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Chapter 1

Introduction

1.1 Context

Due to the enormous information volume and the continuous interest in research on
various health diseases, the number of medical articles has been increasing over the
years. Nowadays, thousands of institutions and researchers are held to tackle the
Coronavirus (Covid-19) and handle the pandemic situation. We present hereafter
a list of some statistics from over the world that show the huge increase in digital
medical data specifically:

• In 2020, the number of submissions to Elsevier’s journals increased by 58%
between February and May compared to the same period in 2019 (Squazzoni
et al., 2020).

• The number of health articles increased by 92% in 2020, where scientists pub-
lished more than 100,000 articles about the Covid-19 (nature, 2020).

• According to the EMC Digital Universe with Research and Analysis by IDC1,
there was an enormous growth in the global healthcare data between 2013 and
2020. Figure 1.1 shows the difference in data volume between the two years in
exabytes.

• In the first year of its existence, the US National Cancer Institute2 received
between 2016 and 2017 over 4.5 petabytes of data from research institutions.

At present, web sites such as PubMed (for Biotechnology Information, 2018)
from MEDLINE and Dimensions (Solutions, 2021) contain millions of medical texts
coming from different sources such as books, life science journals, and articles. Con-
sequently, it is not possible for a human to read all this information promptly.

1https://www.idc.com/
2https://www.cancer.gov/news-events/cancer-currents-blog/2017/gdc-dave-tools
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Figure 1.1: The growth in global healthcare data between 2013 and 2020

In order to keep up with the rapid progress in the medical domain, doctors and
researchers need to quickly extract relevant information from medical articles to
further develop their research and save more lives. Fortunately, artificial intelli-
gence advancements make this task feasible with the emergence of Automatic Text
Summarization (ATS). The ATS is an active research area in Natural Language
Processing (NLP) whose objective is to automatically produce a summary concen-
trating the most important information from a long source document or a document
collection (Mani, 2001).

The first summarization approaches were extractive, where a summary is built by
identifying relevant pieces of text and concatenating them. The most popular meth-
ods include frequency-based techniques, probabilistic models, and machine learning.
Later, the scientific community moved the research along to abstractive approaches
with the use of deep learning. Here, a summary is built by paraphrasing the text in
a readable and consistent short paragraph.

Despite the evolution in automatic text summarization, an effort is also needed
to automatically assess the quality of generated summaries and thus be able to
compare and improve different ATS systems. Human evaluation is the best reference
to evaluate summaries. However, such a process is expensive in terms of time, money,
and effort. Therefore, the scientific community has developed various extrinsic and
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intrinsic methods to evaluate summaries automatically (Jones and Galliers, 1996).
In an extrinsic evaluation, summaries are assessed within the context of another
task, like answer extraction. In an intrinsic evaluation, summaries are assessed
outside a context, with or without human intervention. Both extrinsic and intrinsic
techniques aim to evaluate some characteristics in the summaries, such as linguistic
quality, content, coherence, and coverage.

In this thesis, we tackle both automatic summarization and automatic evaluation
of summaries. On the one hand, we focus on abstractive summarization that is closer
to how humans write summaries (by understanding the main idea of a text and then
rephrasing it differently). On the other hand, we focus on intrinsic methods to
assess the quality of abstractive summaries that belong to the general domain while
partially relying on human intervention.

1.2 Challenges

Before developing an automatic summarization or evaluation system, many factors
should be taken into consideration. First, the source of evaluation texts: digital doc-
uments can be either absorbed from the web, downloaded from public benchmarks,
or automatically transcribed from an audio source. Consequently, ethical issues
arise regarding the possibility of using these texts without violating the privacy of
concerned parties. Second, the nature of evaluation texts: documents can belong to
different domains such as medicine, news, sports, literature, science, and dialogues.
Consequently, the adequate automatic system is chosen depending on the nature of
texts to summarize, their structure, and length. For instance, the maximum input
sequence length and the maximum length of generated summaries change from one
system to another.

The goal of this thesis is to develop an automatic summarization system that
can handle long input sequences and an automatic evaluation approach to assess
the quality of generated summaries. However, many challenges arise along with text
summarization and summary evaluation. We present some of them in the following
two subsections.

