
Multivariate Time Series Clustering for Advanced

Driving-Assistance System Validation Based on Massive

Simulation

Etienne Goffinet

December 15, 2021
Version : First Draft





UNIVERSITÉ PARIS XIII - SORBONNE PARIS NORD

École Doctorale Sciences, Technologies, Santé Galilée

Clustering Multi-Blocs et Visualisation Analytique

de Données Séquentielles Massives Issues de

Simulation du Véhicule Autonome

THÈSE DE DOCTORAT
présentée par

Etienne GOFFINET
Laboratoire d’Informatique de Paris Nord

LIPN - UMR CNRS 7030
Équipe A3 : Apprentissage Artificiel & Applications

pour l’obtention du titre de

Docteur en Informatique

soutenue le 15 décembre 2021 devant le jury d’examen composé de :

NADIF Mohamed Professeur Université Paris Descartes Rapporteur
SAMÉ Allou CR-HDR IFSTTAR Rapporteur
BIERNACKI Christophe Professeur INRIA / Université Lille 1 Examinateur
CÉRIN Christophe Professeur Université Sorbonne Paris Nord Examinateur
LEBBAH Mustapha MCF-HDR Université Sorbonne Paris Nord Directeur
AZZAG Hanane MCF-HDR Université Sorbonne Paris Nord Co-directrice
GIRALDI Loïc CR CEA Invité
OBREBSKI Mathias Data Scientist Groupe Renault Invité



Etienne Goffinet

Multivariate Time Series Clustering for Advanced Driving-Assistance System Validation Based on

Massive Simulation

Classification non supervisée de séries temporelles multivariées pour la validation de systèmes

d’aide à la conduite par simulation massive, December 15, 2021

Directeurs : M. Mustapha Lebbah, Mme. Hanane Azzag

Reviewers : Jane Doe and John Doe

Supervisors : Jane Doe and John Smith

Université Sorbonne Paris Nord

Team A3 : Apprentissage Artificiel & Applications

Laboratoire dInformatique de Paris Nord (LIPN UMR CNRS 7030)

École Doctorale Galilée (ED 146)

99 avenue Jean-Baptiste Clément

93430 and Villetaneuse

Groupe Renault

Direction de lIngénierie de lAlliance Renault Nissan

Autonomous Driving Simulation & Virtual Reality Center

Autonomous Driving / Advanced Driving Assistance systems Validation

Superviseurs : M. Pascal Remusan, M. Loïc Giraldi, M. Mathias Obrebski

1 Avenue du Golf

78280 and Guyancourt



Multi-Block representation
Piet Mondrian (1923). Composition A.

Galleria Nazionale dArte Moderna e Contemporanea (GNAM), Rome, Italy.

v





Abstract

Advanced driver-assistance systems (ADAS) development remains one of the biggest
challenges car manufacturers must tackle to provide safe driverless cars. The reliable
validation of these systems requires assessing their reaction’s quality and consistency to
a broad spectrum of driving scenarios. In this context, Groupe Renault uses large-scale
simulation systems, which accurately reproduce the physical driving conditions and pro-
duce large quantities of high-dimensional time series data. The role of the ADAS deve-
loper is to explore these datasets to determine precisely the capabilities of the driving
assistance system studied and, if necessary, to refine its design.

A simulated data set can contain up to several hundred thousand simulations for a given
use case, described by several hundred variables. The expert’s work requires a great deal
of business knowledge and a meticulous time-consuming investigation with datasets of
such dimensions to discriminate.

This thesis aims to produce algorithms and tools to help explore, structure and analyze
these massive simulation data sets. We propose four probabilistic approaches for time
series clustering, each based on a specific datasets structure hypothesis.

The first contribution of this thesis is built on a scenario-based construction hypothesis
and performs a dictionary-based classification of univariate time series. This method
uses an existing piecewise polynomial segmentation model to construct a driving pattern
dictionary and recode the time series into chains of driving phases. The subsequent
contributions focus on the analysis of multivariate time series datasets with multi-blocks
methods that regroups variables based on their distribution and partitions.

Applications from Renault industrial use cases illustrate the usefulness of these contri-
butions : validating an emergency braking system, a lane-keeping system, and an emer-
gency avoidance system.
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Résumé
Le développement de systèmes d’aide à la conduite demeure un défi technique pour les
constructeurs automobiles. La validation de ces systèmes nécessite de les éprouver dans
un nombre considérable de contextes de conduites. Pour ce faire, le Groupe Renault a
recourt à la simulation massive, qui permet de reproduire précisément la complexité des
conditions physiques de conduite et produit une grande quantité de séries temporelles
multivariées. Le rôle de l’expert métier est alors d’explorer ces données pour déterminer
précisément les capacités du système d’aide à la conduite étudié et, si nécessaire, de
raffiner sa conception.

Un jeu de données simulées peut contenir jusqu’à plusieurs centaines de milliers de
simulations, décrites par plusieurs centaines de variables. Face à de telles dimensions, le
travail du développeur requiert une grande expertise, ainsi qu’un travail d’investigation
minutieux et chronophage.

L’objectif de cette thèse est de produire des algorithmes et outils d’aide à l’exploration,
la structuration et l’analyse de ces jeux de données issues de simulation massive. Basées
sur des hypothèses de construction argumentées, nous proposons trois approches pro-
babilistes de classification non supervisée de séries temporelles, adaptées à des jeux de
données temporelles univariées et multivariées.

La première contribution de cette thèse est construite sur une hypothèse de construction
par scénario, et réalise une classification de séries temporelles univariées par diction-
naire. Partant d’un modèle existant de segmentation polynomiale par morceaux, cette
méthode crée un dictionnaire de régimes de conduite pour recoder les séries temporelles
en phases similaires. Les contributions suivantes se concentrent sur la classification de
jeux de données multivariés par bloc, qui regroupent les variables en se basant sur leur
distribution et leur partitionnement.

La suite des contributions se concentre sur l’analyse de jeux de données multivariés,
grâce à des modélisations multi-blocs qui regroupent les différentes variables en fonction
de leur distribution.

La pertinence de ces contributions est illustrée par des applications issues des cas d’usage
industriels Renault : la validation d’un système de freinage d’urgence, d’un système
d’aide au maintien dans la voie, et d’un système d’évitement d’urgence.
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Introduction

„De plus en plus, les technologies connectées et la
conduite autonome permettront aux usagers de
faire un choix entre conduire et être conduits. Ce
constat ouvre la voie à de nouveaux scénarios de
mobilité. Voici notre prochaine révolution.

— Guillaume Eurin
Directeur du Développement des ADAS

et du Véhicule Autonome .
Groupe Renault Rapport Annuel (2019-2020)

Cette thèse a été organisée en convention entre le constructeur automobile Groupe Re-
nault 1 et le laboratoire d’informatique LIPN 2 (Laboratoire dInformatique de Paris Nord,
UMR CNRS 7030) de l’Université Sorbonne Paris Nord 3. Ce chapitre présente le contexte
industriel qui a motivé cette convention de recherche : la validation de systèmes d’aide
à la conduite (ADAS) et ses contraintes opérationnelles. Cette description permet de
détailler le rôle des ADAS dans le fonctionnement d’un véhicule, l’interêt de leur déve-
loppement pour le constructeur. Elle présente également la nécessité de l’utilisation de
la simulation massive pour la validation et la nature du travail d’analyse de données
associée aux jeux de données simulées. Enfin, cette partie présente également les contri-
butions, en réponses aux contraintes opérationnelles et les publications associées, avant
de conclure par le plan global du manuscript.

Systèmes d’aide à la conduite (ADAS)

Les systèmes d’aide à la conduite (ADAS) sont des systèmes électroniques embarqués
qui fournissent une assistance pour certaines tâches associées à la conduite. Depuis les

1. https ://www.renaultgroup.com/
2. https ://lipn.univ-paris13.fr/
3. https ://www.univ-paris13.fr/
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premiers systèmes d’Anti-Blocage des Roues (ABS) et de Vitesse de Croisière développés
dans les années 1950, jusqu’à la très récente fonction de Pilote Autoroutier Automatique,
le développement de ces systèmes a accompagné le marché automobile durant toute son
histoire. Toute voiture récente en est aujourd’hui équipée.

Tandis que certains systèmes ne sont que produire une information ou un avertissement
(par exemple les systèmes de navigation ou le rappel de non-bouclage des ceintures de sé-
curité, . . . ), certains fournissent une aide active à la conduite quotidienne (par exemple,
la vitesse de croisière adaptative, l’allumage des feux automatique, . . . ). D’autres, enfin,
fournissent une aide vitale lors de situations d’urgence (par exemple le freinage d’ur-
gence, le maintien dans la voie, . . . ). Les ADAS peuvent être classés en fonction de leur
niveau d’automatisation de conduite, sur une échelle de 0 à 5 développée par la Society
of Automotive Engineers (SAE). Cette échelle, representée sur la Fig. .1, peut également
être vue comme une feuille de route menant au développement de la voiture autonome,
et dont les ADAS constitueraient les fondations. La liste suivante présente trois exemples
d’ADAS existants ou en développement :

— Le Freinage d’Urgence Automatique (AEB) - Niveau 0. Durant la conduite, ce frei-
nage se déclenche lorsque la voiture équippée (appelée Ego) détecte une cible (pié-
ton, voiture, camion, vélo, . . . ) se rapprochant à grande vitesse.

— L’Aide au Maintien dans la Voie (LKA) - Niveau 1. Durant la conduite, ce système
détecte une dérive non intentionnelle d’Ego en direction d’une autre voie ou du
bord de la route et corrige sa trajectoire.

— Valet Parking - Niveau 4 (En développement). Dans une aire de stationnement, ce
système dirige le véhicle sans intervention extérieure, cherche et trouve un espace
de stationnement disponible et réalise la manoeuvre de stationnement.

Pour le conducteur, ces ADAS sont des gages de sécurité, de confort et d’efficacité. D’un
point de vue plus global, les ADAS sont pensés comme une forme d’aide à la mobi-
lité, d’assistance aux personnes agées, et une solution pour réduire le traffic automobile
[SS15]. D’un point de vue commercial, ils constituent des arguments de vente décisifs
qui permettent aux constructeurs de prouver leur savoir-faire et de se démarquer sur un
marché de l’automobile extrêmement compétitif. Dans un récent rapport de recherche
[Res21], le cabinet d’étude marketing Precedence Research estimait la valeur du marché
mondial de l’ADAS à 32.3 Milliards de dollars en 2019, et prévoyait une hausse jusqu’à
142 Milliards de dollars en 2027.

Avec pour objectif d’équipper des millions de voitures à travers le monde, la sécurité des
utilisateurs (conducteur ou piéton) est la première préoccupation lors du développement
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Figure .1. : Système de classification des ADAS (source : SAE).
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d’un ADAS. Pour s’en assurer, il est donc nécessaire de mettre en place un système de
validation rigoureux qui vérifiera les performances de l’ADAS dans tous les contextes de
conduite.

Validation

L’objectif de l’étape de validation est de confirmer que les réactions d’un ADAS sont
conformes au cahier des charges fonctionnel, rédigé par le Groupe Renault, en accord
avec les recommandations des agences gouvernementales de sécurité (par exemple Euro
NCAP en Europe)

Dans ce contexte, pour la validation d’un ADAS hautement autonome (Niveau 4), le
Groupe Renault requiert un niveau minimum de fiabilité de 10−8 décès par heure, ce
qui correspond à 10 fois moins que la moyenne du nombre d’accidents sur autoroute en
Europe, et 100 fois moins que la moyenne d’accident sur tous types de route. Vérifier un
tel niveau de fiabilité demanderait de réaliser au moins 2× 1010 kilomètres de conduite
[Wau18], soit plus de 100 années sur la route.

Ce niveau de fiabilité doit être atteint pour chaque véhicule de la gamme, pour chaque
ADAS, et dans tous les cadres législatifs mondiaux existants. De plus, les développeurs
doivent également s’assurer que les ADAS sont inter-opérables, et que leur combinai-
son ne provoque pas d’effets de bord (par exemple : comment combiner le freinage
d’urgence et l’évitement d’urgence). L’accumulation de tous ces facteurs de complexité
rend impossible la validation basée uniquement sur des tests physiques sur piste ou sur
route.

Pour résoudre ce problème et parvenir à tenir ces engagements de fiabilité, Le Groupe
Renault a fait le choix d’investir dans la technologie de simulation massive de conduite.
Ces systèmes de simulation reproduisent les conditions de conduite en se basant sur un
scénario, la physique du véhicule, le comportement du conducteur, et les interactions
avec un environnement lui-même configurable. Le procédé de simulation consiste en
un processus distribué qui génére des scènes physiques en parallèle. La qualité de la
simulation, c’est-à-dire sa capacité à reproduire fidèlement les conditions de conduite
réelles, est méthodiquement monitorée afin de s’assurer de la pertinence du procédé de
simulation. Le système de simulation est representé sur la Fig. .2.
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Figure .2. : Représentation schématique du système de simulation.

La simulation massive produit de grandes quantités d’information provenant de l’obser-
vation de variables simulés, et aggrégée en un unique jeu de données de séries tempo-
relles multivariées. Le rôle de l’expert métier est alors d’analyser ce jeu de données pour
discriminer des comportements de conduite, détecter des situations aberrantes, et de
comparer les performances de l’ADAS au cahier des charges.

Les dimensions et la complexité des données sont considérables ; pour un cas d’usage
donné, le nombre de simulations peut atteindre O(106), être décrit par O(103) variables,
chacune enO(104) points temporels. Au total, plus deO(1013) observations peuvent être
produits pour tester le paramétrage d’un ADAS (ce qui représente jusqu’à 1 téraoctet).
Les simulations ont des durées différentes liées aux conditions de scénario de conduite
testée, par conséquent les tailles des séries temporelles simulées sont également diffé-
rentes. Le jeu de données final peut être représenté sous la forme d’une matrice, conte-
nant une série temporelle dans chaque cellule, de taille spécifique à chaque simulation.
Un exemple fictif de matrice simulée est représentée sur la Fig. .3.

De plus, si certains résultats de simulation peuvent être prédits (en particulier, le com-
portement attendu), la plupart sont découverts après la simulation. Par conséquent, il
n’est pas possible d’établir à l’avance la liste exhaustive de labels qui permettrait de
réaliser une analyse supervisée. Dans ce contexte en grandes dimensions, multivarié et
non-supervisé, extraire de l’information pertinente serait à la fois chronophage et labo-
rieux pour l’expert, sans l’aide d’outils spécifiques d’analyse de données.
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Figure .3. : Illustration du contenu d’un jeu de données simulées. Celui-ci est représenté par une
matrice, contenant une série temporelles dans chaque cellule.
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Figure .4. : Illustration d’une méthode de Clustering de séries temporelles multivariées. Image
de gauche : [SAJ18].

Les méthodes qui font une classification automatique de séries temporelles dans des
groupes homogènes, sans supervision, sont appelées des méthodes de classification non-
supervisée de séries temporelles, ou Clustering de séries temporelles. La Fig. .4 repré-
sente l’exemple d’une telle méthode appliquée à jeu de données de séries temporelles
multivariées. Sur cet exemple, le graphique de droite montre les séparations entre diffé-
rents groups de simulations, après une projection dans un espace 2D.

Contributions

La classification non supervisée de séries temporelles est une tâche complexe, qui dé-
pend fortement des hypothèses formulées par l’analyste sur le jeu de données étudié.
En l’absence de labels et de supervision, il n’est jamais possible de savoir si le résultat
du clustering est correct, puisque, par construction, il n’y a aucune façon de savoir ce
que « correct » signifie. Le problème est à considérer dans l’autre sens : lorsque l’analyste
applique une méthode de clustering sur un jeu de données, c’est la compréhension de la
méthode utilisée et des hypothèses sous-jacentes qui permet d’interpréter les résultats et
d’en tirer des conclusions.

La première contribution de cette thèse se base sur une hypothèse de construction de
séries par scénario. Observant que les simulations sont générées sur la base de scénario
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Figure .5. : Structure des modèles proposés : a) Le Coclustering infère une partition colonne et
une partition ligne ; b) le Multi-Clustering infère une une partition colonne et une
partition ligne dans chaque groupe de variable ; c) le Multi-Coclustering combine
les deux aspects et ajoute une couche de structures de Coclustering dans le Multi-
Clustering.

de conduite (c.f., Fig. .2), nous avons développé une méthode basée sur la détection
de différentes phases de conduite. Durant l’analyse, les séries temporelles sont recodées
sous formes de chaînes de régimes de conduite, qui sont des schémas de conduite issues
de l’observation du jeu de données globales et aggrégées en dictionnaire. Cette méthode
de clustering probabiliste permet également la détection d’anomalies basée sur des in-
tervalles de confiance probabilistes, et l’inférence de valeurs manquantes.

Cependant, par construction, cette méthode ne s’applique qu’à des séries temporelles
univariées, ce qui correspond, dans notre cas, à l’analyse d’un seul variable. Cependant,
dans la plupart des cas, le comportement d’un ADAS influe sur plusieurs dimensions,
observées par plusieurs variables. Il est donc raisonnable de vouloir analyser plusieurs
variables simultanément. Les contributions suivantes répondent à cette problématique
et forment un groupe cohérent de méthodes dédiées au clustering de séries temporelles
multivariées. Elles partagent la même vision multi-bloc et la même racine commune : le
Coclustering. Le Coclustering infère simultanément une partition de simulations (appe-
lées partition ligne) et une partition de variables (appelées partition colonne), comme
illustré sur la Fig. .5-a.

Cette thèse propose des extensions du Coclustering, avec trois méthode probabilistes :
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Méthode Chapitre Lien
SDLHC Chapitre 2 https ://tinyurl.com/sdlhc

FunCLBM Chapitre 3 https ://tinyurl.com/FunCLBM
FunNPLBM Chapitre 4 https ://tinyurl.com/funNPLBM

FunMCC Chapitre 5 À paraître prochainement
Table .1. : Liens vers les dépôts Github associés aux contributions

— Une méthode de Coclustering Bayésien Non-Paramétrique, qui intègre nativement
une étape de sélection de modèle.

— Une méthode de Multi-Clustering paramétrique qui permet d’inférer une partition
colonne et une partition ligne pour chaque cluster colonne. (c.f., Fig. .5-b).

— Une méthode de Multi-Coclustering non-paramétrique. Cette méthode combine
le Multi-Clustering en y intégrant des structures de Coclustering (c.f., Fig. .5-c).
Cette approche crée plusieurs vues d’un même jeu de données tout en réduisant
le nombre de paramètres, le tout dans un cadre bayésien non-paramétrique qui
permet de résoudre la problématique de sélection de modèle.

Le code source associé à ces distributions, majoritairement écrit en Scala, avec des visua-
lisations en R et Python, est également mis à disposition, ainsi que les jeux de données
publics de test. Le lien vers les dépôts Github sont rassemblés dans le tableau .1. Par
souci de confidentialité, les données des cas d’usage Groupe Renault ne sont pas mises
à disposition.

Plan de la thèse

La suite du manuscript se compose des articles suivants :

Chapter 1 : Related work

Le premier chapitre présente les travaux existants sur le sujet de la classification de séries
temporelles, univariées ou multvariées. Ce chapitre introduit en particulier les notions
de clustering et coclustering probabilistes, ainsi que la modélisation Bayésienne Non
Paramétrique, notions qui seront ré-utilisées régulièrement dans les chapitres suivants.

Chapter 2 : Time Series Clustering with Model-Based Dictionary Representation.

Ce chapitre détaille la première contribution de cette thèse, une méthode de clustering
de séries temporelles univariées construite en trois étapes : a) segmentation individuelle
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par régression polynomiale par morceaux ; b) construction d’un dictionnaire de phases
de conduites par modèle de mélange ; c) clustering de chaînes de caractères.

Chapter 3 : Multivariate Time Series And Functional Conditional Latent Block Mo-
del

Ce chapitre présente la première méthode de clustering de séries temporelles multiva-
riées, avec une méthode de Multi-Clustering par blocs. Cette approche paramétrique
probabiliste de Multi-Clustering étend le Coclustering de séries temporelles en permet-
tant la création de plusieurs vues d’un même jeu de données multivariées.

Chapter 4 : Bayesian Nonparametric Coclustering

Cette partie présente une seconde extension du modèle de coclustering de séries tem-
porelles multivariées. Cette extension ajoute un prior Bayésien Non Paramétrique aux
composants du Coclustering, sous la forme d’un modèle de mélange de Dirichlet symé-
trique. Cette extension permet d’intégrer nativement une sélection de modèle durant
l’inférence.

Chapter 5 : Multivariate Time Series Multi-Coclustering

Basée sur les méthodes détailles dans les chapitres 3 et 4, le Multi-Coclustering combine
Multi-Clustering et Coclustering. Cette approche consiste en trois modèles de mélange
de Dirichlet hiérarchiquement imbriqués et permet l’inférence d’une structure de Multi-
Clustering global, puis d’un Coclustering à l’intérieur de chaque vue.

Chapter 6 : Conclusion And Perspectives

Ce dernier chapitre présente de possibles extensions des méthodes proposées. Ces propo-
sitions concernent l’extension multivariée de la méthode de clustering par dictionnaire,
et la recherche de méthode de représentation alternative pour la méthode de clustering
multivarié par bloc.

Publications

Ces contributions ont été l’objet de plusieurs publications au cours de la thèse, représen-
tées sur la Fig. .6 et listées ci-dessous :

— Goffinet, É., Lebbah, M., Azzag, H., Giraldi, L., & Renault, S. A. S. (2020). Cluste-
ring de séries temporelles par construction de dictionnaire. In EGC (pp. 181-192).
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Figure .6. : Chronologie des publications.

— Goffinet, E., Lebbah, M., Azzag, H., & Giraldi, L. (2020). Autonomous Driving
Validation with Model-Based Dictionary Clustering. In ECML/PKDD.

— Goffinet, E., Lebbah, M., Azzag, H., Giraldi, L. & Coutant, A. Validation de Systèmes
de Conduite Autonome par Co-clustering de Séries Temporelles (2020). Workshop
Nouvelles méthodes pour l’analyse descriptive et prédictive de données massives
et structurées. Société Francophone de Classification (SFC)

— Goffinet, E., Coutant, A., Lebbah, M., Azzag, H., & Giraldi, L. (2020). Conditional
Latent Block Model : a Multivariate Time Series Clustering Approach for Autono-
mous Driving Validation. arXiv preprint arXiv :2008.00946.

— Goffinet, É., Lebbah, M., Azzag, H., Giraldi, L., & Coutant. A (2020). Multiple Co-
clustering de séries temporelles. Application à la validation de systèmes d’aide à la
conduite. In 52emes Journées de Statistiques. Société Française de Statistique.

— Goffinet, É., Lebbah, M., Azzag, H., Giraldi, L., & Coutant. A (2021). In Interna-
tional Workshop on Advanced Analysis and Learning on Temporal Data @ ECML-
PKDD .

— Goffinet, E., Lebbah, M., Azzag, H., & Giraldi, L. (2021). Multivariate Time Series
Multi-Coclustering. Application to Advanced Driving Assistance System Validation.
In ESANN 2021-29th European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning. ESANN.

Plusieurs publications sont, au moment de la rédaction de cette thèse, toujours en cours
de révision :

— Goffinet, É., Lebbah, M., Azzag, H., Giraldi, L., & Coutant. A. (2021). Multiva-
riate Time Series Multi-Coclustering. Application to Advanced Driving Assistance
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System Validation. Soumis à Applied Intelligence : Special Issue on Multi-view
Learning. Springer .

— Goffinet, E., Lebbah, M., Azzag, H., Giraldi, L. & Coutant. A. (2021). Functional
Non-Parametric Latent Block Model : a Multivariate Time Series Clustering Ap-
proach for Autonomous Driving Validation. Soumis à Computational Statistics &
Data Analysis.
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Introduction

„Increasingly, connected technologies and
autonomous driving will allow users to choose
between driving and being driven. This fact opens
the way for new scenarios for mobility. Thats our
next revolution.

— Guillaume Eurin
Director of Autonomous Vehicle

and ADAS Development.
Groupe Renault Annual Report (2019-2020)

This thesis is a bi-party research project in collaboration between the car manufacturer
Groupe Renault 4 and the computer science lab LIPN 5 (Laboratoire dInformatique de Pa-
ris Nord, UMR CNRS 7030) at Université Sorbonne Paris Nord 6. This chapter describes
the industrial context that motivated this research agreement : the advanced driver assis-
tance systems (ADAS) validation and its operational constraints. This description details
the ADAS role in a vehicle and why their development is essential for the car manufac-
turer. It also explains the necessity of using massive simulation for validation and the
nature of the data analysis work associated with the simulated data sets. The last part
of this introduction presents the thesis contributions that were designed to address the
datasets operational constraints, and the associated publications, before concluding with
the manuscript plan.

Advanced Driver-Assistance Systems

Advanced Driver assistance systems are on-board electronic systems that assist with spe-
cific driving tasks. From the first Anti-lock Braking System (ABS) and Cruise Control

4. https ://www.renaultgroup.com/
5. https ://lipn.univ-paris13.fr/
6. https ://www.univ-paris13.fr/
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systems developed in the 1950s, to the very recent Automatic Highway Pilot functio-
nality, the ADAS development has been associated to the automotive market growth
throughout its history. Every modern contains some of these systems.

Some systems are simple information or warning providers (e.g., seat belt reminder,
navigation, . . . ), others actively assist the user in everyday driving tasks (e.g., adaptive
cruise control, automated lighting,. . . ). Some others bring vital help in emergencies
situations (e.g., emergency braking or lane-keeping, . . . ).

The ADAS can be classified in driving automation levels on a scale designed by the So-
ciety of Automotive Engineers (SAE), from level 0 to 5. This scale, displayed in Fig. .7,
also represents the roadmap toward full Autonomous Driving, with ADAS serving as
keystones. The following list describes three existing or in-development ADAS applica-
tions :

— Autonomous Emergency Breaking (AEB) - Level 0. While driving, an emergency
brake is triggered when a target (pedestrian, car, truck, bike, . . . ) is detected mo-
ving at high speed towards the equipped car (called Ego) in the opposite direction.

— Lane Keeping Assist (LKA) - Level 1. While driving, the system detects an unin-
tentional slow drift of Ego towards another lane or the roadside and corrects the
trajectory.

— Valet Parking - Level 4 (Under development). Inside a parking lot, this automated
parking system drives the vehicle, finds a parking spot, and performs the parking
maneuver.

From the driver perspective, the ADAS enhance vehicle safety, comfort and efficiency.
On a broader level, they are also meant to extend mobility, provide assistance for the
elderly and reduce traffic congestion [SS15]. From a marketing perspective, they are
selling points that allow car manufacturers to demonstrate their know-how and stand
out in a highly competitive automotive market. In a recent research report [Res21], the
market research and consulting organization Precedence Research estimated the global
ADAS market size at USD 32.3 billion in 2019 and forecasted that it would reach USD
142 billion by 2027.

In the perspective of equipping millions of cars worldwide, driver and pedestrian safety
is the first concern of the ADAS developers. Therefore, implementing rigorous validation
processes is necessary to verify the ADAS performances in all driving situation.
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Figure .7. : SAE automation scale (source : SAE).
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Validation

The validation process objective is to assess the ADAS conformity to technical specifica-
tions, established by Groupe Renault in accordance with car safety evaluation agencies
recommendations (e.g., Euro NCAP in Europe).

In this context, Groupe Renault has specified a minimum reliability level of 10−8 casual-
ties per hour to validate a LEVEL 4 ADAS system, which is 10 times less than the average
rate of fatalities per hour on European highways, and 100 times less than the average
accident rate on all types of European roads. It would require at least 2×1010 kilometers
of driving [Wau18], equivalent to 100 years of road testing. This reliability level must be
reached for every vehicles, every ADAS and every traffic regulation context. In addition,
the ADAS developers must also ensure that the ADAS are inter-operable and that their
combination does not provoke side effects. Given this complexity, it is impossible to test
every scenario with only physical driving test on-track or open roads.

Groupe Renault has made the strategical choice to invest in massive driving simulation
technology to enhance the ADAS development and validation process. The simulation
systems mimic car driving conditions based on a driving scenario, vehicle physics, driver
behavior, and interactions with a configurable environment. The simulation quality, i.e.,
its capacity to reproduce real-life driving conditions faithfully, is methodically monito-
red to ensure the validation process pertinence. The simulation system is illustrated in
Fig. .8.

The simulation outputs large amounts of information coming from the observation of
the simulated variables, and aggregated as one large dataset of multivariate time se-
ries. Based on this multivariate dataset, the role of the field expert’s is to discriminate
the driving behaviors, detect anomalies, and compare the ADAS performances to the
specifications.

Data dimensions and complexity are considerable : for a given use case, the number of
simulations can be as large as O(106), described O(103) of simulated sensors, each re-
cording O(104) time steps. Overall, more than O(1013) data points are produced to test
one ADAS setting, which represents several gigabytes per simulation plan (up to 1 tera-
byte). Because the simulation duration depends on the driving scenario, the simulated
time series lengths are unequal. However, because the variables describe the simulation
at the same sampling rate, the time series lengths are equal for a given simulation.
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Figure .8. : Simulation System Representation.

The final dataset can be represented as a matrix, where each cell is a time series with
simulation-dependent length. An instance of such matrix is displayed in Fig. .9, with a
fictive simulation result.

Even though some simulated driving behaviors are predictable (e.g., the predicted va-
lid behavior), most are discovered after simulation, which prevents from using labels to
supervise the analysis. In this high-dimensional, multivariate and unsupervised context,
extracting meaningful information is a tedious and time-consuming task for the expert,
and requires specific exploration tools. The action of automatically regrouping time se-
ries into homogeneous clusters, without supervision, is called time series or clustering.
An instance of multivariate time series clustering method applied to a driving simulation
dataset is displayed in Fig. .10, where the scatter plot on the right shows the multivariate
observations regrouped into clusters and represented in a simpler 2D space.

Contributions

The clustering of time series is a complex task that depends heavily on hypothesis that
the user decides to form on the considered dataset. Without label, it is never possible to
know if the clustering result is correct, because there is no ground truth to compare the
results to.
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Figure .9. : Illustration of the simulation dataset contents. The dataset can be represented as a
matrix, where each cell is a time series. Every time series in a given row share the
same length.

Multivariate Time series
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Figure .10. : Multivariate Time Series Clustering Illustration. Left Matrix figure from [SAJ18].
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Figure .11. : Structures of the proposed models : a) the coclustering infers one column-partition
and one row-partition ; b) the Multi-Clustering infers one column-partition and
one row-partition per column-cluster ; c) the multi-coclustering combines the Multi-
Clustering with a coclustering layer.

On the contrary, when an user applies a clustering method on a dataset, it is the unders-
tanding of the underlying assumptions that allows to reason and draw conclusions on
the results.

The first contribution of this thesis is based on a scenario-construction hypothesis. After
observing that simulations are generated on the basis of driving scenarios (c.f., Fig. .8),
we developed a method based on the segmentation of time series in chains of driving
phases. With this method, the time series are recoded as chains of ’regimes’, where
regimes are driving patterns found in the entire datasets and aggregated in a dictionary.
As a probabilistic method, this approach can be used for outlier detection based on
probabilistic confidence interval and missing data inference.

