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Résumé

Ces derniers jours, de grandes quantités de données sont générées par
les applications en temps réel. Ces quantités de données appelées flux
de données ne peuvent pas être traitées comme des données classiques
car nous ne pouvons pas stocker ou traiter cette quantité de données.
L’exploration de flux est le processus qui consiste à trouver une structure
complexe dans un grand volume de données où les données évoluent et
arrivent dans un flux non limité. Un flux de données est une séquence de
données continues qui impose une restriction de passage unique. L’accès
aléatoire aux données n’est pas possible, et il est peu pratique de stocker
toutes les données qui arrivent. Dans ce cas, nous stockons des carac-
téristiques ou des synopsis de clusters qui comprennent généralement des
statistiques descriptives pour un cluster. Dans de nombreux cas, les al-
gorithmes de flux de données doivent respecter des contraintes d’espace
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et de temps. Les données arrivant dans les flux contiennent souvent du
bruit et des valeurs aberrantes. Ainsi, le clustering de flux de données
doit détecter, distinguer et filtrer ces données avant la tâche de clustering.
Le présent travail porte sur la modélisation de données à haute dimension
dans un cadre de flux de données, en utilisant le Subspace Clustering pour
découvrir des clusters intégrés dans différents sous-espaces. Nous avons
également utilisé le cadre multi-objectif pour faire face aux variations des
caractéristiques des données. Nous avons présenté différentes techniques
basées sur le subspace clustering, le Multi-Objective clustering combiné
avec des techniques d’analyse de flux pour répondre aux problèmes men-
tionnés précédemment.
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1General Introduction

1.1 Problem and Context

The French philosopher Michel Foucault in his book "Les mots et les
choses: Une archéologie des sciences humaines" [Foucault, 1966] affirms
that the human representation of the world, the "fundamentals codes of
a culture," establish a "system of elements," a kind of set of rules that
allows individuals to make sense of the world by finding similarities and
differences between elements according to some pattern.

Recently, the development of the information society has led to the
acquisition and management of extensive collections of data described in
high dimensional spaces. Significant efforts have been made to develop
automatic tools, such as clustering, that could help find some order to
these datasets and better grasp the complexity they convey.

The fundamental principles of the clustering algorithms are reminis-
cent of the ideas of Foucault: Clustering aims to partition a set of objects
into clusters such that :

• Objects, in the same cluster, must be similar as much as possible

• Objects, in the different clusters, must be different as much as possi-
ble

However, in recent days, large amounts of data are generated by appli-
cations in real-time. Figure (1.1) shows the amount of mobile data traffic
around the world in a period of 10 years. We notice how the amount of
data grows exponentially especially after 2019 with the appearance of 5G.

This amounts of data called stream data cannot be processed like clas-
sic data since we can not store or process this amount of data. Stream
mining is the process of finding a complex structure within a large vol-
ume of data where the data evolves and arrives in an unbounded stream.
A data stream is a sequence of continuous data that imposes a single pass
restriction. Random access to the data is not feasible, and it is imprac-
tical to store all the arriving data. In this case, we store cluster features
or synopses that typically include descriptive statistics for a cluster. In
many cases, data stream algorithms have to observe space and time con-
straints. Data arriving in streams often contain noise and outliers. Thus,
data stream clustering should detect, distinguish, and filter this data be-
fore the clustering task.
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Chapter 1. General Introduction

Figure 1.1 – Global mobile data traffic (EB per month).

1.2 Challenges

In CERN, the European Organization for Nuclear Research, Experiments
are generating an entire petabyte (106 GB) of data every second as particles
fired around the Large Hadron Collider1. « We don’t store all data as that
would be impractical. Instead from the collisions, we run, we only keep a few
pieces that are of interest, the rare events that occur, which our filters spot and
send over the network »2. In other terms, CERN stores 25PB of data every
year; this amount of data should be analyzed to find patterns that can help
to understand the structure and make-up of the universe. Even though
memory capacity has quadrupeled every 3 years since its creation, the
data grows faster than any memory capacity we have (1.1) and it causes
many issues, we present some of them in the following:

• Data velocity: Data stream evolves and arrives in an unbounded
stream. A data stream is a sequence of continuous data that imposes
a single pass restriction. Random access to the data is not feasible.

• High-dimensional data streams: recent advances in data acquisi-
tion do not only imply that the objects may be described in high-
dimensional spaces. This leads to traditional clustering techniques
to struggle when dealing with high dimensional datasets.

• Processing time: Data stream evolves with high speed. The incoming
data stream should be processed on-the-fly.

• Memory restrictions: As mentioned above, data is growing faster
than our capacity to store it. Storing these large amounts of data is
not possible.

• Multi-view datasets: Data can be collected from multiple sources or
multiple facets. In such setting, each point is associated with much
richer information

1https://home.cern/science/computing
2https://www.computing.co.uk/?v3
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1.3 Contributions

We presented different techniques based on subspace clustering, Multi-
Objective clustering combined with stream analysis techniques to respond
to the previously mentioned issues. Our contributions are resumed below:

• We presented an extended state of the art on clustering static data
and stream data. We provided comparisons between clustering cat-
egories and clustering algorithms. We also presented the techniques
and concepts of clustering classic and stream data and the main
datasets, frameworks, open-source resources, etc.

• We presented a subspace clustering method with two models of fea-
ture and block weighting (global and local), an efficient method for
subspace clustering of an evolving data stream in an online manner.
We used the weights obtained as scores to conduct more experi-
ments. The subspace clustering method with the Global Weighting
Model was used as a dimensionality reduction method. We proved
the impact on the order of the data point and the windows’ overlap-
ping to the clustering quality.

• We presented a new clustering data stream method based on a multi-
objective algorithm called MOC-Stream that employs two objective
functions to find arbitrary shaped clusters and enhance the cluster-
ing quality. MOC-Stream uses a two-phase process: 1) online phase:
creating several clustering solutions based on different algorithms
and genetic operators 2) offline phase: construction of an optimal
partition from the discovered clusters. We applied our method on
large stream datasets and compared it to a different stream cluster-
ing algorithm.

• We presented an improvement for the previous method. The new
method optimizes the computation time by using idle times to im-
prove the solution. It also optimizes memory allocation by introduc-
ing a new tree aggregation approach for the Ant-Tree algorithm to
store only a synopsis of the data instead of all the dataset.

• Finally, we presented a new method of extracting and clustering rel-
evant patches from histopathological images. It combines subspace
clustering and multi-objective techniques to overcome the problems
of non-relevant patches. Our approach aims to select the relevant
patches for classification instead of using the whole image or all se-
lected patches using the sliding window method. We presented two
versions of the method. The first one deals with numerical datasets,
and was tested its performance on synthetic datasets. The second
version deal with RGB datasets that we adapted to be compatible
with the clustering. This version allows us to extract the relevant
patches while grouping them into similar clusters.

3
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1.4 Outline

The present work is concerned with the modelling of high-dimensional
data within a data streaming framework, using Subspace clustering to
discover clusters embedded in different subspaces. We also used the Multi-
objective framework to cope with the variations in the data characteristics.
The subsequent sections are organised as follows:

1. in Chapter 3: we introduce the main clustering categories and com-
pare between them. We also give an overview of the main algorithm
of each category and another comparison between these algorithms.

2. in Chapter 4 we discuss the clustering of stream data and its main
properties and techniques. We outline an overview of the cluster-
ing stream data methods and provide a comparison between these
methods.

3. in Chapter 5 we present our first approach, S2G-Stream with two
models of feature and block weighting (Global and Local), an effi-
cient method for subspace clustering of evolving data stream in an
online manner.

4. in Chapter 6, our second approach is presented with two variants
MOC and IMOC. These approaches employ two objective functions
to find clusters of arbitrary shaped clusters and enhance the cluster-
ing quality.

5. in Chapter 7 we discuss our third approach SMO-HPS. The method
combines subspace clustering and multi-objective techniques to ex-
tract relevant patches from histopathological images and cluster
them.

4



2Introduction Générale

Cette introduction est la version en français de l’introduction précédente.

2.1 Problème et Contexte

Le philosophe français Michel Foucault, dans son ouvrage "Les mots et les
choses : Une archéologie des sciences humaines" [Foucault, 1966] affirme
que la représentation humaine du monde, les "codes fondamentaux d’une
culture", établissent un "système d’éléments", une sorte d’ensemble de
règles qui permet aux individus de donner un sens au monde en trouvant
des similitudes et des différences entre les éléments selon un certain pat-
tern.

Récemment, le développement de la société de l’information a conduit
à l’acquisition et à la gestion de vastes collections de données décrites
dans des espaces à haute dimension. Des efforts importants ont été dé-
ployés pour développer des outils automatiques, tels que le clustering,
qui pourraient aider à mettre de l’ordre dans ces ensembles de données et
à mieux appréhender la complexité qu’ils représentent.

Les principes fondamentaux des algorithmes de clustering rappellent
les idées de Foucault : Le clustering vise à partitionner un ensemble
d’objets en clusters tels que :

• Les objets, dans le même cluster, doivent être similaires autant que
possible.

• Les objets, dans les différents clusters, doivent être différents autant
que possible

Cependant, ces derniers jours, de grandes quantités de données sont
générées par les applications en temps réel. La figure (1.1) montre le vol-
ume du trafic de données mobiles dans le monde sur une période de
10 ans. Nous remarquons comment la quantité de données augmente de
manière exponentielle surtout après 2019 avec l’apparition de la 5G. Ces
quantités de données appelées flux de données ne peuvent pas être traitées
comme des données classiques car nous ne pouvons pas stocker ou traiter
cette quantité de données. L’exploration de flux est le processus qui con-
siste à trouver une structure complexe dans un grand volume de données
où les données évoluent et arrivent dans un flux non limité. Un flux de
données est une séquence de données continues qui impose une restric-
tion de passage unique. L’accès aléatoire aux données n’est pas possible, et
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il est peu pratique de stocker toutes les données qui arrivent. Dans ce cas,
nous stockons des caractéristiques ou des synopsis de clusters qui com-
prennent généralement des statistiques descriptives pour un cluster. Dans
de nombreux cas, les algorithmes de flux de données doivent respecter
des contraintes d’espace et de temps. Les données arrivant dans les flux
contiennent souvent du bruit et des valeurs aberrantes. Ainsi, le clustering
de flux de données doit détecter, distinguer et filtrer ces données avant la
tâche de clustering.

Figure 2.1 – Trafic mondial de données mobiles (EB par mois)

2.2 Challenges

Au CERN, l’Organisation européenne pour la recherche nucléaire, des ex-
périences génèrent un pétaoctet entier (106 GB) de données chaque sec-
onde, alors que des particules sont tirées autour du Grand collisionneur de
hadrons1. " Nous ne stockons pas toutes les données car cela serait peu pratique.
Au lieu de cela, à partir des collisions que nous exécutons, nous ne conservons
que quelques éléments intéressants, les événements rares qui se produisent, que
nos filtres repèrent et envoient sur le réseau"2. En d’autres termes, le CERN
stocke 25PB de données chaque année ; cette quantité de données doit
être analysée pour trouver des modèles qui peuvent aider à comprendre
la structure et la composition de l’univers. Bien que la capacité de la mé-
moire ait quadruplé tous les 3 ans depuis sa création, les données croissent
plus rapidement que toute capacité de mémoire dont nous disposons (2.1)
et cela pose de nombreux problèmes, nous en présentons quelques-uns
dans ce qui suit :

• Vitesse des données : Le flux de données évolue et arrive dans un
flux non limité. Un flux de données est une séquence de données
continues qui impose une restriction de passage unique. L’accès aléa-
toire aux données n’est pas possible.

• Flux de données à haute dimension: les progrès récents en matière
d’acquisition de données n’impliquent pas seulement que les ob-

1https://home.cern/science/computing
2https://www.computing.co.uk/?v3
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jets puissent être décrits dans des espaces à haute dimension. Cela
conduit les techniques traditionnelles de clustering à être moins per-
formantes lorsqu’elles traitent des ensembles de données à haute
dimension.

• Temps de traitement des données : Le flux de données évolue à
grande vitesse. Le flux de données entrant doit être traité à la volée.

• Restrictions de mémoire : Comme mentionné ci-dessus, les données
augmentent plus vite que notre capacité à les stocker. Le stockage de
ces grandes quantités de données n’est pas possible.

• Ensembles de données multi-vues : Les données peuvent être collec-
tées à partir de plusieurs sources ou de plusieurs facettes. Dans un
tel contexte, chaque point est associé à des informations beaucoup
plus riches.

2.3 Contributions

Nous avons présenté différentes techniques basées sur le subspace cluster-
ing, le Multi-Objective clustering combiné avec des techniques d’analyse
de flux pour répondre aux problèmes mentionnés précédemment. Nos
contributions sont résumées ci-dessous :

• Nous avons présenté un état de l’art étendu sur le clustering de
données statiques et de données de flux. Nous avons fourni des
comparaisons entre les catégories de clustering et les algorithmes
de clustering. Nous avons également présenté les techniques et les
concepts de clustering de données classiques et de données de flux,
ainsi que les principaux jeux de données, frameworks, ressources
open-source, etc.

• Nous avons présenté une méthode de subspace clustering avec deux
modèles de pondération des attributs et des blocs (global et lo-
cal), une méthode efficace pour le subspace clustering d’un flux de
données évolutif de manière en ligne. Nous avons utilisé les poids
obtenus comme scores pour mener d’autres expériences. La méth-
ode de subspace clustering avec le modèle de pondération globale
a été utilisée comme méthode de réduction de la dimensionnalité.
Nous avons démontré l’impact de l’ordre des points de données et
du chevauchement des fenêtres sur la qualité du regroupement.

• Nous avons présenté une nouvelle méthode de clustering de flux de
données basée sur un algorithme multi-objectif appelé MOC-Stream
qui utilise deux fonctions objectives pour trouver des clusters de
forme arbitraire et améliorer la qualité du clustering. MOC-Stream
utilise un processus en deux phases : 1) phase en ligne : création de
plusieurs solutions de clustering basées sur différents algorithmes
et opérateurs génétiques 2) phase hors ligne : construction d’une
partition optimale à partir des clusters découverts. Nous avons ap-
pliqué notre méthode sur de grands ensembles de données de flux
et l’avons comparée à un autre algorithme de clustering de flux.

7
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• Nous avons présenté une amélioration de la méthode précédente.
La nouvelle méthode optimise le temps de calcul en utilisant les
temps morts pour améliorer la solution. Elle optimise également
l’allocation de mémoire en introduisant une nouvelle approche
d’agrégation d’arbres pour l’algorithme Ant-Tree afin de ne stocker
qu’un synopsis des données au lieu de l’ensemble des données.

• Enfin, nous avons présenté une nouvelle méthode d’extraction
et de regroupement de patchs pertinents à partir d’images
histopathologiques. Cette méthode combine le subspace cluster-
ing e et des techniques multi-objectifs pour surmonter le problème
des taches non pertinentes. Notre approche vise à sélectionner les
taches pertinentes pour la classification au lieu d’utiliser l’image en-
tière ou toutes les régions sélectionnées en utilisant la méthode de la
fenêtre glissante. Nous avons présenté deux versions de la méthode.
La première version traite des ensembles de données numériques,
et ses performances ont été testées sur des ensembles de données
synthétiques. La seconde version traite de jeux de données RVB
que nous avons adaptés pour être compatibles avec le clustering.
Cette version nous permet d’extraire les patchs pertinents tout en
les regroupant dans des clusters similaires.

2.4 Plan de la Thèse

Le présent travail porte sur la modélisation de données à haute dimen-
sion dans un cadre de flux de données, en utilisant le Subspace Clustering
pour découvrir des clusters intégrés dans différents sous-espaces. Nous
avons également utilisé le cadre multi-objectif pour faire face aux varia-
tions des caractéristiques des données. Les sections suivantes sont organ-
isées comme suit :

1. en Chapitre 3 : nous présentons les principales catégories de cluster-
ing et les comparons entre elles. Nous donnons également un aperçu
du principal algorithme de chaque catégorie et une autre compara-
ison entre ces algorithmes. Nous introduisons quelques techniques
et concepts de clustering et présentons quelques bibliothèques de
clustering open source.

2. en Chapitre 4 nous abordons le clustering des données de flux et ses
principales propriétés et techniques. Nous donnons un aperçu des
méthodes de clustering de données de flux et fournissons une com-
paraison entre ces méthodes. Enfin, nous présentons des ensembles
de données, des cadres, des référentiels et des défis ouverts dans le
domaine du clustering de données de flux.

3. en Chapitre 5 nous présentons notre première approche, S2G-Stream
avec deux modèles de pondération des caractéristiques et des blocs
(Global et Local), une méthode efficace pour le clustering de sous-
espaces de flux de données évolutifs de manière en ligne.

4. en Chapitre 6, notre deuxième approche est présentée avec deux
variantes MOC et IMOC. Ces approches utilisent deux fonctions ob-
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jectives pour trouver des clusters de forme arbitraire et améliorer la
qualité du clustering.

5. dans Chapitre 7, nous abordons notre troisième approche SMO-HPS.
Cette méthode combine le clustering du sous-espace et des tech-
niques multi-objectifs pour extraire les patchs pertinents des images
histopathologiques et les regrouper.
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3Clustering Algorithms and

Techniques

In this chapter we introduce the main clustering categories and compare
between them. We also give an overview of the main algorithm of each
category and present the merits and limitations of each one of them.

Introduction

Data clustering is a data analysis method that mines essential information
from the dataset by grouping data into several groups called Clusters. In
clustering, similar data points are grouped into the same cluster, while
non-similar data points are put into different clusters. There are two main
objectives in data clustering. The first objective is minimizing the dissim-
ilarity within the cluster. In centroid-based clustering, this similarity is
measured based on the distance between each data point and its cluster’s
center. It is usually calculated using the sum of squared error within the
cluster. On the other hand, the dissimilarity between two clusters is cal-
culated using the sum of squared error between clusters. According to
[Xu and Wunsch, 2005], the standard process of clustering can be divided
into the following several steps: (1) Feature extraction or selection: extract
and select the most representative features from the original data set; (2)
Clustering algorithm design: choose the right clustering algorithm for this
problem; (3) Result evaluation: evaluate and validate the clustering re-
sults; (4) Result explanation: give a practical explanation for the clustering
results; Figure 3.1 illustrates the clustering process.

3.1 Distances and Similarity Measures

Similarity and dissimilarity measures are crucial when constructing clus-
tering algorithms. The similarity represents the within-cluster distances,
while the dissimilarity is usually the distance between clusters. The goal
of any clustering is to minimize the dissimilarity and maximize the simi-
larity. We summarize the most used distances for numerical and for cate-
gorical data [Xu and Tian, 2015] in the following.

Minkowski distance

The Minkowski distance is a similarity measure for numerical data. It can
be considered as a generalization of both the Euclidean distance and the

11
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Figure 3.1 – Clustering main steps

Manhattan distance. The Minkowski distance is calculated as follows:(
d

∑
k=1
|xik − xjk|n

)1/n

When n = 1 the distance is equal to the Manhattan distance, when n = 2 it
is equal to the Euclidean distance. Finally, when n = ∞

Cosine distance

The Cosine distance is a similarity measure used for Categorical data. It is
mosly used in text mining. The Cosine distance is calculated as follows:

Cos(α) =
xi.xj

‖xi‖
∥∥xj
∥∥

Pearson correlation distance

The Pearson correlation distance is a similarity measure based on the lin-
ear correlation for numerical data. It is calculated as follows:

1−
cov(xi, xj)

σ(xi)σ(xj))
,

where cov is the covariance and σ is the standard deviation.

Mahalanobis distance

The Mahalanobis distance is a similarity measure for numerical data. It is
calculated as follows: √

(xi − xj)S−1(xi − xj)),

where S is the covariance matrix inside a cluster.
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Jaccard distance

The Jaccard distance is a dissimilarity measure for Categorical data. It
measures similarity between finite sample sets. It is defined as the size of
the intersection divided by the size of the union of the sample sets. It is
calculated as follows:

J(X, Y) =
X ∩Y
X ∪Y

Hamming distance

The Hamming distance is a dissimilarity measure for Categorical data. It
represents the minimum number
of substitutions needed to
change one data point into another. It is calculated as follows:

d(xi, xj) =
n

∑
k=1

(xik
⊕

xjk)

3.2 Validity Measures

Quality or Validation Measures are very important to validate a clustering
solution and measure its quality. Several measures are presented in the
literature. These measures are grouped into two main families, internal
and external measures. We present a definition for those two classes and
some well-used examples in the next sections.

3.2.1 Internal Validity Measures

Based on the information intrinsic to the data alone. It does not require
a-priori knowledge of the data. It is suitable for unsupervised learning
as we don’t have labeled datasets. We list in the following some of these
validity measures.

Silhouette Index SI

The Silhouette index [Rousseeuw, 1987] compute the compactness and
the separateness of clusters. For a data point xi assigned to cluster Ci, the
Silhouette index is calculated as follow:

SI(i) =
(b(i)− a(i))

Max(b(i)− a(i))
(3.1)

Where a(i) is the average distance between xi and all the data points as-
signed to cluster Ci. b(i) is the minimum average between xi and the data
points assigned to cluster Cj where j = 1, .., K; j 6= i.

Mean Square Error MSE

MSE calculates the compactness of a cluster, its calculated as follows:

MSE =
1
N

K

∑
k=1

∑
xi∈Ci

d(xi, Ci) (3.2)
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Where K is the number of clusters, d(xi, Ci) is the distance between data
point xi and cluster Ci.

Dunn Index

Dunn index [Dunn, 1973] is the ratio between the maximum distance be-
tween two points clustered together and the minimum distance between
two points clustered separately. Its calculated as follows:

Dunni = min(
d(Ci, Cj)

max(d(xi, Cj))
) (3.3)

Where d(Ci, Cj) is the distance between cluster Ci and cluster Cj, d(xi, Cj)
is the distance between data point xi and cluster Cj and j = 1, .., K; j 6= i. K
is the number of clusters.

Davies Bouldin

Davies Bouldin index [Davies and Bouldin, 1979] helps identify sets of
clusters that are compact and well separated. The Davies-Bouldin index is
calculated as:

DBI =
1
K

K

∑
i=1

maxi,j=1,..,K;j 6=i
d(xi, Ci) + d(xj, Cj)

d(Ci, Cj)
(3.4)

Where d(xi, Ci) is the distance between the data point xi and its cluster Ci
and K is the number of clusters.

BIC Index

The Bayesian information criterion BIC [Raftery, 1986] is an index used to
avoid overfitting, it is calculated as follows:

BIC = −ln(L) + vln(n) (3.5)

Where n is the number of data points, L is the likelihood of the parameters
to generate the data in the model, and v is the number of free parameters
in the Gaussian model.

3.2.2 External Validity Measures

Based on previous knowledge about data. It uses a labeled dataset to vali-
date the predicted labels. This type of validity measure is mostly used for
supervised learning.
The comparison between two clustering solutions C and C

′
can be made

by a contingency matrix, where nks represents the number of points as-
signed to both clusters k and l of partitions C and C

′
:
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Y1 Y2 ... Ys Sums
X1 n11 n12 ... n1s a1
X2 n21 n22 ... n2s a2
... ... ... ... ... ...
Xr nr1 nr2 ... nrs ar

Sums b1 b2 ... bs

Table 3.1 – Contingency matrix between two partitions C and C
′

of r and s clusters
respectively.

The contingency matrix is used to define the following quality mea-
sures:

Normalized Mutual Information NMI

NMI [Strehl and Ghosh, 2002] provides a measure that is independent
of the number of clusters as compared to purity. It reaches its maximum
value of 1 only when the two sets of labels have a perfect one-to-one cor-
respondence. The NMI of a clustering solution C is calculated as follows
:

NMI(Y, C) =
2× I(Y; C)

H(Y) + H(C)
(3.6)

Where Y are true labels and C are labels predicted by the algorithm.
I(Y; C) = H(Y) − H(Y|C) and H(C) is the entropy of the partition cal-
culated as follow.

K

∑
k=1

nk

N
log(nkN) (3.7)

Where nk is the number of points assigned to the partition k.

Adjusted RAND index ARI

ARI index [Hubert and Arabie, 1985] is a measure of agreement between
two partitions: one given by the clustering process and the other defined
by external criteria. The Adjusted RAND index is calculated as follows:

ARAND =
∑ij (

nij
2 )− [∑i (

ai
2)∑j (

bj
2)]/(

n
2)

1
2 [∑i (

ai
2) + ∑j (

bj
2)]− [∑i (

ai
2)∑j (

bj
2)]/(

n
2)

(3.8)

Precision

The precision index indicates the probability that two data points are clus-
tered together in partition C

′
if they are clustered together in partition C

:
precision(C, C

′
) =

n11

n11 + n01
(3.9)

Recall

The recall index indicates the probability that two data points are clustered
together in partition C

′
if they are not clustered together in partition C :

recall(C, C
′
) =

n11

n11 + n10
(3.10)
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F-measure

F-measure is the harmonic mean of indices precision and recall. It is cal-
culated as follows:

F (C, C
′
) =

precision(C, C
′
)× recall(C, C

′
)

precision(C, C′) + recall(C, C′)
(3.11)

Purity

The purity of a partition is the quantity of the the consistency of one
partition with respect to another. It is calculated as follows:

purity(C, C
′
) =

1
N

K

∑
k=1

argmaxCl (nkl) (3.12)

3.3 Classic Clustering Algorithms

We can classify clustering into many categories based on how the clusters
are retrieved. We list some of the main categories in the following sections:

3.3.1 Partitioning Clustering

A partitioning method divides the dataset into several partitions. Each
partition is considered as a cluster and the division criterion is the dissim-
ilarity measure, e.g., Euclidean distance, K-Means [MacQueen, 1967] is the
most famous partitioning clustering algorithm. The main idea of K-means
is to represent a cluster by its center. The initial K, which represents the
number of clusters, is randomly initialized. K-means iteratively assigns
each point to the cluster with the closest center. Then it recalculate the
centers, the iterative process will be continued until some criteria for con-
vergence is met or after a number of iterations t. The K-means algorithm
is presented in Algorithm (1)

Algorithm 1 K-means
input : K and a set of points N
output : K Clusters of points and their centers
while convergence criterion not met do

- (re)assign each point to its closest center based on the euclidean distance ;
- Compute new centers as the mean of the new points assigned to the
cluster ;

K-medoids [Kaufman and Rousseeuw, 1990] is an improvement of K-
means to deal with discrete data, which takes the data point, most near
the center of data points, as the centroid of the cluster. other algorithms
for K-medoids clustering have been developed. [Kaufman and Rousseeuw,
1990] proposed an algorithm called CLARA, which applies the K-medoids
algorithm to sampled objects instead of all objects. The performance of
CLARA drops rapidly below an acceptable level with increasing number
of clusters. [Lucasius et al., 1993] proposed a new approach of K-medoid
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clustering using a genetic algorithm, whose performance is reported as
better than CLARA but computational burden increases as the number of
clusters increases.

CLARANS (Clustering Large Applications based upon RANdomized
Search) [Ng and Han, 2002]: It presents a trade-off between the cost and
the effectiveness of using samples to obtain clustering. The clustering pro-
cess can be given as looking for a graph where every node is a poten-
tial solution, a set of k randomly selected medoids. For each medoid x,
CLARANS tries to find another object y that can replace x while improv-
ing a criterion. The process is repeated till the final result is obtained.

3.3.2 Hierarchical Clustering

This method creates a hierarchical relationship among data points in a
tree-like structure called a dendrogram, and there are two types of hierar-
chical methods :

• Agglomerative Methods(AGNES) this method uses a dissimilarity
measure to group the nodes with low dissimilarity two by two, this
can lead to all nodes be in the same group.

• Divisive Methods (DIANA) is the inverse of AGNES, begins with N
points and at each iteration it chooses a segment to divide.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
[Zhang et al., 1996] is a hierarchical clustering algorithm; it was originally
designed to handle classic data. However, it has also been used to cluster-
ing data streams due to its suitability for use with high dimensional data.
It constructs a tree of clustering features called CF-tree. The CF-Tree has
two user-defined parameters: branching factor B and the diameter T; B
defines the maximum entries that a node can contain; T is a threshold that
a node must not violate when absorbing a new entry. Each non-leaf node
contains at most B entries of the form [CFi, childi] where i = 1, ..., B. A leaf
node represents a cluster made up of all the sub-clusters represented by
its entries; it contains at most L entries of the form [CFi] where i = 1, ..., L.
In addition, every leaf node has two pointers, prev and next, which are
used to chain all leaf nodes together. Figure (3.2) shows an example of a
CF-tree.

Each entry in the CF-tree represents a cluster of objects and is charac-
terized by a 3-tuple: (N, LS, SS), where N is the number of objects in the
cluster and LS, SS are defined in the following:

LS = ∑
Pi∈N

Pi

SS = ∑
Pi∈N
| Pi |2

when a new data point comes, this statistics are updated as follow:

Ni = Ni + 1
LSi = LSi + x

SSi = SSi + x2
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Figure 3.2 – BIRCH’s CF-tree example

Additivity theorem allows us to merge sub-clusters incrementally and
consistently .

CF1 + CF2 = (N1 + N2, LS1 + LS2, SS1 + SS2) (3.13)

To insert a new data point, an appropriate leaf needs to be identified by
starting from the top of the tree and recursively descend by choosing the
closest child node according to a proper metric. After inserting an entry
into a leaf, the CF information for each non-leaf entry on the leaf path is
updated. When a node is split, a new non-leaf entry is inserted into the
parent node and pointed to the newly formed leaf. According to B, the
parent doesn’t have enough room, therefore it will be split as well, and so
on up to the root.

CURE [Guha et al., 1998] is a hierarchical clustering algorithm. It uses
random sampling (4.2) to produce samples that will be clustered sepa-
rately; those clusters are integrated into the final solution. This algorithm
is suitable for large-scale clustering. ROCK [Guha et al., 2000] is an im-
provement of CURE to deal with categorical data, which takes into con-
sideration the effect on the similarity from the data around the cluster.

3.3.3 Density-Based Clustering

Density-based algorithms use density functions as similarity measures;
the dense areas are considered clusters, separated by low-density regions
(outliers). This kind of algorithm presents several advantages, such as the
ability to treat noise or also the ability to detect clusters of arbitrary shapes.
DBSCAN (density-based spatial clustering of applications with noise) [Es-
ter et al., 1996] is the most used density-based clustering algorithm. It
considers the points with the most neighbors as centers of the clusters
(the regions with high density are considered clusters). At the same time,
points with fewer neighbors are considered noise. The DBSCAN algorithm
introduces two concepts of Clustering: Reachability and Connectivity.
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• Reachability: a point is reachable from another if the distance be-
tween them is inferior to a threshold ε.

• Connectivity: if two points p and q are connected they belong to
the same cluster. If points p and r are connected and r and q are
connected, then p and q are also connected (transitivity).

To apply these concepts, DBSCAN introduces two parameters: MinPts
and ε.

• MinPts: the minimum of points that a region should have to be con-
sidered dense.

• Threshold ε: a threshold to determine if a point belongs to another
point’s neighborhood.

Based on the concepts described above, DBSCAN presents three types of
points:

• Core point: it has at least MinPts points within a distance of ε.

• Border point: it is not a core point, but it belongs to at least one
cluster. That means that it lies within a distance ε from a core point.

• Noise point: it’s a point that is not a core point nor a border point.

Figure (3.3) illustrates DBSCAN’s point types.
The DBSCAN algorithm proceed by taking point randomly from the

Figure 3.3 – DBSCAN point types

dataset until all points are picked. Then for each point it determines if
it’s a Core, Border or Noise point based on the parameters ε and MinPts.
The core point are considered centers of each cluster. The clusters are then
expanded by recursively repeating the neighborhood calculation for each
neighboring point. Algorithm (2) present the DBSCAN algorithm. The
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main problems of DBSCAN are its sensitivity to varying density. It is also
not suitable with high dimensional data.

