝑦-axis under gravity. This can be written as the ground state of a harmonic
oscillator with a coordinate shift, 𝑦 → 𝑦 = −𝑔𝑡2/2

√︁
1 + 𝜔2

𝑦𝑡
2, with gravity imparting an

acceleration 𝑔 and taking the initial vertical position of the trap center, 𝑦0, to be zero. One
calculates the probability density function, |𝜓|2, the positions of the four sigma edge points
after time, 𝑡, then read

𝑦(𝑡)± 2𝜎𝑦(𝑡) =
1

2
𝑔𝑡2 ± 2

√︃
~

2𝑚𝜔⊥
(1 + 𝜔2

⊥𝑡
2) . (4.14)

There is no danger of losing the edge of the cloud outside of chamber window or off the edge
of the sensor so the use of equation (4.14) is to get an idea of how long a ToF we can expect
that would be sure to keep all four standard deviations in focus. In the direction normal to
the sensor, 𝑥, the width of the cloud should be identical to its width in the 𝑦 direction but
without the correction for gravity shifting the center of the distribution [228, Eq. 7.]. The
ideal (or minimum if one takes the assumptions behind the DoF equations in § 4.1.2 as the
most stringent) DoF for a given ToF, 𝑡, is then trivially derived from equation (4.14) and
reads

DoF(𝑡) = 4

√︂
~

2𝑚𝜔𝑥
(1 + 𝜔2

𝑥𝑡
2) . (4.15)

This equation can also be inverted to calculate at what time the cloud will be a certain width
as was done to produce Figure 4.4.

4.3.1 Lens design and performance

If we insist on a ToF between 5 and 10ms it can be seen from equation (4.15) or Figure 4.4
that we need a DoF ' 35 µm. If we further insist on a resolution of 3.5 µm or better we can use
equation (4.6) to see that we need 𝑀 > 1.85 or solve equation (4.9) for NA𝑜𝑏𝑗 and substitute
it into equation (4.5) to find that 𝑀 6 1.795. This would be a contradiction if the edges of
the DoF were hard limits but this tells us that we cannot stray too far from a solution where
𝑀 ≈ 1.8 and, by equation (4.9), NA𝑜𝑏𝑗 ≈ .1. As per Figure 4.2 (a), or comparing equations
(4.5) and (4.10), one can see that DoF will be limited by DoF𝑔.

To decrease the overall length of the system while getting enough magnification I use a
telephoto group as discussed in [225, §A.4.6]. This involves placing a lens with a negative
focal length at the rear of the system to increase the effective focal length of the refocusing
group with a less-than-proportional increase in length.

Since the demands on magnification and resolution are not extreme, this could, in principle,
be accomplished with just a pair of achromatic doublets. However, maximizing the objective
numerical aperture will also allow for easy conversion to a high-resolution lens for in-situ
imaging. Therefore I begin by placing a positive meniscus lens as close as I can to the science
chamber (similar to the light-sheet imaging objective outlined in [225, §3.5.1], based on [229])
that will allow the shortest available achromat to collimate the light from the atoms. This will
give the shortest effective focal length to the front group, while allowing the rear group to be
as short as possible. To maximize light collection the objective lens should be large enough to
cover the window in addition to being as close as possible to it. It should also have a short focal
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High-magnification objective

Surface Radius Thickness Glass Semi-Dia.
1 Object ∞ 81.8 Vacuum —
2 Window glass ∞ 6 Silica 18.35
3 Window flange ∞ 6.5 17.55
4 Bolt heads ∞ 8 30
5 Air gap ∞ 1.44 25.4
6 250mm meniscus lens -224.67 5.53 N-BK7 25.4
7 -82.540 56.771 25.4
8 250mm doublet 459.2 2 SF2 25.4
9 111.69 7.5 N-BK7 25.4
10 -137.09 (10) 25.4
11 ∞ (10) 15
12 200mm doublet 109.86 8.5 N-BK7 25.4
13 -93.11 2 SF2 25.4
14 -376.25 133.877 25.4
15 −300mm meniscus lens -95.11 3 N-BK7 12.7
16 -250 56.063 12.7
17 Camera opening ∞ 17.526 12.7
18 Sensor ∞ — —

Table 4.2 – Surface specifications for “high” magnification lens with 𝑀 = 1.8 and ample
DoF to allow a ToF of 5.1ms. Resolution is 3.6 µm or better. Thicknesses are measured
on the optic axis and all units are mm. Lengths in parentheses are variable as this is an
infinite system.

length itself so as not to lengthen the effective focal length of the front group too much. Given
our geometry and the scarcity of large positive meniscus lenses, the choice of a Thorlabs LE
1613-A3 𝐷 = 2”, 𝑓 = 250mm, positive meniscus lens allowed the shortest achromatic doublet
having 𝐷 = 2”, 𝑓 = 250mm. This combination has an effective focal length, 𝑓𝑒 = 142mm
when focused on the atoms. Looking at line 7 in table 4.2 one can see that there is less than
20mm to spare between the achromat and the bolt heads and since the next shortest achromat
one could hope to find would be at most 𝑓 = 225mm, a shorter collimating achormat cannot
be chosen. An aperture of 𝐷 = 30mm gives an NA = .105 =⇒ dy𝑚𝑖𝑛(NA) = 3.4 µm by
equation (4.9), just enough resolution.

A doublet with 𝑓 = 200mm on its own as a refocusing group would give 𝑀 = 1.4 so
a fairly weak negative telephoto element is required to bring it up to 𝑀 = 1.8. One could
imagine using a slightly longer focal length achromat as a refocusing group but this extends
the overall length and makes change over to in-situ imaging more difficult. I chose a lens
with 𝐷 = 1”, 𝑓 = −300mm negative meniscus lens. At best focus, this gives 𝑀 = 1.8 =⇒
dy𝑚𝑖𝑛(𝑀) = 3.6 µm and DoF𝑔 = 34 µm which allows a ToF= 5.1ms. We could also squeeze
out a little more resolution by refocusing the rear group.4 For example 𝑀 = 1.85 =⇒
dy𝑚𝑖𝑛(𝑀) = 3.49 µm and DoF𝑔 = 33.2 µm which allows a ToF= 5ms almost exactly with no

3. “A” is the Thorlabs product for visible range (350 to 700 nm) anti-reflective coating which we use for all
our lenses.

4. In table 4.2 lines 14 : 130.305mm → 123.665mm and 16 : 61.894mm → 73.06mm
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appreciable affect on the MTF. But 𝑀 = 1.8 represents the minimum of our requirements as
calculated by equations (4.6), (4.5) and (4.15) and is at best focus. This design is presented
in table 4.2 and Figures (4.6) and (C.2). But recall that equations (4.6) and (4.5) do not
represent hard limits and are based on fairly pessimistic assumptions. If one relaxes the
condition on the maximum acceptable spot size from 𝑙𝑝𝑥 to

√
2𝑙𝑝𝑥, then ToF = 5ms → 7ms

moves comfortably into our desired range. Using an adjustable-length tube near the camera
allows for such minor adjustments. As can be seen from Figure 4.6 c) aberrations do not
take the spot outside of the Airy disk even at 1mm off axis in object space. This means the
cloud can expand to over two millimeters in size without significant loss of resolution due to
aberrations.

Unfortunately, this lens has an Airy radius of 𝑟𝐴 = 6.5 µm for 𝑀 = 1.8 and as such will be
under-sampled according the Nyquist theorem by a factor of two. But as one can see from the
first paragraph of this section, the constraints do not allow enough freedom to correct this.
To insist on the Nyquist limit at this magnification would mean decreasing the NA so much
that the diffraction would limit the resolution to objects of 7 µm. But this is not as bad as it
sounds. A feature 10 µm in size will still be imaged as three separate objects, each one about
the size of one of our pixels. Since the features we want to examine are density fluctuations
that rise and fall over length ℓ𝜑, the wavelength of these fluctuations will be 2ℓ𝜑 ∼ 20 µm and
will be adequately sampled.

4.3.1.1 Modification for In-Situ Imaging

For in-situ imaging, ToF is not a factor. The atoms remain in a trap narrow enough to
confine them in its ground state and therefore, at a size of 2𝑎⊥ ≈ 2 µm one can presume,
inside of the DoF. Therefore everything can be optimized for resolution. By changing out the
negative meniscus lens for a plano-concave one with a shorter focal length and enlarging the
aperture one can obtain a high-resolution lens which works at the Nyquist limit by matching its
magnification to its resolution via equation (4.11). Unfortunately this does require refocusing
all of the optical elements5 including the collimating group. This means that the front group
is no longer perfectly collimating the light from the atoms and the distances the lenses take
from the stop aperture are no longer arbitrary. Extra length between the telephoto element
and the camera is also necessary, so while the changeover is not extraordinarily elaborate
and requires two extra parts, it will require some imaging down-time and increase the overall
length to 40 cm.

While there are lenses available with 𝐷 ≈ 1” with shorter focal lengths than the one I
have chosen, they are so short as to introduce significant aberrations at the larger apertures
needed for high resolution. The lens presented in table 4.3 and figures 4.7 and C.2 has𝑀 = 6.4
and NA𝑜𝑏𝑗 = .1782. Notice the ring of blue crosses just inside the black circle denoting the
Airy disk in Figure 4.7 c). This suggests that the aperture cannot be enlarged any farther
or the focal length of the plano-concave lens reduced without aberrations beginning to affect
image quality. In fact Thorlabs list the effective pupil diameter (EPD) for their 2" lenses as
45.72mm, just over this design’s aperture of 44mm. By Figure 4.2 (b) it can be seen the
resolution will be diffraction limited rather than geometrically limited, as it should be at or
above the Nyquist limit.

With 𝑀 = 6.4 and NA𝑜𝑏𝑗 = .1782 the lens has a resolution of dy𝑚𝑖𝑛(𝑁𝐴) = 2 µm and an
𝑀max = 6.398. This means it is almost truly diffraction limited instead of sampling limited.

5. Compare table 4.2 and table 4.3 lines 5 7, 14, and 16.



96 Lens design

In-situ objective

Surface Radius Thickness Glass Semi-Dia.
1 Object ∞ 81.8 Vacuum —
2 Window glass ∞ 6 Silica 18.35
3 Window flange ∞ 6.5 17.55
4 Bolt heads ∞ 8 30
5 ∞ 3.965 25.4
6 250mm meniscus lens -224.67 5.53 N-BK7 25.4
7 -82.540 12.207 25.4
8 250mm doublet 459.2 2 SF2 25.4
9 111.69 7.5 N-BK7 25.4
10 -137.09 10 25.4
11 ∞ 10 22
12 200mm doublet 109.86 8.5 N-BK7 25.4
13 -93.11 2 SF2 25.4
14 -376.25 172.819 25.4
15 −75mm singlet -38.59 3.5 N-BK7 12.7
16 ∞ 152.958 12.7
17 (Camera opening) ∞ 17.526 12.7
18 (Sensor) ∞ — —

Table 4.3 – Surface specifications for high-magnification, high-resolution lens for in-situ
imaging. It has a magnification of 𝑀 = 6.4. Resolution is 2 µm and is sampled at
the Nyquist limit. As this is not exactly an infinite system, no lengths are arbitrary.
Thicknesses are measured on the optic axis and all units are mm.

Indeed, it makes an Airy disk with radius 𝑟𝐴 = 12.88 µm, very close to the ideal value of
2𝑙𝑝𝑥 = 12.9. If one takes the MTF cutoff frequency as the minimum resolvable object instead
of the Rayleigh criterion to indicate the smallest resolvable object one gets by equation (4.3)
𝜈𝑐 = 605mm−1 or a minimum object size of 1.65 µm.

There is a cost in terms of length, this lens being 10 cm longer than the one in table 4.2
and Figure 4.6. It also has a minuscule Dof of only 5.7 µm which would give a Tof of around
70 µs if it were used for that application. But solving equation (4.15) for 𝑡 = 0 shows this is
enough to image the in-situ cloud which would be only 3.3 µm wide.

4.4 Conclusions

The three objectives presented here will let us perform time-of-flight and in-situ imaging in the
science chamber. This will let us collect most of the data described in Section 2.3, including
the data from Bragg spectroscopy. A different objective will be needed for the light-sheet
fluorescence imaging. That will aim at the lower window of the science chamber which has
a diameter of 63mm rather than 40mm for the side windows. The light sheet is expected to
be closer to this window (at most 40mm away) than the atoms are to the side windows (just
under 82mm). This allows for an objective numerical aperture of up to 0.62 if the whole area
of the window is used. This higher numerical aperture is useful, not only for resolution, but
also because the atoms passing through the light-sheet will not scatter very many photons
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(in [178] they expected to capture fifteen of the eight-hundred photons scattered by each
atom).

The low-magnification objective presented here will have a field of view of 27× 20mm2

in object space with no vignetting and allow an ample 10 to 15ms ToF depending on the
cloud temperature. For comparison, we currently us a ToF of 6ms in the MOT chamber.
Resolution is not critical but will be at worst (insisting on 50% contrast ratio, closed down
aperture) 75 µm for an object with a size on the scale of millimeters. The adjustable iris
allows some flexibility for trading off resolution for DoF.

The high-magnification lens here, may pose difficulties due its short depth of field but it
offers a certain amount of flexibility. If the high-focus objective turns out to be too shallow
one can refocus the rear group6 to get 𝑀 = 1.6 while aberrations expand the beam just to the
boundary of the Airy disk on fields 1-3, but this only yields a DoF of 38.4 µm and a ToF of
5.8ms. In principle, the SM1V10 can be extended 2 ¢m and the rear lens removed altogether
giving 𝑀 = 1.4, DoF = 43.9 µm, and ToF = 6.6ms. But these minor extensions of the ToF
are paid for by a loss of resolution (dy𝑚𝑖𝑛(𝑀) = 3.6 µm → 4 µm or 4.6 µm, respectively) so one
must hope that optimism about the assumptions behind the geometrically limited resolution
(4.6) is justified. Fortunately all of these adjustments are minor and do not require new lenses.

Only the low-magnification objective has been constructed but it has not been installed
or tested since they were intended for the science chamber which has only just been brought
online. However, by the calculations presented here, these lenses should be able to gather the
data we need.

6. In table 4.2 lines 14 : 130.305mm → 159.188mm and 16 : 61.894mm → 19.803mm
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Low-magnification performance

Figure 4.5 – Design and performance data for the low magnification objective at aperture
radius 𝑟 = 3mm. a.) FFT MTF, b.) Layout of lens. c.) Spot diagram. d.) Through-focusFFT
MTF at 20mm−1. The fields are at the following (𝑥, 𝑦) coordinates in image space, taking the
optic axis in the center as the origin: field 1: on-axis. 2: (0, 2.6mm), 3/4 of the way up to the
short edge of the sensor. 3: (3mm, 0), 2/3 of the way to the long edge. 4: (3.4mm, 4.5mm) at
the sensor’s corner.
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High magnification performance

Figure 4.6 – Design and performance of the “high” magnification system with 𝑀 = 1.8. a.)
FFT MTF, b.)ray diagram, c.) spot diagram, d.) through-focus FFT MTF at 50mm−1 or a
10 µm object size. Field 1 on-axis. Field 2 = 50 µm off axis in object space =⇒ an object 100 µm
across. Field 3 = 500 µm. Field 4 = 1mm. The through-focus MTF, d.), is misleading because
this is the difractive DoF which is much greater than the geometric one.
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In-situ objective performance

Figure 4.7 – Design and performance of the in-situ imaging system. a.) FFT MTF, b.) ray
diagram, c.) spot diagram, d.) through-focus FFT MTF at 50mm−1. Field 1 = 0µm, field 2 =
50 µm off axis in object space =⇒ an object 100 µm across. field 3 = 500 µm field 4 = 1mm



Chapter 5
Magnetic transport optimization

When I arrived, the experiment up until the MOT chamber had been entirely assembled [1].
The transport up to where it would meet the science chamber was mounted and the system up
to the valve at the corner of the transport (marked in figure 5.4) was under vacuum. The rest
of the system was yet to be installed. While dealing with various issues related to the chip and
its mount, we undertook to optimize the transport of the cloud in the magnetic trap by taking
it from the MOT chamber, up to the corner of the transport, and back for imaging. Much
work has been done on transport of cold atomic clouds: via optical tweezers [230–232], an
anti-Helmholtz coil pair on a mechanical translation stage [233,234], one-dimensional optical
lattices [235], chains of various magnetic traps generated by chips [236, 237], chains of Ioffe–
Pritchard traps [238], and conveyor belts of anti-Helmholtz coils such as we use [2, 239, 240].
These techniques are necessary whenever the cloud is formed in one part of the experiment and
then some other process, such as condensation or probing, is performed in another. To take
our experiment as an example, it allows us to load our MOT while performing experiments
in the science chamber and so increase our repetition rate and protect atoms in the science
chamber from stray resonant light. This is especially useful when studying fluctuations, as
we are, since many repetitions are needed to gather meaningful statistics.

Optimization work has been done on transporting atoms in harmonic [241–243] traps
and harmonic traps with higher-order power law terms [244, 245]. We cannot rely on the
techniques used in those studies because they require the potential to have a well-defined
derivative everywhere. We are working with a trap with a linear potential so the derivative is
not well-defined at the minimum. Instead we simulate moving a trap via various time profiles
and calculate the trajectories of classical particles under its influence. We then experimentally
test these profiles, using the results from one method to inform what to test with the other.

The state-of-the-art transport profile is one where the trap center is moved at a constant
velocity of less than 15 cm · s−1, to avoid heating, resulting in a retention of between 60 and
80% of the initially trapped atoms [2,239,240]. The loss mechanism is presumed to be collisions
with the background gas. This transport involves heating the cloud by around 15% [2,239] or
50 to 70% [240] (who begins at a temperature an order of magnitude lower). Other transport
profiles for quadrupole trap chains have been tried [240], but did not provide an improvement
in average speed for comparable loss and heating rates. By careful choice of time profile we
were were able to achieve an average speed of over 50 cm · s−1 while keeping over 70% of our
atoms and heating the cloud ∼ 20%. Via our simulations we were also able to say which loss
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mechanism was more prevalent [246].
In the first section I will give the relevant theory concerning quadrupole traps and using

chains of them for transport as well as define the profiles I will discuss. Then I will go into
a few technical details: the parameters of our particular trap, the limitation on our holding
time in the magnetic trap in the MOT chamber, the collision rate in the trap which gives
the thermalization time, and the various methods we use to determine the temperature and
currents. Then I will discuss the experiment, the simulations and compare their results.
Finally I will draw my conclusions.

5.1 Theory and background

As discussed in 3.1.1, neutral atoms will still have a magnetic moment depending on their spin
state. This means that, by certain arrangement of fields and spin states they can be subject
to magnetic forces which can confine them. First I will talk about these circumstances and
the particular field arrangement we use to confine them, the quadrupole field. Then, given
the potential felt by atoms in such a field, I will talk about their distribution when they have
reached thermal equilibrium. This trap is subject to certain kinds of losses, some related to
how the trap is moved, and so relevant to our optimization, some not. I will talk about which
is which and go into discuss the relevant ones.

Then I will discuss how this trap is to be moved: by a chain of coils similar to the ones
that make the stationary trap. I start from the example of two coil pairs to introduce the
effects this strategy has on the geometry of the trap as a way of introducing the three-coil
method we employ. This is the maximum number of coils which need simultaneous current
to control the trap parameters. This sets up the details of how and when these three currents
are switched between sets of three coil pairs.

Lastly I will define the three current profiles whose results paint the clearest picture of
our investigation. One is the standard, constant velocity method. One provides a foil to it,
solving its particular problems and introducing others. A third provides a compromise. For
other profiles we tried see Appendix D.

5.1.1 A single quadrupole trap

As explained in § 2.2.4, atoms in a weak magnetic field, 𝐵(𝑟), will feel a potential of

𝑉 (𝑟) = 𝑔𝐹𝜇𝐵𝑚𝐹𝐵(𝑟) (5.1)

and be either low-field-seeking or high-field seeking depending on if the product of the Landé
𝑔-factor, 𝑔𝐹 and the spin projection, 𝑚𝐹 , is positive or negative, respectively.

The field density, and therefore the potential in (2.7), reaches a maximum in between the
actual loops, where the distance to the current is minimal. At this distance from the center
in the horizontal plane, the trap breaks down. Since the horizontal gradient is half that of
the vertical one, this is more important for determining how much energy an atoms needs to
escape the trap. This energy defines the trap depth and atoms lost by reaching the region
where the trap breaks down are said be lost via finite-depth losses which I discuss on page
104.
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5.1.1.1 Cloud Properties

From the potential energy (2.7) we can derive the properties of a cloud in the trap at thermal
equilibrium. At thermal equilibrium (and neglecting any interaction with the background
gas), the atoms will be Boltzmann distributed, where the probability for being in a state
indexed by 𝑖, will be

𝑝𝑖 ∝ 𝑒
−𝐸𝑖
𝑘𝐵𝑇 (5.2)

where 𝐸𝑖 is the energy of the state, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the temperature of
the system. Since the position-dependent energy is the potential energy, the number density
of atom at position 𝑟 will be

𝑛(𝑟) = 𝐶 exp

(︂
−𝑉 (𝑟)

𝑘𝐵𝑇

)︂
(5.3)

were 𝐶 must be the total atom number 𝑁 divided by the effective volume of the cloud, 𝑉𝑜𝑙,
since integrating 𝑛 over the volume must yield 𝑁 .

To simplify the expression for the volume, among other things, we can define a length
scale for the density,

𝑅 =
𝑘𝐵𝑇

𝜅
. (5.4)

At 𝑇 = 250 µK, an unusually high but not unknown temperature for our cloud, 𝑅 = 1.15mm.
Then to find 𝑉𝑜𝑙, we start from equation (5.3) and write 𝑉𝑜𝑙 = 𝑁/𝐶 =

∫︀
𝑛(𝑟) d𝑟. A

coordinate change 𝑥′ = 𝑥, 𝑦′ = 𝑦 and 𝑧′ = 2𝑧, implying a 𝑟′ = (𝑥′, 𝑦′, 𝑧′) before changing to
spherical coordinates lets us perform the integration

𝑉𝑜𝑙 = 2𝜋

∫︁
𝑟′2 exp

(︂
− 𝜅𝑟′

𝑘𝐵𝑇

)︂
d𝑟′ = 4𝜋𝑅3 (5.5)

=⇒ 𝐶 =
𝑁

4𝜋𝑅3
. (5.6)

5.1.1.2 Losses

Atoms in a magnetic trap are subject to a range of losses: there are spin-exchanging colli-
sions which can throw atoms into untrapped spin-states [169]. There are collisions with the
background gas that can eject the atoms from the trap, the background gas being at a much
higher temperature than the gas in the trap. There are 𝑁 -body recombination losses (see
§ 2.3.2) where three or more atoms interact to give one of the atoms enough kinetic energy
to escape the trap. There are finite-depth losses where the atoms find themselves in a region
where potential no longer confines them. And there are Majorana spin-flip losses in region
around the magnetic zero. These last two are the only ones affected by the trajectory of the
trap center, I will go into them in some detail here. But first I need to justify why the other
loss sources do not depend on the trap trajectory.

Spin exchange collisions are interactions where the total angular momentum vector, 𝐹 =
𝐹𝑎 + 𝐹𝑏, of the interacting atoms, indexed 𝑎 and 𝑏, is preserved, but the angular momentum
of the individual atoms is not. This can lead to changes in the hyperfine levels and tends
to align the polarization of the atoms [169]. Two atoms initially in |𝐹 = 2,𝑚𝐹 = 1⟩𝑎,𝑏 can
scatter into |𝑚𝐹 = 0⟩𝑎+|𝑚𝐹 = 2⟩𝑏, and one of the atoms will be lost. We avoid this by having
only |𝐹 = 1,𝑚𝐹 = −1⟩ atoms in the trap. In that case, two atoms colliding would have total
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Magnetic potential for a single coil pair trap

Figure 5.1 – Potential generated by a single transport coil (e.g. C5 in the left of
Figure 5.4) along one axis. Solid line is the analytic formula given by [170], dashed
line is the linear approximation fit over the shaded region. Notice how the potential falls
away from linear near the inner radius of the coil (1.33 cm) and begins not to trap at all
near the outer radius (3.97 cm).

spin projection 𝑚𝐹 = −2 which cannot be the spin projection of a single atom in |𝐹 = 1⟩ so
they must stay in the |𝐹 = 1,𝑚𝐹 = −1⟩ trapped state.

Collisions with the background gas are unavoidable, absent a totally perfect vacuum. The
rate of loss depends on the relative velocity between the trapped atoms and the background
gas, so transporting the atoms, could, in principle, affect this loss rate. However, since the
background gas is at room temperature of 293K, the average air molecule has a velocity of√︀
𝑘𝐵𝑇/𝑚𝑎 where 𝑚𝑎 is the mass of the air molecule. This means that even the relatively

slow N2 molecules have an average speed of close to 420m · s−1, far faster than we hope to
transport our atoms. So we neglect the effect the transport profile will have on the loss rate
due to background gas collisions.

The only recombination losses we face are 3-body recombination losses, since there is no
light to induce photoassociation. Two atoms colliding can only exchange momenta and need
a third to impart their energy to if they are going to form an untrapped molecule and higher-
order losses are even less likely than thee-body ones. But this means that three atoms need to
meet at once, which means multiplying by another factor of the density (among other things,
see § 2.3.2 and references therein). In the magnetic trap the density is so low that collision
rate is already on the order of once per second (see Figure 5.6) so three-body losses are not
expected in an experiment lasting . 10 s.

Since these losses are not significantly affected by how the cloud is transported but are
still present, they need to be discounted by normalizing the atom number after transport by
the atom number remaining in a trap that was not transported but rather held in the MOT
chamber for the transport time. See § 5.3.1 for more details.

This leaves finite-depth losses and Majorana spin flip losses which cannot be normalized
out and do indeed depend on the transport profile.
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Finite depth losses Since the quadrupole magnetic field is made by a pair of coils of finite
size, the approximate linear potential described in (5.11) is only valid up to a certain distance
from the trap center, as illustrated in Figure 5.1. In between the two coils, the magnetic flux
lines will be densest and therefore the magnetic field strongest; past that and they begin to
diverge (see Figure 2.4). In the region outside the coils, therefore, the radial gradient becomes
negative and the potential is no longer trapping. So, if an atom finds itself far enough from
the center it will be lost. This constitutes a finite-depth loss; the depth of the trap giving the
maximum kinetic energy an atom can have and still be held in the trap. For an idealized pair
of coils, having only one loop, this will be given by the potential energy in the horizontal plane
passing through the magnetic zero, at the radius of the loops. Since the potential remains
roughly linear up this point, falling off slightly before [170, Fig. 3(b)], this energy, 𝑉𝑑, can be
estimated by

𝑉𝑑 . 𝜅𝜌 (5.7)

where 𝜌 is the radius of the loops and 𝜅 = 𝑔𝐹𝑚𝐹𝜇𝐵𝑏
′ as above. This can also be given as

a temperature, 𝑇𝑑 = 𝑉𝑑/𝑘𝐵. For our coils with multiple loops, one can estimate 𝑉𝑑 by the
linear approximation at the average radius over all the loops (see Figure 5.1).

Once the trap has reached thermal equilibrium, the cloud will be at a temperature 𝑇 < 𝑇𝑑.1

With atoms that would have raised the temperature over 𝑇𝑑 having been lost. However, high
acceleration can move the trap far enough, fast enough to put atoms outside of where the
trap can contain them. This very much depends on the trap trajectory and is neatly dealt
with by considering an effective potential in a frame co-moving with the center of the trap,
𝑉 (𝑟). Since the gradient added by the moving frame is just 𝑚𝑎 we may write

∇𝑉 (𝑟) = ∇𝑉 (𝑟) +𝑚𝑎 (5.8)

where 𝑎 is the acceleration of the trap center. This leads to a trap depth in the moving frame
𝑉𝑑 = min

𝑟
𝑉 (𝑟, 𝑎). Then if the magnitude of the acceleration, ‖𝑎‖, ever goes over ∇𝑉/𝑚, 𝑉𝑑

will fall bellow zero and the atoms will not be confined at all by the trap on the side it is
accelerating away from. Any atoms that are too far away from the trap center to be trapped
when the acceleration diminishes will be lost. How many atoms are lost then depends on how
large the acceleration is, and for how long it persists for. This last caveat is why the usual
constant velocity profile does not lose all the atoms even though it has an infinite acceleration
spike.