This method is designed for univariate time series clustering. However, in most use cases,
the ADAS effects are observed by several variables simultaneously (e.g. speed, braking
intensity, steering wheel angle, . . . ), and the field expert is therefore interested in obser-
ving the distributions of several variables together. The following contributions attempt
to deal with this issue and form a separate set of methods dedicated to multivariate time
series clustering. These methods share the model-based coclustering as common root.
The coclustering infers one simulation partition (called row-partition and one variable
partition (called column-partition), as shown on Fig. .11-a.
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Method Chapter Link
SDLHC Chapter 2 https ://tinyurl.com/sdlhc

FunCLBM Chapter 3 https ://tinyurl.com/FunCLBM
FunNPLBM Chapter 4 https ://tinyurl.com/funNPLBM

FunMCC Chapter 5 To be released soon
Table .2. : Links to the Github repositories associated with the contributions

We extend this approach with three new models :

— A Bayesian non-parametric time series coclustering model that natively integrates
a model selection step.

— A parametric Time Series Multi-Clustering model that infers one column-partition
and one specific row-partition per column cluster (c.f., Fig. .11-b).

— A non-parametric multi-coclustering. This approach combines the multi-clustering
with coclustering structures, to construct several views of the same multivariate
time series dataset while reducing the number of parameters and enhancing inter-
pretation (c.f., Fig. .11-c).

The source code associated with these distributions, mainly Scala code, with visualiza-
tions in R and Python, is also made available, with the public datasets used for test.
The github repositories links are summarized in Tab. .2. The industrial use cases cannot,
however, be made available.

Summary of remaining chapters

The rest of the manuscript is organized as follows :

Chapter 1 : Related work

The first chapter focuses on the existing works related to time series unsupervised clas-
sification, univariate or multivariate. This chapter also introduces the model-based clus-
tering, coclustering, multi-clustering, and the Bayesian non-parametric modeling, that
will intensively be used in the following chapters.

Chapter 2 : Time Series Clustering with Model-Based Dictionary Representation.

This chapter details the first contribution of this thesis, an univariate time series cluste-
ring method consisting of three steps : a) a model-based piecewise polynomial regres-
sion used for time series segmentation ; b) a model-based dictionary construction that
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regroups similar driving patterns ; c) a character chains clustering hierarchical cluste-
ring.

Chapter 3 : Multivariate Time Series And Functional Conditional Latent Block Mo-
del

This chapter introduces the first contribution dedicated to multivariate time series
with multi-block clustering. This method consists in a parametric model-based Multi-
Clustering model that extends an existing time series coclustering work by allowing to
infer several row-partitions instead of one.

Chapter 4 : Bayesian Non-Parametric Coclustering

This chapter presents a Bayesian Non-Parametric multivariate time series coclustering.
Based on an existing coclustering model, this method adds a symmetric Dirichlet Process
prior on the block components. With this extension, this new model natively performs
model selection.

Chapter 5 : Multivariate Time Series Multi-Coclustering

Built on the methods detailed in Chapter 4 and Chapter 3, the multi-coclustering takes
the best of coclustering and multi-clustering. This method consists in hierarchically nes-
ted Dirichlet Process Mixtures that infer a multi-clustering view of a dataset and then a
coclustering structure in each view.

Chapter 6 : Conclusion And Perspectives

This chapter summarizes possible extensions for the proposed methods. These exten-
sions focus on multivariate extensions for the dictionary-based univariate clustering me-
thod, and different representations in the block-clustering approach.

Publications

These contributions were the subject of several publications, chronologically represented
in Fig. .12, and listed below :

— Goffinet, É., Lebbah, M., Azzag, H., Giraldi, L., & Renault, S. A. S. (2020). Cluste-
ring de séries temporelles par construction de dictionnaire. In EGC (pp. 181-192).
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Journal CSDA
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Journal
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Figure .12. : Publication chronology.

— Goffinet, E., Lebbah, M., Azzag, H., & Giraldi, L. (2020). Autonomous Driving
Validation with Model-Based Dictionary Clustering. In ECML/PKDD (4) (pp. 323-
338).

— Goffinet, E., Lebbah, M., Azzag, H., Giraldi, L. & Coutant, A. Validation de Systèmes
de Conduite Autonome par Co-clustering de Séries Temporelles (2020). Workshop
Nouvelles méthodes pour l’analyse descriptive et prédictive de données massives
et structurées. Société Francophone de Classification (SFC)

— Goffinet, E., Coutant, A., Lebbah, M., Azzag, H., & Giraldi, L. (2020). Conditional
Latent Block Model : a Multivariate Time Series Clustering Approach for Autono-
mous Driving Validation. arXiv preprint arXiv :2008.00946.

— Goffinet, É., Lebbah, M., Azzag, H., Giraldi, L., & Coutant. A (2020). Multiple Co-
clustering de séries temporelles. Application à la validation de systèmes d’aide à la
conduite. In 52emes Journées de Statistiques. Société Française de Statistique.

— Goffinet, É., Lebbah, M., Azzag, H., Giraldi, L., & Coutant. A (2021). Non-
Parametric Multivariate Time Series Co-clustering Model Applied to Driving-
Assistance Systems Validation. In International Workshop on Advanced Analysis
and Learning on Temporal Data @ ECML/PKDD.

— Goffinet, E., Lebbah, M., Azzag, H., Giraldi, L. & Coutant, A. (2021). Multivariate
Time Series Multi-Coclustering. Application to Advanced Driving Assistance Sys-
tem Validation. In ESANN 2021-29th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning.

Some publications are, at the time of the writing, still under review :
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— Goffinet, É., Lebbah, M., Azzag, H., Giraldi, L., & Coutant. A. (2021). Multivariate
Time Series Multi-Coclustering. Application to Advanced Driving Assistance Sys-
tem Validation. Submitted to Applied Intelligence : Special Issue on Multi-view
Learning. Springer.

— Goffinet, E., Lebbah, M., Azzag, H., Giraldi, L. & Coutant. A. (2021). Functional
Non-Parametric Latent Block Model : a Multivariate Time Series Clustering Ap-
proach for Autonomous Driving Validation. Submitted to Computational Statistics
& Data Analysis.
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Notations

Table .1. : Notations summary

Dataset

s = (si)n

= (si(tj)Ti)n

Univariate time series da-
taset

S = (si,j)n×p Multivariate time series
dataset

n Observation number p Variable number
(Ti)n Time series length

x ∈ Rn×d Dataset after transforma-
tion of s

X ∈ Rn×p×d Dataset after transforma-
tion of S

d Representation space di-
mension

X−i,./X.,−j X without row i/column j

d(., .) Dissimilarity measure xi,./x.,j row i / column j of X

Mixture Model and Dirichlet Process Mixture Model

z Observation memberships K Component number
F Distribution family (θk)K Components parameter

π = (πk)K Mixture proportions (µ,Σ) Multivariate Gaussian pa-
rameters

M Iteration number Θ Parameter set
(nk)K Cluster Size
α Concentration parameter Kobs Observed component

number
G0 Base Distribution µ0, κ0,Ψ0, ν0 NIW prior parameters
χ Hyper-parameter set µk, κk,Ψk, νk Cluster k posterior distri-

bution parameters

Dictionary-based time series clustering

s Time series (zt)T Segment membership
ϕ = (ϕq)Q Basis of polynomial func-

tions
β = (βq)Q Polynomial regression co-

efficients
R = {ru}U Dictionary of regimes

(size U)
(wk,s)K Logistic process parame-

ters in component k
σ2 covariance parameter
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Notations summary (continued)

Multi-Block Clustering

fi,j Frequencies basis ex-
pression of si,j

f̂ Interpolated fre-
quency basis

w = (wj)p Coclustering variable
partition

ρ = (ρl)L Coclustering column
proportions

L Number of column
cluster

β Column-cluster
concentration pa-
rameter

(pl)L or (ph)H Column-clusters size (nk,l)K×L Block-cluster size
θk,l Block distribution pa-

rameters
µk,l, κk,l,Ψk,l, νk,l Block cluster (k, l) pos-

terior distribution pa-
rameters

H Number of Multiple-
Clustering clusters

(Kh)H , (Lh)H Row and column-
clusters numbers

nh
k , p

h
l Row and column clus-

ters sizes
nh

k,l Block-clusters size

Z = (zh
i )n×H Multiple row parti-

tions
(πh)H Multiple row parti-

tions proportions
(wh)H Multiple coclustering

column partitions
(ρh)H Multiple coclustering

column proportions
v = (vj)p Multi-Clustering

variable cluster mem-
bership

η = (ηh)H Multi-Clustering com-
ponent proportions

θh
k,l Multiple coclustering

block distribution pa-
rameters

µh
k,l, κ

h
k,l,Ψh

k,l, ν
h
k,l Block cluster (k, l) pos-

terior distribution pa-
rameters

γ, (αh)H , (βh)H Multiple coclustering
concentration parame-
ters

aγ , bγ

aβ, bβ

aα, bα

Beta hyper-prior para-
meters
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Related Work 1
„Knowledge is a process of piling up facts ; wisdom

lies in their simplification.

— Martin H. Fischer

In the previous chapter we described the industrial context that motivated this thesis
contributions : during the ADAS validation step, the field expert deals with large quanti-
ties of driving simulations, with unequal lengths and without labels. As a consequence,
he must rely on unsupervised tools to explore the datasets contents.

1.1 Time Series Clustering

This chapter describes the existing works on the topic of time series clustering, starting
from the Clustering basic definition in Sect. 1.1.2. The subsequent Sect. 1.1.3 and 1.1.4
respectively introduces a review of time series dissimilarities and transformations. Sec-
tion 1.1.5 describes existing clustering algorithms, with an emphasize on the methods
that are used and extended in the present thesis.

1.1.1 Time Series Analysis

The last decades has seen an important increase of the Information Technology field,
due to decrease of processors, sensors and storage costs correlated with an increase of
available data and use case development.

Time series is a specific kind of data generated from successive observations of a system
state. This data type can be observed in every time-depending field. In Finance, they
describe the sales, stock prices and exchange rates evolution. They are also used exten-
sively in Health use cases, for the description of a patient state through medical sensors.
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In Industry applications, they can monitor machine activity, production rates, and opti-
mize predictive maintenance. Logistic, Demography, Retail, Climate, Astronomy,. . . The
application possibilities are numerous.

In correlation with the use case number, processing power and storage capacities, the
time series analysis topic has seen a sharp interest increase. Three kind of usage domi-
nates the time series data applications : missing data inference (which includes forecas-
ting when these data are posterior to the observed time series), anomaly detection, and
classification.

In our applications, we are particularly interested in two of these usages : the detection
of anomalous driving behaviors, and unsupervised classification of driving patterns.

1.1.2 Unsupervised Classification

An informal definition of unsupervised classification, or clustering, is : "(...) to discover
groups of similar examples within the data (...)" [Bis06]. This partitioning is performed
without the help of labels to supervise the estimation. The clustering transforms a po-
tentially complex dataset (in our case, high-dimensional multivariate time series) into a
simplified information, expressed as a categorical vector of memberships.

As opposed to supervised classification (called simply classification), that seeks to cor-
rectly infer an observation class based on a ground-truth, clustering is an exploration
tool that helps the user understand the content of a dataset. It can be compared to a
cartography tool, whose goal is not to recognize cities and countries (as classification
does), but to detect new geographical patterns in an unexplored area.

Every clustering method is associated to a set of parameters. Some of these parameters
are estimated during the clustering process, but others are specified by the user before
the run. These are called hyper-parameters. For instances, some methods requires to
know the cluster number a priori, to specify a time series dissimilarity measure, or an
initial inference state.

These hyper-parameters may have an important impact on the clustering result. For ins-
tance, the user can choose to discriminate time series based on time series trends, shape,
or simply length or sampling frequency. These features have nothing in common (two
time series can have similar trends but completely different length). As a consequence,
depending on user hypothesis, the results can change completely. It is up to the user
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to choose among all the possible representations, features, dissimilarities and every pos-
sible hyper-parameter settings, according to its need and prior knowledge. It is therefore
mandatory for the user to fully understand how the clustering process works, and the
role and impact of each hyper-parameter.

Many time series clustering methods have been developed in the last decades, based
on various construction hypothesis and application domains [Lia05 ; Keo06 ; Din+08 ;
Wan+13 ; ASW15 ; For21]. In the following we detail some of the existing approaches
and strategies, with an emphasizing on the methods used in the present thesis.

1.1.3 Time series similarity measure

The broad definition of clustering ("grouping similar elements together") outlines the
importance of the similarity definition in a clustering process. One way of clustering
time series is to use time series specific distance. Clustering methods based on time
series in the original space. This approach is also called raw-data-based, or shape-based
approach (this denomination is, for instance, given in [ZMK12] or in [ASW15]).

The definition of a time series dissimilarity measure is not straightforward, because there
are many different ways to discriminate time series. As a consequence, many distances
or similarity measures have been proposed in the literature [IK13].

In the univariate time series clustering context, let denote s = (si)n a set of time series
observations, such that each element si = (si(t))Ti is a time series indexed by Ti.

In the following we call time series dissimilarity measure d a function of two time series
with the following properties, for two time series (s1, s2) :

d(s1, s2) ≥ 0, d(s1, s2) = d(s2, s1), d(s1, s1) = 0.

The definition of distance adds the triangle inequality property, i.e., for all (s1, s2, s3),
d(s1, s2) ≤ d(s1, s3) + d(s3, s2).

The most popular time series distance is theℓ2-norm (also called Euclidean distance) that
compares time series point-to-point. This distance is defined by :

d(s1, s2) =
(∑

T

(s1(t)− s2(t))2
)1/2

.
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Figure 1.1. : DTW measure alignment between two rectangular time series (generated with
[Gio09]).

However, this distance is strongly impacted by time axis distortion and requires aligned
time series with equal length.

The Pearson’s correlation distance is used for comparing time series based on shape
similarity. However, as stated by [IK13], this distance "is sensitive towards outliers and
generally not suitable for other probability distributions except for the Gaussian one",
which makes it impractical in many situations.

The Mahalanobis distance is based on the Euclidean distance and integrates the correla-
tion information to form a distribution-based distance [PL12].

The Dynamic Time Warping (DTW) [Sak71] measure is another popular time series dissi-
milarity, especially suited to deal with local or uniform temporal scaling (a.k.a. warping).
Inspired by the edit distance (used in the context of string comparison), DTW is a mea-
sure of the effort required to align two time series. An illustration of this alignment is
displayed on Fig. 1.1, with the example of two rectangular shapes.

The distance computation was quite resource-intensive originally (O(n2) complexity),
but several works have been developed over the year [SC07 ; KR05 ; HW21] that redu-
ced this cost (to O(n) in some cases [RK05]). The exhaustive list of time series similarity
measures (Longest Common Subsequence [CS75], Compression-based similarity mea-
sure[Keo+07], . . . ) cannot be exhaustively presented here, but can be found in the
following extensive reviews [ZHT06 ; IK13 ; ASW15 ; AML19].

In addition to the high (discrete) number of existing dissimilarity measures, it is also
possible to use a weighted or nested combination of them [BNS11], which transforms
the similarity choice from a discrete into a continuous optimization problem. However,
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this approach seems more adapted to a supervised context where it is easier to estimate
the distances combination weights.

Because time series data are high-dimensional objects, computing distances in the origi-
nal space is often expansive, as is every step of the analysis process (storage, preproces-
sing, analysis, visualization, . . . ). In addition, in high-dimensional space, discriminating
time series is complex because of the curse of dimensionality [VF05], an effect that tends
to amplify the observations separation when the observation space dimension increases.
A preprocessing step is often applied to represent time series into smaller-dimensional
spaces, where this separation is easier.

1.1.4 Time Series Transformation

The feature-based approach consists in designing a meaningful condensed time series
representations. This process assumes that the transformation process keeps the data in-
formative value. Two situations can be distinguished : the first when the transformation
process is known, the second when it is guided by an external criterion. Either way, this
method requires prior knowledge on the time series.

Explicit transformation definition

This first category of methods (also called Non Data Adaptive) is used when the user can
explicitly define the transformation that he finds relevant. The mean, median, quantiles,
length, sampling frequency, first or last element’s values, are instances of such features.
These "single-point" features are usually easy to compute, and greatly reduce the data-
set dimensions [RK09], but the feature selection step may require a long prospective
work.

This class of methods also includes sub-sampling, or segmenting with fixed interval win-
dows. The Piecewise Aggregate Approximation (PAA) [Keo+01] is a popular representa-
tion based on an uniform time step interval segmentation, then compute the mean value
on each segment.

On the basis of the PAA representation, the Symbolic Aggregate approXimation (SAX)
[Lin+07] is one of the first developed dictionary method that regroups segment mean
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Figure 1.2. : The Symbolic Aggregate ApproXimation (SAX) method recodes the time series with
a dictionary built with the Piecewise Aggregate Approximation (PAA) representa-
tion (here, 9 segments described with a four-symbol dictionary).

values belonging to the same gaussian quantile interval. This grouping produces a dic-
tionary that can be used to recode the original time series in chains of symbols. An
illustration of the method is presented in Fig. 1.2.

In the Bag-Of-Pattern (BOP) method, the same principle is applied to subsequences of a
time series to form word (i.e., chains of symbols from SAX). The final BOP representation
consists in the words frequencies. In the Bag-Of-SFA Symbols (BOSS) [Sch15] approach,
the authors uses a truncated Discrete Fourier Transform (DFT) to represent the segment
values, instead of the mean, and the dictionary is constructed by clustering the obtained
Fourier coefficients. Other variants and extensions following the same scheme have been
developed (WEASEL [SL17], SAXSVM [SM13], BoTSW [Bai+15], . . . )

The dictionary representations reduce greatly the representation space dimensions, by
segmenting both the representation space (from numeric to categorical) and the time
index (from Ti points to several segments). These dictionary-based approaches allow,
to some extent, the comparison of similar segments between time series, but require
some strong hypothesis on time interval sizes, and produces a coarsed segmentation of
the time series phases, which is an issue for scenario-based time series clustering with
asynchronous regimes.

32 Chapitre 1

Related Work



Figure 1.3. : On the left the original time series, on the right its decomposition in a three-
dimensional trigonometric basis.

Projections

A common choice of representation (especially suited to periodical sequences) consists
in representing the time series in the frequency domain with a Fourier Transform (for
instance used in [FRM94]), i.e., as a linear combination of trigonometric functions. A
toy example is shown in Fig. 1.3.

Short-Time Fourier Transform (STFT) (used for feature extraction in [Wan14]) applies
the Fourier Transform on sliding windows sub-samples, and represents the frequencies
evolution over time, which allows to obtain a representation in both frequency and time.
Closely related, the Discrete Wavelet Transform (DWT) representation applies a convo-
lution with a wavelet function, which links window duration and frequency scale.

Another popular choices of representation consists in representing time series as weigh-
ted combinations of functions from a common functional basis (e.g., polynomial, spline,
Fourier, Wavelets, . . . ). Combined with a Principal Component Analysis (PCA) [Hot33]
step that performs a weighted linear dimension reduction on the regression coefficients,
the overall transformation is known as the functional Principal Components Analysis
(fPCA) [RS02], which is a popular representation for model-based time series clustering
[JP14].

Closely related to the PCA, the Multi-Dimensional Scaling (MDS) uses a singular value
decomposition of the distance matrix to represent the time series [LM14], and finds
a low-dimensional representation that preserves the similarity measure in the original
space.
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When the functional regression basis is different for each time series, a common repre-
sentation basis can be constructed to allow the time series comparison [CCP09].

Latent Representation Learning

Also called Data Adaptive transformations, some transformations are guided by an inter-
nal criterion optimization such as the reconstruction error or model likelihood.

In [ZMK12], the authors uses theℓ2 norm to extract the subsequences (called shape-
lets that best separates the time series, and use these subsequences as discriminant fea-
tures.

For instance, with specific stationarity assumptions, time series can be represented with
coefficients of AutoRegressive / Integrated / Moving Average models (ARIMA), that mo-
del the time series trends [Min+06], and/or with the AutoRegressive Conditional Hete-
roskedasticity (ARCH) [CC07] (or one of the many extended model, c.f. [Bol+08]) that
model the time series variance evolution. These models parameters are inferred with
ordinary least square or likelihood maximization.

The time series segmentation is another specific transformation that seeks to segment a
time series according to relevant cutpoints (e.g., based on autoregressive model [TY06]
or piecewise regression [Sam+11]). It can be considered a variant of the PAA represen-
tation where the time steps are not uniform but estimated from the data. This allows a
more accurate representation of the time series, and also reduces the final representation
space.

Several works have also addressed the reconstruction-based feature extraction based
on non-linear representation. For instance, [Ngu+17] uses the t-Distributed Stochastic
Neighbor Embedding [VH08] (t-SNE), that computes grouping probabilities of two time
series based on relative DTW distance to other time series. The Uniform Manifold Ap-
proximation and Projection (UMAP) [MHM18] is a non-linear representation method
that is also based on relative distances between elements, and has been recently used
for time series clustering [PBC21].

Time series non-linear representation methods also include neural-network (NN) based
representations, such as auto-encoders [Tav+20 ; Ric+20], that optimizes a reconstruc-
tion error L to produce a lower-dimensional latent space. An illustration of the autoen-
coder based non-linear transformation [Ric+20] is given in Fig. 1.4.
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Figure 1.4. : Non-linear time series representation based on reconstruction error optimization
with a convolutional autoencoder.
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Combined with a segmentation objective, the same principle is used by the Time-
series Forest [Den+13]. The Self-Organizing Map (SOM), and its NN version DeepSOM
[For+19], is another instance of nonlinear representation that expresses time series on
a lower-dimensional grid such that observations that are close in the projection space
are also close in the original space (with respect to the Euclidean distance).

Finally, inspired by the triangulation principle, a recent contribution [Kat16] has shown
the interest of using the distance to other elements as features.

After this transformation step, the user obtains a representation of the time series in a
simpler space. In this space, the final clustering is often obtained with the Euclidean
distance [ASW15] associated to a clustering algorithm.

1.1.5 Clustering Algorithm

Whether in the original space or in a lower-dimensional representation, the clustering
objective is to form groups of similar elements and discriminate dissimilar ones. The
next subsections describe the existing types of time series clustering algorithms.

Density-Based

The density-based approach consider that a cluster is equivalent to high density area in
the observation space (i.e., with an important concentration of observations), separated
by areas with low density. By construction, these methods creates clusters based on
density contiguousness and without assumption on clusters shape.

The DBSCAN [Est+96] algorithm attributes a state to each observations, among : core
member, border member, or noise of a cluster, based on its neighborhood cardinality.
The clusters are then defined as the neighborhood of the core points. This algorithm
assumes that the clusters share the same density and may fail to detect clusters with
varying densities [AD15]. In the time series analysis domain, DBSCAN has been applied
in the original time series space (e.g., in combination with DTW, as in [Dua+19]), or in
combination with a lower-dimensional representation (e.g., after an UMAP projection as
in [PBC21]). Several extensions of this algorithm have been developed (see [LP14] for
a complete review).
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The Density Peaks [RL14 ; Du+19] algorithm works in two steps : a) first it selects the
cluster centroids based on local density and distance to others density peaks ; b) it assigns
the remaining observations to the closest centers with higher density. This algorithm has
been recently applied to time series clustering in the original space [Put+19 ; JLR20]
but has also be seen used after a feature extraction transformation [Di+18]. The Density
Peaks algorithm has also been extended with TADPole [Beg+15] that combines the DP
with the DTW measure [SC78].

Clustering with Neural Network

The growing development of deep learning since their successful applications in image
recognition [KSH12], has given birth to NN-based solutions in every field of data analy-
sis. It has been used for time series transformation, as presented in Sect. 1.1.4, but also
in time series clustering.

Neural Network clustering is based on two elements : a neural network architecture and
a clustering objective (called the loss). The architecture is composed of interconnected
neurons, that act individually as parameterized functions : each neuron takes a value as
input and outputs a transformed value. The neurons are disposed in layers, such that
each layer is a weighted combination of the precedent. The inference process consists in
estimating the neurons parameters and the layers combinations weights by optimizing
the loss.

In the time series clustering domain, the loss is often a weighted combination of a recons-
truction error objective and a clustering loss. For instance, the Deep Temporal Clustering
(DTC) [Mad18] uses a an auto-encoder reconstruction loss and a clustering assignment
hardening loss [XGF16]. The DeepSOM method [For+00], illustrated in Fig. 1.5, uses an
auto-encoder reconstruction loss, in combination with a Self Organizing Map objective

One drawback of the NN-based clustering is that the NN architecture is as a black-box
for the user, equivalent to a complex and hidh-dimensional hyper-parameter set. It is
complex to understand the impacts of the architecture setting on the time series repre-
sentations. As a consequences, the user obtains a partition, but doesn’t know how the
time series are transformed during the clustering process, and how to improve the NN
architecture if the results is irrelevant. In addition, the NN training is often computatio-
nally expensive and requires massive quantities of data.
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Figure 1.5. : Deep Self Organizing Map [For+19] architecture. The clustering is based on the
simultaneous optimization of the reconstruction and SOM loss functions.

Hierarchical-Based

A partition P = {Pk}K over s is defined as a finite collection of non-empty and non-
overlapping clusters, such that the union of every clusters contains every elements of s.
Formally :

K⋃
k=1

Pi = s,

h, k ∈ {1, . . . ,K}, Pk ̸= ∅, Pk

⋂
Ph = ∅.

We denote z = (zi)n the membership vector, such that zi = k means that element si

belongs to Pk, (equivalently called cluster k) and nk the number of elements belonging
to cluster k.

The hierarchical clustering algorithms seek to create a hierarchy of nested clusters. This
tree is composed of a root containing all elements, and each branch recursively splits the
previous clusters in two, until reaching the leaves, i.e., when every cluster is a singleton.
As a result, the user obtains a hierarchy of partition, that in turn must be pruned to
produce the final partition. The pruning threshold (or equivalently the cluster number) is
specified by the user. This clustering can be performed with an agglomerative or divisive
procedure.
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The agglomerative (also called bottom-up) approach starts from the leaves, and recur-
sively merges the clusters up to the one-cluster root. This deterministic approach is
fully described by two elements : a dissimilarity measure (that evaluate the element-to-
element proximity), and a linkage criterion (that evaluates the cluster-to-cluster proxi-
mity).

At each cluster merge step, the linkage criterion is used to select the "best" cluster couple
to merge. Among the many existing criterion, the most used in the time series clustering
domain are the single-linkage [PG17], average-linkage [HT05 ; uc16] and Ward’s crite-
rion [JLR20 ; ZA18]. This last criterion (defined in [War63]), that we also use in our
first contribution (c.f. Chapt. 2), is used to select the cluster merge that maximizes the
cluster separation and minimize the dispersion inside cluster. Formally, it measures the
intra-cluster inertia, expressed as a mean of pairwise dissimilarities :

K∑
k=1

1
2nk

∑
xi,xj∈pk

d(xj , xj)2.

It can be noted that this expression differs from the standard Ward’s criterion expression
[War63], as it uses pairwise distances inside clusters instead of mean distance to the
cluster center. We use this pairwise-distance expression, presented by [Cha+18] and
advocated by [RVN21], that extends the inertia definition to non-Euclidean dissimilarity
measures, as is the case in our application (c.f. Chapt. 2). The main interest of this
definition is that it does not require to estimate cluster center, which can be troublesome
for some dissimilarity measures (e.g., the average DTW sequence computation is an NP-
hard problem).

With this hierarchical clustering approach, the user obtains a tree partition representa-
tion such that, for every value of cluster number, the obtained partition minimizes the
global intra-cluster inertia. The agglomerative approach is described in Algorithm 1.

As opposed to the agglomerative approach, the divisive (also called top-down) hierarchi-
cal clustering starts from the tree’s root, containing all elements, and recursively split the
clusters to obtain the final singleton clusters. The complexity of this approach is large
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Algorithm 1 : Hierarchical Agglomerative Clustering.
Input : a dissimilarity measure and a linkage criterion ℓ
Set the initial partition with singleton clusters : P (0) = {{s1}, . . . , {sn}}
for m← 1 to n do

Select the best candidate merge :
(p∗, q∗) = arg minp,q∈P (m) ℓ(p, q)
Remove p∗ and q∗ from P (m)

P (m+1) = {P (m), p∗⋃ q∗}
end

Figure 1.6. : Dendrogram representation produced with hierarchical clustering algorithm.

(2n), due to the important number of splitting possibilities. The splitting approach is
usually performed with an heuristic to reduce this complexity, for instance a partition-
based algorithm (e.g., as in [SKK00]). The hierarchical-based clustering is illustrated on
Fig. 1.6.

Partition-based

The partition-based methods seek to estimate a membership set z, based on two inputs :
a fixed number of clusters K and a similarity measure d over the observation space.

This category of algorithm includes the most used and known clustering algorithm : the
k-means [Mac+67]. Starting from a random membership state, the k-means algorithm
alternates two steps : a) compute {µk}K the centers of each cluster ; b) associate each
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Figure 1.7. : Voronoï diagram associated with a k-means solution.

observation to its closest center, with respect to d. As a result, the k-means produces a
clustering and partition of the whole observation space. This latter partition associates
each point of the observation space to the closest center, and can be represented with a
Voronoï diagram, shown in Fig. 1.7.

In combination with time series specific distances (e.g., with the correlation measure
[PG15], Mahalanobis distance [Nel12], . . . ), the k-means has been used extensively and
can be considered a "classical" approach. Its combination with DTW, where the average
sequence estimation is an NP-hard problem, has been addressed by an important amount
of papers [Gup+96 ; NR07 ; NR09 ; PKG11 ; AT15 ; SDG16].

Other partition-based approaches are based on the Partitioning-Around-Medoid [KR09 ;
NH02] (PAM) method, which consists in using the best candidate among the observed
time series set s instead of the cluster average. This approach has also been considered
as a work-around for the DTW averaging problem.

The k-means algorithm can also been applied after time series transformations (c.f.
Sec 1.1.4), for instance in association with shapelet representation [ZMK12].

Fuzzy clustering (also called also called soft-clustering) is another approach to clustering
in which observations can be assigned to several clusters. This method can also be com-
bined with different types of distances, and has been applied to time series clustering
in [TW02 ; Liu+18]. Fuzzy clustering can be considered a distance-oriented interpreta-

1.1 Time Series Clustering 41



Figure 1.8. : Illustration of a Gaussian Mixture Model assumption : there are several latent gaus-
sian components that generate the dataset. The ellipses are the Gaussian compo-
nents isoprobability contours.

tion of the model-based clustering, with probabilities replaced by a relative similarity
measure.

Model-Based Clustering

The model-based clustering approach infers a generative model over the observation
space by associating a latent distribution to each cluster. In the same way partition-
based algorithms assume that a given dissimilarity measure is a suitable discriminator,
model-based methods assume that a given distribution is a suitable cluster generator. An
illustration is shown in Fig. 1.8.