1.2.1 Automatic Text Summarization

In this work, we are interested in the summarization of long medical texts. For this
reason, we adopt deep learning techniques for their ability to generate abstractive



4 Chapter 1. Introduction

summaries from long input sequences. Many deep architectures achieve state-of-
the-art results in various NLP tasks, such as BERT (Devlin et al., 2019), T5 (Raffel
et al., 2020), and PEGASUS (Zhang et al., 2020a). These models are adaptable for
text summarization, but suffer from some limitations related to the complexity of
the summarization task:

• Length of input text - Unfortunately, none of the existing neural-network-based
approaches can read the whole source text for memory explosion issues. To the
best of our knowledge, the maximum input length in literature is 2000 tokens.
It was used by an LSTM-based approach (Cohan et al., 2018) and also by our
proposed approach in this thesis.

• Redundant information - This is one of the main drawbacks of existing summa-
rization approaches, where generated summaries comprise lots of repetitions.
This issue necessitates efficient techniques to avoid repeated n-grams at the
decoding level.

• Choice of output summary - At the decoding stage, the probability of the next
word to predict is based on what was already generated. There are many ways
to predict the next word, either by performing a greedy search (where each time
the word with the highest probability is chosen) or using more sophisticated
searching algorithms such as beam search (where a tree of possible summaries
is explored).

• Computational requirements - Unlike many NLP applications, text summariza-
tion is a difficult task that needs deep networks in order to learn effectively.
The best state-of-the-art results were obtained with pre-trained models. For
instance, the PEGASUS (Zhang et al., 2020a) system from Google was pre-
trained on 1.5 billion articles (of size 3.8 TB). Thus, it is necessary to have
powerful memory and computational resources in order to tackle summariza-
tion effectively.

• Numerical data - One of the major issues related to the summarization of
medical articles is the strong presence of numbers such as medicines concen-
tration, patients’ age, statistics, quantities, and dates. Since the vocabulary
used to train the summarization model is limited (containing the most frequent
terms only), it is hard to retain knowledge about all used numbers and invoke
them correctly in generated summaries. However, this is a serious problem
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because the information presented in medical articles is sensitive and should
be as precise as possible.

• Choice of tokenizer - The role of a tokenizer is to transform a text into a
list of tokens. Depending on each tokenizer, only the most important words
are kept, which could influence the quality of generated summaries. Many
questions arise when cleaning the text before choosing the most convenient
tokenizer. For instance: should we keep the numbers? The linking words? Or
should we simply separate text tokens based on spaces?

1.2.2 Automatic Summary Evaluation

Despite the difficulties related to Automatic Text Summarization, many systems
were developed in the last decade to handle the problem (Zhang et al., 2020a, Co-
han et al., 2018, See et al., 2017). However, it is crucial to assess the quality of
generated summaries in order to be able to improve automatic summarization sys-
tems. Therefore, the Automatic Summary Evaluation domain arises along with
Text Summarization to judge if the summaries generated automatically are com-
pact, meaningful, and/or coherent.

Over time, researchers have proposed several automatic systems that facilitate
the evaluation of generated summaries. However, these systems tackle many chal-
lenges at once, notably:

• Indeterminism - In automatic evaluation, there is no “ideal” summary and no
unique “correct” one. Summaries can be evaluated based on many criteria,
such as their quality, informativeness, and impact on efficiency. Based on each
criterion, an evaluation metric can be useful or not (Mitkov, 2004). Also, the
evaluation quality does not depend only on the automatic system but also on
human competence (in the case where human judgment is mandatory).

• Infairness - When an evaluation approach is based on lexical content, it be-
comes unfair to evaluate abstractive summaries (Lin, 2004). The latter ones
do not necessarily copy words from the original text but rather paraphrase it
using, for example, synonyms and different linguistic forms.

• Dependency - Most of the current abstractive evaluation approaches depend on
human reference summaries (also called gold-standards) (Lin, 2004, Cohan and
Goharian, 2016), where evaluation is made by comparing a candidate summary



6 Chapter 1. Introduction

with many reference summaries. Some researchers worked without the need for
human intervention (Cabrera-Diego and Torres-Moreno, 2018, Torres-Moreno
et al., 2010). However, the correlation with manual methods becomes low in
such cases.