Majorana Losses The other kind of losses that can be influenced by the trap trajectory are
Majorana or spin-flip losses, introduced in § 2.2.4. Because these happen when an atom sees
a weak field changing quickly, they are affected by the trajectory of the trap. Equation (2.9)
lets us calculate a region where Majorana losses are expected to occur. By taking 𝑝Maj → 1
and solving for 𝑟′ we can get the radius of an ellipsoidal region where losses are expected. This
is useful for calculating loss rates both a priori to experiment [1, §4.1.3.2] and in simulations.

The trap trajectory will determine where in the trap the atoms are located over the course
of the transport. This is the primary way the trajectory influences the rate of Majorana losses:
by placing the atoms near or far from the region mentioned above where Majorana losses are
likely. In principle, they could also the atoms quickly through this region, further increasing
losses. This did not seem like a major cause of losses for our profiles, with the exception of
the “constant acceleration with a pause” profile mentioned in Appendix D, which we suspect

1. In practice, 𝑇 ≪ 𝑇𝑑, cooling having occurred in the MOT.
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Two chained ant-Helmholtz coils

Figure 5.2 – A transport of only two coils must stretch and squeeze the trapping po-
tential as they pass the cloud between them. Left — Cloud as transported by two coils.
Adapted from [1]. Right — Aspect ratio, 𝛼 of the trap produced by our transport using
only two coils. Large peak at the beginning is because the MOT chamber coil has a larger
radius.

suffered from this mechanism. The loss rates where so severe that we did not make a thorough
investigation with simulations.

5.1.2 Quadrupole trap chains

Chains or conveyor belts of anti-Helmholtz coils are a standard way of moving clouds of cold
atoms [2,239,240]. Half-overlapped coils produce quadrupole fields which sum to a trap that
can be passed down the chain by leapfrogging which coils current is supplied to. For details
about the construction of our specific transport chain, including characterization of its field,
see [1, Ch. 4]; this chapter deals with optimizing the transport and I will confine myself to
material relevant to that.

Consider first a pair of two half-overlapping2 anti-Helmholtz coil pairs with their axes
arranged on the 𝑦-axis as in Figure 5.2. All of the reasoning from the last section about
how this must create a magnetic zero in the region between the coils still holds but now the
symmetry around the axis is broken when current is flowing through both of them. When all
of the current is in one coil, the potential is symmetric as in equation (2.7) and the minimum is
at the center of the coil with all the current. When the current is equally distributed between
the two pairs the net current where the coils overlap is effectively zero, the two counter-flowing
currents canceling each other out. This puts the point where 𝐵 = 0 between the axes of the
two coils; making the two circular coils behave like one elongated coil, producing a lower
magnetic gradient in the 𝑦 direction and elongating that axis of the trapped cloud. To deal
with this asymmetry in the trapping potential let the ratio of the horizontal gradients be

𝛼 ≡ 𝑏′𝑥
𝑏′𝑦

(5.9)

where 𝑏′𝑥 and 𝑏′𝑦 are the gradients along 𝑥 and 𝑦 respectively. This makes the magnetic field

2. Meaning the axis of one coil coincides with the outer radius of the other.
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Three-coil chain and isotropy

Figure 5.3 – Similar to Figure 5.2 but for three coils. Left figure again adapted from [1].
Notice that while 𝛼 can be held constant, it cannot be decreased, with the exception of
the first peak while leaving the MOT chamber. This is thanks to the push coil near the
MOT (see 5.4).

read

𝐵(𝑥, 𝑦, 𝑧) ≃ 2𝑏′

⎛⎜⎜⎝
− 𝛼

1 + 𝛼
𝑥

− 1

1 + 𝛼
(𝑦 − 𝑦0)

𝑧

⎞⎟⎟⎠ , (5.10)

where 𝑏′ is now half the gradient along 𝑧, which we try to keep constant, and 𝛼 handles the
asymmetry. Note that in this scheme, assuming the currents are all of the same polarity,
the trap is only ever stretched along 𝑦 and simultaneously compressed along 𝑥 so 𝛼 ≥ 1. If
negative current could be supplied to the coils, the gradients along 𝑦 could be set freely and
𝛼 = 1 could be maintained. By equation (2.5) the field (5.10) results in a potential of

𝑉 (𝑥, 𝑦, 𝑧) ≃ 2𝜅

√︃
𝛼2𝑥2

(1 + 𝛼)2
+

(𝑦 − 𝑦0)
2

(1 + 𝛼)2
+ 𝑧2 , (5.11)

where 𝜅 = 𝑔𝐹𝜇𝐵𝑚𝐹 𝑏
′. Varying the balance of current between the two coils can shift the

magnetic zero back and forth between them.
This makes it clear that, with a chain of enough overlapping pairs of coils, a cloud of

magnetically trapped atoms can be moved arbitrarily far. That is to say that 𝑦0 can be
controlled. By changing the total amount of current, the magnitude of the gradient, 𝑏′ can be
scaled. It is also clear that the horizontal anisotropy of the trap will change, but with only
two coil pairs, carrying current in the same direction, there is no way to control how 𝛼 evolves
interdependently from 𝑦0. It must fall to one every time the center of the trap reaches one
of the coil axes and rise above it as 𝑦0 moves between them, reaching a maximum when it is
equidistant from the axes as seen in Figure 5.2. This constant squeezing and releasing of the
cloud will lead to heating. This can be remedied by adding a third coil whose axis is at the
outer radius of one of the pairs, Figure 5.3. This puts the atoms in a situation analogous to
being constantly held between two elongated loops, never being held by a single, circular coil
pair. Thus the trap is elongated but, if the currents are chosen correctly, it is consistently
elongated and the aforementioned heating is avoided.
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Determining the currents

From the last section it is clear that the moving trap can be characterized by three parameters:
the position of the magnetic zero, 𝑦0, the magnetic gradient, 𝑏′, and the horizontal anisotropy,
𝛼. Since the top and bottom coils in an anti-Helmholtz pair are linked in series and carry
the same current, there is no control over the off-axis position in the 𝑥, 𝑧-plane. These three
parameters can be controlled independently by the three currents if these three currents can be
arbitrarily chosen. However, to get a steep enough gradient to trap atoms at the temperature
reached by our MOT (see Chapter 2) currents up to 100A are needed (see 5.4). High-current,
bidirectional power supplies that would allow us to freely control all three parameters of
our trap are not impossible to fabricate [247], but they tend to have been developed for
special applications (see [248] and references therein) So we use more commonly available
unidirectional supplies (see § 2.2.6 for details) capable of supplying up to 60V and 100A.
But this means that we cannot arbitrarily control all three of our parameters and must make
some compromises. For further details and a simulation of the magnetic field see [1, §4.2.3.3].

At some point in the process, the current must be switched from the pair of coils on the
trailing side to the new member of the active triplet on the leading side. At that point you
only have two currents and at that position the other two parameters, 𝛼 and 𝑏′, cannot both
be freely set. Fixing 𝑏′ has the advantage that it yields current profiles where the current is
always positive. There is a further constraint that these switches should always occur when
the current in the hindmost coil has fallen to zero. Otherwise there is a risk that the sudden
change in current will lead to eddy currents (see [1, §4.4.2.1] for more about our efforts to
minimize eddy currents) which will distort the trap and could heat the cloud. So 𝛼 is the last
remaining parameter which can absorb the incompleteness of our control.

Because our power supplies only supply positive currents, 𝛼 = 1 cannot be maintained
as the trap moves and must rise above unity as explained before. Imagine a situation where
the trap is being generated by three coils simultaneously. If all three currents are positive,
all three coils will tend to drag the magnetic field minimum to their respective centers; the
only control we have is over the amount of current and therefore the degree to which each
coil pair wins out. This will stretch the trap along the axis of the chain and raise the value
of 𝛼. Since we are trying to avoid having the cloud expand and contract along the axis as
we move it, and turning on another coil with positive current can only raise 𝛼, our strategy
was to keep 𝛼 at the peak values shown in Figure 5.2 giving the profile shown in Figure 5.3.
The exception being in the transfer between the first pairs where we use the push coil shown
in Figure 5.4. Since positive current through that coil tends to lower 𝛼, the switch point
comes when 𝛼 matches the maximum value of the next pair. The reason 𝛼 climbs so high
during that first transition without a push coil is that the coils that make the magnetic trap
in the MOT chamber are larger than the coils in the transport chain, having an inner radius
of 36.2mm versus 13.4mm [1, Tbl. 4.2]. The anisotropy must fall to one at the beginning
and end of the transport since the trap is being generated by only one coil there. At the end
of the transport going into the final coil, there are only two coils available and 𝛼 rises to a
value determined by the size (and therefore spacing) of our coil pairs. We could have added
extra coils at the corner, to always have three coils available and gain better control over 𝛼
as in [240], but geometric constraints in our experiment prevented us.

For calculating the current profile which meets these conditions, we use an analytic ex-
pression for the field generated by a pair of single loops of a given diameter and separation,
carrying a given current [170]. From this we construct an expression which accounts for the
winding of the coils, given an inner and outer radius, and use that to calculate the trap pa-
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Coil labels and currents

Figure 5.4 – Left — Labels and locations of the coils in the magnetic transport. Right
– A current profile for a one-way transport. Switches between coil triplets marked with
vertical dashed lines, each power supply is plotted in its own color. Notice switches occur
when the current falls to 0A. Some currents are larger because those coils are farther
away vertically so they need more current to keep 𝑏′ constant.

rameters yielded by different current profiles. This expression holds far from the trap center
(extending even beyond the coils themselves) where (5.11) does not. They were used to gen-
erate the solid black line in 5.1. They do not take into account the helicity of our coils, but
because they are only two layers packed flat against each other that is not expected to be
significant.

In order to make sure our approximate formula for the trap potential given in equa-
tion (5.11) would always be applicable to our atoms, it was used as a fitting model for the
analytical formula. The potential was calculated at 101 points along each of the axes, each set
of 101 points spanning ±5mm from the trap minimum at 𝑟0. A least-square algorithm was
then used to minimize the difference between the potential given by the analytic formula and
the one given by the approximate formula (5.11) at these points. The range covered by these
points in the area highlighted in gray in Figure 5.1 and the difference at these on-axis points
was less than than 0.1%. Since the radius of a cloud in the trap (5.4) at a typical temperature
of 200 µK is 𝑅 ≈ 1mm, the approximation (5.11) should hold good for our experiment.

5.1.3 Time profile definitions

Here I will lay out the definitions and notation used for the various time profiles of the
magnetic trap position and define the three profiles that I will treat in detail in this chapter:
the constant-velocity profile, the constant-acceleration profile and the error-function profile.

The position of the trap center is at 𝑟 = (𝑥0, 𝑦0, 𝑧0) and the axes are oriented such that
the trap center travels along the 𝑦-axis. It is taken from the MOT chamber to the corner of
the transport, coil C7 in 5.4, and then back to the MOT chamber where it is imaged. This
constitutes a run. When the cloud is imaged at the end of the run, it is integrated along the
axis it traveled and imaged in the 𝑥, 𝑧 plane, with 𝑧 being vertical. Let the distance from the
center of the MOT chamber at the beginning of the transport to the center of the C7 coil be
𝐿1. The trap center will cover this distance in a one-way travel time of Δ𝑡.
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Three main trap position profiles

Figure 5.5 – Position (a), velocity (b), and acceleration (c) for the three time profiles.
Constant velocity is shown in blue, constant acceleration in red and the three magenta
lines correspond to the error function at three different values of the shape parameter,
𝛿 = 0.02 (solid line), 𝛿 = 0.1 (dashed), 𝛿 = 0.5 (dash-dotted). The magnitude of the
acceleration at which 𝑉 ceases to trap for 𝑏′ = 65G · cm−1 and 𝛼 = 1 (black dashed line)
and our maximum value, 𝛼 = 1.937 (black solid line) is plotted in (d). The horizontal
lines plot the maximum acceleration for the various profiles.

This means the trajectory of the basic constant-velocity profile reads

𝑦0(𝑡) =

⎧⎪⎨⎪⎩
0 for 𝑡 ≤ 0

𝐿1
𝑡
Δ𝑡 for 𝑡 ∈ ]0,Δ𝑡[

𝐿1 for 𝑡 ≥ Δ𝑡

. (5.12)

During the transport, when 𝑡 ∈ ]0,Δ𝑡[, the velocity is a constant 𝑣 = 𝐿1/Δ𝑡. However, at
the beginning and end of the transport, when 𝑡 = 0,Δ𝑡, the velocity suddenly changes from
or to zero, giving a spike in acceleration as close to infinite in magnitude as is practically
possible. To estimate how high this spike is, remember that a coil can be modeled as an
LR series circuit of some finite inductance, 𝐿𝑐, and resistance, 𝑅𝑐 having a time constant
𝜏𝑐 = 𝐿𝑐/𝑅𝑐 [216]. This means the current, and therefore the position of the trap center,
cannot change more quickly than approximately 𝛿𝑡 = 3𝜏𝑐. Taking the values from [1, Tbl. 4.1]
for one of the typical transport coil pairs gives 𝛿𝑡 = 1.5 µs. For a profile of constant velocity
𝑣, the infinitesimal change in the velocity d𝑣 = 𝑣 d𝑡. The first instantaneous acceleration is
then d𝑣 → 𝑣/𝛿𝑡 which is both finite and dependent on 𝑣, helping explain why fewer atoms
are lost when the trap is moved more slowly.

To avoid dumping that atoms out this way, we also tested a profile with constant acceler-
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ation, written

𝑦0(𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for 𝑡 ≤ 0

2𝐿1

(︀
𝑡
Δ𝑡

)︀2 for 𝑡 ∈
]︀
0, Δ𝑡

2

]︀
𝐿1

[︁
1− 2

(︀
1− 𝑡

Δ𝑡

)︀2]︁ for 𝑡 ∈
]︀
Δ𝑡
2 ,Δ𝑡

[︀
𝐿1 for 𝑡 ≥ Δ𝑡

. (5.13)

This has an acceleration of constant, finite magnitude equal to 4𝐿1/Δ𝑡
2 that switches from

positive to negative halfway through at 𝑡 = Δ𝑡/2 bringing the trap to a stop at 𝑦0(Δ𝑡) = 𝐿1.
This has a large value of the jerk at the point where the acceleration changes direction.

As I will discuss in Sections 5.3.2, this is not the drawback in this particular profile, but
to see how a profile smooth in all its derivatives performs, we tested one based on the error
function,3 written

𝑦0(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝑡 ≤ 0
𝐿1
2

[︁
1 + erf

{︁
−𝛾
(︀

𝑡
Δ𝑡

)︀−𝛿
+
(︀
1− 𝑡

Δ𝑡

)︀−𝛿
}︁]︁

for 𝑡 ∈ ]0,Δ𝑡[

𝐿1 for 𝑡 ≥ Δ𝑡

(5.14)

where 𝛿 > 0 is the tunable shape parameter. The coefficient 𝛾 = 2−3/2−𝛿
√︀
(𝛿 + 1)(𝛿 + 2)/𝛿

is a function of 𝛿 that ensures that the jerk of the trap center ...
𝑦0(𝑡) → 0 halfway through the

transport at 𝑡 = Δ𝑡/2. Since this is also where the acceleration changes sign, and this profile
is smooth in all its derivatives, (5.14) tends to have a low acceleration over most of its length
(see figure 5.5).

When the trap is expected to be anti-trapping due to its acceleration is shown in Figure 5.5
(d). The gray shaded area corresponds to the range of the absolute value of the slope potential
in the lab frame, 𝑉 , over the course of a run wherein 𝛼 varies between 𝛼 = 1 (the higher value
marked by a dashed line) and 𝛼 = 1.937 (the lower value marked by a solid line). As long as
this range is above the maximum absolute value of the acceleration, 𝑉𝑑 > 0 and the potential
will be trapping.

5.2 Thermodynamic properties of the cloud

Here I go over a few details that will be useful for understanding our experimental results:
the techniques we use for determining the temperature, and the collision rate in the trap. For
details about the experimental control and imaging setup see Chapter 2 and [1].

5.2.1 Temperature measurement

The temperature of the cloud is measured when it is released from the stationary, and the
therefore symmetrical, trap in the MOT chamber. We have three methods for making this
measurement: fitting the growth of the variance of several ToF pictures; fitting the doubly-
integrated, one-dimensional profile from a single image; and fitting with a two-dimensional
Gaussian which neglects the geometry of the trap. All three of these methods rely on a
common set of conditions and assumptions I will lay out before I go into detail about them.

We make the assumption that the cloud is at thermal equilibrium and that the potential is
linear where the atoms are just as we did to derive the properties of the cloud in § 5.1.1.1. The

3. The error function being defined as erf(𝑥) ≡ 2√
𝜋

∫︀ 𝑥

0
𝑒−𝑡2d𝑡.
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first assumption is justified by the fact that the trap holding time found above is approximately
the thermalization time I calculate in the next section 5.2.2. The second assumption is justified
by noting that the radius of average density, 𝑅 ≈ 1mm, is much smaller than the inner radius
of the MOT coils, 36mm [1, Table 4.1], which is approximately where the potential is expected
to deviate from linear (see Figure 5.1 and [170, Fig. 3]).

These assumptions let us write the potential

𝑉 (𝑟′) = 𝜅𝑟′, (5.15)

where 𝑟′ = (𝑥, 𝑦, 2𝑧) is measured from the trap center. Once the atoms have reached thermal
equilibrium, their velocities will be distributed according to the Boltzmann distribution. This
will read

𝑝(𝑣) =

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

exp

(︂
− 𝑚𝑣2

2𝑘𝐵𝑇

)︂
. (5.16)

where 𝑝 is the probability density, 𝑣 is the velocity, 𝑚 the mass of an atom, 𝑘𝐵 the Boltzmann
constant, and 𝑇 the temperature. When the trap is switched off, the density as given in equa-
tion (5.3) will serve as the distribution of initial positions for atoms with velocities distributed
as in (5.16). The density distribution after Tof, 𝑡 will then be the convolution of these two
distributions in the trap.

Let the variable of convolution be 𝑢 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) = (𝑥, 𝑦, 𝑧/2) and recall that 𝑟 = 𝑟0+𝑣𝑡
and 𝑣 = 𝑟/𝑡. This makes the normalized, time dependent density

𝑛(𝑟, 𝑡) =
(︀
2𝜋𝑟2𝑡

)︀−3/2
∫︁

d𝑢 𝑛(𝑢) exp

(︂
−(𝑟 − 𝑢)2

2𝑟2𝑡

)︂
, (5.17)

with 𝑛(𝑟) being the density distribution in the trap as in equation (5.3) and 𝑟𝑡 ≡ 𝑡
√︀
𝑘𝐵𝑇/𝑚.

There are then different methods for extracting 𝑇 from the above distribution.
For all of these methods it will by useful to define a time-dependent radius of expansion.

The distribution (5.16) has a standard deviation in the velocity along any particular direction
of 𝑣0 =

√︀
𝑘𝐵𝑇/𝑚; this will be a useful velocity scale. Let this also define a time-dependent

length scale related to the expansion, 𝑟𝑡 = 𝑣0𝑡.
The methods that follow all start from here and use different fitting strategies to extract

a temperature. Therefore they must have enough of the cloud to fit reliably and we insisted
on having four standard deviations of a Gaussian fit of density profile to consider an image
usable.

5.2.1.1 Variance of the time of flight

The most accurate and time consuming way we have of measuring the temperature of the
cloud is the standard method of taking multiple images at different times of flight and see
how the width of the cloud grows with time [1, §3.3.1]. .

When the atoms are too far apart to interact significantly (this is true both in and out of
the trap, see § 5.2.2) their velocities are uncorrelated with their positions. Then the variance of
their distribution in any direction can be separated into two parts, one due to the distribution
in the trap and one due to the free expansion, the total variance being their sum. One part is
the variance of 𝑛 in equation (5.3), 𝑅2 in the horizontal directions, 𝑥 and 𝑦, and the other is
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just 𝑟2𝑡 defined above. This makes the variances along the two dimensions of the image plane

⟨(𝑥− 𝑥0)
2⟩ = 𝑅2 + 𝑟2𝑡 = 𝑅2 +

𝑘𝐵𝑇

𝑚
𝑡2 (5.18a)

⟨(𝑧 − 𝑧0)
2⟩ = 𝑅2

4
+ 𝑟2𝑡 =

𝑅2

4
+
𝑘𝐵𝑇

𝑚
𝑡2, (5.18b)

with ⟨(𝑦 − 𝑦0)
2⟩ = ⟨(𝑥− 𝑥0)

2⟩, the variance along the imaging axis.
This means that the variances in all directions scale with time like 𝑇𝑡2. All that remains

is to take images of thermalized clouds at different times of flight (these are assumed to be at
the same temperature, making 𝑅 a constant), plot the variance as a function of 𝑡2 and do a
linear fit, the temperature will be 𝑚/𝑘𝐵 times the slope. This means we can use the variances
from a 2-D Gaussian fit of the cloud since these will scale properly with the temperature, even
if the temperature cannot be reliably extracted from them because they neglect the effects
of the trap. There is another limitation on this method in that we need all the atoms in the
image in order to reliably extract a variance. Thus if the atoms get too hot, too few points
can be taken to determine the slope of the variance with respect to 𝑡2.

This method also, of course, involves loading, waiting in, and releasing the trap, possibly
dozens of times. So while this method is the most accurate, we use it only for determining
critical temperatures. It gave a typical temperature of 185µK for cloud loaded into the
magnetic trap from the MOT and allowed to thermalize for around four seconds. This forms
our baseline for determining other properties of the trapped cloud, such as the collision rate.

5.2.1.2 Temperature from a single image

While our most reliable temperature estimates were obtained via the ToF method described
above, we did develop a way to estimate the temperature from a singe ToF image. Here we
begin from the same assumptions as above, but instead of just taking the variance of the
distribution after the ToF (5.17). We do not attempt to find a two-dimensional, analytical
expression to fit directly, but instead integrate (5.17) twice, once along the imaging axis and
then once along another axis, to give two one-dimensional profiles that can be fit to the
integrated profiles automatically calculated by our image treatment software (see Figure 2.5
for an example) to extract a temperature “along” each direction, one from the vertical profile
and one from the horizontal profile. This method was used to calculate the temperature of
the cloud for the data points presented in this thesis, taking the temperature associated with
the more tightly confined vertical direction.

For details about this calculation, as well as the formulae for the profiles, see Appendix E.

5.2.1.3 2-D Gaussian

For day-to-day use the most important thing is comparison between clouds to make sure
things are stable over the course of a working day, or during a set of runs that intend to
use the same static trap data for normalization. For this, our image treatment software will
fit two-dimensional Gaussian and extract a temperature based on the variance in each the
two directions [1, §3.3.1.2]. This variance is fit with equations (5.18a) and (5.18b) and a
temperature in each direction is extracted. These typically differ by & 10%, agreeing better
the longer the gas is held in the magnetic trap prior to release. The diference being around
5% after four seconds of waiting.
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Figure 5.6 – Collision rate, 𝛾𝑐, in the magnetic quadrupole trap as a function of atom
number, 𝑁 for three temperatures, 𝑇 = 50 µK (black solid line), 𝑇 = 100 µK (blue dashed
line), and 𝑇 = 200 µK (red dash-dotted line). This is for the stationary trap where
𝑏′ = 65G · cm−1 and 𝛼 = 1.

5.2.2 Collision rate

To calculate the collision rate, we use the scattering cross-section for identical bosons [128],
𝜎 = 8𝜋𝑎2 where 𝑎 is the scattering length. The average rate of collisions, 𝛾𝑐 should just be
this times the average relative velocity, times the average density, that is

𝛾𝑐 = 𝜎⟨𝑣𝑟⟩⟨𝑛⟩. (5.19)

For the atoms in our trap, in state |𝐹 = 1,𝑚𝐹 = −1⟩, 𝑎 = 2.75 nm [249]. Looking back at the
density (5.3) for 𝛼 = 1, as it does in the trap held in the MOT chamber, the average density
is written

⟨𝑛⟩ =
∞y

0

𝑛(𝑟′)𝑒−𝑟′/𝑅 d3𝑟′ (5.20a)

= 𝐶

∞y

0

𝑒−2𝑟′/𝑅 d3𝑟′ . (5.20b)

The integral is in equation (5.20b) is recognizable as the integral done to calculate the volume
of the gas in equation (5.5) but now the integrand is squared. This factor of two in the
exponent of the triple integral gives a factor of 1/8 making the average density

⟨𝑛⟩ = 𝐶

8
=

𝑁

32𝜋𝑅3
. (5.21)

The relative velocity of two particles is derived in a similar fashion. The two velocities
of the particles come from two independent Boltzmann distributions like (5.16). Their joint
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velocity distribution will then be their individual distributions multiplied together, leading
to a factor of two in the exponent and therefore a factor of

√
2 in the average, which for the

distribution of a single particle is ⟨𝑣⟩ =
√︀
8𝑘𝐵𝑇/𝜋𝑚 =

√︀
8/𝜋𝑣0. Then the average relative

velocity is written

⟨𝑣𝑟⟩ =
√
2⟨𝑣⟩ =

√︂
16𝑘𝐵𝑇

𝜋𝑚
=

4√
𝜋
𝑣0 . (5.22)

Putting this all together gives a scaling law for the collision rate, 𝛾𝑐 ∝ 𝑁𝑇−5/2.
Figure 5.6 gives the collision rate as a function of atom number at several temperatures.

For a typical cloud in our experiment with 𝑁 ∼ 108 and 𝑇 ≈ 200 µK this gives 𝛾𝑐 . 1 s−1.
Numerical simulations [128] suggest that the thermalization time is & 3𝛾−1

𝑐 . This collision
rate justifies our assumption the atom do not interact during a 6ms ToF.

Unfortunately this is just about the limit of out holding time in the MOT chamber.
Measuring the voltage needed to maintain current in the coil over the course of holding the
atoms in the magnetic trap in the MOT chamber revealed that this voltage started to rise
due to the coil heating after around 4 s. Therefore we cannot hold the atoms long enough
to ensure they are thermalized, especially after a run where the atom number is likely to be
lower.

Since our thermalization time can be longer than the time we can safely keep the atoms
in the trap, it is worth having some way to check if the cloud is at thermal equilibrium. If the
cloud is at equilibrium, then the temperature from a fit along the horizontal direction, 𝑇𝑥 and
the vertical direction, 𝑇𝑧, will be equal. They typically differed by ≈ 20 µK. The temperature
of the run is taken along the 𝑥-axis since this tended to be in better agreement with more
precise method of fitting over several times-of-flight.

5.3 Experiment and simulation

Because we are working with a quadrupole trap, we do not have access to analytic statements
about the modes of the trap and have to deal with Majorana losses. Therefore we do not
have precise theories about how to optimize the trajectory of the trap but can only make
educated guesses and then check them by experiment. For instance, we expect large spikes
in acceleration to lead to finite depth losses. We also expect trajectories that leave atoms
near the center, or move many atoms quickly past the center, to lead to increased Majorana
losses. We naturally thought it useful to test the typical constant velocity time profile for
comparative purposes.

The experiment involved checking different time profiles at different travel times and
profile parameters. We tested the standard constant velocity profile. We tested a constant
acceleration profile; which would guarantee an absence of acceleration spikes. We tested a
sinusoidal acceleration profile to avoid discontinuities even in the jerk. We tested profiles
based on the hyperbolic tangent and on the error function, each of which offered a function
smooth in all its derivatives and which could be adjusted from something like a linear profile
to something like a step function via a tuning parameter, 𝛿. We even tested an accelerating
profile with a pause at 𝐿1/2, detailed in D.

In this section I will focus on three of these profiles: the constant-velocity profile, the
constant-acceleration profile, and the error-function profile. The constant-velocity profile is
the standard strategy and therefore provides the baseline. Its naïve counter-part, the constant-
acceleration profile, provides a useful comparison for understanding since it fixes the problems
of the constant-velocity profile but suffers from drawbacks it does not. No profile performed
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better than the error-function profile with its shape parameter, 𝛿, going to zero, so it is given
as our optimum. A few other profiles are given in appendix D for completeness.

In § 5.3.1 I will deal with the details of the experimental procedure and give the results
for the three main profiles defined in § 5.1.3. § 5.3.2 will discuss the simulations we did for
comparison and as a way to determine loss sources.