The model-based approach can be applied in the original time series observations space,
in that case the whole time series is represented. This approach depends on hypothesis
on the data structure. In [XY02 ; FK08], the authors use a mixture of auto-regressive
models to cluster time series generated from auto-correlated processes. Several model-
based works have also addressed the clustering based on time series shapes, for instances
[Gaf04] that uses a mixture of spline regression, or [GS99 ; Gaf04 ; BJ05 ; Cha16] that
use polynomial regressions.

In some situations, it is relevant to assume that the time series are the results of chains
of different states. In that case, it can be relevant to assume a piecewise-distribution
modeling. In some cases, the state transition time is shared by every time series (i.e.,
the transitions cutpoints are synchronous), in some others it can be shared among time
series in the same cluster. This last case has been addressed by the Hidden Markov Model
(HMM) [Smy97] and the piecewise regression mixture [Sam+11 ; CN18].
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The model-based clustering can also be applied after time series transformations. The
fPCA (c.f., Sect. 1.1.4) is a popular choice of representation in this context [BJ11 ;
JP13].

The Bayesian model framework allows to add prior information on the mixture parame-
ters under the form of prior distribution. This addition allows to automatically infer the
model dimension during the inference process. This framework is used for instance in
[Bou12] to perform univariate time series clustering based on a grid-model.

As stated in this section preamble (c.f. Sect. 1.1.1), our use case specifications also in-
clude the detection of anomalous driving behaviors. It is one of the reason that motivates
the choice of the model-based approach, that natively includes a probabilistic anomaly
detection feature.

The model-based clustering algorithms assume the presence of a latent mixture model,
where each component generates a group of elements.

1.2 Mixture Model Framework

1.2.1 Mixture Model

Definition

Let denote x = (xi)n the set of vectors representing the time series after transformation
in a d-dimensional real space (c.f., Sect. 1.1.4). We emphasize that every observation xi

share the same dimension d. The variable x designates a random vector following the
mixture density, and associated to a membership z.

Mixture-Modeling is a standard model-based clustering approach [MLR19]. This model
assumes that the overall density on the d-dimensional space is a convex combination of
densities belonging to the same distribution family F . The weights of this combination
are called the mixture proportions (πk)K , and the weighted densities are the mixture
components, (Fk(.))K , with respective parameters (θk)K .

In the following we consider the specific case of F being the Multivariate Gaussian dis-
tribution family, as is the case in many of our applications. In this case, the components
parameters are therefore θk = {µk,Σk}.
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This probabilistic approach provides probabilistic noise modeling, confidence intervals
and probabilistic outlier detection. With the notation defined in the introduction of this
section, the Mixture Model (MM) density is given by p(x) =

∑K
k=1 πkF (θk), with πk =

p(z = k), and F (θk) = p(x|z = k). With this generative model definition, sampling an
observation x is performed by first drawing a component membership z ∼Mult(π) then
drawing from F (θz). The associated graphical model is represented in Fig. 1.9.

Figure 1.9. : Mixture Model graphical model

Inference

With Θ the set of all parameters, the model log-likelihood of the dataset x is given by :

ln p(x | Θ) = ln
∑
Z

p(x, z | Θ), (1.1)

where Z is the set of all possible combination of the membership vector z. A direct like-
lihood optimization estimation would require to set the derivatives of Eq. (1.1) to zero,
but the summation on Z prevents from obtaining a closed form solution [Bis06]. Seve-
ral methods have been developed to sort out this limitation, of which the Expectation
Maximization [DLR77] (EM) is the most popular.

The EM is an iterative inference algorithm, that repeats two steps until likelihood conver-
gence.

E step estimating the Expectation of the memberships posterior probabilities p(z | x)
given a fixed value of Θ ;

Considering fixed values of parameters Θ, the posterior distribution estimation is given
by Bayes conditional probability formula :
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p(z = k | x) = p(z) p(x | z)
p(x)

= πk p(x | z = k)∑
K πh p(x | z = h)

= πk Fk(x)∑
K πh Fh(x)

.

In the following, we denote τi,k = p(zi = k | xi) for brevity.

M step estimating Θ by Maximizing the likelihood with fixed values of the posterior
distributions.

Considering fixed values of (τi,k)n×K for every membership z of the dataset elements
x, the parameter set Θ update is given by maximizing the expectation of the complete
log-likelihood [Bis06] :

Q(θold, θ) =
∑
n,K

p(zi = k | xi, θold) ln p(xi, zi | θ),

with θold the parameter values used for the estimation of the posterior distribution in the
previous step E. The optimization of this expectation yields the following expressions
[Bis06] in the multivariate Gaussian case :

nk =
∑

i

τi,k, πk = nk

n
, µk = 1

nk

∑
i

τi,k xi,

Σk = 1
nk

∑
i

τi,k(xi − µk)(xi − µk)T .

Because the posterior distribution p(z | xθ) can be computed individually, and the M
step can be estimated by batch, the EM algorithm is easy to parallelize and to distribute
on map-reduce frameworks [@Spa].

With this construction, the model log-likelihood necessarily increases at each iteration
[Bis06], or stagnates in case of convergence. However, the obtained solution is sensible
to the EM initialization, and the EM can get stuck in locally optimal solutions.

This sensitivity to initialization can be reduced with specific strategies [BCG03 ; BB13 ;
BC15 ; SSB17], including random search, initialization with k-means, or hierarchical
divisive initialization strategies. Keeping the best result among several tries is also a
popular strategy.
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The Stochastic EM (SEM) is a variant of the EM that adds a membership sampling step
based on the posterior distributions estimated in the E step. With this version, the li-
kelihood monotonic increase property is not conserved, but the stochastic step allows
a better exploration of the solution space and reduces the risk of getting stuck in local
optima [CD85 ; CD92].

The Classification EM (CEM) algorithm aims to optimize the complete likelihood p(x, z |
Θ) instead of the marginal likelihood p(x | Θ). During the CEM, the τi,k are used to
select the most probable partition (as opposed to the SEM sampling). This strategy can
be considered as hard clustering.

It can be noted that the CEM and the k-means are tightly connected. The k-means is
in fact strictly equivalent to the CEM in the multivariate Gaussian case, when assuming
identity covariances matrices (i.e., independent variables, and shared variance among
cluster and variable). From this perspective, the EM can be considered a probabilistic
soft-clustering generalization of the k-means. The EM, SEM and CEM are described in
Algorithm 2.

Algorithm 2 : (-/S/C) Expectation Maximization Algorithm for Mixture Model Infe-
rence
Input : cluster number K, iteration number M
Output :MM parameters Θ̂, partition ẑ
Initialize partition z(0)

Estimate initial mixture parameters Θ(0)

for m← 1 to M do
for i← 1 to n do

Estimate τi,k = p(z(m+1)
i = k | xi) given Θ(m)

τ ′
i,k ← τi,k

if SEM then
Draw membership zi ∼Mult((τi,k)K)
Set τ ′

i,zi
to 1, the others to 0

if CEM then
Choose zi = arg maxK τ ′

i,k

Set τ ′
i,zi

to 1, the others to 0

Estimate Θ(m+1) given (τ ′
i,k)n×K

Estimate ẑ.

As is the case with k-means, a model selection step is often required in association to the
EM-based algorithms applications.
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Model Selection

The EM requires to make several assumptions : on the number of clusters K (as the k-
means) but also on the component distribution family F . In the Multivariate Gaussian
case for instance, the clusters can be assumed with equal covariance matrices (homo-
scedasticity), with diagonal covariance matrices (variable independency), . . . . These
assumptions can be a strong limitation to real-life applications, where the number of
clusters or the covariance matrices properties are rarely known.

To circumvent these limitations, model selection strategies have been developed, on the
basis of selection criteria and search strategy.

Model Selection Criterion In the parametric model-based framework, several model se-
lection criteria have been developed. Most of them consists in a score that penalizes
the model likelihood by its complexity (e.g., the Akaike Information Criterion (AIC)
[Aka74], the Bayesian Information Criterion (BIC) [Sch78], the Integrated Completed
Likelihood (ICL)) in an attempt to approximate the integrated likelihood[BCG00]). Un-
der the hood, this approach aims at optimizing the bias-variance trade-off, and reducing
the model over-fitting. Other non model-based approach have also been developed, as
the recent Stadion [For+21] that measures the time series clustering stability against
dataset transformation.

We chose the BIC in our parametric application model selection (Chapt. 2), as it has been
shown in [BCG00] that it well suited for density estimation tasks. Its definition is :

BIC = ln p(x | Θ)− C

2
ln(n)− 2,

with C the parameter number. However, the BIC’s drawback is that it tends to overes-
timate the number of clusters in order to obtain better density estimation, which may
happen when the mixture components are not adapted to the true cluster shape. This
over-estimation phenomenon has been taken into account in our application, and se-
veral measures have been implemented to mitigate the problem (e.g, Sect. 2.2.4 and
Sect. 2.2.4).

Search Strategies Several search strategies exist in the parametric setting for selecting
the best model structure.
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The grid-search (also called exhaustive search) tries every model possibility and select
the best, i.e., the model optimizing the model selection criterion value. The hierarchical
search is, in fact, the equivalent of a divisive hierarchical algorithm (c.f. Sect. 1.1.5),
based on a model selection criterion. The random search [BB12] is another popular
hyper-parameter optimization strategy, that consists in exploring the solution space ran-
domly.

These model selection strategies make several assumptions. For instance, the grid search
assumes that the true number of clusters is within the grid. The greedy search is a
divisive hierarchical heuristic, and assumes that the clusters construction is based on a
binary tree structure.

In some situations, the parametric model selection becomes problematic. For instance,
when the number of models is extremely important.

Another solution to mixture model selection consists in estimating the model structure
during the inference process. This can be done by taking the Bayesian perspective and
assuming prior distributions over the model parameters, as presented in the following
section.

1.3 Bayesian Non-Parametric Modeling

1.3.1 Alternative MM Representation

With the introduction of the discrete distribution G =
∑K

k=1 πkδθk
, with δθ the Dirac

delta function, the MM admits the alternative equivalent representation :

xi | θi ∼ F (θi) , θi ∼ G, i ∈ {1, .., n}.

In this setting, each observation xi is drawn from the distribution F with specific θi,
and each θi drawn i.i.d from distribution G. G is a linear combination of Dirac delta
functions, weighted by the proportions π, and acts as a distribution over θi, i.e., G is a
distribution over distributions. An instance of G, with K = 4 is shown in Fig. 1.10, in
the case where (θk)K are modes of bivariate normal distributions.

Because G is a finite discrete distribution and the number of cluster K is (supposedly)
specified lower than n, some groups of observations share a common parameter, which
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Figure 1.10. : a) Illustration of G with four components, when the component parameters are
bivariate normal distributions modes, i.e, elements of R2. b) Stick representation
of the component proportions.

creates a partition. The Dirichlet Process Mixture Model (DPMM) can be seen as a Baye-
sian extension of the MM where the number of components is infinite.

1.3.2 Dirichlet Process Mixture Model

The DPMM (c.f. Fig. 1.11) is a Bayesian Non-Parametric (BNP) model that assumes the
presence of an infinite discrete number of latent components, of which only a fraction
is observable in the dataset. In this setting, G is given an additional Dirichlet Process
(DP) prior distribution that takes two hyper-parameters : a concentration α and a base
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Figure 1.11. : Dirichlet Process Mixture Model graphical model

distribution G0. In the following we denote χ = (α,G0) the set of hyper-parameters. The
DPMM is formally defined by :

xi | θi ∼ F (θi) , i ∈ {1, .., n},

θi | G ∼ G,G ∼ DP (α,G0).

Two alternative representations are often use to help interpreting the DP : the Chinese
Restaurant Process (CRP), which is a distribution over partitions, and the Stick-Breaking
(SB) scheme, that models the proportions construction. These two representations are
strongly connected, as one can be derived from the other [Mil19].

Chinese Restaurant Process

The CRP is a distribution over partition that depends on a parameter concentration
α. The process is named after the culinar metaphor that illustrates its definition : a
chinese restaurant contains several tables (each table representing a cluster k), and each
table offers one unique dish specific to that table (representing a component parameter
θk). A given number of customers are already seated at each table (denoted nk, which
represents the number of observations already assigned to cluster k). This state defines a
partition P of the existing customer, equivalently represented by the membership vector
z. The CRP defines that a new customer entering the restaurant will choose a table with
probability :

p(zi | z−i, α) ∝


nk

n− 1 + α
existing cluster/table k, (1.2)

α

n− 1 + α
new cluster. (1.3)
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With this definition, the density of a partition P containing K clusters with cardinality
nk can be obtained iteratively, with the product of conditional memberships probabili-
ties :

p(z) = p(z1 | z2, . . . , zn)p(z2 | z3, . . . , zn) . . . p(zn)

= αK∏
i(i− 1 + α)

∏
k

(nk − 1)!. (1.4)

The second line expression is obtained by noting that :

— Because there is K clusters in P , the "new cluster" discovery option has been cho-
sen exactly K times, which explains the αK numerator.

— The denominator 1
n−1+α is present in both membership probabilities Eq. (1.2) and

Eq. (1.3), which yields the product
∏

i(i− 1 + α).

— For each cluster k, the final cardinality nk implies that the choice "entering existing
cluster k" has been made exactly nk times, with nk varying from 1 (for the second
customer choosing table k) to nk − 1 (the last time a customer entered this table).
This yields the term 1× 2× ..× nk − 1 = (nk − 1)!.

As shown by [Ant74], the expression in Eq. (1.4) corresponds to the density of a partition
in a DP process. Moreover, it can be noted that this density is invariant to the order of
the customer arrival. This makes the

With this construction in mind, the DP can be seen as a CRP prior on the memberships
that also integrates the predictive distribution information.

Stick-Breaking

The stick-breaking process is another representation that focuses on the construction of
the mixture proportions (πk)∞. This construction comes from [Set94] which states that,
if G ∼ DP (α,G0), then it can be written as :

G =
∑

k

πkδθk
,
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the component distributions θk follows the prior G0, and the weights (πk)∞ are obtained
with the following stick-breaking construction :

πi(v) = vi

i−1∏
j=1

(1− vj) , v = (vi){1,...,n}, vj
i.i.d.∼ Beta(1, α). (1.5)

This construction is named after the following construction metaphor. Starting from a
stick with length one, the first weight π1 is the product of the stick length (1) with
Beta(1, α) sample v1. The stick is then broke at the value of π1. The second weight is the
product of the remaining stick length (1-π1) times another Beta(1, α) sample, v2. . . Each
new weight is the product of a sample of a Beta(1, α) with the remaining of the stick
length. This construction can repeated for any number of cluster.

a)

b)

Figure 1.12. : a) Illustration of the first components of G, when the component parameters are
bivariate normal distributions modes, i.e, elements of R2. b) Stick representation
of the component proportions. This illustration illustrates the link between the
Stick-Breaking construction and the fast proportion decrease.
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With this construction, [Set94] proved that the obtained distribution G =
∑∞

k=1 πk(v)δθk

follows a DP(α,G0) distribution.

The DPMM can be seen as a BNP extension of the MM where the number of compo-
nents is infinite. Because the observation set is finite, only a finite number of clusters
(noted Kobs) are observable. Moreover, the number of observed cluster grows in fact as
O(logn) [Teh+06], which creates a clustering. This property is illustrated on Fig. 1.12.
It it possible to influence the value of Kobs by tuning the concentration parameter α,
which influences the probability of new cluster discovery. The role of α is also visible in
the expression of Kobs posterior distribution [Ant74] :

p(Kobs = K | α) = |Sn,K |n!αK Γ(α)
Γ(α+ n)

, (1.6)

where |Sn,K | is the unsigned Stirling number of the first kind.

The DPMM can automatically adapt in case of dataset augmentation by adjusting the
observable component number, which makes it relevant for exploration tasks where the
user can use additional resources to explore new observation space areas.

1.3.3 Inference

Several methods have been developed to infer DPMM’s parameters. For instance, ba-
sed on variational inference [BJ+06] or Markov chain Monte Carlo (MCMC) [Esc94 ;
Nea00]. For large datasets applications, variational inference methods have often been
preferred over MCMC for their speed, at the cost of hypothesis on the posterior distribu-
tion structure. However, recent works [WDX13 ; Meg+19] have made MCMC processes
scalable, which rehabilitates their use for industrial purposes.

In the following we present two MCMC algorithms, based on the Gibbs Sampler esti-
mation. The Gibbs Sampler objective is to mimic the posterior distribution p(z | x, χ)
by sampling values for each zi from its conditional distribution given the data and the
remaining observation p(zi | x, z−i, χ).
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Gibbs Sampler

The Gibbs Sampler, corresponding to algorithm 2 of [Nea00], consists in alternating the
update of the clusters memberships and the clusters parameters. In a first step, the mem-
berships z are updated one by one. Each membership zi is sampled from the conditional
distribution given the observations x, the remaining memberships and the associated
parameters : θ−i = (θj)j ̸=i, according to :

p(zi | z−i, xi, χ) ∝


nk

n− 1 + α
p(xi | zi = k), existing cluster k, (1.7)

α

n− 1 + α
p(xi | χ), new cluster, (1.8)

where p(xi | zi = k) = F (xi, θk) is the density function associated with component k. It
is interesting to note the presence of the same prior membership expressions nk

n−1+α and
α

n−1+α than in the CRP definition.

In Eq. (1.8), the density p(xi | χ) is the prior predictive distribution of xi, that can be
obtained by marginalizing over the component parameter :

p(xi | χ) =
∫

θ
p(xi, θ | G0) dθ =

∫
θ

p(xi | θ)p(θ | G0) dθ.

This integral has a closed-form when F is conjugate to G0. With F the multivariate
Gaussian density and G0 the Normal Inverse Wishart (NIW) conjugate prior with hyper-
parameter (µ0, κ0,Σ0, ν0), this integral sums up to a multivariate t-distribution density
(c.f. derivations in Appendix A.1) :

tν0−d+1

(
x|µ0,

(κ0 + 1)Ψ0
κ0(ν0 − d+ 1)

)
.

After this first step, i.e., after having updated every membership once, the clusters pa-
rameters are also updated by sampling according to the posterior distribution p(θk |
xk, G0). This distribution is also a NIW distributions, with hyper-parameters updated
with xk = {xi : zi = k} the observations belonging to cluster k. The hyper-parameters
update equations are given [Mur07] by :
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κk = κ0 + nk, νk = ν0+nk, µk =
κ0µ0 +

∑
xk
x

κn
, (1.9)

Σk = Σ0 +
∑
xk

xxT + κ0µ0µ
T
0 − κkµkµ

T
k . (1.10)

These two steps (membership update and parameter update) are repeated until conver-
gence or for a given iterations number.

At each iteration m, n memberships are updated, and each membership update involves
the computation of K(m) existing clusters membership (Eq. (1.7)) and one new cluster
memberships (Eq. (1.8)). The prior predictive distribution in Eq. (1.7) is fixed given the
observations and prior G0, and can be computed once before the inference and cached.
This first computation has a complexity O(nd3), due to the multivariate t-distribution
estimation cost.

The K existing membership probabilities must be computed again at each iteration, but
this computation is quite cheap as it only consists in a multivariate Gaussian density
estimation (O(d2)). The membership update step has therefore a O(nK̄d2) complexity,
with K̄ = maxM

m=1K
(m) an upper bound of the cluster number, and M the maximal

iteration number.

During the parameter update step, each observation contributes to the update of the
NIW posterior distribution associated with its current membership. This update step
complexity is bounded by the covariance estimation term, in O(nd2). The global com-
plexity is therefore :

O(nd3 +MnK̄d2).

The sequential aspect of the inference may seem a prohibitive feature at first sight, as it
prevents the membership update parallelization. However, some works have addressed
the problem [WDX13 ; Meg+19], and turned this algorithm into distributed and scalable
versions.

One drawback of this inference process is that the clusters parameters are updated only
once per iteration, i.e., after the update of every memberships. Because of this low up-
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date rate, the convergence can be slow. In the next algorithm, the cluster memberships
state is taken into account at all time.

Collapsed Gibbs Sampler

The Collapsed Gibbs Sampler, corresponding to algorithm 3 of [Nea00], is a natively fast
MCMC’s method that also assumes the prior distribution G0 conjugate to the density
family F and skips the parameter sampling step. In this method, the prior conjugacy as-
sumption enables the closed-form computation of the posterior predictive distributions,
that is used to estimate posterior cluster membership probabilities. The density F in
Eq. (1.7) is replaced by this posterior distribution :

p(zi = k | xi,xk, G0) =
∫

θ
p(xi | θ)p(θ | xk, G0)dθ. (1.11)

In this expression, p(θ | xk, G0) is the same distribution than the one used for parameter
update in the (non-collapsed) Gibbs Sampler from Sect. (1.3.3), i.e., a NIW distribution
with hyper-parameters obtained by updating the prior G0 parameters with Eq. (1.9) and
Eq. (1.10).

With these updated hyper-parameters, the integral Eq. (1.11) is equivalent to the follo-
wing multivariate t-distribution :

tνn−d+1

(
x|µn,

(κn + 1)Σn

κn(νn − d+ 1)

)
.

This direct computation of the posterior membership distribution allows to collapse the
clusters parameters, and to avoid their estimation during inference.

At each iteration, the update of one row-membership zi involves the computations of
(K(m) + 1) row-cluster membership probabilities (K(m) existing clusters and the new
cluster). For each cluster k, the membership probability computation involves the cluster
hyper-parameter update (based on Eq. (1.9) and Eq. (1.10)) and one posterior predictive
distribution density estimation.

In practice, instead of updating the cluster k posterior hyper parameters (µk, κk,Ψk, νk)
with the full cluster contents xk at each iteration and at each membership update, it is
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more efficient to cache these hyper-parameters, and only remove the observation xi from
its previous cluster before the membership probabilities computation, and add it to its
new cluster after sampling, which is simply O(d2). The posterior membership density es-
timation has a complexity O(d3) because of the multivariate t-distribution computation.
This membership must be performed once for each observation and iteration, which
gives a total complexity of

O(Mn(d2 + K̄d3))

This complexity is comparable to the one of the Gibbs Sampler, and highlights the inter-
est of keeping a representation space dimension low. Both the Gibbs Sampler and Collap-
sed Gibbs Sampler are MCMC that produces samples that mimics the joint distribution
p(x, z | χ). These samples must in turn be processed to obtain the final partition.

Inferring the final partition

These Gibbs Sampler outputs a chain of partitions, that correspond to samples from an
approximation of the posterior distribution. These sampled must, in turn, be aggregated
over the iterations, usually after a given number of burnin iterations. Given a chain of
partitions (ẑm)M , the objective is to estimate

ẑ = arg min
Z

∑
m

d(ẑm, z),

with d a dissimilarity measure between permutations and Z the set of all possible row-
partition with size n. This consensus partition estimation is an NP-complete problem
[KM86], that several works have addressed in the past (c.f. [Xan14] for an extensive
review).

This question is crucial for real-life applications, where the inference process can be sen-
sitive to initialization and produce different solution. One objective of the consensus par-
tition is to obtain a "better" partition, in the sense that it is more stable and relevant. The
consensus partition also has the advantages to resolve the label switching problem.

We advocate to use the recent method from [GOK18], which proposes an efficient exten-
sion of the combinatorial optimization method from [HA07] that constructs the partition
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with minimal partition-distance [KLB05] to the samples, without assumptions on the fi-
nal number of clusters or on the clustering structure. The complete inference process is
described in Algorithm 3.

Algorithm 3 : DPMM Inference
input :α,G0, Iteration number M
output : Estimated row-partition ẑ

Initialize z(0)

for m← 1 to M do
for i← 1 to n do

Remove xi from its cluster.
Compute p(zi | z−i, X, α,G0) as defined by eq. (1.7) and (1.8)
Sample z(m+1)

i

Add xi to its new cluster.

Compute the average partition ẑ on the last samples (c.f. averaging methods in
Sect. 1.3.3).

The methods presented in this previous section are dedicated to univariate time series
clusters. When several temporal variables are present in a dataset, additional difficulties
appear, that must be addresses with specific methods.

1.4 Multivariate Time Series Model-Based Clustering

As stated in this section preamble (c.f., Sect. 1.1.1), the time series clustering is applied
in many domains and contexts. In most of the use cases, the time series can be described
by several variables simultaneously, i.e., the time series datasets are multivariate. For
instance, in Health, the patient state is often observed with several sensors (e.g., tempe-
rature, hearth rate, blood pressure, toxin concentration). In finance, the analyst is often
interested in understanding the correlation between the stock price of several items.

In our industrial applications, the ADAS numerical validation also generates an impor-
tant number of variables (position, angle, activation systems, radar, engine, . . . ). This
Multivariate Time Series (MTS) context is a multi-dimensional extension of the univa-
riate case, with additional difficulties that we present in the next sections.
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1.4.1 Notation

As a natural extension of the univariate case notation, let denote S = (si,j)n×p the
matrix of time series observations, such that each cell si,j = (si,j(t))Ti is a time series
indexed by Ti. This notation highlights one key property of this dataset : the time series
length Ti is shared among simulation (i.e., matrix row) and not among variable (i.e.,
matrix column). From the ADAS perspective, it comes from the fact that the simulated
variables observe a simulation with a common duration. An instance of MTS dataset is
given in Fig. .9.

Let denote (Xi,j)n×p the dataset transformed in a lower dimension space, where each
cell share the same dimension d. In line with this matrix notation, we denote (abusively
and for brevity) xi,. the i-th row/simulation of X, and x.,j its j-th column/variable.

1.4.2 Multivariate Context Constraints

In the multivariate setting, the observation space dimension is the product of all the indi-
vidual temporal variable dimension, which aggravates the separation effect of the dimen-
sionality curse. Even after individual time series transformations (which corresponds to
the analysis of dataset X where each xi,j is a d-dimensional vector), the representation
space has an d× p dimension. In our application, p can be as large as several hundreds,
which makes the transformation space dimension prohibitively important even for small
values of d.

Multivariate clustering must therefore include one or several dimension reduction fea-
tures to address this dimension increase problem.

In the presence of several variables, the methods must also take the variables relation-
ships into account. For instance, the Gaussian MM model use specific hypothesis on the
covariance matrices to model the variables correlation.

In the following we describe some existing multivariate clustering methods, before in-
troducing the block-clustering framework.

1.4 Multivariate Time Series Model-Based Clustering 59



1.4.3 Related Work on Multivariate Time Series Clustering

Existing MTS methods are the direct result of an existing univariate method extension.

Multivariate Similarity Measure

An important number of papers have been focused on the extension of DTW [SWK15 ;
Sho+17]. In [Sho+17], the authors discriminates the possible DTW extensions in two
categories :

— Independent strategies (also called Match-By-Dimension), that compute the DTW
dissimilarity on each variable independently, and use the sum as global dissimila-
rity score.

— Dependent strategies (also called overall Matching), that sums up the multi-
dimensional DTW dissimilarity step by step. One main advantage of this approach
is that the time axis warping is shared among dimensions, which conserves the
time dependency information in the dissimilarity evaluation.

In a recent work, [Shi+21] uses this independent/dependent categorization as a basis
for a broad similarity extension framework, and applies it to several existing measures
(L2 Norm, Longest Common Subsequence, Move-Split-Merge, . . . ).

At the crossover between feature extraction and MTS similarity, several MTS similarity
measures have been defined on the basis of Singular Value Decomposition (SVD). It
includes :

— Weighted Sum SVD (WSSVD) [SY03], which consists in computing the scalar pro-
duct of the MTS matrices eigenvectors, weighted by the eigenvalues.

— PCA similarity factor (SP CA) [SS05] considers the independent PCA projection of
two MTS, keeping only the first d axes, and evaluates the difference between every
PCA axes of the first projection with every PCA axes of the second, as the squared
value of their angle cosine, weighted by the eigenvalues

— Extended Frobenius norm (Eros) [YS04] is close to SP CA, but considers the abso-
lute value of the angle cosines, and considers every axes of the PCA representa-
tions.
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Multivariate Transformation

The feature extraction strategy (c.f., Sect 1.1.4), which consists in representing time
series with discriminate characteristic, has also been an important research field in the
last years.

In the similar way than the MTS similarity measure can be categorized in dependent or
independent extensions, the transformation can lead to an independent transformation
(each dimension is individually transformed), or dependent transformation (the overall
MTS is transformed). Note that the strategy choice has not implications on the final da-
taset dimensions, as independent transformations can lead to vectorized representation,
and dependent transformation may produce multi-dimensional representations.

Few works have addressed the unsupervised transformation, compared to the univariate
case. For instance, [DSP05 ; WWW07] that perform single-point feature (mean, devia-
tion, quantile, . . . ) extraction.

The supervised feature extraction methods have received more attention. The vector li-
near autoregression [TP94] method uses the autocorrelation to represent the dynamical
information in the MTS. For instance, [DUr+14] uses a multivariate wavelet transform
and uses this representation as basis for the training of a SOM.

The PCA projection has also been extensively used for MTS representation. In [Li+13],
the authors use the common principal component analysis [Li19] representation, which
consists in estimating a covariance matrix on each MTS independently, perform the PCA
on the basis of the covariance matrices average, and projects the MTS in this common
representation space. An important number of neural-network representations have also
been recently (an extensive review is available in [Faw+19]). For instance, [II20] uses
a deep embedding based on a recurrent auto-encoder, or [Kip+18 ; PRB19] that models
the interaction between MTS with a latent interaction graph.

As extensions of the univariate u-shapelet [ZMK12], multivariate u-shapelets methods
have been developed [Spe+18 ; OW20], based on dependent or independent extensions
of the DTW.

Another approach consists in extracting relevant subsequences with a multivariate seg-
mentation (e.g. with a model-based joint segmentation [DTS07 ; Cha+13 ; HNB19]).
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Multivariate Time Series Clustering Algorithm

As in the univariate case, MTS clustering algorithms can be based on multidimensional
models, similarity measures, in the original space or in a lower-dimensional represen-
tation. The clustering algorithms can be categorized in the same taxonomy than the
univariate methods :

— The most popular partition-based algorithm, k-means, has been applied in [DSP05]
on single-points features, and in [Lee+20 ; SRV21] with multivariate DTW in the
original space. In [II20], the k-means is applied on a non-linear representation
based on auto-encoder representation.

— In [CS08], the authors have extended the density-based algorithm DBSCAN to
handle MTS.

— The Hierarchical clustering (used for instance in [HK21]) can be applied directly
on any MTS dissimilarity matrix, and does not require additional extensions.

— Model-based clustering of MTS has been addressed by [Kir05 ; GGM14] with mul-
tivariate HMMs

Extending an univariate time series clustering method is not straightforward, for several
reasons. First, when several variables are present, a new information emerges : the rela-
tionship between variables. This information can take several form (same row-partition,
same distribution, . . . ).

Another difficulty is that, when the number of variable is important, the model dimen-
sion also becomes high, which can cause inference issues and amplify the curse of di-
mensionality effects.

By assuming the presence of a latent variable partition, such that variables in a given
cluster share the same distribution, the Latent Block Model addresses both the model
dimension problem and the variable relationship modeling.