• Evaluation domain - The performance of each system depends on the domain
to which candidate summaries belong. For example, some approaches are
effective for the biomedical domain (Cohan and Goharian, 2016), while others
are more accurate for the news domain (Cabrera-Diego and Torres-Moreno,
2018). Our proposed approach is more suitable to evaluate summaries from
the general domain.

Since the automatic text summarization and the automatic summary evaluation
cannot be dissociated, the challenges are heavier since there are many aspects to
handle in order to provide a summarization system that is as accurate as possible.

1.3 Contributions overview

The main contribution of this thesis is the design and development of an automatic
abstractive summarization system of long medical texts (called HazPi below). To
evaluate such a system, we need an efficient evaluation approach that provides a
reasonable estimation of the quality of generated summaries. At the beginning of
the thesis, the most popular evaluation approach was ROUGE (Lin, 2004). Unfortu-
nately, this method is biased by lexical similarities between candidate and reference
summaries, making it unfair to evaluate abstractive summaries that most probably
contain words that exist neither in the original text nor in the reference summaries.
This problem was solved later by SERA (Summarization Evaluation by Relevance
Analysis) (Cohan and Goharian, 2016), which is based on a relevance analysis to
evaluate both extractive and abstractive summaries fairly. However, it was designed
to be usable in a specialized biomedical domain only. For this reason, it achieved
higher correlations than ROUGE for the biomedical domain.

We departed from this motivation and decided that it is annoying to use an
evaluation method specific to one domain, especially if future researchers want to
use HazPi to summarize texts from other domains than medical. It would be more
interesting to have an evaluation method that is usable in a general domain. For
this reason, our second contribution is an improvement of the SERA approach that
we call wikiSERA. wikiSERA is an efficient adaptation of SERA to the automatic
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evaluation of abstractive summaries that belong to the general domain. We present
in this section a brief overview of our contributions in both summarization and
evaluation domains.

1.3.1 Automatic Text Summarization

To tackle the text summarization task, we use deep learning models, more precisely
Transformers Neural Networks (Vaswani et al., 2017). However, two main problems
occur with the ATS task in deep architectures: the first one is the training time
model. Depending on the number of available GPUs, this phase could take from
few days to few weeks, even with transformers’ ability to process sequential input
parallelly. The second one is the size of the encoded document (i.e., input sequence
length). With the birth of deep learning, the length of the input sequence fed
into the model has been significantly reduced compared to extractive predecessor
systems from the 2000s (García Flores et al., 2009). For example, some LSTM-
based summarization systems (Cohan et al., 2018, See et al., 2017) truncate the
source document to 2000 and 400 tokens, respectively. Alternatively, the maximum
input length for a Transformer-based NTS system is 1024 tokens (Zhang et al.,
2020a). However, scientific articles are much larger. For instance, the biomedical
dataset built by Cohan et al. (2018) has, on average, 3016 tokens in each article. To
handle these problems, we propose two improvements to the original Transformer
model that allow a faster training of the network while increasing the input document
size for summarization without penalizing the quality of generated summaries.

Our approach (calledHazPi) consists of two stages. In the first stage, we propose
to modify the transformer neural network architecture to read longer sequences of
text by using four input encoders instead of one. Contrarily to existing Transformer-
based approaches that achieve high performance by reading up to 512 input tokens,
HazPi can read up to 2000 tokens of the input text while improving summary
quality and reducing execution time by more than half. The sequence size used by
our system is closer to the average document length of 3016 tokens of biomedical
articles (Cohan et al., 2018).

In the second stage, we propose an extra-training phase (called End-Chunk Task
Training) inspired by the end-task training from Hoang et al. (2019). Instead of
presenting the whole reference summary to the decoder, we feed chunks of summary
tokens progressively until consuming the whole sequence.