5.3.1 Experiment

To test a time profile the equation for the position of the trap center is first put into a Matlab
script which calculates the switching times for the current and passes them along to the
control software described in [1]. A run can then be taken where the magnetic trap is loaded
from a MOT which had been loaded for 10s.4 The atoms are held for a short time (200ms)
to allow them to thermalize somewhat, then moved up to coil 𝐶7, marked in Figure 5.4, at
the corner, a distance of 𝐿1 = 30.7 cm, in the transport time, 𝑡1, and then moved back to
the MOT chamber via the same profile in reverse in the same transport time. The atoms
are then be held in the MOT chamber for another 200ms before the current in the magnetic
trap coils is switched off and the atoms allowed to expand freely for a 6ms time of flight at
which point they are imaged (see § 2.3.1.1). The images are then fed to the image treatment
software where a standard suite of analysis is done on them giving, among other things, an
atom number and the temperature, via fitting of the one-dimensional integrated profile.

These runs are typically done in sets, varying either the transport time, the shape param-
eter, or both. The data point at each value of the parameter is the average of three runs.
In order to discount effects that are not due to the transport, such as collisions with the
background gas, a set of ten normalization runs is taken for each transport time where the
atoms are held in the static trap for a duration equal to that of the run, including all waiting
times. We would also take a set of normalization runs after a set of data runs to make sure
that the atom number had not drifted significantly over the course of data collection, which
could take several hours. The average atom number of these normalization runs, �̄� is then
used as the denominator for the atom number ratio, 𝑟2𝑁 = 𝑁/�̄� for data points in that set
of runs, any run in that set having atom number 𝑁 . The reason the experimental ratios are
given as square quantities is that we are trying to deduce the loss and heating imparted by
moving the atoms once by a distance 𝐿1. Since we must move them over that distance twice
in order to measure them, the ratio we measure is the square of the ratio we want. The aver-
age one-dimensional profile fit temperature in the static trap, 𝑇 is used as the denominator
of the temperature ratio, 𝑟2𝑇 = 𝑇/𝑇 , for any individual run. Any inaccuracies due to a lack
of thermal equilibrium are expected to cancel out and leave the ratio, 𝑟2𝑇 , a good tool for
determining whether or not the transport caused any heating.

Figure 5.7 shows the effect that varying the shape parameter, 𝛿, has on the trajectory and
performance of the error function profile. It shows that the error function profile performs
best when 𝛿 → 0. Whether the transport time is long or short, whether one considers heating
or atom number, a lower value of 𝛿 is always better and the improvement is particularly
relevant for fast transport times. Looking at 5.5 you can see that 𝛿 → 0 is where the error
function profile most closely resembles the constant velocity profile, with large acceleration

4. Enough to saturate it [1, Fig. 3.14]
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Effect of the shape parameter on the performance of the error-function profile

Figure 5.7 – Experimental data for the error-function profile at different value of the
shape parameter, 𝛿, as defined in equation (5.14). Setting 𝛿 = 0 requires a redefinition
to equation (5.23) so those values are not part of these runs. The different colors denote
different travel times, Δ𝑡. From lightest to darkest they are: 500ms, 750ms, and 1000ms.
Left — The atom number ratio, 𝑟2𝑁 = 𝑁/�̄� . Right — The temperature ratio, 𝑟2𝑇 = 𝑇/𝑇 .

bumps at the beginning and end. Still, it is not identical and it is written explicitly

𝑦0(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for 𝑡 ≤ 0

𝐿1
2 erfc

[︂
ln

(︂√︁
Δ𝑡−𝑡

𝑡

)︂]︂
for 0 < 𝑡 < Δ𝑡

𝐿1 for 𝑡 ≥ Δ𝑡

. (5.23)

This is still smooth in all its derivatives and so does not have an infinite acceleration spike,
even though it is higher than for other values of the shape parameter. This is an example
of experiment guiding our simulations: the optimum for the shape parameter was found
experimentally and then the error function was only simulated with that shape parameter.
For the remainder of this chapter, when I refer to the ‘error-function profile’ I am referring to
the form where 𝛿 → 0 as in equation (5.23).

Data for the three profiles we are interested in is shown in Figure 5.8. The best performer
is the error function profile, retaining ≈ 80% of the atoms with a one-way travel time of
Δ𝑡 = 600ms. No profile was able to achieve an 𝑟2𝑁 value significantly higher than 0.8, even at
long travel times. The standard constant velocity profile performed the worst needing one-way
travel times of around 1.5 s before it achieved retention rates comparable to the other profiles.
In terms of heating, all profiles which kept the maximum number of atoms also lead to heating
of around 30% for a round trip, comparable to other experiments where they heated by 15%
over approximately half the distance [2], and slightly under-performing [239] which heated
15% over a distance close to our round-trip length. But this seems worth the trade-off for
decreasing the transport time by around a factor of two [239] or better [2], especially when a
high repetition rate is called for.

The constant acceleration profile out-performed the constant-velocity profile, as expected,
but it under-performed the error-function profile in terms of atom number with only a marginal
improvement in heating.
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Experimental data

Figure 5.8 – Experimental data for the three transport profiles defined in § 5.1.3. Blue
line is the constant-velocity profile, red line indicates the constant-acceleration profile and
magenta the error-function profile. Left — The atom number ratio, 𝑟2𝑁 = 𝑁/�̄� . Right —
The temperature ratio, 𝑟2𝑇 = 𝑇/𝑇 .

5.3.2 Simulation

In the experiment, we can only measure how many atoms we lose, but cannot say very much
about why we lose them. There are only two loss mechanisms that can be affected by moving
the trap: finite depth and Majorana losses (see § 2.3.2). Since we normalize by a cloud held
in a static trap, we can isolate the losses from sources associated with moving the trap but
can say nothing about which mechanism predominates. This hampers our ability to make
guesses about how to modify the trajectories in order move towards an optimum. Because we
cannot analytically optimize our trajectories for loss rates, we made some classical simulations
which will at least give us access to loss rates, both to distinguish between types of losses and
make sure our overall loss rates were compatible. An overall loss rate incommensurate with
our experimental data would indicate either new physics or some experimental problem. It
indicated neither.

The simulations were performed in MATLAB by A. Perrin which comprised 1000 classical
atoms in a infinite depth quadrupole trap with a horizontal gradient of 𝑏′ = 65G · cm−1. The
atoms are non-interacting to simplify calculation, and since our collision rate 𝛾𝑐 . 1 s−1, this
should not have a large effect on the outcome. The varying horizontal anisotropy was simu-
lated from the calculations used to determine the currents in § 5.1.2. The atomic parameters
are well-studied and were taken from [135]. All 1000 trajectories were calculated for a trap
moving 30.7 cm in some given profile and transport time, Δ𝑡. The behavior is assumed to be
symmetric for the return journey.

The fact that the trap is infinitely deep means that the potential is as written in (5.11),
but equality holds for all 𝑥, 𝑦, 𝑧. This means that there cannot really be finite depth losses in
these simulations. Also, since the atoms are classical and have no quantum properties, such
as spin, it will not have Majorana losses. We do have their entire trajectory, including their
velocity, and the value of the magnetic field at every point they visit. Therefore, instead of
counting atoms lost in the simulation, we need to define some quantities that will track with
losses of each type.

We expect finite depth losses to be more prevalent when the atoms are further from the
trap center and that the distance most relevant to the trajectory will be along the 𝑦 axis. So
we look at the distance from the trap center of the 𝑖th atom,

⃒⃒
𝑦𝑖𝑎(𝑡)

⃒⃒
. Rather than try to find
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Simulation loss data

Figure 5.9 – Results of simulations with 1000 classical atoms for the constant-velocity
(blue diamonds), constant-acceleration (red squares), error-function (magenta triangles)
and stationary trap (black circles) for comparison. Left — Mean maximum distance from
the trap minimum in units of 𝑅, proportional to finite depth losses. Right — Average
maximum of the adiabatic condition for a Majorana spin-flip.

some cutoff where we call the atom “lost” we say that the loss rate should be proportional
to the average of the maximum distance from the trap center, ⟨max𝑡

⃒⃒
𝑦𝑖𝑎(𝑡)

⃒⃒
⟩𝑖. This quantity,

normalized by the size of the stationary trap, 𝑅, is plotted on the left in Figure 5.9. This
shows that the constant velocity profile has the most finite depth losses even at Δ𝑡 = 1 s.
The other profiles converge with the loss rate of the static trap by Δ𝑡 ≈ 700ms. Also notice
that the constant acceleration profile has the least finite-depth losses, even beating the error
function profile in this regard.

The other source of losses is Majorana losses which are expected near the trap center,
where the magnetic field is weak. The adiabaticity condition is given by equation (2.9).
When this ratio approaches unity, a spin flip becomes very likely. Since we have access to all
the atomic trajectories, this ratio can be calculated for all the atoms at all times during the
simulated transport. The chance of losing an atom over the course of the transport will be
well-captured by the maximum value reached by this ratio. Let this be

𝑟𝑖Maj ≡ max
𝑡

ϒ𝑖
Maj (5.24)

where, again, 𝑖 is the index of the atom and ϒMaj is the adiabaticity condition defined in
equation (2.9). The average of this over the atoms should give a good indication of the
Majorana loss rate associated with a trajectory and is plotted to the right in Figure 5.9.
Notice here that the constant acceleration profile has the most losses and constant velocity the
fewest; the error function profile again falling in between them. This is expected, considering
the atoms in the co-moving potential (5.8). Since the acceleration is constant they can be
expected to settle near the center of the trap which to them appears stationary in a tilted
potential instead of moving relative to them as with the error function profile. The same
could be said of the constant velocity profile but, as we have seen, atoms in that profile tend
to be further away from the trap center and so less subject to Majorana losses.

It can also be seen that for very fast travel times (Δ𝑡 . 100ms) all the profiles exhibit
fewer Majorana losses than the static trap. This can be explained by them having a very high
value of ⟨max𝑡

⃒⃒
𝑦𝑖𝑎(𝑡)

⃒⃒
⟩𝑖/𝑅 and virtually no atoms being anywhere near the center. Indeed,

⟨max𝑡
⃒⃒
𝑦𝑖𝑎(𝑡)

⃒⃒
⟩𝑖/𝑅 > 102 means the average atom was 100𝑅 ' 10 cm away from the trap
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Simulation heating data

Figure 5.10 – Results of simulations with 1000 classical atoms for the constant-velocity
(blue diamonds), constant-acceleration (red squares), error-function (magenta triangles)
and stationary trap (black circles) for comparison. Left — Ratio of the mean distance
to the trap center before and after a run. Right — Ratio of the mean of the velocity
distribution after the transport to the static trap.

center, well outside the region we expect them to be trapped at all in the experiment (see
Figure 5.1) and explaining the total and near-total loss of atoms at these travel times.

To deal with heating of the atoms due to transport we can look at the mean values of the
position and velocity distributions. The distribution of the distances at the end of a run is
{𝑟𝑖𝑎(Δ𝑡)} where

𝑟𝑖𝑎(𝑡) =
√︁

(𝑥𝑖𝑎(𝑡))
2 + (𝑦𝑖𝑎(𝑡)− 𝑦0(𝑡))2 + (𝑧𝑖𝑎(𝑡))

2 . (5.25)

The final distribution for the magnitude of the velocity is then {𝑣𝑖𝑎(Δ𝑡)} where

𝑣𝑖𝑎(𝑡) =

√︃(︂
d𝑥𝑖𝑎
d𝑡

)︂2

+

(︂
d𝑦𝑖𝑎
d𝑡

− d𝑦0
d𝑡

)︂2

+

(︂
d𝑧𝑖𝑎
d𝑡

)︂2

. (5.26)

What is plotted in Figure 5.10 is the ratio of the average of these to the radius of average
density, 𝑅 defined in equation (5.4) and the standard deviation of the velocities in the static
trap, 𝑣0 defined on page 112, respectively. The higher these ratios, the more heating is
expected but it will not be one even if there is no heating which is why the ratio for the static
trap is plotted. Overall, they track with the experimental results.

5.4 Conclusion

Data from the experiment shows that the error-function profile (5.14) with the shape param-
eter 𝛿 → 0 (5.23) gives the shortest travel time while maintaining the highest atom number
we observed, even at long travel times (see Figure 5.8), and gives reasonably low heating
heating with 𝑟2𝑇 ≈ 1.4 at 2Δ𝑡 = 1.2 s, the fastest time over which we did not see significant
improvement in the atom number ratio, 𝑟2𝑁 ' 0.7 (see Figure 5.8). This implies an opti-
mum of 𝐿1/Δ𝑡 = 51.2 cm · s−1 an improvement over the average speeds of 30 cm · s−1 [239],
12.2 cm · s−1 [240], or 8.25 cm · s−1 [2]. This is the best performing value of the shape pa-
rameter (see Figure 5.7) which makes it most closely resemble a constant velocity profile (see
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Figure 5.5), the worst performer (see Figure 5.8 again) which needs travel times of several sec-
onds to maintain the kind of atom number ratio and temperature that the other two profiles
have with one-way travel time Δ𝑡 < 1 s. The simulations tell us that this is due to the balance
this profile strikes between the finite depth losses associated with the constant velocity profile
and the Majorana losses associated with the constant acceleration profile.

While it is clear from 5.5 d.) and considerations of 𝑉𝑑 that profiles with large acceleration
spikes need longer travel times to remain trapping (Δ𝑡 ≈ 300ms) and that the constant
acceleration profile avoids this problem even at fairly short times (Δ𝑡 ≈ 150ms) all of these
are well under the Δ𝑡 ≈ 600ms threshold at which we start to see maximum atom number.
It also does not explain the performance at Δ𝑡 < 600ms where the error function profile still
wins out over the constant acceleration profile. The simulations we performed tell us that this
is because while a constant acceleration profile is expected to have few finite depth losses, it
accomplishes this by keeping the atoms near the center of the trap, where they undergo more
Majorana losses.

The simulations tell us what proportion of the losses come from which source associated
with the motion of the trap center. The constant velocity profile naturally has a lot of
finite depth losses due to its high acceleration lowering the trap gradient of the trailing side
significantly. When that constant velocity is high, the atoms can find themselves a significant
distance from the trap center, both incurring finite depth losses and heating when the potential
in the moving frame snaps upright and the atoms experience a significant increase in potential
energy. The small ramp-up and down in the velocity in the error function profile seems to be
enough to give the atoms enough time to catch up and prevent the large finite depth losses
we see in the simulation of the constant velocity profile. The constant acceleration profile
overcomes this problem by maintaining a constant, shallow tilt but this allows the atoms to
settle near the center of the trap resulting in a lower average distance from the trap center
(Note the consistently lower ⟨max𝑡

⃒⃒
𝑟𝑖𝑎(Δ𝑡)

⃒⃒
⟩𝑖/𝑅 value for the constant acceleration profile in

Figure 5.10.) but that means they are more likely to enter the region of high Majorana losses
and are more likely to be lost that way (see Figure 5.9). The error function profile with a
low shape parameter strikes a compromise between these two loss sources leading to the best
overall performance.

The heating is in qualitative agreement between the simulations and the experiment; the
simulations track the comparisons between the profiles at travel times over Δ𝑡 = 500ms but
underestimate the overall heating observed in the experiment. Despite our efforts, the currents
are not strictly zero when switched between sets of coils so some eddy currents are expected
to lead to heating. The simulations did capture the important feature of the constant velocity
profile causing a great deal of heating, even for slow travel times. This is consistent with the
atoms having a higher average distance from the center of the trap, ⟨max𝑡

⃒⃒
𝑦𝑖𝑎(𝑡)

⃒⃒
⟩𝑖 under the

action of that profile. This would give the atoms more potential energy which will then be
converted into a higher temperature when the cloud comes to thermal equilibrium.

All of the profiles that keep the maximum ratio of atoms (𝑟2𝑁 ≈ 75% for two way transport,
implying 𝑟𝑁 ≈

√
75% ≈ 85%) did not have excessive heating. This may be due to our scheme

of trying to maintain a constant, rather than as near to one as possible, value of 𝛼, the
horizontal anisotropy. We borrow the scheme from [2] and have very similar rates of heating.
For short travel times the two-way temperature ratio was 𝑟2𝑇 . 1.3 giving a one-way ratio of
𝑟𝑇 . 1.14 for a 30.7 cm trip. For a 200 µK cloud this means less than 28 µK of heating over
30 cm, right in line with the experiment in [2] in which a 125 µK cloud heated 19 µK, or 15%,
over 33 cm. But where they needed 4 s to cover that distance using a constant velocity profile,
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we cover a similar distance in 600ms.
Our results show a substantial improvement over the standard constant velocity profile.

We feel this is near the limit of what this guess-and-check method can accomplish without
some way of identifying functions that will perform better based on their analytic properties.
Although we lack analytic theory by which we can prove the error function profile is a global
optimum, we hope this work will be of use to anyone transporting atoms via quadrupole trap
chains.



Part II

Counters and ergodicity





Introduction

This part details the theoretical and numerical work I did during my PhD with M. Olshanii,
the supervisor of my master’s thesis [250]. The goal is to construct counters for the phase
space of various systems that will give us insight into those systems. Let me start from the
one-dimensional physics discussed in Part I and then work towards these counters, which are
not a standard technique.

One-dimensional quantum systems have the possibility to be exactly solved [80], meaning
analytic expressions can be found for the wave function. A good example of this would be the
Lieb and Liniger solution [48] discussed in § 1.2.2.2. The condition they must meet is called
integrability, a well defined notion in classical mechanics which means the systems has as many
functionally independent integrals of the motion as it has degrees of freedom and therefore can
be solved explicitly. It is not so simple to craft such a definition for quantum systems [251].
The usual meaning, in the quantum case, is independent operators which commute with
each other and the Hamiltonian (e.g. [69]). This is a necessary but not sufficient condition for
building an exact solution.1 Exact solutions and questions about integrability are particularly
useful in the currently active domain of out-of-equilibrium quantum systems (see [253] for a
review). Exact solutions provide benchmarks that numerical methods must reproduce in the
exactly solvable cases; and if a system is integrable, it is expected not to thermalize [254] or
be ergodic [251].

One way of building exact solutions for systems with only contact interactions is to make
a map from collisions between particles to collisions of a single particle moving in a higher-
dimensional billiard [95]. Both of these will be discussed in greater detail in Chapter 6 but
this is the key link between one-dimensional systems and the systems considered in this
part. Via a coordinate transform I discuss in § 6.2.2 there is a straightforward map from
points moving inside systems of (hyper-)planes to one-dimensional systems of particles [255].
This is the same in both the classical and quantum cases. In the quantum case, under
certain conditions I mention in § 6.2.2.2, it is possible to construct exact solutions for the
wave function of one-dimensional systems, like the Lieb and Liniger solution, from particular
geometric arrangements of (hyper-)planes. This line of investigation is the work I contributed
to during my master’s thesis under M. Olshanii. Because the map from billiards to one-
dimensional systems of elastic particles is exact and not merely an analogy, systemic properties
such as ergodicity, chaos, integrability, and so on shown for one are inherited by the other.

1. In [80, Ch. 2], Sutherland gives [252] as an example of a quantum system proven to be integral but still
lacking an exact solution.
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M. Olshanii and his collaborators have also used it to solve one-dimensional subsystems and
infer from their properties some properties of the system they are embedded in [256].

The idea presented here is to construct counters that will allow us to show whether or not
the systems they are defined over are ergodic. This method was inspired by a 2014 paper by
Wang, Casati and Prosen in [70].2 They study a point moving in a right triangle in which the
other angles are irrational and use exact numerical techniques to show that the direction the
point is moving in tends to be localized near its initial direction. If this holds in the limit of
infinite time, a certain class of these irrational right triangular billiards cannot be ergodic, an
as yet open problem [258, Pb. 8]. Their method is to count collisions the point makes with
the sides of the triangle in a particular way and then look at how this counter grows. The key
link between their counter and the counter presented in Chapter 7 is that the absolute values
of both grow depending on the parity of certain events in the system, not just their number.

Our work is a step towards generalizing this technique. The outline of the method is
to construct counters in such a way that if they grow in a certain way then the system on
which they are defined must be ergodic: either because the counter can be related to an
average and the growth rate says whether or not the average will converge, or their growth is
unbounded opening, the way for a measure-theoretic argument. Then one finds the growth
rate of the counter using cycles of growth and stasis that will appear in all parity counters
when there are periods in the dynamics of the underlying system .We start with a counter
defined over a textbook example of a simple ergodic system, an irrational rotation, and use
that as a way to develop tools for looking at the growth of counters that are periodic on
short time scales. That is, the sequence given by the counter can be replicated by periodic
subsequences for certain lengths of time. This itself takes inspiration from a 2009 paper
by Huveneers [259] where he constructs unbounded subsequences in irrational rotations by
looking at subsequences of rational approximants. We give a way of calculating this range
of validity for the periodic approximations and I will discuss what this means for where the
particular methods we develop can be expected to fail.

With the goal of introducing new tools which will help us gain insight into problems of
physical significance established, I will lay out the background theory I will be relying on in
Chapter 6 before discussing the inspirational problem and the work done on the method in
Chapter 7.

2. I will at times make reference to their 2013 preprint of the same article [257] since it contains some
numerical results that the 2014 published version [70] does not since the argument differs between the
two.



Chapter 6
Background

In this chapter I will be laying out the concepts necessary to understand the next chapter
which details the results for Part II. The goal of this research is to construct objects we call
counters for dynamical systems, examine the behavior of those counters, and infer from that
behavior ergodic theoretic properties of the system. While we take the basic idea from Wang,
Casati and Prosen [70] (I use the acronym WCP to indicate objects and systems coming
from their paper), who defined their counter over a billiard with clear physical interpretation.
They were not able to say with certainty what the behavior of their counter implied. For the
counter we study in detail, we define a counter over a simpler system, proven to be ergodic
but with less obvious physical significance, the irrational rotation. We use this as a test case
to develop tools for analyzing the growth of counters that I will go into in the next chapter.

If I am going to do that, I had better explain what all of those things are. I will also make
brief digressions where appropriate to both include small points that will be relevant in the
next chapter and to highlight connections to the physics discussed in Part I. I will start by
laying out the ideas I will need from ergodic theory, including some basic ideas from measure
theory that will be needed. I will mention why a system having memory (i.e. being sensitive
to its history) is incomparable with it being ergodic since Wang et al. want to argue from
the memory they seem to have found in their counter to the non-ergodicity of the billiard. I
will then define a billiard in detail and show how they can encode one-dimensional systems.
I will also briefly explain how they can be used to build exact solutions to quantum systems,
like those studied in Part I. Then I will discuss rotations, both rational and irrational as well
a few results from the theory of continued fractions to deal with how to generate series of
rational approximants.

6.1 Ergodicity

6.1.1 Definitions

The fundamental question of ergodicity is whether or not infinite time averages converge to
ensemble averages. This is very useful because one of these averages can be much easier to
find than the other. If one can then show that some system or transformation is ergodic and
find one limit, one has the other immediately. As mentioned in the introduction, physical
interest goes back to Boltzmann [58] who wanted to show this relationship between averages
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for an ideal gas if he could prove that in infinite time. It has been shown that his specific
notion of ergodicity is impossible under Newton’s laws [60,61] but that his notion of a trajec-
tory densely filling the phase space after infinite time, called quasi-ergodicity is sufficient to
show the convergence of the averages [63]. I will not make such fine distinctions as the one
between quasi-ergodicity and another kind and will simply use the term ergodic for systems
and observables whose infinite time and ensemble averages converge.

I will generally be dealing with ergodicity in measure theoretic terms (ergodic theory
being known also as measurable dynamics [3, p. 1]) and [3] provides a good reference for the
ideas I will collect here. The appendices of [260] also provide a rigorous but much condensed
introduction. More general references and applications are almost too numerous to list but
[261] along with those already listed provided my basis in the literature.

Let me define some terms before I briefly return to the physical significance at the end of
this section since it will make the explanations less circuitous. I will use the term system to
mean a phase space, comprising a set 𝑋 containing phase points or states of the system, {𝑥},
and having a 𝜎-algebra,1 Σ, and being equipped with a map, 𝑇 : 𝑋 → 𝑋, that updates the
states. An observable of this system is a function of its states. Both systems and observables
can be said to be ergodic and if a system is ergodic then all of its observables are, but non-
ergodic systems can have ergodic observables [262].

A measure is a map 𝜇 : Σ → R+ ∪+{∞} such that for disjoint sets 𝐸𝑖 ∈ Σ, 𝑖 = 1, 2, . . .

𝜇(𝐸𝑖) ≥ 0 ∀ 𝑖 (6.1a)
𝜇 (∅) = 0 (6.1b)

𝜇

(︃ ∞⋃︁
𝑖=1

𝐸𝑖

)︃
=

∞∑︁
𝑖=1

𝜇 (𝐸𝑖) . (6.1c)

These are all the desired properties for something which generalizes the idea of size. We want
it to give a number in R, which is positive when it measures something (6.1a) and zero when
it measures something with no size (6.1b). Lastly, the size of a collection of things should be
the sum of their sizes when measured individually (6.1c). If a measure is defined only on a
certain set, that set is said to have full measure and if that set is finite, it can be said to have
measure one and the measure to be a probability measure. A set of full measure can be said
to cover almost everywhere and contain almost all points. The word “almost” in both of these
expressions conveying the sense of “except for a set of measure zero.” If a transformation
keeps all of sets in Σ the same size as measured by 𝜇, then 𝑇 is said to be measure preserving
or equivalently that 𝜇 is an invariant measure for 𝑇 or a 𝑇 -invariant measure. The explicit
condition that must hold for this is that all measurable sets 𝐸 ∈ Σ must be mapped from sets
of equal size by 𝑇 , i.e. 𝜇(𝑇−1𝐸) = 𝜇(𝐸).

This is first time I want to make a link back to ergodic theory explicit. When doing the
ensemble average, one can imagine picking each point in the phase space once and only once,
calculating the observable there, and adding it into the average. Therefore the odds that
states in some region of phase space will affect the ensemble average only depend on the size
that region takes up. This makes the expression “probability measure” clear, the probability
that a point is anywhere in the phase space is one, and this leads naturally to concept of the

1. A 𝜎-algebra on 𝑋 is a collection of subsets, including ∅, of 𝑋, along with their compliments (if 𝐴 ∈ Σ then
𝐴𝑐 = 𝑋 ∖ 𝐴 ∈ Σ) and countable unions (if 𝐴𝑖 ∈ Σ for 𝑖 ≥ 1 then ∪∞

𝑖=1𝐴𝑖 ∈ Σ). This is taken from [260]
from which I take my definition of measure. For this thesis, you can think of Σ as the countable subsets
of 𝑋, including itself, as distinct from the points in 𝑋.
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ensemble average as the expectation value of an observable 𝑓(𝑥), weighted by the measure of
the volume element phase space, which reads

⟨𝑓⟩ ≡
∫︁
𝑓(𝑥) d𝜇 , (6.2)

where d𝜇 = 𝜇(d𝑥). This is one part of what it means to be ergodic, to deal with the other
part we need to deal with how point in the phase space move with time.

The map that is the solution to a set of time-independent2 differential equations and is a
flow. A flow can be continuous to discrete. I use the discrete notation here since the systems
treated in the next chapter progress by well-defined time steps, but in either case a flow is a
transformation that, when acting on 𝑋, has the properties [263]

𝑇 0𝑥 = 𝑥 (6.3a)
𝑇 𝑡(𝑇 𝑠𝑥) = 𝑇 𝑡+𝑠𝑥 . (6.3b)

Here 𝑡 and 𝑠 can be thought of as lengths of time for a continuous system or a number of units
of time in the discrete case. Then (6.3a) means that if no time passes, the system remains
in the same state and (6.3b) means that the result of a transformation by a flow depends
only on the amount of time which passes since the system was in the state, 𝑥. The action
itself is always the same sine the differential equations it solves are time-independent. If we
take 𝑥′ = 𝑇 𝑠𝑥 then there is now way to distinguish a system that began at 𝑥′ a time 𝑡 ago,
or began at 𝑥 a time 𝑡 + 𝑠 ago; regardless of the history the state and the next state, after
another application of 𝑇 , are the same. In this sense, a flow has no “memory,” an idea I return
to in § 6.1.2.

Where this gains so much physical significance is that these time-independent differential
equations are just what govern isolated systems in classical mechanics. Not only are these
phase spaces measurable, but as a result of Liouville’s theorem [264, §46] we can say that such
flows are measure preserving and regions of the phase space will be mapped onto regions of
identical size no matter how long the system evolves for, as long as the flow is constant. If
a particular region of the phase, a set 𝐴 ⊆ 𝑋 for instance, is mapped back onto itself, that
set is said to be an invariant set. Note that points need not return to themselves, it is only
required that points in 𝐴 never leave 𝐴 under the action of 𝑇 .