1.5 Multivariate Clustering With Block Structure

As described in Sect. 1.4.3, a first approach to MTS dataset clustering consists in pro-
ducing only a row partition without considering variable partition. An illustration is
displayed on Fig. 1.13-a).
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Figure 1.13. : Comparisons of the multivariate clustering, coclustering, and multi-clustering
structures.

The block clustering methods extend this principle by inferring a column-partition and
one or several row-partitions. The crossing of these row and column partitions divides
the MTS dataset into sub-matrices, called blocks.

In the following we detail the existing work on model-based coclustering and multi-
clustering.

1.5.1 Coclustering

The coclustering, also called biclustering, simultaneous clustering, two-way clustering
or two-mode clustering, consists in estimating simultaneously a column partition and a
row partition, which creates a block representation of a dataset. The associated structure
is represented on Fig. 1.13-b).

The following section presents the related works on the topic, focusing on the models
used in this thesis (see [BL15 ; PGA15], for exhaustive reviews).

Originally developed by [Goo65] and [Har72]), coclustering methods are specifically de-
signed to deal with multivariate datasets. These methods have been applied in various
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domains : Genetics [Hed+01 ; Han+02 ; Klu+03], Biology [Xie+19], Sentiment Ana-
lysis [CHZ15], Text Mining [Dhi01], and recommendation systems [GM05 ; Dar+09 ;
FZZ20].

Several approaches have been developed to address the coclustering representation. A
group of methods are based on matrix reconstruction and on the optimization of a
dissimilarity-based criteria. It is the case of the CRO algorithms (CROEUC, CROBIN,
CROKI2 [Gov83] and CROINFO [GN13]). For instance the CROEUC algorithm (desi-
gned for quantitative dataset coclustering) minimizes the least square criteria :

∑
k,l

∑
x∈Xk,l

(x− µk,l)2,

where µk,l is the mean of block (k, l). Some other dissimilarity-based methods express
the coclustering as a matrix factorization [LS01], [Din+06] or an optimal transport
problem [Lac+17]. The problem has also been addressed with NN-based optimization
[Xu+19] and evolutionary algorithm [BPZ04].

Existing coclustering variants includes the Stochastic Block Model [NS01 ; CL15] (which
performs a block clustering based on a similarity graph observation-observation) and the
diagonal Latent Block Model [Roo95 ; Li05 ; LN11 ; LN17] which adds the constraints of
a block-diagonal structure.

In the following we detail the model-based coclustering approach.

1.5.2 Model-Based Coclustering

Model Definition

The Latent Block Model (LBM), first introduced in [GN03], assumes the presence of
block components, such that the contents of a given block follow independently the
same component distribution. The number of row-clusters K and column-clusters L are
specified by the user.

The method has been applied to binary [GN08], contingency [GN07], ordinal [JB18]
and continuous data [NG10].

In the following, in addition to z = (zi)n that designates the observation partition (equi-
valently called row-partition), the vector w = (wj)p designates the variable partition
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Figure 1.14. : Latent Block Model graphical model

(equivalently called column-partition) such that wj = l means that the variable x.,j be-
longs to the column-cluster l. pl denotes the column-cluster l cardinality. In the multi-
variate continuous case and with respect to this notation and the notation detailed in
Sect. 1.4.1, the model likelihood is given by :

p(X) =
∑
z∈Z

∑
w∈W

p(X, z,w) =
∑
z∈Z

∑
w∈W

p(z)p(w)p(X| z,w),

where Z and W respectively denote the sets of all possible row and column parti-
tions. The row-membership distribution p(z) is defined as

∏n
i=1 p(zi) =

∏n
i=1 πzi , with

π = (πk)K the row proportions, and p(w) =
∏p

j=1 p(wj) =
∏p

j=1 ρwj , with ρ = (ρl)L

the column proportions. The conditional density of X given the block memberships, is
p(X| z,w) =

∏
k,l

∏
x∈Xk,l

p(x | θk,l), with x ∼ F (θk,l). The complete parameter set is
denoted ΘLBM = (π, ρ, (θk,l)K×L). The corresponding graphical model is displayed in
Fig. 1.14.

Inference

The LBM likelihood optimization is not straightforward, and requires specific algorithms
[GN13]. As in the clustering case, the inference process is usually performed in an
Expectation-Maximization fashion (c.f., Sect. 1.2.1). However, the EM algorithm would
require to access the block membership posterior distribution p(z,w | X,Θ), which is
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not tractable [GN13]. Alternative approaches include the variational inference (VEM),
Stochastic-Gibbs EM (SEM) , and the Classification-EM (CEM) algorithm.

In the following we detail the SEM, that has the advantage to reduce both the risk of
getting stuck in a local optima and the dependence to initialization.

SE step Considering fixed values of the parameter set Θ, the block membership pos-
terior distribution p(z,w | X,Θ) is approximated by a Gibbs sampler that alternate the
sampling of z given w, and w given z. For a given row membership zi update, the sam-
pling is performed by drawing from the conditional distribution p(zi | w,xi,.) :

p(zi = k | w,xi,.) = p(zi) p(xi,. | zi = k,w)
p(xi,.)

= πk p(xi,. | zi = k,w)∑K
k=1 πh p(xi,. | zi = h)

,

where p(xi,. | zi = k) =
∏p

j=1 Fk,wj
(xi,j) is the distribution of the row xi,. in the block-

clusters. The column membership sampling is performed symmetrically, according to the
following conditional distribution

p(wj = l | z,x.,j) = πk p(x.,j | zi = k, z)∑K
k=1 πh p(x.,j | zi = h)

,

M step Considering fixed values of the block membership (z,w), the parameter set Θ
update is, multivariate Gaussian case, given by :

nk =
n∑

i=1
1k(zi), pl =

p∑
j=1

1l(wj), nk,l =
∑

x∈Xk,l

1,

πk = nk

n
, ρl = pl

p
, µk,l = 1

nk,l

∑
x∈Xk,l

x,

Σk,l = 1
nk,l

∑
x∈Xk,l

(x− µk,l)(x− µk,l)T .

The algorithm iterates these two steps for a given number of iteration or until member-
ship convergence. This inference process is described in Algorithm 4.

As in the BNP clustering case, the final block membership can be inferred with a consen-
sus partition estimation [GOK18].
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Algorithm 4 : SEM algorithm for Latent Block Model inference
Input : row-cluster number K, column-cluster L, iteration number M
Output :LBM parameters Θ̂, block partition (ẑ, ŵ)
Initialize row-partition z
Initialize column-partition w
for m← 1 to M do

for i← 1 to n do
Estimate p(zi = k | w,xi,.) given Θ
Sample membership zi

for j ← 1 to p do
Estimate p(wj = l | z,x.,j) given Θ
Sample membership wj

Update Θ given (z,w).

The model selection can be performed in several ways (see [Lom12 ; Ker+15 ; Bra14]
reviews), usually with an exhaustive search associated to a model selection criterion.
The BIC criterion has also been derivated [Lom12] for continuous data :

BICLBM = ln p(x | Θ)− K − 1
2

ln(n)− L− 1
2

ln(p)− KLC

2
ln(np),

with C is the number of parameter per block.

Functional Latent Block Model

As stated in Sect. 1.5.2, the LBM has been applied to various types of data. Recently,
several applications to time series clustering have been developed. The first application
[CB17] extends the clustering method [Cha+13] to coclustering, and assumes that the
contents of a block can be represented by a piecewise polynomial regression model.
This method supposes that the time series can be adequately modeled by piecewise
representation, and the resulting segmentation can be a valuable information for the
expert in that case. However, this method has the drawback to work in the original time
series space, which becomes computationally prohibitive in high-dimension cases.

The other existing functional LBM [SAJ18 ; Bou+18 ; Sch+19] share the same time
series preprocessing step, based on a fPCA representation that allows to work in a lower-
dimensional space. One important difference between these methods is the modeling of
the fPCA coefficient : while, in [SAJ18], the time series are represented by the first fPCA
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coefficient, the extended methods in [Bou+18 ; Sch+19] apply a subspace projection
representation that associates a specific combination of fPCA coefficients to each block
representation.

In [Bou+20], the authors apply the same principle to MTS (i.e., each cell xi,j is itself an
MTS). Very recently, the method [Cas+21] has been developed, that models the block
components in the original space with the Shape Invariant Model.

Specific model selection criterion have been developed for the Functional Latent
Block Model, including an ICL-BIC extension [SAJ18] and the ICL criterion [Bou+18 ;
Cas+21], based on the existing ICL developed for LBM [Lom12].

Non-Parametric Latent Block Model

As the DPMM can be seen as an extension of the MM with additional BNP prior, the
Non-Parametric Latent Block Model can be seen as an extension of the LBM.

For the univariate case, the BNP extension of the LBM has been developed and presented
in [MR07], and consists in specifying two separate prior on the proportions, and a prior
on the block component distribution. In [MR07], the authors use Pitman-Yor (PY) pro-
cesses as proportion priors (equivalent to the Dirichlet prior with an additional discount
parameter, and which tends to create clusters with uniform sizes). With Dirichlet priors
(used for instance in [SB08 ; WF12]), the model is defined by :

xi,j | zi, wj , θzi,wj ∼ F (θzi,wj ),

zi | π ∼Mult(π), wj | ρ ∼Mult(ρ),

π | α ∼ SB(α), ρ | β ∼ SB(β),

θk,l ∼ G0,

with SB the Stick-Breaking generation process. The associated graphical model is dis-
played in Fig. 1.15. As in the clustering case, the inference can be performed in different
ways, including variational inference, split-merge, and symmetrical Gibbs-sampler. This
last inference method can be seen as two separate DPMM Gibbs-sampler inference on
the rows and on the columns, where the objective is to approximates the joint distribu-
tion of the column and row memberships. The update of a row-membership zi given the
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Figure 1.15. : Non-Parametric Latent Block Model graphical model

other row-membership z−i and the column-partition w consists in sampling according
to : 

nk

n− 1 + α
p(xi,. | w, X−i, z−i, G0), existing row-cluster k, (1.12)

α

n− 1 + α
p(xi,. | w, G0), new row-cluster, (1.13)

Where p(xi,. | w, X−i, z−i, G0) =
∏p

j=1 F (xi,j , θk,wj
) is the product of the block com-

ponent densities, conditional to the fixed column-memberships values. In eq. (1.13), the
joint prior predictive distribution of xi,. is p(xi,. | w, G0) =

∏L(m)
l=1 p(xi,l | G0)), with L(m)

the current number of column-partition in w at iteration m, and xi,l = {xi,j : wj = l}
the elements of row xi,. belonging to column-cluster l. With this notation, the joint prior
predictive of xi,l is the density of a multivariate t-distribution similar to the one used in
Eq. (1.11).

The extension of the NPLBM to the case of time series coclustering is the topic of the
contribution detailed Chapt. 4, which also details an adapted symmetrical Collapsed
Gibbs Sampler.

Parametric or BNP versions of the LBM share one major assumption : there is only one
row-partition, and, by construction, this row-partition is the same for every column-
clusters. The next collection of methods relaxes this assumption and consider that every
column-cluster can be associated with a specific row-partition.
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1.5.3 Multi-Clustering

In a multivariate dataset, every variable taken independently is susceptible to produce
a specific and distinct row-partition. The Multi-Clustering consists in assuming a small
number of row-partitions are shared by the variables, which defines a column-partition.
The associated structure is represented on Fig. 1.13-c).

It is different from clustering subspaces, which consists in estimating partition associated
to specific linear variable combinations, in the way that Multi-Clustering estimates a
variable partition such that variables in a column-cluster share the same row-partition.
In some way, the Multi-Clustering can be considered a hard subspace clustering method,
i.e., with hard column-cluster membership.

Parametric Multi-Clustering

The model-based Multi-Clustering has been developed by [GS07], which assumes a
multi-partition block structure adapted to continuous multivariate datasets, where each
cell is an univariate continuous observation. This method regroups the variable with a
forward/backward search on the basis of a model selection criterion (in the example,
variants of AIC and BIC), and models each column-cluster content with a full-covariance
GMM. In this setting, the variables inside a block are considered dependent. The method
has been extended in [GMS18], which relaxes the block independence assumption, and
separates the variables in three group : classifying, redundant and non-classifying.

Recently, [MV19] proposed a the Multiple Partitions Model (MPM) that deals with hete-
rogeneous data (including categorical), and which consider the variable independence
inside the block (resulting, for the Gaussian case, in diagonal covariance matrices). This
model can be described by :

xi,j | {vj = h, zh
i = k} ∼ F (θh

k),

vj ∼Mult(η), zh
j ∼Mult(πh),

where πh are the row-cluster proportions corresponding to partition h, η are the column-
cluster proportions and v = (vj)p are the column-cluster membership. Note that, in this
model, the block component distribution is a ph × d-dimensional distribution and not d-
dimensional, as each variable is modeled independently. The associated graphical model
is displayed in Fig. 1.16. The authors propose two methods to perform simultaneously
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Figure 1.16. : Multiple Partitions Model graphical model

the model inference and the model selection based on an modified EM process [Gre90]
that maximizes a penalized log-likelihood. However, the authors state that these me-
thods may suffer from combinatorial issues when the number of column-cluster is high
(more than 5), in which case they suggest to use a forward/backward search.

Bayesian Non-Parametric Multi-Clustering

In parallel to the parametric model-based methods, the BNP Multi-Clustering (BNPMC)
has also been developed in two independent works, the Cross-Categorization model from
[Man+09] and the Non-Parametric Multiple Clustering model from [Gua+10]. These
two papers share the model definition, which consists in a hierarchical Dirichlet prior :
first on the column partition, which allows to automatically infer the number of column-
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Figure 1.17. : Non-Parametric Multi-Clustering graphical model

clusters, then one independent Dirichlet prior on the proportions of each row-partitions.
The model, with graphical model displayed in Fig. 1.17, can be described as :

xi,j | {vj = h, zh
i = k, θh

k} ∼ F (θh
k),

θh
k ∼ G0, vj ∼Mult(η), zh

i ∼Mult(πh),

ηj(r) = rj

j−1∏
j′=1

(
1− rj′

)
, rj

i.i.d.∼ Beta(1, γ),

πh
j (th) = thj

j−1∏
j′=1

(
1− thj′

)
, thj

i.i.d.∼ Beta(1, α).

The inference is performed with a variational inference approach in [Man+09], and a
MCMC-based in [Gua+10].

The contributions detailed in Chapt. 3 and Chapt. 5 consists in two Multi-Clustering
models : the first one addresses the problem of time series Multi-Clustering with a pa-
rametric conditional latent block model, the second contribution is a BNP model that
combines Multi-Clustering and Coclustering, and automatically infers the model selec-
tion without assumption on the partition dimensions.
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1.6 Conclusion

Time series clustering is a large and open problem that has been addressed with an
important number of approaches, based on dissimilarity measures, feature extraction
methods, clustering algorithms, . . .

The approach choice is made by the user, based on prior knowledge of the dataset, and
leads to the creation of natural groups of observations, w.r.t. the clustering objective.
This knowledge is expressed as assumptions on the information that the user seeks to
use for the cluster creation, and that should be conserved and outlined in the clustering
result (e.g., a specific feature, a shape, the presence of a shapelet, the dissimilarity in
a lower dimensional space, . . . ). When several variables are present in the datasets,
additional assumptions are needed to deal with the dimension increase and make use of
the variable dependencies information.

In the following chapters, the proposed univariate time series clustering is based on a
latent scenario hypothesis, and the multivariate approach is based on a block clustering
structure.
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Time Series Clustering with
Model-Based Dictionary
Representation

2

2.1 Introduction

In this chapter, we present an univariate time series clustering method applied to time
series produced by autonomous driving numerical simulations. The method is based on
a driving pattern dictionary construction and consists in three steps : automatic segmen-
tation of each time-series, regime dictionary construction, and clustering of produced
categorical sequences. In this chapter’s first section, we present the detailed simulation
method and the time series structure. In the second part, we discuss the existing ap-
proaches and describe our contribution. In the third section, we present the results ob-
tained on public datasets and on an industrial use case : the Autonomous Emergency
Braking (AEB) system validation. Finally, we conclude on our method’s capabilities and
perspectives.

2.1.1 Regime-changing Time Series Clustering

AEB use case time series are the result of the chaining of distinct phases, also known
as regimes. Provided the ability to detect those regimes, it is possible to use their es-
timated distribution (order, frequency, amplitude. . . ) to characterize the observations
and discriminate them. During the last decades, several papers have been proposed to
detect optimal regime change points. Those methods sum up to piece-wise polynomial
regression models. The common strategy relies on optimizing an approximation error in
different ways : sliding windows of increasing size as in [Keo+04] and [Fuc+10], by
dynamic programming as in [LM00], Hidden Markov models in [Keh04] or by regres-
sion mixture models in [Cha+09b]. We selected this last model for two reasons : on the
one hand, the benefits of using a mixture model (confidence intervals, model selection
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strategy. . . ) and on the other hand, the particular performances of this model compa-
red to hidden Markov model approaches and its computational efficiency compared to
dynamic programming methods [Cha+09b ; Cha+10].

In mixRHLP from [Sam+11], the same author combines the piece-wise regression
model in a finite mixture to construct a one-step model-based clustering method. The
proposed approach aims at regrouping time series with common regimes cut-points.
mixRHLP also assumes that the number of regimes is known. These assumptions are
not suitable to our use case, in which time series belonging to the same class can exhibit
varying regime duration and cut-points. Moreover, the number of segment is not known
in advances, nor the polynomial regression order.

Our contribution is an attempt to adapt mixRHLP to our constraints. It consists in a
three-steps workflow with the addition of an original strategy of segmentation model
selection. In the first step, we apply Individual time-series segmentation with a polyno-
mial regression mixture. In the second step we build a standard dictionary of regimes
by clustering the extracted segments. Finally, The clustering of these sequences using
Levenshtein distance in categorical sequence space produces the final result. Our me-
thod, called SDLHC for Segmentation, Dictionary construction, Levenshtein Hierarchi-
cal Clustering, has the following advantages :

— Clustering based on regime detection is intuitive and easily interpretable by ex-
perts.

— The method can be applied to a dataset of time-series with unequal lengths. Mo-
reover, it is independent of the time-series synchronicity and the regime’s moment
of appearance synchronicity.

— The segmentation phase can be applied independently on each time-series, which
makes the computation an embarrassingly parallel task. This step drastically re-
duces the data dimension.

— Our segmentation strategy optimizes automatically both the number of segments
and polynomial regression on each segment, which allows to automatizes this step
and makes the segmentation step a turn-key solution.
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2.2 A three-step time-series clustering algorithm (SDLHC)

The method SDLHC is composed of three steps : segmentation, dictionary construction,
and categorical sequence clustering. The first two steps are addressed with a mixture
model approach.

2.2.1 Segmenting time-series with a mixture of polynomial regressions

In a first step, each time series is individually segmented with a piecewise polynomial
regression model with hidden logistic process from [Cha+09b]. This model is based on
a polynomial regression model mixture, with time-dependent proportions following a
hidden logistic process. Given a time-series s = (st)T and ϕ = (ϕq(t) = tq)Q a functional
basis of size Q. A Polynomial Regression Model (PRM) of sequence s in the basis ϕ is
defined by

x̃ =
Q∑

q=1
βqϕq(t) + σ2ϵ,

with (βq)q∈1,...,Q ∈ RQ, σ ∈ R+
∗ and ϵ ∼ N (0, 1). These PRMs are the segmentation

mixture model components.

Given a number of components K, the time-indexed vector (zt)T designates the segment
memberships. At any given time t, zt follows a Multinomial distribution with parameters
π(t) = (πk(t))K . The distribution of st is given by

p(st) =
K∑

k=1
πk(t)fθk

(st),

and the sequence s log-likelihood by

l(s; θ) =
T∑

t=1
log

(
K∑

k=1
πk(t)fθk

(st)
)
, (2.1)

with fθk
(st) the density associated to a PRM component. With this notation, the time-

varying proportions πk(t) can be seen as the parameters of a Multinomial distribution
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followed by the clusters memberships at a given time t. These proportions vary according
to a logistic process. More formally, for k ∈ {1, . . . ,K} and t ∈ T ,

πk(t) = p(zt = k) = exp(
∑S

s=1wk,sϕq(t))∑K
h=1 exp(

∑S
s=1wh,sϕq(t))

, (2.2)

with wk = (wk,q)Q the associated model parameters. In the following paragraphs, we
denote by W the set of parameters (wk)K . The complete set of parameters is finally
θ = (W,β, σ). The log-likelihood (2.1) optimization requires a specific version of the
Expectation Maximization (EM) algorithm, with steps E and M described as follows.

Expectation step (E) Given the parameters θ, the first step of the EM algorithm consists
in optimizing the complete log-likelihood defined as :

Ex,θ [l(x, z; θ)] = Ex,θ

[
n∑

i=1

K∑
k=1

Izi=klog (p(xi, zi = k; θ))
]

=
n∑

i=1

K∑
k=1

τi,klog (πkfθk
(xi)) .

The development of the equation (2.3) shows that this step is simplified to the estimation
of τi,k = p(zi = k|xi; θ), the posterior distribution of (zt)T conditionally to s. The Bayes
theorem gives the following estimation of this quantity :

τt,k = p(zt = k|xi; θ) = p(zt = k, st; θ)
p(st)

= πkfθk
(st)∑K

h=1 πhfθh
(st)

.

Maximization step (M) At each iteration, the model parameters are updated during
the Maximization step. In this phase, the following decomposition of the complete log-
likelihood expectation is maximized :
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Ex,θ [l(x, z; θ)] =
T∑

t=1

K∑
k=1

τt,k log (πkfθk,t(st))

=
T∑

t=1

K∑
k=1

τt,k logπk +
T∑

t=1

K∑
k=1

τt,k logfθk,t(st)

= Q1(π) +Q2((θk)k∈{1,...,K}).

with τt,k = p(zt = k|st, θ) the posterior segment membership distribution estimated in
(2.3) during the expectation step, and fθk,t the density associated to cluster k regression
model at time t. This optimization can therefore be achieved by the separate maximiza-
tion of Q1 and Q2. The optimization of Q2 with respect to the parameters θk = (βk, σk)
consists in the estimation of a polynomial regression model on the points (st)T weigh-
ted by the posterior membership distribution (τt,k)T , which gives the following expres-
sions :

β̃k = argmin
βk

T∑
t=1

τt,k(st −
R∑

r=1
βkϕr(t))2, (2.3)

σ̃2
k = 1∑T

t=1 τt,k

T∑
t=1

τt,k(st − µ̃k(t))2, (2.4)

with µ̃k(t) =
∑S

s=1 β̃k,sϕq(t) the expected value of st in the regression model of com-
ponent k.

The maximization of Q1, which consists in estimating the time-dependent segment mem-
bership probabilities (πk(t))K , is performed with an Iterative Reweighted Least Squares
(IRLS) algorithm [Cha+09a].

The algorithm has a linear complexity in the time series length and in the number of
EM iteration, but quadratic in the polynomial regression order and cubic in the segment
number. If this number is important (>15), we suggest to use a top-down hierarchical
segmentation (not presented here) to reduce the effects of this cubic complexity.
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2.2.2 Adaptive model selection strategy

In the initial model [Sam+11], the regression polynomial basis is common to every
component, while in our contribution each regression order is specific. Moreover, we do
not make a priori assumptions on the segment’s number, which is also estimated by our
strategy.

To estimate both the segment’s number and the polynomial regression order on each
segment, we combine this model with a new top-down strategy. This strategy is iterative
and consists, at each step, in identifying the ’worst’ component, in terms of the partial
likelihood defined as :

lk(x; θ) = 1∑T
t=1 πt,k

T∑
t=1

πt,klog (fθk
(st)) , k ∈ 1, ..,K.

This criterion can be seen as the component representation quality weighted by the
conditional membership probabilities. By improving the component kold ∈ {1, . . . ,K}
that minimizes this score, two candidate models are created and compared. Splitting
kold in two sub-components, while conserving the other components, produce the first
candidate model. We denote by k1 and k2 these new clusters. We denote tm the weighted
median of the sequence {1, . . . , T} with weights πkold

, and consider this time as the
optimal cut-point for splitting the component πkold

. The new components membership
probabilities associated are based on the former component membership probabilities.
The membership probabilities of component k1 are defined by :

πk1 =
{
πt,kold

, t ∈ {1, . . . , tm}
ϵ , t ∈ {tm + 1, . . . , T}

, (2.5)

with ϵ the threshold precision. The new cluster k2 membership probabilities are obtained
likewise, with inverted time indices. A regularization of the (πk)K is necessary at this
point to enforce the constraint

∑
k=1 πk,t = 1,∀t ∈ {1, . . . , T}.

The second candidate is obtained by increasing the polynomial regression associated
to kold by one. Two runs of EM are then launched, each of them considering one of
the candidates as the initial state. After the convergence of both EM, the candidate
optimizing the BIC is selected for the next iteration. This strategy is summarized in
algorithm 5.
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Algorithm 5 : Top down segmentation strategy.
Fix the convergence threshold c > 0
Choose an initial state for the first EM run :
θinit

old := ((wk, βk, σ
2
k)k∈{1,...,K})init

old

Compute πinit
old using equation (2.2)

Estimate θend
old by applying the EM algorithm

while relative increment in BIC > c do
Construct the first candidate model θinit

addSeg with equation (2.5)
Estimate θend

addSeg by applying the EM algorithm
Construct the second candidate model θinit

incDeg by increasing the least efficient
component of the former mixture by one.

Estimate θend
incDeg by applying the EM algorithm

θend
old = arg maxθ∈{θend

addSeg
,θend

incDeg}BIC(θ)
end

After convergence of BIC criterion, the regime change cutpoint are estimated by post-
processing the time-dependent memberships probabilities. This segmentation method
is applied independently to each time-series and transforms each one in a set of sub-
sequences.

2.2.3 Dictionary construction

Expressing the extracted segment in a common basis is mandatory to compare and clus-
ter the sequences. The objective is to encode the original time-series in the new dictio-
nary, as represented in the left part of Figure 2.1.

This common basis, or dictionary, is constructed with a clustering algorithm applied to
the dataset composed of all segments from time series.

The sub-segments are first scaled, expressed on a common support, and regressed in a
polynomial regression basis. Other informative descriptors can be added depending on
the case, as the regime’s duration, offset, or variance. These features are then cluste-
red with a GMM to produce the dictionary. In section 2.2.1, we mentioned an implicit
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Figure 2.1. : SDLHC step 2 : From time-series to categorical sequences.

assumption based on the segmentation polynomial basis. In this section we make the ad-
ditional implicit assumption that the GMM is adapted to the regimes density estimation
and makes sense from the field expert point of view.

The EM algorithm is initialized with the k-means++ algorithm, which is a standard
approach [BB13]. At the end of this step, the modes of the Gaussian mixture components
are the reference regimes, entitled "patterns" in the following, with which to recode the
original time series. The dictionary size is determined by the field experts, assisted by
the BIC. The final dictionary is denoted R = (ru)U , with U the number of patterns.

After this re-coding phase, data dimension is greatly reduced : for a time-series of size
n, the dimension goes from Rn to RK , with R the categorical space and K the number
of regimes composing the sequences. The third and last step of SDLHC regroups these
sequences to produce the final clustering result.

2.2.4 Categorical Sequences Clustering

We use the Levenshtein distance [Lev66] combined with Ward’s hierarchical clustering
method to obtain the final clusters. Levenshtein distance between two categorical se-
quences a and b (respectively composed ofKa and Kb segments) is defined as the mi-
nimum number of operations (insertion, deletion, substitution) needed to transform a

into b. In this categorical space, Levenshtein Distance complexity is O(Ka ×Kb).
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However, with the original Levenshtein distance, replacing a symbol with another has
a fixed unit cost, independent from the target and replacement symbols. Therefore, it
does not take into account the possible similarity between patterns.

For instance, in Fig. 2.4, some speed patterns appear similar (different phases of accelera-
tion of cruising speed) and distance on categorical sequences should take this similarity
into account.

Weighted Levenshtein Distance

In order to take this information into account, we propose to use a Weighted Levenshtein
Distance (WLD). Considering a set of patterns R, the weight on the edition cost between
r1, r2 ∈ R is symmetric and defined by :

||r1 − r2||p
maxra,rb∈U ||ra − rb||p

, (2.6)

where ||.||p is the p-norm on the pattern space. The choice of the p-norm influences
moderately the final clustering. Based on our practical experience in the AEB use case,
we advocate the use of ||.||∞.

Variant representations

The following paragraphs describe other possible representations and dissimilarities,
that can be use in combination or in replacement of WLD.

Removing duplicate successive regimes The categorical sequence contains sometimes
successive identical symbol (e.g., the sequence abaac). This effect can have several ori-
gins : it can be that the time series exhibits two close (but different) regimes, that are
clustered together in the dictionary construction step. It can also be caused by an ove-
restimation of the segment number in the independent segmentation step.

To mitigate these effects, we suggest to assume that the successive symbols do not add
any information and to delete the redundant symbols (e.g., to transform abaac into
abac).
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Integrating additional features in the Levenshtein Distance During the second phase of
SDLHC, the dictionary has been constructed based on scaled and segments on same
support, with the optional addition of the offset, variance and phase duration infor-
mation. These characteristics can also be integrated in the weighting function of the
Levenshtein Distance.

It is also possible to assume a hierarchy of these features, and consider a nested cluste-
ring (for instance, a partition based on pattern shape, then duration, then offset, . . . ).

Histogram-based representation A common representation choice in dictionary ap-
proaches consists in considering the recoded symbol histograms [LL09 ; Sch15]. This
representation can also be used with our approach. However, as the number of patterns
may be sensitive to the over-estimation of the segment number or of dictionary size, we
suggest to also take into account the proximity between patterns in the comparison of
these histograms. The final clustering can be obtained with the same hierarchical cluste-
ring approach based on the ℓ2 norm.

Based on the same logic, the frequency or an absence/presence binary value representa-
tions can be considered instead of the histograms.

Integrating temporal relevance information In some situations, the user may be inter-
ested in comparing specific temporal sub-sequences of the time series. For instance, the
last moments of the emergency braking scenarios are often more relevant. Instead of
extracting the sub-sequences before SDLHC run, it is possible to integrate this prior
information in this last symbol sequence clustering step. For instance, by weighting the
ℓ2 norm in the histogram dissimilarity or in adding a temporal weighting in the edit cost
of the Levenshtein Distance computation.

Once the weighted Levenshtein Distance Matrix computed, Ward’s hierarchical cluste-
ring method is applied to produce the final clusters.

In the following section we compare SDLHC (with the WLD) to other state-of-the-art
methods.
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Table 2.1. : Parameters grid for ARI evaluation.