Algorithm 2 DBSCAN
input : ε, MinPts and a set of points N
output : Clusters of points and their centers
while there is a non processed point in the dataset do

- Randomly select a non processed point p ;
- Compute the distance between this point and all the other points in the
dataset and retrieve the points within a distance ε ;
- If p is a Core point a cluster is formed ;
- If p is a Border point it will be marked as member of a cluster ;
- If p is not a Border nor a Core point, it is considered Noise point ;

OPTICS [Ankerst et al., 1999] is an improvement of DBSCAN, and
it overcomes the DBSCAN’s shortcoming that being sensitive to varying
density by introducing two parameters: the Core Distance: which is the
minimum value of radius required to classify a given point as a core point.
It introduces the Reachability which is the distance between a point p and
q, which is the maximum of the Core Distance of p and the Euclidean
Distance(or some other distance metric) between p and q. Note that The
Reachability Distance is not defined if q is not a Core point.

3.3.4 Grid-Based Clustering

Grid-Based Clustering Methods change the data space into several cells
that form a grid structure; this algorithm is designed for spatial data. The
data points are mapped into the cells. The cells are then merged based on
their density. The main algorithms of this kind of clustering are STING
[Wang et al., 1997] and CLIQUE [Agrawal et al., 1998a]. STING (Statisti-
cal Information Grid) is used for parallel processing. It divides the data
space into many rectangular units by constructing the hierarchical struc-
ture. The data within different structure levels are clustered, respectively.
The method determines a layer to begin with. Each cell of this layer cal-
culates the confidence interval (or estimated range) of the probability that
this cell is relevant to the query. From the interval calculated above, it la-
bels the cell as relevant or not relevant. If this is the bottom layer, then it
ends the process. Otherwise, it goes down the hierarchy structure by one
level and repeats the steps. Figure (3.4) illustrates the different layers of
the grid in the algorithm STING.
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Figure 3.4 – GRID layers in STING algorithm

WaveCluster [Sheikholeslami et al., 1998] is a grid clustering algorithm
that applies wavelet transform on the spatial data feature space. This helps
detect arbitrary shape clusters at different scales. WaveCluster is insensi-
tive to the order of input data to be processed. It is also not affected by the
outliers and can handle them properly.

3.3.5 Model-Based Clustering

The basic idea is to select a particular model for each cluster and find the
best fitting for that model. COBWEB [Fisher, 1987] is the most known
model-based clustering algorithm; it constructs a tree-like hierarchy of
data based on a category function. Each node of the tree keeps a notion
and has a probabilistic description of that notion, which resumes the ob-
jects classified under the nodes. To construct the hierarchy, COBWEB sorts
each point into its tree, and at each node, it considers four operations to in-
corporate the new example into its tree [McKusick and Thompson, 1990]:

• Merging Two Nodes: applied when the hierarchy is overly branched,
and combining two classes provides a good concept to which to clas-
sify the incoming instance.

• Splitting a node: applied when the hierarchy contains a node that is
too general and, therefore, less useful for classification and predic-
tion.

• Inserting a new node: an instance is added if it fits into an existing
node well. This operator integrates the instance into one of the child
nodes. If this child node is not a singleton (i.e., it describes more
than one instance), COBWEB updates the conditional probabilities
for the node and each of the attribute values.

• Creating a node: applied when an instance has very different charac-
teristics from any existing concept at the current level, as determined
by its evaluation function. This operator places the instance in a cat-
egory by itself, a sibling of the existing concept nodes.
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Figure (3.5) illustrates the tree operations. Once COBWEB has constructed
a tree, it can be used to return the clustering of the points at varying lev-
els of aggregation. The main advantage of the COBWEB algorithm is the
capacity to detect noise and missing values. Self Organizing Maps [Koho-

Figure 3.5 – COBWEB’s tree operations

nen, 1998] is another well-known model-based clustering algorithm. The
core idea of SOM is to map the input space of high dimension into output
space of low dimension called topological map on the assumption that
there exists topology in the input data. In this map, each class is repre-
sented by a neuron, which is characteristic by a referent vector(prototype);
SOM uses a neighborhood function to preserve the input space’s topolog-
ical properties.
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Figure 3.6 – Example of data projection in SOM algorithm. wij represents the weight of
point xi in the cell j. X and Y are the dimensions of the map.

Growing Neural Gas is a variant of SOM [Fritzke, 1995]. It is an incre-
mental clustering algorithm. Given some input distribution, GNG incre-
mentally creates a graph of nodes. Each node in the graph represents a
cluster prototype and has a position in the input distribution. GNG can be
used for finding topological structures that better represent the structure
of the input distribution. GNG is an adaptive algorithm in the sense that if
the input distribution slowly changes over time, GNG can adapt to move
the nodes to cover the new distribution.

Starting with a random two nodes, the algorithm constructs a graph
in which nodes are considered neighbors if an edge connects them. For
each point x, an edge is inserted between the two closest nodes. The goal
of GNG is to minimize the quantization error; therefore, the clusters that
present high quantization errors are split into smaller clusters. To do so,
GNG insert a new node between the nodes of the clusters with the highest
error using the following equation:

wnew =
1
2
(w1 + w2) (3.14)

Where wnew is the prototype of the new node. Figure (3.7) illustrates the
graph evolution of GNG algorithm.
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Figure 3.7 – Example of the graph evolution in GNG algorithm.

3.3.6 Ensemble Clustering

These approaches effectively combine the benefits of the other two types of
methods and make it possible to cancel the disadvantages, and The objec-
tive is to use the opinion of several partitions in order to reach a consensus
or a synthesis. These partitions can be obtained by varying clustering al-
gorithms, initial parameters, subsets of data, etc.
Ensemble clustering methods attempt to find the consensus partition sum-
marizing, at best, a given set of partitions. These methods are divided into
two stages, generation and consensus. In the generation phase, several
models are generated using different methods like different algorithms
or different initialization settings. The consensus phase is a function that
takes as input the N results and produces a clustering result. There are two
main consensus functions: co-occurrence of objects and median partition.
The first function calculates how many times an object belongs to a cluster.
A consensus is obtained by voting among the objects. Each object votes for
the cluster to which it must belong. Voting k-means uses different values
of K to generate different models. Then it uses a vote to determine the
consensus. Median partition has been proven to be an NP-hard optimiza-
tion problem. Its purpose is to calculate the similarities between different
models generated then to find the model that maximizes similarity with
all other models.

IDEStream Khan et al. [2016a] has been applied in data streams. It uses
the k-means algorithm at first to group N points in

√
N micro-clusters.

It estimates each incoming characteristic vector’s probability of density
using the degree of dispersion to detect aberrant points. Then it defines the
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cluster number by applying the Charad method and using the Krzanowski
criterion Krzanowski and Lai [1988], then uses a set method to aggregate
the clustering of two-time windows in one, and then the same process is
repeated. The goal is to find the clustering that minimizes the information
variation VI between clusterings. For this purpose, the method uses a
reinforcement learning equation.

SEFCM (Fuzzy C-Means Ensemble Stream) Fathzadeh and Mokhtari
[2013] divides the data stream into b blocks with size b/w and then applies
the set-theorem algorithm to each block to generate k clusters by choosing
initial settings randomly for each partition which guarantees the diversity
of the results. The resulting bk clusters will be grouped into k new clusters.
Then, the method combines the k partitions to come out with an optimal
partition by applying the EFCM algorithm.

UBLA Billot et al. [2008] (Unsupervised Boosting-Like Approach) is an
ensemble method for clustering based on boosting algorithm.it is a four
steps methods :

1. Evaluation: calculates the quality criterion from the membership de-
grees for each point, which will be weighted at the end of this phase.

2. Grouping: a sampling method is used to build ten samples taking
into account the weights already assigned.

3. A co-association matrix is used and updated during the iterations.
The first three steps are repeated.

4. Establish the final score.

3.3.7 Evolutionary Clustering

Evolutionary approaches are inspired by natural evolution. They make use
of evolutionary operators (selection, crossover and mutation) and a popu-
lation of solutions to obtain the globally optimal partition of the data. The
clustering here can be viewed as an optimization problem that finds out
the optimal centroid of the clusters. Each clustering solution is encoded
using an encoding scheme (Section (3.5)), then, a random population of
clustering solutions is set. The algorithm calculates the fitness value for
each solution. For each iteration, the algorithm applies evolutionary op-
erators on the solutions, and recalculate the fitness values. The process is
repeated until there is a convergence of the solutions. The optimal solution
is chosen as the solution with the highest fitness value.

ACOC algorithm is an Ant Colony clustering algorithm [Kao and
Cheng, 2006]. It produces the final solution as a graph d × k, where k
is the pre-defined number of clusters, and d is the number of points.
Each node represents the assignment of a point to a particular cluster.
Figure (3.8) illustrates an example of graph construction in ACOC algo-
rithm. White circles represent non-visited nodes and solid circles represent
visited nodes. A string is used to represent solutions built by ants. Con-
sidering the clustering result of Figure (3.8), the corresponding solution
string is (2, 3, 2, 4, 3). Each ant moves from one node to another, deposits
pheromone on nodes, and constructs a solution in a stepwise way. The
algorithm uses a memory list to prevent a data point from being clustered
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more than once by an ant. When the memory list is full, it means that
the ant completes solution construction. ACOC uses a pheromone ma-
trix (PM) to store pheromone values. The nodes with stronger pheromone
would be more attractive to ants. The assignment function is obtained by
calculating the Euclidean distance between the data point to be grouped
and each cluster center of some ant. Each ant carries a cluster center ma-
trix to store its own cluster centers and updates them right after each
clustering step.

Figure 3.8 – Graph construction in ACOC algorithm

3.3.8 Comparison Between Clustering Methods

Table (3.2) compare between some clustering methods from each category.
The merits and the limitations of each clustering category are presented
in the following.

• Density-Based Clustering: Detect arbitrary shaped clusters, Highly
efficient and Handle Noise. In the other hand, the clustering result is
highly sensitive to the parameters. And the method Does not work
well in multi density data.

• Hierarchical Clustering: Easy to handle any measure and Can de-
termine clusters with arbitrary shape. But is presents an ambiguity
of termination criteria and a high complexity.

• Partitioning Clustering: Easy to implement and present Low time
complexity and high computing efficiency. However, the number of
clusters must be predefined by user and Can not determine clusters
with arbitrary shape.

• Grid-Based Clustering: Detect arbitrary shaped clusters, Handle
noise and have a low time complexity. It is not Adaptable with high
dimensional dataand the clustering result sensitive to the granular-
ity.
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• Model-Based Clustering : Specify the number of clusters automat-
ically based on standard statistics. It can detect outliers. However,
this category of methods have a high time complexity and the clus-
tering result depends on the appropriate choice of the number and
width of the partitions and grid cells.

• Ensemble Clustering: Robust and scalable, it takes advantage of
the used algorithms. However, we need to find the best consensus
method and the methods employed are time consuming.

• Evolutionary Clustering: Easy to implement and Highly efficient.
This methods have a high time complexity and they are not Scalable
and not suitable for high dimensional data.

Category Typical Algorithm Complexity Scalability HDD1 ASC2 NS3

Density DBSCAN O(n× log n) 3 7 3 3

Partitioning K-means O(K× n× iterations) 7 7 7 3

Hierarchical BIRCH O(n) 3 7 7 3

Grid STING O(n) 3 3 3 7

Model COBWEB N/A* 3 7 3 3

Evolutionary ACO-based High 7 7 7 3

1 High Dimensional Data
2 Arbitrary-shaped clusters
2 Noise sensitivity
* N/A: not available
Table 3.2 – Comparison between clustering categories

3.4 Subspace clustering

Subspace clustering discovers clusters embedded in multiple, overlapping
subspaces of high dimensional data. It is an extension of feature selection,
which tries to identify clusters in different subspaces of the same dataset.
As a feature selection, subspace clustering needs a search method and an
evaluation criterion. Also, subspace clustering must somehow restrict the
scope of the evaluation criterion to consider different subspaces for each
distinct cluster. We present a state of the art of the subspace clustering
techniques and algorithms in the next sections.

3.4.1 Search Methods

Subspace clustering consists of finding each class in a subspace composed
of relevant features, and a feature may be suitable for one or more clusters.
More sophisticated heuristics that can be grouped into two categories are
then developed to optimally determine the subspaces associated with the
classes of the classification. Based on the way subspaces are determined,
subspace clustering methods are classified into two main categories: Hard
Subspace Clustering (HSC) and Soft Subspace Clustering (SSC). SSC al-
gorithms perform clustering in high dimensional spaces by assigning a
weight to each feature to measure the contribution of individual features
in the formation of a particular cluster [Deng et al., 2016]. In HSC, all
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Figure 3.9 – Subspace clustering illustration

features contribute equally to the clustering process. Figure (3.10) shows
a classification of subspace clustering algorithms.

Figure 3.10 – Hierarchy of Subspace Clustering Algorithms.

Hard Subspace Clustering HSC

HSC algorithms are divided into bottom-up and top-down search meth-
ods.

Top-down approaches determine the first clustering using all the fea-
tures. A weight associated with each feature is then used in a new phase
of an iterative process to reassign the observations to the classes. The main
difficulty in this category is the determination of the number of clusters
and the number of features forming the subspace associated with a cluster.

Bottom-Up approaches use clustering methods based on a mesh of
the observation space by defining a histogram for each dimension. Then,
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intervals with a density of observations above a threshold set a priori
to denote clusters for each feature. They are starting from 1-dimensional
clusters, which are combined iteratively to form the clusters in the higher
dimensional subspaces [Parsons et al., 2004]. However, these algorithms
can find arbitrary-shaped subspace clusters but fail to scale with the di-
mensions.

Soft Subspace Clustering SSC

SSC (Soft Subspace Clustering) algorithms assign a weight to each dimen-
sion in a clustering process viewed as the degree of contribution of that
dimension in that cluster. After the clustering process, the weights identify
the subspaces of different clusters. The purpose of these algorithms is to
select important features from the whole dataset. From this perspective,
soft subspace clustering can be viewed as multiple feature weighting clus-
tering. SSC methods can be classified into three categories [Deng et al.,
2016]: CSSC, ISSC and XSSC.

Firstly CSSC (Conventional Subspace Clustering) uses a feature
weighting process in a two steps clustering process. First, it uses some
weighting strategies to find subspaces. Then clustering is performed on
the subspace that was obtained (separated feature weighting). Cluster-
ing can also be obtained by performing the two processes simultaneously
(coupled feature weighting) [Deng et al., 2016].

Secondly ISSC (Independent Subspace Clustering) method: each
cluster has its weight vector to form its subspace. This kind of clustering
uses many weighting methods such as fuzzy and entropy weighting.

Finally, XSSC (Extended Subspace Clustering) has been proposed to
enhance the performance of CSSC and ISSC, employing many strategies
to improve the clustering process.

3.4.2 Weighting Models

In Soft Subspace clustering methods, the subspace is determined through
weights as a score of the relevance of the subspace. Therefore, the choice of
a good weighting model is crucial to the clustering process and subspace
determination. We present some of the well-known weighting models in
the following.
· Separated feature weighting In this model, the clustering process is
separated from the subspace identification process. The subspaces are re-
trieved first, and then, the clustering algorithm is applied to these sub-
spaces to get the final clustering.
· Coupled feature weighting On the contrary of the previous model, in
coupled feature weighting, both clustering and subspace processes are
used simultaneously to obtain the final clustering.
· Fuzzy weighting Each data object has a fuzzy membership, which can
be seen as the probabilities that a data object (or feature) belongs to each
one of the existing clusters.
· Entropy weighting Entropy is a measure of uncertainty of a random
variable. The method is motivated by the fact that a subspace with clus-
ters typically has lower entropy than a subspace without clusters.
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· Coevolutionary feature weighting Several evolutionary methods are
employed to produce different populations. These populations cooperate
to elect the best solution: the better the quality of the global result, the
better the individual evaluation. They search for the partition built from
local solutions that minimize a cost function [Gançarski et al., 2008a].

3.4.3 Subspace Clustering Algorithms

Hard Subspace Clustering HSC

HSC algorithms are divided into bottom-up and top-down search meth-
ods [Friedman and Meulman, 2004]. Top-down approaches determine the
first clustering using all the features. A weight associated with each fea-
ture is then used in a new phase of an iterative process to reassign the
observations to the classes. The main difficulty in this category is the de-
termination of the number of clusters and the number of features forming
the subspace associated with a cluster. PROCLUS is a top-down approach
[Aggarwal et al., 1999], which uses three phases (initialization, iteration,
and refinement). In the first step, a greedy algorithm selects a set of poten-
tial medoids. Then a set of dimensions is computed corresponding to each
medoid so that points assigned to the best medoid form a cluster in the
subspace determined by those dimensions. In the end, new dimensions of
each medoid are computed based on the obtained clusters. Then, points
are reassigned to medoids, and outliers are removed.

Bottom-Up approaches use clustering methods based on a mesh of
the observation space by defining a histogram for each dimension. Then,
intervals with a density of observations above a threshold set a priori
to denote clusters for each feature. They are starting from 1-dimensional
clusters, which are combined iteratively to form the clusters in the higher
dimensional subspaces [Parsons et al., 2004]. These algorithms can find
arbitrary-shaped subspace clusters but fail to scale with the dimensions.

CLIQUE [Agrawal et al., 1998b] is a density-based and grid-based sub-
space clustering algorithm. It uses a two-phase model, which makes it
suitable for stream clustering. In the online phase, data points are pro-
jected into a grid. A density-based clustering is used in the offline phase
to produce the final clustering from the dense cells. Figure (3.11) illus-
trates the different clusters detected in other subspace with the CLIQUE
algorithm.
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Figure 3.11 – Subspaces in CLIQUE algorithm

CLIQUE algorithm proceeds in 3 major steps:

1. Identify subspaces that contain clusters :

• Partition the data space and find the number of points that lie
inside each cell of the partition
• Identify the subspaces that contain clusters using the Apriori

principle

2. Identify clusters

• Determine dense units in all subspaces of interests
• Determine connected dense units in all subspaces of interests

3. Generate minimal descriptions for the clusters

• Determine maximal regions that cover a cluster of connected
dense units for each cluster
• Determine minimal cover for each cluster

CLIQUE automatically finds subspaces and high-density clusters in them.
However, As in all grid-based clustering approaches, the quality of the
results crucially depends on the appropriate choice of the partitions and
grid cells’ number and width.

Soft Subspace Clustering SSC

C-k-means (Convex k-means) is a CSSC method that uses a separated
feature weighting [Modha and Spangler, 2003]. It involves two separate
processes: subspace identification and clustering in subspace. It begins by
assigning a set of weights to each data, which is not practical for high di-
mensional data. Another method named W-k-means uses a coupled fea-
ture weighting [Huang et al., 2005], which means that the weights are
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updated adaptively in the clustering process.
AWFCM [Keller and Klawonn, 2000] is an ISSC; it uses fuzzy weighting
and takes into account all features in the clustering task. The feature selec-
tion is carried out during the learning phase providing information about
the influence of selected features.
In [Chan et al., 2004], authors present an XSSC method called IEWKM (Im-
proved Entropy Weighting K-means) by developing a new procedure to
generate the weight for each attribute from each cluster within the frame-
work of the k-means-type algorithm. Coevolutionary SSC [Gançarski et al.,
2008b] introduces a weighting system based on a coevolutionary learning
technique. The coevolutionary algorithm extends the evolutionary meth-
ods to deal with complex problems. It uses several populations; each one
of them is evolved in an environment that depends on the other popu-
lation. The population is combined with its collaborators to form a com-
plete solution, and an objective function is evaluated. Ensemble learning
approaches [Domeniconi and Al-Razgan, 2009] combine the benefits of the
other two types of methods. Its goal is to use the opinion of several parti-
tions to reach a consensus or a synthesis. These partitions can be obtained
by varying clustering algorithms, initial parameters, subsets of data, etc.

Table (3.3) presents a comparison between some subspace clustering
methods.
Table 3.3 – Comparison Between Subspace Clustering Algorithms

Method Category Search
method

Weighting
method

Overlap of
dimen-
sions

Data type

CLIQUE Hard Bottom-Up - 3 Mixed
MAFIA Hard Bottom-Up - 3 Numerical

PROCLUS Hard Top-Down - 7 Numerical

FINDIT Hard Top-Down Dimension
voting 7 Numerical

C-k-means Soft CSSC Separated
FW1

3 Mixed

W-k-means Soft CSSC Coupled FW1 N/A Mixed

FWKM Soft ISSC Fuzzy
weighting 3 Mixed

AWFCM Soft ISSC Fuzzy
weighting N/A Numerical

IEWKM Soft XSSC Entropy
weighting N/A Mixed

CSSC Soft XSSC
Coevolution-

nary
FW1

7 Numerical

Ensemble
learning Soft XSSC - 7 Numerical

1 Feature Weighting
* N/A: not available
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3.5 Multi-Objective Clustering

Clustering algorithms provide a partition of the data based on one cluster
validity measure. However, assuming a homogeneous similarity measure
over the entire data set makes algorithms not robust to variations in
cluster shape, size, dimensionality, and other characteristics [Handl and
Knowles, 2007]. Therefore, it is beneficial to optimize multiple validity in-
dices simultaneously to capture different aspects of the datasets. The goal
of Multi-Objective clustering methods (MOC) [Law et al., 2004] is to derive
significant clusters by applying two or more objective functions. It aims
to optimize tradeoff among multiple objectives under certain constraints
simultaneously. MOC methods use a two-step process: 1) generate various
clustering solutions and store the Pareto-optimal. , 2) construct an optimal
partition based on the Pareto-set solutions. It is different than ensemble
clustering, which operates with similar objective functions. Therefore,
relevant clusters may be influenced by weak ones.

Multiobjective optimization only focuses on a small number of solu-
tions which are not dominated by other solutions. These nondominated
solutions are recorded in Pareto optimal solutions. The goal of the multi-
objective problem is to find a set of solutions as close as possible to the
solution in Pareto optimal solutions and as diverse as possible. We present
the definitions of some definitions in the following.

Definitions:

• Dominated solutions: a solution X is said to dominate a solution Y if
∀j = 1, 2, ..., m, f j(X) ≤ f j(Y), and there exists k ∈ 1, 2, ..., m such that
fk(X) < fk(Y).

• Pareto-optimal solutions: a solution X is called Pareto-optimal if it
is not dominated by any other feasible solutions. The set of non-
dominated solutions is called Pareto-set.

In the past decade, multi-objective evolutionary algorithms have been
heavily used for the clustering problem. However, there has been no ded-
icated effort to review all of these methods. The most prominent effort in
this direction can be found in [Mukhopadhyay et al., 2015], in which many
multi-objective clustering algorithms and techniques were presented.
This chapter presents a thorough survey of the state-of-the-art for a wide
range of multi-objective clustering algorithms and also some MOC con-
cepts and techniques.

Fundamental Concepts

Most of the Multi-Objective clustering methods use an evolutionary rep-
resentation for the clustering solutions as their use of population enables
the variation of solutions and makes it easier to keep a population of clus-
tering solutions and apply genetic operators. However, the use of such
representation requires the following concepts:
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• Choosing an evolutionary encoding to represent a clustering solu-
tion.

• The generation of the initial population by an effective initialization
scheme.

• Suitable genetic operators to variate the solutions.

• Choosing two or more objective functions as a fitness function to
choose the non-dominated solutions.

• Developing a technique to obtaining a single clustering solution for
the Pareto-set (leader selection method).

The choice of these components is crucial for the clustering quality and
the algorithm scalability. In the next sections, we present some examples
used in the state of the art of the components presented above.

Evolutionary Encodings

Many representations were presented in the previous MOC methods
[Mukhopadhyay et al., 2015]. We describe some of them in this section:

• Centroid-based representation: In this representation, the cluster
center is represented by an array of d real numbers representing
its coordinates, where d is the dimension of the dataset (number of
features). After each iteration, only the centroid is updated using the
points assigned to it.

• Locus-based representation: Proposed by [Handl and Knowles,
2007], it represents each clustering solution by a graph where the
edges are the links between data points. The graph is represented
by an array of n (number of points), each value is an integer, if two
points have the same number, they are connected by an edge, the
data points contained in the same connected component will then
belong to the same cluster.

• Point-based representation: In this representation, the clustering so-
lution is represented by an array of n (number of points) integers,
each value represents the cluster label of the particular data point.
Thus, if the value i of the array equals k, then the ith data point
belongs to cluster k.

Initialization Schemes

The initialization process is the first, and the most important step in the
multi-objective methods as a good scheme can lead to faster convergence,
while a bad scheme can lead to bad final solutions. In most of the multi-
objective clustering methods, the clustering solutions in the initial popu-
lation have been generated randomly, and this random initialization de-
pends on the type of encoding used in the algorithm (Cluster centers,
assignment..). Some other techniques have been used in some algorithms
like the initialization using Voronoi diagrams [Handl and Knowles, 2004],
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K-means clustering algorithm [Handl and Knowles, 2007], ACO and PSO
[Handl and Meyer, 2007, Gong et al., 2017]. The primary objective of this
type of initialization is to replace the random initial population by good
clustering solutions generated by these methods.

Genetic Operators

Genetic operators are essential for MOC methods as they enable the vari-
ety and diversity of the clustering solutions. We list in the following the
most used genetic operators:

• Selection operator: Selection operators are for generating a mating
pool of clustering solutions. It gives preference to better solutions,
allowing them to pass to the next generation of the algorithm. The
best solutions are determined using an objective function. In MOC
methods, all the objective functions participate in electing the best
solutions called Pareto-optimal. The mating pool generated by the
selection operator is then used by the next operators or by another
algorithm.

• Crossover operator: Crossover operation is used for exchanging
genetic information among the clustering solutions in the mating
pool. The type of crossover used depends on the representation of
the clustering solutions (Section 3.5), we list some of the well-known
crossover techniques in the following:

· Single point crossover: a crossover point i chose randomly, and
the resulted chromosome is composed of values from the beginning
to i of the first parent and from i+1 to the end of the second parent.

· Two point crossover: two random crossover points are selected,
values from the beginning of chromosome to the first crossover
point are copied from one parent, the values from the first to the
second crossover point is copied from the second parent and the rest
is copied from the first parent.

· Uniform crossover: values are randomly selected from the first or
the second parent

· Arithmetic crossover: some arithmetic operation (AND, OR,..) is
performed to make a new offspring.
The different types of crossover are illustrated in Figure (3.12)
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Figure 3.12 – Different types of Crossover operator.

• Mutation operator:

· Bit Flip Mutation: A value is selected randomly from a chromo-
some and flipped (0 becomes 1, and 1 becomes 0). This is used for
binary-encoded chromosomes.

· Random Resetting: Random Resetting is an extension of the bit
flip for the integer representation. Instead of swapping the value,
it gives a random value from a pre-defined range to the randomly
selected position.

· Swap Mutation: Two positions are randomly selected, and their
values are interchanged.

· Scramble Mutation: A subset of the chromosome of random length
is selected, and its values are scrambled or shuffled randomly.

· Inversion Mutation: It is similar to Scramble Mutation, but instead
of shuffling the selected subset, it completely inverses the values.

The different types of mutation are illustrated in Figure (3.13)
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Figure 3.13 – Different types of Mutation operator.

Objective Functions

One of the important aspects of MOC is the choice of suitable objec-
tive functions that are to be optimized simultaneously. For each clus-
tering solution, several quality measures exist, and the goal is to maxi-
mize inter-cluster similarity and minimize intra-cluster similarity. To sat-
isfy these requirements, we introduce two objective functions compactness
and separateness. More objective functions are described in Section 3.2.

• Compactness: the compactness of a clustering solution reflects the
overall intra-cluster size of the data and has to be minimized. The
compactness of a clustering solution is computed as follows:

CompactnessC = ∑
xi∈X (t+1)

δ(xi, wφ(xi)) (3.15)

Where X is the dataset and φ(xi) is the index of the cluster where xi
belongs. δ(x, wφ(xi)) is the euclidean distance between the data point
x and wφ(xi).

• Separateness: the separateness of a clustering solution is the mean
distance between clusters. It reflects the inter-cluster similarity and
should be maximized. The separateness of a cluster is the shortest
distance between a data point in this cluster and another data point
of his neighborhood belonging to another cluster. The separateness
is computed as follows:

SeparatenessC =
1
|C| ∑c∈C

(minxi∈c,xj∈Ki ,xj /∈cδ(xi, xj)) (3.16)
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Where Ki is the neighborhood of the data point xi belonging to the
cluster c.

Solution Selection Methods

Optimizing multiple clustering objectives ought to produce a set of non-
dominated solutions. The most suitable solution that indicates the final
clustering result should be retrieved with the help of an expert. The meth-
ods in literature usually select the solution concerning (1) the performance
of the solutions in terms of internal/external validity indices, or (2) the
shape of the Pareto set, which depends on the value of the objectives.

Multi-Objective Clustering Algorithms

This section discusses previous works on multi-objective clustering prob-
lems and highlights the most relevant algorithms proposed in the litera-
ture to deal with these problems.

MOCK [Handl and Knowles, 2007] Multi-objective clustering with au-
tomatic K-determination, consists of two main phases: In its initial cluster-
ing phase, MOCK uses a Multi-Objective Evolutionary algorithm (MOEA)
to optimize two complementary clustering objectives. The output of this
first phase is a set of a mutually non-dominated clustering solution. Each
corresponds to different tradeoffs between the two objectives. In the sec-
ond phase, MOCK analyzes the shape of the tradeoff curve. It compares it
to the tradeoffs obtained for an appropriate null model (i.e., by clustering
random data). Based on this analysis, the algorithm provides an estimate
of the quality of all individual clustering solutions and determines a set
of potentially promising clustering solutions. Often, a single solution is
preferred, and, in these cases, the number of clusters inherent to the data
set, k, is thus estimated implicitly. Figure (3.14) illustrates the pareto set
in MOCK algorithm. The improved version of MOCK, ∆-MOCK has been
proposed [Garza-Fabre et al., 2017], which can significantly decrease the
computational overhand and reduce the search space.
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Figure 3.14 – Clustering solutions plotted according to their objective functions. Each
point represents a clustering solution. The pareto optimal solution is obtained when K=6.

An Ant Colony Optimization-based clustering method ACO-C [İnkaya
et al., 2015] combines the connectivity, proximity, density, and distance
information with the exploration and exploitation capabilities of ACO
in a multi-objective framework. The proposed clustering methodology is
capable of handling several challenging issues of the clustering problem,
including solution evaluation, extraction of local properties, scalability,
and the clustering task itself.

Multi-objective evolutionary algorithms with simultaneous clustering
and classification MOASCC [Luo et al., 2016] uses a clustering process to
enhance the performance of the classification. To achieve this goal, two
objective functions, fuzzy clustering connectedness function, and classifi-
cation error rate, are adopted. A mutation operator is designed to make
use of the feedback from both clustering and classification.

IMCPSO [Gong et al., 2017] proposes an improved multi-objective
clustering framework using particle swarm optimization. The authors
used the overall deviation and mean distance between clusters as ob-
jective functions. They introduced a clustering method to improve each
particle (clustering solution) by finding a topological center, which is the
point that has the maximum neighbors belonging to the same cluster
Figure (3.15) illustrates the using of topological centers to improve the
clustering. Finally, the best particle is selected from the Pareto-set based
on the sparsity of the solution.
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Figure 3.15 – Using topology centers to improve the clustering solution.

EMO-KC [Wang et al., 2018] uses the term bi-objective clustering
to describe a MOC method with two objective functions. The method
has two main steps (i) constructing two conflicting objective functions,
and (ii) solving the bi-objective optimization problem with an effective
EMO(Evolutionary Multi-Objective) algorithm.