According to Birkhoff’s ergodic theorem [64], a system is ergodic3 if and only if all of the
invariant sets, 𝐴 ∈ Σ, of a system have the property that 𝜇(𝐴) = 0 or 𝜇(𝐴𝑐) = 0 [3, Lm. 3.7.1].
This property is called being metrically transitive.. That is to say that all the invariant sets
in the phase space have either full measure or measure zero. For a rigorous proof see the
references, but to get an intuition that this implies ergodicity, imagine an invariant set 𝐴 ⊂ 𝑋
has positive but not full measure. Then all trajectories that start in 𝐴 will never visit any
states in 𝐴𝑐. Then the partial time average

𝑓𝑛(𝑥0) ≡
1

𝑛

𝑛−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥0) , (6.4)

will only converge to the ensemble average (6.2) by some extreme coincidence for 𝑥0 ∈ 𝐴,
since the ensemble average will also include all of the points in 𝐴𝑐 which has measure 𝜇(𝐴𝑐) =

2. That is that the only time dependence enters through the variables, the equations themselves having no
explicit time dependence.

3. To be exact it is quasi-ergodic, his 1931 paper being a follow up on von Neumman’s paper [63] which
was published a few months later in 1932.
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𝜇(𝑋 ∖ 𝐴) > 0. If, on the other hand, 𝐴 is the only invariant set and has full measure (i.e.
𝜇(𝐴) = 𝜇(𝑋)), then the flow will take all of the trajectories throughout the phase space. The
flow cannot take a trajectory back to any individual point since by property (6.3b) it must
then visit all the same points again, forms a closed curve, and we have found an invariant
set with less than full measure, since a trajectory is of one-dimension and therefore cannot
fill a higher-dimensional phase space, as mentioned above. It also cannot get stuck in any
particular region of the phase space since, again, 𝐴 is the only invariant set and it has full
measure. Then, given infinite time the trajectory must densely cover the phase space and this
is enough to ensure that the infinite time average

𝑓(𝑥) ≡ lim
𝑛→∞

𝑓𝑛(𝑥) , (6.5)

converges to the ensemble average (6.2) and ergodicity is satisfied [62, 64]. It just remains to
notice that this argument does not break down if there are fixed points in the phase space
where trajectories will never leave. Since they are points, they have measure zero and therefore
will have no weight in the ensemble average and the probability that a trajectory will reach
them in the time average is zero.

At infinite time, when the phase space has been densely covered, there can be no notion
of one region of phase space being “more densely” covered than another. When we say that a
trajectory beginning at 𝑥0 covers the phase space densely we mean that for any point in the
phase space, 𝑦, and a distance 𝜖 > 0, there is a 𝑡 such that the trajectory 𝑇 𝑡𝑥0 lies within 𝜖
of 𝑦, no matter how small 𝜖 is chosen. Since 𝑡→ ∞ in (6.4) there is no sense in talking about
regions where 𝑡 need not be as large for a given 𝜖 or vice versa.

6.1.2 Systems with memory

I mentioned before that equation (6.3b) means that flows poses no “memory” and I would like
to come back to that, now that we have some helpful concepts defined. When I say that a
system has memory I mean that a point on a trajectory itself contains no information about
that trajectory. This includes any sensitivity to the history of the trajectory, not just the case
where the entire history can be constructed from a phase point. The flows themselves clearly
do not posses this property, owing to the fact that the differential equations they solve do not
depend explicitly on time, but that does not mean all systems evolving under flows also lack
memory.

An example would be a simple harmonic oscillator of frequency 𝜔 and mass of one. Given
a point in its phase space, (𝑞, 𝑝), where 𝑞 is position and 𝑝 is momentum, the trajectory could
only ever come from an ellipse consistent with its energy, ℰ , and therefore can be said to have
memory of ℰ . This could be used to define an invariant set of points, {𝑝, 𝑞}, satisfying the
relation

𝑝2 + 𝜔2𝑞2 = 2ℰ . (6.6)

But this has measure zero in the phase space of the entire 𝑞, 𝑝 plane and so it is not obvious
that this system is non-ergodic given what we have said before. But we can also define an
invariant set of all the points lying in a strip between the ellipses

𝑝2 + 𝜔2𝑞2 = 2ℰ ± 𝜖 (6.7)

for some 𝜖 > 0 and 𝑝, 𝑞 will have memory as coming from this strip. This strip will be in the
𝜎-algebra of the space, and have positive, but not full, measure.
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This gives a model for how non-ergodic systems can posses a memory. If there is at least
one invariant set of measure strictly between zero and one, then states in those invariant sets
can be associated with an invariant of the motion and so always keep a trace of where they
came from. States not in invariant sets will be characterized by a lack of any of these constants
of the motion and therefore show they came from outside the invariant sets. The converse
case, that a system with memory is not ergodic, is only true if the memory persists for infinite
time and is inherent in the phase variables. A flow may map a subset of positive measure to
itself for a long but finite time, for instance, but the system still contain no strictly invariant
sets. If one constructs some object that keeps track of the time passed as well as the position
in phase space, that will have memory of the entire trajectory, but only because it was so
constructed. But persistent memory in a system is strong, but not conclusive, evidence that
it is not ergodic.

KAM theory The way invariant sets in phase spaces are usually found by physicists is
with Kolmogorov-Arnol’d-Moser (KAM) theory. The most basic statement of the result of
the theory is that phase trajectories of many systems with time-independent Hamiltonians will
be confined to invariant tori of positive measure and it describes how to find these tori. More
precisely the system must be integrable, that is it must possess as many independent constants
of the motion as degrees of freedom. For more the reader is directed to [265] excellent for its
review of the literature if nothing else. It also shows that unless the trajectory is periodic
(i.e. belongs to an invariant subset of the torus) it densely covers the torus. It also shows
that these tori persist under small perturbations in the Hamiltonian away from integrability
but that is getting away from my reason for bringing it up. The relevant consequence is that
unless there is only a single such torus, exactly coinciding with the entire phase space, the
system is not ergodic. Given a system that this theory applies to, it would be surprising for
the system to be non ergodic for some other reason. This is what Wang et al. have found
numerical evidence for in their paper on triangular billiards [70].

6.2 Billiards

Now that I have outlined the kinds of questions we will be asking, I will go over the sys-
tems which inspired the investigation presented here and provide the link to physical, one-
dimensional systems.

6.2.1 Introduction

Mathematical billiards are a way of considering fundamental questions in dynamical systems
(a much broader class of problems [4]), consist of a point, moving in straight lines inside
some domain, the boundaries of which it bounces elastically off of [66]. Since billiards can
encode one-dimensional systems which can include objects of infinite mass, I will refer to the
infinite-mass objects in one-dimensional systems as walls and I will say that the boundaries
of billiards comprise mirrors. In the most basic case, the domain is a flat, two-dimensional
polygon [266] but this can be extended to domains with elliptical boundaries (where the
billiards are integrable [267]), piece-wise curved boundaries which can thermalize trajectories
[268] as well as in other geometries and in the presence of fields [269]. It is possible to define
outer or dual billiards [270] where instead of a point reflecting inside a closed boundary, a
point outside a boundary evolves step-wise by being reflected along lines tangent to that
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boundary which can be used to study celestial mechanics [271]. See [272] for a survey. The
textbook [66] provides a good introduction and overview on the subject and has an extensive
bibliography including several reviews.

The questions we will examine with respect to billiards are those of ergodicity and pe-
riodicity. The trajectory of a billiard is periodic if it returns exactly to some point in the
phase space; that is it returns to the same position and the same velocity direction. Since the
future trajectory at any moment depends only on the point in phase space occupied at that
moment (that is to say that billiards have no memory and motion in them constitutes a flow
as defined in equations in(6.3a) and (6.3b)), the first time the trajectory revisits a point in
phase space it will fall into an orbit and revisit all prior points in phase space and no others.
These orbits constitute sets which are invariant under the flow of the billiard motion. If these
periodic orbits have full or zero measure then the billiard is ergodic. Trajectories which meet
the corners tend to be ignored unless there is a clear way to continue them, typically with
some physical justification [273]. But these trajectories form a set measure zero since the
corners themselves have measure zero.

A billiard or its boundary is said to be rational or if all of the angles in its boundary are
rational multiples of 𝜋. These are referred to as rational angles. Otherwise, the billiard is
irrational. Since we will be dealing with right-triangular billiards and examining the behavior
when the other angles are nearer or further from rationality, it is significant that billiards
in near-rational polygons have been shown to be ergodic [274]. For right triangles far from
rationality the question is much more open. It has been shown that almost all trajectories
perpendicular to the legs of an arbitrary right triangle are periodic [275]; that other types of
periodic trajectories exist in right triangles and that every point on the triangle is on at least
one such trajectory [276]; and that any periodic billiard path in a right triangle is unstable
under perturbations of the angles in the triangle [277].

The question Wang et al. were approaching in [70], is one of the ergodicity of trajectories
in irrational right triangles when the initial position and velocity direction can be anything,
an open question [272, Plbm. 8]. The basic strategy is construct something that counts the
distinct velocity directions the trajectory visits. For a right triangle with irrational angle 𝛼/2,
each reflection off of the hypotenuse will change the velocity direction by 2𝛼 (see Figure 7.1) so
the set of potential velocity directions is {2𝛼N}, as set of cardinality ℵ0. A set of trajectories
of positive measure for which the number of velocity angles visited was finite would therefore
indicate that these triangles are not ergodic since not all of the accessible angles are visited.
This in turn would tell us about a system of two masses colliding in a one-dimensional box.

6.2.2 Encoding one-dimensional systems

The physical interest in billiards for us is that maps can be made between billiards and
one-dimensional systems [255]. There are different ways of making the encoding, but the
general idea is that given a system of 𝑁 particles with 𝑁 positions in one-dimension, one
can transform coordinates and follow a single virtual particle in 𝑁 dimensions.4 The mirrors
of the billiard then correspond to collisions between the particles. This correspondence is
illustrated in Figure 6.1.

For classical, impenetrable, particles, the relevant billiards are just those discussed above:
the virtual particle moves in straight lines and reflects elastically off the mirrors. That is the
kind of billiard I will be working with in this part and I will discuss it first and go over the

4. Or 𝑁 − 1 dimensions, if one is only interested in the relative motion of the particles.
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Closed billiard for two particles in a box

0:
0 𝐿

𝑥1
𝑚

𝑥2
𝑚

1:
0 𝐿

𝑥1
𝑚

𝑥2
𝑚

2:
0 𝐿

𝑥1
𝑚

𝑥2
𝑚

3:
0 𝐿

𝑥1
𝑚

𝑥2
𝑚

𝛼

1

2

3

𝜃0

𝑥1
√
𝑚

𝑥2
√
𝑚

𝐿
√
𝑚

Figure 6.1 – Illustration of the correspondence between two particles in a box (left) and
a billiard (right). Because the masses are equal, the coordinate transform outlined at the
beginning of § 6.2.2.1 implies that the billiard is a 45∘ − 45∘ − 90∘ triangle. Collisions in
both systems are labeled 1 to 3. The initial particle velocities (not shown) are encoded in
𝜃0 = arctan(𝑣1/𝑣2) (see text).

coordinate transform. Similar maps can be made in the quantum case, however, and exact
solutions such as the Lieb–Liniger model [95] and systems of mass mixtures (see [69] and
references therein) can be constructed. I touch on them to draw a more explicit connection
between billiards and the systems discussed in Part I.

6.2.2.1 Coordinate transforms and virtual particles

Billiards can be directly related to the dynamics of one-dimensional systems of hard-core
particles via a coordinate transform [66, Ex. 1.2]. Let 𝑥𝑖, with 𝑖 = 1, 2 be the positions of two
impenetrable particles indexed by 𝑖 of mass 𝑚𝑖 moving in one dimension with velocities 𝑣𝑖.
By scaling the coordinates like �̃�𝑖 = 𝑥𝑖

√
𝑚𝑖 the velocities also rescale, becoming 𝑣𝑖 = 𝑣𝑖

√
𝑚𝑖.

An example where 𝑚1 = 𝑚2 = 𝑚 and the particles are confined to a box of length 𝐿 is
illustrated in Figure 6.1. The place where the particles collide, 𝑥1 = 𝑥2 becomes a line in the
transformed space, making an angle 𝛼 = atan

√︀
𝑚1/𝑚2 to the �̃�2-axis. This line is colinear

with the vector (
√
𝑚1,

√
𝑚2).

Conservation of energy and momentum become

𝑚1𝑣
2
1 +𝑚2𝑣

2
2 = 𝑚1𝑣

′2
1 +𝑚2𝑣

′2
2 → 𝑣21 + 𝑣22 = 𝑣′21 + 𝑣′22 (6.8a)

𝑚1𝑣1 +𝑚2𝑣2 = 𝑚1𝑣
′
1 +𝑚2𝑣

′
2 → 𝑣1

√
𝑚1 + 𝑣2

√
𝑚2 = 𝑣′1

√
𝑚1 + 𝑣′2

√
𝑚2 (6.8b)

where primed quantities are those after the collision. If we let the velocity vector of the virtual
particle be 𝑣 = (𝑣1, 𝑣2) then (6.8a) says that the magnitude of 𝑣 · 𝑣 does not change when
the particles collide and (6.8b) says that 𝑣 · (√𝑚1,

√
𝑚2) does not change when the particles

collide. This is just to say that the virtual particle reflects off of the 𝑥1 = 𝑥2 line just as
in a billiard (3 in Figure 6.1). When 𝑥1 = 0 the first particle meets the wall at 𝑥 = 0 and
𝑣1 → −𝑣1 so the component of 𝑣 in the �̃�1 direction changes sign (1 in Figure 6.1) and for a
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Method of images on an open billiard for two masses on a half-line

�̃�1

�̃�2

𝑥1 = 𝑥2

𝛼

Figure 6.2 – Billiard encoding two particles of mass 𝑚1,2 at 𝑥1,2 moving on the half-
line. The solid black arrow depicts the billiard trajectory. The dashed arrow represents the
unfolded trajectory (see text) and thin solid lines the unfolded mirrors or mirror images.
Since 𝛼 equals 𝜋 over an integer (6 here) the mirrors reflect each other onto each other
and form a closed group [278] and the entire set generated by reflections can be, and is,
depicted.

box of length 𝐿 the analogous thing occurs at 𝑥2 = 𝐿, �̃�2 = 𝐿
√
𝑚 (2 in Figure 6.1). Thus we

have exactly the properties of a point moving in a closed billiard.
A few things are worth nothing before we move on to the quantum case. If the particles are

hard-cored, the virtual particle will never meet the �̃�1 axis away from the origin as this would
mean 𝑥2 = 0 while 𝑥1 > 0; the particles have changed order. The other thing to notice is that
instead of reflecting the virtual particle, one can reflect the billiard itself about the mirror the
virtual particle is colliding. This unfolds the path of the virtual particle into a straight line
across many copies of the billiard. This is sometimes called the method of images. It goes
back to electrostatics where charges induce image charges in conductors [279, pp. 185 and
following] but has since been generalized to Markov processes and solving certain differential
equations with Dirichlet boundary conditions [280, 281], which includes flows on billiards.
This will be useful later for seeing the connection between billiards and rotations.

Take the example illustrated in Figure 6.2, the open billiard encoding a system of two,
hardcore particles on a half-line. The virtual particle enters at an angle equal to atan(3) ≈
2𝜋/5. Following its path via the method of images, it will keep making collisions until the
next mirror image it would meet with is at a steeper angle; the �̃�2 axis in this case. Thus it
will make six collisions before it emerges from the open billiard. The order in which those
happen is given by the trajectory of the virtual particle. First, 𝑥1 = 0 and that particle hits
the wall, then it hits the other particle, then the wall, etc. The images encode the collisions
associated with the mirrors they are images of.

For studying systems where only the relative motion of the particles is of interest, one can
transform to coordinates [282] similar to the Jacobi coordinates; the first particle is said to be
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at 𝑥1 and then the position of particle 𝑖 > 1 is measured relative to the center of mass of all
the particles 𝑗 < 𝑖. Then, one of the dimensions of the billiard is associated with the center
of mass position and this dimension is orthogonal to all the others and can be discounted.

6.2.2.2 Quantum billiards and the Bethe ansatz

While many interesting properties of quantum systems can be investigated using billiards
[283, 284], with some extension of the analogy, exact solutions to one-dimensional systems of
𝛿-interacting particles, can be constructed from billiard systems. The methods go back to
McGuire solving several cases in 1963 [87] and whose optical analogy I will summarize here.
Gaudin introduced the idea of working from billiards to physical systems in the 70s [95], using
it to reconstruct Lieb and Liniger’s solution. This work has been continued by M. Olshanii,
Harshman, Jackson, and their collaborators [69, 99,285], including myself [250].

The solutions rely on the coordinate Bethe ansatz [68, 97],5 just as Lieb and Liniger
did [48]. The ansatz consists of assuming that the solution is a sum of plane waves, and is
symmetric (in the case of bosons) or anti-symmetric (in the case of fermions) under exchange
of particles. This (anti-)symmetry lets one turn one true equation into a system of equations
large enough to constrain the variables and construct an exact solution. The way to do
this with billiards is to replace the initial virtual particle with an initial plane wave; this
constitutes a quantum billiard [286]. The reflections then correspond to the permutations of
the particles and the solution is the sum of the initial wave and of all its reflections [87]. In the
case where reflections about the mirrors form finite reflection groups [67] these can be solved
exactly using the method of images [98]. One can then start from such a set of mirrors, and
construct a wave function. Then the difficulty is assigning physical significance to the mirrors.
If one mirror is reflected onto another, they must encode the same interaction; if the particles
are not hard-cored, the wave at the mirror will be partially transmitted and the method of
images may fail; the angles between the mirrors cannot suggest negative masses; etc. By
doing things like embedding the billiard in a curved manifold, one can add external potentials
to the system [69], and by finding new mass ranges that can be related to finite reflection
groups [99,250], the set of exact solutions of one-dimensional systems can be expanded. Thus
billiards remain an active area of research relevant to the systems discussed in Part I.

Let me describe a simple example, the three impenetrable particles on an open line treated
by McGuire [87]. The system has three masses so it needs two degrees of freedom, one for each
of the relative velocities. After the coordinate transform [282] this gives a two-dimensional,
open billiard, similar to the one illustrated in Figure 6.2. But now, instead of the incoming
arrow depicting a billiard trajectory, imagine it is the wave vector of an incoming plane wave.
Since this is the sum of two plane waves along each axis, it alone encodes the two relative
states of the three particles. What the Bethe ansatz relies on is summing over all the plane
waves that solve the differential equations of the system.

We have two of them already in the initial wave vector, where do we get the rest? The
Bethe ansatz says to sum over the set of permutations of the particles. This set can be gener-
ated by swapping neighbors, which in momentum space is equivalent to neighbors undergoing
elastic collisions [48].

In a closed system, like the Lieb and Liniger system discussed in § 1.2.2.2, this means
summing over all the permutations and the billiard boundary must be a closed curve. When
the system is open and the billiard boundary is just a wedge, it means summing over the

5. As distinct from the algebraic Bethe ansatz
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collisions the system will actually undergo. Those are just the collisions encoded by the billiard
mirrors the incoming wave reflects off of. Therefore, the set of plane waves to sum over is that
generated by a plane wave under the action of a group of billiard mirrors. The wave front
emerging after all the reflections have taken place will be the sum of all the permutations the
system will undergo and so it, plus the incident wave, provides the solution. If the reflection
group of the mirrors is finite6 then this has no diffraction effects, there is a single emerging
wavefront which evenly fills the whole wedge and the sum is readily computed. If not, there
are extra terms in the sum which resist exact solution (see [87, §III.A] and references therein).

For examples of one-dimensional systems solved with billiards and reflection groups, see
[95], [287], or [285] and references therein.

6.3 Irrational rotations

The counter studied in the next chapter is inspired by one defined on a billiard but it itself
is defined over a rotation. The phase space of a rotation is a circle and the flow moves phase
points counter-clockwise by some angle, 𝛼. The rotation is said to be rational or irrational
depending on whether 𝛼 is rational or irrational. Irrational rotations are such basic ergodic
systems that they are used in textbooks to introduce the idea [3, §3.2], [261, Prop. 2.16].
They are well-studied objects in mathematics [259,288,289], and have straightforward physical
relevance via their close connection to the almost-Mathieu operator [290]. This is a discrete,
one-dimensional operator defined on square integrable functions which is closely related to the
Hamiltonian of electrons in low-dimensional lattices subject to a magnetic field (see [291] and
references therein). Our interest in them though lies in using them to gain insight into the
properties of billiards. Because a billiard trajectory can be unfolded via the method of images,
and reflecting about two intersecting lines (or planes) is equivalent to a rotation by twice
the angle between them [292, p. 33] rotations can play an important role in understanding
billiards [293, §7.5]. Since the WCP counter has interesting implications about the behavior
of billiards, our strategy is construct a related counter over this simpler system which we know
to be ergodic, study its behavior, and then, in the future, try to link it back to the billiard
problem.

In the next chapter, the methods for studying these counters rely on examining how their
rational convergents behave; so a few details about rational approximations and some specifics
of rational rotations will be necessary. I will then cover the notions we will need from irrational
rotations themselves.

6.3.1 Rational approximants

Any irrational number can be represented by an infinite continued fraction (see [294, Thrm. 170].
I take my basic facts about continued fractions from this text unless otherwise noted.). This
is constructed from an infinite series of integers, 𝑎𝑖, 𝑖 = 1, 2 . . . with 𝑎1 ∈ Z forming the whole
part and 𝑎𝑖 ∈ N+ for 𝑖 > 1. Note that this is slightly idiosyncratic (but not original [295])
notation, 𝑖 typically beginning at zero and 𝑎0 being the whole part of the number. The

6. A complete list of finite reflection groups has been given by H. Coxeter [67]. It requires that the angles
between the mirrors be certain integer ratios of 𝜋.
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continued fraction representation of the irrational is constructed from this sequence thus

𝜎 = [𝑎1; 𝑎2, 𝑎3, 𝑎4, . . .] = 𝑎1 +
1

𝑎2 +
1

𝑎3 +
1

𝑎4 + . . .

. (6.9)

I will call 𝜎 a generic irrational if the corresponding sequence, 𝑎1, 𝑎2, 𝑎3, . . ., is not
bounded from above. These constitute almost all irrational numbers [294, Trm. 196], hence
the name. That is, if 𝜎 is a generic irrational then

𝜎 = [𝑎1; 𝑎2, 𝑎3, 𝑎4, . . .] : ∀𝐴 ∈ N ∃ 𝑖 : 𝑎𝑖 ≥ 𝐴. (6.10)

I will call a 𝜎 constant type (after [259]) or bounded irrational if the corresponding sequence,
𝑎1, 𝑎2, 𝑎3, . . ., is bounded from above. That is, if 𝜎 is of constant type

𝜎 = [𝑎1; 𝑎2, 𝑎3, 𝑎4, . . .] : ∃𝐴 ∈ N : ∀𝑖 𝑎𝑖 ≤ 𝐴. (6.11)

The rationale for calling irrationals with bounded continued fraction series “bounded” is clear.
The fact that the set of such irrationals has measure zero [296, §7] justifies the calling ones
that are not bounded “generic.” If an irrational number is of generic type, it can be approx-
imated arbitrarily well since large numbers in the continued fraction series imply a better
approximation by the truncated fraction and somewhere in the continued fraction series can
be found numbers of arbitrary magnitude.

The distinction between these two types of irrationals will be significant for estimating
the growth of the counter introduced in Section 7.2. The methods we use fail for irrationals
of constant type because we cannot be sure if the behavior we see in the approximate series
holds long enough to give an estimate of true series.

Rational approximations of 𝜎 are generally written

𝜎𝑀 = [𝑎1; 𝑎2, 𝑎3, . . . , 𝑎𝑀 ] = 𝑎1 +
1

𝑎2 +
1

𝑎3 +
1

. . . + 1
𝑎𝑀

=
𝑝𝑀
𝑞𝑀

, (6.12)

In the series of rational approximants to a given 𝜎, it follows from their construction via
the Euclidian algorithm [294, § 10.6] that the denominator, 𝑞𝑀 , grows with 𝑀 like

𝑞𝑀
𝑞𝑀−1

= 𝑎𝑀 +
𝑞𝑀−2

𝑞𝑀−1
for 𝑀 ≥ 3 . (6.13)

The first two denominators will always be 𝑞1 = 1, 𝑞2 = 𝑎2. From (6.13) it follows that for
generic 𝜎 where 𝑎𝑀 can grow arbitrarily large,

𝑞𝑀
𝑞𝑀−1

𝑀≫1
≈ 𝑎𝑀 , (6.14)

holds very well. Indeed, in the generic case 𝑎𝑀
𝑀→∞→ ∞, but for any continued fraction,

one is guaranteed that 𝑞𝑀−2

𝑞𝑀−1
→ 0 as 𝑀 → ∞ so it can be neglected from (6.13) and the
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approximation (6.14) can be expected to be good for large 𝑀 and arbitrarily well in the case
of generic 𝜎.7

By putting together some basic theorems from the theory of continued fractions, one can
show that

1

𝑞𝑀 (𝑞𝑀+1 + 𝑞𝑀 )
≤ |𝜎𝑀 − 𝜎| ≤ 1

𝑞2𝑀𝑎𝑀+1
. (6.15)

The important thing to notice is that, in the case of generic 𝜎, the rightmost term can be
made arbitrarily small and the approximation arbitrarily better than 1/𝑞2𝑀 , a distance from
the irrational any continued fraction approximation will be closer than [294, Thrm. 171]. In
the case where 𝜎 is of constant type, there is some maximum value for 𝑎𝑀 and therefore a
lower bound on the right-hand term, relative to 1/𝑞2𝑀 . I will return to this in the next chapter
to explain why this undercuts our argument for unbounded growth.

From the above, we can write

1

𝑞2𝑀𝑎𝑀+1

[︂
1− 1

𝑎𝑀+1
+𝒪

(︂
1

(𝑎𝑀+1)2

)︂]︂
≤ |𝜎𝑀 − 𝜎| ≤ 1

𝑞2𝑀𝑎𝑀+1
. (6.16)

Then, for genetic irrationals where 𝑎𝑀+1 may be large and terms like (𝑎𝑀+1)
−2 and smaller

neglected, we may write

|𝜎𝑀 − 𝜎|
𝑀≫1
≈ 1

𝑞2𝑀𝑎𝑀+1
. (6.17)

6.3.2 Rational rotations

By rotation I mean a map on a circle of unit circumference that shifts all the points counter-
clockwise by a distance 𝜎. Beginning from a point on the circle 𝑥0, after 𝑛 steps the position
will be

𝑥𝑛(𝜎) = 𝑥0 + 𝑛𝜎 mod 1 , (6.18)

with

𝑛 = 0, 1, 2, 3, . . . ,

and 0 ≤ 𝑥𝑛 < 1 ,

In principle, 𝜎, 𝑥0 ∈ R but we will concentrate on 𝜎 ∈ Q for the moment and the whole part
of 𝑥0 has no bearing on the trajectory. This is a discreet flow, having both the properties
(6.3a) and (6.3b) and is isomorphic to rotating the circle by angle 2𝜋𝜎.

First, let us consider a rational rotation, where 𝜎 = 𝑝/𝑞 with 𝑝⊥𝑞 and 𝑝 ∈ Z, 𝑞𝑖𝑛N+, that
is, they are coprime, whole numbers and 𝑞 is positive. It is clear that the sequence is periodic,
with a period 𝑞:

𝑥𝑛+𝑞(𝑝/𝑞) = 𝑥𝑛(𝑝/𝑞) , (6.19)

7. It should be understood that the “goodness” of an approximation should always be considered relative
to the length of 𝑞𝑀 , called the complexity of the rational [294, p. 194] If this can get arbitrarily long, by
choosing a higher 𝑀 the approximation can always be made arbitrarily close.
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Rational rotations

(a)

𝜎 = 5/8

ℓ

𝑥 = 1/2

𝑥 = 0

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

(b)

𝜎 = 5/7

ℓ
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𝑥 = 0
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𝑥2

𝑥3
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Figure 6.3 – An illustration for several statements about rational rotations made in the
text. Both (a) (even 𝑞) and (b) (odd 𝑞) illustrate an assertion made in Section 6.3.2 that
for a rational rotation of 𝜎 = 𝑝/𝑞, the first 𝑞 members of the 𝑥𝑛(𝑝/𝑞) sequence lie on the
circle in an equidistant manner, with the nearest-neighbor distance of ℓ = 1/𝑞, highlighted
in blue. Subsequent points will fall on top of the first 𝑞.

since after a step of length Δ𝑛 = 𝑞 the shift from 𝑥0 will be the integer 𝑝 and be sheared off
by taking the fractional part. It follows immediately that any functions of 𝑥 will also have
the property (6.19).