Finally, we conduct experiments where we pre-train our modified transformer
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neural network using a large medical dataset. We build this dataset (called CovMed)
by combining medical articles from PubMed (for Biotechnology Information, 2018)
corpus and Kaggle’s Covid-19 dataset (House, 2020).

The code of our approach is available in the following GitHub repository: https:
//github.com/JessicaLopezEspejel/HazPi/.

1.3.2 Automatic Summary Evaluation

As mentioned above, developing an automatic summarization system is an interest-
ing but not easy task. To successfully evaluate the performance of HazPi, we need
to have a robust automatic evaluation approach well suited for abstractive summa-
rization. ROUGE (Lin, 2004) is one of the most famous automatic approaches that
rely on human reference summaries. This metric provides a high correlation with
manual methods, mainly in extractive summarization. However, ROUGE is not fair
when evaluating abstractive summaries since it is based on lexical overlaps between
tokens and phrases in the reference summary and the generated one (Cohan and
Goharian, 2016, Lu and Jin, 2020). To overcome this issue, SERA (Cohan and Go-
harian, 2016) was proposed as an alternative to evaluating abstractive summaries
in the biomedical domain. SERA focuses on the semantic content of documents
through an information retrieval approach, leading to efficiently assessing the qual-
ity of summaries that are lexically different but express the same idea.

The SERA approach is based on a search engine to establish a content-relevance
analysis between a candidate summary generated by an ATS system and reference
summaries written by humans. SERA uses as an input to the search engine both
candidate and reference summaries and a pool of documents that constitute the
index. The role of the search engine is to search the queries in the index and
return a list of ranked documents based on their similarities with input summaries.
Afterward, a score is attributed to the candidate summary based on an intersection
between the two sets of documents related to the queries. Unfortunately, despite
the effectiveness of SERA in abstractive summary evaluation, it is focused on the
biomedical domain only, making it so restrictive to evaluate summaries from other
domains. We decided to study SERA and adapt it to evaluate summaries from the
general domain by proposing a generic metric that we called wikiSERA in Chapter 3.
wikiSERA is helpful to evaluate automatic summarization systems in the medical
domain and other domains.

To analyze SERA in more detail, we conduct a POS Tag study on many cor-

https://github.com/JessicaLopezEspejel/HazPi/
https://github.com/JessicaLopezEspejel/HazPi/
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pora belonging to different domains: PubMed (biomedical dataset (Cohan et al.,
2018)), AQUAINT-2 (a dataset specialized in news (Graff, 2002)), and Wikipedia
(general-domain dataset). Our study confirmed the observation of Kieuvongngam
et al. (2020) regarding the fact that, in generated summaries, nouns represent more
accurately the information conveyed by the original abstracts than other POS tags.
We also noticed that percentages of verbs and adjectives are higher in AQUAINT-2
(news) and Wikipedia (general domain) than in the PubMed dataset.

Based on the POS Tag study described above, we propose wikiSERA, an im-
proved version of SERA. We redefine query reformulation by considering nouns,
verbs, and adjectives as inputs to the search engine. This query reformulation helps
take out SERA from evaluating biomedical summaries to evaluating summaries from
the general domain.

We conduct extensive experiments to assess the merits and limitations of SERA,
wikiSERA, as well as many influential evaluation approaches from the literature.
Results show that wikiSERA achieves competitive results compared to SERA while
outperforming in some cases ROUGE, the lexical-based evaluation approach.

The main contributions are:

1. We re-implement SERA from scratch and propose wikiSERA, an improved
version of SERA that is domain-independent.

2. We conduct extensive experiments with two large corpora: AQUAINT-2 (news
corpus) and Wikipedia (general domain corpus). We compare wikiSERA
against several state-of-the-art approaches and provide a comprehensive study
of our experiments. Results show the effectiveness of our approach.

3. We make the code and Wikipedia dataset publicly available to facilitate future
research. Note that AQUAINT-2 is not open source, and we cannot distribute
it. However, obtained results could be helpful in academic research.