Another MOC algorithm, SOMDEA-clust [Saini et al., 2019], pro-
poses an efficient automated decomposition-based multi-objective cluster-
ing technique, which is a hybridization of Self-Organizing Maps (SOM)
and differential evolution algorithm. Two internal cluster validity indices,
namely, Silhouette index (SI) and PBM (Pakhira-Bandyopadhyay-Maulik)
index, are used as objective functions. SOM algorithm is used to creates
new solutions based on the neighborhood of each neuron. AMOGA [Dutta
et al., 2019] Automatic clustering by a multi-objective genetic algorithm is
a Multi-objective clustering algorithm that handles numeric and categor-
ical features. Each clustering solution is encoded as a gene to apply Ge-
netic operators. The method initializes a population using K-prototypes
algorithm and GA operators crossover and mutation. AMOGA uses com-
pactness and separateness as objective functions and different validity
measures (DB index, Purity...) to select the best solution from the Pareto-
optimal set.

Multi-objective Gradient Evolution algorithm [Kuo and Zulvia, 2020]
extends the Gradient Evolution GE algorithm, so then it can be applied
for the multi-objective problem. This paper applies the Pareto ranking
assignment to sort the vectors based on their fitness values. K-means is
then used to perform a final clustering on the Pareto-optimal solutions to
obtain the final clustering.

Combinatorial Multi-Objective Pigeon Optimization algorithm (CMO-
PIO) [Chen et al., 2020] is based on a bio-inspired algorithm called Pigeon
Optimization PIO. In CMOPIO, pigeons only interact with the pigeons in
their neighborhood. Meanwhile, the update of the pigeon’s position and
velocity relies on each pigeon’s neighborhood rather than the global best
position. These improvements allow the CMOPIO to identify a variety of
Pareto optimal clustering solutions.
Table (3.4) Compares the Multi-Objective Clustering Algorithms.
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Table 3.4 – Comparison Between Multi-Objective Clustering Algorithms

Method Encoding scheme Genetic functions Objective functions

MOGE Centroid-based / SSW(Separeteness)
SSB(Compactness)

CMOPIO Locus-based / Connectivity
Compactness

MOCK Locus-based / Stability

∆-MOCK Centroid-based Crossover
Mutation

Connectivity
Class error rate

ACO-C Point-based / Adjusted Compactness
Relative Separateness

MCPSO Locus-based / Compactness
Separateness

SOMDEA-Clust Centroid-based Mutation
Crossover

PBM Index
Silhouette Index

IMCPSO Locus-based / Overall deviation
Mean distance between clusters

MOEASCC Centroid-based Mutation JIn (Connectedness)
JAdd (Error rate)

EMO-KC Centroid-based Crossover
Mutation

SSD
Overlap-Separateness

3.6 Conclusion

In this chapter, we have studied the concepts of clustering and the main
existing classical methods. We presented the most used similarity and
validity measures, which are crucial when constructing and validating a
clustering algorithm.
As data clustering has attracted a significant amount of research attention,
many clustering algorithms have been proposed in the past decades.
We provided a survey of the most used clustering algorithms for each
clustering category. We compared these clustering categories and pre-
sented some merits and limitations of each one of them. We also provided
details of some subspace and multi-objective clustering algorithms and
demonstrated their efficiency in clustering high dimensional data and
discovering arbitrary shaped clusters.
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4Stream Data Analysis

In this chapter, we discuss the clustering of stream data and its main prop-
erties and techniques. We outline an overview of the clustering stream data
methods and provide a comparison between these methods.

Introduction

Recent advances in both software and hardware technologies have allowed
the acquisition of massive amounts of data continuously. This data grows
faster than our ability to store or process it, but analyzing it can lead to
interesting information that can be helpful in various fields such as finan-
cial transactions, telephone records, sensor network monitoring, telecom-
munications, website analysis, weather monitoring, and e-business. How-
ever, the analysis of large scale data leads to some big challenges: with
the evolving data, it is not possible to process the data by using mul-
tiple passes efficiently. Instead, only one pass over the data is possible.
This leads to constraints on the implementation of the stream algorithms.
Other restrictions have to be considered by algorithms when processing
data streams. We list some of them in the following:

1. Non-stationary and (potentially) infinite data points.

2. The order of data points needs to be respected when processing data
streams.

3. The size of a stream is (potentially) unbounded.

4. Data points can not be stored and need to be processed in one pass.

5. The probability distribution may change over time.

Data streams are ordered and potentially infinite sequences of data
points created by a typically non-stationary data generating process. The
storage of this data is non-possible, also random access. only one (or few)
passes possible through the data. Figure 4.1 illustrates the process of the
data stream clustering.
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Figure 4.1 – Stream clustering illustration

Data stream analysis is the process of finding a complex structure
within a large volume of data where the data evolves and arrives in an
unbounded stream. Algorithms for Clustering Data Stream must con-
sider restrictions in execution time and memory. Many algorithms use
two phases. An online phase processes data stream points and produces
summary statistics, and an offline component phase uses the summary
data to generate the clusters. An alternative solution proposes to create
final clusters without using the offline step.

To deal with clustering data stream restrictions, several classical meth-
ods have been modified, and many concepts have been introduced. In the
following sections, we present some definitions and techniques that have
been introduced in previous works.

4.1 Processing Step

As mentioned above, scientists face many constraints when dealing with
data streams. The data stream can only be processed in one pass and
must be analyzed following its order while respecting time and memory
restrictions. In the following sections, we present some techniques to deal
with data stream:

One pass processing

Since data streams can not be stored and are rapidly evolving, they can
only be processed in one pass. The clustering solution is obtained by scan-
ning data streams only once with the assumption that data objects arrive
in chunks. STREAM [O’callaghan et al., 2002], which partitions the input
stream into chunks and computes (for each chunk) a cluster. In most of
the clustering algorithms, data points are processed in the order of their
arrival. Data points are assigned to clusters, and clusters can be created,
merged, or deleted over time. Figure 4.2 illustrates the different methods
used in the one-pass clustering.
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Figure 4.2 – Cluster operations in one pass clustering

Online and offline phases

Dynamic clustering over all possible time horizons of data streams cannot
be done. Therefore, a large number of algorithms rely on two phases. An
online phase process data stream points and produces summary statistics.
Then an offline component phase uses the summary data to generate the
clusters [Ntoutsi et al., 2012a, Ren and Ma, 2009a, Shukla et al., 2017a].
Alternative solutions also propose to create final clusters without using
an offline phase [Lu et al., 2005, Khan et al., 2016b]. Figure (4.3) illustrates
the online-offline process.

Figure 4.3 – Online and Offline in Stream clustering

Time Windows

The data streams rarely show stable distributions and they rapidly evolve.
This method’s basic idea is to divide the time-space into intervals called
time windows and consider only the most recent data for clustering. There
are four types of time windows:

• Sliding Window
In this type of windows, only the recent data is considered. The
observations are manipulated based on the principles of queue pro-
cessing, where the first observation added to the queue will be the
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first one to be removed. There are two types of sliding windows: 1-
time-based sliding windows time is divided into equi-length inter-
vals. 2- count-based sliding windows are defined by the number of
incoming points.

• Landmark Window
This sort of windows selects a fixed point in time called Landmark.
Only the data points coming after this landmark are considered for
the clustering. This model is not suitable for data stream since data
grows very fast.

• Damped Window
Unlike the other types of windows, the Damped windows associates
weights with the data in the stream, and gives higher weights to re-
cent data than those in the past. this helps to not discard the older
data but, recent data will always have a better influence in computa-
tion.

• Pyramidal Window
The pyramidal time window uses different granularity levels based
on the recency of the data. This approach summarizes recent data
more accurately, whereas older data is gradually aggregated.

Figure (4.4) illustrate the different models of time windows.

Figure 4.4 – Time windows models

Dimensionality reduction of data stream

Because of the inherently temporal nature of data streams, dimensional-
ity reduction and forecasting are particularly important. When there are
many simultaneous data streams, we can use the correlations between dif-
ferent data streams to make significant predictions on the future behavior
of the data.

SPIRIT algorithm [Aggarwal, 2007], explores the relationship between
dimensionality reduction and forecasting in data streams. The chapter also
explores the use of a compact number of hidden variables to describe the
data stream comprehensively. This close representation can also be used
for effective forecasting of the data streams.

Load-shedding

Most of data stream comes from an external application; the rate of data
cannot be controlled. Therefore, it is important for the application to have
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the ability to quickly adjust to varying incoming stream processing rates
[Aggarwal, 2007]. Load shedding gives the ability to degrade performance
when the system lacks resources by getting rid of non-processed data
points.

4.2 Summarization Step

Processing massive amounts of data streams require some space and time
constraints on the computation process. Since data streams can be infi-
nite, it is not possible to store the data. Therefore, the summaries of the
data are constructed and held instead of the whole dataset. In the offline
phase of the algorithm, the final clustering solution is computed in this
summary. Many types of summaries have been presented in the literature.
Each of them depends on a particular algorithm. We present some of these
summaries in the following sections:

Random Sampling

Random Sampling is a method that allows us to constructs a synopsis
of the data. Rather than deal with the entire data stream, this sample is
constructed uniformly, and it represents the original data stream. Since
random sampling methods require to know the length of the data in ad-
vance, they are not adapted for data streams. A modified approach called
Reservoir Sampling [Vitter, 1985] is used for this kind of data. A set of data
is maintained in a reservoir from which a random sample of size s can be
generated. Each point has a probability of pi; every new incoming point
of the data stream has a probability of replacing an old random point in
the reservoir. Min-Wise Sampling [Itoh et al., 2003] is based on assigning
a random value in range 0 to 1 to a subset of samples m. When the sys-
tem retrieves m elements, we select the sample with the minimum value.
Figure 4.5 illustrates the process of Random Sampling.

Figure 4.5 – Random sampling example

Sketching

Sketching means to generate uniform samples (sketches) of large masses
of data. A sketch is a data structure that is used as a compressed repre-
sentation of the database called a linear sketch. A linear sketch is a single
vector containing various information about the database, which can be
retrieved by the user. The sketch of a union of two Databases is the sum
of their sketches. This property make linear sketches adapted to stream-
ing data. There are two famous sketching methods: Count-Min Sketch and
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Bloom Filter. We describe some sketching algorithms based on these two
methods in the following sections.

• Count-Min Sketch Count-Min Sketch [Cormode and Muthukrish-
nan, 2005] summarize a data stream into a sketch, the method keeps
an array of d ∗ w for each row a hash function hj is associated to up-
date the frequencies in each cell. when a new point xi(it, ct) arrives,
each hash function calculates its position ha(it) = j, then each cell
(a, j) is incremented.

Figure 4.6 – Count-Min Sketching example

CSketch [Aggarwal, 2009] is a data stream partitioning clustering al-
gorithm. It uses sketches obtained by the Count-Min method [Aggar-
wal, 2009]. The algorithm assigns each incoming point to the cluster
with the most similar centroid. The similarity measure called dot-
product, with Dj(Xi) the dot-product of the incoming point with the
cluster j. qj

r(xr
i ) is the frequency of the value xr

i in the cluster j and
mj is the of points in the cluster j.

After choosing the centroid with the largest dot-product, all the fre-
quencies in the chosen sketches are incremented for each dimension
d. This algorithm is suitable only for qualitative data since the count-
min calculates the frequency of each distinct value encountered.

UEStream [Chen et al., 2013] uses a modified count-min to summa-
rize the uncertain data stream; it uses a metric [Anceaume and Bus-
nel, 2013] to estimate the similarity between two streams of data us-
ing only the sketches. The similarity measure is called the Kullback-
Leibler divergence and it is used to calculate the statistical difference
between the data streams. The clustering is performed using a vari-
ance of K-means.

• Bloom Filter Bloom Filter is a very compact probabilistic data struc-
ture [Bloom, 1970] that allows us to know if an element is missing
from a set and if it can be present in this set. The major disadvantage
is that there can be false positives. The filter has two component: a
boolean array T and k hash functions. To add an element, it just in-
crements by 1 each case with index j = hi(e) for i between 1 and
k.
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XStreamCluster [Papapetrou and Chen, 2011] is used for clustering
XML documents. These documents are represented as graphs with
nodes that are represented by hash functions in the form of Bloom
filters. Clusters are obtained by merging the bloom filters.

BloomStream [Sabau, 2016] is an algorithm based on grids, and each
cluster is represented by a Bloom filter. The count-min sketch is used
to represent a frequency table. Experiments have shown the effective-
ness of this algorithm and its ability to detect outliers.

Micro Clusters

The Micro-Cluster is a structure that helps summarize large amounts of
incoming data points without losing too much information. This structure
can be hierarchical like the CF tree in BIRCH [Zhang et al., 1996] or a
simple vector-like DenStream [Amini and Wah, 2010]. The micro-clusters
can be incrementally updated as the data stream flows; the advantage of
these structures is that it is adaptable to the evolution of data and also to
the multi-dimensional data.

Histograms

Histograms are a good representative structure to summarize data. His-
tograms are used to approximate the frequency distribution of element
values. They are widely used with static datasets, but their extensions to
the stream framework is still a challenging task. Some techniques [Garo-
falakis et al., 2002] have proposed histograms for the incremental setting
to handle evolving streams. However, they do not always work because
the distribution of the instances is assumed to be uniform, which is not
always true in reality [Bahri, 2020].

Wavelets

Wavelets are popular summarization techniques for image and signal pro-
cessing. They are used for multi-resolution hierarchy structures over an
input signal like stream data. Wavelets project each signal, which is a set
of points, onto an orthogonal vector. Each signal reconstructed from the
top few wavelet coefficients approximates the original signal better. Figure
(4.7) present an example of wavelet decomposition from [Aggarwal, 2007].
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Figure 4.7 – Wavelet decomposition example

[Chen et al., 2010] uses W-HAS, which is a wavelet based hierarchical
amnesic summary, as a summarization method. It consists of three steps:

1. Calculate the wavelet coefficient of each clustering center.

2. Extract data nodes from original data streams and calculating the
wavelet coefficient of normalized data streams.

3. Dynamically update the wavelet coefficient of data streams and use
the k-means method to get the final clusters.

4.3 Stream data clustering algorithms

In the next sections, we discuss some data stream clustering algorithms
and present a comparison between these methods. The following cluster-
ing categories are defined in Section 3.

4.3.1 Partitionning algorithms

CluStream [Aggarwal, 2009] is a two-component clustering method that
clusters data using two phases:

1. An online micro-clustering that summarizes the stream as micro-
clusters. These micro-clusters are stored at snapshots in time that
follow a pyramidal time frame.

2. An offline macro-clustering component that cluster these summaries
into the final clusters.

Before presenting the algorithm’s phases, we must define two concepts:
1) Micro-clusters: Statistical information about the data locality. The

micro-cluster structure is a temporal extension of the cluster feature vector
CF. A micro-cluster is a tuple (N, LS, SS, LST, SST) where:
- N number of data points.
- LS sum of the data points.
- SS squared sum of the data points.
- LST sum of the time stamps of the N data points.
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- SST sum of squares of the time stamps of the N data points.

2) Pyramidal time frame: The micro-clusters are stored at time snap-
shots that are stored at different levels of granularity depending upon the
recency. Snapshots are classified into different orders which can vary from
1 to log (T) where T = clock time elapsed since the beginning of the stream.

Figure (4.8) illustrates the difference between Micro and Macro clus-
ters.

Figure 4.8 – Difference between micro and macro clusters.

Algorithm (3) presents the online phase of CluStream.

Algorithm 3 Online phase of the CluStream algorithm
input : q number of initial clusters, Initnumber: number of required initial points

to start the clustering
output : Micro-clusters of points
- Initialization:

Wait until InitNumber points to arrive ;
Apply K-means algorithm to crate q clusters ;
while there is a point p to process do

- Assign p to the closest cluster c ;

if p falls within the maximum boundary of c then
- p is absorbed by c ;

- Update statistics of c ;

else
- Create a new micro-cluster with p, initialize its statistics ;

- Keep q micro-clusters by Delete/Merge clusters ;

The micro-clusters snapshots are stored at particular times. These
snapshots allow the user to search for clusters in different time horizons
through a pyramidal time window concept. The offline step is applied
on-demand upon the q maintained micro-clusters. A k macro-clusters is
computed based on a time horizon h and using a clustering algorithm like
K-means. CluStream is unable to find clusters with arbitrary shapes. It is
incapable of detecting noise and outliers. It is also not suitable for large
datastream.

RCD+ [Li et al., 2020] is a method of the partitioning data stream of
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Relational Queries RQS using a clustering method. When users send an
RQS, it is converted into topology tasks running on a stream processing
system SPS. In an SPS, each node executes queries in parallel. We present
in the following an example of a query to select information collected by
a GPS system called GeoLife [Li et al., 2020]:

SELECT altitude, SUM (speed)/COUNT (*) FROM GEOLIFE GROUP
BY latitude WINDOW (SLIDING, 10, 1)

To improve the query efficiency of SPSs and cope with data stream
distribution skewness, the authors designed a granularity partition-
ing strategy that includes clustering partitioning (Clu-partitioning). Clu-
partitioning is used to re-partition the data stream within and between
nodes in three steps:

• According to the raw data volume and the parallelism of processing
units, Clu-partitioning determines the number of units that need to
move in and move out.

• It determines the number of clusters n.

• The STREAM algorithm is used to find the final clusters.

HP-Stream [Aggarwal et al., 2004] is a high-dimensional projected data
stream clustering method. It is an extension of CluStream to handle high
dimensional data. One projected clustering means that the algorithm se-
lects only a subset of dimensions; the number of dimensions is not the
same for each cluster. This is due to the fact that the relevance of each
dimension in each cluster may differ. HP-Stream uses a Fading Cluster
Structure (FCS) to stores the summary of streaming data, and it gives
more importance to recent data by fading the old data with time. The
main inconvenience of HP-Stream is his non-capacity to find clusters with
arbitrary shape and the requirement of setting parameters like the number
of clusters and the average number of projected dimensions parameters.

SWClustering [Zhou et al., 2008] is a clustering algorithm for evolving
data streams over the sliding window; it introduces a new data structure
called the Exponential Histogram of Cluster Features (EHCF). The expo-
nential histogram is used to handle the in-cluster evolution, and the tem-
poral cluster features represent the change of the cluster distribution. The
proposed EHCF synopsis can provide sufficient information to calculate
the final clusters. SWClustering is unable to find clusters with arbitrary
shapes and its incapable of handling outliers.

Stream KM++ [Ackermann et al., 2012] is an extension of the K-Means
clustering algorithm for handling stream data. It uses a random sampling
method called the merge-and-reduce technique to obtain a small sketch
from the data streams. It stores the data summaries in a data structure
called a coreset tree, which is a binary tree in which each node is the
union of all elements that descend from it. The advantage of such a corset
is that we can apply any fast approximation algorithm (for the weighted
problem) on the usually much smaller corset to compute an approximate
solution for the original set more efficiently.
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Figure 4.9 – Coreset tree.

In Algorithm (4) we illustrate the process of coreset construction.

Algorithm 4 Coreset construction
input : m: size of seed, P: a set of points
output : A coreset tree
Choose an initial coreset point v uniformly at random from P, wv is the prototype

of v;
Create two child v1 and v2 from the root as follow: Choose a data point xj with

probability Dist(xj ,wv)2

SSEv
where SSE is the sum of squared distance;

Allocate data points xi in v to the closest child between v1 and v2;
while The number of nodes < m do

Select a child with probability SSEchild
SSEparent

;

Create two child v1 and v2 from the child as follow: Choose a data point xj

with probability Dist(xj ,wv)2

SSEv
;

Allocate data points xi in the selected child to the closest child between v1
and v2;

StreamKM++ maintain the data in L Buckets B1, B2, .., BL, each Bucket
have a size of m. When a data point arrive, it is assigned to the first avail-
able Bucket. If two adjacent Buckets are full, they are merged and a coreset
tree is constructed reducing the 2m resulting points to m points. In the of-
fline phase, k-means++ is used to find the final clusters.

StrAP [Zhang et al., 2008] is based on Affinity Propagation [Frey and
Dueck, 2007] for data stream clustering. It introduces the notion of Reser-
voir to store potential outliers of data points. AP is an optimization al-
gorithm based on message passing. For each arriving data point, StrAP
either updates the model with it or puts it in the Reservoir. StrAP uses a
Change Point Detection (CPD) test, called the Page Hinkley test, to catch
drifting points that significantly deviate away. When the CPD test is trig-
gered, the new model is rebuilt from the current model and data items in
the Reservoir. The memory usage of STRAP is small and mainly depends
on the number of outliers and exemplars, which may vary slightly in the
streaming process. The clustering algorithms for data streams should be
up to date so that clusters can be obtained at any time, as soon as the new
data item arrives in the system. Algorithm (5) illustrates the process of
StrAP algorithm.
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Algorithm 5 StrAP algorithm
input : DS: a stream of points, ε: fit threshold
output : A set of clusters and their prototypes
- Apply AP on the first batch of data to produce the first clusters. Initialize Reser-

voir to empty;
while There is a point xi to proceed do

- Choose cluster c as the closest cluster to xi ; if dist (c,xi)<ε then
- Update c and The model ;

else
- Put xi in the Reservoir;

if CPD is triggered then
- Rebuild the model based on the current model and the data points in

the Reservoir; - Set Reservoir to empty;

Adaptive Stream K-means [Puschmann et al., 2016] is a partitioning
clustering algorithm with automatic K determination. It was proposed to
cope with concept drift in the input data. The clustering process is com-
posed of initialization and continuous clustering phases. In the initializa-
tion phase, Probability Density Functions (PDFs) are computed from the
data using kernel density estimation KDE [Parzen, 1962]. The PDFs are
split into equiprobable distributions to obtain small and dense cluster ar-
eas. The number of clusters K is then set as the number of areas in the PDF.
The boundaries of these areas are called beta points. The middle points be-
tween two adjacent betas are computed and saved as initial centroids.

In the continuous clustering phase, an incoming point is clustered us-
ing the k-means algorithm. The standard deviation and expected value of
the data with the current distribution are stored. These values are tracked
during the process. Any change in the statistical properties of the data
triggers a data drift detection. The initialization phase is then repeated to
compute new centroids. The Adaptive Streaming k-means is presented in
Algorithm 6.

Algorithm 6 Adaptive Streaming K-means
input : X: the data stream, l: length of data sequence used for initialization
output : C: A set of clusters
Initialization phase:

Calculate the PDFs using KDE for each point;
Calculate the turning points (statistical changes in the data);
Find beta points;
Calculate cluster centers C as the means between two adjacent betas;

Continuous clustering:
Run k-means with the set of centroids C;
if change detected then

Run the initialization phase and compute new centroids;

Discussion

This section discusses the Merits and Limitation of partitioning stream
clustering algorithms. We list the limitations and the merits of each algo-
rithm in the following:
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• CluStream: -Merits: - Clusters large evolving data streams - Can
detect change - Provide flexibility in a real-time and changing envi-
ronment. -Limitations: - Sensitive to noise - The number of micro-
clusters need to be set.

• HP-Stream: -Merits: - Scalable algorithm - Gives more importance
to recent data points by introducing a fading function-Limitations: -
No concept drift detection - Outlier detection not very clear - Num-
ber of cluster parameter required.

• SWClustering: -Merits: - Can find arbitraily shaped clusters -
Limitations: - Not scalable - Not suitable for high dimensional data
- Can not detect outliers.

• StreamKM++: -Merits: - Easy to implement - The use of coreset tree
make the algorithm faster by reducing the number of points from
2m to m. -Limitations: - Can not detect arbitrarily shaped clusters -
The number of clusters is pre-defined.

• StrAP: -Merits: - Ability to detect outliers - Reduce the time com-
plexity by processing only non-noisy data. -Limitations: - The pa-
rameter ε can affect the resulted clusters.

4.3.2 Hierarchical algorithms

SHC (Statistical Hierarchical Clustering) [Krleža et al., 2020] is single-
phase clustering algorithm. it uses statistical inference on the input data
stream to obtain statistical distributions that are constantly updated. SHC
is capable of performing outlier detection, component population forming
and updating, and clustering in the same step. This is enabled by the sta-
tistical agglomeration concept, which allows outliers and components to
be agglomerated based on the statistical relations between them. Statistical
agglomeration allows forming of new components from a set of outliers,
assimilation of outliers by growing components, or merging two or more
components under the same arbitrarily shaped cluster. The statistical ag-
glomeration allows SHC to automatically define the number of clusters
K.

SHC proposes a population evolution tracking on the component level.
This is achieved through a novel concept of sub-clustering. To analyze and
capture the statistical change in the component population, each compo-
nent uses an additional child SHC instance to cluster the latest population
members. The results of such component sub-clustering can be interpreted
as population move or separation into several sub-populations, i.e., com-
ponent drift or split.

On the cluster level, each component drift or split can result in a clus-
ter split. Hence traceability is supported on the cluster level as well. All
this is computationally more complex than current two-phase data stream
clustering algorithms [Krleža et al., 2020].

A-Birch [Lorbeer et al., 2016] is based the BIRCH algorithm presented
in Section 3.3.2. It uses an automatic threshold estimation using Gap Statis-
tic. It does not require the pre-definition of the number of clusters. It does
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not require the pre-definition of the number of clusters. To estimate K, A-
BIRCH analyzes a small subset of the data and extracts parameters such
as the cluster radius and the minimal cluster distance. These parameters
are then used to calculate a threshold that results in the correct clustering
of elements.

ODAC (Online Divisive-Agglomerative Clustering) [Rodrigues et al.,
2006] is a top-down hierarchical clustering algorithm for the time-series
data stream. It uses both agglomerative and divisive hierarchical methods.
After building a tree-like hierarchy, the leaves of this tree are the final
clusters. ODAC incrementally splits the clusters based on their diameter
with the goal of reducing the intra-cluster similarity. The diameter of a
cluster is the maximum distance between every two points in this cluster.
After finding the two points that define the diameter and if the condition
is met, the system assigns each point to a new cluster, and each point of
the old cluster is assigned to the closest cluster between the new ones.

ODAC uses Pearson’s correlation coefficient to calculate the similarity
score between time series. The Pearson’s correlation coefficient between
time series a and b with n data points is defined as follows:

corr(a, b) =
P− AB

N√
A2 − A2

n

√
B2 − B2

n

,

where A = ∑ ai, B = ∑ bi, A2 = ∑ a2
i , B2 = ∑ b2

i , P = ∑ aibi.

Given the correlation coefficient, the dissimilarity between a and b is
defined as follows:

Diss(a, b) =

√
1− corr(a, b)

2

ODAC applies the Hoeffding bounds test a leaf node for splitting. the
Hoeffding bound helps in selecting the pair of data points in the cluster
which represents the diameter of the cluster. When a splitting point is
defined, the pivots are separated into two newly created clusters. ODAC
assigns each of the remaining data point in the old cluster to the one of
the two new ones.

ClusTree [Kranen et al., 2011] is a compact and self-adaptive index
structure for maintaining the summary of the data coming via stream. It
is a parameter-free algorithm capable of processing the stream in a single
pass and with available memory. It also uses an anytime inserts concept to
dynamically adapts to the speed of the data stream. This concept allows
the algorithm to be able to give a result at any time.
ClusTree uses micro-clusters and CF trees similar to BIRCH explained in
Section 3.3.2. As in [Kranen et al., 2011] the ClusTree have the following
properties:

• An inner node nodes contains between m and M entries. Leaf nodes
contain between l and L entries. The root has at least one entry.

• An entry in an inner node of a ClusTree stores:

– a CF of the data point it summarizes.
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– a CF of the data points in the buffer, this one can be empty.

– a pointer to its child node

• An entry in a leaf of a ClusTree stores a cluster feature of the object
(s) it represents.

• A path from the root to any leaf node has always the same length
(balanced).

Each new incoming data point is assigned to the closest subtree in the
CluTree with respect to the euclidean distance. ClusTree uses a buffer as
temporary storage for the data points when the insertion procedure is not
possible. The temporary buffer entry is taken along as a hitchhiker to the
leaf node at every new entry to the subtree. The hitchhiker is placed in the
buffer of the corresponding split node, such that some other data point
may carry it down.
In order to give better importance to the recent data points, ClusTree uses
a decay factor λ. It attributes a weight for each data point following the
decay function as follows:

ω(∆t) = β−λ∆t

where β is a pre-defined parameter.
The cluster features CFs of the tree are updated as follows:

n(t) =
n

∑
i=1

ω(t− tsi)

LS(t) =
n

∑
i=1

n

∑
i=1

ω(t− tsi).xi

SS(t) =
n

∑
i=1

n

∑
i=1

ω(t− tsi).x
2
i

where tsi is the timestamp at which the data point xi was added to the CF.
ClusTree introduces an aggregation For fast streams. Instead of insert-

ing each data point at a time, it sum up m incoming data points and insert
their aggregation to the tree. For slower stream settings, the idle times
between data points are used to improve the quality of the resulting clus-
tering are proposed.

E-Stream [Udommanetanakit et al., 2007] is an evolution-based tech-
nique for clustering stream data. Its associates a weight to each cluster.
The weights decreases over time following a fading function as follow:

f (t) = 2−λt

when a cluster have a low weight, it becomes inactive. While an active
cluster is a cluster that is receiving new incoming data.

E-Stream introduces a new structure for the clusters called Fading Clus-
ter Structure with Histogram (FCH). The algorithm uses the histogram of the
cluster data points to find the splitting point of a cluster. The bin’s range
is calculated as the difference between the maximum and the minimum
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values divided by α. The split operator is performed if a statistically sig-
nificant valley is found between two histogram values peaks along any
dimensions. The split is performed only on the active cluster.

Figure 4.10 – Histogram management in a split dimensionop and other dimension
[Udommanetanakit et al., 2007]

Every incoming point is either assigned to an existing cluster or a new
cluster is created around it. If a cluster remains inactive for a certain time
period, it may be deleted from the data space.

HUE-Stream [Meesuksabai et al., 2011] is an extension of E-Stream for
heterogeneous data stream with uncertainty; it associates a histogram for
both numerical and categorical attributes, for numerical data, HUE-Stream
utilizes the same splitting criterion. For categorical attributes, the system
chooses a splitting-attribute, i.e., that has significant frequency than the
others within the same cluster, split-position is a position between a pair of
adjacent values whose frequencies are the most different. A distance func-
tion with the probability distribution of two objects is presented to deal
with uncertainty in categorical attributes. HUE-Stream detects the change
in the data stream by using the distance function for merging clusters and
finding the nearest cluster of the given new incoming data. The proposed
histogram management is used for splitting clusters into categorical data.

Figure 4.11 – Histogram management in a split dimension and other dimension of
categorical data [Meesuksabai et al., 2011]

Discussion

This section discusses the Merits and Limitation of hierarchical stream
clustering algorithms. We list the limitations and the merits of each algo-
rithms in the following:

• SHC: - Merits:- Detects outliers - Detects arbitrary shaped clusters-
Automatic K determination. - Limitations: - Memory and time con-
suming.
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• ODAC: - Merits: - The time complexity don’t depend on the on
the number of features - Detects change and concept drift in the
datastream - Automatic K determination.- Limitations: - Unable to
detect arbitrary shaped clusters - Unable to detect noise

• ClusTree: - Merits: - Anytime clustering and self adaptive model
size using buffer and hitchhiker concepts - Improves computational
time by introducing an aggregation strategy and using the idle times
with slow streams. - Limitations: - The use of K-means make the
algorithm not able to detects clusters of arbitrary shapes

• E-Stream: - Merits: - Uses the fading function to adapt to the change
- Limitations: - Requires many parameters to be specified by user.

• HUE-Stream: - Merits: - Adapted to both categorical and numerical
data - Detects the change in the data stream. - Limitations: - Requires
many parameters to be specified by user.