For (6.18) with 𝜎 = 𝑝/𝑞, 𝑞 is also the shortest period. If there were a shorter period of
say 𝑚 < 𝑞, that would mean that 𝑚𝑝/𝑞 ∈ Z =⇒ 𝑞 | 𝑚𝑝, that 𝑞 evenly divides 𝑚𝑝.8 But
𝜎 = 𝑝/𝑞 is in its lowest terms by assumption and 𝑚 < 𝑞, so must be that 𝑞 - 𝑚𝑝 and there
can be no orbit of length 𝑚 < 𝑞.

Since (6.18) is a flow, this means the moment 𝑥𝑛 = 𝑥𝑛′ for 𝑛′ ̸= 𝑛, the system falls into an
orbit, of length 𝑞, and revisits all of the same points as before and in the same order. Thus,
there can be no points revisited within an orbit because as soon as any point is revisited, the
orbit has closed and no new points can be reached, according to equation (6.3b).

Since the orbit is of the same length whether 𝑝 = 1 or not is easy to prove that the set of
points in an orbit

{𝑥0, 𝑥1, . . . , 𝑥𝑞−1} =

{︂
𝑥0, 𝑥0 +

1

𝑞
, 𝑥0 +

2

𝑞
, . . . , 𝑥0 +

𝑞 − 1

𝑞

}︂
mod 1 . (6.20)

That is to say that the 𝑞 points of the orbit divide the circle into segments of equal length,

ℓ =
1

𝑞
. (6.21)

See Figure 6.3 for illustration.
What is more, we can say that when 𝑞 is even, points in a rational rotation half an orbit

apart will form antipodal pairs (i.e be separated by a length of 1/2), for all values of 𝑝. The
proof is similar to the one proving that 𝑞 is the shortest orbit.

If 𝑞 is even then there is an antipodal point 𝑞/2 steps away since

�𝑞

2
× 𝑝

�𝑞
≡ 1

2
mod 1 (6.22)

8. I use 𝑚 | (-)𝑛 to mean 𝑚 does (not) evenly divide 𝑛. Notations are in Appendix A.
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because 𝑝 ∈ N+. This can be the only point at that position with respect to where it occurs
in the orbit because no points are repeated within an orbit.

When 𝑞 is odd, on the other hand, a distance 1/2 away from a point in the orbit is exactly
between two other points. Since an orbit of length 𝑞 divides the circle into 𝑞 intervals of length
ℓ = 1/𝑞, this is equivalent to saying that

ℓ(𝑚+
1

2
) =

1

2
for 𝑚 ∈ Z

=⇒ 𝑚+
1

2
=
𝑞

2

(6.23)

which is just to say again that 𝑞 is odd.

6.3.3 Irrational rotations and how we will use them

A rotation such as (6.18) is irrational when 𝜎 ∈ R ∖ Q. This will never fall into orbits and
has the property that

𝑥𝑛 ̸= 𝑥𝑛′ when 𝑛 ̸= 𝑛′ . (6.24)

The motion has been proven to be ergodic for any irrational 𝜎 (see [297] and the references
at the start of Section 6.3), with an invariant measures being able to be defined on it. Take
the Lebesgue measure of the real line interval [0, 1[ for an example of such a measure . Under
the action of a rational rotation, a segment of length less than ℓ will fall into an orbit, just
like any other set of points. The collections of segments it gets mapped onto over the course
of an orbit will form an invariant set of positive, but not full measure. This is therefore not
metrically transitive and therefore not ergodic. But in the irrational case, (6.24) ensures that
orbits never close. That means that the set of points visited by a trajectory will be dense
and a theorem by Weyl ensures that the points visited will be uniformly distributed when
𝑛 → ∞ [298, 299]. Thus, if one tries to form an invariant set by placing a segment centered
around an initial point and including all the points visited in the trajectory of this segment,
the invariant set is the entire circle, no matter how small the segment is. Therefore, no
smaller invariant sets of positive measure can be made and irrational rotations are metrically
transitive and so ergodic. Since this flow does not change the measure of the interval [0, 1[,
we can say the flow is measure preserving and that 𝜇(d𝑥) = d𝑥 = conts..

Because irrational rotations are such simple ergodic systems, they are excellent for pro-
totyping tools and arguments to apply to dynamical systems. The fact that rotations are
related to reflections which in turn play such an important role on billiards is an argument
for choosing them over some other simple, ergodic system like a harmonic oscillator. Our
strategy is to construct series based on the observables in such a way that the ergodicity of
the system and the behavior of those series imply things about each other. An example will
make this clearer.

Consider a discrete, ergodic, observable, 𝑓 , defined on a rotation such that

𝑓(𝑥) =

{︃
+1 for 𝑥 ∈

[︀
0, 12
[︀

−1 for 𝑥 ∈
[︀
1
2 , 1
[︀ , (6.25)

where 𝑥 is as in equation (6.18). Because this is ergodic, it has the property that (6.5)
converges to (6.2) and we have

𝑓 = ⟨𝑓⟩ = 0 . (6.26)
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Then one can define a series, 𝑆𝑛, whose 𝑛th term is 𝑛𝑓𝑛, which cannot grow faster than
linearly. Taking the converse case where the ergodicity of 𝑓 is in question, if one can define a
series like 𝑆𝑛 and then prove that it asymptotically grows more quickly than linearly,9 then one
has shown that the time average cannot converge to zero. If ⟨𝑓⟩ = 0 this would demonstrate
that 𝑓 is not ergodic. This is the essence of the idea we hope to employ with these counters
and why we are so interested in their rates of growth.

Counters By counter we simply mean an object which counts some event in the underlying
system, e.g. collisions with the billiard mirrors or only collisions of a certain type, etc. Some
events may count negatively. Thus they are always integer valued and only ever change by ±1.
They are not themselves observables of the system as they are not just functions of the phase
space. If one counts collisions with billiard mirrors for example, a given point in phase space
could correspond to any value of the counter, depending on the history. As such, properties
of the system like ergodicity or sensitivity to history are not directly inherited by counters
and they must be linked to each other by arguments.

There are two kinds of arguments we can foresee making. One is after the fashion of the
argument about 𝑆𝑛 just above, where the counter would be constructed to behave like 𝑆𝑛
(or its sum). The other would be an argument relying on metric transitivity and proving
the counter is unbounded like the argument given above that irrational rotations are ergodic.
The counter in that case could be the number of distinct angles visited. Metric transitivity
and hence ergodicity then follows from the unboundedness of the counter by Weyl’s theorem
showing the points to be dense and equi-distributed.

6.4 Summary

In laying out the background theory for the next chapter I have taken several detours to draw
connections to broader concerns so I will list here the key statements that must be kept in
mind going forward. Terms are defined above near where they appear in italics.

∙ If a system is ergodic the infinite time average (6.4) converges to the ensemble mean
(6.2) in the infinite time limit.

∙ Most physical systems evolve via a flow which has the properties (6.3a) and (6.3b).

∙ The measure of the phase space weights the ensemble average.

∙ Metric transitivity implies ergodicity and vice versa.

∙ If a point in phase space contains information about its trajectory for infinite time, the
system is not ergodic.

∙ KAM theory says that the trajectories of integrable systems are confined to invariant
tori in the phase space and this is generally incompatible with ergodicity.

∙ A billiard involves a virtual particle moving elastically inside of a boundary composed
of mirrors. It can encode the dynamics of a one-dimensional system via coordinate
transforms like those outlined in § 6.2.2.

9. i.e. that 𝑆 = Ω(𝑛), or to be explicit: lim sup
𝑛→∞

⃒⃒
𝑆𝑛
𝑛

⃒⃒
> 0.
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∙ Irrationals can be better and better approximated by series of fractions with denomina-
tors growing as in (6.14), leaving gaps from the rational approximated like (6.17).

∙ Irrationals can be generic, where the series of their continued fraction coefficients are
unbounded or of constant/bounded type where this series has a maximum value.

∙ A rotation is defined by (6.18). Rational rotations fall into orbits and are therefore not
ergodic while the opposite is true for irrational rotations.

∙ A counter is an integer valued object, distinct from a system’s observables, that counts
events that occur in the system, some events counting negatively.



Chapter 7
Parity counters

I will start this chapter by detailing the counter studied by Wang, Casati and Prosen in
their 2014 paper [70] and the parity counter I worked on with M. Olshanii. Each is dealt
with in their own section. Section 7.1 on the Wang-Casati-Prosen (WCP) counter is included
for more than just background and explanatory purposes. I also offer some explanations for
their numerical results and attempt to shed some light on what they mean for the underlying
systems, both dynamical and physical. I argue that if their counter can be shown to undergo
unbounded growth for an irrational right-triangular billiard, then those billiards are ergodic,
and give reasons to suspect that that is the case.

With a slight modification, the WCP counter can be transformed into a counter which
increments by the parity of the number of a certain kind of event in their system. This is what
lead Prof. Oshanii to construct a different parity counter, defined over irrational rotations,
as a way of trying to gain some insight. In section 7.2, I describe these counters (both
the intermediate one and the one over irrational rotations), our estimation and numerical
techniques, give our reasons for believing that it undergoes unbounded growth for generic
type irrationals (defined in § 7.2.1), and treat its fractal dimension.

7.1 Wang-Casati-Prosen counter

The WCP counter, denoted 𝐾, is defined on a one-dimensional system of two hard-core point
masses moving between impenetrable walls. When the particles collide with each other, 𝐾
increases by one. When either particle collides with a wall, 𝐾 changes sign. Let the positions
of the masses 𝑚1 and 𝑚2 be 𝑥1 and 𝑥2 respectively, with their velocities then being 𝑣1 and
𝑣2. One can then make a coordinate transform 𝑦𝑖 ≡

√
𝑚𝑖𝑥𝑖, 𝑤𝑖 ≡

√
𝑚𝑖𝑣𝑖 where the index,

𝑖 = 1, 2, just as in § 6.2.2.
As before, the particle masses determine the angle the billiard mirror which encodes the

particle-particle collision makes with the coordinate axes. Let 𝛼 be defined such that

cos𝛼 =
𝑚1 −𝑚2

𝑚1 +𝑚2
. (7.1)

Then, if you allow 𝜃 to be defined such that

tan 𝜃 =
𝑤2

𝑤1
, (7.2)
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The Wang-Casati-Prosen billiard

𝐾 → −𝐾

𝐾 → −𝐾𝐾 → 𝐾 + 1

𝑦1

𝑦2

𝜃𝑦1

𝜃𝑦2

𝛼/2

Figure 7.1 – The billiard on which the WCP is defined. Labels outside the sides of the
triangle indicate how the counter changes when the virtual particle meets that side. The
angles 𝜃𝑦1 and 𝜃𝑦2 are the angles subtended by the other leg when the particle meets a leg
at 𝑦1 and 𝑦2 respectively. See 7.1.2 for the significance of this. The angle 𝛼 is determined
by the masses as in (7.1). Note that the trajectory colliding with the hypotenuse changes
its direction by 𝛼.

after a particle-particle collision 𝜃′ = 𝛼− 𝜃. After a particle-wall collision, one the velocities,
in both the transformed and one-dimensional space, will simply be inverted and 𝜃′ = −𝜃 or
𝜋 − 𝜃.

Since a reflection changes the trajectory of a virtual particle by twice the angle of incidence,
the billiard constructed from this system should feature:

i.) an angle of 𝛼/2.

ii.) two mirrors on the coordinate axes to invert one velocity without changing the other.

iii.) only two dimensions, one for each particle.

This constrains us to the billiard shown in Figure 7.1: a right triangle with an angle of 𝛼/2.
It also lets us (or rather the original authors) define the WCP counter, 𝐾 and imposes the
rules by which it is incremented. The counter, 𝐾 is defined so the velocity angle after some
time, 𝜃 can be written

𝜃 = 𝜙+𝐾𝛼 , (7.3)

where 𝜙 ∈ {𝜃0,−𝜃0, 𝜋− 𝜃0, 𝜃0−𝜋} and keeps track of what “quadrant” the velocity vector lies
in. I say “quadrant” in quotes because they are not the four quarters of the circle delineated by
the coordinate axes, but rather those made by two axes, one at angle 𝛼 and the other at 𝛼+𝜋/2
(see Figure 7.2), about which the velocities will be distributed with reflectional symmetry. It
absorbs changes in the velocity angle of 𝜋/2 leaving the changes by 𝛼 to be accounted for.
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Quartering of the circle of the velocity angle by 𝜙

𝐾 = 1, 𝜙 = −𝜃0

𝐾 = 1, 𝜙 = 𝜃0

𝐾 = 1, 𝜙 = 𝜋 − 𝜃0

𝐾 = 1, 𝜙 = 𝜃0 − 𝜋

𝜃 = 0

𝜃 = 𝛼𝑔

𝜃 = 𝛼𝑔 +
𝜋
2

Figure 7.2 – Diagram illustrating the function of 𝜙 in relating the WCP counter 𝐾 to
the velocity angle, 𝜃, in equation (7.3). Here the “strongly irrational” of 𝛼 = 𝛼𝑔 = 𝜑𝜋
case is illustrated. This figure also makes clear that as 𝐾 → ∞, the velocities will be
distributed in four sets, related to each other by reflection about the two axes indicated
by the dashed lines.

You will note that apart from this, it resembles a rotation, similar to equation (6.18), but
here 𝐾 is incremented in a special way.

The rules for changing 𝐾 to 𝐾 ′ after a collision are written

𝐾 ′ = 𝐾 + 1 (hypotenuse/particle collision)

𝐾 ′ = −𝐾 (leg/wall collision.) .
(7.4)

When 𝛼 is rational multiple of 2𝜋, 𝐾 has a certain set of values it can visit because it
captures the transformation of the velocity angle by rotation of 2𝛼 (see Figure 7.1). As I
said in § 6.3.2, when 𝛼/2𝜋 = 𝑝/𝑞 for positive integers 𝑝, 𝑞, there are only 𝑞 angles that can
be reached. If the initial angle 𝜃0 is irrational, the trajectory itself may not fall into an
orbit [293, §4.1] but there is a limited number of directions the velocity can take, 𝑛*𝐾 for a
rational 𝛼/2𝜋 = 𝑝/𝑞 that is an invariant for a particular 𝑞. This does not impose a maximum
value on 𝐾 however since all values of 𝐾 are equivalent modulus the orbit length, 𝑞. This
is not true when 𝛼 is irrational however. In that case, every value of 𝐾 corresponds with a
unique value of 𝜃, up to rotations of 𝜋/2, absorbed by 𝜙. To see this let

𝜃 ≡ 𝐾𝛼 mod 2𝜋 . (7.5)

The only way for 𝜃 = 𝐾 ′𝛼 = 𝐾𝛼 for 𝐾 ′ ̸= 𝐾 is for there to be some non-zero integer
𝑞 : 𝐾𝛼 ≡ (𝑞+𝐾)𝛼 mod 2𝜋 =⇒ 𝑞𝛼 ≡ 0 mod 2𝜋. But this implies that 𝛼 = 𝑝/𝑞 · 2𝜋 ∈ Q2𝜋
for 𝑞 ∈ N+, 𝑝 ∈ Z, in contradiction with 𝛼/2𝜋 ∈ R ∖Q. For 𝜙 to cause a collision like the one
mentioned above it must hold that

(𝐾 −𝐾 ′)𝛼 ≡ 𝑝

2
𝜋 mod 2𝜋, (7.6)
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where 𝑝 = 0, 1, 2 or 3. But that is to say that an integer times an irrational is rational, an
impossibility.

The main result of the paper [70] is numerical evidence about what happens when, 𝛼 is
“strongly” irrational, meaning that it is a number far from rational times 𝜋. As an example
they take the golden ratio,

𝜑 =

√
5− 1

2
(7.7)

and set 𝛼𝑔/𝜋 = 𝜑. They then study approximants to this, 𝛼/2𝜋 = 𝑝/𝑞 in a manner I will
discuss in § 7.1.1. They find numerically that, in the strongly irrational case where 𝛼 → 𝛼𝑔,
while 𝐾 has a nonzero probability of reaching any value on the number line, the probability
that it reaches any particular number falls off exponentially as one moves away from the
initial value, 𝐾0. Since the average of this over time, �̄�, will just be the initial value, 𝐾0,
the velocity angle, 𝜃, must also be localized in time around 𝜃0, at least up to rotation by
𝜋/2. But the average over 𝐾0 will be ill-defined, so when 𝛼 is “strongly” irrational the
billiard is not ergodic. They claim that this is a novel kind of non-ergodicity, distinct from
the kind predicted by KAM theory where the system is restricted to tori of positive with
associated, distinct invariants. This is what keeps the system from being metrically transitive
and therefore makes it non-ergodic.

The “weakly” irrational case is more strictly defined as being those billiards proven to be
ergodic by Vorobets in 1997 [274]. In his proof, Vorobets constructs “weakly” ergodic billiards
as those billiards where the irrational angle 𝛼 and the approximant, 𝛼𝑞/𝜋 = 𝑝/𝑞, differ by
less than (︂

22
22

𝑞
)︂−1

. (7.8)

This particular rate of approximation is particular of Vorobets’ proof and was not chosen
for its general significance. “Strongly” irrational in this context means that the difference is
greater than (7.8).

As an example they take 𝛼/𝜋 = 𝐿 where

𝐿 ≡
∞∑︁
𝑘=1

10−𝑘!, (7.9)

Liouville’s constant, an irrational number very close to a rational one. The number 𝐿 is
a generic irrational and we can find in its continued fraction representation a coefficient,
𝑎𝑣+1 = 10(𝑣+1)!−2𝑣!, 2 | 𝑣 [300], which can be arbitrarily large and so the error (6.15) can be
made arbitrarily small. Wang et al. find that billiards with this angle behave ergodically, in
line with [274].

In the case of near-rationals like 𝛼/𝜋 = 𝐿, Wang et al. find that all of the velocity angles
allowed by a rational approximant are visited before the approximate sequence diverges from
the true one. They say this is a requirement of ergodicity and the fact that this does not
happen in the strongly irrational case is evidence of non-ergodicity and suspect that the cross-
over from weakly irrational and ergodic and strongly irrational and non-ergodic is just when
the approximation begins to fail before all of the allowed angles are visited. This is similar
in feel to our reason for insisting on a generic irrational in our system: we need to ensure
that certain cycles in the approximate sequence generated by a rational have been completed
before the next rational convergent is used.
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7.1.1 Note on numerical methods

It is impossible to exactly, indefinitely simulate a system which depends on an irrational
number with a machine operating at finite precision. I will spend this section comparing their
methods to our own as we use the same trick for determining the range of validity for our
calculations. It will also give me chance to discuss a few shortcuts we take that allow our
simulations to be more efficient, since there are properties they were interested in that we are
not.

Both investigations study systems that can be modeled discretely. They keep track of
which side of the triangle the virtual particle reflects off of and construct a code for a trajectory
consisting of the sequence of these reflections. We work with a rotation (6.18), which is
explicitly discrete. They also simulate the whole trajectory through phase space as exactly as
possible and derive discrete sequences from that. We have a phase space of smaller dimension
and need only the discrete series (phase points, counter values, etc.) associated with the
rotation.

A finite-precision calculation must work with rational numbers and so can only approx-
imate a system based on an irrational number. For trajectories like the ones under consid-
eration in both our systems, that means a rational approximation will give the same string
of outcomes as the “true” sequence based on the irrational number until the difference be-
tween the rational approximant and the irrational approximated becomes significant enough
to affect the sequence of discretized outcomes and the sequences differ. Since we do not have
access to this exact sequence we need something else to compare to. Since methods for con-
structing a sequence of rational numbers that are better and better approximations of a given
irrational are old and reliable (continued fractions being a prime example. See [294, §10.15]
and references therein), we can construct a series of rational angles that yield sequences of
outcomes closer and closer to the true sequence based on the irrational of interest when fed
to our simulation. To approximate a given irrational, they generate a series of approximants,
𝑝𝑛/𝑞𝑛 indexed by 𝑛. The angle used for the billiard is then the rational angle 𝛼/2𝜋 = 𝑝𝑛/𝑞𝑛.
An approximant based on 𝛼𝑞 will give a sequence that differs from one based on 𝛼𝑞′ , at time
𝜏*(𝑞, 𝑞′) where 𝑞′ > 𝑞. At that time , we can no loner trust the sequence generated by 𝛼𝑞

since approximants with larger denominators approximate the sequence better and better.
Therefore, if we have two rational approximants, the sequence of outcomes they give can be
relied on to mimic the true sequence insofar as they agree with each other. After they diverge
from one another, nothing can be said with certainty until the sequence from a better rational
approximant is generated.

Both Wang at al. and my co-authors and I use this method for generating sequences of
counter values which are exact up to some time step. The way we generate these sequences
based on approximants is a little different however. They were interested in the dynamics of
the billiard underlying their counter. They went so far as to randomize the position, but not
the velocity angle, of the virtual particle after each reflection to gain some insight into how the
particular geometry of the billiard affected the counter sequence [257]. This means they must
run a two-dimensional billiard simulation which keeps all of the position information intact.
Our system is simply a rotation, so we do not need to simulate the circle, radius and all, in
order to get our results. We simply use a software package that can work in exact rationals
(either Mathematica or the “fractions” library in Python) and solve an equation which reads
like equation (6.18) over and over again, calculating our counter based on the resulting phase
point. Because our underlying system has very little dynamics apart from those that affect
the counter, our calculations can be relatively simple.
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7.1.2 Explanation of the results

Up to now I have not said anything about the work of Wang et al. that they have not published
themselves [70, 257], only offered it as background inspiration and used it to introduce a few
of the features of our own work on counters. In this section I will offer my own explanations
of some of their results. First I will attempt to shed some light on the behavior of one of their
observables, 𝑛*𝐾 , the number of velocity angles visited by the time their approximation fails,
𝜏*, since it will be a good way for me to introduce a few remarks about the localization of
their counter, 𝐾.

They calculate how this 𝑛*𝐾 value grows with 𝑞𝑛, that is with better and better approxi-
mations of 𝛼𝑔/𝜋 = 𝜑. What they are after here is how the number of velocity angles visited
by the trajectory of the truly irrational billiard grows with time. They find that 𝑛*𝐾 ∼ ln(𝑁),
consistent with their main finding that 𝐾 is localized by an exponential around 𝐾0.

Asking how 𝑛*𝐾 grows with 𝑞𝑛 is equivalent to asking how the maximum 𝐾 value, 𝐾max,
grows with time for 𝛼 = 𝛼𝑔 since the number of distinct velocity angles visited at any time
is 4𝐾max, since 𝜙 can take on up to four values. The question of how 𝐾max increases is a
question of the rate of leg hits coming one after the other. Imagine 𝐾 is at some positive
value less than 𝐾max. After a 𝐾 → 𝐾+1 hypotenuse collision, the virtual particle must strike
a leg and 𝐾 → −𝐾. It can then either strike the hypotenuse again, increasing by one and
decreasing its absolute value, or it may hit the other leg taking it back to its previous positive
value. The next collision must necessarily be with the hypotenuse and increase the absolute
value. These double-leg hits are the only way |𝐾| can grow as if this never happened it would
go: 𝐾 = 0 → 1 → −1 → 0 forever. This would correspond to 𝛼 = 𝜋/4 and 𝜃0 being on
the horizontal or vertical axis. It has already been shown that almost all trajectories starting
perpendicular to one of the legs of the triangle form closed orbits [275]. This is avoided by
Wang et al. even in the rational case by insisting 𝜃0/𝜋 ∈ R ∖Q. However, for 𝑛*𝐾 to grow, the
leg-leg hits (let this be denoted ‘𝐿𝐿’ with a hypotenuse hit putting an ‘𝐻’ in the sequence)
must occur when 𝐾 = 𝐾max, so it is little wonder that 𝑛*𝐾 grows slowly.

Looking more carefully, we can say more about the rate than that it is “slow” and see how
strongly their results suggest non-ergodicity. After hitting the hypotenuse and then a leg, let
the probability that the particle will hit the other leg be 𝑝. If it does hit the other leg, then it
then must hit the hypotenuse and then a leg (giving a sequence of 𝐻𝐿𝐿𝐻𝐿 . . . ), incrementing
the value of 𝐾 by one and returning us to a similar situation: the virtual particle against
one leg with a probability, 𝑝′, of hitting the other leg. We can imagine averaging over a great
many values of 𝑝 to arrive at a 𝑝 which, if the billiard is ergodic and we average long enough,
will converge to a definite value, ⟨𝑝⟩, where the ensemble average is taken over all points on
the legs. We can then say that, on average, the probability of getting two leg-leg hits in a
row (albeit with the required hypotenuse hit in between) is then 𝑝2. The average probability
of getting a string of hits like 𝐻𝐿𝐿𝐻𝐿𝐿𝐻𝐿 . . . , with the 𝐾-incrementing sequence, ‘𝐿𝐿𝐻’,
repeated 𝑘 times being 𝑝𝑘.

If we let 𝐾0 = 0, then the time average of 𝐾, �̄� = 0, and it will take, on average, 𝐾max+1
sequential leg-leg hits to raise the value of 𝐾max. We can say that the probability of getting
𝑘 double leg hits in a row in time 𝑡 is then 𝑝𝑘(𝑡) = 𝑝𝑘𝑡. If one fixes 𝑘 (and 𝐾max will be fixed
until this string of 𝑘 > 𝐾max hits occurs) and takes the long-time limit, 𝑝𝑘 → 1. Now since
the meaning of “∼” is “ratio approaches one” we can say that, in the long time limit, 𝑝−𝑘 ∼ 𝑡.
With some rearranging and by recalling that 𝑡 ∼ 𝜏* ∼ 𝑁 [70, Fig. 2] and that 𝑘 ∼ 𝐾max ∼ 𝑛*𝐾
we may write in their notation

𝑛*𝐾 ∼ log 1
𝑝
𝑁 . (7.10)
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Evolution of 𝜃 = 𝐾𝛼 under different billiard steps

0

𝐾𝛼

𝐾 ′𝛼
. . . 𝐿 . . .

𝐾𝛼

𝐾 ′𝛼

. . . 𝐿𝐿 . . .

𝐾 ′𝛼𝐾𝛼

. . . 𝐿𝐿𝐻 . . .

𝐾𝛼

𝐾 ′𝛼

. . . 𝐿𝐻 . . .

Figure 7.3 – Illustration of the statement that |𝐾| only grows on 𝐿𝐿 hits. On the left,
the billiard undergoes a leg hit, 𝐿 and 𝐾 → −𝐾 (7.4). Next, it either hits the hypotenuse
(𝐿𝐻) and |𝐾| goes down by one or it hits the other leg first (𝐿𝐿𝐻) and |𝐾| goes up by
one. This is the connection to parity counters captured by equation (7.14).

This explains why 𝑛*𝐾 grows logarithmically which is equivalent to saying that 𝐾 is localized
around 𝐾0 by an exponential. It also means that their numerical results suggest that 1/𝑝 ≈ 𝑒.

To try and get a sense of how much the probability, 𝑝, is due to the geometry of the
billiard, let us try and approximate ⟨𝑝⟩. Let us assume that the particle is equally likely to
hit any spot on the leg, and is equally likely to go in any direction, which is to say that we
assume that the underlying billiard is at least quasi-ergodic. Wang et al. do not deny this. In
fact, the novelty of their discovery is a system that seems quasi-ergodic, and yet the averages
do not converge. Under this assumption the probability that the particle will hit one leg after
the other will be equal to the angle subtended by the other leg from a point on the leg it just
hit divided by 𝜋, the total angle it will scatter into. Let the hypotenuse be of unit length and
let 𝜃𝑦2 be the angle subtended by the other leg when the particle is on the leg opposite the
angle equal to 𝛼/2 and vice-versa for 𝜃𝑦1 (see figure 7.1 for illustration and definitions.) Some
geometry then gives

𝜃𝑦1(𝑦1) = tan−1

(︂
sin (𝛼/2)

cos (𝛼/2)− 𝑦1

)︂
, 𝑦1 ∈ [0, cos(𝛼/2)] (7.11)

𝜃𝑦2(𝑦2) = tan−1

(︂
cos (𝛼/2)

sin (𝛼/2)− 𝑦2

)︂
, 𝑦2 ∈ [0, sin(𝛼/2)] . (7.12)

Averaging together the average values of (7.11) and (7.12) gives an estimate of ⟨𝑝⟩ written

⟨𝑝⟩ =
⟨𝜃𝑦1⟩𝑦1 + ⟨𝜃𝑦2⟩𝑦2

2𝜋
. (7.13)

Calculating the reciprocal of this numerically gives 𝑝−1 = ⟨𝑝⟩−1 = 2.9876 . . . . This differs
from 𝑒 by only 10% and gives a growth rate for 𝑛*𝐾 which differs from a natural log growth
rate by a factor of ln

(︀
𝑝−1
)︀
= 1.0945 . . . , which is not easily distinguished.
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This hypothesis is supported by the numerical evidence that they published in [257]. They
ran a modified simulation where after every collision, they randomized the position of the
virtual particle in the billiard, exactly removing the assumption behind the above calculation.
They found that exponential localization disappeared [257, Fig. 5] and the distribution of
the probability of 𝐾 at a given time step, 𝑃 (𝐾, 𝑡), followed a Gaussian distribution with a
variance

⟨︀
𝐾2
⟩︀
= 𝐷𝑡 with 𝐷 = 1.04 at 𝑡 = 107. For comparison,

⟨︀
𝐾2
⟩︀

for the unmodified
system at 𝑡 = 107 was on the order of 102, a difference of five orders of magnitude. So it is
possible that the localization of the counter is explained by the geometry of an underlying,
ergodic billiard.