Method Parameters Range
SAX Number of segments (5,10,20,30,40,50)

Number of gaussian bins (2,3,5,7,10,20,30,40,50)
SDLHC Dictionary size (2,. . . ,12)

MIXRHLP Number of segments (1,. . . ,10)
Polynomial regression order (1,. . . ,3)

2.3 Experiments

We present, in this section, the results of several experiments on public datasets and
on a real-world use case AEB obtained from Renault’s simulation system. The method
described in this article was implemented in Scala for the segmentation step and R for
the hierarchical step. Code and (public) datasets available at https ://tinyurl.com/sdlhc.
The following baseline methods are selected :

— Three methods based on classical measures (Euclidean distance and DTW) associa-
ted with Partitional Around Medoid clustering approach. We have also tested the
combination of DTW with center construction using the popular Dynamic Barycen-
ter Averaging (DBA) method [PKG11]. These methods are denoted respectively ℓ2,
DTWp, and DTWd in the following.

— The K − Shape method [PG15], a partitional clustering using the shape-based
distance based on the cross-correlation measure.

— The SAX method, a dictionary-based methods from [Lin+03] that builds repre-
sentations of the time series based on uniform time step segmentation. Based on
this representation and associated distance, hierarchical clustering with Ward’s cri-
terion produce the clusters.

— In order to compare to the original method we aimed to extend, the results of
mixRHLP are also reproduced here.

Whenever needed, we interpolate time-series to equal-length sequences. We used the R
package TSclust’s distance-based and SAX methods implementations and mixRHLP

using flamingos R package. Some of these methods depend on parameters, usually es-
timated by optimizing a risk in a supervised framework. The ARIs obtained here are
always the maximal ARI obtained when testing the method on a parameter grid, dis-
played in Table 2.1, reproducing the results that experts can obtain after fine-tuning.
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Table 2.2. : Adjusted Rand Index on the UCR archive datasets.

Name ℓ2 DTWp DTWd KS SAX MixRHLP SDLHC

CBF 0.28 0.66 0.68 0.63 0.46 0.47 0.71
OliveOil 0.46 0.53 0.40 0.50 0.00 0.40 0.55

Trace 0.32 0.40 0.66 0.57 0.32 0.41 0.94

The comparison is based on the Adjusted Rand Index (ARI), a popular score in the clus-
tering validation context. This criterion represents the proportion of correctly grouped
and separated observations with respect to the observed classes.

2.3.1 Public datasets results

In order to validate SDLHC adequation to the regime-changing time series clustering
problematic, we selected a subset of the UCR archive [Dau+18] whose data exhibit
regime structure. The ARI score obtained are shown in Figure 2.2. Although performant
when applied to Renault’s dataset (c.f. next subsection), we found that the weighted
Levenshtein hierarchical clustering requires fine-tuning to adapt to the considered data
characteristics. The test ran in this section therefore use the non-weighted Levenshtein
distance.

The results confirm that the method perform well when addressing regime-changing
time series. In these tests, the considered datasets contain equal-length time-series. Ho-
wever, SDLHC can also be applied, without data preprocessing, to unequal-length time-
series, which is the case in our application.

2.3.2 Real dataset results

In the following section, we evaluate the clustering performance of SDLHC on an in-
dustrial use case : the Autonomous Emergency Braking (AEB) system validation. In this
case, a ground truth is available, and it is possible to compare clustering methods based
on the similarity between the observed labels and the produced clusters. The clustering
methods performances are, as in the previous section, measured by the ARI score. Re-
nault’s dataset is composed of 150 time series, with a duration varying from 13 to 52
seconds and length varying from 415 to 573 data points.
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Figure 2.2. : Segmentation result sample.

An illustration of the segmentation step result is shown in Figure 2.2.

The obtained dictionary, composed of five driving patterns, is shown in Figure 2.4. Using
this dictionary, Figure 2.3 shows the encoded sequence.

Two stationary patterns can be recognized (b and c), corresponding to cruise speed
phases, as well as two accelerating (d and e) and one decelerating (a).

The scores are obtained in the same conditions than the previous tests on public datasets,
displayed in Figure 2.5.

Two versions of SDLHC are tested : SDLHC−LEV and SDLHC−WLEV correspon-
ding to the use of the standard and weighted Levenshtein distance in SDLHC ’s last step.
ARI criterion confirms that the SDLHC−WLEV method slightly improves the score ob-
tained by SDLHC−LEV . Among the distance-based methods, the K−Shapes method
is the best performer without, however, reaching the ARI threshold of 0.45 regardless
of the number of clusters. With high cluster numbers, SAX method nearly reaches the
performance of SDLHC − LEV . This result seems logical given the proximity between
the proposed workflow and the dictionary-based methods.
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Figure 2.3. : Segment sequence encoded using the dictionary. Two stationary patterns can be
recognized (b and c), corresponding to cruise speed phases, as well as two accele-
rating (d and e) and one decelerating (a).

Figure 2.4. : Dictionary produced in the AEB use case.
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Figure 2.5. : ARIs scores of various clustering approaches as a function of the number of clusters.

2.4 Conclusion

This first contribution SDLHC performs an univariate time series clustering based on
the independent segmentation of time series, a common segment pattern dictionary
construction, and a categorical sequences clustering.

This method makes several assumptions : a) the time series are composed of several
phases and these phases can be extracted with a piecewise polynomial regression ; b)
A small number of pattern can adequately represent all the phases from every time
series and these patterns can be obtained with a GMM on the segments representation
coefficients ; c) a relevant partition of driving behaviors can be obtained with a weighted
levenshtein hierarchical clustering of the time series recoded as categorical sequences.

It is our strong belief that SDLHC can be applied to other domains complying with the
latent scenario hypothesis (e.g., human activity recognition).

One drawback of this contribution, however, is that it only addresses univariate time
series dataset, while the ADAS validation use cases are mainly composed of multivariate
data. Because the direct extension of SDLHC is not straightforward (c.f. perspective dis-
cussions in Sect. 6.1), we considered a different strategy for these use cases. This strategy,
the model-based block-clustering framework, is the topic of the next three chapters.
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Multivariate Time Series And
Functional Conditional Latent
Block Model

3

This chapter details the first block clustering method contribution of this thesis, which
consists in a model-based parametric multi-clustering model.

3.1 Introduction

Coclustering methods infers simultaneously one row partition and one column partition
(c.f. Sect. 1.5.1). However, this class of method makes one strong structural assumption :
in addition of the variable partition, there is only one observation partition. This assump-
tion means that the observation partition is shared among every column cluster. When
the true latent block structure is composed of several row-partitions, inferring a cocluste-
ring forces the creation of a unique consensus row-partition made of the crossing of the
multi-clustering row-partitions. This effect leads to the over-estimation of the consen-
sus partition cluster number, and to the inappropriate split of block components. This
effect is illustrated on Fig. 3.1, with three variable clusters, each containing containing
3 row-clusters.

When the multi-clustering structure contains an important number of variable clusters,
this over-estimation can severely hinder the interpretation.

In the following we present a new model, called Functional Conditional Latent Block
Model (FunCLBM), a multivariate time series method that extends the Functional La-
tent Block Model with a dependency structure that allows each column-cluster to be
associated with a specific row-partition.

As opposed to existing model-based multi-clustering from [GS07] or [MV19], that
handle univariate cells elements and where each variable follow a different distribution,

91



Figure 3.1. : The true multi-clustering partition and a block partition that can be produced with
a coclustering method. The coclustering inadequation produces more row-clusters
than necessary and several blocks are wrongly splitted.

in CLBM the cells belonging to the same block follow independently the same multiva-
riate distribution, as is the case in the LBM [GN03 ; GN08] or FunLBM [SAJ18]. This
difference is outlined in Fig. 3.2. This choice of model combines the efficiency of the
LBM parameterization sparsity with the multi-clustering framework.

The output of this method is a dataset structure that highlights the variables that are
linked together and the multiple partitions, from which it is easy to discard groups of
uninformative (i.e., the one that are associated with a one-component row-partition) or
uninteresting groups of variables.

As a model-based method, this approach allows to detect outlier observation from seve-
ral point of view, and to precisely understand which group of variable is associated to
the outlier values.

3.2 Functional Conditional Latent Block Models

This section presents the FunCLBM model, as well as its inference and model selection
strategies. The proposed approach relies on the projection of the time series in a specific
space.
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Figure 3.2. : Differences between the LBM, MPM and CLBM. In CLMB c), every cells belonging
to the same block follow the same block component distribution, as is the case in
the LBM case a)

3.2.1 Representation with Principal Components of Interpolated
Periodogram

As described in the Related Work section, there is a important number of existing time
series representations (c.f., Sect. 1.1.4). In this chapter we chose to use an interpola-
ted log-scaled Fourier periodogram representation, as it proves its ability to compactly
represent the time series obtained in our driving simulation context.

Definition Each time series S = (si,j)n×p is first independently represented as a perio-
dogram with a Fourier Transform. Given a time series si,j with length Ti, this transfor-
mation outputs a decomposition of the time series in a weighted combination of trigono-
metric functions, with fi,j the associated frequency basis. Each frequency basis has the
same dimension than the original time series, Ti, and the associated frequencies are dif-
ferent from one time series to the other (i.e., the time series are represented in different
basis).

In order to compare the time series, it is mandatory to construct a common representa-
tion basis f̂ , based on (fi,j)n×p.
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A possible solution consists in computing the sample average gap ∆̂f between two
consecutive frequencies over all time series, and to build an "average" frequency basis
f̂ = ⟨0, ∆̂f, 2∆̂f, . . . , (l̂ − 1)∆̂f⟩ that best represents the set of time series.

The periodogram values in this common basis can be estimated using linear or cubic
interpolation techniques [CCP09] from B. After this step, as advocated in [CCP09], we
take the logarithm transformation of the normalized periodograms, which eases the
detection of the dependency structure and reduces the importance of the scale.

As a final transformation, the obtained log-normalized-interpolated periodograms are
linearly projected with a PCA, which produces the dataset X, such that each cell xi,j

contains the representation of time series Si,j . Every cell has the same length d, corres-
ponding to the number of PCA axis kept. The number of PCA axis, and the periodogram
dimension are both hyper-parameter oh these representations, that are studied in the
next chapter.

This preprocessing method is a close variant of the fPCA used in [SAJ18 ; Bou+18], with
a trigonometric basis of function and an additional log normalization transformation.

Interpretation As stated in this thesis introduction, it is important for the user to unders-
tand the underlying transformations that compose the clustering algorithms. Therefore,
it is important to detail the characteristics of the produced representations, and the link
between the similarity in the final representation space and the original time series simi-
larity.

Because the time series are represented in a frequency basis, this transformation is suited
to capture any seasonality information, but also the regime change similarity. Because
the periodogram are normalized, the transformation reduces the importance of the time
series scale.

These elements can be observed in practice in the use cases : some variables grouped
together may have different shapes, but they always exhibit an important correlation
and contains synchronous evolution and events. For instance, a variable that records a
braking system activation (which is a temporal binary variable exhibiting a rectangular
shape) is often seen grouped with the braking strength.
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3.2.2 Model definition

Let denote Kh the number of row-clusters associated to column-cluster h, 1 ≤ h ≤ H.
We also denote by v = (vj)p the column membership vector and η the column pro-
portions. Given a column-cluster h, the associated row-clusters partition is denoted as
zh = (zh

i )n×Kh
. We denote zh

i the row-cluster membership of observation i in the column
cluster h. The complete set of row-partitions is denoted as Z = (zh)H . The row propor-
tions are denoted π = (πh)H , with πh = (πh

k )0≤k≤Kh
. Finally, the joint model density can

be described by :

p(X) =
∑
V

p(v)p(x | v)

=
∑
V

∏
j

ηvj

∏
H

p(Xh),

where V is the set of all possible column-partition in H clusters, and p(Xh) is the den-
sity of the sub-matrix containing only the variable belonging to column-cluster h. This
density can, in turn, be expressed as :

p(Xh) =
∑
Zh

p(zh)p(Xh | zh)

=
∑
Zh

∏
i

ηzh
j

∏
k

∏
x∈Xh

k

p(x | vj = h, zh
i = k),

where Zh is the set of all possible row-partition in Kh clusters, and p(x | vj = h, zh
i =

k) = f(x, θh
k) is the block-component density, in our case a d-dimensional multiva-

riate Gaussian density with parameter θh
k = (µh

k ,Σh
k). The complete set of parameter

θ=(η, π, (θh
k)Kh×H) is inferred with a dedicated SEM-Gibbs algorithm.

3.2.3 Inference with SEM-Gibbs algorithm

As detailed in the related work chapter (c.f. Sect 1.2), the SEM algorithm is popular
practice in the model-based clustering framework. As is the case for the coclustering,
the direct optimization of the likelihood is not straightforward, and requires specific
strategies.

In the following we propose an SEM-Gibbs algorithm that alternates the Gibbs sam-
pling of the proportions and the parameter inference. Starting from an initial parameter
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state θ0 and an initial column partition w0, the algorithm alternates between these two
steps :

1. SE step :

— Update the column-partition v given the row-partitions. For each column j,
the update of the column membership vj consists in sampling from p(vj = h |
x.,j , θ, Z) ∝

ηhp
(
x.,j | vj = h, zh; θ

)
∑H

r=1 ηrp (x.,j | vj = r, zr; θ)
,

where p
(
x.,j |zh; θ

)
is the density of column j in cluster-column h given the

row-cluster memberships, i.e., p
(
x.,j |zh; θ

)
=
∏n

i=1 f(xi,j , θ
h
zh

i
).

— Update the row-partitions Z given the column-partition. For each column-
cluster h and each row i, the row-membership zh

i update consists in sampling
a new value from p(zh

i = k | xi,.,v, θ) ∝

p
(
xi,h | zh

i = k, θ)
)

=
πh

k p
(
xi,h | zh

i = k, θ
)

∑H
s=1 π

s
i p
(
xi,h | zh

i = k, θ
) ,

where xi,h designates the content of row xi,. restricted to column-cluster h, and
p
(
xi,h | zh

i = k, θ
)

=
∏

j:vj=h f(xi,j , θ
h
k) is the density of the row i in block-cluster

(k, h).

2. M Step : given the sampled block partition, and denoting by Xh
k the observations

belonging to block (k, h), the mixture proportions are updated by :

πh
k = 1

n

∑
i

1k(zh
i ), ηh = 1

p

∑
j

1h(vj),

µh
k = 1

nh
k

∑
i,j

zh
ikwjlvij , Σh

k = 1
nh

k

∑
i,j

zh
ikwjl

(
vij − µh

k

) (
vij − µh

k

)T

The SEM algorithm alternates these two steps for a given number of iterations, and
output a set of sample (v̂, Ẑ).

As in the mixture model and coclustering case (c.f. Sect. 1.2.1, the initialization choice
is crucial to ensure the good behavior of the algorithm.
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Several methods are often considered : populating components with a small random
sample of the observations, shuffling the column and block partitions, or using another
clustering algorithm to get a good initial starting point. In sect. 3.3, these different ini-
tializations are experimented.

3.2.4 Model Selection

With a good initialization choice, SEM-Gibbs may converge to a solution for a given
clustering structure, i.e. a column cluster number H and a set of row clusters num-
bers K = (Kh)H . Several criteria have been developed to address the model selection
problem. In this work, we propose a dedicated criterion based on the Integrated Clas-
sification Likelihood (ICL) [BCG00]. Initially developed for GMM Selection, extended
by [Lom12] to coclustering and in [Bou+18] to functional coclustering, we propose the
following extension to functional Multi-clustering :

ICL(K,H) = log p(x, v̂, ŵ; θ̂)− H − 1
2

log p

−1
2
∑

h

((Kh − 1) log n)−
∑

h,k ν
h
k

2
log(np),

where νh
k is the component parameter number of block (k, h). This score penalizes the

log-likelihood with a function of the number of parameters. The best model is the one
maximizing this score.

In the coclustering case, finding the best structure can be done by an exhaustive grid
search. This strategy cannot be applied in the Multi-Clustering case, where the number
of possible model is huge, even for a small number of blocks.

With a fixed number of column-clusters H, the number of possible model with a maxi-
mum of Km row-clusters is the number of possible combinations of H elements taken
from a collection of Km objects, with repetition (because several column cluster can
share the same number of row-cluster -e.g., (2× 2× 2) is a valid model choice-), and wi-
thout order (because the model likelihood is invariant to label switching -e.g., choosing
the model dimensions (1× 2× 3) is equivalent to choosing (3× 2× 1)-). The exhaustive
combination list for H = 2 and Km = 3 is given in Table 3.1.
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column component row-cluster number
1 1 1 1 2 2 3
2 1 2 3 2 3 3

Table 3.1. : Every model combinations for H = 2 and Km = 3, where each row-cluster in each
column component.

Hm

Km 2 3 4 5 6 7 8 9 10

2 5 9 14 20 27 35 44 54 65
3 9 19 34 55 83 119 164 219 285
4 14 34 69 125 209 329 494 714 1000
5 20 55 125 251 461 791 1286 2001 3002
6 27 83 209 461 923 1715 3002 5004 8007
7 35 119 329 791 1715 3431 6434 11439 19447
8 44 164 494 1286 3002 6434 12869 24309 43757
9 54 219 714 2001 5004 11439 24309 48619 92377
10 65 285 1000 3002 8007 19447 43757 92377 184755

Table 3.2. : Number of possible models with respect to Km and Hm

The number of possible combinations is the number of multisets
((Km

h

))
=
(Km+h−1

h

)
.

For a maximum number of column cluster Hm and a maximum number of row-cluster
Km, the total number of model is therefore given by :

Hm∑
h=1

((
Km

h

))
=

Hm∑
h=1

(
Km + h− 1

h

)
.

This number grows quite fast, and becomes huge for low values of Hm and Km (e.g.,
for Hm = Km = 10, it amounts to 184755 combinations, and, for Hm = Km = 20,
1.37E12 combinations). Estimations of this number are given in Table 3.2 for a range of
low values.

As a consequence of this important number of models, it is not possible to test the com-
binations exhaustively, and alternative model selection strategies must be considered.
Our proposal of heuristics consist in estimating the column-partition with a coclustering
model selection, and then to estimate independently the best model for each column-
cluster.
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In the next section, two of these approaches are tested on a simulated dataset, based on
an LBM greedy search.

3.3 Experiments on Synthetic Data

In order to test the capabilities of FunCLBM, several experiments are first conducted on
a simulated dataset. These experiments help us verify that the model is suited to the use
case and that the SEM-Gibbs algorithm behaves as expected in a controlled environment.
The Scala source code is available at https ://tinyurl.com/FunCLBM, along with the data
simulation script.

3.3.1 Simulated dataset

The first experiment is conducted on a dataset sampled from a known generative model.
The objective is to check the behavior of FunCLBM, its initialization and model selection
strategies. The dataset is generated by sampling around one of several "prototypes" de-
noted (ϕh

k) and which represents the components modes in the original space. For each
block (k, h), several time series are drawn following N

(
ϕkh(t+ ts), s2) with s = 0.02

and ts a random shift ∼ N
(
0, s2). These modes are depicted in Fig. 3.3 according to the

dataset structure.

In the experiments, the quality of the estimated block partition is compared to the known
generative partition, based on the Adjusted Rand Index (ARI). This is a popular crite-
rion choice in the clustering domain, which represents the proportion of correctly grou-
ped and separated observations with respect to the observed classes. In our particular
context, we compare the obtained partition based on three aspects : the column cluster
partition, the rows cluster partitions (made of the binning of every row cluster partition
per column), and the block partition. We generate a dataset of size 90x90, with column
cluster of size (45, 15, 30) and row cluster sizes of respective sizes (20, 40, 30), (60, 30)
and (40, 50).
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Figure 3.3. : Prototypes used as block mode for the simulations
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Figure 3.4. : ARI versus Log-Likelihood in 100 launches of SEM-Gibbs on the simulated dataset

3.3.2 Model Adequacy

As a preliminary test, we first verify the ability of FunCLBM to regroup time series after
the pre-processing step and with the latent block structure hypothesis. To do so, we com-
pare the model Log-likelihood produced after 100 launches of SEM-Gibbs inference to
the corresponding ARI scores. The results, shown in Fig. 3.4, seem to indicate a correla-
tion between ARI and likelihood, which tends to confirm the model suitability.

We verify this relationship with the Pearson’s correlation coefficient between the two
scores, and Kendall’s correlation test. We use this latter test on scores ranks to avoid
making assumptions on ARI or Log-likelihood normality and because of the presence of
ex-aequos values (that can be produced if the "true state" is reached).

The results (with 95 % confidence level for the Kendall test) are displayed in Table 3.3.
For this dataset, the the suitability of the method seems attested by the strong Pearson’s
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Row Column Block
Pearson’s correlation 0.7110134 0.8974437 0.7111690
Kendall test p-value 7.88e-18 6.091e-08 8.09e-06

Table 3.3. : Kendall’s correlation test p-value (confidence level : 0.95)

correlation for every partition dimension and by Kendall’s correlation test p-value at 95%
confidence level.

3.3.3 Initialization

The next experiments aim at evaluating the different initialization strategies. The clus-
tering quality is again evaluated with the ARI criterion after 30 runs of SEM-Gibbs. We
compare four strategies :

— Populate blocks with samples : the model is initialized by sampling a small number
of variables for each column-cluster, and then a small number of rows for row-
clusters.

— Random shuffle of the column partition, then of the row partition.

— One k-means algorithm run on the variables (i.e., on the transposed dataset), then
one k-means to estimate each row-partition.

— Initialize w with the column-partition obtained after an LBM run, then the row-
partitions at random.

The results distributions are described in Fig. 3.5.

The figure shows important differences between row and column cluster results, as ex-
pected since the model does not treat rows and column symmetrically. The k-means
algorithm has an unexpected behavior : while performing well on average, the results
show a high dispersion for column cluster ARI. Its row cluster ARI however is slightly
better than the other methods.

The FunLBM initialization strategy gives the best results on average, closely followed by
the randomPartition strategy. For real-life applications, we suggest to use FunLBM when
the datasets dimensions allows it, and otherwise the randomPartition strategy, which is
cheaper alternative.
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Figure 3.5. : Distribution (median and quantiles 0.1,0.9) of Row, Cluster and Block partition
ARI obtained after 30 SEM-Gibbs runs with different initialization methods.
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Figure 3.6. : Best ARI obtained among several SEM-Gibbs runs (median, quantile 0.9 ; with va-
riable number of concurrents)

Whether with the FunLBM or randomPartition initialization, an additional strategy can
be to select the best result (w.r.t. model likelihood) among several runs. The following
experiment highlights the interest of this approach, by comparing the ARI score increase
with respect to the number of candidate runs. The results are displayed in Fig. 3.6.

The results shows that, whichever initialization strategy is applied, the concurrent run
of several methods allows to stabilize the results, and finding the perfect structure is an
easy task whenever the number of concurrent launches is higher than 4.

3.3.4 Model selection

The previous experiments compared the initialization methods for a given choice of
model. In the following, we experiment two approaches of model selection, which is
a challenging aspect of this method, and an important feature for the field expert. In
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[Bou+18], the coclustering model selection is performed with a grid search strategy,
which requires inferring K ×H models. As stated in Sect. 3.2.4, this exhaustive search
is not feasible in the multi-clustering case, because of the prohibitively high number of
model possibility.

To overcome this limitation, we propose and compare two strategies that both avoids a
direct grid-search of every multi-clustering combinations. These two strategies are based
on a different estimation of the column-cluster number Ĥ and then on a column-wise
grid search.

In the first case, ŵ and Ĥ are estimated from an LBM exhaustive grid search, which
implies an exhaustive search of KM × HM LBM models and then Ĥ ×KM to estimate
the best number of row-clusters per column-cluster. The total number of model to infer
is bounded by 2KmHm (KmHm for the LBM grid search, then Km possible models for
each of the selected column number bounded by Hm).

The second strategy is an iterative algorithm that chooses, at each iteration, the best
functional Latent Block Model between the one with an added row cluster and the one
with an added column cluster, based on the ICL criterion [Lom12 ; Bou+18]. The search
stops when the ICL stops increasing. In this LBM search, the number of model to infer is
bounded by Km +Hm, and the total model number is KmHm +Km +Hm.

Each methods are run 50 times, and the model selection is evaluated with the model
dimension difference to the ground-truth model (in this case, a (3×2×2) model). These
differences, displayed in Fig. 3.7, show that the LBM grid search performs well on that
case, and is a valid strategy for low model dimensions candidates.

3.4 Application to autonomous driving system validation

3.4.1 Use case description

In this situation, the objective is to test the reactions of a car (called Ego) equipped
with the control logic. Ego runs in a straight line and starts drifting laterally towards the
road side or the other lane, simulating a sleeping driver. We expect the drifting detection
system to trigger the control logic, which in turn puts the car back in its line center, as
an emergency maneuver. The situation is depicted in Fig. 3.8.
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Figure 3.7. : Results of 50 runs of each selection model strategy, in terms of differences to the
generative model structure.
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The simulated datasets contain the data from 56 simulations, each described by 20 si-
gnals. Some signals are duplicated in order to test FunCLBM ability to regroup them,
and some uninformative ones are kept on purpose.

3.4.2 Results

The experiments on simulated datasets lead us to choose the following setup for the
real case analysis : the initialization is always performed by sampling column and row
cluster partitions, and the FunLBM grid search approach is applied for model selection.
Each combination is tested with 30 concurrent runs.

Figure 3.8. : Use case illustration : Ego drifts from its lane and cross the white line on the side
of the road, before being put back in the runway center

The final clustering structure is presented in Fig.3.9. It consists of 4 column clusters,
each one with a different number of row clusters : (6× 5× 4× 4).

The first column cluster groups the following features : Ego’s current lateral lane position
(continuous), Ego’s current lane index (discrete), type of the lane on Ego’s right side
(discrete), and type of lane on Ego’s left side (discrete). The last two signals seem to be
wrongly clustered at first sight, but are in fact redundant Ego’s position, as they uniquely
identify Ego’s current lane index. Interestingly, this first column cluster therefore gathers
every features related to the position of Ego.

The conditional row partitioning in this column cluster is also interesting : the partition
of Ego’s position signal is represented in Figs. 3.10, 3.11. The clusters adequately gather
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Figure 3.9. : Final structure obtained on real case dataset

simulations that share the same behavior. In Fig. 3.10 case, the control logic is activated
and the car is recentered in its lane, and then repeatedly bounces back on the exact same
road markings. In Fig. Fig 3.12 case, the decentering happens later, and the car bounces
once before changing direction and going straightforwardly to the other side of the road.
In Fig 3.12 scenario, the car bounces only once and either goes to other side of the road
of comes back after a large drift.

In the second, and largest, column-cluster can be found the uninformative signals, that
either give constant values (vehicle length, width, distance between wheels, road bend
radius) or increasing linearly (distance to origin). Fig. 3.14 and Fig. 3.15 illustrates some
of these signals.
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Figure 3.10. : Ego lateral position in Block Cluster (5,1)
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Figure 3.11. : Ego lateral position in Block Cluster (2,1)
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Figure 3.12. : Ego lateral position in Block Cluster (3,1)
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Figure 3.13. : Control logic activation and changes in Ego’s heading in Block Cluster (3,3)
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Figure 3.14. : Uninformative signals in Block Cluster (1,1) : linearly increasing feature (vehicle’s
width, length, headlights activation..)
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Figure 3.15. : Uninformative signals in Block Cluster (1,1) : linearly increasing feature (distance
to origin)

The third column-cluster regroups two other interesting features : the rectangular func-
tion indicating the activation of the control logic, and the changes in Ego’s heading.
While the first column-cluster was grouping position, this one gathers the control fea-
tures. Fig.3.13 shows the content of subcluster (3, 3) which illustrates the relationship
between them. Overall, every set of duplicate features have been correctly grouped to-
gether.

This conditional clustering partition shows, in conclusion, that the FunCLBM approach
has correctly discriminated uninformative signals, while creating meaningful clusters of
features (position and leverage). In each column-clusters, the observation clusters are
relevantly regrouped and provide insights of the dataset content.
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3.5 Conclusion

This chapter describes FunCLBM, a model-based method that addresses the problem of
clustering multivariate time series in multi-views. This new model enables regrouping re-
dundant signals, discriminating uninformative ones and provides the user with multiple
clustering views of a multivariate time series dataset. The time series are transformed
into interpolated log-periodogram before being projected into low-dimensional space.

Several initialization methods and model selection strategies are proposed and experi-
mented on a simulated dataset. The experiments show the model adequacy and give
insights on the most interesting implementation strategies. Finally, we apply the method
to a real-case dataset from the autonomous driving system validation domain. In this
application, FunCLBM has been able to simultaneously discriminate groups of signals
and produce meaningful driving behavior clusters. These results shows the usefulness of
the model and the effectiveness of the initialization and model selection strategy.

A major drawback of this method is the model selection aspect, that cannot be performed
without the help of specific strategies. The proposed greedy search algorithms allow to
explore a part of the model space but at the cost of additional structural assumptions.

For instance, the LBM grid search-based model selection assumes that the LBM with the
ICL can adequately estimate the true number of cluster column (which, by assumption,
have different row-partitions).

In addition, for higher numbers of clusters (e.g., Hm,Km >= 20), these strategies still
involves the inference of hundreds of models.

One solution to circumvent this model selection limitation is to use the BNP framework.
By adding a BNP prior to the existing block structure, it is possible to estimate simulta-
neously the model dimensions and parameters.
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Bayesian Nonparametric
Coclustering

4
This chapter describes a Bayesian Non Parametric Functional Latent Block Model, which
is probabilistic coclustering that extends the recent Functional Latent Block Model
[SAJ18] in a Bayesian Non Parametric framework. This model also serves as basis com-
ponent of the next chapter contribution.

4.1 Introduction

As stated in Sect. 1.5.2, LBM methods for time series coclustering, where each cell is
a temporally-indexed vector, have only been introduced recently. The existing model-
based methods [CB17 ; SAJ18 ; Bou+18 ; Sch+19 ; Bou+20 ; Cas+21] are parametric
model, and assume that the number of blocks is known a priori. This assumption is
rarely true in practice, and these dimensions must be estimated with an additional model
selection step. This selection is usually performed either with a grid-search or with a
greedy strategy that hierarchically explore the coclustering solutions. These strategies
present several drawbacks :

— In the grid-search selection context, the computation cost can be prohibitive as
every combination of block number is tested, and the user is never certain that the
true model is within the grid

— The greedy optimization heuristic is sub-optimal, by picking iteratively local op-
tima and assuming a hierarchical structure of the mixture components

— Whether with the greedy optimization or grid-search, choosing the model selection
criterion [CFR18 ; For+21] is not an easy task and influences the final results

The Dirichlet Process Mixture Model (DPMM), described in 1.3.2, is a Bayesian BNP
model-based clustering approach that can infer the number of latent clusters. As a non-
parametric model, its parameter set dimension may increase indefinitely with the data-
set size. This property makes it extremely interesting for massive dataset exploration,
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especially when the user can augment the dataset content at will. This is precisely our
situation in the driving validation context, in which it is possible to allocate additional
resources to explore specific areas of the observation space.