4.3.3 Density algorithms

DCDGA [Tareq and Sundararajan, 2020] is an online density-based
method for clustering data stream using Genetic Algorithms GA. The GA
is used to adjust suitable parameters for the cluster radius and minimum
density threshold to cover the density clusters more accurately. DCDGA
uses the Chebyshev distance to compute the radius of a micro-cluster and
the distance between the data points. After the formations of the core
micro-clusters, the final macro-clusters are constructed from the intersec-
tions of these CMCs.

Figure 4.12 – Formation of macro-clusters in the DCDGA algorithm

For each data point, the DCDGA algorithm executes four steps:

• Parameter optimization: The DCDGA algorithm optimizes the ra-
dius and the threshold using a genetic algorithm. It initializes dif-
ferent chromosomes containing different pairs of the radius and the
threshold between 0.01 and 1. Then, the crossover and mutation op-
erators are applied. The fitness value is computed using the roulette-
wheel method. The best pair of parameters is selected as the one
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giving the highest fitness value. The fitness function is computed as
follow:

f itval = 1− (length( f ind(outputs == targets))/length(targets)),

where the outputs are the number of clusters generated, and the
targets are the number of classes.

• Assign core micro-clusters: The new data point is assigned to the
closest CMC using the Chebyshev distance. If the distance between
the new data point and the closest CMC is inferior then a threshold,
a new OMC is created with the new data point.

• Remove weak CMCs: if the CMC’s life is under 0, it is removed with
all its edges.

• Update cluster graph: If a CMC was changed, then the list of edges
was changed too. The algorithm then creates a new macro-cluster
throughout the graph.

CEC [Tareq et al., 2020] an online clustering algorithm based on den-
sity called the clustering of evolving data streams based on the adaptive
Chebyshev distance. It keeps a graph of core micro-clusters CMC. Two
linked CMCs are associated with the same macro-cluster. The CEC algo-
rithm outlines the “minimum density threshold” for distinguishing the
outliers from the CMCs along with the “decay” parameter for determin-
ing the data’s evolving property. A CMC possessing a density lower than
the minimum level is an outlier. Every time a new data point falls into
CMC or helps create a fresh CMC.

The CEC algorithm has four steps:

• Parameter selection: the decay factor, the radius of a cluster and the
threshold which is the minimum points that the outlier micro-cluster
OMC need to be converted to a CMC.

• Assign CMC: If the distance between a point p and the nearest CMC
or OMC is less then the threshold R, then p is assigned to it. Other-
wise, a new OMC is created.

• Kill cluster: If the weight of a cluster is less then 1
Decay , then the CMC

is deleted.

• Update cluster graph If the list of CMC has changed then the graph
need to be updated accordingly.

DenStream [Cao et al., 2006] is a density-based clustering algorithm
that derives some of the concepts from the partition-based clustream and
improves upon it. DenStream uses the damped window model with an
exponential aging function. In the initialization phase, the DBSCAN algo-
rithm is used on the first batch of data points. Two lists of micro-clusters
are maintained during the online phase based on the DBSCAN paradigm:
The potential micro-clusters PMC and the outliers micro-clusters OMC.
The offline phase runs on-demand, the micro-cluster summaries are used
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to produce the final clustering. In particular, each micro-cluster is consid-
ered as a data point, and a variant of DBSCAN is applied upon these data
points.

Algorithm 7 DenStream algorithm
input : X: the data stream, ε, β, λ, µ
output : C: A set of macro-clusters
For each data points p in the stream:

Merge p into the closest PMC or OMC;
if t mod Tp=0 then

for each PMC do
if wp < βµ then

Delete cp ;

end for
for each OMC do

ξ = 2−λ(t−t0+Tp)−1
2−λTp−1

;

if wo < ε then
Delete co ;

end for
if a clustering request occurs then

Generating clusters;

SDStream [Ren and Ma, 2009b] is a density-based data stream cluster-
ing over sliding window, it has online and offline phases, it introduces the
concepts of Temporal Cluster Feature (TCF) and Exponential Histogram
of Cluster Feature (EHCF). The TCF contains the time scale information
and the information of the feature, EHCF is a set of TCF. in the online
phase EHCFs are used to store the p-micro-cluster and o-micro-cluster.
Since the number of micro-clusters is limited, either a micro-cluster has to
be deleted, or two clusters are merged. Outdated points are deleted via
the temporal value t in the TCF if t doesn’t belong to the bounds of the
sliding window, TCF is deleted. In the offline step, a modified DBSCAN
is used to get the final clusters of arbitrary shape, DBSCAN is also used
to initialize a group of p-microclusters. The main usage of the exponential
histogram is not clarified by the authors.

Stream OPTICS [Shukla et al., 2017b] is a variation of the density-
based clustering algorithm OPTICS [Ankerst et al., 1999] which is based
on the most basic density algorithm DBScan [Ester et al., 1996], the method
can find clusters of arbitrary shape and can handle noise. The algorithm
uses temporal windows to consider only recent data, different parameters
like window size, threshold value, and radius are set by the user. The
algorithm has an online and an offline, in the online phase DBScan is used
to initialize the micro-clusters.
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Discussion

This section discusses the Merits and Limitation of density-based stream
clustering algorithms. We list the limitations and the merits of each algo-
rithm in the following:

• DCDGA: -Merits: - Detects Noise - Optimal initialization of the
parameters. -Limitations: - If the algorithm cannot merge the data
point, it will create a new micro-cluster for each incoming data point
- Genetic algorithm can make the algorithm costy in time and mem-
ory

• CEC: -Merits: - Detects Noise - Detects arbitrary shaped clusters -
Limitations: - Higher time and memory complexity

• DenStream: -Merits: - Detects arbitrary shaped clusters - Detects
concept drifts in data stream - Detects Noise -Limitations: - The
number of micro-cluster can increase and exceed the memory limi-
tation.

• SDStream: -Merits: - No assumption of the number of clusters -
Limitations: - Can not handle High dimensional datasets

• Stream OPTICS: -Merits: - Can handle noise -Limitations: - Costy
in time and memory - Can not handle High dimensional datasets.

4.3.4 Grid algorithms

CEDGM [Tareq et al., 2020] is an online density and grid based cluster-
ing algorithm for stream data. The first phase generates the Core Micro-
Clusters (CMCs), and the second phase combines the CMCs into macro
clusters. The grid-based method is used as an outlier buffer in order to
handle multi-density data and noises. CEDGM forms grids by splitting
the data space into small segments. Illustrative neighbor research is then
performed on the grids to group them into cluster grids.

In the CEDGM, each CMC among radii r0/2 contains a shell region
r0 and a kernel region r ≤ r0/2. Macro-clusters are formed by intersect-
ing the shell region of CMCs and the kernel regions of other CMCs. The
CMCs with a density that exceeds the minimum threshold but with no
intersections are also considered macro-clusters. From the data stream, a
new data point will fall into three regions. First, if the data point falls in a
grid granularity space, it will create a new outlier. Second, if the data point
falls in the CMC shell region can be assigned to the cluster and recursively
update the CMC center and cluster count. Third, the data point allocated
to the CMC, and the cluster count is updated when the data point falls in
a kernel region. The created or modified CMC is examined to determine
if the cluster density is greater than the minimum threshold. This CMC
is then examined for new intersections with other CMCs. When new in-
tersections are created, these CMCs are linked and assigned to the same
macro-cluster. All connected CMCs must have the same macro-cluster and
create an arbitrarily shaped cluster in an online manner.
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DGStream [Ahmed et al., 2020] is an online-offline grid and density-
based stream clustering algorithm. The online phase uses feature vec-
tors represented by a micro-cluster for each grid to dynamically maintain
the necessary information about the uninterrupted arriving data records.
While in the offline phase, DGStream employs a DBSCAN algorithm to
benefit from its speed and improve the running time. DGStream also uses
a decay function mechanism to reflect the stream evolution process accu-
rately.

DGStream employs a mechanism to detect the grids containing very
few data points or do not receive new data points for long periods. The
detected grid is deleted to maintain processing only with a limited number
of dense grids, saving both time and memory of the system. DGStream
also employs a mechanism to get rid of the noise and to handle outliers.

ExCC [Bhatnagar et al., 2014] is a clustering algorithm for the heteroge-
neous data stream. ExCC is a complete clustering algorithm which means,
complete clustering is an approach in which an object is either a member
of a cluster or an outlier. The exclusive clustering considers that one data
point is a member of only one cluster. Figure 4.13 shows the Difference
between exclusive and non-exclusive clustering.

Figure 4.13 – Difference between exclusive and non-exclusive clustering

ExCC uses a grid structure for mixed attributes and assigns granu-
larities for each attribute, according to the distinct values for categorical
ones or to the number of equal-width intervals for numerical attributes.
A speed-based grid pruning mechanism is employed by the ExCC algo-
rithm rather than a window model such as fading one. Clusters that have
not seen significant addition of data points since the last clustering are
considered as old and have been removed. The ExCC algorithm has both
online and offline phases and can detect noise. However, keeping grids
requires more memory and time process.

DCU-Stream [Yang et al., 2012] algorithm is a density grid-based clus-
tering algorithm over the uncertain data stream; it defines the concepts of
the Adjacent grid and Core dense-grid. The adjacent grid of the current in-
specting grid is the grid that has the common side, and the core dense-grid
is the grid that has the best density and is surrounded by sparse-grids. The
algorithm examines all grids to find core dense-grid, the neighbor grids,
which are sparse, are considered as noise. DCUStream finds clusters with
arbitrary shape, it outperforms many clustering methods, but it is time-
consuming.

PKS-Stream [Ren et al., 2011] is a Density and grid based clustering
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algorithm. the d-dimensional space is partitioned into small grids, then, to
every incoming data point is assigned a a density coefficient calculated at
each time t as follows:

d(t)(x) = 2−λ(t−t0),

where λ is the decay factor and t0 is the time of the beginning of the
stream. PKS-stream introduces the Pkstree, where each node of the tree
corresponds to a grid. The root of the Pks-tree contains a synopsis of the
space S of the data. All the other nodes contain a grid synopsis of the data
in a granularity i. The new incoming data point is mapped into the related
cell in every level of the Pks-tree.

Pks-tree is used for recording the non-empty cells and also the relation
between grids. If there is a grid cell for the data record, the data record
is inserted. Otherwise, a new grid cell is created in the tree. In the offline
phase, the algorithm clusters all the minimum cells located in the leaf-
node level by assigning neighboring dense grids with the same cluster
label.

DGClust [Gama et al., 2011] is a distributed clustering algorithm for
data streams generated in sensor networks, which reduces both the dimen-
sionality and the communication burdens. It allows every local sensor to
retain an online discretization of the streaming data. The data stream is
being incrementally discretized and sketched into a grid. Partitional in-
cremental discretization (PID) is applied to every sensor to simplifies and
summarizes the data stream then construct the final grid. DGClust per-
forms with a fixed update time and space.

Discussion

This section discusses the Merits and Limitation of grid-based stream clus-
tering algorithms. We list the limitations and the merits of each algorithm
in the following:

• CEDGM: -Merits: - Finds arbitrary shaped clusters and detects out-
liers. -Limitations: - Several parameters to set - Depends on the pa-
rameters setting

• PKS-Stream: -Merits: - Can handle high-dimensional datasets - Im-
proves computational complexity of the density algorithms - De-
pends on the parameters setting

• DCUStream: -Merits: - Lower time and memory complexity - Han-
dles uncertain data. -Limitations: - Can not handle high dimensional
datasets - Does not detect noise

• ExCC: -Merits: - Handles evolving data - Handles Noisy data - Clus-
ters categorical and numeric data. -Limitations: - Can not handle
high dimensional datasets - Limited time and memory.

• DGClust: -Merits: - The distribution ability makes the algorithm
scalable -Limitations: - Unable to find arbitrarily shaped clusters.
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4.3.5 Subspace algorithms

EDSSC [Sui et al., 2020] is a subspace clustering for high dimensional data
streams. It can cope with the time-varying nature of subspaces underlying
the evolving data streams, such as subspace emergence, disappearance,
and recurrence. EDSSC is a two-phase algorithm: the algorithm stores a
static summary called EDSSC summary in the first step. In the second
phase, the average sparsity concentration index (ASCI) is proposed to pro-
mote clustering accuracy. EDSSC introduces a new method to automati-
cally estimate the number of subspaces using singular-based Laplacian
matrix decomposition. Assuming a similarity matrix W of the data matrix
XdxN . The normalized Laplacian matrix is obtained as follows:

L = I−D−1/2WD−1/2

where D = diag(∑N
j=1[W]1j, .., ∑N

j=1[W]Nj), σi
N
i=1 are the eigenvalues of L.

The estimation of the number of subspaces is calculated as follows:

k = maxi(|φi|)N−1
i=2 − k0

where φi = loga(σ2
i /σi+1σi−1) and a > 1 is a constant, k0 = 0 if

σi+1σi−1 ≥ σ2
i and k0 = 1 otherwise.

The initial clustering is obtained by performing the k-means algorithm
on the first eigenvectors matrix. The first summary is initialized by the
points selected following a random sampling approach. For each new in-
coming point, a decision is made whether this point is an outlier or a
normal point. The algorithm follows the subspace evolution to detect its
recurrence, emergence, or disappearance.

CashStream [Borutta et al., 2020] is a subspace algorithm for cluster-
ing data streams. CashStream uses the Hough transformation [Scheid and
Schwarz, 2009] to perform an oriented subspace clustering. The Hough
transformation originally has been introduced for detecting linear seg-
ments in image data by mapping every object in data space. It can identify
the intersections of a specific amount of object functions. The related data
objects are located on a line segment in data space if such an intersection
exists.

Figure 4.14 – Left: data space, right: Hough space [Borutta et al., 2020]

After transforming the data points from the data space to the Hough
space, the algorithm finds the dense areas in the Hough space. It divides
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the space into a grid and then for each cell c, if the number of object
functions intersecting c is greater or equal than a pre-defined minPts
parameter, c is split. A grid cell c that is dense after maxSplit divisions
represents a cluster: the points corresponding to the functions intersecting
c form a cluster within a arbitrarily oriented (d− 1)-dimensional subspace.
CashStream detects subspace clusters of lower dimensions by processing
the resulting (d− 1)-dimensional dataset recursively until no more cluster
can be found.

CashStream introduces a new data structure to store the clusters called
Concept. A concept consists of the following components [Borutta et al.,
2020]:

• a set E containing d− l equations in Hessian normal form,

• mean µ of all data objects that are assigned to the cluster,

• number of data objects N that are assigned to the cluster,

• the timestamp t of the last update

• reference P to parent Concept of dimensionality l + 1, if l ≤ d - 1.

The algorithm uses an Aging function to give more importance to the
recent data. The importance of a concept C is calculated as follows:

I(C) = e−λ∆t.NC

where λ is the decay factor, ∆t is the difference between current time and
the timestamp of C. Nc is the number of data points assigned to C.
Two similar Concepts can also be merged using the Unification function.
The resulted concept C∗, which is the result of the Unification of C1 and
C2, is defined as follows:

• E∗i =
I(C1).nE1,i+I(C2).nE2,i

2 .x +
I(C1).rE1,i+I(C2).rE2,i

2

• µC∗ =
I(C1).µC1+I(C2).µC2

2

• NC∗ = NC1 + NC2

• tC∗ = tC1

• parent(C∗) = parent(C1)

SubClusTree [Hassani et al., 2014] is an anytime grid-based subspace
clustering version of LiarTree that also finds hidden clusters in the sub-
spaces of the stream at any time. It can adapt to the different stream
speeds and makes the best use of available time to provide a high-quality
subspace clustering. Each subspace is represented by a Liar-tree, which is
a structure where the micro-clusters are stored hierarchically. The micro-
clusters in any higher level of the tree are bigger and less in number than
the ones in lower levels. The most fine-grained microclusters are stored in
the leaf level of the tree.
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Figure 4.15 – The main insertion and model concept of LiarTree [Hassani and Seidl,
2016]

SubClusTree uses a forest of multiple liar-trees as its data structure.
Each incoming data point is inserted into all one-dimensional trees. If
the stream idles, the data point is also inserted into the next higher di-
mensional tree. Popular subspaces are decided over a certain batch us-
ing a heuristic that decides potential higher-dimensionality subspaces as
the combination of popular lower-dimensional subspaces in an Apriori-
like method. The heuristic used by SubClusTree estimates the density of
flexible grids to efficiently distinguish the populated higher-dimensional
subspaces from irrelevant ones [Hassani and Seidl, 2016].

HDDStream [Ntoutsi et al., 2012b] is the first algorithm for density-
based projected clustering over high dimensional data streams; it intro-
duces the notion of preferred dimension. A micro-cluster prefers a di-
mension if data points are denser along this dimension. This preference
is controlled by a parameter ∆ called variance threshold. A dimension
preference vector of a micro-cluster is defined by the number of preferred
dimensions. The micro-clusters with dimension preference vector is called
projected micro-cluster, which shows that the micro-cluster is associated
with only a subspace of feature space. The algorithm has online and offline
phases. It uses an exponential fading function to remove expired points.
The PreDeCon algorithm [Bohm et al., 2004] is used to extract the initial
set of micro-clusters and to generate the final clusters in the offline phase.
One of the inconveniences of this algorithm is that in the fading function,
only micro-cluster weights are updated. The preferred vector should also
be checked because it may change over time.

PreDeConStream [Hassani et al., 2012] improves the HDDStream al-
gorithm by working on the offline phase. It uses a micro-clustering pro-
cess Similar to DenStream [Amini and Wah, 2010]. This algorithm also
introduces a subspace preference vector, which is defined based on the
variance of micro-clusters and their neighbors. The subspace prefers vec-
tors of the neighbors of newly inserted potential micro-clusters, as well as
deleted potential micro-clusters, are updated and put in a list as affected
micro-clusters. The affected micro-cluster list is used in the offline phase
as expanding clusters to improve the efficiency of the offline phase.

Sibling Tree [Park and Lee, 2007] is a grid-based subspace cluster-
ing algorithm. It assigns for each feature a list of cells called a sib-
ling list. Then the second level of lists monitors dense grids in two-
dimensional subspaces. Successively, additional lists are used to monitor
higher-dimensional cells. The algorithm incrementally updates the clus-
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tering solution and uses a fading window model to give more importance
to recent data.

Discussion

This section discusses the Merits and Limitation of subspace stream clus-
tering algorithms. We list the limitations and the merits of each algorithm
in the following:

• EDSSC: -Merits: - Adapts and detects the evolution of a subspace
- Automatically detects the number of subspaces - Detects outliers
-Limitations: - Depends on k-means in the initialization phase.

• CashStream: -Merits: - Oriented subspace detection - Finds clusters
in arbitrary shapes -Limitations: - Costly in time and memory.

• SubClusTree: -Merits: - Handles High-dimensional data - Detects
clusters in different-density data - Flexible to variying time al-
lowances between data points -Limitations: - The use of liar-trees
makes the algorithm not scalable.

• HDDStream: -Merits: - Detects ouliers -Limitations: - Unable to de-
tect overlapping clusters and subspaces.

• PreDeConStream: -Merits: - Arbitrary shaped clusters detected -
Adapts to the data stream evolution -Limitations: - Depends on the
paramaters setting.

4.3.6 Evolutionary algorithms

evoStream [Carnein and Trautmann, 2018] (Evolutionary Stream Cluster-
ing) makes use of an evolutionary algorithm to bridge the gap between
the online and offline components. Evolutionary algorithms are inspired
by natural evolution where promising solutions are combined and slightly
modified to create offsprings, which can yield an improved solution. By
iteratively selecting the best solutions, an evolutionary pressure is cre-
ated, which improves the result over time. evoStream uses this concept to
enhance the macro-clusters through recombinations and small variations
iteratively. Since macro-clusters are created incrementally, the evolution-
ary steps can be performed while the online components wait for new
observations, i.e., when the algorithm would usually idle. As a result, the
computational overhead of the offline part is removed, and clusters are
available at any time. The online component is similar to DBSTREAM
[Hahsler and Bolaños, 2016] but does not maintain a shared-density since
it is not necessary for reclustering.

evoStream is based on DBSTREAM [Hahsler and Bolaños, 2016]
(Density-based Stream Clustering), which uses the shared density between
two micro-clusters to decide whether micro-clusters belong to the same
macro-cluster. A new observation is merged into micro-clusters if it falls
within the radius from their center. Subsequently, the centers of all clusters
that absorb the observation are updated by moving the center towards x.
If the point is not assigned to a cluster, it is used to initialize a new micro-
cluster. Additionally, the algorithm maintains the shared density between
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two micro-clusters as the density of points in the intersection of their radii,
relative to the size of the intersection area. In regular intervals, it removes
micro-clusters and shared densities whose weight decayed below a respec-
tive threshold. In the offline component, micro-clusters with high shared
density are merged into the same cluster.

evoStream was used in [Supardi et al., 2020] to detect outliers in a data
stream. The goal of this method is to treat the distinct data object as an
outlier detection problem compared than the categorization problem.

HDCStream [Amini et al., 2014] (hybrid density-based clustering for
data stream) first combined grid-based algorithms with the concept of
distance-based algorithms. In particular, it maintains a grid where dense
cells can become micro-clusters as known from distance-based algorithms
(see Section 4). Each observation in the stream is assigned to its closest
microcluster if it lies within a radius threshold. Otherwise, it is inserted
into the grid instead. Once a grid-cell has accumulated sufficient density,
its points are used to initialize a new micro-cluster. Finally, the cell is no
longer maintained, as its information has been transferred to the micro-
cluster. In regular intervals, all micro-clusters and cells are evaluated and
removed if their density decayed below a respective threshold. Whenever
a clustering request arrives, the microclusters are considered virtual points
to apply DBSCAN [Ester et al., 1996]. The algorithm consists of three steps:
(1) Merging or mapping: the new data point is added to an existing mini-
cluster or mapped to the grid. (2) Pruning Grids and Mini-clusters: the
grids cells, as well as mini-cluster weights, are periodically checked in
pruning time. The periods are defined based on the minimum time for a
mini-cluster to be converted to an outlier. The mini-clusters with weights
less than a threshold are discarded. (3) Forming final clusters: final clusters
are created based on mini-clusters, which are pruned. Each mini-cluster is
clustered as a virtual point using a modified DBSCAN.

FlockStream is a bio-inspired algorithm for clustering data stream
Kennedy [2006] simulating the behavior of a group of birds in flight. Boid
is the abbreviation of the word bird-oid (which means in the form of a
bird). These boids are interacting and follow certain rules:

• cohesion to form a group, the boids are getting closer to each other

• separation 2 boids can not be in the same place at the same time

• alignment to stay grouped, boids try to follow the same path

FlockStream uses agents to mimic the behavior of boids. Each point
is associated with an agent. An agent can be of three types: basic, p-
representative (potential micro cluster), or co-representative (outlier mi-
crocluster, it can become p-representative if adding points, its weight ex-
ceeds a threshold). In the initialization phase, a set of basic agents is
deployed in In space, the agents that have a great similarity approach
(cohesion) form a cluster, while the other agents separate. The Euclidean
distance is used to calculate the dissimilarity between agents. Agents can
leave one group to join another with more similar agents. at the end of this
phase, a summary for each cluster is calculated, and the other two types
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of agents appear p-representative and o-representative. In the second step,
a mass of data stream is inserted. In this phase, the agents are updated as
follows:

• if an o-representative or p-representative meets another representa-
tive, if their distance is less than a threshold, then they join to form
a swarm (cluster)

• a basic agent A meets a representative R, if their calculated distance
is lower than a threshold, A is absorbed by R

• a basic agent meets another, so if their similarity is less than a thresh-
old, he joins to form an o-representative.

Discussion

This section discusses the Merits and Limitation of evolutionary stream
clustering algorithms. We list the limitations and the merits of each algo-
rithm in the following:

• evoStream: -Merits: - Use idle times to improve the clustering qual-
ity - Output clusters at any time - Detection of outliers -Limitations:
- Requires the set of the clusters number - Not suitable for high di-
mensional data.

• DBStream: -Merits: - Use the shared density between clusters to de-
termine if two clusters can be merged - Robust to noise -Limitations:
- Several parameters need to be set - Depends on the insertion order
of the data points.

• HDCStream: -Merits: - Handles outliers - Improves the computation
time and quality -Limitations: - Unable to detect variant levels of
density - Can not handle high dimensional data.

• FlockStream: -Limitations: - Detects outliers - lower time complexity
- Unable to handle high dimensional data.

4.3.7 GNG-based clustering algorithms

The Incremental Growing Neural Gaz [Prudent and Ennaji, 2005] algo-
rithm has been proposed to follow the evolution of the graph. The method
creates a new node each time the distance between the new data point
and the existing node is higher than a threshold. This threshold value is
a global parameter that corresponds to the average distance of the data
to the center of the dataset. It has to be pre-defined, which makes it dif-
ficult to guess the right parameter to make the graph grow correctly. To
resolve this weakness, I2GNG [Hamza et al., 2008] associates a threshold
variable to each neuron. The only problem is that those thresholds have to
be initialized at the beginning of the process.

AING [Bouguelia et al., 2013] is an incremental GNG that introduces
an adaptive parameter-free distance threshold. It automatically learns the
distance thresholds of nodes based on its neighbors and data points as-
signed to the node of interest. The algorithm overcomes the shortcoming
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of excessive number of neurons by condensing them based on a prob-
abilistic criterion and building a new topology with a fewer number of
neurons, thus preserving time and memory resources.

Authors in [Ghesmoune et al., 2015] propose G-Stream based on grow-
ing neural gas. By introducing the notion of the reservoir to save distant
points temporarily and applying a fading function, nodes can be created
or removed during the learning process.

4.4 Comparison between Data Stream Clustering Algo-
rithms

Table (4.1) and Table (4.2) list the differences between some clustering data
stream methods. We presented two different comparisons. The first one
compares the stream clustering algorithms based on their performances
(scalability, the efficiency with high dimensional datasets, etc.). The sec-
ond comparison is based on each algorithm’s process, i.e., whether they
remove, merge or split clusters, use fading or use a two-phase process.
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Table 4.1 – Comparison Between Data Stream Clustering Algorithms

Algorithm Method Scalability HDD1 Data Type ABS2

SHC Hierarchical 7 7 Numerical 3

ODAC Hierarchical 3 3 Time series 3

ClusTree Hierarchical 3 3 Numerical 7

E-Stream Hierarchical 3 3 Numerical 3

HUE-Stream Hierarchical 3 3 Mixed 3

CluStream Partitioning 3 7 Numerical 7

RCD+ Partitioning N/A* 7 SQL Queries 7

HP-Stream Partitioning 3 7 Numerical 7

SWClustering Partitioning N/A N/A Numerical 7

Stream KM++ Partitioning N/A 3 Numerical 7

StrAP Partitioning 3 N/A Numerical N/A
DCDGA Density 7 7 Numerical 3

CEC Density 7 7 Numerical 3

DenStream Density 3 7 Numerical 3

SDStream Density 3 7 Numerical 3

StreamOptics Density 3 7 Numerical 7

CEDGM Grid 7 7 Numerical 3

DGStream Grid N/A N/A Numerical 3

ExCC Grid 3 3 Mixed 3

DGClust Grid 3 3 Numerical N/A
PKS-Stream Grid 3 3 Numerical 7

EDSSC Subspace 3 3 Numerical 7

CashStream Subspace 3 3 Numerical 3

SubClustTree Subspace 3 3 Numerical 7

HDDStream Subspace 3 3 Numerical 3

evoStream Evolutionary N/A 7 Numerical 3

HDCStream Evolutionary 3 7 Numerical 3

FlockStream Evolutionary 3 7 Numerical 3
1 High Dimensional Data
2 arbitrary-shaped clusters
* N/A: not available
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Table 4.2 – Comparison between the processes of each data stream clustering algorithm

Algorithm Phases Remove Merge Split Fade
SHC online/offline 3 3 3 3

ODAC online 7 3 3 7

ClusTree online 3 3 3 3

E-Stream online/offline 3 3 3 3

HUE-Stream online/offline 3 3 3 3

CluStream online/offline 3 3 3 3

RCD+ online 7 3 3 7

HP-Stream online 3 7 7 3

SWClustering online/offline 3 3 3 3

Stream KM++ online/offline 3 3 3 3

StrAP online 3 3 7 7

DCDGA online 3 7 7 3

CEC online/offline 3 7 7 3

DenStream online/offline 3 7 7 3

SDStream online/offline 3 3 7 3

StreamOptics online/offline 3 3 7 3

CEDGM online 3 7 7 3

DGStream online/offline 3 3 3 3

ExCC online/offline 3 7 7 7

DGClust online 7 3 3 3

PKS-Stream online 3 7 7 3

EDSSC online 7 7 7 7

CashStream online 7 3 3 3

SubClustTree online/offline 3 7 7 7

HDDStream online/offline 3 3 7 3

evoStream online/offline 3 3 7 3

HDCStream online/offline 3 3 7 3

FlockStream online 3 3 7 3

High Dimensional Data
Arbitrary-shaped clusters

4.5 Conclusion

In this chapter, we presented the concept of stream data, which can only
be processed in one pass and must be analyzed following its order while
respecting time and memory restrictions. We presented some processing
techniques (One-pas, online/offline, time windows) and summarization
(Random sampling, Sketching, Micro-clusters, Histograms, and Wavelets)
of the stream data. We also defined the techniques of Dimensionality re-
duction and Load-shedding on stream data.

After presenting the techniques, we surveyed many representatives
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and recent state-of-the-art algorithms for data stream clustering. These al-
gorithms are categorized according to the nature of their underlying clus-
tering approach, including hierarchical, partitioning, density, grid-based
stream methods, Evolutionary and subspace clustering algorithms. We
performed a detailed comparison of these algorithms.
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5Subspace Data Stream

Clustering with Global and

Local Weighting Models

5.1 Introduction

Subspace clustering discovers clusters embedded in multiple, overlap-
ping subspaces of high dimensional data. It has been successfully applied
in many domains. Data streams are ordered and potentially infinite se-
quences of data points created by a typically non-stationary data gener-
ating process. Clustering this type of data requires some restrictions in
time and memory. In this section, we propose the S2G-Stream algorithm
based on growing neural gas and soft subspace clustering. We introduce
two types of entropy weighting for both features and blocks, and also
two weighting models (local and global). Experiments on public datasets
demonstrated the ability of S2G-Stream to detect relevant features and
blocks and to provide the best partitioning of the data.

5.2 Proposed Method

In this section we introduce S2G-Stream based on the Growing Neural Gas
(GNG) model taking into account the block structuring of features. We as-
sume that features and blocks of features contribute at different levels to
the determination of clusters. These contributions made by the features
and blocks in each class are then measured by weights. We assume that
the data stream consists in a sequence X = {x1, x2, ..., xn} of n (potentially
infinite) elements arriving at times t1, t2, ..., tn, where xi = (x1

i , x2
i , ..., xd

i ). At
each time, S2G-Stream is represented by a graph C with K nodes, where
each node represents a cluster. Each node c ∈ C is associated with: (1) A
prototype wc = (w1

c , w2
c , . . . , wd

c ) representing its position (2) A weight πc
(3) An error variable error(c) representing the distance between this node
and the assigned data points. For each pair of nodes (r, c), we denote the
shortest path linking r and c by δ(c, r) the length of the shortest chain link-
ing r and c on the graph. KT(δ) = K(δ/T) is the neighborhood function,
T controls the width of K.

Based on [Ouattara et al., 2013, Chen et al., 2012], S2G-Stream intro-
duces a double weighting system for features denoted by β and subspaces
denoted by α. From the two types of weights, the subspaces of clusters
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can be revealed. We propose two types of weighting: the local weighting
model (LWM), where the clusters influence the weights, and each feature
and block have different weight vector for each cluster. And the global
weighting model (GWM) where the weights are independent of the clus-
ters, each feature and block have the same weight vector. Table (5.1) de-
scribes notations used in our method S2G-Stream.