Wang et al. rightly observe that a trajectory can be dense in the phase space but not
ergodic. For example it could be like the Cantor set, 𝒞, which is dense on the interval [0, 1],
but has gaps. That is to say that if one places sub-intervals of length 𝜀 centered on each 𝑐 ∈ 𝒞
there will be values of 𝜀 > 0 such that subsets of the interval [0, 1] with positive measure
will not be covered by the sub-intervals centered on the elements of 𝒞, even though there is
no positive value of 𝜀 so small that the sub-intervals will not contain at least two members
of 𝒞; because 𝒞 is dense. If the trajectory took points in 𝒞 to each other, one could make
an invariant set by taking the union of the points in these sub-intervals with 𝜀 > 0 and the
system would not be ergodic. However, nothing like this can be the case for 𝐾.

Let {𝜃} be the set of angles in the quadrants quartered by 𝜙 visited by a trajectory. If 𝛼
is irrational then equation (7.5) is just an irrational rotation and by Weyl’s theorem [298], the
angles in the set {𝜃} are not just dense when 𝐾 → ∞ but also equi-distributed because this set
will be homomorphic to the ones visited by a typical irrational rotation. Therefore there are no
gaps of the kind described above in the Cantor set and it, as already shown [261, Prop. 2.16],
is ergodic. Therefore, since each value of 𝐾 corresponds to a unique angle in the set as argued
above, to show that 𝜃 is not ergodic (and if it is not, the billiard cannot be), they must show
that 𝐾 is bounded from above and so can be used to define an invariant set or make some
argument involving 𝜙, which they do not. They say 𝐾 is not so bounded and as long as
𝑝 in (7.10) does not decrease faster than 𝑁−1, it cannot be. Therefore, the only invariant
set under (7.5) is the continuous angle measuring 𝜋/2, which has full measure, meaning the
system is metrically transitive and therefore ergodic by Birkhoff’s theorem [64].

Wang et al. also claim that the non-ergodicity which they deduce from the localization
of 𝐾 is of a new type, distinct from the type predicted by KAM theory. KAM theory states
that a closed system is either ergodic, or its phase space is divided into toriodal regions with
differing invariants. Here they have a phase space which is undivided, all values of 𝐾, and
therefore 𝜃, are accessible from every initial condition, and the phase space is densely covered,
yet 𝜃 = 𝜃0 ̸= ⟨𝜃⟩, so it is not ergodic. But their evidence for this last part are finite numerical
simulations. Ergodicity only requires the average to converge after infinite time; this is why
metric transitivity depends on whether the sets are strictly invariant under the flow. If 𝐾 is
unbounded for all 𝜃0, as they suspect but do not show, then the infinite number of velocity
angles visited during a trajectory are dense and equi-distributed by Weyl’s theorem [298].
This means any interval of angles, no matter how small, will cover every part of the circle
eventually under the action of the flow. This means the only invariant set is all the angles in
the circle so the flow is metrically transitive and the billiard is ergodic, at least in the velocity
angle. Since there is no proof either way, only numerical evidence, the question remains open.
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7.2 Product or parity counter

The counter detailed in the last section, 7.1, served as inspiration for a counter constructed
by Prof. M. Olshanii. The hope is to use the techniques developed here to analyze other
parity counters defined over other dynamical systems. For instance we hope to argue from
the growth of our counter to the ergodicity of strongly irrational right triangular billiards via
an intermediate counter to the WCP counter. In this section, I will describe the counter,
connect its growth to the behavior of its underlying system, an irrational rotation, and give
numerical evidence that its growth is unbounded when the irrational is generic.1 I will also
discuss the fractal dimension of its graph.

Calling this new counter a “parity” counter is the clue to its connection to the WCP
counter. To that end I introduce the modified WCP counter which serves as a bridge between
that one and our parity counter. Let this intermediate counter be 𝜅, defined by rewriting
equation (7.3) to read

𝜃 = 𝜙+ (−1)𝑛𝜅𝛼 , (7.14)

where the index 𝑛 = 0, 1, 2, 3, . . . counts the number of collisions, beginning with the first
particle-particle (i.e. hypotenuse) collision. That is to say that 𝑛 = 0 until the first particle-
particle collision, whereupon in changes to one, and increments by +1 on every collision,
of whatever kind, thereafter. After this change to the counter, 𝜅 remains unchanged after
particle-wall (leg) collisions. However, after particle-particle collisions, it increments by ±1
depending on the parity of number of times both particles undergo particle-wall collisions
before colliding with each other. In billiard language: on hypotenuse hits, 𝜅 increments by
the parity of the total number of leg hits. This has the same relation to 𝜃 as 𝐾 does in terms
of its ergodic properties, localization, etc.; it just counts slightly differently.

The counter I treat here also counts the parity of the total number of events of a certain
kind in an underlying system. However, the system is not a billiard but an irrational rotation
as discussed in Section 6.3. Irrational rotations are a fairly simple dynamical system and
known to be ergodic, so they provide a way to explore the properties of parity counters and
find methods that can be applied more generally. I will define these objects in the next section.

7.2.1 Notation and mathematical grounding

First I will go over the specifics of the notation I will use, collect the relevant mathematical
facts from Section 6.3, and demonstrate a few results that I will be relying on in the rest of
this section. For the convenience of having everything in one place, I will lay out all of the
relevant quantities here, even if they have already been defined in Chapter 6.

Let the position of an irrational rotation trajectory be denoted 𝑥, which falls in the real
interval [0, 1[. Then it evolves via a discrete flow so that at time 𝑛 (that is, after 𝑛 steps) it
takes the value

𝑥𝑛(𝜎, 𝑥0) ≡ 𝑥0 + 𝑛𝜎 mod 1, (7.15)

with

𝑛 = 0, 1, 2, 3, . . . ,

𝜎 ∈ R ∖Q ,

and 𝑥0 ∈ R .

1. Defined in (6.10) or 7.22 in this section.



152 Parity counters

Irrational rotation counters

𝑥 = 1/2 𝑥 = 0
𝜖 = +1
𝜖 = −1

𝑛 → 𝑛+ 1

𝜖𝑛 = +1

Δ𝑆𝑛 = +1

𝜖Π𝑛 = (−1)
1
2
(𝑛−𝑆𝑛) = 𝜖Π𝑛−1

𝜎

𝜖𝑛+1 = −1

Δ𝑆𝑛+1 = 0

𝜖Π𝑛+1 = (−1)
1
2
(𝑛+1−𝑆𝑛+1) = −𝜖Π𝑛

Figure 7.4 – A cartoon of an irrational rotation and two counters ((7.35) and (7.18))
defined over it. Notice that Δ𝑆Π

𝑛 (which is reckoned relative to the step just prior to the
two pictured) cannot be so easily written down since every 𝜖Π depends on the one before
it, the change in the sum between any two vales of 𝑛 depends on the entire history of the
trajectory, whereas Δ𝑆𝑛 does not. See text for a fuller explanation.

Again, the whole part of 𝑥0 is irrelevant since everything is taken modulus one. This con-
struction makes 𝑥𝑛 a real number between zero and one. Let the invariant measure over this
space, 𝜇(𝑥), be the Lebesgue measure.

Let the increment of a counter be, 𝜖𝑛 and behave as, 𝑓𝑛 (6.25). Let that counter be 𝑆𝑛,
so that

𝑆𝑛(𝜎, 𝑥0) =
𝑛−1∑︁
𝑛′=1

𝜖𝑛′(𝜎, 𝑥0) (7.16)

where 𝜖𝑛(𝜎, 𝑥0) =

{︃
+1 for 𝑥𝑛 ∈

[︀
0, 12
[︀

−1 for 𝑥𝑛 ∈
[︀
1
2 , 1
[︀
.

(7.17)

The parity counter is then the sum of product over the steps of this counter. This reads

𝑆Π
𝑛 (𝜎, 𝑥0) =

𝑛−1∑︁
𝑛′=1

𝜖Π𝑛′(𝜎, 𝑥0) (7.18)

where 𝜖Π𝑛(𝜎, 𝑥0) =
𝑛∏︁

𝑛′=0

𝜖𝑛′(𝜎, 𝑥0) (7.19)

=(−1)𝒩
−
, (7.20)

and 𝜖𝑛(𝜎, 𝑥0) is as defined in (7.17). The integer 𝒩− is the number of instances of 𝜖𝑛′(𝜎, 𝑥0) =
−1 in the interval 0 ≤ 𝑛′ ≤ 𝑛. This means 𝜖Π𝑛(𝜎, 𝑥0) depends on the parity of instances of
𝜖𝑛′(𝜎, 𝑥0) = −1 up to and including the time, 𝑛: it is +1 for a even number of instances and
-1 for an odd number. This has the effect of giving 𝑆Π

𝑛 (𝜎, 𝑥0) a memory in the sense discussed
in section 6.1. Each value of 𝜖Π𝑛(𝜎, 𝑥0) depends on the value just before it and so cannot be
reconstructed without it, and the same for that one, and the one before that, and so on back
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to the first. To calculate the value of 𝑆Π
𝑛 (𝜎, 𝑥0) at a given 𝑛, one needs a complete series of

either 𝜖(𝜎, 𝑥0) or 𝜖Π(𝜎, 𝑥0).
A cartoon illustrating an irrational rotation, 𝜖𝑛(𝜎, 𝑥0), the change in its sum, denoted Δ𝑆𝑛,

and the counter in 7.18, 𝑆Π
𝑛 (𝜎), is presented in the Figure 7.4, with detailed explanations to

follow.
Similar to Wang et al in [70], discussed in the previous section, we will be studying the

behavior of our counter, (7.18), by constructing a series of rational approximants and seeing
how the counter behaves as these become more precise. The continued fraction expansion of
the shift 𝜎 is

𝜎 = [𝑎1; 𝑎2, 𝑎3, 𝑎4, . . .] = 𝑎1 +
1

𝑎2 +
1

𝑎3 +
1

𝑎4 + . . .

, (7.21)

with 𝑎1 ∈ Z and 𝑎𝑖 ∈ N+ for 𝑖 > 1. Recall a generic irrational is one where the corresponding
sequence of continued fraction coefficients, 𝑎1, 𝑎2, 𝑎3, . . ., is not bounded from above, i.e.

generic irrational =⇒ ∀𝐴 ∈ N ∃ 𝑖 : 𝑎𝑖 ≥ 𝐴. (7.22)

If, on the other hand, the corresponding sequence, 𝑎1, 𝑎2, 𝑎3, . . ., is bounded from above,
then it is a constant type irrational, i.e.

constant type irrational =⇒ ∃𝐴 ∈ N : ∀𝑖 𝑎𝑖 ≤ 𝐴. (7.23)

The methods that follow only hold for generic irrationals where the sequence of coefficients is
unbounded.

Conceptually, the difference between them is that generic type irrationals can be approx-
imated arbitrarily well, taking into account the magnitude of their denominator, by their
continued fraction while constant type irrationals cannot. The magnitude of a continued
fraction coefficient can be thought of as indicating the precision of the expansion at that
point [294, §11.8]. Since the coefficients of a constant type irrational are bounded from
above, it can only ever be approximated by its continued fraction finitely well. The archety-
pal example being the basis for the “strongly irrational” case discussed in the last section,
𝜑 = [0; 1, 1, 1, . . . ]. It is has the strictest bound, where 𝐴 from (7.23) takes the value one and
its distance from the closest rational is the greatest possible [301, Thrm 1.5].

Since we are going to be studying 𝑆Π(𝜎) by studying rational convergents of an irrational
𝜎, let a rational approximant of a given 𝜎 be 𝜎𝑀 . The approximant is formed by truncating
the sequence of continued fraction coefficients, 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑖, . . . , at 𝑖 =𝑀 . This gives

𝜎𝑀 = [𝑎1; 𝑎2, 𝑎3, . . . , 𝑎𝑀 ] = 𝑎1 +
1

𝑎2 +
1

𝑎3 +
1

. . . + 1
𝑎𝑀

=
𝑝𝑀
𝑞𝑀

,

with 𝑝𝑀 and 𝑞𝑀 nonzero, coprime integers.
The study of how continued fractions are constructed and how the sequence of their

approximants converges is it’s own domain [302] and using it to find interesting examples
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Example construction of �̄�* in the even case

𝑥 = 1/2 𝑥 = 0
𝜎𝑀 = 1/6

𝑥�̄�*−𝑞𝑀+1(𝜎)

𝑥�̄�*−𝑞𝑀+1(𝜎𝑀)

𝑥�̄�*(𝜎𝑀)

1
𝑞𝑀

Figure 7.5 – An illustration of �̄�* for 2 | 𝑞𝑀 and 𝜎 < 𝜎𝑀 . The size of |𝜎 − 𝜎𝑀 | is
exaggerated for illustration. Points generated by the approximant rational rotation are in
white while the points from the irrational rotation are in black. The difference between
points generated by the same 𝑛 is highlighted in blue, reckoned always counterclockwise.
The point at 𝑥�̄�* is not pictured. Here, since points generated by the rational rotation are
antipodal, to ensure condition (7.27) for all values of 𝑥0, some gap between a white point
and a black one must cover the whole length of 1/𝑞𝑀 .

of irrational and their approximants may be interesting but we take a more straightforward
approach. Since our proof relies on 𝜎 being a generic irrational, we will just construct a
generic irrational to do our numerics with. We simply take 𝑎𝑖 = 𝑖2 giving

𝜎 = [1; 4, 9, . . . , 𝑖2, . . .] ≈ 1.24328847839971564 . . . . (7.24)

This lets us say something more about the growth of the denominators of the approx-
imants, 𝑞𝑀 , grow with 𝑀 than equation (6.14) in the last chapter, which was true for all
truncated continued fractions. We can see that for the particular generic irrational we stud-
ied

𝑞𝑀
𝑞𝑀−1

=𝑀2 +
𝑞𝑀−2

𝑞𝑀−1

𝑀≫1
≈ 𝑀2 . (7.25)

This has as a corollary,

𝑞𝑀
𝑀≫1
≈ const × (𝑀 !)2 . (7.26)

7.2.2 Error introduced by rational approximation

Two approximant sequences, 𝑆Π
𝑛 (𝜎𝑀 ) and 𝑆Π

𝑛 (𝜎𝑀+1), will match up to some 𝑛. Up to this
point, we can also be sure that they both match the “true” sequence, 𝑆Π

𝑛 (𝜎). This is the
same method used by Wang et al. to determine their time of failure, which they call 𝜏* and
we call 𝑛*𝑀 , and is the how we could be certain of our calculations of 𝑆Π

𝑛 (𝜎) up to various
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Example construction of �̄�* in the odd case

𝜎𝑀 = 1/7
𝑥 = 1/2 𝑥 = 0

𝑥�̄�*+𝑞𝑀+1(𝜎𝑀)

𝑥�̄�*+𝑞𝑀+1(𝜎)

𝑥�̄�*(𝜎𝑀)

𝑥�̄�*+𝑞𝑀 (𝜎)

1
𝑞𝑀

Figure 7.6 – Similar to Figure 7.5 but for 2 - 𝑞𝑀 and 𝜎 > 𝜎𝑀 . As before, rational
rotation points are in white and irrational rotation ones are in black, difference between
points generated by the same 𝑛 in blue. Here, points generated by the rational rotation
are opposite a point halfway between two other points, so to ensure condition (7.27) for
all values of 𝑥0, some gap between a white point and a black one needs only cover a length
of 1/2𝑞𝑀 to ensure no diameter can be drawn without falling into a blue gap.

times. Since this will be longer with larger 𝑀 , it lets one consider 𝑀 as a degree of precision
for an approximate sequence; a less “precise” sequence being one that fails at lower 𝑛. This
relationship can be calculated exactly up to whatever 𝑛,𝑀 one has the computational and
temporal resources for, but an estimate of this value will be useful. If you can be sure that
you do not go over 𝑛*, you can calculate a single sequence and be twice as efficient. It also
will provide some insight into the long-term behavior of 𝑆Π

𝑛 (𝜎).
To see how the precision in terms of 𝑛 grows with 𝑀 , let us define 𝑛*𝑀 (𝜎) as the smallest

𝑛 such that

𝜖𝑛(𝜎𝑀 , 𝑥0) ̸= 𝜖𝑛(𝜎, 𝑥0). (7.27)

However this has two undesirable features. First, it must be calculated by calculating the
series 𝜖𝑛(𝜎, 𝑥0) and 𝜖𝑛(𝜎𝑀 , 𝑥0) explicitly, starting from 𝑛 = 1, to compare the terms until
the two that do not match are found. Second, it depends on the initial condition, 𝑥0. So I
will construct an estimate of 𝑛*, which I will call �̄�*, which is both simple to calculate and
independent of 𝑥0. Sadly, this will over-estimate 𝑛* since it must hold for all initial conditions.
I do this for the case of generic irrationals since those are the ones our model for the growth
holds true for.

Let �̄�*𝑀 be the lowest 𝑛 such that the error, |𝜎𝑀 − 𝜎|(�̄�*𝑀 + 𝑞𝑀 ), is large enough such that
there is no diameter of the circle that does not fall in between 𝑥𝑛(𝜎𝑀 ) and 𝑥𝑛(𝜎) for some
𝑛 ∈ [�̄�*𝑀 , �̄�

*
𝑀 + 𝑞𝑀 − 1]. This guarantees that over the course of the next orbit of 𝑥(𝜎𝑀 ),

starting at �̄�*𝑀 , 𝜖(𝜎𝑀 ) must differ from 𝜖(𝜎) for any initial condition. Looking ahead an orbit
should help to mitigate the over-estimation that comes from the requirement that it work
for all initial conditions. The length that must be covered will be a different depending on
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Range of validity estimates

Figure 7.7 – The first time, 𝑛*𝑀 (𝜎, 𝑥0), that a convergent 𝜎𝑀 for the rotational step 𝜎
gives a value of 𝜖𝑛(𝜎𝑀 ) that is different form the one predicted by its exact value, 𝜖𝑛(𝜎)
is given in red dots. An estimate, �̄�*𝑀 (𝜎) (defined in equation (7.31)), is shown in blue
crosses. The orbit length of the approximant, 𝑞𝑀 , is given in magenta squares. Points
in red are given by (arithmetically exact) numerics. It is crucial to our method, given
in § 7.2.4 that 𝑛*𝑀 always be greater than 𝑞𝑀 , hence our insistence that 𝜎 be a generic
irrational. See that section for details.

whether 𝑞𝑀 is even or odd. When 𝑞𝑀 is even as in Figure 7.5, |𝜎𝑀 − 𝜎|(�̄�*𝑀 + 𝑞𝑀 ) must
cover the whole length 1/𝑞𝑀 . If 𝑞𝑀 odd however, as in Figure 7.6, 𝑥𝑛(𝜎𝑀 ) will be roughly
antipodal to 𝑥𝑛+𝑞𝑀/2(𝜎), so the magnitude of the error need only be half as large.

Let us start with the even case where �̄�*𝑀 is the lowest 𝑛 for which

(𝑛+ 𝑞𝑀 ) |𝜎𝑀 − 𝜎| > 1

𝑞𝑀
for 2 | 𝑞𝑀 (7.28)

is satisfied. The inequality is strict because there is no integer that can multiply the irrational
|𝜎𝑀 − 𝜎| and give the rational number 1/𝑞𝑀 .

In the odd case where error need only be half as large, we may say that �̄�*𝑀 is the smallest
𝑛 that satisfies

(𝑛+ 𝑞𝑀 ) |𝜎𝑀 − 𝜎| > 1

2𝑞𝑀
for 2 - 𝑞𝑀 (7.29)

From (6.17) we can say that |𝜎𝑀 − 𝜎| ≈ 1/𝑞2𝑀𝑎𝑀+1 for large 𝑀 and therefore

�̄�*𝑀 (𝜎)
𝑀≫1
≈

{︃
1 for 2 | 𝑞𝑀
1
2 for 2 - 𝑞𝑀

}︃
𝑞𝑀𝑎𝑀+1 − 𝑞𝑀 . (7.30)

It just remains to invoke (6.14) to arrive at a our final approximate formula for this bound,
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Ranges of validity for rational approximants

𝑀 1 2 3 4 5 6 7

𝑛*
𝑀(𝜎,𝑥0) 2 10 84 3958 108 517 1 454 337 423 742 481

�̄�*
𝑀(𝜎) 1 32 259 14 304 253 929 25 839 744 818 183 279

Ratio 2 0.313 0.324 0.277 0.427 0.056 0.518

Table 7.1 – Values for 𝑛*𝑀 (𝜎, 𝑥0), our estimate for its upper bound, �̄�*𝑀 (𝜎), and their
ratio for different values of 𝑀 . Value for 𝑛*(𝜎, 𝑥0) was found with exact numerics, as in
7.7, by comparing a series of 𝜖𝑛(𝜎𝑀 , 𝑥0) with 𝜖𝑛(𝜎𝑀+1, 𝑥0). The initial condition 𝑥0 is, as
elsewhere, as given in (7.33). Note that �̄�*𝑀 provides an underestimate of 𝑛*𝑀 at low 𝑀
due to the approximation (6.14).

written

�̄�*𝑀 (𝜎)
𝑀≫1
≈

{︃
1 for 2 | 𝑞𝑀
1
2 for 2 - 𝑞𝑀

}︃
𝑞𝑀+1 − 𝑞𝑀 . (7.31)

Whenever 𝑛 reaches 𝑛*𝑀 , 𝜖𝑛(𝜎𝑀 , 𝑥0), is no longer equal to the true 𝜖𝑛(𝜎, 𝑥0), and to be
certain one is obtaining true sequences based on 𝜖(𝜎) using 𝜖(𝜎𝑀 ) one must switch from 𝑀
to 𝑀 + 1 and approximate it with a higher degree of precision. This means insight into the
true sequences can be gained by seeing how the approximants change with increasing 𝑀 .

In what follows, I will use the bound �̄�* as an estimate for the exact value of 𝑛*𝑀 (𝜎).
Figure 7.7 demonstrates a fairly good agreement between the estimate, (7.31), and the nu-
merical values, even including the prefactor of 1/2, as shown in Table 7.1. These values are
calculated with our particular 𝜎, 𝑥0 given in the next section. There is a reason for this good
fortune owing to our choice of 𝜎, which I will return to in § 7.2.5.

7.2.3 Notes on the numerics

The calculations were done using Mathematica and Python. In both cases, exact fractions
were used to calculate 𝑥𝑛(𝜎𝑀 ) in equation (7.15) as two integers. This avoids introducing any
floating point arithmetic errors, even at very long times. The limitation is on the computing
resources. For reasons discussed just following equation (7.20), one cannot define an algorithm
for 𝑆Π

𝑛 (𝜎𝑀 ) that generates the 𝑛𝑡ℎ term of the series without knowing the values prior [303]
as can be done with 𝑥𝑛(𝜎𝑀 ) and therefore 𝜖𝑛(𝜎𝑀 ). Unless some “seed” value for 𝜖Π𝑛(𝜎𝑀 ) at
some 𝑛 is known as a starting point, the entire series of 𝑥(𝜎𝑀 ) and 𝜖Π𝑛(𝜎𝑀 ) must be calculated
from scratch and held in memory for the calculation. For high values of 𝑛 (∼ 109), this means
holding two integers of around 15 digits each for each new value of 𝑆Π

𝑛 (𝜎) desired. This can
overwhelm the memory of a standard laptop or desktop computer and was the limiting factor
in our computational resources.

Although much of the following is devoted to how 𝑆Π(𝜎𝑀 ) behaves with increasing 𝑀
(similar to how Wang et al. studied the behavior of 𝐾 with increasing 𝑁) truncating this at
𝑀 = 9 gives the approximant

𝜎9 = [1; 4, 9, . . . , 81] =
170195445997

136891356233
. (7.32)

In § 7.2.2 I described how we used two rational sequences to verify that they reproduces the
sequence of 𝜖𝑛(𝜎) values for exact 𝜎, and (7.32) holds good up to 𝑛 ≈ 1011, well beyond the
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Effect of initial condition, 𝑥0, on 𝑆Π
𝑛(𝜎)

Figure 7.8 – Plots showing the effect of different values for the initial condition, 𝑥0, have
on the behavior of 𝑆Π

𝑛 (𝜎). The values are as defined in equation (7.33), 1/4, Liouville’s
constant, 𝐿 as defined in equation (7.9), an irrational number very close to a rational
number, and 𝜑 as defined in equation (7.7), an irrational number very far from a rational
one. The right subfigure is a blow-up of same series’ plotted on the left. See text for exact
details.

maximum value used in the following results which only go up to 𝑛 ≈ 109. This fraction was
used whenever we needed to calculate any “true” value or sequence.

The results presented here use a certain initial condition unless otherwise noted. Its value
is

𝑥0 =
1√
𝜋
= 0.564189583547756287 . . .

≈ 62840

111381
,

(7.33)

with the fractional expression being what was used in the exact arithmetic numerical propaga-
tion. Like (7.32), for all practical purposes, this rational approximation is a valid replacement
for the exact value.

Ideally, the exact value of the initial condition will be irrelevant to the behavior of an
ergodic system. That is one reason that I was so careful to construct �̄�*𝑀 to be independent
of 𝑥0. To gather some evidence for this, I checked other values of 𝑥0 to see make sure that the
results presented here are not dependent on our choice of 𝑥0. Figure 7.8 indicates the results.
It amounts to the expected result of a phase shift in the starting point which in turn can flip
the overall sign of 𝑆Π

𝑛 (𝜎), but it does not change the manner of absolute growth and therefore
cannot affect implications about the ergodicity. Hereafter, 𝑥0 = 1/

√
𝜋 unless otherwise noted

and it will be dropped from the notation wherever possible.
The exact values used to make Figure 7.8 are the ratio expression in (7.33), 1/4, Liouville’s

constant as defined in equation (7.9) with the sum running up to 𝑘 = 4 which made a fraction
with numerator and denominator of 29 digits, and 𝜑 = [0; 1, 1, . . . , 1] with two-hundred ones,
which gave a fraction with a numerator and denominator of 42 digits.

I also looked briefly at the effect of other values of the shift, 𝜎. The results are presented in
Figure 7.9. It seemed that irrational shifts closer to rationals lead to steeper average slopes of
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Effect of different rotation angles, 𝜎, on 𝑆Π
𝑛(𝜎)

Figure 7.9 – Plots showing the effect of different values for the irrational rotation value,
𝜎, have on the behavior of 𝑆Π

𝑛 (𝜎). The values are as defined in 7.32, a similar generic
irrational with 𝑎𝑖 = 𝑖3, Liouville’s constant, 𝐿 as defined in equation (7.9), and 𝜑 as
defined in equation (7.7). The right subfigure is a blow-up of same series’ plotted on the
left. See text for exact details.

𝑆Π
𝑛 (𝜎). Listed in order from “furthest from” to “closest to” the nearest rational, the four values

for 𝜎 presented in Figure 7.9 are 𝜑, the most severely bounded constant type irrational. Then
Liouville’s constant, 𝐿, which is a generic irrational, however, one will always appear in its
continued fraction expansion, even at very high indices [300]. This means that comparatively
poor approximations exist, in contrast with our studied value of (7.24), where each successive
approximation is always better than the one before it. Lastly there is another generic irrational
that approaches a rational even faster than (7.24); one where the continued fraction coefficient
is the cube of the index instead of the square. Figure 7.9 seems to indicate that the slope
of 𝑆Π

𝑛 (𝜎) is steeper with irrational shifts that are better approximated by rationals. This is
consistent with our argument for unbounded growth failing on constant type irrationals but
would require its own study to say more about.