Non-parametric approaches to LBM (NPLBM) have been studied in few works [MR07 ;
WF12], but, to the best of our knowledge, never applied to multivariate time series
coclustering use cases. This paper proposes the functional non-parametric Latent Block
Model (FunNPLBM) method, the first non-parametric model-based method applied to
time-series coclustering, which closes the gap between FunLBM and NPLBM. In addition,
our contribution includes a practical use case illustrating the method’s interest, a more
compact definition of the NPLBM, a detailed study of the method’s capacities based on
benchmark and experiments, and Scala source code put at disposal for reproducibility.

In the following, Sect. 4.2.1 describes the model FunNPLBM and the proposed inference
algorithm. Benchmark and experiments are studied in Sect. 4.3 and, finally, a real-case
application on an industrial dataset is presented in Sect. 4.4.

4.2 Functional Bayesian Non-Parametric Latent Block
Model

This section introduces our proposal of functional Bayesian non-parametric latent block
model, FunNPLBM.

The next sections, Sect. 4.2.1 and Sect. 4.2.2 give the formal model definition and the
associated stochastic inference process. Finally, Sect. 4.2.3 and Sect. 4.2.4 dive deeper
into the algorithm implementation details : multivariate Gaussian observation model,
initialization strategy, final inference, hyperparameter specification, and complexity.

In the following, we recall that the dataset X is an interpolated periodogram fPCA re-
presentation of the vectorized multivariate time series dataset as in the previous chapter
(c.f. Sect. 3.2.1) .
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4.2.1 Model Definition

In another context than the multivariate time series analysis, [MR07] proposed a defi-
nition of the NPLBM. This work assumes Pitman-Yor Process (PYP) priors for the row-
memberships and column-membership. However, PYP distributions (as DP) are distri-
butions over parameters and not on memberships. Using PYP, the model from [MR07]
implicitly defines different sets of parameter distributions that are not linked to the block
distributions.

In the following, we propose a model definition of the NPLBM. Instead of generating
each cell independently, this definition models the overall dataset X. Given fixed row-
partition and column-partition z,w and given the block parameter matrix (with dimen-
sion 1 ≤ K ≤ n and 1 ≤ L ≤ p, Θ = (θk,l)K×L, the element xi,j follows the distri-
bution associated with its block membership. In our application, the block distribution
F (thetazj ,wj ) are multivariate Gaussian.

The overall process is defined by the following expressions :

xi,j | {z,w,Θ} ∼ F (θzi,wj ),

zi ∼Mult(π), wj ∼Mult(ρ),

π ∼ SB(α), ρ ∼ SB(β), θk,l ∼ G0.

With this definition, the generation of the matrixX is done by generating the proportions
π and ρ, sampling the row-memberships z ∼ Mult(π) and column-memberships w ∼
Mult(ρ) separately, then sampling the block parameter matrix Θ (in practice, only the
ones associated with observed block defined by given z and w) and finally drawing the
cells value xi,j from F (θi,j). The likelihood of X is given by p(X | z,w,Θ) =

∏
i,j p(xi,j |

θzi,wj ), and the joint prior distribution of the hidden variables by :

p(z,w, π, ρ,Θ | G0, α, β) = p(z | π) p(π | α) p(w | ρ) pρ | β) p(Θ | G0).

In the next section, we describe the two-steps collapsed Gibbs sampling used to simulate
draws from the posterior.
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4.2.2 Inference

The objective is to obtain good estimates of z,w, based on the prior (α, β,G0) and the ob-
served dataset X, by sampling from the joint posterior distribution p(z,w | X,G0, α, β).
Sampling directly from this joint distribution is not feasible, but can be approximated
with a Gibbs sampler that iteratively update the values of the memberships z given
w, X,G0, α, and then w given z, X,G0, β. In our case we use a collapsed version of the
Gibbs sampler, which uses directly the predictive distributions closed form and therefore
does not require sampling block parameters. At each iteration m, the sampler alternates
the following two-steps :

1. Draw z(m+1) | w(m), X, α,G0,

2. Draw w(m+1) | z(m+1), X, β,G0.

During the first step, the row memberships update is performed sequentially : each
row-cluster membership zi is updated with the other row-memberships z−i and column-
partition w(m) fixed, following p(zi = k | z−i, X,w(m), α,G0) ∝


nk

n− 1 + α
p(xi,. | w(m), X−i, z−i, G0), existing row-cluster k, (4.1)

α

n− 1 + α
p(xi,. | w(m), G0), new row-cluster, (4.2)

where nk is the size of row-cluster k. We emphasize that the parameters Θ do not appear
in these formulas, as they are integrated over in the predictive distributions.

In eq. (4.2), the joint predictive distribution of the row p(xi,. | w(m), G0) is the product
of the joint predictive distributions in the block components :

p(xi,. | w(m), G0) =
∏

l

p(x(m)
i,l | G0),

with x(m)
i,l the elements of row i in column-cluster l at iteration m. The joint prior predic-

tive distribution of x(m)
i,l is obtained by integrating over the component’s parameter :

p(x(m)
i,l | G0) =

∫
θ

p(x(m)
i,l | θ) p(θ | G0) dθ.
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Because G0 is a prior conjugate to F , this integral is analytically tractable (cf. Sect. 4.2.3
for the detail in the multivariate Gaussian case).

The posterior predictive distribution in eq. (4.1) has a similar definition, with G0 upda-
ted with the observations inside the blocks cf. Sect. 4.2.3).

The second step of the Gibbs-sampler is performed symmetrically on column clusters.
Once the maximum number of iterations reached, the row and column final partitions
are estimated with the mean of the partitions sampled after burn-in (c.f. Sect. 4.2.4 -
§3). In the next subsection we detail how eq. (4.1) and (4.2) simplify with our choice of
G0.

4.2.3 Multivariate Gaussian case

After the time series preprocessing step, each dataset cell xi,j is a d-dimensional numeric
vector produced by the fPCA, that we model with a multivariate Gaussian density. As as
conjugate prior, we choose G0 to be the Normal Inverse Wishart (NIW) distribution with
hyper-parameters (µ0, κ0,Ψ0, ν0).

The next paragraphs details the joint predictive distributions closed forms that are ne-
cessary to compute the memberships probabilities (cf. proof and computation details in
Appendix A.3).

Joint Prior Predictive Distribution The joint prior predictive distribution, used in
Eq. (4.2) to compute p(xi,. | w(m), G0) =

∏
l p(xi,l | G0), has the following expression :

p(xi,l | G0) = π
−ni,ld

2
κ

d/2
0

κ
d/2
i,l

· Γd(νi,l/2)
Γd(ν0/2)

· |Ψ0|ν0/2

|Ψi,l|νi,l/2

where ni,l is the size of xi,l and where the updated hyper-parameters values are obtained
with :

µi,l = κ0µ0 + ni,lxi,l

κi,l
, κi,l = κ0 + ni,l, νi,l = ν0 + ni,l,

Ψi,l = Ψ0 + C + κ0ni,l

κi,l
(µ0 − xi,l)(µ0 − xi,l)T , C =

∑
x∈Xi,l

(x− xi,l)(x− xi,l)T .
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Joint Posterior Predictive Distribution Given Xk,l, the observations in block (k, l), the
block parameters posterior distribution is formally defined by p(µ,Σ | Xk,l, G0) =
NIW (µ,Σ | µk,l, κk,l,Ψk,l, νk,l), with (µk,l, κk,l,Ψk,l, νk,l) the block posterior distribution
parameters, updated from the prior :

µk,l = κ0µ0 + nk,lxk,l

κk,l
, κk,l = κ0 + nk,l, νk,l = ν0 + nk,l,

Ψk,l = Ψ0 + C + κ0nk,l

κk,l
(µ0 − xk,l)(µ0 − xk,l)T , C =

∑
x∈Xk,l

(x− xk,l)(x− xk,l)T .

With these parameters, the joint posterior predictive distribution needed in eq. (4.1) has
the following expressions :

p(xi,l | Gk,l) = π
−ni,ld

2
κ

d/2
k,l

κ
d/2
i,l

· Γd(νi,l/2)
Γd(νk,l/2)

· |Ψk,l|νk,l/2

|Ψi,l|νi,l/2

4.2.4 Implementation

In this section we give more details on the inference implementation : hyper-parameters
specification, initializatin strategy, inference complexity

G0 hyper-parameters specification.

The clustered objects are PCA coefficients, which are centered. Therefore we set µ0 to
be the d-dimensional zero vector. The precision matrix Ψ0 specification is a bit trickier
and depends on assumptions on the dataset. For non-parametric autoregressive models,
[SGH16] compares several prior specifications for Ψ0 and concludes that the dataset
precision obtained with maximum likelihood estimation is a good standard, which we
keep in our application. κ0 and ν0, which represent the user’s confidence in µ0 and Ψ0,
are set to their lowest value, as we want them as uninformative as possible. We discuss
the specification of the other hyperparameters in the experiments (c.f., Sect. 4.3).
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Initialization strategy.

Initializing a Bayesian non-parametric MCMC inference algorithm is usually performed
with single-component partition [NBA13 ; RM18]. However, [HLR15] shows that, for
high-dimensional datasets with a high number of components, this strategy can give poor
performances and recommends initializing the algorithm with a random partition with
more components than the actual number of clusters. However, this number is unknown,
and our objective is precisely to avoid its specification. A tempting workaround is to
initialize the partitions with one component for each observation. However, this choice is
computationally expensive because the membership update has linear complexity in the
number of blocks. In practice, as a safety measure, we propose an heuristic, consisting in
running the inference process twice. In a first run, the inference is initialized with a one-
cluster partition ; after this first run completion, the maximum block number sampled
during the inference is kept and used as the initial number of components for the second
run. If this maximal number is aberrantly high, it can be replaced by an upper quantile
of the sampled cluster numbers.

Inferring the final partitions.

In the Bayesian Non-Parametric context, the MCMC-based inference process outputs
samples of partitions that are drawn from an approximation of the posterior distribution.
These sampled must, in turn, be aggregated over the iterations (usually after a given
number of burnin iterations) with a consensus partition estimation (c.f. Sect. 1.3.3 for
the clustering case).

In our application, the objective is to estimate the row and column partitions modes
ẑ, ŵ. Because the row-partition and column-partition are independent, it is possible to
resolve the consensus partition estimation problem independently on each dimension.
With (ẑm)M and (ŵm)M the row and column-memberships sampled during the MCMC
inference, the problem is equivalent to solve :

ẑ = arg min
Z

∑
m

d(ẑm, z),

ŵ = arg min
W

∑
m

d(ŵm, w).
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Consequently, the problem can be solved by applying separately the same method
[GOK18] than in the clustering case. The complete inference is summarized in algo-
rithm 6.

Algorithm 6 : FunNPLBM Inference
input : Dataset X, n× p× d tensor

α, β,G0 (cf. specification strategies in Sect. 4.2.4 - §1)
Iteration number M

output : Estimated row-partition ẑ and column-partition ŵ

Initialize z(0) and w(0) (c.f. initialization methods in Sect. 4.2.4 - §2)
for m← 1 to M do

for i← 1 to n do
Remove xi,. from the blocks composing its current row-cluster.
Compute p(zi | z−i, X,w(m), α,G0) as defined by eq. (4.1) and (4.2)
Sample z(m+1)

i

Add xi,. to its new row-cluster.

for j ← 1 to p do
Remove x.,j from the blocks composing its current column-cluster.
Compute p(wj | w−j , X, z(m+1), β,G0) as defined by eq. (4.1) and (4.2)
Sample w(m+1)

j

Add x.,j to its new column-cluster.

Compute the partitions averages ẑ and ŵ on the last samples (c.f. averaging
methods in Sect. 4.2.4 - §3).

Algorithm Complexity

During the row membership update step, the inference process updates the member-
ships one at a time. With K(m) and L(m) respectively the current number of row-cluster
and column-cluster at iteration m, the update of row-membership zi involves the com-
putations of (K(m) + 1) membership probabilities ((K(m) existing clusters and the new
cluster), and, for each membership probability, L(m) block parameters posterior parame-
ters updates (based on Sect. 4.2.3) and predictive distribution density estimations (one
for each block in the row-cluster).

In practice, instead of updating the block posterior parameters (µk,l, κk,l,Ψk,l, νk,l) with
the full block contents Xk,l at each iteration and at each membership update, it is more
efficient to cache these parameters, and only remove xi,. from its previous block-clusters
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before the membership probabilities computation, and add it to its new block-clusters
after sampling.

With this caching, updating the block posterior distribution parameters of every row-
clusters has a complexity reduced from O(npd2) (dominated by the covariance matrix
estimation cost), to two operations (removing and adding) with complexity O(pd2).

Because of the matrix determinant computation cubic cost, the complexity of computing
the joint predictive distributions for one of the L(m) column clusters is O(d3) , and
the membership probabilities computations in eq. (4.1) and eq. (4.2) have a O(L(m)d3)
complexity. This computation must be repeated K(m) times, once for each row-cluster.
Overall, sampling one row membership has a complexity O(pd2 +K(m)L(m)d3).

This row-membership update is performed n times for the row memberships, and the
symmetrical operation p times for the column memberships, which sums up to a com-
plexity of O(npd2 + (n+ p)KLd3).

With K̄ = maxM K(m) and L̄ = maxM L(m), the global complexity is

O
(
M
(
npd2 + (n+ p)K̄L̄d3

))
.

The complexity is therefore linear in the datasets dimensions, the number of block com-
ponents and the iteration number. This expression also highlights the interest to keep
the projection space dimension d as low as possible.

4.3 Experimental setup

Benchmark and experiments are conducted on a dataset sampled from a known gene-
rative model. The dataset is generated by sampling from the distributions N

(
fk,l(t), s2)

where fk,l is a given function and s = 0.02. In the following benchmark and experi-
ments, we work on a dataset of dimension 140× 140, with unbalanced row cluster sizes
(20, 30, 40, 30, 20) and column cluster sizes (40, 20, 30, 20, 30), which amounts to 19600
time series.

The quality of the estimated block partition is compared to the known generative par-
tition, based on several scores : the Rand Index (RI), Adjusted Rand Index (ARI) and
the Normalized Mutual Information (NMI). The RI is a popular criterion choice in the
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clustering domain, which represents the proportion of correctly grouped and separated
observations with respect to the observed classes. The ARI is a corrected-for-chance ver-
sion of the RI that takes into account the probability of getting good RI at random. The
NMI is an entropy-based criterion from the information theory literature that estimates
the quantity of knowledge a partition gives on another. In addition, we also compare
the number of co-clusters estimated by the different algorithms to the true number of
co-clusters (5× 5 = 25).

Benchmark and experiments were run on a 64-bit Ubuntu 18.04 LTS with 32GiB RAM
and 12 processors Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz. The studied datasets,
data generation scripts and the Scala code are available at the following github reposi-
tory https ://tinyurl.com/funNPLBM, along with the data simulation method.

4.3.1 Baselines and compared methods

As detailed in the introduction, coclustering methods have been the subject of numerous
works and applied to various data types. However, most of the existing models and
applications concern unidimensional datasets (i.e., d = 1). The coclustering on datasets
containing multidimensional cells (d > 1) has been considered only recently in the
literature. Apart from the model-based method from [CB17] which does not include a
dimension reduction aspect and cannot be applied to large datasets, LBM [Bou+18] is
the only existing model-based parametric method dealing with this use case.

In addition to FunLBM and FunNPLBM (which we denote LBM and NPLBM for bre-
vity in the following), we consider two coclustering that infer the row-partition and
column-partition independently : a bi-dimensional Gaussian Mixture Model (B-GMM)
and a bi-dimensional DPMM (B-DPM).

In the parametric methods cases, the selection step is performed with a grid-search and
the ICL selection criterion [BCG00 ; Ker+15]. This model selection tries every model
possibility with a maximum of seven row clusters and seven column clusters, which
represents respectively 2 × 7 models for the B-GMM , and 7 × 7 for the LBM . We
denote B-GMMMS and LBMMS these parametric methods with model selection. For
comparison, we also recorded the performances when directly considering the true block
number (the methods are then simply denoted B-GMM and LBM). In each case, we
also tested the effect of keeping the best result among several runs, corresponding to the
same number of models tested in the model selection (respectively denoted B-GMM14
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and LBM49). In the non-parametric case, the model selection is natively performed. The
concentration hyper-parameters are set to α = 0.1, β = 0.1 and G0 specified as described
in 4.2.4. The baselines are summarized in Table 4.1.

Table 4.1. : Baselines summary

Method Description Grid # runs
B-GMM Decoupled clustering True cluster numbers 2
B-GMM14 - best among several runs True cluster numbers 14
B-GMMMS - with model selection {1, . . . , 7} × {1}, {1} × {1, . . . , 7} 14

LBM Coclustering True block number 1
LBM49 - best among several runs True block number 49
LBMMS - with model selection {1, . . . , 7} × {1, . . . , 7} 49
B-DPM Decoupled DPM - 2
NPLBM - 1

For each method, the results are the average scores and median block number over
ten runs. These performances are displayed in Table 4.2. The method B-GMM14 and
LBM49 both give perfect scores for this dataset. Their scores show that when the true
number of blocks is known and given enough re-trys, finding the true block partition with
the parametric approaches is likely. On the contrary, the methods B-GMM and LBM

have the worst performances, which proves that using re-trys is mandatory when using
random initialization. This phenomenon comes presumably from a known sensibility of
parametric model-based methods to initialization [BCG03]. However, a high number
of re-trys increases the computation time, as illustrated by comparing the computation
times of LBM and LBM49. We also note that the performances associated to B-GMM

are higher than the ones of LBM , which suggests that the LBM convergence might be
harder to reach than the one of B-GMM .

Performing a model selection also increases the computation time, as is illustrated by the
computation times of B-GMMMS and LBMMS . The scores of these methods illustrate
their capacities to find the true block partitions. However, when the grid-search spectrum
is wide, when it is necessary to launch several re-trys, and when the dataset dimensions
are high (or a combination of these three conditions), the associated computation cost
becomes prohibitively high. In comparison, the NPLBM method only runs once for
an equivalent result and in less time. We acknowledge that these scores and runtimes
depend on appropriate hyper-parameter specifications, which we discuss in the next
sections.
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Table 4.2. : Performance comparison of different coclustering methods

Method ARI RI NMI K runtime (s)
B-GMM 0.825 0.982 0.946 25 18.6
B-GMMMS 0.942 0.994 0.9803 30 85.9
B-GMM14 0.979 0.997 0.994 25 89.3
LBM 0.823 0.913 0.887 25 17.5
LBMMS 0.940 0.994 0.979 25 494.4
LBM49 1 1 1 25 603.2

B-DPMM 0.670 0.958 0.906 16 25.3
NPLBM 1 1 1 25 40

4.3.2 Hyperparameters specification study

The complete set of the method’s hyperparameters is composed of the base NIW distri-
bution G0, the concentration parameters (α, β), the number of iterations M and the
preprocessing parameters : the Fourier basis dimension and the number of PCA axes.

In the unsupervised analysis context, hyperparameters specification remains an active
research topic because there is no label to support hyperparameter inference. Conse-
quently, it is not possible to give definitive good choices of values for the following
hyper-parameters, which depend on the dataset contents and must be hand-tuned by
the experts. These specifications, however, can be based on the knowledge of each hy-
perparameters impact on NPLBM’s behavior, which we illustrate in the following. In
each case, we compare NPLBM’s performances when one hyperparameter varies while
keeping the others equal to given default values : α = β = 0.1, M = 10, a Fourier
expression basis of dimension 30 and 3 PCA axes.

Concentration parameters and number of iterations.

In the NPLBM setting (as in the DPM) the prior distribution of the number of components
is an increasing function of the concentration parameters : the higher the concentration
parameters the higher the probability of producing high numbers of components, wi-
thout data knowledge. Because the whole method is symmetric on the dataset rows and
columns and because the experiment dataset dimensions n and p are equal, we consider
the case α = β.
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As shown in Fig. 4.1, the concentration parameters effects are negligible for this data-
set and only have an impact for extreme values. When the concentration is extremely
high (> 1012), the number of components is highly overestimated. When its value is
on the contrary extremely small (< 10−10), only one-cluster partition is inferred. This
small impact of α comes presumably from the high separation of the components in
the time series high-dimensional observation space. This separability is simulated for
this experiment but is consistent with what we observe in practice. This separation also
explains the small number of iterations needed for convergence (here, less than 4 for
10−6 ≤ α ≤ 1010) and the high stability of the MCMC chain.

For a given dataset, if the values of α and β seem to have a strong influence on the
inference results, we advise to add a Gamma hyper-prior assumption for α and β and
estimate their values during the inference algorithm. This strategy is a common practice
in the DPM setting [Wes92]. However, it implies to study specification strategies for the
Gamma distribution parameters.
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Figure 4.1. : Scores versus Alpha and Iterations - with # Block in log scale

Preprocessing parameters.

The Fourier Basis dimension and the PCA axes numbers influence both the performance
of NPLBM and the trade-off between sparsity and quality of time series representation.
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Fig. 4.2 shows the effects of under-estimating or over-estimating the number of PCA
axes. Low numbers of PCA axes (<3) are associated with poor scores and few block
components due to poor representations of the time series, which are too close in the
projection space. If the number of axes is too high (>5), the high dimensionality exag-
gerates the time series separation and the component number is overestimated, which
explains the sharp decrease of the ARI and NMI.

In our use cases, we observed that three PCA axes lead to the most interesting results.
In Fig. 4.3, we observe that, with a fixed number of 3 PCA axes, high polynomial basis
dimensions (> 50) are correlated with poor scores, presumably because of lower time
series representation quality (reflected by the low variance explained score). On the
contrary, when this basis dimension is low (<10), the 3-axes PCA adequately represents
the information and the variance explained is high (>= 0.97). However, in this case,
the Fourier basis dimension is too low to adequately represent the time series, which
explains the poor scores.
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Figure 4.2. : Scores versus number of PCA axes.

The studied datasets, data generation scripts, and the Scala code used for the bench-
mark and the experiments are available at the following github repository https ://ti-
nyurl.com/funNPLBM, along with the data simulation method. In the next section, a
real-case situation is studied and illustrates the method’s interest for Advanced Driving-
Assistance Systems validation.
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Figure 4.3. : Scores versus logPeriodogram dimension.

4.4 ADAS validation

Validating an ADAS is a complicated task, that is partly addressed with on-track tests.
This practice has been gradually replaced with numerical simulations. The first motiva-
tion is the reduced testing cost compared to real physical tests which requires specific
track infrastructure, equipment management, and significant human intervention. One
digital simulation is estimated 10,000 times cheaper than its physical counterpart. The
savings achieved through the use of digital simulation add up to millions of euros.

The second motivation comes from the fact that numerical validation remove uncertain-
ties due to physical conditions (e.g. sensor error, initial conditions, weather conditions,
...). As a consequence, we are able to test the driving software independently from un-
controlled external factors as .

Another major disadvantage of physical tests is the prohibitive number of test sample
to check for high reliability of the system. A validation objective may be the assessment
of vehicle incident odds (e.g. < 10−8 casualties per hour). With a classical sampling
method, estimating such probability would require real driving sessions of billions of
kilometers.

Even if such a large amount of real-life data were available, as is the case in some data
science applications, there would be no guarantees of the data quality or value. In our
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case, this value lies in the specific driving situation in which to test the system behavior.
Indeed, some situations are rarely observed in reality such as emergency procedures,
like the one considered in this numerical application.

4.4.1 Use case description

This section illustrates the use of the coclustering approach to the Emergency Lane Kee-
ping (ELK) assistance system validation. In a straight lane scenario, the vehicle under
test (called ego) is drifting towards an oncoming car on the other lane (c.f. Fig. 4.4). The
ELK system is expected to detect the drifting, the oncoming car, and to put the vehicle
back to its lane center with an emergency maneuver.

For our dataset, we consider n = 400 simulations that were generated by simulating
the ADAS according to a particular design of experiments (varying ego speed, the drift
angle, . . . ). The objective of this analysis is to find characteristic operating modes of the
intelligent system described as p = 22 time series and to discriminate relevant groups of
correlated variables.

The time series are represented in a common log-periodogram with 40 coefficients and
then projected on the 3 dominant PCA axes. The concentration parameters are both set
to 10−2 and the NIW parameters to the default values discussed in Sect. 4.2.4.

Figure 4.4. : Use case illustration : ego drifts from its lane, crosses the center line and heads
toward an oncoming vehicle. The system detects the target and change ego’s direc-
tion.
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4.4.2 Results

The final coclustering is the block partitions mean (c.f. averaging methods in Sect. 4.2.4)
of 10 samples obtained after a burn-in of 10 iterations and is composed of 6 row-clusters
and 13 column-clusters. With color indicating block membership, Fig. 4.5 shows the
global coclustering structure and Fig. 4.6 an extract of the block contents.

Figure 4.5. : Resulting coclustering on Emergency Lane Keeping (ELK) dataset. The result
consists of 6 row-clusters and 13 column-clusters

The first column-cluster discriminates uninformative signals (car width, road bend ra-
dius, constant inactive system, . . . ). The other column-clusters relevantly regroup va-
riables of interest : the 6th, 7th, and 8th column clusters respectively regroup ego di-
rection variables, ego lateral position variables, and ego speed variables. Their content
is shown in Fig. 4.6 top-left, top-right and bottom-left respectively. The 12-th cluster
regroups two duplicated variables describing the covered distance.

The row-clustering is also insightful : each row-cluster correspond to well-separated
driving behaviors. This separation is best seen in Fig. 4.6 (top-right) that shows the
following driving behaviors : 1) ego is drifting left and the ELK system fails (light green) ;
2) the symmetric behavior on the right (dark green) ; 3) the ELK system corrects the car
trajectory (light orange).

Finally, the three other row-clusters (regrouping the remaining 5% of the observa-
tions) are composed of outliers simulations, with driving behavior displayed on Fig. 4.6
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(bottom-right). In this situation, the oncoming car is correctly detected, ego heading is
changed accordingly, but still the collision cannot be prevented. In conclusion, this co-

Figure 4.6. : Top-left : two highly negatively correlated direction change signals ; top-right : ego
lateral position in the 3 biggest observation clusters ; bottom-left : 2 correlated
speed variables ; bottom-right : 3 outlier driving patterns in the 3 smallest observa-
tion clusters.

clustering partition shows that the approach has correctly discriminated uninformative
signals while creating meaningful clusters of features and clusters of simulations. From
this information, we can visualize the variety of driving behaviors that compose the da-
tasets. Moreover, we can understand them from the variable perspectives which was
the original objective of the application. The next step is to link the driving behavior to
the control logic parameters and, if need be, optimize them to reach the performance
objectives.

4.5 Conclusion

This chapter describes FunNPLBM, a Bayesian non-parametric based method which ad-
dresses the problem of coclustering multivariate time series without prior specification
of the model dimension. This work offers a novel definition of the NPLBM model, the
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description of an adapted collapsed Gibbs sampling, and overall the first BNP coclus-
tering method dedicated to multivariate time series data analysis. This model enables
regrouping redundant signals and discriminating uninformative ones. Moreover, the me-
thodology provides a two-dimensional overview of a multivariate time series dataset to
the users.

The specification of the different hyperparameters (concentrations, NIW, pre-processing)
is discussed and experimented on a simulated dataset, which shows the model perfor-
mance and gives insights on the most interesting hyper-parameter specification strate-
gies.

Finally, the method is applied to a real-case dataset from the advanced driving-assistance
system validation domain. In this application, FunNPLBM proved its ability to simulta-
neously discriminate groups of signals and to produce meaningful driving behavior clus-
ters. These results show the usefulness of the model and of the model selection strategy
in concrete modern challenging use cases.

The FunNPLBM approach was applied here to an autonomous driving context, however
we are confident that it can be used in many other domains. A first interesting pers-
pective would be the extension of a variational inference algorithm, a strategy that has
been proven interesting in [BJ+06]. Another extension would be to define similar BNP
concept to datasets of higher dimension and develop tensor coclustering methods for
higher-dimensional functional problems.

Finally, the combination of FunNPLBM and CLBM from Chapt. 3 brings us to the next
contribution titled Bayesian Non Parametric Multi-Clustering, that models each column-
cluster with a specific FunNPLBM component.
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This chapter introduces a block structure model that combines two layer : a Multi-
Clustering structure that groups together the variables with common row-partition,
and a coclustering layer that associate one specific NPLBM structure to each column-
cluster.

5.1 Introduction

In a multivariate context, the possible relations between variables introduces additio-
nal difficulties (c.f. Sect. 1.4.3). In real-life use cases, it is likely that each variable is
associated to a different partition of the observation space (called row-partition).

In the following, we assume the presence of a variable partition (called redundant
column-partition), such that variables in a redundant column-cluster share the same
row-partition. In our use cases, this assumption seems rational, as we know that many
variables are related (e.g., position and acceleration, ADAS activation and braking). The
Multi-Clustering [HP18] designates a set of methods that infers this multiple-partitions
representation of a dataset, as illustrated in Fig. 5.1 - b).

When in a parametric model-based context [MV19 ; Van20], these approaches requires
to know the partitions sizes a priori (rarely true in practice), or to perform a model
selection step. However, the combinatorial nature of Multi-Clustering makes the model
selection a complex task (c.f. Sect. 3.2.4). Heuristic approaches could be considered
at the cost of assumptions on model structure (e.g. with greedy strategies). The non-
parametric approach circumvents this issue by natively performing a model selection
during inference.

A non-parametric Bayesian Multi-Clustering model has been developed by [Gua+10] for
continuous datasets. In this model, the rows belonging to a block follow an independent
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multivariate distribution (c.f. Fig. 5.1-b). It must be emphasized that, in this work, the
block component distributions models the rows and not the cells as in the coclustering
case. The reason for this is that each variable follows a different distribution, which
means that the overall model to estimate has a p × d dimension, and is invariant to the
number of column-cluster.

This Multi-Clustering method groups variables according to their row partition but can-
not regroup variables with similar distributions. Moreover, estimating the block distri-
butions parameters becomes problematic when the column cluster sizes are important
(e.g., in our case, high dimensional covariance matrices estimation). We propose to mo-
del each redundant column cluster with a coclustering structure to deal with this limita-
tion. In each coclustering structure, the column-partition is called the correlated variable
partition, and regroups variables with common distribution..

The model-based coclustering [GN13] (Fig. 5.1 - a)) infers one row-partition and one
column partition. This model assumes that all variables share the same row partition
and that there exists groups of variables with common distribution. We propose to mo-
del each redundant variable cluster with a coclustering structure, which assumes that
some variables sharing the same row-partition can also share the same distribution. This
assumption seems also natural, because some of the simulated variables are physically
correlated (e.g., car speed and wheel rotation speed).

Figure 5.1. : Coclustering, Multi-Clustering and Multi-Coclustering, with k, l, h the row-cluster,
correlated cluster and redundant cluster indices (respectively). Color and pattern
designate block membership.
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In this paper, we propose the Functional Non-Parametric Multi Coclustering (FunMCC)
model (c.f. Fig. 5.1-c) that combines the Multi-Clustering and coclustering approaches
and produces the best of both worlds : the Multi-Clustering layer infers the redundant
variable partition and extracts the true sparse number of row partition while the co-
clustering layer reduces the parameter set dimension and regroup correlated variables.
To the best of our knowledge, there is only one comparable work by [Tok+17] in the
bayesian non-parametric setting, which does not apply to multivariate time series.