The code and data of our approach are available in the following GitHub repos-
itory: https://github.com/JessicaLopezEspejel/wikiSERA/.

 https://github.com/JessicaLopezEspejel/wikiSERA/
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1.4 Thesis plan

This work is organized as follows:

• Chapter 2. First, we explain in detail the difference between different categories
of automatic text summarization approaches (extractive vs. abstractive, mono-
document vs. multi-document, generic vs. query-based). Second, we describe
the most popular datasets used by the scientific community for automatic
text summarization and summary evaluation. Third, we present the state-of-
the-art approaches while trying to make room for all types of summarization
systems. Fourth, we provide an overview of various works from the literature
and provide a comparative table of their obtained results. Finally, we describe
the most influential automatic evaluation methods that rely or not on human
references.

• Chapter 3. First, we introduce the automatic evaluation domain with a brief
reminder of works from the literature. We focus on SERA, a method that as-
sesses the quality of automatically generated summaries from the biomedical
domain by comparing them to a set of reference summaries. This method is
the basis of our contribution. Second, we present wikiSERA, our improved
version of SERA, and an open-source system for evaluating summaries from
the general domain. We explain how wikiSERA improves the query reformu-
lation strategy with a Part-Of-Speech analysis of many corpora from different
domains. Finally, we compare our approach with many works from literature
and provide a comprehensive discussion of obtained results and some abla-
tion studies. Extensive experiments related to this chapter are presented in
Appendix A.

• Chapter 4. First, we introduce the automatic summarization domain while
focusing on the limitations of current ATS systems. Second, we present our
main contribution (HazPi). It is based on increasing the number of input de-
coders for faster text processing and better memory usage. Third, we present
our second contribution concerning the second stage of training in which we
encourage a relatively fast and progressive training of output summaries. Fi-
nally, we assess the performance of our approach with and without pre-training
on a large dataset. We use as metrics the ROUGE approach, based on lexical
overlaps, and both SERA and wikiSERA that are focused on the semantic
content of summaries.
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• Chapter 5 - We finally discuss all chapters of the thesis briefly while presenting
the main conclusions retained from this research. We finish the manuscript
with an open window for future research in automatic text summarization and
summary evaluation.

We first present our contribution in evaluation because we use it later to assess
the quality of summaries generated by our proposed summarization approach.





Chapter 2

State of the art

2.1 Introduction

Automatic Text Summarization (ATS) is currently an active research area in Natural
Language Processing (NLP). ATS task consists in capturing the most important
information from a source text using an automatic system and reproducing it in
the form of a shorter text. There are many ways to categorize Automatic Text
Summarization systems:

1. Summarization can be either extractive or abstractive. Extractive approaches
select the most relevant sentences from a source text and concatenate them to
get a summary. The abstractive ones paraphrase the source text.

2. Summarization can be either mono-document or multi-document. Mono -
document-based approaches summarize one text at a time, while multi-document-
based ones summarize the content of multiple documents in one short para-
graph.

3. Summarization can be either generic or query-based. Generic summaries ag-
gregate information from the whole document, while query-based ones answer
a specific question related to the document.

Over the years, researchers have developed several techniques to get automatic
summaries. These techniques tackled complex problems, such as coherence and
repetitions. The first approaches worked on extractive summarization, assuming
that the most important words are repeated most frequently (Luhn, 1958, Sparck,
1972). The most important such methods include probabilistic models like, for in-
stance, Probabilistic Context-Free Grammars (PCFG) (Rahman et al., 2001, Knight
and Marcu, 2002), Markov Models, and Hidden Markov Models (HMM) (Chen and
Withgott, 1992, Jing and McKeown, 1999, Conroy and O’leary, 2001).
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Automatic summarization evolved later, and extractive based methods relied
on machine learning to tackle ATS as a classification problem, where some tech-
niques were used, such as Naive Bayes (Thu, 2014, Ramanujam and Kaliappan,
2016), Clustering (ShivaKumar and Soumya, 2015), and Support Vector Machine
(SVM) (Schilder and Kondadadi, 2008, Begun et al., 2009). However, work was still
needed to improve the automatic generation of summaries, especially with the new
challenges that arose along with the emergence of neural networks.