As before, 𝐿 is calculated with 𝑘 running up to four and 𝜑 from a continued fraction with
two-hundred ones. The other two values of 𝜎𝑀 were calculated to a precision of 𝑀 = 9;
which, as mentioned before, will give the exact sequence in the range plotted.

7.2.4 Counter growth

With all of this out of the way, I can set down our construction for the unbounded subsequences
of 𝑆Π

𝑛 (𝜎).
Consider again the observable 𝑓 ,

𝑓(𝑥) =

{︃
+1 for 𝑥 ∈

[︀
0, 12
[︀

−1 for 𝑥 ∈
[︀
1
2 , 1
[︀
.

(7.34)

If 𝜎 is irrational then the ergodicity of irrational rotations implies that its partial temporal
mean, 𝑓 (6.4), converges to its ensemble average, ⟨𝑓⟩ (6.2), and equation (6.26) holds true for
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(7.34). Huveneers in [259] makes this the increment, 𝜖𝑛 ≡ 𝑓(𝑥), of a counter, 𝑆𝑛(𝜎), defined
as

𝑆𝑛(𝜎) ≡ 𝑛𝑓𝑛(𝜎) =

𝑛−1∑︁
𝑛′=0

𝜖𝑛′(𝜎) . (7.35)

Ergodicity then means that

⟨𝜖⟩ ≡ ⟨𝜖(𝜎, 𝑥0)⟩𝑥0 = ⟨𝑓⟩ ≡
∫︁ 1

0
𝑓(𝑥) d𝜇 . (7.36)

Since the measure, 𝜇(𝑥), is invariant under the rotational flow, d𝜇 = 𝜇(d𝑥) = d𝑥 is constant
for all 𝑥 and an integral over it only differs from one over d𝑥 by a factor of the total phase
volume which in the case of the Lebesgue measure of the interval [0, 1[ is just one. This makes
(7.36) read

⟨𝜖⟩ =
∫︁ 1

0
𝑓(𝑥) d𝑥 = 0 , (7.37)

since 𝑓(𝑥) = −1 for half the values of 𝑥 and +1 for the other half. The exact same thing
can be said for the average over the initial values of 𝑆Π

𝑛 (𝜎), since 𝑒Π𝑛(𝜎, 𝑥0) = −1 for half the
values of 𝑥0 and +1 for the other half for any given 𝑛, 𝜎. Ergodicity of 𝑓 , then ensures that
the time average of 𝜖 is also zero. Since 𝑆𝑛 is by definition (7.35) the time average of this
increment, multiplied by the time step, this means that the counter 𝑆𝑛(𝜎) grows strictly more
slowly than linearly with time, 𝑛:

𝑆𝑛(𝜎) = 𝑜(𝑛) .

This is a fine example of how to connect the ergodicity of a system to the growth of a counter.
However, in [259], Huveneers goes on to show that 𝑆𝑛 is not bounded from above, also

important for ergodicity because it would conflict with metric transitivity the way 𝐾 being
bounded from above would. He does this by constructing unbounded subsequences. We use
similar methods to construct our unbounded subsequences.

This highlights the two ways we have found to use counters to mount argument about
ergodicity. There is the method of relating them to an average and then showing their growth
does or does not allow that average to converge, and there is the method of making the counter
keep track of states of the system and using its infinite limit to find invariant sets.

In order to asses the growth of 𝑆Π
𝑛 (𝜎) we examined the behavior of the rational 𝑆Π

𝑛 (𝜎𝑀 ).
The true 𝑆Π

𝑛 (𝜎) sequence will be the same up until 𝑛*. The question then becomes what
happens to 𝑆Π

𝑛 (𝜎𝑀 ) for increasing 𝑀 . If we can show that 𝑆Π
𝑛 (𝜎𝑀 ) grows, on average, as 𝑛

and 𝑀 increase, we have shown 𝑆Π
𝑛 (𝜎) is unbounded and therefore, ergodic.

Periodicity of 𝑥𝑛(𝜎𝑀 ) (see equation (6.19)) guarantees the periodicity of 𝜖𝑛(𝜎𝑀 ) with the
same period 𝑞𝑀 since it is a function of 𝑥. This in turn is sufficient to ensure that the parity
counter increment, 𝜖IRΠ

𝑛 (𝜎𝑀 ), is either periodic, or anti-periodic, with the same period. Which
it is depends on the sign of the step just before it. That is,

𝜖Π𝑛+𝑞𝑀
(𝜎𝑀 ) = 𝜖Π𝑞𝑀−1(𝜎𝑀 )𝜖Π𝑛(𝜎𝑀 ) . (7.38)

This leads to two overall patterns when it comes to the sum of these increments. If
𝜖Π𝑞𝑀−1(𝜎𝑀 ) = +1 then 𝜖Π𝑛+𝑞𝑀

(𝜎𝑀 ) = 𝜖Π𝑛(𝜎𝑀 ) and the whole sequence of increments within
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Comparison of approximate sequence for 𝑀 = 4

Figure 7.10 – The exact sequence 𝑆Π
𝑛 (red). The blue curve is the sequence for the

convergent 𝜎𝑀 for 𝑀 = 4. Alternating light and dark blues signify periods in the 𝜖𝑛(𝜎4)
sequence of length 𝑞4 = 496. It is plotted from the origin up to one orbit beyond its
point of divergence, 𝑛*4 = 3958 (see Section 7.2.2). Note that almost immediately after
crossing the border of validity, the true sequence stops increasing, while the approximate
one continues doing so. This is the 𝑆Π

𝑛 sequence moving from a “growth” subsequence to a
“plateau” subsequence (see text) with longer period and larger amplitude (see Figure 7.11).

any Δ𝑛 = 𝑞𝑀 will be the same. Therefore

𝑞𝑀∑︁
𝑛=0

𝜖Π𝑛(𝜎𝑀 ) =

2𝑞𝑀∑︁
𝑛=𝑞𝑀

𝜖Π𝑛(𝜎𝑀 )

and 𝑆Π
𝑛 (𝜎𝑀 ) will grow by steps of 𝑆Π

𝑞𝑀
(𝜎𝑀 ), whatever that happens to be, over every time

interval of 𝑞𝑀 . This means the counter grows linearly, on average, for that rational 𝜎𝑀 . If,
on the other hand, 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = −1 the subsequence of length Δ𝑛 = 𝑞𝑀 gets added on with
a minus sign and the counter returns to its original value after every other cycle. This forms
a plateau of, on average, no growth. Breaking the counter up into these cycles of length 𝑞𝑀
we can say that for a rational rotation

𝑆Π
𝑛 (𝜎𝑀 ) =

⎧⎪⎨⎪⎩
𝑁𝑆Π

𝑞𝑀
(𝜎𝑀 ) + 𝑆Π

Δ𝑛(𝜎𝑀 ) for 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = +1

𝑆Π
Δ𝑛(𝜎𝑀 ) for 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = −1 and 𝑁 = even
𝑆Π
𝑞𝑀

(𝜎𝑀 )− 𝑆Π
Δ𝑛(𝜎𝑀 ) for 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = −1 and 𝑁 = odd

⎫⎪⎬⎪⎭
∼

{︃
𝑁𝑆Π

𝑞𝑀
(𝜎𝑀 ) for 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = +1

𝑆Π
𝑞𝑀

(𝜎𝑀 ) for 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = −1

}︃
,

(7.39)

with 𝑁 and Δ𝑛 being defined through Euclidean division of 𝑛 by 𝑞𝑀 :

𝑛 = 𝑁𝑞𝑀 +Δ𝑛 , (7.40)
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which implies

0 ≤ Δ𝑛 < 𝑞𝑀 . (7.41)

Dividing by 𝑞𝑀 is the natural choice since while the behavior is captured by 𝑝𝑀/𝑞𝑀 , 𝑞𝑀 is
the smallest possible return time [304].

Below, a table for a specific, representative, hypothetical case of 𝑞𝑀 = 3, and therefore
𝜖𝑛+𝑁𝑞𝑀 (𝜎𝑀 ) = 𝜖𝑛(𝜎𝑀 ) worked out explicitly up to 𝑁 = 3, illustrates this statement:

For this table:

𝑞𝑀 = 3

𝜖𝑛 ≡ 𝜖𝑛(𝜎𝑀 )

𝑆𝑛 ≡ 𝑆
Π
𝑛 (𝜎𝑀 )

𝜖3 = 𝜖0, 𝜖4 = 𝜖1, 𝜖5 = 𝜖2

𝑆0 = 0

𝑆1 = 0 + 𝜖0

𝑆2 = 0 + 𝜖0 + 𝜖0𝜖1

𝑆3 = 0 + 𝜖0 + 𝜖0𝜖1 + 𝜖0𝜖1𝜖2⏟  ⏞  
= 𝑆3

𝑆4 = 0 + 𝜖0 + 𝜖0𝜖1 + 𝜖0𝜖1𝜖2 + 𝜖0𝜖1𝜖2𝜖0

𝑆5 = 0 + 𝜖0 + 𝜖0𝜖1 + 𝜖0𝜖1𝜖2 + 𝜖0𝜖1𝜖2𝜖0 + 𝜖0𝜖1𝜖2𝜖0𝜖1

𝑆6 = 0 + 𝜖0 + 𝜖0𝜖1 + 𝜖0𝜖1𝜖2 + 𝜖0𝜖1𝜖2𝜖0 + 𝜖0𝜖1𝜖2𝜖0𝜖1 + 𝜖0𝜖1𝜖2𝜖0𝜖1𝜖2⏟  ⏞  ⏟  ⏞  
= 𝑆3 + (𝜖0𝜖1𝜖2) × 𝑆3

𝑆7 = . . .

. . .

𝑆9 = 𝑆3 + (𝜖0𝜖1𝜖2) × 𝑆3 + (𝜖0𝜖1𝜖2)
2 × 𝑆3

. . .

Now let us consider what this means for the irrational case where we must change 𝑀 to
𝑀 + 1 every time 𝑛 reaches 𝑛*(𝜎𝑀 ). While 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = +1, and 𝑛 < 𝑛*(𝜎𝑀 ), 𝑆Π

𝑛 (𝜎) =
𝑆Π
𝑛 (𝜎𝑀 ) and will grow linearly. Once 𝑛 reaches 𝑛* we must increase 𝑀 to 𝑀 ′ = 𝑀 + 1

and, in the worst case, 𝜖Π𝑞𝑀′−1(𝜎𝑀 ′) = −1 and we enter a plateau subsequence. This will, on
average, preserve the absolute value the counter gained during its growth period. The other
case, would be that it entered another growing subsequence. In either case, it will not head
back towards zero unless it is to cross it over the course of a cycle. Since 𝑛* can always be
increased by raising 𝑀 , this pattern can be expected to continue for as long as there exist
higher values of 𝑀 for which 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = +1. If there were no such values, then one could
say that, after some 𝑛, irrational rotations would always put an odd number of points in
the interval [1/2, 1[ since (7.39) holds for all 𝑛. This cannot be since irrational rotations are
known to be ergodic. Therefore, 𝑆Π

𝑛 (𝜎) should be unbounded. Overall, we would conjecture
that this counter, |𝑆Π

𝑛 (𝜎)|, grows like 𝑛 on average (see 7.13), something my collaborators
and I would like to prove in future work. Figure 7.13 indeed shows the overall growth of the
counter in question.

This is the key result because it is true for any parity counter. The goal is to construct
other parity counters, such as (7.14), and examine them and this method could be applied
wherever we can construct a parity counter and find reliable cycles in it.

Note that this whole line of reasoning requires that the rational approximant hold for at
least two orbits of 𝜎𝑀 when 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = −1. If 𝑛* were to be reached before 𝑆Π(𝜎) completed
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Comparison of approximate sequence for 𝑀 = 5

Figure 7.11 – The same as Figure 7.10, but for approximant sequence 𝑀 = 5. Here we
can clearly see the plateau cycle with amplitude ≈ 5000 associated with 𝑀 = 5 followed
by a growth cycle beginning after 𝑛*5 = 108 517. Note that the ramps in the plateau
subsequence, as well as the growth phase of the true sequence, are not straight lines but
“stepped” as they are in Figure 7.10. This is the clue to the graph’s fractal nature.

the cycles predicted in equation (7.39), we cannot say that the counter returns to the value
at which it began these cycles and the absolute value gained in preceding growth phases may
be wiped out. Also, since growth phases may differ in sign it is important that arbitrary large
ones may always be found with increasing 𝑀 to ensure the growth of the absolute value. This
is why we insist that the irrational be of generic type, since for a constant type irrational
there is some maximum value for the continued fraction coefficients and therefore an upper
limit to the number of cycles that can be expected in a phase. To illustrate this, I rewrite the
estimate for 𝑛* as

�̄�*𝑀 (𝜎)
𝑀≫1
≈

{︃
1 for 2 | 𝑞𝑀
1
2 for 2 - 𝑞𝑀

}︃
1

|𝜎𝑀 − 𝜎|𝑞𝑀
. (7.42)

From equation (6.15), |𝜎𝑀−𝜎| has an upper bound of 1/𝑞2𝑀𝑎𝑀+1 therefore �̄�*𝑀 (𝜎) ' 𝑞𝑀𝑎𝑀+1,
neglecting the factor of two for the different cases, and one cannot expect more than 𝑎𝑀+1

cycles of length 𝑞𝑀 to hold for a given 𝑀 . If 𝜎 is of constant type, this has a maximum value
and in that case, since the growth phases are of uncertain sign and may cancel out, we cannot
guarantee unbounded growth.

7.2.5 Specifics of our choice of irrational

We constructed an irrational whose by saying that the continued fraction coefficients are their
index raised to a power. This guarantees it is generic but it has properties that might make
it less representative.

Firstly with regard to growth, we can say something further than what was set down in
the last section; although it does not rise to a model for the overall growth. These growing
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Comparison of approximate sequence for 𝑀 = 6

Figure 7.12 – The same as Figure 7.10, but for 𝑀 = 6. Here we can see that both
𝑀 = 6 and 𝑀 = 7 correspond to growth cycles even though they get out of sync at
𝑛*6 = 1454 337. This is proof of the statement made in the text that growth and plateau
cycles need not alternate. Note the plateau phases of amplitude ≈ 5000 as could be seen
in Figure 7.11.

subsequences in 𝑆Π
𝑛 (𝜎𝑀 ) are in fact guaranteed on alternating values of 𝑀 when 𝑎𝑀 is 𝑀

raised to an integer power.
If 𝑞𝑀 is a multiple of four, then 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = +1 and 𝑆Π

𝑛 (𝜎𝑀 ) will grow as in the first
case in (7.39). This is a result of the fact that multiples of four are doubly even, so when the
𝑞𝑀 points are laid equidistant on the interval [0, 1[ an even number of them will fall in the
interval [1/2, 1[. This will give an even number of instances of 𝜖(𝜎𝑀 ) = −1 which will give
𝜖Π𝑞𝑀−1(𝜎𝑀 ) = +1.

Next, let us show that for 𝑎𝑀 = 𝑀 𝑖 for an integer 𝑖 ≥ 2, 𝑞𝑀 ≡ 0, 1 mod 4, with 𝑞𝑀 ≡ 0
mod 4 when 𝑀 is even and 𝑞𝑀 ≡ 1 mod 4 when 𝑀 is odd in our numbering convention,
(7.21). First consider the even case: 𝑀 = 2𝑘 where 𝑘 ∈ N. From (6.13) we write

𝑞2𝑘 = (2𝑘)𝑖𝑞2𝑘−1 + 𝑞2𝑘−2 .

Notice that (2𝑘)𝑖 contains a factor of 22 = 4 ∀𝑘 > 0, so the first term on the right hand side
will be 0 mod 4 wherever 𝑞𝑀 is well defined, i.e. 𝑘 ≥ 2. The last term then implies that all
𝑞𝑀 ≡ 𝑞𝑀 ′ mod 4 for 𝑀,𝑀 ′ both even. Since 𝑞2 = 𝑎2 = 2𝑖 will always contain a factor of
4 for 𝑖 ≥ 2, 𝑞2𝑘 ≡ 0 mod 4 ∀𝑘. This means that whenever 𝑀 is even 𝑆Π

𝑛 (𝜎𝑀 ) will be in a
linear growth subsequence as described in the first line of (7.39).

For the odd 𝑀 case (6.13) gives

𝑞2𝑘+1 = (2𝑘 + 1)𝑖𝑞2𝑘 + 𝑞2𝑘−1 .

Since we have shown that 𝑞2𝑘 ≡ 0 mod 4, the above implies that 𝑞𝑀 ≡ 𝑞𝑀 ′ mod 4 for 𝑀,𝑀 ′

both odd as well. Since 𝑞1 = 1 ∀𝑖, 𝑞𝑀 ≡ 1 mod 4 for odd 𝑀 . This does not imply however
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Overall growth of the absolute value of the parity counter

Figure 7.13 – The absolute value of the exact 𝑆Π
𝑛 sequence up to 𝑛 = 107 is show in

red. The deep valleys do, in fact, fall to zero, but I chose a minimum value of 3 for the
sake of the plot. The sign of 𝑆Π

𝑛 is shown in black, with 2 on the log scale (above the
horizontal rule) indicating +1 and 1/2 (below it) indicating −1. Notice that while there
are zero-crossings, the absolute value is not localized near zero.

that 𝜖Π𝑞𝑀−1(𝜎𝑀 ) = −1 for odd 𝑀 and that 𝑆Π
𝑛 switches from a linear growth interval to a

“plateau” interval when 𝑀 switches from even to odd. It guarantees that there will be an
unpaired point every other time 𝑀 → 𝑀 + 1, and so a chance to switch, but that extra
point may fall in the interval [0, 1/2[ and so change nothing. Whether this happens for any
particular 𝑀 will depend heavily on the initial condition, 𝑥0, but the growth of the counter
only depends on how frequently it happens, which has nothing to do with 𝑥0.

Further, we can say avoid a pitfall for 2 | 𝑞𝑀 . If 𝜎 < 𝜎𝑀 for 2 | 𝑞𝑀 and 𝑥0 = 0, then
𝑥𝑞𝑀/2(𝜎𝑀 , 0) = 1/2 implying 𝜖𝑞𝑀/2(𝜎𝑀 ) = −1 but 𝜎 < 𝜎𝑀 means that 𝜖𝑞𝑀/2(𝜎) = 1 and
we have arrived an 𝑛*𝑀 before completing even one period. But when the continued fraction
coefficients are their index raised to a power, that cannot happen since 2 | 𝑞𝑀 if and only
if 𝜎𝑀 < 𝜎. Every convergent, that is with 2 | 𝑀 , is smaller than 𝜎 [294, Trm. 154]. As we
have shown above, these even convergents are exactly those where 2 | 𝑞𝑀 and so we avoid this
problem. This is not a general property of generic irrationals and will have to be dealt with
when generalizing these methods. But when define other counters for other systems we will
have to find the periodicity in those systems and that will involve constructing another way
to estimate the range of validity.

7.2.6 Fractal nature

As noted in the last section, for any given 𝑀 , the behavior of 𝑆Π
𝑛 (𝜎𝑀 ) will contain the

behavior of all of the quasi-periods corresponding to proper periods in 𝜖Π𝑛(𝜎𝑀 ′) for 𝑀 ′ < 𝑀
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Fractal Dimension, 𝐷 of the graph of 𝑆IRΠ
𝑛 (𝜎)

Figure 7.14 – Estimated fractal dimension 𝐷 of the 𝑆Π
𝑛 curve as a function of the course-

graining parameter 𝜀 (see text and equation (7.45)). The smallest 𝜀 corresponds to the
exact curve. As the 𝜀 increases, and more microscopic details of the curve become blurred,
the dimension quickly saturates at 𝐷 ≈ 1.03.

(see Figures 7.10 through 7.12). This gives a self-similar nature to 𝑆Π
𝑛 (𝜎), which must contain

all of these quasi-periods, and implies that its plot might have a fractal dimension.
Visually, simply looking at Figures 7.10 through 7.12 together indicates a fractal nature

for the 𝑆Π
𝑛 curve. Indeed, both the growth intervals,

0 ≤ 𝑛 < 𝑛*𝑀 , 𝑀 : 𝜖Π𝑞𝑀−1(𝜎) = +1, (7.43)

and the plateau intervals,

0 ≤ 𝑛 < 𝑛*𝑀 , 𝑀 : 𝜖Π𝑞𝑀−1(𝜎) = −1, (7.44)

include all the previous intervals as building blocks. Calculating the Minkowski (i.e. box
counting) dimension [305, §3.1] bears this out as can be seen in Figure 7.14 where the fractal
dimension of the 𝑆Π

𝑛 graph appears to saturate close to 𝐷 ≈ 1.03.
Our method of computing the fractal dimension is one given in [306] for a one-dimensional

curve in two-dimensional space: first imagine that the curve described by 𝑆Π
𝑛 is drawn over

a 2D rectangle of size 𝑛max × 𝑆max. This space is then divided onto squares of dimension
𝜀(𝑛max + 1) × 𝜀(𝑛max + 1). The case of 𝜀 = (𝑛max + 1)−1 would capture curve exactly since
the curve is drawn in 𝑛max discrete steps. Then, the number of the boxes that contain the
curve, 𝒩filled, is computed. For a given 𝜀, the estimate of the fractal dimension reads

𝐷 =
ln(𝒩filled)

ln(1/𝜀)
. (7.45)

Since the curve is in fact a discrete set of points, one for each 𝑛, 𝐷0 ≡ lim
𝜖→0

𝐷 = 1 as can

be seen in Figure 7.14. But it quickly saturates to 𝐷 ≈ 1.033 around 𝜀 = 5× 10−6 and it
appears to the grid as a continuous curve with non-integer dimension.
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7.3 Conclusion

In this chapter I detailed the WCP counter, 𝐾, along with its underlying 1-D system and
billiard. I described the conflict the authors see between the localization around the initial
value, 𝐾0, of their counter and the fact that all values of 𝐾 are accessible from any 𝐾0 given
enough time: that appears to be a non-ergodic system with an undivided phase space, in
conflict with what KAM theory finds for all known non-ergodic systems [70]. I took their
advice about numerical results and examined exactly how strongly these results conflict with
the billiard being ergodic and find that the two are not irreconcilable. An ergodic billiard
could produce their results and if their counter is unbounded as they say, it would suggest
that the billiard is metrically transitive (at least in its velocity angle) and therefore ergodic.

This serves a counter constructed by M. Olshanii which counts the parity of 𝑓 = −1
events in a rotation. The hope is that the methods for examining its growth could be used
for other parity counters such has (7.14), and give insight into the WCP system as well as
other billiards. The two lines of attack it opens are direct arguments about the convergence
of averages as at the beginning of § 7.2.4 or arguments involving unboundedness and metric
transitivity. I give a detailed description of the methods we used to examine it via rational
approximants. I defined and gave ways of estimating up to what time a given approximant will
be valid. When the irrational is generic and therefore can be well approximated, I explained
our proof demonstrating that the counter contains unbounded subsequences and therefore
ergodic. Because the overall sequence is made up of nested subsequences, it should have
something of a fractal nature and I present our calculation for the fractal dimension of its
graph, 𝐷 ≈ 1.03. The fact that this dimension is not an integer lends weight to the idea
that the self-similarity we see in Figures 7.10 through 7.12 is not an artifact. While shapes
with non-integer fractal dimension are not necessarily self-similar, self-similarity is a way for
a shape to acquire a non-integer fractal dimension [307]. Since we have a strong argument
why these curves should be self-similar (as set out in (7.39)), it stands to reason that the
non-integer fractal dimension comes from that rather than that the self-similarity is illusory
and it acquires a non-integer fractal dimension from some other source. I also described the
numerical work I did to make sure that the values we used for the shift 𝜎 and the initial
condition, 𝑥0, were not special and that varying the values for these quantities did not lead
to any surprises.

The next step is to define other parity counters over other systems and apply methods
such as the cycles described in (7.39) to them. The ergodicity of irrational rotations is already
known. The natural choice is a billiard of some kind. We think that with slight modifications,
we will be able to build bridges from what we have learned here to certain billiards. For
example, by modifying 𝑓 as written in (7.34) to have the form

𝑓 ′ =

{︃
+1 for 𝑥 < 1

2 + 𝛿

−1 otherwise,
(7.46)

where 𝛿 is a positive or negative shift that depends on the trajectory, one moves closer to—
without actually arriving at—the case of a 45∘ − 45∘ − 90∘ triangular billiard. Another idea
is to consider an irrational rotation by angle 𝜎 along a circle of unit circumference. Then
instead of being divided in half, the circle is divided into two parts, one of length 𝜎 and the
other of 1− 𝜎. After every rotation, the counter increments by a step, 𝜖 = ±1, depending on
the parity of the prior number of landings to the 1− 𝜎 zone. We suspect that if we can show
that this contains an unbounded subsequence, we can argue that the WCP counter is also
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unbounded. We made the connection between the WCP counter in a 45∘−45∘−90∘ triangular
billiard and a parity counter on irrational rotation in a very recent paper [308]. In it we show
that the counter is unbounded in this case even though such a billiard is not ergodic. This
does not imply the converse because the billiard is rational and multiple values of the counter
can correspond to the same angle. This means the counter running off to infinity does not
mean that the set of angles visited grows at all. However, the important result of a bridge
between parity counters on irrational rotations and billiard is detailed, as well as a method
for constructing unbounded subsequences beginning from an explicitly defined set of initial
conditions.

The next step is to make connections to both irrational right-triangular billiards [309–311],
and elongated non-right-triangular billiards as in [312,313], by constructing other counters.



Conclusion

This thesis presents preparatory work for two methods of examining one-dimensional systems,
one experimental and one theoretical. At the conclusion of this work both are in a similar
state: almost ready to be put to use to obtain results. The experiment needs a little more
work to be able to load the atoms onto the chip as described in Chapter 3. The current
profiles for the various stages of loading must be implemented, imaging systems tested and
installed, etc. But the chip is in place and under vacuum, and the atoms can be efficiently
cooled and transported to the chip.

A key feature of the growth of parity counters (7.39) has been introduced which will hold
for all parity counters. It remains to define parity counters for systems other than irrational
rotations (whose ergodicity is already known) and look for cycles in them.

I will summarize the results in their respective contexts separately and then make what
connections I can between the two.

State of the experiment

The experimental work picks up where D. Ben Ali’s thesis work left off [1], bringing the
experiment very close gathering data. The chip has been completed and installed and put
under a vacuum of < 10−10mbar. The transport has been completed, optimized, and tested
up to the science chamber and it performs as expected. Clouds of ∼ 100 µK can be generated
and transported to the science chamber in around ten to twelve seconds at our current oven
temperature. Around ten of those seconds are spent loading the MOT and if we increased
the temperature of our ovens and increased the atomic flux in our beam, we could cut this
down below the transport time of 1.2 s. We expect that this time could be reduced by several
seconds, if necessary, by working at a higher oven temperature. Work is now proceeding on
implementing the loading and cooling procedures for the chip.

Electrical tests on the chip performed under vacuum indicate that it will be able to generate
the fields we need to perform our experiment. I subjected the chip to currents higher than
those needed for the experiment for longer duration than the will be used for and it performed
as expected. Several months later, T. Badr performed similar tests and observed no change
in the chips performance. This suggests that we are not in danger of damaging the chip, or
its connections during normal use. The coil used for evaporative cooling, on the other hand,
is significantly hampered by being wound around copper. This requires tests with the atoms
to see if it can perform adequately.
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Parts for the lenses have been obtained and the low-magnification objective has been
assembled and is undergoing testing with a clear-optical path target and laser illumination.
Some machining remains to be done for the higher-magnification objectives: punching out the
apertures for the different imaging conditions and threading the SM2E60 tube. In retrospect,
tapping the threads might have been avoided by replacing the SM2E60 6” tube with two
SM2L30C, 3” tubes.

The magnetic transport has been optimized to transport the cloud from the MOT cham-
ber to the chip in about 1.2 s while keeping about 80% of the atoms as opposed to three or
four times that on comparable experiments [2,239,240]. This is done using an error function
profile, tuned to be close to a constant velocity profile (5.23). The error function profile, how-
ever is smooth in all its derivatives. Classical simulations show us that this profile provides a
good compromise between a constant-velocity profile and constant-acceleration profile. The
constant-velocity profile necessarily has infinite acceleration spikes at the beginning and end,
shifting atoms far from the trap center and leading to finite-depth losses. Capping the acceler-
ation and making a constant-acceleration profile keeps atoms near the center where Majorana
spin-flip losses are more prevalent. The error-function profile provides a good compromise.