5.2 Multiple Coclustering of multivariate time series

5.2.1 FunMCC model definition

In the following, the dataset X is obtained with interpolated periodogram fPCA repre-
sentation (c.f. Sect. 3.2.1) as in the previous chapters.

As in Chapt. 3, v denotes the Multi-Clustering partition, i.e., the redundant partition, and
Z the n×H row-partitions indicator matrix, withH the number of redundant clusters. As
in Chapt. 4, the column-partitions inside each coclustering structure (i.e., the correlated
partitions) are denoted (wh)H (with an additional superscript denoting the coclustering
structure index). With this notation, the model is formally defined by :

xi,j | {vj = h,wh
j = l, zh

i = k, θh
k,l} ∼ N (θh

k,l),

θh
k,l ∼ G0, vj ∼Mult(η), wh

j ∼Mult(ρh), zh
i ∼Mult(πh),

ηj(r) = rj

j−1∏
j′=1

(
1− rj′

)
, rj

i.i.d.∼ Beta(1, γ) , γ ∼ Gamma(aγ , bγ),

ρh
j (sh) = sh

j

j−1∏
j′=1

(
1− sh

j′

)
, sh

j
i.i.d.∼ Beta(1, βh) , βh ∼ Gamma(aβ, bβ),

πh
j (th) = thj

j−1∏
j′=1

(
1− thj′

)
, thj

i.i.d.∼ Beta(1, αh), αh ∼ Gamma(aα, bα),

where each memberships proportions vector η, (ρh)h and (πh)h follows a stick-breaking
construction scheme [Set94]. Each concentration parameter follows a specific Gamma
hyperprior.
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The role of this additional hyper-prior is to grant the ability to infer and adapt the concen-
tration parameter value to each coclustering structure, which are likely to contain dif-
ferent numbers of block components.

The block distributions are multivariate normal and G0 is the associated conjugate
Normal-inverse-Wishart prior. The complete hyperparameter set is noted χ.

It can be noted that, with this definition, constraining the correlated partitions to contain
only one column-cluster makes the model equivalent to a Bayesian Non Parametric ex-
tension of the CLBM method described in Sect. 3. In addition, constraining the redun-
dant partition to contain only one column-cluster makes the model equivalent to the
FunNPLBM method described in Sect. 4. For these reasons, the FunMCC

5.2.2 Inference

We propose a stochastic iterative inference based on the following three-steps Gibbs sam-
pler : 1) during the Multi-Clustering layer inference step, the redundant column partition
v is updated given Z ; 2) in the Coclustering layer inference step, the coclustering parti-
tions Z and (wh)H are updated given v 3) Each concentration parameter is updated.

First step : Multi-Clustering layer

In the first step, the memberships (vj)p are sampled sequentially according to :

p(vj | v−j , Z,x.,j , χ) ∝


ph

p− 1 + γ
p(x.,j | zh, χ), existing cluster h, (5.1)

γ

n− 1 + γ
p(x.,j | χ), new cluster, (5.2)

with v−j = {vi : i ̸= j}. In Eq. (5.1), the joint prior predictive distribution p(x.,j |
zh, χ) reduces to a product of multivariate t-student densities [Gel+13] thanks to an
appropriate choice of conjugate prior G0 (c.f. Sec. 4.2.3). In Eq. (5.2), p(x.,j | χ) is
estimated with an univariate Dirichlet Process Mixture (once per variable, prior to the
inference of the FunMCC), which also produces the row-partition ẑj associated with
variable j and to a possible new cluster.
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Second step : Coclustering layer

In the second step, an NPLBM [MR07] is inferred on each sub-dataset (Xh)h defined by
the partition v with a Gibbs algorithm that simulates p(zh,wh | v, Xh, χ). The inference
is performed in two symmetrical steps : first, zh is updated with fixed partition wh, then
wh is updated with fixed zh. Because these steps are symmetrical, we only detail the
column membership update in the following. For each variable j in sub-dataset Xh, wh

j

is updated by sampling from p(wh
j | wh

−j , zh, X, χ) ∝



ph
l

ph − 1 + β

Kh∏
k=1

p(xh
k,j | xh

k,l, χ), existing cluster l, (5.3)

β

ph − 1 + β

Kh∏
k=1

p(xh
k,j | χ), new cluster, (5.4)

with wh
−j and zh the column and row partition indicator vectors without variable j, ph

l

the size of the correlated column cluster l, xh
k,j = {xi,j : vj = h, zh

i = k}, and p(xh
k,j |

xh
k,l, χ), p(xh

k,j | χ), respectively, the joint posterior and prior predictive distributions in
block (k, l). After the row and correlated partition updates, the concentration parameters
αh and βh are updated.

Third step : Concentration parameters update

Following [Wes92], the concentrations parameters γ, α and β are updated based on a
Gamma prior. This update process is the same for every concentration parameter with
their respective Gamma prior parameters. We also emphasize that the coclustering struc-
tures share the same hyperprior values : the concentration parameters α = (αh)H follow
the prior Gamma(aα, bα) and the concentration parameters β = (βh)H follow the same
prior Gamma(aβ, bβ). In the following we give the detail for γ’s update.

5.2 Multiple Coclustering of multivariate time series 141



GivenH the current number of coclustering structures, γ the current value of the column-
partition concentration partition, p the number of variables, and (aγ , bγ) the Gamma
prior parameters, the update process is :

(i) Sample y ∼ Beta(γ + 1, p)

(ii) With probability proportional to (aγ +H + 1), draw

γ’s new value from Gamma(aγ +H, bγ − log(y))

(iii) With probability proportional to p(bγ − log(y)), draw

γ’s new value from Gamma(aγ +H − 1, br − log(y))

(5.5)

The same process is applied to (βh)H and (αh)H , with corresponding priors, number of
elements and number of clusters. In the following we detail how the appropriate choice
of conjugate prior G0 prior enables the tractable computation of the prior and posterior
predictive distributions used in Sect. 5.2.2 and Sect. 5.2.2.

5.2.3 Implementation

The implementation details are similar to the ones of the FunNPLBM discussed in
Sect. 4.2.4 :

— We also use a conjugate NIW prior with a zero-valued mean µ0, a precision matrix
Ψ0 inferred from the dataset, and minimal values of κ0 and ν0

— The initial state is a one-cluster partition, and a second inference may be performed
with block numbers higher than the one sampled in the first run.

The final partitions inference step is different than for the FunNPLBM method.

Inferring the final partitions.

In the Bayesian Non-Parametric context, the MCMC-based inference process outputs
samples of partitions that are drawn from an approximation of the posterior distribution.
These sampled must, in turn, be aggregated over the iterations (usually after a given
number of burnin iterations).

In the FunNPLBM model, the row and column final partitions can be independently
obtained by applying a consensus partition estimation [GOK18] separately on each di-
mension.
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In our cases, the objective is to obtain the final sets of partitions modes v̂, (ẑh)H , and
ŵh)H . Although it is straightforward to obtain the consensus redundant partition v̂ with
[GOK18], the consensus on the other dimension partitions are much complex to estimate.
This is caused by the label switching effect that makes the model likelihood invariant
against component indices re-ordering.

In other words, if one wants to find the consensus correlated partition corresponding
to redundant cluster h in v̂, one must first find, in every sampled FunMCC results, the
FunNPLBM structure that match with the one associated with the redundant cluster h.

This problem can be seen as a consensus partition estimation with a hierarchical parti-
tioning constraint.

Here are several workarounds solutions :

— A first method consists simply in keeping the last sample, which assumes that the
MCMC has converged.

— It is also possible to select the sample that maximizes the model likelihood. This
method seems the most natural, but is not a consensus estimation.

— A decoupled solution consists in first running the SEM-Gibbs to estimate the
consensus redundant partition, then infer separately the FunNPBLM structure with
fixed redundant clusters, and finally to estimate the consensus coclustering solu-
tions of each FunNPLBM separately.

— As a coupled extension of the previous solution, a consensus partition estimation
can be performed after each step (Multi Clustering and Coclustering layer) at each
iteration. In that case, each step is based on the consensus partition(s) estimated
in the previous.

Including this final partition estimation step, the complete inference process is summari-
zed in Algorithm 7.

5.2.4 Algorithm Complexity

Before the main FunMCC inference, one DPM is inferred on each variable x.,j indepen-
dently, in order to estimate the expression p(x.,j | χ) used in Eq.(5.2) and to obtain
the row-partition ẑj associated with variable j "alone", i.e., the partition associated to
a newly discovered cluster containing only the variable j. Each DPM has a complexity
O(Mnd2), with M the iterations number (with same value than for the main inference),
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Algorithm 7 : Hierarchical Inference Process For BNP Functional Multi-Coclustering
Input : dataset X, concentration parameters priors (aγ , bγ), (aα, bα), (aβ, bβ),

number of iterations M
Output :Redundant column partition v̂, correlated column partition ŵ, Multiple

row partitions Ẑ
v,w, Z ← Initialize columns and row partitions
γ,α,β ← Initialize concentration parameters
for j ← 1 to p do

Estimate variable j-th prior predictive distribution and univariate
row-memberships ẑj

for m← 1 to M do
for j ← 1 to p do

Sample vj based on Eq. (5.1), Eq. (5.2)

for h← 1 to H do
for i← 1 to n do

Sample zh
i based on equations (5.3) and (5.4).

for j ← 1 to ph do
Sample wh

j based on the same process as (5.3) and (5.4).

Update concentration parameters γ, α,β based on equation (5.5)
Aggregate the sampled partitions (c.f. Sect. 5.2.3 - §3) to obtain the final consensus
partitions v̂, ŵ and Ẑ.
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n the observation number, and d the time series representation space dimension. This
inference is performed on each variable, therefore, which amounts to a O(Mnpd2) com-
plexity. These estimations are only performed once, then can be cached.

After this preparation step, the main FunMCC inference process begins, alternating the
two phases : the Multi-Clustering layer update and the coclustering layer updates.

During the Multi-Clustering layer inference, the redundant cluster memberships are up-
dated sequentially following 5.2.2, with a fixed value of Z. The update of one member-
ship vj involves the computation of H+1 membership probabilities (with H the number
of existing redundant clusters plus one new cluster). For a given existing redundant clus-
ter h, computing the redundant membership probability of column x.,j involves, in turn,
to compute one joint prior predictive for each of the K blocks (one for each row-cluster)
that composes the column-cluster h. These updates, detailed in Sect. 4.2.3, consists in
combining the n observations by groups into K means, and K covariance matrices, with
an overall O(nd2) complexity (dominated by the covariance matrix estimation cost).

As opposed to the FunNPLBM case (cf. Sect. 4.2.4), it is not possible to cache the updated
hyper-parameters values, because they are only computed once at each iteration (for this
particular membership distribution computation) given a fixed value of Z that changes
during the coclustering update set.

After having updated the prior hyper-parameters, the membership probability is finally
obtained by computing p(x.,j | zh, χ) the joint predictive distribution of variable j. This
involves Kh computations (with Kh the current number of row-clusters in redundant
cluster h), each with complexity d3. This operation is performed once for each of the H
existing cluster, and for each of the p variables, which amounts to a complexity

O(pH̄(nd2 + K̄d3)), (5.6)

where H̄ = maxmH(m) and K̄ = maxm,hK
(m),h are the maximum of the cluster number

values sampled during inference.

The coclustering layer inference consists in updating H FunNPLBM structures, the-
refore with complexity (derived in Sect. 4.2.4) O

(
H̄
(
npd2 + (n+ p)K̄L̄d3

))
, with

L̄ = maxm,h L
(m),h.
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The multi-clustering and coclustering layer updates are repeated for M iterations. The
final complexity is, after simplification :

O
(
MH̄

(
npd2 + (n+ p)K̄L̄d3

))
,

with M the number of iterations. This complexity is linear in the datasets dimensions,
the number of block components and the iteration number.

It may be noted that the coclustering structures can be updated in parallel, which would
cancel the linear complexity in H̄. It is also possible to parallelize the independent DPM
that are inferred before the main FunMCC inference to estimate the distributions p(x.,j |
χ).

5.3 Experiments

In the following section we highlight the interest of using FunMCC by comparing the
impact of uninformatives or misleading variables on several block clustering baselines.
The experiments dataset is composed of observations generated from a ground truth
row-partition, that we seek to estimate. These observations are described by several
groups of variables sharing common distribution. This ground-truth dataset is therefore
a coclustering structure.

This ground-truth information is "corrupted" by adding a proportion of other variables :
uninformatives (generated from a one-cluster partition) or misleading (generated from
another row-partition than the ground truth). These proportions are respectively deno-
ted pu and pm. In the ground-truth coclustering structure, 30 variables and 150 rows
are distributed in 5 row-clusters and 3 column-clusters. The uninformatives variables
are simulated with one-partition variables, and the misleading structure with another
coclustering structure with 4 row-clusters and 3 column clusters. The ground-truth and
misleading row-partitions are randomly and independently generated. With the propor-
tions pu and pm varying from 0 to 200%, this setup generates 7 datasets, each one cor-
responding to the ground truth and given uninformative or/and misleading proportions.
The objective is to find the ground-truth without supervision, and to discriminate and
separate the uninformative and misleading information.

The elements belonging to a given block (i.e., to one particular redundant cluster h,
and one block (k, l) in the coclustering structure h) are generated by sampling from the
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distributions N
(
fk,l(t), s2) where fk,l is a given prototype function and s = 0.02. An

instance of such dataset is displayed in Fig. 5.2, with equal proportions of ground-truth,
uninformative and misleading variables. This figure also represents three prototypes
used to generate the associated block contents.
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Ground-truth Uninforma ve Misleading

Figure 5.2. : Illustration of the ground truth coclustering structure, the uninformative variables
and the misleanding variables. Color and pattern indicates block memberships. The
time series profiles displayed on the left represent a sample of the prototypes used
for block generation.

We compare FunMCC’s performances to baselines non-parametric model-based ap-
proaches, that match to our specifications. We consider a Dirichlet Process Mixture mo-
del (DPM) that infers a row-partition without a column-partition and represents the de-
fault strategy without variable discrimination. The second baseline is a non-parametric
coclustering method (CC) [MR07] displayed in Fig. 5.1, that adds a column-partition.
As alternative Multi-Clustering solutions, we consider three methods derivated from our
proposal FunMCC :

— Decoupled Multi-Clustering based on DPM (DPDM) consisting of one DPM on the
columns, then one on the rows.

— Decoupled Multi-Clustering based on Coclustering (DCC) that first infers the redun-
dant partition with a single global coclustering, then infer a coclustering structure
in each of the obtained redundant cluster.
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— A non-parametric Multi-clustering (MC), equivalent to FunMCC without the co-
clustering layer.

The performances comparison is based on two popular scores : the Adjusted Rand Index
(ARI), and the Normalized Mutual Information (NMI). The ARI is a corrected-for-chance
version of the Rand Index that evaluates the proportions of correctly grouped and separa-
ted elements in a partition. The NMI is an entropy-based criterion from the information
theory literature estimating the quantity of knowledge a partition gives on another.

In addition, we also compare the estimated number of clusters, K̂, as a complementary
information. Because the selected baselines are stochastic inference processes, we always
consider the scores mean obtained over ten launches (or the median in the case of
the cluster number). When several row-partitions are produced (i.e., Multi-Clustering
methods), the closest row-partition is considered, with respect to the ARI.

Table 5.1. : Ground-truth estimation quality described by ARI, RI and row-cluster number K̂, of
the Dirichlet Process Mixture (DPM), Bayesian Non-Parametric Coclustering (CC),
symmetrical decoupled Dirichlet Process Model (DDPM), Multi-Clustering based on
a coclustering structure (DCC), Multi-Clustering without the coclustering layer (MC)
and our proposal (FunMCC).

Score pu pm DPM CC DDPM DCC MC FunMCC

ARI

0 % 0 % 1.00 1.00 1.00 0.98 1.00 1.00
0 % 50 % 0.78 0.88 0.48 0.52 1.00 1.00
0 % 100 % 0.61 0.81 0.43 0.43 0.96 1.00
0 % 200 % 0.36 0.88 0.53 0.53 1.00 1.00

50 % 0 % 0.00 1.00 1.00 0.99 1.00 1.00
100 % 0 % 0.00 1.00 0.99 0.98 0.96 1.00
200 % 0 % 0.00 1.00 1.00 0.97 1.00 1.00

NMI

0 % 0 % 1.00 1.00 1.00 0.99 1.00 1.00
0 % 50 % 0.91 0.93 0.66 0.70 1.00 1.00
0 % 100 % 0.77 0.89 0.60 0.61 0.98 1.00
0 % 200 % 0.55 0.93 0.71 0.71 1.00 1.00

50 % 0 % 0.00 1.00 1.00 0.99 1.00 1.00
100 % 0 % 0.00 1.00 0.99 0.98 0.98 1.00
200 % 0 % 0.00 1.00 1.00 0.97 1.00 1.00

K̂

0 % 0 % 5.00 5.00 5.00 5.00 5.00 5.00
0 % 50 % 4.00 7.00 5.00 5.00 5.00 5.00
0 % 100 % 6.00 8.00 4.00 5.00 5.00 5.00
0 % 200 % 3.00 7.00 4.00 4.00 5.00 5.00

50 % 0 % 1.00 5.00 5.00 5.00 5.00 5.00
100 % 0 % 1.00 5.00 5.00 5.00 5.00 5.00
200 % 0 % 1.00 5.00 5.00 6.00 5.00 5.00
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The results, displayed in Table. 5.1, show a gradual performance increase ranging from
DPM to FunMCC. The DPM, which only creates one row-partition, is the most impacted
by the presence of uninformative and misleading variables. The DPM performances are
gradually worsened when the pm (the misleading proportion) increases. On the contrary,
even a small proportion pu (the uninformative proportion) reduces DPM’s performances
dramatically. This is presumably induced by the non-parametric setting that selects the
most likely number of row-clusters, and favours one-cluster partitions when adding un-
informative signals. On the contrary, the presence of misleading information does not
reduce the number of row-clusters, but corrupts their contents, resulting in lower perfor-
mances with an approximatively correct number of row-clusters.

The CC method is not impacted by the presence of uninformative signal, but tends to
overestimate the row-cluster number in presence of misleading variables. This overesti-
mated K̂ is associated to the row-partition that results from crossing the ground-truth
row-partition (5 row-clusters) with the misleading row-partition (4 row-clusters), re-
sulting in a 8-clusters row-partition, as approximated by CC. The Decoupled methods
(DDPM and DCC) have similar performances than CC, with a nearly null impact of
pu, but with a greater impact of pm. This effect is linked to a low-quality redundant
column-clustering, due to the decoupled aspect, that in turn impacts the row-partition
quality. With the decoupled methods, the Multi-Clustering is the result of two steps :
a column-partition inference, then one row-partition inference in each column-cluster.
However, the row-partitions information, obtained in this second step, cannot be used
in the column-cluster construction.

On the contrary, the pure non-parametric Multi-Clustering uses the row-partitions infor-
mation to construct the redundant column-partition, which explains a better column-
partition quality, and, as a consequence, a stronger stability against the presence of
misleading variables. We observe a light performance increase with the addition of a
coclustering structure layer (our proposal FunMCC), that regroups variables with simi-
lar distributions. Our intuition is that the coclustering layer acts as a shrinkage method
that reduces the parameters number and the global model complexity while keeping the
same overall density representation capacity. This phenomenon presumably increases
the Multi-Clustering layer quality, in addition to enhancing the model interpretability.
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5.4 Applications

5.4.1 Emergency lane Keeping Assist

After experimenting FunMCC on a synthetic dataset, we apply it on a real ADAS vali-
dation dataset. In a straight lane scenario, the vehicle under test is drifting towards an
oncoming car on the other lane. The ELK system is expected to detect the drifting, the
oncoming car and put it back to its lane center with an emergency maneuver. The simu-
lation generates a dataset of n = 500 described by p = 150 temporal variables, totalling
75000 time series. We emphasize that these simulations are generated with a simulation
black-box that faithfully recreates the real-life driving conditions, and are not produced
by the generative model proposed in this article.

The objective is to infer a synthetic structure that highlights interesting driving patterns
and discriminate relevant groups of sensors, in order to isolate and understand the ADAS
activation contexts.
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One column = one variable

Figure 5.3. : Multiple Coclustering structure overlaid on the ELK dataset (one cell = one time
series). The red rectangle outlines the trajectory variables depicted in Fig. 5.4.
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The Multi-Coclustering structure is displayed on Fig. 5.3, which represents the row par-
titions overlaid on the dataset, with color representing redundant column clusters, and
transparency indicating block partitions.

A first interesting results is that the non-informative variables variables are grouped toge-
ther in the red and orange column-clusters. This group contains normally uninformative
variable such as the car length, the time from start, but also use case specific (e.g., road
radius in a straight lane scenario, headlights activation while in broad daylight, . . . ).

Several other column-clusters are particularly interesting :

— The leftmost green column-cluster contains orientation and car direction variables
(e.g., the car orientation, the wheel angle, the steering wheel angle, . . . )

— The next ochre column-cluster on the figure contains position variables : lateral
position, index and type of the current lane, distance to the road center, . . .

— The next small blue column-cluster contains ADAS activation variables, which are
categorical time series. These variables can also indicates the activation "mode"
(for instance, activation on the left or right).

The column-clusters composition exhibits one outstanding feature of this approach : the
column-cluster acts as meta-variables, that regroup the meaning of several others. This
process acts simultaneously as a variable selection and dimension reduction step, and
helps the interpretation.

Another interesting information that appears on Fig. 5.3 is the hierarchical structure
between the row partitions. Because the simulations are sorted by row-partitions, and
based on the order of the row-partitions, the successive sorting creates a hierarchical
clustering. The specification of the row-partitions order must be specified by the user.
This problematic is specific to the Multi-Clustering case, and is discussed in the perspec-
tives (Sect. 6.2.2).

The Fig. 5.4 illustrates the content of a column-cluster, and shows the car trajectories
(surrounded by a red rectangle in Fig. 5.3) distributed in the row-clusters, where several
scenarios are represented : the sub-graph I shows a late ADAS activation scenario, sub-
graph II regroups cases when ELK did not activate at all. In sub-graph III, the systems
correctly change the car trajectory and prevent the collision. The last graph IV shows a
very small cluster of anormal driving behaviors detected and grouped by FunMCC.

Finally, the understanding of the Multi-Coclustering result structure can be enhanced
by representing the variables in their own space and in their column-partition. This

5.4 Applications 151



Figure 5.4. : Car trajectories distributed in the clusters, corresponding to the content of the red
rectangle outline in Fig. 5.3.

representation is given in Fig. 5.5, that shows an MDS projection based on both row-
partitions distance and variable distribution. This figure outlines the presence of well
separated groups of variables.

Based on these results, the next steps for the ADAS system developer consists in relating
the partitions to the input simulation parameters and assessing the ADAS compliance
with its specifications.

5.5 Conclusion

This chapter describes a new Bayesian non-parametric based method designed for the
exploration of multivariate time series datasets produced by driving simulations. This
solution infers a multi-level dependency structure that highlights the relationships bet-
ween sensors and discriminates driving simulations patterns. This probabilistic method
can natively be used for anomaly detection based on probabilistic predictive intervals.
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Figure 5.5. : Redundant variable partition projected with MDS

The next step in the ADAS validation pipeline is to use the multivariate time-series multi-
coclustering results as labels for a supervised analysis of the simulation parameters, in
order to understand and explain ADAS failure and success conditions.
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Conclusion And Perspectives 6
6.1 Dictionary-based time series clustering

In the context of unsupervised classification of regime-changing time-series, this chapter
proposes a dictionary-based method that consists in three steps : automatic segmentation
of each time-series, regime dictionary construction, and clustering of produced categori-
cal sequences. SDLHC shows good results when applied to time-series complying to the
regime construction assumption, and is competitive with other state-of-the-art methods
in this case. The ability to handle unequal-length time-series, a-synchronized time-series,
and time-series exhibiting asynchronous regimes are its best assets.

One weak point of this method is the complexity associated to the third step, which is
O(n3). This complexity makes the method quite slow when the number of time series
becomes important. In that case, alternatives methods should be considered, e.g., using
a partition-based clustering on histograms, at the cost of losing the time-dependency
information.

One other weak point is that this method can only be applied to univariate time series,
which limits its application to specific use cases. In the ADAS validation context, this
means that the user is limited to the exploration of one simulated variable. The multiva-
riate extension can be addressed in several ways.

6.1.1 Joint Multivariate Segmentation

The easiest extension to multivariate clustering consists in assuming that, for a given
MTS observation, every dimension share the same segment cut-points (i.e., the same
univariate hidden logistic process). Under this assumption, it is possible to perform a
multivariate joint segmentation, similar to [Cha+09b] with multidimensional segments.
This method has been described in [Cha+13] by the same authors.

155



In this case, the dictionary construction step can be extended in a multivariate GMM that
regroups multivariate segments, and the produced driving patterns are also multivariate.
The MTS are, in turn, recoded as univariate symbol sequences, which leaves the final
step (univariate symbol sequence clustering) unchanged. The overall transformation and
clustering can be considered a dependent approach, as every dimensions are considered
jointly.

The joint multivariate segmentation can be suited for dataset composed of a small set
of correlated variables (e.g., position and speed variables). However, this method is
not suited to deal with a large number of variables, when the synchronous cutpoint
hypothesis becomes more and more unrealistic.

6.1.2 Independent Univariate Segmentation

A short-cut to the previously described limitation is to independently segment every
dimensions. In this case, three alternatives can be considered.

Cut-points Intersection

A first solution consists in taking the union of the cutpoints cut-points of every dimen-
sions, and segments the MTS in smaller sub-sequence.

After this step, the dictionary can perform, as in the previous variant, a multi-
dimensional segment clustering that produces multivariate patterns. The MTS are re-
coded in univariate symbol sequences, and the final hierarchical clustering remains un-
changed.

However, intersecting the cut-points of every dimensions can lead to an excessive sub-
sampling of the segments, and to an important loss of information.

For instance, given a p-dimensional MTS with length T , and assuming that the p-
dimensions have, on average, K distinct cut-points, the union of these cutpoints ge-
nerates a pK cutpoints. As a consequence, the average length of the d-dimensional sub-
sequences is T

pK . With plausible values (T = 1000, p = 100, k = 10), the sub-sequences
becomes singleton sub-sequences, which cancels the dimension reduction effects of the
segmentation step, and makes the dictionary construction step (a GMM on a Rd = R100

space) unfeasible.
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Symbol Sequences Intersection

Instead of taking the union of the cut-points, which may greatly over-estimate the num-
ber of segments, it is possible to apply the union operation on the uni-dimensional sym-
bol sequences.

In this variant, after the univariate segmentation of each dimension, the dictionary re-
construction step is applied independently on each dimension. As a results, each MTS is
recoded as a multivariate symbol sequence.

After this phase, each unique combination of univariate state is associated to a new mul-
tivariate symbol. For instance, given an MTS T1(t) represented with a two-dimensional
symbol sequence ((a, a, a, b, b, b), (d, d, e, e, f, f)), the resulting representation would be
(A,A,B,C,D,D), with A = (a, d), B = (a, e), C = (b, e), D = (b, f).

This method implies to construct a new dictionary that associates a unique symbol to
each multidimensional symbol state. As a result, each MTS can be represented with a
univariate symbol sequence, and the final clustering step remains unchanged.

The drawback of this method is the same as the previous cut-points union method :
when the number of variable is high, the length of the sub-sequences associated to each
multivariate state decreases, and the number of possible multivariate state increases
sharply.

The problem is the same if the dictionary construction is performed on the overall set of
segments from each dimension rather than dimension-wise (with D replaced by the size
of the overall dictionary).

Independent Symbol Sequence Comparison

Instead of combining the multi-dimensional symbol sequences to obtain univariate
strings, this variant proposes to keep a multi-dimensional string representation and to
perform the last clustering step based on this multi-dimensional representation.

In that case, the dictionary method remains unchanged and deals with univariate seg-
ments, either applied dimension per dimension or to every segments from every di-
mensions), as in Sect. 6.1.2. As a result, each MTS is recoded as a tuple of symbol
sequences.
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Based on this representation, the MTS are compared by summing their dimension-wise
difference string dissimilarity, e.g., the Levenshtein distance. This setting implies to com-
pute the dimension-wise sub-sequences dissimilarities and the Levenshtein distance ma-
trix, which adds a linear complexity in d to the step complexity. This solution can, up
to the final hierarchical clustering, be parallelized or distributed per dimension, which
makes it scalable and interesting for industrial applications.

A major drawback of this solution is that each dimension has the same weight, which
makes the overall method sensible to uninformative or misleading variables. Moreover,
summing the distances in this high-dimensional space produces strongly separated ob-
servations.

In order to solve this problem, a perspective would be to consider weighted version of
this multi-dimensional Levenshtein Distance.

6.1.3 Coclustering extension

Another approach to extend the method to the multivariate case is to consider a cocluste-
ring extension. Using the fact that the block component are uni-dimensional distribution
(shared by every variables inside a variable cluster), our first idea was to develop a
model-based version of SDLHC that could be extended to the multivariate case with
the coclustering framework.

In order to obtain this model-based extension, it is necessary to replace the last step of
SDLHC (the symbol sequence clustering), with a model-based clustering method. After
this replacement, the objective was to collapse the entire method and to perform a joint
inference of the segmentation, dictionary construction and symbol sequence clustering
in a single inference process.

However, the development of a model-based categorical sequence clustering has proven
difficult, partly because of the complexity of estimating a consensus categorical sequence.
This limitation led us to modify our strategy, and adopt a specific representation for the
multivariate case.
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6.2 Multi-Coclustering

The Multi-Coclustering method can be extended in several ways. As a model-based me-
thod, it can natively be used for anomaly detection (e.g., by considering a component-
wise likelihood ratio). It can also serve as a supervised classification method, by simply
constraining the redundant, correlated and row partition values. In that case, the infe-
rence would lead to a multiple coclustering density estimation, that would enable a mul-
tiple classification of a given observation. In a semi-supervised application, the method
can be used to infer missing value in one coclustering structure based on the others.

FunNPLBM can be useful in every domains that deal with datasets containing multiple
row-partitions and correlated temporal variables. For instance in industrial contexts for
predictive maintenance based on multiple sensors, in health for ECG and biological si-
gnals data analysis, in finance for stock trade data analysis.

Another natural extension would be the online multiple coclustering applied to the real-
time detection of driving states and the online anomaly detection.

6.2.1 Method Scalability

One drawback of the inference method is that, as is the case for the DPM, the member-
ships (of every dimensions) are updated one by one given the other observation and
other memberships. Because of this sequential inference, it is not straightforward to pa-
rallelize the inference at the individual level. This can cause some inference issues when
the datasets dimensions are too important.

However, following recent advances in the field [Meg+19], it is possible to distribute the
computation when the dataset is important. The DPMM distribution consists in running
independent DPMM on sub-datasets, and then regroup the obtained clusters. In the next
works we suggest to develop an extension of the work of [Meg+19] by distributing the
FunNPLBM, and the FunMCC.