Deep Neural Networks (DNNs) made it possible to generate abstractive sum-
maries with the use of sequence-to-sequence models, such as Recurrent Neural Net-
works (RNNs) of type Long Short-Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997), and Gated Recurrent Unit (GRU) (Cho et al., 2014). A typical
sequence-to-sequence model can be seen as an encoding-decoding mapping from
an input to an output sequence (Shaikh, 2018).

Researchers worked on improving recurrent neural networks for around two
decades by introducing novel learning-rate scheduling functions, attention models,
beam search (explained in Subsection 2.4.6.4), and modifications of the original neu-
ral networks (Cheng and Lapata, 2016, Zhenpeng, 2016, See et al., 2017, Nallapati
et al., 2017). Alternatively, Vaswani et al. (2017) introduced Transformers, a novel
neural network based on the attention mechanism.

Transformers outperformed state-of-the-art approaches released before 2017 and
inspired several language models usable for automatic summarization, such as BERT
(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019),
MASS (Song et al., 2019), UniML (Dong et al., 2019), and T5 (Raffel et al., 2020).

Meantime, researchers tackled challenges related to DNNs such as long input
sequences, repetitions, and coherence of generated summaries. However, the lack
of high-quality datasets limited the development of the learning methods. For this
specific reason, long-text datasets were recently introduced, such as scientific ar-
ticles (Cohan et al., 2018), newswires (Fabbri et al., 2019, Hermann et al., 2015,
Nallapati et al., 2016), and medical corpora (Dernoncourt and Lee, 2017).

When summaries are generated automatically, their quality needs to be assessed.
The evaluation can be done automatically or by humans. Manual evaluation is time
and money expensive. Hence, researchers have developed two types of automatic
evaluation systems: (1) those where human references are mandatory, and (2) those
where the evaluation is fully automatic and does not rely on any human intervention.

This chapter is organized as follows: First, we explain the difference between
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automatic text summarization categories. Second, we describe datasets and corpora
used whether in summarization or evaluation domains. Third, we present the most
important works of state of the art in summarization and provide a quantitative
comparison between some of them. Finally, we present the most influential works in
automatic summary evaluation.

2.2 Automatic Summarization

It has been more than fifty years since the first research efforts were made in auto-
matic text summarization. Since then, the amount of data has increased dramati-
cally and so did the need for concise and widely available summaries (Kumar et al.,
2016). In the following subsections, we expose different automatic summarization
methods.

2.2.1 Extractive vs. Abstractive Summarization

We can distinguish between two families of summarization methods: extractive and
abstractive. Extractive summarization is to “crop out and stitch together portions
of the text to produce a condensed version of a text” (Rush et al., 2015). The
summary is created by identifying and subsequently concatenating the most salient
text units in a document (Cheng and Lapata, 2016). The pioneering work in these
summaries was done by Luhn (1958). He used statistical information derived from
word frequency and distribution to compute a relative measure of significance, first
for individual words and later for sentences. Another important automatic text
summarization system was done by Edmundson (1969). He used three methods
for determining sentence weights: cue method, title method, and location method.
Alternatively, Kupiec et al. (1995) extracted sentences based on many weightening
heuristics. Extractive automatic summarization methods were used for decades.
However, they often lead to problems in the overall coherence of the summary.

Abstractive summarization consists of generating a summary using novel words
to explain the main idea of an article (Nallapati et al., 2016). To summarize is not
only to extract chunks of text from original documents. It also refers to paraphras-
ing, generalizing, and incorporating new words. The biggest challenge for abstractive
summarization is the text representation problem (Lin, 2009). For this reason, this
type of automatic summarization has evolved from cognitive psycho linguistics and
symbolic artificial intelligence to the use of neural networks and sequence models.
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Abstractive summarization could have more similarities to the human summariza-
tion process than the extractive one (Chauhan, 2018).

2.2.2 Mono- vs. Multi-document Summarization

Automatic summarization techniques can be applied to one or more documents. The
case of a single document was one of the first to emerge. Mono-document summa-
rization relies on features like term frequency, sentence position, and stigma words.
The multi-document case is more complicated to handle than the mono-document
one because problems may arise in the summary or redundant information’s co-
herence. However, this case has become more relevant given the growing amount
of information and the need to summarize multiple documents in many domains:
medical texts (Sarkar, 2009), news documents (Kumar and Salim, 2012), financial
investments (Cardinaels et al., 2018), and conversations to improve the quality of
the company’s products and services (Tamura et al., 2011).