Notation Description
X = {x1, x2, ..., xn} n Data Stream
xi = (x1

i , x2
i , ..., xd

i ). d-dimensional data point
wc = (w1

c , w2
c , . . . , wd

c ) Prototype of node c
πc Weight of node c

error(c) Accumulated error for node c
δ(c, r) Shortest path linking c and r

P Number of blocks
α Matrix of block weights
β Matrix of feature weights

λ and η
Adjustment parameters for feature and block

weights
γ Decay factor

πmin the minimum weight of a node
τage edge age growth rate

agemax maximum age of an edge
µ the number of nodes to add

bmu1 and bmu2
best matching units (the nearest and second nearest

nodes)

φ(xi)
assignment function (cluster corresponding to data

point) xi

Table 5.1 – Notations used in S2G-Stream

Main contribution

In the previous work [Ghesmoune et al., 2015], authors consider all fea-
tures equally important to the clustering task. However, some features or
subspaces of features might be more influential to the clustering process.
Our contribution in this chapter is to introduce a double weight system
to make relevant features and subspaces contribute more to the clustering
process. The contribution is made by introducing the weights into the cost
function of our algorithm. In our previous works, [Attaoui et al., 2019b;a],
we proposed a local weighting model that depends on each cluster. The
weights are different from one cluster to another, which makes it difficult
to obtain scores to compare subspaces and features. Therefore, further ex-
periments could not be conducted. The method presented in this chapter
has the following merits compared to the previous works:

• The introduction of the Global and Local Weighting Model. We used
these weights as scores to conduct more experiments. The subspace
clustering method with the Global Weighting Model was used as a
dimensionality reduction method.
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• For the stream subspace clustering, more tests were conducted in
this chapter to respond to the following questions: Does the order of
data significantly impact the data stream analyzes? Does the overlap
between data windows impact the data stream analyzes? Is the type
of weighting model important for the clustering process?

Cost function

Based on [Chen et al., 2012] and [Ouattara et al., 2013], we propose to
minimize the new cost function defined below for data batch X (t+1) =
{X1, X2, ..., Xt+1} with two weighting models. Figure 5.1 illustrates the dif-
ference between the two weighting models presented below.

Local Weighting Model (LWM)

In local weighting model, α is a K × P matrix where αb
c is the weight of

block b in node c of X . β is a K × d matrix where βb is a K × db matrix,
where β

j
cb(j = 1, ..., db) is the weight of the jth feature in block b for node c

with ∑db
j=1 β

j
cb = 1 and ∑P

b=1 αb
c = 1, ∀c ∈ C.


(t+1)
(LWM)

(φ,W , α, β) = ∑
c∈C

∑
b∈P

∑
xi∈X (t+1)

KT(δ(c, φ(xi)))α
b
cDβcb + Jcb + Ic

(5.1)

Where:

Ic = λ
P

∑
b=1

αb
c log(αb

c)

Jcb = η
db

∑
j=1

β
j
c log(β

j
c)

And:

Dβcb =
db

∑
j=1

β
j
c(xj

i −ω
j
c)

2

Ic and Jcb respectively represent the weighted negative entropies asso-
ciated with the block weight vectors and the feature weight vectors. The
parameters λ and η are used to adjust the relative contributions made by
the features and blocks to the clustering.

Global Weighting model (GWM)

In order to see if the weights can be meaningful and show the importance
of blocks and features when these weights are independent from proto-
types W , we present in new cost function eq. (5.2) another cost function
where the weights α and β are global and does not depend on prototypes
W .

For this model, α is a 1× P matrix where αb is the weight of block b. β

is a 1× d matrix where βb is a 1× db matrix, where β
j
b(j = 1, ..., db) is the

weight of the jth feature in block b with ∑db
j=1 β

j
b = 1 and ∑P

b=1 αb = 1.
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
(t+1)
(GWM)

(φ,W , α, β) = ∑
c∈C

P

∑
b=1

∑
xi∈X (t+1)

KT(δ(c, φ(xi)))αbDβb + Jb + I (5.2)

Where

I = λ
P

∑
b=1

αb log(αb)

Jb = η
db

∑
j=1

βj log(βj)

And

Dβb =
db

∑
j=1

βj(xj
i −ω

j
c)

2

Figure 5.1 – Difference between Global and Local Weighting models. αb
c is the weight of

the subspace b in the node c and β
j
cb(j = 1, ..., db) is the weight of the jth feature in the

subspace b for the node c. wc is the prototype of node c.

Optimization Algorithm

The optimization of the cost function is performed alternately for each
batch X (t+1) in four steps corresponding to the four parameters W , φ, α
and β:

1. Assignment function: For a fixed W , α and β, the assignment
function φ(xi) is described below for both local and global weight-
ing models. In order to reduce the computational cost, neighboring
nodes are not considered in the assignment.
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• Local Weighting model

The assignment function for LWM is described in Equation (5.3)

φ(xi) = arg min
c∈C

(
P

∑
b=1

αb
c

db

∑
j=1

β
j
c

(
xj

i −ω
j
c

)2
)

(5.3)

• Global Weighting model

The assignment function for GWM is described in Equation (5.4)

φ(xi) = arg min
c∈C

(
P

∑
b=1

αb

db

∑
j=1

βj
(

xj
i −ω

j
c

)2
)

(5.4)

2. Update prototypes W : For a fixed φ, α and β the prototypes wc
are updated for every batch of data following the equation defined
below. Since the prototypes are independent of the weights, we have
only one update function for both models.

w(t+1)
c =

w(t)
c n(t)

c γ + ∑r∈C KT(δ(r, c))w(t)
r m(t)

r

n(t)
c γ + ∑r∈C KT(δ(r, c))m(t)

r

(5.5)

where w(t)
c is the previous prototype, n(t)

c is the number of points
assigned to the cluster, w(t)

r is the previous prototype for the cluster
r (which is a neighbor of c) and m(t)

r is the number of points added
to the cluster r in the current batch: n(t+1)

c = n(t)
c + m(t)

c .

3. Update weights α for a fixed φ, W and β, we minimize the objec-
tive function (5.1) with respect to αb

c the weight of block b in the
c-th cluster. Since there exists a constraint ∑P

b=1 αb
c = 1. We form

the Lagrangian by isolating the terms which contain α and adding
Lagrangian multipliers µ as follows:

LLWM(α, λ) = (t+1)(φ,W , α, β)− ∑
b∈P

µc(
P

∑
b=1

αcb − 1) (5.6)

Taking the derivative with respect to αb
c and setting it to zero yields

a minimum of αb
c as follows.

• Local Weighting model

αb
c =

e
−Dcb

λ

∑P
s=1 e

−Dcs
λ

(5.7)

with

Dcb = ∑
xi∈X (t)

KT(δ(φ(xi), c))
db

∑
j=1

β
j
c

(
xj

i − wj
c

)2
(5.8)

• Global Weighting model
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αb
c =

e
−Db

λ

∑P
s=1 e

−Ds
λ

(5.9)

with

Db = ∑
xi∈X (t)

KT(δ(φ(xi), c))
db

∑
j=1

βj
(

xj
i − wj

c

)2
(5.10)

4. Update weights β: for a fixed φ,W and β, we minimize the objective
function (5.1) with respect to β

j
cb (the weight of feature j of block b

in the c − th cluster). Since there exist a constraint ∑db
j=1 β

j
cb = 1.

We form the Lagrangian by isolating the terms which contain β and
adding Lagrangian multipliers µ as follows:

LLWM(α, λ) = (t+1)(φ,W , α, β)− ∑
c∈C

µcb(
db

∑
j=1

β
j
cb − 1) (5.11)

Taking the derivative with respect to β
j
cb and setting it to zero yields

a minimum of β
j
cb as follow:

• Local Weighting model

The update function for LWM is presented in Equation (5.12)

β
j
c =

e
−Ej

c
η

∑h∈Pj
e
−Eh

c
η

(5.12)

with
Ej

c = ∑
xi∈X (t)

α
bj
c KT(δ(φ(xi), c))

(
xj

i − wj
c

)2
(5.13)

where bj is the block where the jth feature belongs.

• Global Weighting model

The update function for GWM is presented in Equation (5.14):

β j =
e
−Ej

η

∑h∈Pj
e
−Eh

η

(5.14)

with
Ej = ∑

xi∈X (t)

αbjK
T(δ(φ(xi), c))

(
xj

i − wj
c

)2
(5.15)

S2G-Stream algorithm

S2G-Stream aims at extending the G-Stream algorithm [Ghesmoune et al.,
2016a] to subspace clustering by introducing block and feature entropy
weighting. Starting with two nodes, and as a new data point is available,
we link the nearest and the second-nearest nodes by an edge. The nearest
node with its topological neighbors is moved towards the data point. We
present below the main functions of the S2G-Stream algorithm.
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Fading function

Most data stream algorithms consider most recent data as more important
and reflect better the changes in the data distribution. For that, the no-
tion of time windows is used. There are three window models commonly
studied in data streams: landmark, sliding and damped [Zhu and Shasha,
2002]. We consider the damped window model, in which the weight of
each node decreases exponentially with time via a fading function by in-
troducing a decay factor parameter 0 < γ < 1.

π
(t+1)
c = π

(t)
c γ (5.16)

If the weight of a node is less than a threshold value, this node is consid-
ered outdated and removed (along with its links).

Edge management

An edge linking two nodes can be strengthened or removed. Its age grows

with the exponential function 2τ
(t−t0)
age , where τage > 0 defines growth rate

of the age over time, t denotes the current time and t0 is the creation time
of the edge. A new edge can be added to connect two nodes. It can be
removed if it exceeds the maximum age.

Algorithm 8 Edge Management
-Increment the age of all edges emanating from bmu and weight them;
-Create an edge between bmu1 and bmu2. If it already exists:
set its age to zero ;
-Remove the edges whose age is greater than agemax;

Node insertion

Nodes can be inserted into the graph between the two nodes having the
highest error value. If the weight of a node is lower than a threshold value,
then this node is considered as outdated and removed (along with its
links). Figure 5.2 illustrates the process of insertion of 3 nodes. The de-
scription of node Insertion process can be found in Algorithm (9)
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Figure 5.2 – An insertion of 3 nodes during the same time window.

Algorithm 9 Node Insertion
-Find the node q with the largest error and its neighbor f with the largest
accumulated error;
-Add the new node r between nodes q and f : wr = 0.5(wq + w f ) ;
-Decrease the error variables of q and f by multiplying them by a constant
υ where 0 < υ < 1 and assign to r the error value of q ;
-Decrease the error of all nodes by multiplying them by a constant s, and
remove isolated nodes ;

The complete description of the S2G-Stream algorithm can be found in
Algorithm (10).
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Algorithm 10 S2G-Stream
input : X = {x1, x2, ..., xn}, πmin, τage, agemax, d, η, λ, µ, γ, P
output : prototypes:W = {w1, w2, .., wn}, feature weights matrix β and subspace

weights matrix α
Initialize the graph with two nodes, initialize α and β weights randomly;

while there is a micro-batch to proceed do
-Get the micro-batch of data points arrived at time interval t ;

for each data-point in the current micro-batch do
Assignment Step

-Find the nearest and second nearest nodes bmu1 and bmu2 ;
-Assign each point to the closest center (bmu1) following Equation (5.3)
for LWM and Equation (5.4) for GWM;
Update Step
-Update the new centroid as described in Equation (5.5) ;
Edge Management following Algorithm (8)
-Update the error of each node: error(bmu1) = error(bmu1) +

||xi − bmu1||2;
Fading Function

Add Nodes following Algorithm (9)

Update weights
-LWM model: update feature weights α following Equation (5.7) and
block weights β following Equation (5.12);
-GWM model: update feature weights α following Equation (5.9) and
block weights β following Equation (5.14);

5.3 Experimental Results

Datasets and Quality Criteria

The S2G-Stream method described in this article was implemented in
Spark/Scala and is available on Clustering4Ever github repository1. We
evaluated clustering quality of S2G-Stream on several synthetic and real
dataset. Synthetic datasets are DS1 and DS2 generated using this tools 2.
The real datasets were taken from the UCI repository [Frank and Asun-
cion, 2010] and are described below:

• Waveform: Each class is generated from a combination of 2 of 3 "base"
waves, the second 20 features contains noise (mean 0, variance 1).

• Image Segmentation(IS): Image data described by high-level
numeric-valued attributes. The instances were drawn randomly
from a database of 7 outdoor images. The images were hand-
segmented to create a classification for every pixel. Each instance is
a 3x3 region.

• Cardiotocography(CTG): 2126 fetal cardiotocograms(CTGs) were au-
tomatically processed and the respective diagnostic features mea-
sured. The CTGs were also classified by three expert obstetricians
and a consensus classification label assigned to each of them.

1https://github.com/Clustering4Ever/Clustering4Ever
2http://impca.curtin.edu.au/local/software/synthetic -data-sets.tar.bz2
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• pendigits: Pen-based recognition of handwritten digits data, set-digit
database of 250 samples from 44 writers.

Dataset Number of Features Number of Blocks Number of
Instances

Waveform 40 2 (20,20) 5000

CTG 21 3 (7,4,10) 2126

IS 19 2 (9,10) 2310

pendigits 17 2 (10,7) 10992

DS1 2 / 9153

DS2 2 / 5458

Table 5.2 – Description of datasets used in experimentation

For the quality measures, we used Normalized Mutual Information
(NMI) [Strehl and Ghosh, 2002] and Adjusted Rand index (ARAND) [Hu-
bert and Arabie, 1985] described in Section 3.2.2.

Experimental Settings

Assuming large high-dimensional data arrives as a continuous stream,
S2G-Stream divides the streaming data into batches and processes each
batch continuously. The batch size depends on the available memory and
the size of the original dataset. We set the time interval between two
batches to 1 second. The parameters of S2G-Stream are described in ta-
ble (5.1). We repeated our experiments with different initialization and
have chosen those giving the best results. We set µ = 3, γ = 0.99 and
agemax = 250. λ and η and the batch size for each dataset are described in
Table (5.3). The weights α and β are initialized randomly under the two
constraints ∑db

j=1 β
j
cb = 1 and ∑P

b=1 αb
c = 1, ∀c ∈ C.

Datasets λ η |Batch|
Waveform 5 15 100

IS 3 31 100

CTG 7 11 100

pendigits 3 17 1000

DS1 7 11 300

DS2 7 11 300

Table 5.3 – Initialization of parameters λ and η and batch size for each dataset

Clustering Evaluation

To show the effectiveness of our method, we compared it to different
subspace and stream clustering algorithms. As stream clustering meth-
ods we chose CluStream and DStream from R package streamMOA3. For
subspace clustering methods, we implemented 2S-SOM [Ouattara et al.,
2013] in the Scala language, and the code is available on the C4E GitHub
repository. We compared the method to CLIQUE4, PROCLUS5, and W-K-

3https://github.com/mhahsler/streamMOA
4https://github.com/georgekatona/Clique
5https://github.com/OguzhanOktay-Buyuk/PROCLUS-Python3
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means6. We also compared our method to the GNG algorithm. For each
algorithm, we repeated the experiments 10 times on each dataset. The
results are reported in Table (5.4) and Table (5.5). It is noticeable that S2G-
Stream gives better results than the other methods except for DStream on
CTG and Waveform with NMI metric and on CTG and DS1 with ARAND
metric.

We observe that the global weighting model of S2G-Stream(GWM) per-
forms better than the Clustream algorithm. But DStream gives better re-
sults in most cases. These results are since S2G-Stream detects noisy fea-
tures, which allows relevant features to contribute more to clustering. The
notion of fading also improves the clustering quality of our method com-
pared to the other methods by reducing the impact of irrelevant data. For
the subspace clustering methods, our method outperforms most of the
methods except for CLIQUE on the wave f orm dataset with ARAND met-
ric, and W-K-means on CTG with ARAND metric. We recall that all the
subspace algorithms and GNG make several iterations on data while all
our algorithm makes just one pass over the data. The four subspace clus-
tering algorithms provide good detection of relevant subspace, but the
clustering process is unable to detect noise and arbitrary shaped clusters.
Our method detects both relevant subspaces and features. Those detected
subspaces contribute to the clustering process to improve the clustering
quality.

Dataset Metrics S2G-Stream
(LWM)

S2G-Stream
(GWM) GNG CluStream DStream

waveform NMI
ARAND

0.397±0.002

0.137±0.007

0.355±0.018

0.339±0.021
0.306±0.078

0.006±0.103

0.393±0.065

0.010±0.001

0.434±0.003
0.040±0.001

IS NMI
ARAND

0.550±0.05
0.418±0.04

0.364±0.039

0.183±0.006

0.542±0.010

0.102±0.051

0.506±0.065

0.098±0.010

0.435±0.07

0.134±0.002

CTG NMI
ARAND

0.270±0.009

0.124±0.005

0.237±0.023

0.092±0.018

0.375±0.004

0.030±0.011

0.086±0.06

0.019±0.008

0.471±0.170
0.209±0.002

pendigits NMI
ARAND

0.672±0,038
0.408±0.060

0.362±0.011

0.128±0.007

0.585±0.019

0.027±0.085

0.285±0.099

0.011±0.006

0.554±0.15

0.016±0.011

DS1 NMI
ARAND

0.737±0.222
0.299±0.106

0,369±0.008

0,114±0.008

0.622±0.037

0.042±0.032

0.643±0.029

0.109±0.031

0.639±0.009

0.406±0.006

DS2 NMI
ARAND

0.677±0.111
0.303±0.071

0,286±0,010

0,097±0,004

0.640±0.063

0.063±0.033

0.334±0.113

0.127±0.088

0.483±0.017

0.060±0.019

Table 5.4 – Comparing S2G-Stream Local (LWM) and Global Weighting Model (GWM)
with different stream algorithms and GNG. The first value is the average of 10 repetitions
followed by the standard deviation.

6https://github.com/Yanis2016/Weighted-K-Means-clustering
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Dataset Metrics
S2G-Stream

(LWM)
S2G-Stream

(GWM)
2S-SOM CLIQUE PROCLUS W-K-means

waveform
NMI

ARAND
0.397 ± 0.002
0.137 ± 0.007

0.355 ± 0.018

0.339 ± 0.021

0.060 ± 0.01

0.097 ± 0.01

0.381 ± 0.5
0.345 ± 0.3

0.17 ± 0.04

0.163 ± 0.03

0.335 ± 0.07

0.313 ± 0.02

IS
NMI

ARAND
0.550 ± 0.05
0.418 ± 0.04

0.364 ± 0.039

0.183 ± 0.006

0.091 ± 0.06

0.023 ± 0.01

0.372 ± 0.04

0.104 ± 0.00

0.120 ± 0.13

0.058 ± 0.07

0.228 ± 0.09

0.228 ± 0.08

CTG
NMI

ARAND
0.270 ± 0.01
0.124 ± 0.005

0.237 ± 0.023

0.092 ± 0.018

0.200 ± 0.07

0.017 ± 0.08

0.024 ± 0.00

0.008 ± 0.05

0.056 ± 0.02

0.036 ± 0.01

0.192 ± 0.04

0.132 ± 0.00

pendigits
NMI

ARAND
0.672 ± 0.038
0.408 ± 0.060

0.362 ± 0.011

0.128 ± 0.007

0.033 ± 0.03

0.017 ± 0.06

0.255 ± 0.00

0.002 ± 0.00

0.367 ± 0.43

0.305 ± 0.40

0.222 ± 0.05

0.162 ± 0.04

DS1

NMI
ARAND

0.737 ± 0.222
0.299 ±0 .106

0.369 ± 0.008

0.114 ± 0.008

0.210 ± 0.00

0.087 ± 0.01

0.387 ± 0.08

0.147 ± 0.09

0.315 ± 0.09

0.119 ± 0.05

0.418 ± 0.19

0.202 ± 0.09

DS2

NMI
ARAND

0.677 ± 0.111
0.303 ± 0.071

0.286 ± 0.010

0.097 ± 0.004

0.127 ± 0.02

0.019 ± 0.00

0.301 ± 0.02

0.124 ± 0.02

0.379 ± 0.22

0.228 ± 0.17

0.256 ± 0.11

0.229 ± 0.04

Table 5.5 – Comparing S2G-Stream Local (LWM) and Global Weighting Model (GWM))
with different subspace algorithms. The first value is the average of 10 repetitions followed
by the standard deviation.

Figures (5.3), (5.4), (5.5), (5.6), (5.7) and (5.8) show a comparison of
our models to CluStream and DStream algorithms in terms of NMI and
ARAND for each window. For almost all cases, the NMI and ARAND
for S2G-Stream(LWM) are higher than for CluStream and DStream, except
for some windows and also some datasets (DStream on waveform with
NMI). This is due to the evolution of the nodes with S2G-Stream, and
its capacity to remove noisy points and outdated prototypes over time,
while the number of nodes of CluStream and DStream remains static. The
results of S2G-Stream(GWM) are better than those of CluStream on most
windows. DStream algorithm outperforms our second model (in certain
cases). S2G-Stream shows a greater ability to partition high-dimensional
data and is more stable in subspace clustering analysis.

(a) NMI Evolution (b) ARAND Evolution

Figure 5.3 – Evolution of NMI and ARAND for Waveform dataset compared with CluS-
tream and DStream algorithms.
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(a) NMI Evolution (b) ARAND Evolution

Figure 5.4 – Evolution of NMI and ARAND for IS dataset compared with CluStream
and DStream algorithms.

(a) NMI Evolution (b) ARAND Evolution

Figure 5.5 – Evolution of NMI and ARAND for CTG dataset compared with CluStream
and DStream algorithms.

(a) NMI Evolution (b) ARAND Evolution

Figure 5.6 – Evolution of NMI and ARAND for pendigits dataset compared with CluS-
tream and DStream algorithms.
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(a) NMI Evolution (b) ARAND Evolution

Figure 5.7 – Evolution of NMI and ARAND for DS1 dataset compared with CluStream
and DStream algorithms.

(a) NMI Evolution (b) ARAND Evolution

Figure 5.8 – Evolution of NMI and ARAND for DS2 dataset compared with CluStream
and DStream algorithms.

Detection of subspaces

For this section, we settled to two datasets Waveform and CTG since the
blocks of this datasets are defined in their descriptions. CTG dataset de-
scribes fetal cardiotocograms and is composed of 3 blocks. Block 1 contains
seven features related to the heart rate of a fetus. Block 2 contains four fea-
tures describing heart rate variability. Block 3 is composed of 10 features
defining histograms of fetal cardiography. Waveform dataset is composed
of 2 blocks of 20 features, where the second block is composed of noisy
features.

Local Weighting model

Figure (5.9) represents prototypesW , β weights and α weights for the final
batch of CTG dataset. We observe in Figure (5.9b) that weights of features
(8,9,10,11) which are respectively ASTV7, MSTV8, ALTV9 and MLTV10, are
higher than the weights of the other features for most clusters. We observe
that these 4 features influence better the clustering process and are more
important than the other features for most clusters. In Figure (5.9c), we
observe that weight α of the second block that contains these four features

7 percentage of time with abnormal short term variability
8mean value of short term variability
9percentage of time with abnormal long term variability

10mean value of long term variability
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is also higher than the weights of the other two blocks. We conclude from
this experiment that heart rate variability influences the clustering of fetal
cardiotocograms.

(a) PrototypesW (b) β weights (c) α weights

Figure 5.9 – Results of local weights α and β, and prototypes W for the final batch for
CTG dataset. Each color represent a node.

Figure (5.10) illustrates the capability of S2G-Stream to detect noise on
the Waveform dataset. It represents prototypes W , weights β, and weights
α for the final batch of Waveform dataset. We can clearly observe in Fig-
ure (5.10b) that weights of the first 20 features increase over time, while
weights of the 20 other features decrease. The weights of the 20 noisy
features are much lower than the weights of the other features. In Figure
(5.10c), weights α for block 1 are higher than the weights of block two,
which make sense since the second block contains only noisy features. We
can see that our algorithm assigns higher weights to the first 20 features,
while the weights of noisy features are lower.

(a) PrototypesW (b) β weights (c) α weights

Figure 5.10 – Results of local weights α and β, and prototypesW for the final batch for
Waveform dataset. Every color represent a node.

Global Weighting model

To show the effectiveness of the global weighting model, we report in
Figure (5.11) and Figure (5.12) the weights α, β and prototypes W for the
final batch for CTG and Waveform datasets, for multiple training epochs.
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For CTG dataset, the blocks are detected more accurately than by the
local weighting model. The weight of second block and the features con-
tained within it is always higher than the weights of the other blocks and
their features. Prototypes W is the same as in the first model since the
prototypes update function is the same for both models.

(a) PrototypesW (b) β weights (c) α weights

Figure 5.11 – Results of global weights α and β, and prototypesW for the final batch for
CTG dataset for the second weighting model.

For Waveform datasets, better blocks are also detected, but the model
assigns lower weights to some relevant features detected by LWM (fea-
tures 1 to 5). This is due to the fact that the model does not take into
consideration the nodes and their preferences. We can assume that the
first model is well adapted for this kind of datasets.

(a) PrototypesW (b) β weights (c) α weights

Figure 5.12 – Results of global weights α and β, and prototypesW for the final batch for
Waveform dataset for the second weighting model.

Feature Selection with GWM

Even if the results of GWM are lower than the results of LWM, as we see
in Table (5.4), GWM gave us a global weighting that we will use further to
select the best features. We can see here the importance of the GWM on
subspace detection.

Based on the previous experiments, we performed S2G-Stream on only
the reduced dataset i.e., only the relevant blocks from the dataset based on
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the average of block weights α. We present the NMI and ARAND results
compared with the results on the whole dataset in Figure 5.13. For the
CTG dataset, both NMI and ARAND results on the reduced dataset are
better than the results using all features and blocks. Block 1 with block
2 provides a lower ARAND value. We conclude that block 1 gives better
results compared to other blocks, which confirms previous results. For the
Wave f orm dataset, NMI and ARAND measured on the reduced dataset
(block 1) are higher than the whole dataset since the noisy features on
the whole dataset affect the results. The same results are observed on the
IS dataset. For pendigits, the results of NMI and ARAND on the reduced
dataset are lower, since both blocks contain features that are required for
the pen-based recognition.

(a) NMI (b) ARAND

Figure 5.13 – NMI and ARAND for all real datasets compared with results on reduced
datasets.

Clustering Evolution

Figure 5.14 shows an example of evolution of the graph S2G-Stream on
waveform dataset (using Sammon’s nonlinear mapping), as the data flows
(colored points represent labelled data points and black points represent
nodes of the graph with edges in black lines). We can clearly see that
S2G-Stream, beginning with two randomly chosen nodes (Figure 5.14(a)),
is able to recognize gradually the structure of the data stream (Figure
5.14(b,c)). At the end of the training we can observe that the topology re-
cover all the data structure (Figure 5.14(d)). It is noticeable that our method
manages to recognize the structures of the data stream and can separate
these structures with the best visualization. It can also detect arbitrary-
shaped clusters.
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(a) Batch 1 (b) Batch 15

(c) Batch 30 (d) Final Batch

Figure 5.14 – Evolution of graph creation of S2G-Stream on waveform dataset.

Execution time

Figure (5.15) shows the execution times of S2G-Stream and the other
stream clustering algorithms. We can notice that the CluStream algorithm
has the shortest execution time, but our method is faster than DStream
on all the datasets. In the meantime, S2G-Stream outperforms all the al-
gorithms based on the results shown above. This result shows that S2G-
Stream is nondominated across all datasets since no other algorithm yields
faster computation times. In other words, no other algorithm can produce
better results within equal or less time.
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Figure 5.15 – Execution time of S2G-Stream compared to other stream algorithms.

Evolving Data Streams

In order to demonstrate the effectiveness of S2G-Stream in clustering
evolving data streams, we evaluate in this subsection our method on the
same datasets used above where the points are ordered by their class (i.e.,
data points of the first-class arrive first, then the ones of the second, third,
etc.). The old classes disappear due to the use of the fading function. We
report in Table (5.6) results of S2G-Stream on datasets used above with
and without ordering classes. We ran both models in each case, on both
ordered and unordered datasets, compared to CluStream and DStream
based on NMI and ARAND measures. The results of this comparison are
presented in Figure (5.16) and (5.17).

We can see that the values of NMI and ARAND for sorted datasets are
slightly lowered then non-sorted dataset, but with no large differences.
Unlike CluStream and DStream, where the performances of the clustering
are greatly affected by order of the points. We conclude from this experi-
ment that our method is well adapted for evolving data streams for most
datasets.

Dataset NMI ARAND
Without Sorting With Sorting Without Sorting With Sorting

Waveform 0.397±0.002 0.358 ± 0.11 0.137±0.007 0.135 ± 0.04

IS 0.550±0.05 0.419 ± 0,20 0.418±0.04 0,156 ± 0,010

CTG 0.270±0.009 0.205 ± 0,029 0.118±0.005 0,109 ± 0,06

pendigits 0.572±0,038 0.470 ± 0.08 0.408±0.060 0,170 ± 0,06

DS1 0.737±0.222 0.596 ± 0.16 0.299±0.106 0.178 ± 0.05

DS2 0.677±0.111 0.534 ± 0.08 0.303±0.071 0.214 ± 0,06

Table 5.6 – Comparing results of S2G-Stream with and without sorted classes. The first
value is the average of 10 repetitions followed by the standard deviation.

Clustering over sliding windows

Most data stream algorithms consider the most recent data as more impor-
tant and reflecting better the changes in the data distribution. Therefore,
the notion of sliding window is introduced in order to analyze only the
most recent data points and the model obtained from the previous ones.
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(a) S2G-Stream(LWM) (b) S2G-Stream(GWM)

(c) CluStream (d) DStream

Figure 5.16 – NMI for different datasets with and without ordering classes compared
with CluStream and DStream algorithms.

Each window t contains P points, we consider that these P recent points
contain some points from the previous window. Figure 5.18 illustrates the
principle of the sliding window model.

Figure 5.18 – Sliding window model with windows overlap.

The overlap ratio between the two windows is the percentage of points
that are kept from the previous window and re-used for learning with the
new points. If at each step, the M oldest points are removed, and M points
are appended, then the overlap ratio is defined as (1−M/P). We tested
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(a) S2G-Stream(LWM) (b) S2G-Stream(GWM)

(c) CluStream (d) DStream

Figure 5.17 – ARAND for different datasets with and without ordering classes compared
with CluStream and DStream algorithms.

S2G-Stream(LWM) and S2G-Stream(GWM) with different overlap ratios
for each dataset. The results are reported in Tables (5.7) and (5.8). We
observe that the NMI and ARAND increase with the overlap ratio, since
these datasets are small and medium-sized, the overlap between windows
helps overcoming the problem of the small-sized dataset and as a result,
enhances the performance of the method. While for large datasets, we can
see a slight drop in performance since the overlap of the windows makes
it difficult to learn from large datasets.
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Overlap ratio
Datasets Metrics 0% 25% 50% 75%

Waveform
NMI

ARAND
0.397

0.137

0.397

0.214

0,400

0,217

0,407

0,216

IS
NMI

ARAND
0.550

0.418

0.550

0.311

0.552

0.397

0.545

0.348

CTG
NMI

ARAND
0.270

0.124

0.279

0.148

0.315

0.168

0.327

0.186

Pendigits
NMI

ARAND
0.672

0.408

0.686

0.559

0.654

0.518

0.670

0.525

DS1

NMI
ARAND

0.737

0.299

0.749

0.380

0.760

0.382

0.715

0.430

DS2

NMI
ARAND

0.677

0.303

0.710

0.310

0.710

0.465

0.718

0.440

Table 5.7 – NMI and ARAND of S2G-Stream(LWM) while changing the overlap per-
centage of sliding windows for each dataset.