Perspectives and future work

The chip itself is a combination of tested technologies. Other atom chip experiments have
included multiple trapping wires [145] or rf-wires which could dressing the trap [146,219]. Even
coplanar waveguides on chips are not a novel [314]. The new territory we intend to explore is
the use of a novel Feshbach resonance [43] to reach new parts of the one-dimensional phase
diagram. This is the first next step in the experiment once the atoms can be loaded into
the trap on the chip: experimentally find the microwave induced Feshbach resonance. The
next step will be to use it to explore the physics of the one-dimensional gas. At some point
this will entail installing the equipment necessary to perform Bragg spectroscopy and the
high-resolution light-sheet imaging system. It will be after that that we intend to explore
things like using the trapping wires to excite transverse modes, rf-dressing, or considering the
predictions of Yao et al. [191] about the behavior of Tan’s contact for a harmonically trapped,
strongly-interacting gas.

Further on still, we hope to install optics that will allow us to make a finite-length cylin-
drical trap. This will be exactly the system described by Lieb and Liniger [48, 49]: particles
restricted to one dimension in which they are confined by hard walls. Then, there will be
no need to make local density approximations, examine the gas slice by slice, or account for
the gas being in different regimes in different places. Since one of the attractive features
about performing experiments on one-dimensional systems is the exact solutions to make
comparisons with, it would be best to have the precise system which is exactly solved to make
comparisons to.

We say that we have optimized our magnetic transport but that requires some qualification.
We do not have any theoretical description which allows us to say that we have found a global
optimum. The methods for optimizing transport in harmonic and higher-order polynomial
traps [242, 244, 245] cannot be used in our case because there is no well-defined derivative at
the center of our trap. If further work is to be done optimizing transport in quadrupole trap
chains, one can either attempt to build a theoretical description of the transport upon which
theoretical tools may then be deployed, or continue in our vein and try to imagine profiles
that keep atoms away from the two regions where they would be lost: the edge and center of
the trap.
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Theoretical Results

The second part is a different way to look at one-dimensional systems. It was inspired by a
study using a counter to look at the ergodicity of irrational, right-triangular billiards, which
can encode systems of three particles moving in one dimension. They present numerical
evidence that this counter implies that the billiard is not ergodic by showing that it localizes.
I argue that the billiard might still be ergodic, but a localized counter defined over an ergodic
billiard is still an oddity; one expects to see things defined on ergodic systems take on all
their available values, like ergodic observables. But counters count events or outcomes, they
are not observables themselves.

This localizing counter can be re-cast as a parity counter, one that incitements by ±1
depending on the parity of the number of some event or occurrences of an observable result.
My coauthors an I hope to define other counters to study other systems but we examined the
behavior for a counter defined on an irrational rotation to gain insight into how these counters
will behave.

The key result is what happens when there is a period in the observable underlying the
counter. Once that underlying cycle is found, the absolute value of the parity counter will
undergo cycles of average growth or average stasis, depending on the sign of the parity counter
increment just before the cycle closes. This is stated in (7.39). If these rational numbers are
approximating irrational ones, these cycles will hold until that approximant fails and the next
one takes over. This will build up a nest of growth and stasis cycles and estimates of the
overall growth can be made, so long as the approximants hold for long enough (two periods).
The irrational rotation we chose to study had several convenient features such as alternating
cycles of growth and stasis and approximants not failing on 𝑛 = 𝑞𝑀/2 which make it less
representative of all irrational rotations, but this is not disastrous since the goal is to define
parity counters for other systems.

Perspectives

When generalizing to other systems, such as irrational billiards, we still expect to find trajecto-
ries governed by irrational angles. Almost all irrational angles will be generic [294, Thrm. 196],
having an unbounded sequence for their continued fraction coefficients. This means that at
some point they can be approximated arbitrarily well by that finite continued fraction and
cycles in the observable of length 𝑞𝑀 will persist for a long time. Look at the upper bound
in (6.15) which is inversely proportional to the next continued expansion coefficient. Even if
the coefficients do not grow monotonically as they do in our test case, one can pick an 𝑀 at
which to truncate the fraction which makes 𝑎𝑀+1 large compared to 𝑞𝑀 . This means that
the rational behavior can be expected to hold for a long time (see (7.30) for the case of irra-
tional rotations) and the growth for these periods will be predictable. In the case of generic
irrationals, these predictable patches can always be found as one extends the approximant
further and further. This opens up two ways to argue for ergodicity: if there are enough
predictable patches, it may be possible to find the growth rate and relate it to the mean of
a particular observable, thereby showing that the mean converges. Or by showing that the
counter is unbounded, showing what that implies about the invariant sets, and then mounting
an argument from metric transitivity. Neither of these follows immediately from (7.39) and
will depend on the specifics of the system and the counter, but the fact that (7.39) applies
to any parity counter and that large patches of such cycles can be found for any generic
irrational means that it should be broadly useful, if appropriate counters can be concocted.
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For an example of a parity counter defined on irrational rotations that gives the value of the
WCP counter in an integrable billiard, see [308]. This somewhat ameliorates the fact that the
irrational we chose to study (7.24) had several convenient features as discussed in § 7.2.5.

Sadly, this insight will be less useful for bounded-type irrationals where there is some limit
on the coefficients (7.23). In this case, at some point, 𝑞𝑀 will certainly grow large as compared
to 𝑎𝑀 and the approximant will always fail before the predictable cycle completes. This is
certain in the case of irrational rotations and in the case of billiards, where the set of reachable
angles grows like 𝑞𝑀 . I do not have a neat formula for when the orbit closes which Wang et al.
called 𝜏*(𝑞, 𝑞′) and found numerically. They found, as expected, that 𝜏*(𝑞𝑀 , 𝑞𝑀 + 1) grew
much slower than 𝑞𝑀 for the strongly irrational case where 𝛼/𝜋 = [0; 1, 1, 1, . . .]. In these
situations, our method could not be used because cycles would not be stable for long enough.

Bringing these results back to systems like the ones studied in Part I is some ways of.
The next step for these counters is to apply them to billiards; constructing things like (7.14)
for the WCP billiard and other counters for irrational right triangles, isosceles right triangles,
and elongated non-right triangles [312, 313], in order to prove the ergodicity of their flows.
But all of these would encode systems of only two particles2 (and except for the isosceles right
triangle) of different masses. The ergodicity of these mass mixtures would not have direct
implications for one-dimensional, many-body quantum systems of identical particles. If the
solution to the isosceles right triangle generalizes to billiards in higher dimensions, then it
might provide a way to show systems like the ones made on the atoms chip are ergodic, at
least in the cylinder trap with uniform density. This might be combined with the technique
of embedding the billiard [69] to extend it to the case of harmonic longitudinal confinement,
but that would only be applicable far in the strongly interacting regime, where the particles
are hard-cored.

2. Systems of three particles are also possible using a more complicated coordinate transform. See [95,250,
285] and references therein.
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Appendix A
Tables of notations and symbols

General notations

Constants:

Symbol Description Value
(~) ℎ (reduced) Planck constant (1.054× 10−34 J · s−1) 6.626× 10−34 J · s−1

𝑐 Speed of light 2.998× 108m · s−1

𝑘B Boltzmann constant 1.381× 10−23 J ·K−1

𝜇B Bohr magneton 9.274× 10−24 J · T−1 (ℎ× 1.399MHz ·G−1)
𝑚 Mass of a sodium atom 3.818× 10−26 kg
𝑎0 Bohr radius 5.29× 10−11m

Textual abbreviations:

Symbol Description
Cf., i.e., e.g. Confer—”Compare,”, id est—“that is”, exempli

gratia—“for example”
Ch(s)., App., §, p(p). Chapter(s), appendix, section or subsection,

page(s)
f(f). “and the following (pages, sections, chapters, etc).”

Two indicates multiple units of text are relevant
Tbl., Fig. Table, figure

Eqn., Thrm., Prop., Lm., Pblm. Ex. Equation, theorem, proposition, lemma, problem,
example or exercise
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Mathematical notations:

Symbol Description
Z,Q,R,N Set of integers, rationals, reals, natural numbers

S+ Set S includes only positive numbers
𝑣 A unit vector pointing along the vector 𝑣
𝑝⊥𝑞 𝑝 and 𝑞 are coprime
𝑝 | (-)𝑞 𝑝 does (not) divide 𝑞

𝑥→ 𝑎+/− 𝑥 goes to 𝑎 from above/below
𝑓 = 𝑂(𝑔) |𝑓 | Is asymptotically bounded from above by 𝑔, i.e. lim sup

𝑛→∞

|𝑓(𝑛)|
𝑔(𝑛) <∞

𝑓 = 𝑜(𝑔) 𝑓 Is asymptotically dominated by 𝑔, i.e. lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛) = 0

𝑓 = Ω(𝑔) |𝑓 | Is not asymptotically dominated by 𝑔, i.e. lim sup
𝑛→∞

⃒⃒⃒
𝑓(𝑛)
𝑔(𝑛)

⃒⃒⃒
> 0

𝐴 (⊂) ⊆ 𝑋, 𝐴 is a (proper) subset of 𝑋
𝐴 ∖𝑋 Set difference of 𝐴 and 𝑋, i.e. the set those elements in 𝐴, but not 𝑋

Part I: Sodium experiment

Bose gas properties:

Symbol Description Page
𝑛(𝑟) Number density at 𝑟. The one-dimensional analog is 𝑛1D
𝜇 Chemical potential
𝜆𝑇 Thermal de Broglie wavelength 21
𝑎1D One-dimensional analog of the 3-D scattering length, 𝑎 27
𝜉 Healing length 23

𝑔𝑚(𝑧) Polylogarithm (aka Bose function) of 𝑧 of order 𝑚 20
ℓ𝜑 Phase correlation length 35
𝑔𝑛D Contact interaction strength in 𝑛-dimensions 22,27
𝛾 Lieb–Liniger interaction parameter 29
𝜏 Reduced temperature 34
𝑔𝑛 Correlation function of order 𝑛 32,32

ϒMaj Spin adiabaticity condition 54

Magnetic trap & transport properties:

Symbol Description Page
𝜅 Quadrupole trap parameter 54
𝑅 Radius of average density in a quadrupole trap 103
𝑟𝑡 Distance traveled by a particle at average velocity in the trap, 𝑣0 112
𝐶𝑛 The 𝑛th coil in the magnetic transport 109
𝛼 Horizontal anisotropy with 𝛼 = 1 being symmetric 106
𝛿 Shape parameter for erf & tanh profiles. 𝛿 → 0 being more linear and

𝛿 → ∞ more step-function-like
111

𝛾 Coefficient to ensure ...
𝑦0(Δ𝑡/2) → 0 111

𝛾𝑐 Collision rate 114
𝑟2𝑁 Atom number ratio, after two-way transport 117
𝑟2𝑇 Temperature ratio, after two-way transport 117
𝑟Maj Parameter to estimate Majorana losses 119
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Objective lens design:

Symbol Description Page
NA𝑜𝑏𝑗 , NA𝑖𝑚𝑔 Numerical aperture (NA) in object or image space 84

𝑀 Magnification, the ratio of image size to object size 85

Length or angle in object/image space,
y/𝑦, 𝜃/𝜃′ unprimed or roman quantities are in object space 84

while primed or italic ones are in image space

𝜈𝑐 Cutoff frequency for the modulation transfer function (MTF) 85
𝑙𝑝𝑥 Pixel size or pixel pitch 86

DoF𝑔 Geometric depth of field (DOF) 86
𝛼𝐴 Angular Airy diameter 87
𝑟𝐴 Airy radius 87

dy𝑚𝑖𝑛 Size of smallest resolvable object 86, 87
DoF𝑑 Diffractive DOF 87
𝑀max Maximum useful magnification 88

Part II: Counters and Ergodicity

Symbol Description Page
ℓ Distance between points in an orbit 139
𝐾 Wang-Casati-Prosen (WCP) counter 144
𝛼 Angle used in the definition of the WCP billiard 143
𝜃 Velocity angle in the WCP billiard 143
𝜙 Factor to place 𝜃 in correct quadrant 𝜙 ∈ {𝜃0,−𝜃0, 𝜋 − 𝜃0, 𝜃0 − 𝜋} 144
𝜑 Smaller golden mean, equal (

√
5− 1)/2 146

𝐿 Liouville’s constant 146
𝜏* Time at which an approximate WCP sequence fails 148
𝑛*𝐾 Number of velocity angles visited by 𝜏 148

𝜃𝑦1 , 𝜃𝑦2 Angle subtended by the other leg when the WCP 144
virtual particle meets a leg at 𝑦1 (or 𝑦2)

𝑃 (𝐾, 𝑡) Probability that the WCP counter takes the value 𝐾 at time 𝑡 150
𝜎𝑀 = 𝑝𝑀/𝑞𝑀 Rational approximant of an irrational angle, 𝜎 137

(𝑥0), 𝑥 (Initial) Position in a rotation’s phase space 138
𝜇(𝑥) Measure defined on 𝑥

𝜖IR𝑛 ≡ 𝑓𝑛(𝑥) Increment of the irrational rotation counter, 𝑆IR
𝑛 (𝜎, 𝑥0) 140

𝜖IRΠ
𝑛 Increment of the product counter, 𝑆IRΠ

𝑛 (𝜎, 𝑥0) 152
𝐷 Minkowski dimension 166
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Appendix B
Electric test data

Channel one is yellow (CH1) and measures the driving signal from the function generator.
The other is channel three, in magenta (CH3), which measures the voltage of current supply.
Above each oscilloscope image is a line of the form “T = 𝑇 s, 𝐷% duty cycle, 𝐼 A”. Where 𝑇
and 𝐷 are the settings for the function generator for cycle period and duty cycle and 𝐼 is the
current read off the power supply display.

B.1 On-chip wires

The current for these tests was supplied by a Delta Elekronika power supply1 driven in current
limited mode via its V𝑝𝑟𝑜𝑔 input (which expects 0–5V) directly from a RS PRO2 function
generator. A voltage pattern could be set on a the signal generator such that the power supply
drove the desired amount of current whenever the signal generator was in the high phase of
its duty cycle. The voltage was measured by the oscilloscope at the entrance to the break-out
box.

1. Model ES 015-10
2. Model AFG-21005.
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∙ DC 50
Ω4 = 7.37Ω
05: T = 10 s, 10% duty cycle, 1.5A

T = 10 s, 30% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 1.5A

Ω1.5A = 8.2Ω

∙ DC 100
Ω4 = 5.94Ω
T = 10 s, 10% duty cycle, 1.5A

T = 10 s, 30% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 1.5A

Ω1.5A = 6.47Ω
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∙ U 1
Ω4 = 5.88Ω
T = 10 s, 10% duty cycle, 1.5A

T = 10 s, 30% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 1.5A

Ω1.5A = 6.73Ω

∙ U 2
Ω4 = 5.66Ω
T = 10 s, 10% duty cycle, 1.5A

T = 10 s, 30% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 1.5A

Ω1.5A = 6.35Ω
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∙ U 3
Ω4 = 5.59Ω
T = 10 s, 10% duty cycle, 1.5A

T = 10 s, 30% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 1.5A

Ω1.5A = 6.53Ω

∙ U 4
Ω4 = 5.33Ω
T = 10 s, 10% duty cycle, 1.5A

T = 10 s, 30% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 1.5A

Ω1.5A = 6Ω
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∙ RF 1
Ω4 = 18.13Ω
T = 10 s, 10% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 0.15A

T = 10 s, 30% duty cycle, 0.5A

Ω0.5A = 20.4Ω

∙ RF 2
Ω4 = 17.65Ω
T = 10 s, 10% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 0.15A

25: T = 10 s, 30% duty cycle, 0.5A

Ω0.5A = 19.7Ω
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∙ RF 3
Ω4 = 17.53Ω
T = 10 s, 10% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 0.15A

T = 10 s, 30% duty cycle, 0.5A

Ω0.5A = 19.4Ω

∙ RF 4
Ω4 = 17.84Ω
T = 10 s, 10% duty cycle, 0.5A

T = 10 s, 30% duty cycle, 0.15A

T = 10 s, 30% duty cycle, 0.5A

Ω0.5A = 20.1Ω
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B.2 Z-wire

The oscilliscope measures the power supply’s 𝑉𝑚𝑜𝑛𝑖𝑡𝑜𝑟 voltage through a 1 kΩ, 10 µF RC low-
pass filter with a 160Hz cutoff. Because the 15-100 can supply 0 to 15V but the 𝑉𝑚𝑜𝑛𝑖𝑡𝑜𝑟

port only has a range of 0 to 5V, readouts from it must be multiplied by three. In addition
to the notation from the last section, these figures include he values Ω0 and Ω𝑓 .

T = 10 s, 20% duty cycle, 50A T = 20 s, 20% duty cycle, 25A

Ω0 = 5.70mΩ Ω𝑓 = 5.69mΩ

T = 20 s, 20% duty cycle, 50A T = 20 s, 20% duty cycle, 75A

Ω0 = 5.58mΩ Ω𝑓 = 5.58mΩ Ω0 = 5.52mΩ Ω𝑓 = 5.52mΩ

T = 20 s, 20% duty cycle, 100A T = 20 s, 20% duty cycle, 112.4A

Ω0 = 5.48mΩ Ω𝑓 = 5.49mΩ Ω0 = 5.50mΩ Ω𝑓 = 5.51mΩ
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B.3 Evaporation coil

These data were taken with a probe consisting of a single copper wire loop of area of approx-
imately 𝜋 cm2 and an inductance 57 nH. Resistive ballast was supplied by a 50Ω load.

Transfer function of the probe

Figure B.1 – Measured gain of the probe used to measure the field strength of the
evaporative coil versus driving frequency. Used to correct the raw readings.

Evaporation coil magnetic field strength

Figure B.2 – Magnetic field generated by the evaporation coil at 6mm with a wood
and copper core and at 20mm with a copper core, corresponding to our experimental
conditions. Coil was run at frequency 𝜈𝑟𝑓 with 0.5W of power.



Appendix C
Objective lens schematics

AC254-300-A
𝑓 = 300mm

AC254-100-A
𝑓 = 100mm

2"
SM1L20

4"
SM1L40

1"

SM1D12

CCD

Figure C.1 – Diagram of the low magnification lens. Only tube dimensions to scale.
Part numbers from the ThorLabs catalog.

CCD

LE1613-A
𝑓 = 250mm

AC508-250-A
𝑓 = 250mm

AC508-200-A
𝑓 = 200mm

LF1015-A
𝑓 = −300mm

2" 1"

6"
SM2E60

1.5"
SM2L15

2” → 1”
SM1A2

3.5"
SM1L35

14-30mm
SM1V10

Figure C.2 – Same of the “high” magnification lens for ToF imaging. To convert for in-
situ imaging replace the LF1015-A with an LC1582-A, 𝑓 = 75mm, add another SM1L40
between the SM1L35 and the CCD camera and refocus everything according to Table 4.3.
The apertures are custom cut blanks and will have to be swapped out.
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Appendix D
Supplementary transport profiles

Hyperbolic-tangent profile The idea here is similar to the error function profile: some-
thing smooth in all its derivatives that can be tuned between something like a step function
and something like the constant velocity profile. It is defined just like the error function profile
with one function swapped for the other. It reads

𝑦0(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝑡 ≤ 0
𝐿1
2

[︁
1 + tanh

{︁
−𝛾
(︀

𝑡
Δ𝑡

)︀−𝛿
+
(︀
1− 𝑡

Δ𝑡

)︀−𝛿
}︁]︁

for 𝑡 ∈ ]0,Δ𝑡[

𝐿1 for 𝑡 ≥ Δ𝑡

(D.1)

with 𝛾 = 2−3/2−𝛿
√︀

(𝛿 + 1)(𝛿 + 2)/𝛿 as before and 𝛿 taking the same role as a shape parameter
which changes the profile to something resembling a constant velocity one when 𝛿 → 0. This
performed very similarly to the error function profile having a clear optimum in its shape
parameter around 𝛿 = .18, but performing slightly worse than overall.

Sinusoidal acceleration Another way to avoid acceleration spikes while also avoiding
spikes in the jerk is to have a profile where the acceleration is sinusoidal. This is written

𝑦0(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝑡 ≤ 0

𝐿1

[︁
𝑡
Δ𝑡 + (2𝜋)−1 sin

(︀
2𝜋 𝑡

Δ𝑡

)︀]︁
for 𝑡 ∈ ]0,Δ𝑡[

𝐿1 for 𝑡 ≥ Δ𝑡

. (D.2)

This did not prove any significant improvement. This suggests that it is not sudden changes
in acceleration that cause atom losses or heating, but rather where the atoms are located in
the trap as discussed in § 5.3.2 and following.

Constant acceleration with a pause The most creative transport scheme was one where
we tried to avoid Majorana losses and heating almost entirely. Imagine the cloud of atoms
as liquid sitting at the bottom of a cone-shaped container under gravity then accelerate the
container. In the moving frame, acceleration will tilt the container away from the direction of
acceleration and the liquid will tend to lie on the lowered side. The strategy is then to stop
the trap in the middle of the transport, flinging the atoms across the trap center and then
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stop the cloud with the other side of the decelerating potential until trap and atoms come to
rest at the end of the transport. Like throwing the liquid from one side of the container to
the other and then trying to keep the container moving such that you stop the liquid without
making a splash. The profile we attempted to do this with was written

𝑦0(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 𝑡 ≤ 0

2𝐿1

(︁
𝑡

Δ𝑡−𝛿𝑡

)︁2
for 𝑡 ∈

]︀
0, Δ𝑡−𝛿𝑡

2

]︀
𝐿1
2 for 𝑡 ∈

]︀
Δ𝑡−𝛿𝑡

2 , Δ𝑡+𝛿𝑡
2

[︀
𝐿1

[︂
1− 2

(︁
1− 𝑡

Δ𝑡+𝛿𝑡

)︁2]︂
for 𝑡 ∈

]︀
Δ𝑡+𝛿𝑡

2 ,Δ𝑡+ 𝛿𝑡
[︀

𝐿1 for 𝑡 ≥ Δ𝑡

. (D.3)

This is just the constant acceleration profile defined in equation (5.13) with a pause of length
𝛿𝑡 in the middle at 𝐿1/2,Δ𝑡/2. Several attempts at scanning Δ𝑡 and 𝛿𝑡 to find the right
combination all lead to a total loss of the atom cloud, even at fairly slow transport times on
the order of a second.

Miscellaneous transport profiles

Figure D.1 – Same as Figure 5.5 but for the sinusoidal-acceleration (red line) and
hyperbolic-tangent (magenta lines) profiles. The line style denotes different values of
the shape parameter, 𝛿 = 0.2 (solid), 𝛿 = 0.3 (dashed), and 𝛿 = 0.9 (dashed-dotted).



Appendix E
One-dimensional time-of-flight density
profile

Here I describe the calculation for the time-dependent one-dimensional density profile of a
cloud released from the magnetic trap mentioned in § 5.2.1.2 and give the exact, analytic
formula.

To construct a ToF profile, we convolve the velocity profile with the density in the trap
(equation (5.3)). This amounts to averaging the velocity distribution over the volume of the
trap, weighted by the density distribution in the trap which serves as a set of initial positions
for the atoms.

When integrated along the imaging axis, 𝑦, it behaves like a Gaussian because 𝑦 only
appears in 𝑟. This gives a factor of

√︀
2𝜋𝑟2𝑡 and a distribution function for the image of

𝑛(𝑥, 𝑧, 𝑡) =

∫︁ ∞

−∞
d𝑦
(︀
2𝜋𝑟2𝑡

)︀−3/2
∫︁

d𝑢 𝑛(𝑢) exp

(︂
−(𝑟 − 𝑢)2

2𝑟2𝑡

)︂
=

𝐶

2𝜋𝑟2𝑡

∫︁
d𝑢 𝑒−𝑢/𝑅𝑒−(𝑢𝑥−𝑥)2/2𝑟2𝑡 𝑒−(𝑢𝑧−𝑧)2/2𝑟2𝑡

(E.1)

where 𝐶 = 𝑁/4𝜋𝑅3 is the normalization factor from the distribution in the trap, 𝑅 ∝ 𝑘𝐵𝑇 is
the radius of mean density as defined in equation (5.4).

To get a one-dimensional profile that can be fit to integrated profile from an experimental
image to extract a temperature, one more integration along either 𝑥 or 𝑧 must be performed.
Then the integral over 𝑢 must be done explicitly. The trick of switching to spherical coordi-
nates to avoid improper integration limits as was done in arriving at equation (5.6) can be
used here. Integrating equation (E.1) along 𝑧 results in

𝑛(𝑥, 𝑡) =
𝑟𝑡

2
√
2𝜋𝑅2

𝑒−𝑥2/2𝑟2𝑡 +
1

8𝑅3
𝑒𝑟

2
𝑡 /2𝑅

2 × . . .[︂(︀
𝑅2 +𝑅𝑥− 𝑟2𝑡

)︀
erfc

(︂
1√
2
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𝑟𝑡
𝑅

− 𝑥

𝑟𝑡

]︂)︂
𝑒−𝑥/𝑅 +

(︀
𝑅2 −𝑅𝑥− 𝑟2𝑡

)︀
erfc

(︂
1√
2

[︂
𝑟𝑡
𝑅

+
𝑥

𝑟𝑡

]︂)︂
𝑒𝑥/𝑅

]︂
.

(E.2)

The vertical axis profile differs from the horizontal one in that 𝑅 is replaced by 𝑅/2 due
to the steeper trap gradient in that direction. These can both be fit to a doubly integrated
profile and the temperature extracted from 𝑟𝑡 and 𝑅.
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Résumé

Cette thèse traite d’une expérience visant à confiner des atomes de sodium dans un piège
magnétique très anisotrope créé par une puce à atomes. La puce contient un guide micro-
onde : nous prévoyons en effet d’utiliser une résonance de Feshbach dans le domaine micro-
onde, encore jamais observée, pour contrôler la force des interactions entre atomes et explorer
les régions du diagramme de phase d’un gaz unidimensionnel (1D). Un gaz 1D présente des
corrélations dans ses fluctuations de densité. Pour les observer, il faut accumuler des données
de nombreuses réalisations du gaz, ainsi l’expérience est conçue pour atteindre des taux de
répétition élevés. Pour cela, la zone de préparation initiale du nuage est placée à distance de
l’enceinte à vide contenant la puce atomique et le nuage froid est transporté via une chaîne
de bobines de piégeage magnétique. Nous avons optimisé le transport dans ces bobines afin
de pouvoir transporter un nuage sur 30 cm en 600ms tout en conservant plus de 80% des
atomes. Les données sur le gaz sont obtenues par imagerie. Nous présentons trois objectifs
pour imager le nuage dans trois conditions différentes : avant, pendant et après la phase de
piégeage par la puce.

Une deuxième partie présente des travaux théoriques sur les “compteurs de parité” pour
les systèmes dynamiques, permettant d’établir le caractère ergodique du système. Ce tra-
vail s’inspire d’un système de billards triangulaires, qui peuvent coder certains systèmes 1D.
Nous étudions le comportement d’un compteur pour un système plus simple, les rotations
irrationnelles, et trouvons les propriétés de croissance que l’on peut attendre pour tous les
compteurs de parité.

Mots-clefs : Atomes froids, résonance de Feshbach, transport magnétique, puce à atomes,
gaz unidimensionnels, systèmes dynamiques, théorie ergodique, rotations irrationnelles

Abstract

This thesis treats an experiment which aims to confine sodium atoms in an elongated magnetic
trap generated by an atom chip. The chip contains a microwave guide: we intend to find
and use a novel Feshbach resonance to tune the atoms’ interaction strength and explore the
different regions of a one-dimensional (1-D) gases’ phase diagram. A 1-D gas is characterized
by correlations in density fluctuations. To see these, we must take data over many samples of
the gas, so steps were taken to increase the repetition rate. To that end, the initial cooling of
the gas takes place in a chamber far from the atom chip and a cold cloud is transported via
a chain of magnetic trap coils. We have optimized the transport in these coils so that we can
transport a cloud 30 cm in 600ms while keeping over 80% of the atoms. Data about the gas
is obtained via imaging. This thesis presents three objectives for imaging the cloud in three
different conditions: before, during, and after it is in the trap generated by the chip.

The second part presents preliminary theoretical work on “parity counters” for dynamical
systems. The goal is to use these counters to answer questions of ergodicity. This work was
inspired by triangular billiards which can encode 1-D systems. We study a counter for a
simpler system, irrational rotations, and find properties of the growth that can be expected
in all parity counters.

Keywords: Cold atoms, Feshbach resonance, magnetic transport, atom chip, one-dimensional
gases, dynamical systems, ergodic theory, irrational rotations.
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