6.2.2 Representing the variables relationships

The MCC method outputs several row-partitions, but also a nested column-partition :
based on the observation clustering, then on the distributions. An interesting perspective
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for the user is to visualize the relationships between the variables, which can help the
results interpretation.

A Partition of variables

This relationship can be represented with a partition-based clustering, as illustrated in
Fig. 5.5. In this example, an MDS projection is used based on the combination of two
dissimilarities : the row-partition dissimilarity, and the time series distance. This repre-
sentation can help interpreting the contents of the column-clusters (e.g., associate a
column-cluster to Ego’s direction, or lateral position).

However, the weights of this combination have been set manually, which is not a straight-
forward task. In the following we consider developing alternative representations of the
variable.

One interesting candidate can be the dandelion plot, that allows a multi-level categorical
grouping based on hierarchical dissimilarities. It is also possible to simply ignore the
partition similarity information and construct the row-partitions on the only basis of the
distributions.

Choosing the row-partition ordering

In the coclustering framework, the user is interested in visualizing the inferred block
structure, which is obtained by re-ordering the dataset matrix by group. For instance,
this re-ordering produces the grid visualization shown in Fig. 1.13 b), or in Fig. 3.2
a).

With MCC (and more generally with the Multi-Clustering methods), the re-ordering of
the rows is performed hierarchically : based on z1, then z2 . . . until zH . Because it is
hierarchical, this re-ordering depends on the redundant cluster order (e.g., swapping
z1 and z2 will modify it). However, these different visualisations are not equivalent to
the user, because some row-partitions are more interesting than the others. In addition,
several partitions are included into others, which means that they are the result of a
hierarchical subdivision, similar to to a hierarchical clustering dendrogram. Choosing
this ordering manually is not straightforward (especially when the number of redundant
clusters H is large) and, in the current implementation of FunMCC, depends on expert
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knowledge. An interesting extension would consist in inferring automatically this orde-
ring. For instance, assuming that some row-partitions are nested into each others, a tree
representation might be able to represent the dependencies between row-partitions. A
score that measures the mutual partition information (e.g., NMI, ARI, . . . ) or the parti-
tion inclusion seems an interesting candidate for this construction.

This hierarchical representation adds an interesting layer of information : the depen-
dency between row-partitions.

6.2.3 Time Series Representation Alternatives

In this thesis contributions, the time series are transformed with a PCA on the coefficient
of an Interpolated Log-Periodogram representations. Alternative time series represen-
tations can be considered, with a strong incentive on keeping a final representation
dimension low (cf. inference complexity description in Sec. 5.2.4).

First, it is possible to replace the trigonometric function basis by another polynomial
basis (e.g., Legendre, ..). It is also possible to represent the time series with a wavelet
basis function decomposition, and to apply a PCA on the resulting coefficients. This
method, presented in [RW13], has the advantage to represent the time series in both
frequency and time domain, and could be an interesting alternative.

It is also possible to avoid the functional basis decomposition approach. If the user is
interested in grouping time series on the basis of a given similarity measure, the spectral
dimension reduction is an interesting candidate. This approach consists in computing
the Laplacian of the time series similarity matrix and use its eigenvectors as time series
features. With this approach, any distance can be considered (e.g., DTW, Mahalanobis,
. . . ). Other ways to make use of the dissimilarity matrix for time series representation
include the Multi-Dimensional Scaling, which is similar to performing a PCA on the dissi-
milarity matrix. The results is a linear transformation in a smaller space, that conserves
the similarity information (i.e., two elements close in the final space are also close in the
original space). This transformation can also be performed with auto-encoder, or t-SNE.
However, this set of approaches may be computationally expansive, as they require to
compute np(np−1)

2 similarities before the block-clustering inference.

Inspired from [Kat16], it is also possible to represent a time series with its dissimilarity
to other reference elements. By using a small number of elements (for instance a ratio
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specified by the user), this method is equivalent to sub-sampling the dissimilarity matrix,
and results in a lower dimensional feature basis representation. Again, a dimension re-
duction step may be useful if this feature space remains excessively large. This approach
seems promising, but requires to correctly choose the reference time series.

6.2.4 Alternative Bayesian Non Parametric Prior

The DPMM framework used throughout this thesis is an handy solution to mixture model
indeference and is one of the most popular BNP mixture model.

However, the DPMM has several drawbacks :

— The DP prior tends to create partitions with few large clusters and several small
ones, which is not always desirable.

— Even though the DPMM consistently estimates the mixture density [GV07] and the
mixing distributions [Ngu13], it has been shown in [MH13] that the method does
not consistently converges to the true number of latent components.

The first limitation can be addressed with the introduction of a Pitman-Yor Process prior
in place of the DP. This process uses a discount parameter to leverage the creation of
equal-size clusters. However, it has also been shown in [MH14] that this method still
inconsistently estimates the number of components.

A recent proposal [Mil19] introduces the Mixture of Finite Mixtures model, that is
consistent for the number of components. This model is similar to the DPMM, but adds
an explicit definition of a prior directly on the component number K. This prior distri-
bution is only a consequence of the stick-breaking construction with the DP prior (cf.
Eq. 1.6 in Sect. 1.3.2). The same paper presents the associated inference methods, that
are similar to the existing DPMM inference methods.

Based on this thesis contributions, extending the Mixture of Finite Mixtures to a coclus-
tering, multi-clustering and multi-coclustering framework seems straightforward, and
would allow a better control of the number of components.
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6.3 Conclusion

In the broad and wide domain of time series clustering, this thesis presented several
contributions specifically designed for the exploration of time series datasets generated
for ADAS validation.

The first contribution addresses univariate time series datasets, and assumes the pre-
sence of latent scenario. This method uses the mixture model framework for time series
segmentation and driving pattern detection, and the hierarchical clustering heuristic for
the final clustering of time series re-coded as symbol sequences.

The next three contributions are block clustering methods that make full use of the
model-based coclustering and multi-clustering methods. These methods address the clus-
tering of MTS based on a Fourier representation of the time series. The use of the BNP
framework allow to integrate a model selection step while keeping the anomaly detec-
tion and prediction interval features.

These methods are experimented on simulated datasets, but also applied on real-life
datasets generated for ADAS validation. These applications proved the contributions
interest for industrial purposes. The methods source code is open and made available at
github repositories for reproducibility.

This thesis, staged in convention between the LIPN at Université Sorbonne Paris Nord
and Groupe Renault, opens several perspectives of extension, both for the dictionary-
based and the block-clustering-based methods.
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Glossary

ADAS Advanced Driver Assistance
System

AEB Autonomous Emergency Bra-
king

AIC Akaike Information Criterion ARI Adjusted Rand Index
BIC Bayesian Information Crite-

rion
BNP Bayesian Non Parametric

CLBM Conditional LBM CRP Chinese Restaurant Process
DP Dirichlet Process DPM Dirichlet Process Mixture
DTW Dynamic Time Warping DWT Discrete WaveletTransform
Ego Vehicle under test ELK Emergency Lane Keeping
-/C/S EM -/Classification/Stochastic Ex-

pectation Maximization
fPCA Functional Principal Com-

ponent Analysis
GMM Gaussian Mixture Model HMM Hidden Markov Model
ICL Integrated Completed Likeli-

hood
LBM latent Block Model

LKA Lane Keeping Assist MCC Multi-Coclustering
MCMC Markov Chain Monte-Carlo MPM Multiple Partitions Model
MTS Multivariate Time Series NIW Normal Inverse Wishart
NMI Normalized Mutual Informa-

tion
NN Neural Network

NPLBM Non-Parametric LBM PAA Piecewise Aggregate Approxi-
mation

PCA Principal Component Analysis PRM Polynomial Regression Model
PYP Pitman-Yor Process SAE Society of Automotive Engi-

neers
SB Stick-Breaking SDLHC Segmentation-Dictionary-

Levenshtein-Hierarchical-
Clustering

SOM Self Organizing Map SVD Singular Value Decomposition
SAX Symbolic Aggregate approXi-

mation
RHLP Regression with Hidden Logis-

tic Process
RI Rand Index SNE Stochastic Neighbor Embed-

ding
UMAP Uniform Manifold Approxima-

tion and Projection
WLD Weighted Levenshtein Dis-

tance
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Appendix A
A.1 Prior Predictive Distribution

The proof that the predictive distribution densities are equivalent to a multivariate t-
distribution is rarely presented. The most cited source is [Mur07] (e.g., cited in [VDR14 ;
Das14]) proves the equivalence in the univariate case. The predictive distribution closed-
form being a key feature of our Collapsed Gibbs Sampler inference processes, we propose
a detailed derivation of the multivariate distribution.

Lemma 1. The probability density function of the multivariate normal distributionN (µ,Σ)
can be written as

p(y | η) = h(y) exp
(
ηTT (y)− 1T g(η)

)
,

Démonstration. First, observe that yT Σ−1y = Tr(Σ−1yyT ) = vec(Σ−1)T vec(yyT ). As a
consequence, using the usual definition of the density function yields

p(y | µ,Σ) = (2π)− d
2 |Σ|−

1
2 exp

(
−1

2
(y − µ)T Σ−1(y − µ)

)

= (2π)−d/2 exp

[ Σ−1µ

−1
2 vec(Σ−1)

]T [
y

vec(yyT )

]
− 1

2
µT Σ−1µ− 1

2
log |Σ|


= h(y) exp

(
ηTT (y)− 1T g(η)

)
where

h(y) = (2π)− d
2 , η =

[
Σ−1µ

−1
2 vec(Σ−1)

]
, g(η) =

[1
2µ

T Σ−1µ
1
2 log|Σ|

]
, T (y) =

[
y

vec(yyT )

]
,

and vec is the vectorization operator.

173



Lemma 2. The probability density function of the Normal Inverse Wishart distribution
NIW (µ,Σ | ξ), with ξ = (µ0, κ0,Σ0, ν0) can be written as

p(µ,Σ | Ψ, ν) = f(Ψ, ν) exp
(
ηT Ψ− νT g(η)

)
.

Démonstration.

p(µ,Σ | ξ)

= κ
d/2
0 |Ψ0|

ν0
2 |Σ|−

ν0+d+2
2

2
ν0d

2 πd/2Γd(ν0
2 )

exp
(
−κ0

2
(µ− µ0)T Σ−1(µ− µ0)− 1

2
Tr(Ψ0Σ−1)

)

= κ
d/2
0 |Ψ0|

ν0
2

2
ν0d

2 πd/2Γd

(ν0
2
) exp

ηT

[
κ0µ0

vec(κ0µ0µ
T
0 + Ψ0)

]
−
[

κ0

ν0 + d+ 2

]T

g(η)


= f(Ψ, ν) exp

(
ηT Ψ− νT g(η)

)

with f(Ψ, ν) = κ
d/2
0 |Ψ0|

ν0
2

2
ν0d

2 πd/2Γd( ν0
2 )

, Ψ =
[

κ0µ0

vec(κ0µ0µ
T
0 + Ψ0)

]
and ν =

[
κ0

ν0 + d+ 2

]
.

Theorem 1. The prior predictive distribution of a random variable y drawn according to

y ∼ N (µ,Σ), (µ,Σ) ∼ NIW (ξ), ξ = (µ0, κ0,Σ0, ν0),

is the multivariate t-distribution

y | ξ ∼ tν0−d+1

(
y|µ0,

(κ0 + 1)Ψ0
κ0(ν0 − d+ 1)

)
.

Démonstration. According to Lemmas 1 and 2, we find that

p(y | Ψ, ν) =
∫

µ,Σ
p(y | µ,Σ)p(µ,Σ | Ψ, ν)d(µ,Σ)

=
∫

η
h(y) exp

(
ηTT (y)− 1T g(η)

)
f(Ψ, ξ) exp

(
ηT Ψ− νT g(η)

)
dη

=
∫

η
h(y) exp

(
ηTT (y)− 1T g(η)

)
f(Ψ, ξ) exp

(
ηT Ψ− νT g(η)

)
dη

= h(y)f(Ψ, ν)
∫

η
exp

(
ηT (Ψ + T (y))− (ν + 1)T g(η)

)
dη.
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The integral part is obtained by considering the Normal Inverse Wishart density with
hyper-parameter (Ψ + T (y), ν + 1) :

p(µ,Σ | Ψ + T (y), ν + 1) = f(Ψ + T (y), ν + 1) exp
(
ηT (Ψ + T (y))− (ν + 1)T g(η)

)
⇒

∫
f(Ψ + T (y), ν + 1) exp

(
ηT (Ψ + T (y))− (ν + 1)T g(η)

)
dη = 1

⇒
∫

exp
(
ηT (Ψ + T (y))− (ν + 1)T g(η)

)
dη = 1

f(Ψ + T (y), ν + 1)
(A.1)

This last expression yields the following equality

p(y | Ψ, ν) = h(y) f(Ψ, ν)
f(Ψ + T (y), ν + 1)

,

where Ψ+T (y) =
[

κ1µ1

vec(κ1µ1µ
T
1 + Ψ1)

]
=
[

κ0µ0

vec(κ0µ0µ
T
0 + Ψ0)

]
+
[

y

vec(yyT )

]
, and ν+1 =[

κ1

ν1 + d+ 2

]
=
[

κ0

ν0 + d+ 2

]
+
[
1
1

]
. Introducing these parameters into the last expression

of p(y | ξ) gives the result of the lemma.

p(y | Ψ, ν) = π−d/2 · κ
d/2
0

κ
d/2
1
· Γd(ν1/2)

Γd(ν0/2)
· |Ψ0|ν0/2

|Ψ1|ν1/2 , (A.2)

On one hand, Γd(ν1/2)/Γd(ν0/2) simplifies using the definition of the multivariate
Gamma function Γd(a) = πd(d−1)/4∏d

j=1 Γ(a+ (1− j)/2) yielding

Γd

(ν1
2
)

Γd(ν0
2 )

=
Γd

(
ν0+1

2

)
Γd(ν0

2 )
=

d∏
j=1

Γ
(

ν0+2−j
2

)
Γ
(

ν0+1−j
2

) =
Γ
(

ν0+1
2

)
Γ
(

ν0−d+1
2

) .
On the other hand, |Ψ0|ν0/2/|Ψ1|ν1/2 reduces because

Ψ1 = Ψ0 + yyT + κ0µ0µ
T
0 − κ1µ1µ

T
1

= Ψ0 + yyT + κ0µ0µ
T
0 − (κ0 + 1)

(
κ0µ0 + y

κ0 + 1

)(
κ0µ0 + y

κ0 + 1

)T

= Ψ0 + κ0 + 1
κ0 + 1

yyT + κ0(κ0 + 1)
κ0 + 1

µ0µ
T
0 − ( 1

κ0 + 1
)
(
κ2

0µ0µ
T
0 + κ0µ0y

T + κ0yµ
T
0 + yyT

)
= Ψ0 + κ0

κ0 + 1
(y − µ0)(y − µ0)T

= Ψ0

(
1 + κ0

κ0 + 1
(y − µ0)T Ψ−1

0 (y − µ0)
)
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and, using the matrix determinant lemma (i.e. |A+ uvT | = (1 + vTA−1u)|A|) gives

|Ψ1| =
(

1 + κ0
κ0 + 1

(y − µT
0 )Ψ−1

0 (y − µT
0 )
)
|Ψ0|.

Substituting these expressions into Eq. (A.2) gives the density

p(y | Ψ, ν) =
Γ(ν0+1

2 )(
κ0+1

κ0

)d/2
πd/2Γ(ν0−d+1

2 )|Ψ0|1/2

(
1 + κ0

κ0 + 1
(y − µ0)T Ψ−1

0 (y − µ0)
)−(ν0+1)/2

,

which is the density of a multivariate t-distribution tν0−d+1
(
y|µ0,

(κ0+1)Ψ0
κ0(ν0−d+1)

)
.

A.2 Posterior Predictive Distribution

With the same notation, and denoting x = (xi)n a set of observations, the posterior
distribution follows a NIW distribution [Ben+19 ; Mur07] :

p(µ,Σ | x, µ0, κ0,Σ0, ν0) = NIW (µ,Σ | µn, κn,Σn, νn),

with the updated hyper-parameter values obtained by :

µn = κ0µ0 + nx̄

κ0 + n
,

κn = κ0 + n, νn = ν0 + n,

Ψn = Ψ0 +
∑

i

xix
T
i + κ0µ0µ

T
0 − κnµnµ

T
n .

With Ψ′ =
[

κnµn

vec(κnµnµ
T
n + Ψn)

]
and ν ′ =

[
κn

νn + d+ 2

]
, the posterior predictive distribu-

tion can be written as :

p(y | Ψ′, ν ′) =
∫

µ,Σ
p(y | µ,Σ)p(µ,Σ | ψ′, ν ′)d (µ,Σ)

=
∫

η
h(y) exp

(
ηTT (y)− 1T g(η)

)
f(Ψ′, ν ′) exp

(
ηT Ψ′ − ν ′T g(η)

)
dη

= h(y)f(Ψ′, ν ′)
∫

η
exp

[
ηT (Ψ′ + T (y))− (ν ′ + 1)T g(η)

]
dη.
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After integral simplification (c.f. Eq. A.1), the posterior can be written as :

p(y | x,Ψ, ν) = h(y) f(Ψ′, ν ′)
f(Ψ′ + T (y), ν ′ + 1)

. (A.3)

These expressions are similar to the ones of the prior distribution, with updated hyper-

parameter values, with Ψ′ + T (y) =
[

κ1µ1

vec(κ1µ1µ
T
1 + Ψ1)

]
=
[

κnµn

vec(κnµnµ
T
n + Ψn)

]
+[

y

vec(yyT )

]
, and ν ′ + 1 =

[
κ1

ν1 + d+ 2

]
=
[

κn

νn + d+ 2

]
+
[
1
1

]
. As in the prior predic-

tive case, injecting the updated hyper-parameters values into Eq. A.3 gives the following
expression :

p(y | x,Ψ, ν) = π−d/2 · κ
d/2
n

κ
d/2
1
· Γd(ν1/2)

Γd(νn/2)
· |Ψn|νn/2

|Ψ1|ν1/2 ,

which is the density of the multivariate t-distribution tνn−d+1
(
y|µn,

(κn+1)Ψn

κn(νn−d+1)

)

A.3 Joint Predictive Distribution

In the Bayesian Coclustering or Multi-Coclustering, the inference algorithm uses the
(prior or posterior) predictive distribution of a row, i.e., a joint predictive distribution.
This distribution also has a closed-form when the prior is conjugate. In the joint prior
predictive case, the distribution of a vector of observations y = (yi)m is :

p(y | Ψ, ν) =
∫

µ,Σ
p(y, µ,Σ | Ψ, ν)d(µ,Σ)

=
∫

µ,Σ
p(y | µ,Σ)p(µ,Σ | ψ, ν)d (µ,Σ)

=
∫

µ,Σ

∏
i

p(yi | µ,Σ)p(µ,Σ | ψ, ν)d (µ,Σ)

=
∫

η

∏
i

[
h(yi) exp

(
ηTT (yi)− 1g(η)

)]
f(Ψ, ξ) exp

(
ηT Ψ− νT g(η)

)
dη

=
∏

i

h(yi)f(Ψ, ξ)
∫

η
exp

[
ηT (Ψ + T (y))− (ν +m1)T g(η)

]
dη,
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Distribution Expression Closed-form

prior predictive p(y | Ψ, ν) π−d/2 · κ
d/2
0

κ
d/2
1
· Γd(ν1/2)

Γd(ν0/2) ·
|Ψ0|ν0/2

|Ψ1|ν1/2

posterior predictive p(y | x,Ψ, ν) π−d/2 · κ
d/2
n

κ
d/2
1
· Γd(ν1/2)

Γd(νn/2) ·
|Ψn|νn/2

|Ψ1|ν1/2

joint prior predictive p(y | Ψ, ν) π
−md

2 · κ
d/2
0

κ
d/2
m

· Γd(νm/2)
Γd(ν0/2) ·

|Ψ0|ν0/2

|Ψm|νm/2

joint posterior predictive p(y | x,Ψ, ν) π
−md

2 · κ
d/2
n

κ
d/2
m

· Γd(νm/2)
Γd(νn/2) ·

|Ψn|νn/2

|Ψm|νm/2

Table A.1. : Summary of predictive distributions closed forms.

with T (y) =
∑

i T (yi). After simplifying the integral (c.f. Eq. A.1), the posterior can be
written as :

p(y | Ψ, ν) =
∏

i

h(yi)
f(Ψ, ν)

f(Ψ + T (y), ν +m1)
, (A.4)

with Ψ + T (y) =
[

κmµm

vec(κmµmµ
T
m + Ψm)

]
=
[

κ0µ0

vec(κ0µ0µ
T
0 + Ψ0)

]
+
[ ∑

i yi

vec(
∑

i yiy
T
i )

]
, and

ν +m1 =
[

κm

νm + d+ 2

]
=
[

κ0

ν0 + d+ 2

]
+
[
m

m

]
, which yields the same hyper-parameters

update expressions than in the posterior predictive case detailed in the previous section
Sect. A.2.

Injecting the values of h, f and the prior hyper-parameters in Eq. A.4 gives the closed-
form of the joint prior predictive distribution :

p(y | Ψ, ν) = π
−md

2
κ

d/2
0

κ
d/2
m

· Γd(νm/2)
Γd(ν0/2)

· |Ψ0|ν0/2

|Ψm|νm/2 .

The same derivations yields the following joint posterior predictive distribution expres-
sions :

p(y | x,Ψ, ν) =
∏

i

h(yi)
f(Ψ′, ν ′)

f(Ψ′ + T (y), ν ′ +m1)
,

that reduces to the following closed-form :

π
−md

2 · κ
d/2
n

κ
d/2
m

· Γd(νm/2)
Γd(νn/2)

· |Ψn|νn/2

|Ψm|νm/2 .

The prior and posterior predictive distributions closed forms are summarized in Tab. A.1.

178 Annexe A

Appendix



Bibliographie

[AML19] Amaia ABANDA, Usue MORI et Jose A LOZANO. “A review on distance based
time series classification”. In : Data Mining and Knowledge Discovery 33.2 (2019),
p. 378-412 (cf. p. 30).

[ASW15] Saeed AGHABOZORGI, Ali Seyed SHIRKHORSHIDI et Teh Ying WAH. “Time-series
clustering–a decade review”. In : Information Systems 53 (2015), p. 16-38 (cf.
p. 29, 30, 36).

[AD15] HP AHMAD et Shilpa DANG. “Performance Evaluation of Clustering Algorithm
Using different dataset”. In : International Journal of Advance Research in Com-
puter Science and Management Studies 8 (2015) (cf. p. 36).

[Aka74] H. AKAIKE. “A new look at the statistical model identification”. In : IEEE Transac-
tions on Automatic Control 19.6 (1974), p. 716-723 (cf. p. 47).

[AT15] Duong Tuan ANH et Le Huu THANH. “An efficient implementation of k-means
clustering for time series data with DTW distance”. In : International Journal of
Business Intelligence and Data Mining 10.3 (2015), p. 213-232 (cf. p. 41).

[Ant74] Charles E ANTONIAK. “Mixtures of Dirichlet processes with applications to Baye-
sian nonparametric problems”. In : The annals of statistics (1974), p. 1152-1174
(cf. p. 51, 53).

[BJ05] Anthony BAGNALL et Gareth JANACEK. “Clustering time series with clipped data”.
In : Machine learning 58.2-3 (2005), p. 151-178 (cf. p. 42).

[Bai+15] Adeline BAILLY, Simon MALINOWSKI, Romain TAVENARD, Thomas GUYET et
Laetitia CHAPEL. “Bag-of-temporal-sift-words for time series classification”. In :
ECML/PKDD workshop on advanced analytics and learning on temporal data. 2015
(cf. p. 32).

[BC15] Jean-Patrick BAUDRY et Gilles CELEUX. “EM for mixtures”. In : Statistics and com-
puting 25.4 (2015), p. 713-726 (cf. p. 45).

[Beg+15] Nurjahan BEGUM, Liudmila ULANOVA, Jun WANG et Eamonn KEOGH. “Accelera-
ting dynamic time warping clustering with a novel admissible pruning strategy”.
In : Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2015, p. 49-58 (cf. p. 37).

[Ben+19] Eric BENHAMOU, David SALTIEL, Beatrice GUEZ et Nicolas PARIS. “Bcma-es ii :
revisiting bayesian cma-es”. In : (2019) (cf. p. 176).

179



[BB12] James BERGSTRA et Yoshua BENGIO. “Random search for hyper-parameter optimi-
zation.” In : Journal of machine learning research 13.2 (2012) (cf. p. 48).

[BCG00] Christophe BIERNACKI, Gilles CELEUX et Gérard GOVAERT. “Assessing a mixture
model for clustering with the integrated completed likelihood”. In : IEEE tran-
sactions on pattern analysis and machine intelligence 22.7 (2000), p. 719-725 (cf.
p. 47, 97, 126).

[BCG03] Christophe BIERNACKI, Gilles CELEUX et Gérard GOVAERT. “Choosing starting va-
lues for the EM algorithm for getting the highest likelihood in multivariate Gaus-
sian mixture models”. In : Computational Statistics & Data Analysis 41.3-4 (2003),
p. 561-575 (cf. p. 45, 127).

[Bis06] Christopher M BISHOP. “Pattern recognition”. In : Machine learning 128.9 (2006),
p. 3 (cf. p. 28, 44, 45).

[BJ+06] David M BLEI, Michael I JORDAN et al. “Variational inference for Dirichlet process
mixtures”. In : Bayesian analysis 1.1 (2006), p. 121-143 (cf. p. 53, 135).

[BPZ04] Stefan BLEULER, Amela PRELIC et Eckart ZITZLER. “An EA framework for bicluste-
ring of gene expression data”. In : Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No. 04TH8753). T. 1. IEEE. 2004, p. 166-173 (cf. p. 64).

[BB13] Johannes BLÖMER et Kathrin BUJNA. “Simple methods for initializing the em al-
gorithm for gaussian mixture models”. In : CoRR (2013) (cf. p. 45, 82).

[Bol+08] Tim BOLLERSLEV et al. “Glossary to arch (garch)”. In : CREATES Research paper 49
(2008), p. 1-46 (cf. p. 34).

[Bou12] Marc BOULLÉ. “Functional data clustering via piecewise constant nonparametric
density estimation”. In : Pattern Recognition 45.12 (2012), p. 4389-4401 (cf.
p. 43).

[Bou+18] Charles BOUVEYRON, Laurent BOZZI, Julien JACQUES et François-Xavier JOLLOIS.
“The functional latent block model for the co-clustering of electricity consumption
curves”. In : Journal of the Royal Statistical Society : Series C (Applied Statistics)
67.4 (2018), p. 897-915 (cf. p. 67, 68, 94, 97, 105, 117, 126).

[BJ11] Charles BOUVEYRON et Julien JACQUES. “Model-based clustering of time series in
group-specific functional subspaces”. In : Advances in Data Analysis and Classifica-
tion 5.4 (2011), p. 281-300 (cf. p. 43).

[Bou+20] Charles BOUVEYRON, Julien JACQUES, Amandine SCHMUTZ, Fanny SIMOES et Sil-
via BOTTINI. “Co-Clustering of Multivariate Functional Data for the Analysis of Air
Pollution in the South of France”. In : (2020) (cf. p. 68, 117).

[Bra14] Vincent BRAULT. “Estimation et sélection de modèle pour le modèle des blocs
latents”. Thèse de doct. Université Paris Sud-Paris XI, 2014 (cf. p. 67).

180 Bibliographie



[BL15] Vincent BRAULT et Aurore LOMET. “Methods for co-clustering : a review”. In :
Journal de la Société Française de Statistique 156.3 (2015), p. 27-51 (cf. p. 63).

[BNS11] Krisztian BUZA, Alexandros NANOPOULOS et Lars SCHMIDT-THIEME. “Fusion of
similarity measures for time series classification”. In : International Conference on
Hybrid Artificial Intelligence Systems. Springer. 2011, p. 253-261 (cf. p. 30).

[CC07] Jorge CAIADO et Nuno CRATO. “A GARCH-based method for clustering of financial
time series : International stock markets evidence”. In : Recent Advances in Stochas-
tic Modeling and Data Analysis. World Scientific, 2007, p. 542-551 (cf. p. 34).

[CCP09] Jorge CAIADO, Nuno CRATO et Daniel PEÑA. “Comparison of times series with une-
qual length in the frequency domain”. In : Communications in StatisticsSimulation
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Clustering Multi-Blocs et Visualisation Analytique de Données Séquentielles
Massives Issues de Simulation du Véhicule Autonome

Le développement de systèmes d’aide à la conduite demeure un défi technique pour les construc-
teurs automobiles. La validation de ces systèmes nécessite de les éprouver dans un nombre consi-
dérable de contextes de conduites. Pour ce faire, le Groupe Renault a recourt à la simulation mas-
sive, qui permet de reproduire précisément la complexité des conditions physiques de conduite
et produit une grande quantité de séries temporelles multivariées. Le rôle de l’expert métier est
alors d’explorer ces données pour déterminer précisément les capacités du système d’aide à la
conduite étudié et, si nécessaire, de raffiner sa conception.

Un jeu de données simulées peut contenir jusqu’à plusieurs centaines de milliers de simulations,
décrites par plusieurs centaines de variables. Face à de telles dimensions, le travail du déve-
loppeur requiert une grande expertise, ainsi qu’un travail d’investigation minutieux et chrono-
phage.

L’objectif de cette thèse est de produire des algorithmes et outils d’aide à l’exploration, la structu-
ration et l’analyse de ces jeux de données issues de simulation massive. Basées sur des hypothèses
de construction argumentées, nous proposons trois approches probabilistes de classification non
supervisée de séries temporelles, adaptées à des jeux de données temporelles univariées et mul-
tivariées.

La première contribution de cette thèse est construite sur une hypothèse de construction par scé-
nario, et réalise une classification de séries temporelles univariées par dictionnaire. Partant d’un
modèle existant de segmentation polynomiale par morceaux, cette méthode crée un dictionnaire
de régimes de conduite pour recoder les séries temporelles en phases similaires. Les contribu-
tions suivantes se concentrent sur la classification de jeux de données multivariés par bloc, qui
regroupent les variables en se basant sur leur distribution et leur partitionnement.

La suite des contributions se concentre sur l’analyse de jeux de données multivariés, grâce à des
modélisations multi-blocs qui regroupent les différentes variables en fonction de leur distribu-
tion.

La pertinence de ces contributions est illustrée par des applications issues des cas d’usage indus-
triels Renault : la validation d’un système de freinage d’urgence, d’un système d’aide au maintien
dans la voie, et d’un système d’évitement d’urgence.

Mots-clefs : Classification Non Supervisée, Classification par blocs, Classification Multiple, Séries
temporelles, Modèles de mélange, Modèles Bayésiens Non Paramétriques, Validation de Systèmes
d’Aide a la Conduite.

Keywords : Clustering, Coclustering, Multi-Clustering, Time Series, Mixture Models, Bayesian
Non-Parametric Models, Advanced Driver-Assistance Systems validation.
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