Overlap ratio
Datasets Metrics 0% 25% 50% 75%

Waveform
NMI

ARAND
0.355

0.399

0,283

0,281

0,283

0,281

0,308

0,314

IS
NMI

ARAND
0.364

0.183

0,179

0,091

0,261

0,125

0,397

0,205

CTG
NMI

ARAND
0.237

0.092

0,255

0,133

0,236

0,120

0,229

0,113

Pendigits
NMI

ARAND
0.362

0.128

0,392

0,145

0,392

0,145

0,353

0,138

DS1

NMI
ARAND

0.369

0.114

0,381

0,159

0,463

0,229

0,393

0,160

DS2

NMI
ARAND

0.286

0.097

0,390

0,207

0,332

0,125

0,463

0,229

Table 5.8 – NMI and ARAND of S2G-Stream(GWM) while changing the overlap per-
centage of sliding windows for each dataset.

5.4 Conclusion

In this chapter, we have proposed S2G-Stream with two models of feature
and block weighting (global and local), an efficient method for subspace
clustering of an evolving data stream in an online manner. We used the
weights obtained as scores to conduct more experiments. The subspace
clustering method with the Global Weighting Model was used as a di-
mensionality reduction method. We proved the impact on the order of
data point and also the overlapping of the windows to the clustering qual-
ity. Experimental evaluation demonstrates the effectiveness and efficiency
of S2G-Stream in discovering clusters of arbitrary shapes and relevant fea-
tures and blocks. The global model weighting gave us a comprehensive
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view of the features and blocks that we used to select the best subset of
features, and enhance the clustering performances.

The performance of S2G-Stream, in terms of clustering quality as com-
pared to other relevant data stream algorithms are promising.

97



6Improved Multi-objective

Data Stream Clustering with

Time and Memory

Optimization

6.1 Introduction

AntTree [Azzag et al., 2003] is a hierarchical clustering method that models
how ants form living structures and use this behavior to organize this data
into a tree that is built in a distributed manner. Intuitively, each ant/data is
located at the start of reliable support (tree root). The behavior of the ants
then consists either in moving or in clinging to the structure to extend
it and allow other ants to come and stick in their turn. This behavior is
determined in particular by the similarity between the data and the local
structure of the tree. The result is a tree-like organization of the data whose
properties will allow us to determine a classification automatically and to
have a visual overview of the tree.

The AntTree algorithm was proposed to deal with Data Stream, a kind
of data that evolves and arrives in an unbounded stream. Analyzing data
stream implies time and space constraints. The process of data stream
clustering consists of creating compact and well-separated partitions from
dynamic streaming data in only a single scan, using limited time and
memory.

Most of the clustering techniques follow one objective function. How-
ever, every objective function represent a different property of the clusters,
such as the compactness or the separateness of a cluster. When the algo-
rithm assumes a homogeneous similarity measure over the entire data set,
it becomes not robust to variations in cluster shape, size, dimensionality,
and other characteristics [Handl and Knowles, 2007]. The Multi-Objective
clustering methods (MOC) [Law et al., 2004] retrieve clusters by applying
two or more objective functions. It uses a two-step process: 1) Generate
multiple clustering solutions and store the optimal ones. 2) Construct an
optimal partition based on the Pareto-set solutions. The following defini-
tions are useful to understand MOC methods :
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Definitions:

• Dominated solutions: a solution X is said to dominate a solution Y if
∀j = 1, 2, ..., m, f j(X) ≤ f j(Y), and there exists k ∈ 1, 2, ..., m such that
fk(X) < fk(Y).

• Pareto-optimal solutions: a solution X is called Pareto-optimal if it
is not dominated by any other feasible solutions. The set of non-
dominated solutions is called Pareto-set.

• Idle times: in the case of a slow stream, time delays between data
points can appear e.g., times where no data point is available. Tradi-
tional algorithms will stop and wait for new data points to process
them. Figure 6.1 illustrates the concept of idle times.

Figure 6.1 – Idle times.

6.2 AntTree Clustering

Ant-Tree algorithm [Azzag et al., 2003] produces a hierarchical struc-
ture in an incremental manner like how the ants join together. In this
algorithm, each ant represents a single data point, and it moves in the
structure according to the similarity Sim(i, j) with the other ants already
connected in the tree under construction. Sim(i, j) is represented by the
euclidean distance between two ants i and j. One should notice that this
tree will not be strictly equivalent to a dendrogram as used in standard
hierarchical clustering techniques: each node in our tree will correspond
to one data while this is not the case in general for dendrograms, where
data only correspond to leaves.

Starting from the support, materialized by a fictitious node f0, the ants
will progressively fix themselves on this initial point, then successively on
the ants set at this initial point, and so on until all the ants are attached to
the structure. During the construction of the structure, each ant fi is either
moving on the graph or connected to it. In the first case, fi is free to move
to a neighbor of the ant on which it is located (or to the support). In the
second case, fi will no longer be able to be released. Furthermore, we will
consider the fact that each ant has only one outgoing link to other ants
and cannot have more than Lmax links connected to it from other ants (tree
having at most Lmax threads per node). Initially, all ants are placed on the
f0 support. They will each have a similarity threshold and a dissimilarity
threshold, which are set to 1 and 0, respectively. An ant will connect under
an existing node of the tree (ant fpos ) if it is sufficiently similar to this node
but also dissimilar enough to the threads of the node: fi will thus form a
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subclass of fpos which will be different from the other subclasses of fpos
(possibly already existing). Otherwise, fi will move randomly in the tree,
looking for another location to fix itself. As the fi ant fails in its attempts
to attach to the structure, it is made more tolerant in order to increase
its chances of connecting to the next iteration concerning it: its similarity
threshold is decreased, and its dissimilarity threshold is increased. The
particular case of the f0 support is treated as follows: an ant connects to
the support if it is sufficiently dissimilar to other ants already connected
directly to f0. It means that a new class has just been built at the highest
level of the tree. This class must be as distinct as possible from the other
classes already created.
The algorithm ends when all the ants are connected. The sub-trees appear-
ing at the first level of the tree, just below the support, will be interpreted
as different classes. The properties of the tree can be analyzed visually
and interactively (e.g., the classification error decreases as one goes down
the tree). It is also possible to transform this tree into a dendrogram (by
scrolling down the data placed on internal nodes to leaves.

6.3 Proposed Method

In this section, we introduce IMOC-Stream (Multi-Objective AntTree Clus-
tering data stream). The algorithm is based on AntTree clustering and
combines stream clustering and multi-objective clustering to create a
Multi-objective stream clustering algorithm that satisfies two objective
functions. It makes use of the hierarchical nature of AntTree and improve
the clustering quality. We describe in the following sections the main prop-
erties of IMOC-Stream.

Clustering in a Streaming Context

We assume that the data stream consists in a sequence X = {x1, x2, ..., xn}
of n (potentially infinite) elements, arriving at times t1, t2, ..., tn, where
xi = (x1

i , x2
i , ..., xd

i ). Since the most recent data points are more important
and reflect better the changes in the data distribution, we use temporal
windows to consider only recent data for the clustering. A set of clustering
solutions S is generated and updated for each window S = C1, C2, ..., Cm
where Cj is the jst clustering solution and is represented by K clusters
Cj = c1, c2, .., cK. Each cluster c is represented by a prototype wc where
wc = (w1

c , w2
c , . . . , wd

c ) and d is the dimension of the data. Each cluster is
associated with a weight πc that decreases over time based following a
fading function.

When the first batch of data arrives in the first time window, we create
the tree as a clustering solution according to Section 6.2, and this solution
is stored in the Pareto-set. From the same batch of data we initialize sev-
eral solutions using K-means [Pelleg et al., 2000] with different K, GNG
[Fritzke, 1995], DBScan [Ester et al., 1996]. The parameter settings of these
algorithms are reported in Table 6.1. The generated solutions are com-
bined with the tree solution by the mutation and crossover operators, and
the results are added to the solutions-set. We compute the objective func-
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tion values for each solution-set and store the non-dominated solutions in
the Pareto-set.

Algorithm Parameters Source
GNG epochs = 30 Smile Package1

DBSCAN
minPts = 20

radius = 10

Smile Package2

K-means K vary from 2 to 15 Clustering4Ever3

Ant-tree Lmax = 10 Clustering4Ever4

Table 6.1 – Parameter settings for the used algorithm

After the Initialization phase and for each new window of data points,
each point in the current window is assigned to the closest center cij
in each clustering solution Cj in the pareto-set. The distance calculated
between the data points and the centers is the euclidean distance. We
note that for each clustering solution, a point can be assigned to only one
cluster. After all points being assigned, we update the clustering solutions
with the new assigned points. We compute the objective functions values
fi and we update the pareto-set. If the system idles, the method combines
the solutions in the pareto-set using the genetic operators and calculates
the objective values of the new generated solutions. At the end of each
iteration, the pareto-set contains a set of non-dominated solutions. At the
end of the process, a set of non-dominated clustering solutions is stored.
These solutions are equally good mathematically. We used an internal
quality measures Davies Bouldin [Davies and Bouldin, 1979] to select the
best solution among the Pareto-set.

AntTree with Tree Aggregation

To deal with the memory constraints encountered when analyzing data
streams, we propose a new representation of the tree to prevent storing
all the data points and to reduce the memory allocation. The tree is ini-
tialized from the data points in the first window following the AntTree
algorithm described in section 6.2. After placing all the points, we com-
pute the prototypes w of each cluster as the average of the points assigned
to this cluster. All the points are discarded, and only the tree with the pro-
totypes is stored in the memory. For the next windows, we assign the new
data points to each cluster and update the prototype wc as follow:

w(t+1)
c =

w(t)
c n(t)

c γ + z(t)c m(t)
c

n(t)
c γ + m(t)

c

(6.1)

Where w(t)
c is the previous prototype, n(t)

c is the number of points assigned
to the cluster, z(t)c is the new prototype computed only from the current
window. m(t)

c is the number of points assigned to the cluster c in the
current window: n(t+1)

c = n(t)
c + m(t)

c . γ is the decay factor that decreases
over time to give more importance to most recent data 0 < γ < 1. If γ = 1

all data will be used from the beginning; γ = 0 only the most recent data
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will be used.

If a point is not assigned to a cluster, it becomes a prototype of a newly
created cluster. Figure 6.2 illustrates tree representation and aggregation.

Figure 6.2 – Topological and Hierarchical representation and tree aggregation process.
The circles represent the data points, the squares represent the prototypes ans the triangles
represent the new data points from the current window.

Fading Function

Most data stream algorithms consider the most recent data as more im-
portant and reflect better the changes in the data distribution. For that,
we consider a Fading function, in which the weight of each cluster de-
creases exponentially with time t by introducing a decay factor parameter
0 < γ < 1.

π
(t+1)
c =

nc

∑
i=1

2γ(t−t0), (6.2)

where nc is the number of points assigned to the cluster c at the current
time t. If the weight of a node is below a threshold value, this cluster is
considered outdated and removed.

Evolutionary Representation and Functions

Most of the Multi-Objective clustering methods use an evolutionary rep-
resentation for the clustering solutions as their use of population enables
the variation of solutions and makes it easier to keep a population of clus-
tering solutions and apply genetic operators. However, the use of such
representation requires the following concepts:

• Choosing an evolutionary encoding to represent a clustering solu-
tion.

• The generation of the initial population by an effective initialization
scheme.

• Suitable genetic operators to variate the solutions.
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• Choosing two or more objective functions as a fitness function to
choose the non-dominated solutions.

• Developing a technique to obtaining a single clustering solution for
the Pareto-set (leader selection method).

The choice of these components is crucial for the clustering quality and the
algorithm scalability. In the next sections, we describe the components we
chose after extensive experiments to deal with the requirements presented
above.

Genetic Representation

Many representations were presented in the previous MOC methods
[Mukhopadhyay et al., 2015]. However, these representations are not suit-
able for data stream clustering since data points can not be stored and have
to be processed in one pass. Therefore, we chose a new genetic representa-
tion that facilitates the clustering update as the data flows. Each clustering
solution is represented by a chromosome, which is an array of K × d + 2,
where d is the dimension of the data. The first and second components
are the objective values for this solution. The last K components represent
the clusters. Each cluster is represented by a prototype w of d elements.
Figure 6.3 illustrates the clustering representation and conversion.

Figure 6.3 – Clustering solution representation and conversion.

Population Initialization

In each time window of the data stream, a set of clustering solutions is cre-
ated and stored. Our algorithm does not require these solutions to have
the same number of clusters. A first population is created from the first
window using the AntTree algorithm combined with other solutions gen-
erated by several algorithms (K-means [Pelleg et al., 2000] with different K,
GNG [Fritzke, 1995], DBScan [Ester et al., 1996]). Those algorithms were

103



Chapter 6. Improved Multi-objective Data Stream Clustering with Time and
Memory Optimization

chosen after extensive experimentation due to their ability to do a local
search. The solutions given are encoded following the scheme described
in Figure 6.3. We select the best solutions from this population to create
new clustering solutions following the genetic operators Crossover and
Mutation described in section 6.3. After the first population initialized,
we compute objective functions for each clustering solution and store the
Pareto-optimal solutions into the Pareto-set. For each window of the data
stream, the new data points belonging to the current window are used
to update the solutions in the Pareto-set and to create new solutions. The
Pareto-set is then updated with the non-dominated solutions. We describe
the initialization and update scheme in Figure 6.4.

Figure 6.4 – Initialization and update scheme.

Genetic Functions

Genetic operators are essential for MOC methods as they enable the va-
riety and diversity of the clustering solutions. For our method, we use
two genetic operators: Crossover and Mutation, to explore more solutions.
The use of those operators helps find a better solution by combining the
optimal solutions obtained from the other algorithms.

• Crossover: We used the single point crossover [Whitley, 1994] in this
chapter due to its Independence of the ordering of genes. The goal
of the crossover operator is to create new clustering solutions from
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the two-parent solutions. First, we randomly select the Pareto-set
two solutions that have respectively K1 and K2 clusters. We choose
randomly a crossover point i, as the number of clusters may vary, i
must satisfy 1 < i < min(K1, K2).

The first resulted clustering solution from the crossover is composed
of cluster centers from 1 to i of the solutions with min(K1, K2) cluster
centers, and i+1 to K of the second clustering solution. The second
resulted clustering solution is composed of the cluster centers i+ 1 to
min(K1, K2) from the first solution and of cluster centers 1 to i from
the second solution. Figure 6.5 explains the process of crossover of
two clustering solutions.

Figure 6.5 – Crossover of two clustering solutions. The figure on the left represents
the prototypes and the one on the right represents the topological clusters, the squares
represent the prototypes and the circles are the data points. The data points are added to
illustrate, in the clustering process, no data point is kept in the memory.

• Mutation: We use the random resetting mutation operator [Mitchell,
1998] to change randomly some values of a cluster center in a clus-
tering solution to explore global solutions. We select a clustering so-
lution C from the Pareto-set, then from each cluster center in C, we
randomly select µ position values. For a value v, a number 0 < $ < 1
is generated and the value v is updated as follows:

v± $ ∗ v,

The ’+’ or ’-’ signs occur with equal probability. Figure 6.6 illustrates
the process of mutation of a clustering solution.
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Figure 6.6 – Mutation of a clustering solution. µ = 50%

Both operators are applied during idle times on the solutions from the
Pareto-set. The solutions are selected based on their fitness score, equal to
(−separateness + compactness). We select σ clustering solutions and apply
the genetic operators.

Objective Functions

One of the important aspects of MOC is the choice of suitable objective
functions that are to be optimized simultaneously. For each clustering
solution, several quality measures exist. The the goal is to have distinct
clusters (separateness) that are the most dense in terms of the data points
they contain (compactness). To satisfy these requirements, we introduce
two objective functions compactness and separateness. The combination of
both objective functions allows us to have arbitrary shaped clusters.

• Compactness: the compactness of a clustering solution reflects the
overall intra-cluster size of the data and has to be minimized. The
compactness of a clustering solution in a streaming context is com-
puted as follows:

Compactnesst+1
C = γCompactnesst

C + ∑
xi∈X (t+1)

δ(xi, wφ(xi)) (6.3)

Where X (t+1) is the current window and φ(xi) is the index of the
cluster where xi belongs. δ(x, wφ(xi) is the euclidean distance between
the data point x and wφ(xi). γ is the decay factor that decreases over
time to give more importance to most recent data. The points of the
previous windows are not kept, Compactnesst

C has been computed
in the previous window with the previous prototype w.

• Separateness: the separateness of a clustering solution is the mean
distance between clusters. It reflects the inter-cluster similarity and
should be maximized. The separateness of a cluster is the shortest
distance between a data point in this cluster and another data point
of his neighborhood belonging to another cluster. In a streaming
context, the separateness is computed as follows:

SeparatenessC =
1
|C| ∑c∈C

(minxi∈c,xj∈Ki ,xj /∈cδ(xi, xj)) (6.4)
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Where Ki is the neighborhood of the data point xi belonging to the
cluster c. The neighborhood of a node is determined through the
AntTree method. The neighborhood of a cluster is the directly con-
nected nodes to this one on the tree.

Solution Selection

At the end of the online phase, a set of non-dominated solutions is stored
in the Pareto-set. These non-dominated solutions are equally good math-
ematically. We used an internal quality measures Davies Bouldin [Davies
and Bouldin, 1979] to select the best solution among the Pareto-set. The
choice of an internal index is because the data might not be labeled. We
sort all the solutions by their fitness (internal measures values), and we
choose the best one as an output of the algorithm. Davies Bouldin index
helps identify sets of clusters that are compact and well separated. The
Davies-Bouldin index is described in Section 3.2.1.

DBI =
1
K

K

∑
i=1

maxi,j=1,..,K;j 6=i
d(xi, Ci) + d(xj, Cj)

d(Ci, Cj)
(6.5)

d(xi, Ci) is the distance between the data point xi, and its cluster Ci and K
is the number of clusters. DBI varies between 0 (best clustering) and +∞
(worst clustering).

Improved MOC-Stream Algorithm

IMOC-Stream is an extension of Multi-objective clustering for data stream
to optimize computation time and memory allocation. It starts with cre-
ating a first clustering solution using the AntTree algorithm. On the con-
trary of the original algorithm where all the data points are stored, we
introduced a new tree aggregation method to store only a synopsis of the
data. The clustering solution is encoded and combined with different solu-
tions obtained by different algorithms to create a population of solutions.
The objective function values are computed for each solution, and only
the non-dominated solutions are added to the Pareto-set. Then, we apply
crossover and mutation on the best solutions selected from the Pareto-set
and add the obtained solutions to the population. For each time window,
the next point from the stream is mapped into the tree, the prototypes are
computed, and only the aggregated tree is stored. We update the weights
of the nodes and remove the outdated ones. If the stream idles, we apply
genetic operators to generate more solutions. At the end of each time win-
dow, we compute the objective function values, select the non-dominated
solutions, and update the Pareto-set. In the offline phase, we compute the
internal index Davies Bouldin of each potential solution and select the op-
timal one as an output for this algorithm. In summary, the algorithm of
IMOC-Stream presented in this chapter is described in Algorithm 11.
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Algorithm 11 Improved MOC-Stream Algorithm
Result : Optimal clustering solution
From the first window: initialize the tree using AntTree algorithm and
perform tree aggregation following Figure 6.2;
Generate several clustering solutions using K-means with different K,
GNG, and DBScan with different parameters;
Encoding the clustering solutions following scheme in Figure 6.3;
Apply Crossover and Mutation following Figures 6.5 and 6.6 respec-
tively. Add new solutions to the population of chromosomes;
Compute objective functions following equations (6.3) and (6.4). Store
non-dominated solutions in the Pareto-set;

while There is data available do
Map each point into the tree and compute prototypes following Equa-
tion(6.1);
For each clustering solution in the pareto-set, assign each point to the
closest cluster;
Update each cluster in each clustering solution using the new points
assigned as described in Equation (6.1);
Update weights of nodes following Equation (6.2) and remove the
outdated nodes;
Compute objective functions of the clustering solutions in the pareto-
set and the new solutions generated. Update the pareto-set with the
new non-dominated solutions ;
while Idle do

Select best clustering solutions from Pareto-set based on their
objective values ;
Apply Crossover and Mutation following Figures 6.5 and 6.6
respectively. Add new solutions to the population of clustering
solutions;

end
end
Select best solution among the pareto-set solutions as described in section
6.3

6.4 Experiment Results

Datasets and Quality Criteria

The IMOC-Stream method described in this article was implemented in
Scala programming language and will be available on Clustering4Ever
GitHub repository5. We evaluated the clustering quality of IMOC-Stream
on several real [Frank and Asuncion, 2010] and synthetic6 datasets. We
describe the datasets in Table 6.2. The mutation rate µ is set to 20% and
the number of selected clustering solutions to the crossover and mutation
is set to 10.

For the quality measures, we used the internal measures (NMI) [Strehl

5https://github.com/Clustering4Ever/Clustering4Ever
6https://www.sites.google.com/site/nonstationaryarchive/
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Dataset Instances Features Classes |Window|
powersupply 29,928 2 24 100

HyperPlan 100,0000 10 5 1000

Covertype 581,102 10 23 1000

Sensor 2,219,802 4 54 10000

1CDT 16000 2 2 100

1CSurr 55280 2 2 1000

4CR 144000 2 1 1000

GEARS-2C-2D 200000 2 2 10000

Table 6.2 – Description of datasets used in experimentation

and Ghosh, 2002] and the Adjusted Rand index (ARAND) [Hubert and
Arabie, 1985] described in Section 3.2.2.

Experimental Settings

Assuming large high-dimensional data arrives as a continuous stream,
IMOC-Stream divides the streaming data into batches and processes each
batch continuously. The batch size depends on the available memory and
the size of the original dataset the size of the window for each dataset
is shown in Table 6.2. We set the time interval between two batches to 1

second and the parameter γ to 0.7.
To show the effectiveness of our method, we compared it to five well
known stream algorithms: StreamKM + + [de Andrade Silva and Hr-
uschka, 2011], DStream [Tu and Chen, 2009], DBStream [Hahsler and Bo-
laños, 2016], DenStream [Cao et al., 2006] and CluStream [Aggarwal et al.,
2003] from R package streamMOA7. We repeated our experiments with
different initialization and have chosen those giving the best results. Table
6.3 shows the optimal parameter configurations.

Algorithms Parameters Initialization

DStream

gridsize
λ

gaptime
Cm

0.9
0.001

1000

3

DBStream

r
λ

gaptime
Cm

1.8
0.001

1000

2.5

DenStream
ε
µ
β

0.4
1.605

0.275

CluStream t 2

Table 6.3 – Optimal parameter configurations for the algorithms used for the experimen-
tation. For IMOC-Stream, the decay factor is fixed to 0.7.

7https://github.com/mhahsler/streamMOA
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Clustering Evaluation

The results of IMOC-Stream on the datasets described above compared to
the different algorithms are reported in Tables 6.4 and 6.5. The value value
of NMI and ARAND is the average value of ten runs. It is noticeable that
IMOC-Stream gives better results than all the other methods. These results
are due to the fact that our method optimizes two objective functions to
maximize intra-cluster similarity and minimize inter-cluster similarity at
the same time, which gives us a compact and well-separated clusters.
The use of different algorithms to create a population of solutions allow
IMOC-Stream to explore better solutions and escape the local minima.
Another critical point is the use of the genetic parameters to combine
the best solutions and explore the potential local solutions. The other
algorithms are sensitive to the initialization of the settings, which justify
why our algorithm yields better results since it has no input parame-
ters. Finally, we noticed that the DStream algorithm gives better results
compared to the other algorithms used in this experimentation since it is
adapted to large datasets.

For synthetic datasets, IMOC-Stream also gave better results than
the different stream algorithms except for StreamKM++ on the 1CSurr
dataset. These results are due to the optimal choice of the K for
StreamKM++, which makes it find the exact number of clusters with syn-
thetic datasets and gives better results. The number of clusters is not pre-
defined in IMOC-Stream, but it still manages to find approximately the
right amount of clusters.

Dataset Metrics IMOC-Stream StreamKM++ DStream DBStream DenStream CluStream

powersupply
NMI

ARAND
0.466 ± 0.03
0.144 ± 0.03

0,232 ± 0,05

0,034 ± 0,01

0,403 ± 0,06

0,049 ± 0,01

0,056 ± 0,01

0.001 ± 0.00

0.055 ± 0.01

0.002 ± 0.00

0.196 ± 0.05

0.032 ± 0.01

Sensor
NMI

ARAND
0.723 ± 0.00
0.192 ± 0.00

0.151 ± 0.03

0.074 ± 0.02

0.274 ± 0.07

0.034 ± 0.01

0.060 ± 0.01

0.006 ± 0.00

0.032 ± 0.00

0.032 ± 0.00

0.024 ± 0.00

0.006 ± 0.00

Covertype
NMI

ARAND
0.509 ± 0.03
0.433 ± 0.10

0.113 ± 0.03

0.165 ± 0.02

0.310 ± 0.06

0.254 ± 0.08

0.048 ± 0.001

0.002 ± 0.003

0.482 ± 0.12

0.198 ± 0.06

0.295 ± 0.07

0.339 ± 0.11

HyperPlan
NMI

ARAND
0.168 ± 0.01
0.041 ± 0.00

0.026 ± 0.00

0.035 ± 0.00

0.140 ± 0.03

0.093 ± 0.02

0.002 ± 0.00

0.001 ± 0.00

0.026 ± 0.00

0.027 ± 0.00

0.014 ± 0.01

0.019 ± 0.00

Table 6.4 – Comparing IMOC-Stream with different algorithms on real datasets. The
first value is the average of 10 repetitions and the value after ± is the standard deviation.

Dataset Metrics IMOC-Stream StreamKM++ DStream DBStream DenStream CluStream

1CDT
NMI

ARAND
0.990 ± 0.07
0.970 ± 0.09

0.759 ± 0.03

0.679 ± 0.02

0.691 ± 0.10

0.667 ± 0.14

0.631 ± 0.28

0.610 ± 0.30

0.208 ± 0.05

0.086 ± 0.05

0.621±0.06

0.583±0.09

1CSURR
NMI

ARAND
0.481 ± 0.00

0.248 ± 0.01

0.534 ± 0.12
0.529 ± 0.17

0.136±0.17

0.041±0.19

0.031±0.02

0.02±0.07

0.150±0.05

0.017±0.07

0.409±0.1
0.384±0.11

4CR
NMI

ARAND
0.957 ± 0.00
0.954 ±0.00

0.705±0.01

0.497 ± 0.02

0.804 ± 0.02

0.793 ± 0.03

0.868 ± 0.03

0.881 ± 0.02

0.183 ± 0.03

0.006 ± 0.00

0.502 ± 0.03

0.408 ± 0.02

GEARS_2C_2D
NMI

ARAND
0.654 ± 0.02
0.643 ± 0.01

0.543±0.03

0.449±0.03

0.160±0.12

0.154±0.17

0.001±0.00

0.0001±0.00

0.021±0.02

0.010±0.01

0.301±0.02

0.219±0.02

Table 6.5 – Comparing IMOC-Stream with different algorithms on synthetic datasets.
The first value is the average of 10 repetitions and the value after ± is the standard
deviation.

Clustering High Dimensional Data

The curse of dimensionality refers to various phenomena that arise when
clustering data in high-dimensional spaces. Most of the clustering algo-
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rithms suffer from the curse of dimensionality. This is due to many factors
like the high number of parameters to set or the algorithm’s high complex-
ity. To prove our method’s effectiveness on clustering high dimensional
datasets (HDD), we tested it on 6 HDD’s from [Fränti et al., 2006]. The
dimensions (number of features) of these datasets vary from 32 to 1024
while the number of instances is 1024 and the number of classes equal to
16. We compared our results with different stream algorithms based on
NMI and ARAND measures. The results are reported in Table 6.6. The
results show that our method outperforms all the other methods in terms
of NMI and ARAND. These results are because our algorithm does not
require parameter settings and uses linear genetic functions to enhance
the quality, unlike the other algorithms. The pre-defined parameter and
the use of costly processes and algorithms (like DBSCAN for DBStream
and DenStream) make the algorithms slower and not robust when dealing
with HDD. The genetic operators and the update of the solutions in our
method are performed linearly, making these functions not costly in the
computation time.

Dataset Metrics IMOC-Stream StreamKM++ DStream DBStream DenStream CluStream

dim032

NMI
ARAND

0.600 ± 0.01
0.227 ± 0.01

0.500 ± 0.04

0.199 ± 0.04

0.051 ± 0.03

0.021 ± 0.01

0.421 ± 0.06

0.139 ± 0.02

0.062 ± 0.02

0.003 ± 0.00

0.211 ± 0.02

0.0215 ± 0.01

dim064

NMI
ARAND

0.675 ± 0.01
0.380 ± 0.00

0.546 ± 0.00

0.252 ± 0.01

0.037 ± 0.01

0.005 ± 0.04

0.522 ± 0.02

0.339 ± 0.01

0.104 ± 0.04

0.017 ± 0.01

0.184 ± 0.02

0.012 ± 0.01

dim128

NMI
ARAND

0.691 ± 0.01
0.418 ± 0.02

0.571 ± 0.04

0.386 ± 0.12

0.136 ± 0.01

0.056 ± 0.02

0.531 ± 0.02

0.321 ± 0.01

0.147 ± 0.05

0.090 ± 0.03

0.191 ± 0.01

0.003 ± 0.01

dim256

NMI
ARAND

0.777 ± 0.01
0.487 ± 0.00

0.575 ± 0.07

0.377 ± 0.16

0.078 ± 0.01

0.055 ± 0.03

0.391 ± 0.02

0.265 ± 0.01

0.147 ± 0.03

0.045 ± 0.01

0.171 ± 0.00

0.004 ± 0.02

dim512

NMI
ARAND

0.788 ± 0.01
0.540 ± 0.00

0.606 ± 0.04

0.538 ± 0.03

0.115 ± 0.01

0.073 ± 0.02

0.329 ± 0.10

0.478 ± 0.12

0.112 ± 0.12

0.045 ± 0.09

0.145 ± 0.01

0.002 ± 0.02

dim1024

NMI
ARAND

0.855 ± 0.00

0.717 ± 0.01

0.774 ± 0.02

0.634 ± 0.02

0.112 ± 0.03

0.020 ± 0.03

0.305 ± 0.09

0.414 ± 0.08

0.110 ± 0.05

0.041 ± 0.07

0.150 ± 0.00

0.005 ± 0.01

Table 6.6 – Comparing IMOC-Stream with different algorithms on HDD datasets. The
first value is the average of 10 repetitions and the value after ± is the standard deviation.

Clustering Histopathological Images

To prove the efficiency of our method when dealing with high dimen-
sional datasets, we tested our method on hispathological images. High-
resolution histopathology images provide reliable information differenti-
ating abnormal tissues from normal ones, and thus, it is a vital technology
for recognizing and analyzing cancers. However, in histopathology cancer
image analysis, if a small part of the image is considered as cancer tissues,
pathologists should diagnose the histopathology as positive.

In this chapter, we consider the clustering of patches of images. We
extract 224 x 224 patches from each image using a sliding window with
an overlapping rate r =0.7. Our method is then applied to the pieces of
tissue to create similar clusters. The purpose of this treatment is to extract
similar patches and to group them according to their similar morphology.
Those groups of patches can be classified into cancer or non-cancer instead
of categorizing the whole set of patterns. Figure 6.7 illustrates the patches’
extraction from a tissue image.
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Figure 6.7 – Patches extraction from a tissue image. The red rectangles represent cancer
tissues, and the green ones represent non-cancer tissues.

Breast cancer is one of the leading cancer-related death causes world-
wide, especially on women. However, early diagnosis significantly in-
creases treatment success. For the purpose of early diagnosis, proper
analysis of histology images is essential. Individually, during the diagno-
sis procedure, specialists evaluate both overall and local tissue organiza-
tion via whole-slide and microscopy images.

The ICIAR 2018 challenge has proposed two types of datasets: a. the
first is composed of microscopic images and b. the second contains whole
slide images. In this research, we used the ICIAR 2018-A2 dataset, which
includes 400 breast histology images (2048px × 1536px) that have been
digitized under 200 × magnification. Two pathologists have annotated
these images into four classes: normal, benign, in situ carcinoma, and
invasive carcinoma. We extracted 224 × 224 patches from each image
using a sliding window with an overlapping rate r = 0.7. The number of
extracted patches is 43210.

Figure 6.8 represents an example of clustering by IMOC. Besides the
similarity between the patches in the same cluster, we notice that in some
groups, most of the patches have anomalies. This means that this group
can be categorized as cancer tissues. The goal of this experiment is to
provide groups of similar tissue to help researchers detect cancer-based
on a group of patches instead of analyzing the whole set of patches, which
can minimize the computational time.
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Figure 6.8 – Example of clusters obtained by IMOC. Each group of 9 patches represents
a cluster.

Clustering Evolution

Figure 6.9 shows an example of the evolution of IMOC-Stream clustering
on 1CDT, 4CE-V1, 1CH and 2CDT datasets. Each line represents an evo-
lution of clustering for a particular dataset. These figures are generated
during the clustering process. We picked three partitionings at random
iterations for each dataset. For each time window, the distribution of the
incoming data points changes. With its Multi-Objective capability and the
fading function’s use, IMOC-Stream manages to recognize the structures
of the data stream and can separate these structures with the best visual-
ization. It can also detect arbitrary shaped, compact, and well-separated
clusters. We note that the number of clusters does not necessarily stay the
same, but the best K is automatically chosen.

Arbitrary Shaped Clusters

Figure 6.10 represents the cluster detection for the t4.9k, Compound, and
Path-based datasets8. We can see from this figure that our method man-
ages to find clusters of arbitrary shapes and provide a good separation
of the clusters. The other streaming clustering methods are unable to find
clusters of arbitrary shapes (only spherical clusters may be found). The
IMOC-Stream method is also able to find noise points due to the use of a
density clustering method (DBSCAN).

8http://cs.joensuu.fi/sipu/datasets/
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Figure 6.9 – Clustering evolution of 1CDT, 4CE-V1, 1CH, 2CDT datasets. Each color
represents a cluster. Each line represents the evolution of a clustering with one dataset.

Figure 6.10 – Examples of detection of arbitrary shaped clusters by IMOC algorithm.
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Time and Memory Complexity

Figure 6.11 – Execution time in milliseconds of each algorithm for every dataset.

Figure 6.12 compares the time allocation of our method and the Ant-tree
algorithm. We observe that IMOC-Stream requires less memory allocation
than Ant-tree, on all the datasets. We note that these results are because
Ant-tree stores all the data points, making the complexity approximately
n× d. While IMOC-Stream stores only the synopsis that is equal to K× d,
and when we add the other algorithms’ solutions, the memory complexity
becomes ∑m

j=1 Kj × d, where m is the number of clustering solutions.

Figure 6.12 – Memory allocation in Kilobyte of IMOC-Stream and Ant-tree for every
dataset.
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6.5 Conclusion

This chapter presents a new method for clustering data stream based
on a multi-objective algorithm called IMOC-Stream. Unlike those single-
objective clustering techniques that have employed only one objective
function, IMOC-Stream employs two objective functions to find clusters
of arbitrary shaped clusters and enhance the clustering quality. IMOC-
Stream uses a two-phase process: 1) online phase: creating several clus-
tering solutions based on different algorithms and genetic operators 2)
offline phase: construction of an optimal partition from the discovered
clusters. We applied our method on large stream datasets and compared
it to a different stream clustering algorithm. The experiments show the ef-
fectiveness of IMOC-Stream for detecting arbitrary shaped, compact, and
well-separated clusters with better execution time.
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7.1 Introduction

Histopathology is a branch of histology that refers to the examination of
diseased tissues or cells. Routine analysis of specimens is a common prac-
tice for cancer diagnosis, prognosis, and treatment. Firstly, The pathologist
prepares the extracted biopsy samples by different processing techniques:
fixation, embedding, portioning, and staining [Mescher, 2018]. Then, the
preprocessed samples are analyzed under a microscope. Currently, biopsy
samples are digitized by a whole digital scanner (WSD). The advantage of
WSD compared to standard microscopes is their ability to scan the entire
glass slides to produce digital slides denoted as whole slide images (WSI).
The pathologist analyzes the WSI on the computer screen and performs
diagnosis based on a specific software. Figure 7.1 highlights the difference
between the WSI obtained by a WSD and the region of interest (ROI) ob-
tained by a standard microscope. The pathologist manually selects these
ROIs under the conventional microscope or from digitized WSIs.

The purpose of this chapter is to use clustering methods to overcome
the related problem of non-relevant patches. The objective of clustering is
to select the most relevant patches for classification instead of using all
patches.
This chapter presents a Subspace Multi-Objective method for Patch
Clustering and Selection (SMO-HPS) by combining subspace clustering
and multi-objective techniques to overcome the problem of non-relevant
patches. Our method’s goal is to select the relevant patches for classifi-
cation instead of using the whole image or all selected patches by the
sliding window method. The rest of the chapter is organized as follows:
in section 7.2, we present the art literature’s relevant state. In section 7.3,
we describe our method and its main features. In section 7.4, we present
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Figure 7.1 – Example of a region of interest in a histopathological image.

the results of the experiments and compare the method to some known
clustering methods. Finally, we conclude this chapter.

7.2 Patch selection methods

Several attempts have been made in the literature to automate the classi-
fication of histopathological datasets [Jimenez-del Toro et al., 2017]. These
datasets are composed of a set of digitized ROIs or WSIs. In general,
the analysis WSIs require to extract relevant ROIs to classify them by
Deep Learning methods. The extraction process is performed by various
techniques such as clustering methods [Zhu et al., 2017].

Despite the advantages of the convolutional neural networks (CNN),
these architectures are prone to overfitting small datasets. To solve this
limitation, data augmentation techniques have been largely considered.
The purpose of data augmentation techniques is to generate multiple
target images from a source image by standard methods such as rotation,
reflection, and patch selection [Krizhevsky et al., 2012]. For ImageNet
classification, authors in [Krizhevsky et al., 2012] extracted 224 × 224
random patches from input images of size 256× 256. Then, the generated
patches have been augmented by reflections and rotations. These tech-
niques increased the size of the training dataset by a factor of 2048.

Their high resolution characterizes histopathological images.i.e.
2048 × 1536 [Aresta et al., 2019]. In histopathological image analysis,
the patch extraction method was largely considered. This technique ex-
tracts small patches from the high-resolution ROIs to adapt the input
images’ size to convolutional neural network inputs (generally 224× 224).
Moreover, it helps to generate big volumes of samples to overcome overfit-
ting. The large difference between the source image and extracted patches
can cause a loss of information in natural images because the patch frame
should be centered around the object of interest. On the other hand, for
histopathological images, the regular distribution of basic biological forms
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allows the exploitation of small patches.

In histopathological image analysis, the patch extraction method ex-
tracts small patches from the high-resolution ROIs to adapt the input
images’ size to convolutional neural network inputs (generally 224× 224
or 256 × 256 ). Several investigations proposed the exploitation of the
sliding window technique. In this method, a small window is sliding
from the left to the right across the image and from the top to the bottom
to extract patches. For prediction, a majority voting process is performed
to predict the class of the entire image. For instance, authors in [Xu et al.,
2017] randomly extracted 256× 256 from input images of size 3078× 2752.
This process generated approximately 28 000 patches from 4544 source
images. In another investigation [Janowczyk and Madabhushi, 2016], each
image of size 1388× 1040 was divided into 32× 32 patches with a stride
S = 32. Authors in [Spanhol et al., 2016] used two strategies for patch
extraction. The first uses a sliding window with an overlapping rate r
= 0.5 to generate 260 32 × 32 patches, whereas the second selects 1000

random patches from each input image.

Despite the advantage of the sliding window technique in data aug-
mentation, it can generate non-discriminant patches for classification.
Moreover, the voting process is prone to non-relevant patches. To solve
this limitation, a patches screening method that combines both the k-
means clustering algorithm and CNN has been proposed to select dis-
criminative patches [Spanhol et al., 2016].

7.3 Proposed method

This section introduces a new patch selection algorithm that combines
subspace clustering and multi-objective techniques (SMO-HPS) to create a
subspace multi-objective clustering algorithm that optimizes two objective
functions. The purpose of using stream clustering in this chapter is to di-
vide the image into windows of instances and process each one at a time,
which is similar to stream processing. The method aims at improving the
clustering quality and finds the relevant patches in a histopathological
image. We describe in the following sections the main properties of our
algorithm. Assuming that each patch contributes differently to each clus-
ter’s creation, we associate a different weight vector α for each feature with
each cluster. A patch is associated with a weight vector αb, which is the
average weight of the patch’s features. And a weight vector αw, which is
the current window’s weight vector (a subset of instances). The weight αbi
+ αwj describes the relevance of a patch (i, j). We assume that the data con-
sists in a sequence X = {x1, x2, ..., xn} of n (potentially infinite) elements
arriving at times t1, t2, ..., tn, where xi = (x1

i , x2
i , ..., xd

i ). Table 7.1 present
the notations used in this chapter.
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Notation Description
X = {x1, x2, ..., xn} n number of instances
xi = (x1

i , x2
i , ..., xd

i ) d-dimensional data point
wc = (w1

c , w2
c , . . . , wd

c ) Center of cluster c
δ(c, r) Euclidean distance between clusters c and r

α Matrix of feature weights in each cluster
K and Kmax Number and maximum number of clusters

λ Adjustment parameters for feature weight

φ(xi)
Assignment function (cluster corresponding to data

point xi)
pH and pW Height and Width of a patch

Window and Block

A window is a subset of instances and a block is a
set of features

A patch is an intersection between a window and a
block

W and B Number of windows and number of blocks
αw and αw Weight of a window and weight of a block
Intensityp The intensity of a pixel p

Table 7.1 – Notations used in SMO-HPS

In this chapter, we use the Subspace Clustering (SC) technique to select
patches. This choice is due to the capacity of SC to detect subsets of data
that contribute the most to the clustering, which makes them relevant.
Therefore, each patch is considered as a subspace. A subspace is a pre-
defined length subset of features. Each feature is associated with a weight
α to measure its relevance.

In our previous work [Attaoui et al., 2020], we proposed a cost function
that needs to be minimized. The cost function optimizes four terms: φ is
the assignment function of a point p to its closest cluster c,W is the set of
prototypes or centers of the clusters, α and β are respectively the weights
of the blocks and the features. This cost function is presented below for a
window X (t+1) = {X1, X2, ..., Xt+1}:

(t+1)(φ,W , α, β) = ∑
c∈C

P

∑
b=1

∑
xi∈X (t+1)

KT (δ(c, φ(xi))) αb
cDβcb + Jcb + Ic

(7.1)
where Dβcb = ∑db

j=1 β
j
cb(xj

i −ω
j
c)

2

The terms Ic = λ ∑P
b=1 αb

c log(αb
c) and Jcb = η ∑db

j=1 β
j
cb log(β

j
cb) re-

spectively represent the weighted negative entropies associated with the
subspaces weight vectors and the features weight vectors. The parameters
λ and η are used to adjust the relative contributions made by the fea-
tures and subspaces to the clustering. δ(c, φ(xi)) is the euclidean distance
between a cluster center c and the center of the cluster xi belongs to.
KT(δ) = K(δ/T) is the neighborhood function, T controls the width of K.

However, the method presented above is a single-objective method,
and it does not perform well with histopathological image clustering. The
algorithm presented in this chapter is a multi-objective method that opti-
mizes two objective functions to obtain high-quality solutions. The single-
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objective subspace algorithm’s conversion to the multi-objective frame-
work requires introducing some techniques and adapting the cost func-
tion. We describe these techniques in the following sections.

Adaptation of the cost function to the multi-objective framework

One of the important aspects of MOC is the choice of suitable objective
functions to be optimized simultaneously. For each clustering solution,
several quality measures exist, and the goal is to maximize inter-cluster
similarity and minimize intra-cluster similarity. To satisfy these require-
ments, we introduce a model with two cost functions corresponding to
two objective functions. within is the within-cluster dispersion, and it max-
imizes the compactness of a cluster. sep is the combination of the sepa-
rateness between clusters and the weighted negative entropy that needs to
be minimized. The cost functions optimize three parameters: φ the assign-
ment function,W the prototypes set and α the weight of each feature in a
cluster c. For a data window X (t+1) = {X1, X2, ..., Xt+1}, and a clusters set
C, the objective functions are calculated as follows:


(t+1)
within(φ,W , α) = ∑

c∈C
∑

xi∈X (t+1)

(δ(c, φ(xi)))
d

∑
j=1

α
j
c(xj

i −ω
j
c)

2, (7.2)

where ∑d
j=1 α

j
c = 1, δ(c, φ(xi)) is the shortest path between a cluster center

c and the center of the cluster xi belongs to. α
j
c is the weight of jth feature

in cluster c, d is the number of features (width of the image).


(t+1)
sep (φ,W , α) = ∑

c∈C
(αc/(Separatenessc + ε)) + Ic (7.3)

Ic = λ
d

∑
j=1

α
j
c log(αj

c)

αc =
d

∑
j=1

γjα
j
c/

d

∑
j=1

γj; γj = 1 if α
j
c >

1
D

else 0

Separatenessc = ∑
p∈C

d

∑
j=1

(ω
j
c −ω

j
p)

2

Where: γj =

{
1 if α

j
c >

1
D

0 else
Ic is the weighted negative entropy, αc is the average of weights α, and

Separatenessc is the sum of the euclidean distances between the actual
cluster and the other clusters, ε is a pre-defined value that prevents the
denominator from becoming zero.

Encoding and initialization scheme

In data stream clustering, data points can’t be stored and processed in one
pass. Therefore, we chose a new genetic representation called centroid-
based representation to facilitate the clustering update as the data flow.

121



Chapter 7. Regions of Interests Selection in Histopathological Images using
Subspace and Multi-Objective Stream Clustering

The cluster center is represented by an array of d real numbers describing
its coordinates, where d is the dataset’s dimension (number of features).
After each iteration, only the centroid is updated using the points assigned
to it.

The initialization process is the first and the most crucial step in the
multi-objective methods as a good scheme can lead to faster convergence,
while a bad scheme can lead to wrong final solutions. In most multi-
objective clustering methods, the clustering solutions in the initial popu-
lation have been generated randomly. This random initialization depends
on the encoding used in the algorithm (Cluster centers, assignment). In
this chapter, we initialize solutions using the K-means algorithm [Mac-
Queen et al., 1967] with different K values. K-means clustering algorithm
is an efficient partitioning algorithm. However, in most implementations
of the K-means algorithm, the first K centroids are chosen randomly. This
initialization can lead to either slow convergence or bad results. This chap-
ter uses a different K-means initialization method based on the distances
between the initial centroids to have well-separated clusters. First, we ran-
domly chose the first point from the dataset as a centroid. The second
center is also selected randomly, but the probability of selecting a case is
proportional to the distance (square euclidean) of it to the first centroid.
The third centroid is also chosen randomly with the probability of se-
lection proportional to the distance of a case to the nearest of those two
centers, and so on till we reach K centers.

The primary objective of this type of initialization is to replace the
random initial population by good clustering solutions generated by K-
means. The weights α for each feature in each cluster center are initialized
randomly with respect to ∑d

j=1 α
j
c = 1 and 0 6 α

j
c 6 1.

Genetic functions

Genetic operators are essential for MOC methods as they enable the vari-
ety and diversity of the clustering solutions. In our method, we use One
Point Crossover and Random Resetting Mutation described below.

Single point crossover: a crossover point i chosen randomly, and the
resulted chromosome is composed of values from the beginning to i of the
first parent and from i+1 to the end of the second parent. The crossover
point is chosen based on the smaller K between the two solutions.

Random resetting mutation: gives a random value from a pre-defined
range to the randomly selected position. The two genetic functions are
illustrated in Figure 7.2.
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Figure 7.2 – Single Point Crossover and Random Resetting Mutation.

We must note that if two solutions have different number of clusters,
we can still apply both genetic functions as shown in Figure 7.2. We ap-
ply the mutation operator on each solution in the pareto set, while the
crossover is applied on each two solutions in the pareto-set.

Update clustering solutions

In the online phase, clustering solutions generated from the previous win-
dows need to be updated with new points from the current window. For
each clustering solution generated before, we assign each data point in the
current window to the closest cluster then the prototype ω

(t)
c is updated

as follows:

ω
(t+1)
c =

ω
(t)
c n(t)

c γ + z(t)c m(t)
c

n(t)
c γ + m(t)

c

(7.4)

Where ω
(t)
c is the previous prototype, n(t)

c is the number of points as-
signed to the cluster, z(t)c is the new prototype computed from the current
window. m(t)

c is the number of points assigned to the cluster c in the cur-
rent window: n(t+1)

c = n(t)
c + m(t)

c . γ is the decay factor that decreases over
time to give more importance to most recent data 0 < γ < 1 with γ = 1

all data will be used from the beginning; with γ = 0 only the most recent
data will be used.
The α weights are updated as follows:

α
j
c =

exp(Dj
c)

∑d
i=1 exp(Di

c)
(7.5)

Dj
c = ∑

p∈C
|ω j

c −ω
j
p|

Where: Dc is the sum of euclidean distances between the cluster c and the
other clusters in the population.
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Leader selection

Optimizing multiple clustering objectives ought to produce a set of non-
dominated solutions. The most suitable solution that indicates the final
clustering result should be retrieved with an expert’s help. However, some
other selection methods exist. In our method, we used an internal quality
measure called Davies Bouldin index [Davies and Bouldin, 1979] to select
the best solution among the Pareto-set. The choice of an internal index is
because the data might not be labeled. We sort all the solutions by their
fitness (internal measures values), and we choose the best one as an output
of the algorithm. Davies Bouldin index helps identify sets of clusters that
are compact and well separated. The Davies-Bouldin index is presented in
Section 3.2.1.

Adaptation to RGB data type

Most of the clustering algorithms, including our method, are designed to
deal with numerical data since most of the datasets available contain nu-
merical data. However, in histopathological datasets, the data represents
the values of pixels in RGB. The algorithm needs to be adapted to this
kind of data. To do so, we use the following steps:

• Conversion of RGB to CIE-L*ab: Since distance can’t be computed
in RGB space, we convert all the values to CIE-L*ab, which is a
color space defined by the International Commission on Illumina-
tion (CIE) in 1976. It expresses color as three values: L* for the light-
ness from black (0) to white (100), a* from green (-) to red (+), and
b* from blue (-) to yellow (+).

• Adaptation of the euclidean distance: the euclidean is a measure
of similarity between two points, it is mostly used for numerical
data. In this chapter, we present a euclidean distance to compute the
similarity between RGB data points. The Euclidean distance between
two pixels p1 = (L1, a1, B1) and p2 = (L2, a2, B2) is presented below:

EuclideanLaB =
√
(L1 − L2)2 + (a1 − a2)2 + (B1 − B2)2 (7.6)

• Encoding: We modify the encoding of centroids presented in the
section above to handle RGB values. Centroids are represented by
arrays of d× 3 where d is the dimension of the data and each point
have 3 values (R, G, B) representing the red, green and blue respec-
tively.

Relevant Patch Selection

We assume a histopathological image is an array of n × d, each value
(i, j) represents a pixel. A patch is a subset of the image of size pH × pW
where pW and pH are the patch’s width and height. We divide the image
on windows of pH instances, and we process each window at a time. The
features also are divided on blocks of pW features. We denote W and B
the number of windows and the number of blocks, respectively.
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The feature weight matrix α is a K× d where K is the number of clus-
ters. Each value α

j
c represent the weight of the jth feature in the cth cluster.

This matrix is updated for each window as described above. At the end of
each window, we compute a new weight αwi for the current window. This
value is used to evaluate the window and it is calculated as follows:

αwi =
1
d

d

∑
j=1

Intensityj.
1
K ∑

c∈C
α

j
c, (7.7)

where Intensityj is the sum of pixels pxij’s intensities for the feature j
and 0 < i < N where N is the size of the patch. We use the intensity
as a weight here, assuming that the pixels with high intensity gives more
information. The intensity of a feature j is calculated as follows:

Intensityj =
N

∑
i=1

Max(Li, ai, Bi) (7.8)

At the end of the process, we calculate the weight of each block αbi
from the matrix α as follows:

αbi =
1

pW ∑
j∈ f eaturesbi

Intensityj.
1
K ∑

c∈C
α

j
c, (7.9)

where f eaturesbi is the subset of features belonging to block bi.

Weight αw is a vector of W containing the weight of each window, and
αb is a vector of B containing the weight of each block. Each patch (i, j) is
associated with a weight (αwi + αbj). We sort all the patches based on their
weight ans we select a percentage of relevant patches. The rate of selection
is chosen based on the expirement in Section 7.4. The indices of a patch
(i, j) in the original image are: [(i× pH, i× pH + pH), (j× pW, j× pW +
pW)]. Figure 7.3 illustrates the process of patch extraction.
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Figure 7.3 – Process of extracting relevant patches. Window weights and Block weights
are the final weight vectors used to determine the extracted features.

Subspace Multi-Objective Histopathological Patch Selection al-
gorithm

The selection of ROIs in histopathological images is a crucial technique to
save time and memory; instead of processing the whole image, patch se-
lection provides subsets that give the same information about the disease
as the entire image. This chapter proposes a new method of patch selec-
tion based on subspace stream clustering combined with multi-objective
techniques. The method starts with initializing many clustering solutions
using different initialization of the K-means algorithm. It assigns random
weights to each patch. In each step of the algorithm, new clustering solu-
tions are created using Mutation and Crossover operators. The objective
functions are computed for each solution, and only the Pareto-optimal
solutions are stored in the Pareto-set. The weights α are updated using
the solutions in the Pareto-set for each window of data. At the end of the
algorithm, the best solution from the Pareto-set is selected according to
Section 7.3. The relevant patches are extracted according to Section 7.3.

We proposed another version of our algorithm to deal with numerical
data. This version have the same steps as the RGB version except for the
patch selection step. The data is seen as a stream of instances, each instance
is processed at a time and the solutions are updated as described in the
previous sections. At the end of the process, the best solutions is selected.
The algorithm proposed in this chapter is presented in Algorithm 12.
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Algorithm 12 Subspace Multi-Objective Histopathological Patch Selection
algorithm
Result : Optimal clustering solution, Set of relevant ROIs
From the first window: generate several clustering solutions using
K-means with different K;
Encode the clustering solutions following scheme in Figure 7.3;
Apply Crossover and Mutation following Figure 7.2. Add new solutions
to the population of chromosomes;
Compute objective functions following Equations (7.2) and (7.3). Store
non-dominated solutions in the Pareto-set;

while There is data available do
For each clustering solution in the pareto-set, assign each point to the
closest cluster;
Update each cluster in each clustering solution using the new points
assigned as described in Equation (7.4);
Update weights α following Equation (7.5);
Apply Crossover and Mutation following Section 7.3. Add new
solutions to the population of chromosomes;
Compute objective functions of the clustering solutions in the pareto-
set and the new solutions generated. Update the pareto-set with the
new non-dominated solutions;
Calculate Window weight according to Equation (7.7);

end
Calculate blocks weights according to Equation (7.9);
Extract relevant patches based on block and window weights;
Select best solution among the pareto-set solutions as described in section
7.3

7.4 Experimental results

To show the effectiveness of our method on both clustering and patch se-
lection, we developed two versions of SMO-HPS. The first one is a stream
method that processes numerical datasets. The second version deals with
the RGB data type, and it is suitable for histopathological datasets. As-
suming large-dimensional data arrives as a continuous stream, SMO-HPS
divides the data into windows and continuously processes each win-
dow. The window size depends on the available memory and the orig-
inal dataset’s size. The size of the window for each dataset is shown in
Table 7.2. We set the maxK parameter for the maximum clusters with K-
means clustering to 15. We set the time interval between two windows
to 1 millisecond. We present the results of SMO-HPS on synthetic and
histopathological datasets in the following sections.

Synthetic Datasets

We compared SMO-HPS to four well known stream algorithms:
StreamKM + + [de Andrade Silva and Hruschka, 2011], DStream [Tu
and Chen, 2009], DBStream [Hahsler and Bolaños, 2016], DenStream
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[Cao et al., 2006] and CluStream [Aggarwal et al., 2003] from R package
streamMOA1. We describe the synthetic datasets in Table 7.2.

Dataset Instances Features Classes |Window|
1CDT 16000 2 2 100

1CHT 16000 2 1 100

4CE1CF 173251 2 2 1000

GEARS-2C-2D 200000 2 2 10000

Table 7.2 – Description of the datasets used in experimentation

The results of SMO-HPS on the synthetic datasets described above
compared to the different algorithms based on Normalized Mutual In-
formation (NMI) [Strehl and Ghosh, 2002] and Adjusted Rand index
(ARAND) [Hubert and Arabie, 1985] are reported in Table 7.3. We note
that these results are the average of ten different runs with each algorithm.

It is noticeable that SMO-HPS yields better results than all the other
methods. These results are because our method uses subspace clustering
to make relevant features contribute more to the clustering. While opti-
mizing two objective functions to maximize intra-cluster similarity and
minimize inter-cluster similarity at the same time. The use of genetic op-
erators is essential to combine the best solutions and explore the potential
local solutions.

Dataset Metrics SMO_HPS StreamKM++ DStream DBStream DenStream CluStream

1CDT
NMI

ARAND
0.900 ± 0.13
0.939 ± 0.25

0.719 ± 0.03

0.662 ± 0.02

0.691 ± 0.10

0.667 ± 0.13

0.631 ± 0.28

0.610 ± 0.30

0.208 ± 0.05

0.086 ± 0.04

0.621 ± 0.06

0.583 ± 0.09

1CHT
NMI

ARAND
0.785 ± 0.02

0.834 ± 0.04

0.876 ± 0.01
0.920 ± 0.02

0.489 ± 0.02

0.415 ± 0.03

0.137 ± 0.03

0.007 ± 0.025

0.258 ± 0.03

0.145 ± 0.004

0.743 ± 0.03

0.743 ± 0.023

4CE1CF
NMI

ARAND
0.614 ±0.03
0.491 ± 0.06

0.542 ± 0.12

0.349 ± 0.17

0.597 ± 0.17

0.460 ± 0.19

0.553 ± 0.02

0.382 ± 0.07

0.071 ± 0.05

0.001 ± 0.07

0.409 ± 0.10

0.291 ± 0.11

GEARS_2C_2D
NMI

ARAND
0.732 ± 0.01
0.797 ± 0.01

0.543 ± 0.03

0.449 ± 0.03

0.160 ± 0.12

0.154 ± 0.16

0.001 ± 0.00

0.001 ± 0.00

0.021 ± 0.02

0.010 ± 0.01

0.301 ± 0.02

0.219 ± 0.02

Table 7.3 – NMI and ARAND results of SMO-HPS on synthetic datasets. Value after
± is the standard deviation and the value in bold is the best value.

Patch Selection

For the histopathological images, we use the RGB version of the SMO-HPS
algorithm described in section 7.3. We set pW and pH of the patches to
224. The extracted patches will have the size 224× 224 which is suitable for
most of the deep learning methods. Each window will have 224 from the
image, a clustering will be produced for each window and the αw weight
will be calculated as described in the previous sections.

The overlapping rate is the percentage of pixels that are kept from the
previous patch and re-used for learning with the new window. We set
the value of the overlapping rate to 0.3 and maxK to 15. The datasets are
described in Table 7.4.

1https://github.com/mhahsler/streamMOA

128



Chapter 7. Regions of Interests Selection in Histopathological Images using
Subspace and Multi-Objective Stream Clustering

Dataset Resolution (px) Nb of Images Classes |Patch|
Breakhis 700 x 460 7909 2 224 x 224

Lymphoma 1388 x 1040 375 3 224 x 224

ICIAR 2018-A 2048 x 1536 400 4 224 x 224

MITOS-Atypia 1539 x 1376 1188 3 224 x 224

Table 7.4 – Description of the histopathological datasets used in this experimentation

The breast cancer dataset (Breakhis) [Spanhol et al., 2015] was col-
lected from 82 patients and digitized under various magnifications (40×,
100×, 200×, 400×). This dataset is composed of two main classes: benign
and malignant. Each class is categorized into four additional subclasses:
adenosis (A), fibroadenoma (F), phyllodes tumor (PT), tubular adenona
(TA), and ductal carcinoma (DC), lobular carcinoma (LC), mucinous car-
cinoma (MC) and papillary carcinoma (PC). In our experiments, we used
the binary version of the 40× magnification.

The lymphoma dataset [Shamir et al., 2008] classifies the non-
hodgkin’s lymphomas into three categories: chronic lymphocytic leukemia
(CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). To
prepare this dataset, 30 slides have been digitized by the Zeiss Axioscope
light microscope.

The ICIAR 2018-A2 dataset was proposed in the ICIAR 2018 challenge.
In this dataset, the beast histology images have been digitized under 200x
magnification and annotated into four classes: normal, benign, in situ car-
cinoma, and invasive carcinoma.

The MITOS-Atypia dataset3 is used for mitosis detection and nuclear
atypia scoring (NAS) on invasive breast carcinoma slides. In this inves-
tigation, we used the NAS version, where the different slides have been
annotated into low-grade atypia, moderate grade atypia, and high-grade
atypia. Despite the previous researches, we treated the NAS as a classifi-
cation task.

To show the effectiveness of our method in extracting relevant patches,
we compared the extracted ROI’s to those obtained by a standard sliding
window method that extract all the possible (224 × 224) patches by creat-
ing a window that moves through the features and the instances by a 224

step with an overlapping rate r=0.7. We set the parameter λ to 7.
We select a percentage of relevant patches from each image. First, the

patches are sorted based on their weight, which is the sum of the window
weight, and the block weight described in the previous section. Then, we
select a percentage of relevant patches. This rate depends on the image.
We try different rates for each image, and we choose the one that gives
the best DBI value. Figure 7.4 presents an example of rate selection for an
image from Breakhis dataset. In this figure, the rate that gives the best DBI
value is 0.3.

2https://iciar2018-challenge.grand-challenge.org/Dataset/
3https://mitos-atypia-14.grand-challenge.org/Dataset/
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Figure 7.4 – Example of rate selection for an image from Breakhis dataset. The rate that
gives the best DBI value is 0.3.

Table 7.5 shows, for each dataset, the number of patches extracted by a
sliding window method compared to the number of patches extracted by
SMO-HPS. Figure 7.5 shows examples of patch selection from each class
of the Breakhis dataset compared to patches obtained by a sliding window
method. We notice that our approach gives a significantly lower number
of relevant patches. As we see in class ductal-carcinoma, the sliding win-
dow method extracted redundant patches while our approach omitted
them. These redundant patches can affect the computational time without
adding information. The same comment can be made for class papillary-
carcinoma, which is where the sliding window method extracted patches
with their background, shows that these patches contain almost no in-
formation. Our approach manages to extract only the patches with the
most information. In the following sections, we show that these extracted
patches can provide better learning performance with a lower computa-
tion time compared to learning on patches obtained by a sliding win-
dow method. To illustrates how these extracted patches are more rele-

Dataset
Number of Patches extracted

by SMO-HPS
Number of Possible Patches

Breakhis 6018 15960

Lymphoma 15791 17952

ICIAR 2018-A 23194 47970

MITOS-Atypia 68923 85536

Table 7.5 – Number of patches extracted by a sliding window method compared to the
number of patches extracted by SMO-HPS for each dataset.

vant and represent better the histopathological image, we calculate Davies
Bouldin Index on the entire dataset, and on only the extracted patches, the
results are represented in Table 7.6. We also tested the K-means algorithm
on the extracted patches and on the sliding window’s extracted patches.
We notice that the extracted patches’ results are significantly lower than
those on the entire dataset because the weights of these extracted patches
are higher than the other patches, which means that they contributed more
in the clustering process. We should note that the DB index needs to be
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Figure 7.5 – Examples of patch selection from each class of the Breakhis dataset compared
to patches extracted by a sliding window method
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minimized. This patch selection also avoids the non-relevant regions of the
image being diagnosed since they can give false information or contain
no crucial information; in both cases, it isn’t significant to process them.
Adding to that, this clustering process can be done way faster than clus-
tering the whole image. These results can help scientists make diagnoses
on a smaller amount of data with the same results faster.

Dataset
DBI on Patches extracted by

SMO-HPS
DBI on all the patches

Breakhis 16707 216225

Lymphoma 23627 36115

ICIAR 2018-A 45127 90303

MITOS-Atypia 266214 380159

Table 7.6 – Average Davies Bouldin Index of SMO-HPS on the extracted subset of
patches and on the whole set of patches. The value in Bold represent the best value.

Dataset
K-means on Patches

extracted by SMO-HPS
K-means on all the patches

Breakhis 68126 205498

Lymphoma 129092 143131

ICIAR 2018-A 234689 323789

MITOS-Atypia 649141 967778

Table 7.7 – Average Davies Bouldin Index of K-means on the extracted subset of patches
and on the whole set of patches. The value in Bold represent the best value.

Patch Clustering

To transform the unstructured data (patches) into structured raw data, we
used the InceptionV3 [Szegedy et al., 2016] pretrained network on Ima-
geNet for feature extraction. Each input image is propagated in the net-
work through inception blocks, then, the resulting 3D matrix from the last
pooling layer is transformed to 1D vector which represents the extracted
features. The result of feature extraction from all images is represented by
a 2D matrix as:

X =


x11 x12 ... x1m l2
x21 x22 ... x2m lc
... ... ... ... ...
xk1 xk2 xk3 xk4 l1

 , li ∈ {l1, l2, ..., lc} , i ∈ [1, c] (7.10)

where c is the number of categories, m is the number of features, and k is
the number of instances or images.

To illustrate our method’s clustering performance, we perform the first
version of our method on the resulted structured raw dataset. Each in-
stance of this dataset is a vector representing a patch. Figure 7.6 shows an
example of clusters found by Kmeans with K = 2 and our method on the
Breakhis dataset. We noticed that the similarity between the patches in the
same cluster is higher for SMO-HPS compared to K-means. This is since
our approach, unlike K-means, is an automatic K determination method,
meaning that it finds the right number of clusters. Our method manages
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to find a relevant subset of patches that represent better the whole dataset
while providing a proper partitioning for these patches. This experiment
aims at providing groups of similar tissues to help researchers detect
cancer-based on a group of regions of interest instead of analyzing the
whole set of patches, therefore, minimizing the computational time.

Medical Significance

The presented clusters by SMO-HPS shows a structure with similar mor-
phology. We also observe some representative tissues. After consulting
an Anatomo-pathologist, we discovered the significance of some clusters.
Cluster 1 represents Fibrous connective tissues; the ones in Cluster 2 repre-
sent adipose tissues, and the ones in the third cluster represent structures
with a large distribution of nuclei. Finally, Cluster 5 represents Hyaline
Cartilage tissues.

Figure 7.6 – Example of clusters given by K-means algorithms and clusters given by
SMO-HPS

Figure 7.7 compares Davies Bouldin index values for SMO-HPS to the
K-means algorithm on the datasets mentioned above. We notice that our
method yields lower values on all the datasets compared to K-means. We
note that the Davies Bouldin index needs to be minimized, which means
that our method performs better than K-means while extracting relevant
features.
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Figure 7.7 – Comparison between DBI value of SMO-HPS and K-means with K = 2 on
patches extracted by SMO-HPS.

Classification using Patches

To show the relevance of the extracted patches by SMO-HPS, we trained
the convolutional neural networks (InceptionV3 and VGG16) on the ex-
tracted patches by SMO-HPS and by the sliding window method. We set-
tled for the breakhis, lymphoma, and ICAR-2018-A datasets to validate
the proposed method due to space limitations.

For training, we fine-tuned the pre-trained ImageNet’s InceptionV3

[Szegedy et al., 2016] and VGG16 [Simonyan and Zisserman, 2014] models
on the target histopathological datasets. We fine-tuned the last five train-
able layers in VGG16 and the final trainable 44 layers in InceptionV3. We
trained the models in 30 epochs with a window size of 64. We used the
Nesterov’s Accelerated Momentum (NAG) with adaptive learning. The
learning rate was initialized to 0.01, decay to 10−6, and momentum to 0.9.
We used the stratified hold out method for evaluation: 70% for training
and 30% for testing. For training, we evaluated each patch separately. For
testing, we performed unweighted voting between patches to predict the
class of the whole HPF. We conducted our experiments on an NVIDIA
GeForce GTX 1060 GPU running on a PC with a CPU (Intel Corei5) and 8

GB RAM.
Tables 7.8 and 7.9 present the obtained results by the Inception and

the VGG16 networks, respectively. The trained network on the extracted
patches by SMO-HPS was tested on the test set generated by SMO-HPS
and the test set generated by the sliding window method. We performed
the same process on the trained model on the sliding window training
data.
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Dataset Test-set/Trained-model Sliding Window SMO-HPS

Breakhis
Sliding Window 95.82% 91.65%
SMO-HPS 96.32% 91.48%

ICIAR-2018-A
Sliding Window 72.72% 75.75 %
SMO-HPS 69.69 % 69.69 %

Lymphoma
Sliding Window 91.15 % 91.15 %
SMO-HPS 86.72 % 89.38%

Table 7.8 – Results of the Inception network

Dataset Test-set/Trained-model Sliding Window SMO-HPS

Breakhis
Sliding Window 96.32% 93.48%
SMO-HPS 96.49% 94%

ICIAR-2018-A
Sliding Window 72.72 % 66.66 %
SMO-HPS 69.69 % 74.24%

Lymphoma
Sliding Window 89.38 % 91.15 %
SMO-HPS 86.72 % 84.95%

Table 7.9 – Results of the VGG16 network

For the Breakhis dataset, training on the sliding window showed better
results: InceptionV3 (96.32 %) and VGG16 (96.49%), this is because it pro-
vides a large amount of data for the network and ensures generalization.
However, testing the network on patches extracted by SMO-HPS yields
better results. It prevents the weak decision generated from non-relevant
patches.

Despite the Breakhis dataset, the best results on ICIAR-2018-A and
Lymphoma datasets have been obtained by the trained model on the SMO-
HPS data and tested on the sliding window data ( 75.75 % and 91.15 %)
based on the Inception and the VGG16 networks, respectively. The number
of extracted patches by SMO-HPS for these datasets was more interesting
than Beakhis, which provided more generalization for the trained model.

Finally, the best results on the ICIAR-2018-A dataset based on the
VGG16 network have been obtained by the trained and tested model on
the SMO-HPS data (74.24 %).

To resume, the extracted patches by SMO-HPS represent useful
histopathological source datasets for training and testing. This technique
selects relevant patches to generate efficient models when trained on the
SMO-HPS data. It also helps in the prediction step, where we observed
interesting results on the test sets when discarding non-relevant patches.
We should note that, in some cases, this method should be combined with
the sliding window to achieve more impressive results compared to their
separate use.

Finally, we performed a comparative study between the obtained
results and the other state-of-the-art achievements on the ICAR-2018,
Breakhis, and the lymphoma datasets. For comparison, we selected only
the deep learning methods. We observed that the architectures VGG16,
Inception, and ResNet have been largely conceded for histopathological
images classification. Moreover, the fine-tuning was more exploited than
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training from scratch, which validates this technique’s efficiency. For the
ICIAR-2018 dataset, the best results have been achieved by the AlexNet
[Nawaz et al., 2018] architecture when fine-tuning the last fully connected
layers. On the other hand, for the Breakhis dataset, the proposed technique
yields the best results when testing the VGG16 model on the selected
patches by the SMO-HPS method. Finally, for the lymphoma dataset, the
best results have been obtained by the DenseNet architecture [Nanni et al.,
2019] when fine-tuning the last layers. Overall, the proposed method ranks
near the top of the current state-of-the-art classification based models and
achieved the best results on the Breakhis dataset.

Reference Architecture Fine tuning Accuracy (%)
[Kaymak et al., 2017] Back Propagation Neural Network (BPPN) - 70.4
[Ferreira et al., 2018] Inception-Resnet-V2 Fine tuning the last fully connected layers 76

[Nawaz et al., 2018] AlexNet Fine tuning the last fully connected layers 81.25

Our method
SMO-HPS + VGG16 Fine tuning the last 5 trainable layers 74.24

SMO-HPS + InceptionV3 Fine tuning rhe last 44 trainable layers 75.75

Table 7.10 – The obtained results on the ICAR-2018 dataset.

Reference Architecture Fine tuning Accuracy (%)
[Benhammou et al., 2018] InceptionV3 - 82.7 ± 90.2

[Sun and Binder, 2017] ResNet50 Fine tuning all layers 86.24 ± 3.44

[Zhi et al., 2017] VGGNet16 Fine tuning the fully connected layers 89.12

[Zhi et al., 2017] AlexNet Fine tuning the last 3 fully connected layers 90.96 ± 1.59

Our method
SMO-HPS + VGG16 Fine tuning the last 5 trainable layers 96.49

SMO-HPS + InceptionV3 Fine tuning the last 44 trainable layers 96.32

Table 7.11 – The obtained results on the Breakhis dataset.

Reference Architecture Fine tuning Accuracy (%)
[Nanni et al., 2020] Ensemble of Deeplabv3 with ResNet50 Fine tuning last layers 79.7

[Maguolo et al., 2019] Ensemble of VGG16 - 85.87

[Janowczyk and Madabhushi, 2016] AlexNet (Cifar-10 version) - 92.00

[Nanni et al., 2019]
ResNet50 Fine tuning last layers 93.60

DenseNet Fine tuning last layers 96.58

Our method
SMO-HPS + VGG16 Fine tuning the last 5 trainable layers 91.15

SMO-HPS + InceptionV3 Fine tuning the last 44 trainable layers 91.15

Table 7.12 – The obtained results on the lymphoma dataset.

Computational Time

Figure 7.8 shows the execution time of SMO-HPS on the extracted patches
compared to the execution time on the whole set of patches. The time
of the patch extraction process is added to the processing time. We can
notice that the execution time on the extracted patches is shorter. This is
due to the small amount of data compared to the sliding window method.
Our method manages to extract relevant patches to improve the perfor-
mance and reduce the computational time. This time reduction can also
be beneficial to anatomo-pathologists since they can analyze less amount
of data.
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Figure 7.8 – Comparison between execution time SMO-HPS on patches extracted by
SMO-HPS and on patches extracted by a sliding window method. The time of the patch
extraction process is included.

7.5 Conclusion

This chapter presents SMO-HPS, a new method of extracting relevant
patches from histopathological images and cluster them. It combines sub-
space clustering and multi-objective techniques to overcome the prob-
lems of non-relevant patches. Our approach aims at selecting the relevant
patches for classification instead of using the whole image or all selected
patches by the sliding window method. We presented two versions of the
method, one that deals with numerical datasets, and we tested its perfor-
mance on synthetic datasets. The second version deal with RGB datasets
that we adapted to be compatible with the clustering. This version allows
us to extract the relevant patches while grouping them into similar clus-
ters. We also consulted an Anatomo-pathologists to give significance to
the group of patches that the method found. The experiments show our
method’s ability to extract relevant patches while improving the clustering
quality and reducing the computational time. To validate the efficiency
of the extracted patches by SMO-HPS, we trained the InceptionV3 and
VGG16 networks on these patches. The presented results show that the
extracted patches by SMO-HPS represent useful histopathological source
datasets for training and testing. This method presented also interesting
results when combined with the sliding window technique.
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Throughout this Ph.D. thesis, we have tackled fundamental problems in
the field of unsupervised machine learning. The first part of the thesis
was devoted to presenting state-of-the-art clustering classical data and
data stream clustering. We presented different techniques and methods
and also detailed comparisons between these methods.

The second part is composed of three chapters:

In the first chapter, we presented S2G-Stream, an efficient method for
subspace clustering of an evolving data stream in an online manner with
two models of feature and block weighting (global and local). The sub-
space clustering method with the Global Weighting Model was used as a
dimensionality reduction method. This method gives a better clustering
of the data stream and provides the features and subspaces contribut-
ing to the clustering. Several experiments were conducted to prove the
impact on the order of data points and the windows’ overlapping to the
clustering quality. Experimental evaluation demonstrates the effectiveness
and efficiency of S2G-Stream in discovering clusters of arbitrary shapes
and relevant features and blocks. The global model weighting gave us
a comprehensive view of the features and blocks used to select the best
subset of features and enhance the clustering performances.

In the second chapter, we presented MOC-Stream and IMOC-Stream.
The first method is a new method for clustering data streams based on a
multi-objective algorithm. The latter is an improvement over MOC-Stream
to enhance memory and time computation. Unlike those single-objective
clustering techniques that have employed only one objective function,
IMOC-Stream utilizes two objective functions to find clusters of arbitrary
shaped clusters and enhance the clustering quality. IMOC-Stream uses a
two-phase process: 1) online phase: creating several clustering solutions
based on different algorithms and genetic operators 2) offline phase:
construction of an optimal partition from the discovered clusters. We ap-
plied our method on large stream datasets and compared it to a different
stream clustering algorithm. The experiments show the effectiveness of
IMOC-Stream for detecting arbitrary shaped, compact, and well-separated
clusters with better execution time.

In the last chapter, we proposed SMO-HPS, a new method of extract-
ing relevant patches from histopathological images and cluster them. It
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combines subspace clustering and multi-objective techniques to overcome
the problems of non-relevant patches. Our approach aims at selecting the
relevant patches for classification instead of using the whole image or all
selected patches by the sliding window method. We presented two ver-
sions of the technique, one that deals with numerical datasets, and we
tested its performance on synthetic datasets. The second version deal with
RGB datasets that we adapted to be compatible with the clustering. This
version allows us to extract the relevant patches while grouping them into
similar clusters. We also consulted Anatomo-pathologists to give signif-
icance to the group of patches that the method found. The experiments
show our method’s ability to extract relevant patches while improving the
clustering quality and reducing the computational time.

To validate the efficiency of the extracted patches by SMO-HPS, we
trained the InceptionV3 and VGG16 networks on these patches. The pre-
sented results show that the extracted patches by SMO-HPS represent use-
ful histopathological source datasets for training and testing. This method
also presented interesting results when combined with the sliding win-
dow technique.

8.1 Future work

We were interested in the Quantum clustering techniques during this
thesis. QC attempts to provide a different solution for clustering problems
in data analysis by applying the time-based Schrodinger Equation to
study the change of the original data set and the structure of the quan-
tum potential energy function dynamically. The basic idea is to learn the
distribution law of sample data in the scale space by studying particles’
distribution law in the energy field.

In Quantum Clustering(QC), clustering algorithms are developed
based on quantum theory. This is usually done by adapting classical
algorithms or their expensive functions to run in quantum computers.
The main idea of QC is to study the distribution law of sample data in the
scale space based on the distribution law of particles in the energy field.
The distribution of particles in the energy fields is determined through
their potential energy in the Schrödinger equation. The critical point to
connect quantum mechanics and clustering is to assume that each local
minimum of the potential energy is the cluster center. Since particles are
more likely to appear in the regions with lower potential energy, it is
similar to how the same cluster’s data points tend to gather in a particular
region.

The time-independent Schrödinger equation can be written as in 8.1[
− σ2

2 ∇2 + V(r)
]

Ψ(r) = EΨ(r) (8.1)

the parameters of the Schrödinger equation are described in 8.1
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Table 8.1 – Parameters of the Shrödinger equation

Parameter Description
σ clustering kernel parameter
Ψ stationary wave function
r position in space of the particle
E Energy of the particle
V Potential function

QC algorithm in Horn and Gottlieb [2001] replaced the wave function
by the Gaussian kernel-based sum, it starts with assigning a Gaussian Ψi
with width σ to each data point:

Ψ(xi) =
N

∑
j=1

e−
(xi − xj)

2

2σ2 (8.2)

the sum of the individual Gaussian function forms the Parzen window
estimator Schløler and Hartmann [1992]:

Ψ = ∑
i

Ψ(xi) (8.3)

Parzen window density estimation is another name for kernel density es-
timation. It is a non-parametric method for estimating continuous density
function from the data.
Then, the potential function that can be used in the Schrodinger equation
can be :

V =
σ2

2
D2Ψ(r)

Ψ(r)
+ E (8.4)

Where :

E = −min
σ2

2
D2Ψ(r)

Ψ(r)
(8.5)

The use of the parzen window density estimation for each data point
is costly in time and memory. We started some experiments to optimize
the time and memory computation by replacing the parzen estimator.
These researches are still in progress, and we plan on continuing them
after the Ph.D. We also intend to apply quantum techniques to clustering
data streams as the clustering quality can be improved.

Other challenges in the clustering data stream are discussed in the
following Ghesmoune et al. [2016b]:

• Finding k: Finding the number of clusters is still an open problem,
especially for partitioning-based algorithms. There exist some cur-
rent methods for this purpose. However, none of them is widely ac-
cepted. Some ways generate several partitions of the data and choose
the partition that gives the best quality, which automatically deter-
mines k.

• Parameter Requirements: Current data stream clustering algorithms
require parameters such as the number of clusters, some thresholds,
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decay factor, window or batch length, etc. Such parameters are sus-
ceptible to the input data, and they directly affect the clustering qual-
ity. It is a challenge to automatically specify these parameters with-
out domain knowledge, manage them for each cluster separately,
and update them according to the data characteristics.

• Experimental Comparison Environment: No existing platform can
compare two or more different data streams by running them to-
gether and evaluating their performances.

• Different Data Types: Since the data stream can come from differ-
ent sources, it can be from other data types. Handling different data
types and missing values is a challenging task in data stream cluster-
ing. Most of the stream clustering algorithms work with quantitative
features and define the similarity based on euclidean distance. Some
other approaches convert categorical data into numerical and treat
them as quantitative data.

• Protecting privacy and confidentiality: Data streams present new
challenges and opportunities concerning protecting privacy and con-
fidentiality in data mining. The main objective is to develop data
mining techniques that would not uncover information or patterns
which compromise confidentiality and privacy obligations. Privacy-
by-design seems to be a promising paradigm to use.

• Handling incomplete information: The problem of missing values,
which corresponds to the incompleteness of features, has been dis-
cussed extensively for the offline, static settings. However, only a few
works address data streams and especially evolving data streams.

• Distributed streams: Data streams are distributed by nature. For
learning from distributed data, we need efficient methods in mini-
mizing the communication overheads between nodes. Most impor-
tantly, in applications like monitoring, centralized solutions intro-
duce delays in event detection and reaction that can make mining
systems inefficient. Many data clustering techniques are not trivial
to parallelize. More research is needed with practical and theoretical
analysis to provide new methods to develop distributed versions of
some techniques.
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AOpen Source Clustering

Libraries

Clustering4Ever

Clustering4Ever1. is a free open source Scala/Spark library for clustering.
It is a fast and easy to use and test library that can be integrated via an
API. It offers several notebooks to help test some algorithms and datasets.
The API not only presents a large variety of clustering algorithms but also
gives the possibility to use these algorithms with different types of data
(continuous, binary, and mixed data). The library also implements Quality
measures and different distances measures.

Scikit-learn

Scikit-learn2 is a simple and efficient tool for predictive data analysis im-
plemented in Python. The library contains a large variety of clustering
algorithms (K-Means, DBSCAN, OPTICS, etc.). Many quality measures
(Rand, Accuracy) and preprocessing techniques were implemented.

MLlib-Spark

Apache Spark3 is a popular open-source platform for large-scale data
processing that is well-suited for iterative machine learning tasks. ML-
lib [Meng et al., 2016] is Spark’s open-source distributed machine learning
library. MLlib provides efficient functionality for a wide range of learning
settings and includes several underlying statistical, optimization, and lin-
ear algebra primitives. Its an efficient and easy-to-use library that can be
integrated into many programming languages like R, Scala, Python, .etc.
It includes a clustering library with K-means, GMM, etc.

Weka

Weka [Hall et al., 2009] is an open-source machine learning software that
can be accessed through a graphical user interface, standard terminal ap-
plications, or a Java API. It supports several clustering algorithms such as

1https://github.com/Clustering4Ever/Clustering4Ever
2https://scikit-learn.org/
3https://spark.apache.org/
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EM, Filtered Clusterer, Hierarchical Clusterer, Simple KMeans, and so on.
Many feature selection techniques and quality measures are implemented
as well.

ELKI

ELKI [Schubert and Zimek, 2019] is an open-source (AGPLv3) data min-
ing software written in Java. The focus of ELKI is research in algorithms,
emphasizing unsupervised methods in cluster analysis, and outlier detec-
tion. To achieve high performance and scalability, ELKI offers data index
structures such as the R*-tree that can provide major performance gains.
ELKI is designed to be easy to extend for researchers and students in this
domain and welcomes contributions of additional methods. ELKI aims to
provide a large collection of highly parameterizable algorithms to allow
easy and fair evaluation and benchmarking of algorithms.

Cluster

Cluster4 is an R package. It includes many clustering algorithms (PAM,
CLARA,..), Quality Measures (Silhouette,..), Similarity and Dissimilarity
measures, etc.

4https://cran.r-project.org/web/packages/cluster/cluster.pdf
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BStream Datasets

Stream clustering was applied in various fields such as financial transac-
tions, telephone records, sensor network monitoring, telecommunications,
website analysis, weather monitoring, and e-business. [Silva et al., 2013]
proposed several real-time datasets for stream mining. We discuss them
in the following:

KDD’99 was used for The Third International Knowledge Discovery
and Data Mining Tools Competition. The competition task was to build
a network intrusion detector, a predictive model capable of distinguish-
ing between "bad" connections, called intrusions or attacks, and "good"
normal connections. This database contains a standard set of data to be
audited, which includes a wide variety of intrusions simulated in a mili-
tary network environment 1. This dataset represents good test to evaluate
stream clustering methods due to its large size.

Sensor networks are spatially distributed separate sensors to monitor
physical or environmental conditions, like temperature, sound, pressure,
etc., as well as to cooperatively push their data through the network to a
base station. The WSN is built of nodes from a few to several hundred
or even thousand, where each node is connected to each other sensors
[Mamalis et al., 2009]. Data is collected from a set of sensors distributed all
around the network. Sensors can send information at different time scales,
speed, and granularity. Data continuously flow eventually at high speed,
in a dynamic and time-changing environment. These characteristics made
sensor networks data one of the most used datasets for stream mining.

Text mining is popularly used in knowledge-driven organizations. It is
the process of examining extensive collections of texts to discover new in-
formation. Clustering micro-blogging text streams (e.g., Twitter) to obtain
temporal and geo-spatial features of real-world events is the most used
approach in stream text mining. The extracted characteristics can be senti-
ments, opinions, etc. [Aggarwal and Yu, 2006] constructed a stream from a
number of documents obtained from a 1996 scan of the Yahoo! taxonomy.
Considering that Web pages at a given node in the hierarchy are crawled
at once, the Web pages are also contiguous by their particular class, as
defined by the Yahoo! labels. Clustering text data streams is useful with
many applications, such as newsgroup filtering, text crawling, document
organization, and topic detection [Silva et al., 2013].

CoverType2 dataset is used to predict forest cover type from carto-
graphic variables only. This dataset contains a total of 581,012 observations

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2https://archive.ics.uci.edu/ml/datasets/covertype
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with 54 attributes (10 quantitative, four binary values for wilderness ar-
eas, and 40 binary soil types). Each observation is labeled as one of seven
forest cover types.

Synthetic datasets showed effectiveness in testing hypotheses like the
ability to detect arbitrary shaped clusters, noise robustness, and scaling
for high dimensionality. This kind of data can be generated in many ways
like varying Gaussian distributions [Wan et al., 2008]; using IBM synthetic
data generator [Ong et al., 2004], or other dataset formed by arbitrarily
shaped clusters.

Table B.1 – Datasets used in stream clustering

Datasets References

KDD’Cup 99

[Chen and Tu, 2007]
[Aggarwal and Philip, 2008]

[Zhu et al., 2010]

Sensor Networks
[Da Silva et al., 2012]

[Gama et al., 2011]

Text Datasets
[Aggarwal and Yu, 2006]

[Liu et al., 2008]

CoverType
[Aggarwal et al., 2004]

[Kranen et al., 2009]
[Carnein et al., 2017]

Synthetic Datasets
[Ong et al., 2004]
[Wan et al., 2008]

[Al Aghbari et al., 2012]
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frameworks

Recently, many stream processing frameworks have been presented. These
frameworks allow us to develop a whole stream application. These frame-
works are classified into two main categories: The first classification, called
real-time streaming data processing frameworks, incorporates Apache S4

1,
Apache Storm2, Apache Samza3, and Apache Flink4. Such frameworks
process the streaming data on a tuple-by-tuple premise in which each tu-
ple is handled as it arrives. Conversely, the frameworks from the second
class, for example, Spark Streaming, gather data in certain time intervals
and process them in batches. These frameworks are called micro-batch
streaming data processing systems [Alshaer, 2019]. We present in the fol-
lowing the frameworks mentioned above.

Real-Time Streaming Data Processing Frameworks

Apache S4

S4 (Simple Scalable Streaming System) is a general-purpose, distributed,
scalable, partially fault-tolerant, pluggable platform that allows program-
mers to easily develop applications for processing continuous, unbounded
streams of data. It provides a simple Programming Interface for process-
ing data streams. The goals of this platform [Neumeyer et al., 2010] is
to:

• Design a cluster with high availability that can scale using commod-
ity hardware.

• Minimize latency by using local memory in each processing node
and avoiding disk I/O bottlenecks.

• Use a decentralized and symmetric architecture

• Use a pluggable architecture to keep the design as generic and cus-
tomizable as possible.

• Make the design science-friendly, that is, easy to program and flexi-
ble.

1http://incubator.apache.org/s4/
2http://storm.incubator.apache.org/
3http://samza.apache.org/
4https://flink.apache.org/.
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Apache Storm

Apache Storm is a scalable free and open-source distributed system that
aims at providing a framework for real-time stream processing, which
additionally accomplishes adaptability and adaptation to internal failure.
Similar to Hadoop, Storm can be deployed on a cluster of heterogeneous
machines and can be used with any programming language. This tool
offers specific new business opportunities, including real-time customer
service management, data monetization, operational dashboards, or cy-
bersecurity analysis, and threat detection.

Storm has five important features that enable it to support real-time
data processing:

• Speed - one million 100-byte messages processed every second per
node.

• Scalability - a parallel computing base that runs on a cluster of ma-
chines

• Fault tolerance - when workers break down, Storm automatically
restarts them. If one node is unavailable, the worker will be restarted
on another node.

• Reliability - Storm guarantees that each tuple, or data point, will be
processed at least once, or only once. Messages are replayed only if
they fail.

• Easy to use - Standard configurations allow production from day
one. Once deployed, Storm is simple to use.

Apache Samza

Apache Samza is a distributed stream processing framework developed
by LinkedIn5 in 2013. It provides the following features:

• High performance: Samza provides extremely low latencies and high
throughput to analyze data instantly.

• Horizontally scalable: Scales to several terabytes of state.

• Easy to operate: Samza is easy to operate with flexible deployment
options - YARN, Kubernetes or standalone.

• Powerful APIs: Rich APIs to build applications.

• Write once, Run everywhere : Ability to run the same code to process
both batch and streaming data.

• Pluggable architecture: Integrates with several sources including
Kafka, HDFS, AWS.

5www.LinkedIn.com
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Apache Flink

Flink is a high-performance, scalable batch and stream processing engine
which can process a really large amount of data with ease. Flink stream-
ing applications are programmed via a DataStream API that uses Java or
Scala. These languages, as well as Python, also allow programming on an
additional DataSet API for processing static data. Flink can be deployed in
stand-alone mode on a single Java Virtual Machine (JVM), in YARN-based
Hadoop clusters, or on Cloud-based systems.

Flink’s core runtime environment supports a pipelined, flow-based ar-
chitecture. It also includes an iterative data processing method for ma-
chine learning and various analytical applications. Dedicated libraries and
APIs are provided for the development of machine learning programs, as
well as for a variety of uses, including string management and graphical
element processing. Another API focuses on the integration of Hadoop
applications.

Micro-Batch Streaming Data Processing Frame-
works

Spark Streaming

Spark Streaming6 [Zaharia et al., 2012] is a spark module that processes
data stream as batches through a similar functional interface to Spark,
such as map, filter, reduce, etc. Spark Streaming runs streaming computa-
tions as a series of short batch jobs on RDDs within a programming model
called discretized streams (D-Streams).

With Spark Streaming, a context is initialized with a duration. The
framework will accumulate data during this duration and then produce
a small RDD (Resilient Distributed Dataset). This accumulation / RDD
production cycle will be repeated until the program is stopped. This is
called micro-batches, as opposed to processing events one by one.

Spark Streaming is, therefore, here opposed to Apache Storm: Storm
offers real-time processing of events while Spark Streaming will add a
delay between the arrival of a message and its processing.

However, this difference in treatment allows Spark Streaming to offer
a guarantee of processing messages in exactly once in normal conditions
(each message is delivered once and only once to the program, without
loss of messages), and at least once in degraded conditions (a message
can be delivered several times, but always without loss). Storm allows to
set the guarantee level but, to optimize performance, the at most once
mode (each message is delivered at most once, but losses are possible)
must be used.

Stream MOA

StreamMOA [Bifet et al., 2010] is an open-source Java-based framework
for data stream mining. It contains state-of-the-art algorithms and mea-
sures for both data stream classification and clustering. It also embodies

6http://spark.apache.org/streaming/
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several evaluation criteria and visualization tools. The goal of MOA is a
benchmark framework for running experiments in the data stream mining
context by proving storable settings for data streams (real and synthetic).
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DData stream repositories

1. UCI Knowledge Discovery in Databases Archive1 is is an online
repository of large datasets containing a large number of datasets
with different sizes, types, and analysis fields.

2. COVID-19 Twitter dataset The COVID-19 Twitter dataset [Banda
et al., 2020]2 consists of 43M+(43.845.712 tweets) collected between
March 22nd and March 30th.

3. KDD Cup Center3 is an annual Data Mining and Knowledge Dis-
covery competition organized by ACM Special Interest Group on
Knowledge Discovery and Data Mining.

4. UCR Time-Series Datasets4 are maintained by Eamonn Keogh, Uni-
versity California at Riverside.

5. Meetup (2002) is a website that allows its users to schedule a meet-
ing. Meetup created a mechanism of invitation, and the responses
are taken as a stream. This stream is publicly published and can be
used for data stream clustering.

6. Real World Data in Real Time API5

7. Twitter Data6

8. National Weather Service (NWS) (1870) creates public alerts,
watches, warnings, advisories, and similar alternative products
within the Common Alerting Protocol (CAP) and Atom Syndication
Format (ATOM) (NWS Public Alerts, n.d.). This data can be used as
a stream for stream clustering methods.

9. AirNow Air Quality Observations7

1http://kdd.ics.uci.edu/
2https://github.com/thepanacealab/covid19_twitter
3http://www.sigkdd.org/kddcup/
4https://www.cs.ucr.edu/
5https://www.hooksdata.io/
6https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
7https://docs.airnowapi.org/
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