2.2.3 Generic vs. query-based Summarization

Text summarization can be generic or query-based. Generic summarization provides
a summary of all the information contained in a document. Query-based summariza-
tion recovers partial information from a document based on a specific information
need, like in a search engine where the answer to the question is presented with a
predefined number of words (Vanetik and Litvak, 2017).

Before presenting state-of-the-art approaches, we present in the next section the
most popular datasets and corpora used in automatic summarization and automatic
evaluation of summaries.

2.3 Datasets for Automatic Summarization

Over the years, many datasets were built in Natural Language Processing to work
on automatic summarization. One of the most important events is DUC (Document
Understanding Conferences) (NIST, 2014). DUC was an international competition
where the research community proposed novel methods to tackle NLP challenges,
such as evaluating automatic summaries. These methods take into account reference
summaries written by humans. This competition was held from 2001 to 2007, where
each year, research groups used different corpora. In the next paragraph, we will
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describe the editions of DUC.

DUC01 contains 147 document-summary pairs where the summaries are designed
for generic single-document extraction. DUC02 contains 567 document-summary
pairs. The summaries are also for generic single-document extraction. DUC 2003
uses a dataset for automatic summarization that consists of 500 news articles from
the New York Times and Associated Press Wire services. Each summary has four
corresponding human reference summaries, consisting of 624 document-summary
pairs. DUC 2004 has in the automatic summarization task 500 news pairs of articles
and summaries from the New York Times (NYT) (Sandhaus, 2008) and the Asso-
ciated Press Wire services. Each summary is associated with four human reference
summaries. DUC 2006 contains 50 topics. Each topic is composed of 25 relevant
documents from the AQUAINT corpus (Consortium, 2008). Documents belong to
the news field and are mainly taken from the Associated Press, New York Times
(1998-2000), and Xinhua News Agency (1996-2000). DUC 2007 (Over et al., 2007) is
a dataset that aims to tackle two tasks. Having 25 documents in each of the 45 top-
ics about news (Associated Press, New York Times (1998-2000), and Xinhua News
Agency (1996-2000)), the main task is about question-answering based summariza-
tion, and the second one is about multi-documents short summary generation.

Another well-known dataset comes from TREC (Text REtrieval Conference)
(NIST, 2020). TREC is a dataset for question classification. There are two TREC
versions: with six classes (TREC-6) and fifty classes (TREC-50). Both of them have
5,452 training examples and 500 test examples.

The first attempt to get abstractive summaries in a sentence level was developed
by Rush et al. (2015) using Gigaword (Napoles et al., 2012) dataset, which contains
around 9.5 million news articles and four billion words. The articles are collected
from seven sources: Agence France-Presse, Associated Press Worldstream, Central
News Agency of Taiwan, Los Angeles Times/Washington Post Newswire Service,
Washington Post/Bloomberg Newswire Service, New York Times Newswire Service,
and Xinhua News Agency. Independently, New York Times (NYT) (Sandhaus, 2008)
contains news articles from January 1st, 1987, to June 19th, 2007, from the New
York Times (NYT). NYT consists of over 1.8 million articles. However, the library’s
scientists wrote over 650,000 article summaries. According to Cohan et al. (2018),
the average number of words in the documents is 530, and in the abstracts is 38.
Moreover, Gigaword inspired GIGA-CM (Zhang et al., 2019b). It is a database built
from the English Gigaword dataset. The training/validation split is taken from the
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CNNDM dataset, it contains 6,626,842 documents and 2,854 million words.

The scientific community decided to get abstractive summaries at the whole text
level rather than at the sentence level. For instance, Hermann et al. (2015), Nallapati
et al. (2016) introduced CNN/DailyMail News dataset. It is built from online news
articles. Following Nallapati et al. (2016), there are 287,226 training pairs, 13,368
validation pairs, and 11,490 test pairs. The average number of tokens in the articles
is 781, and in the abstracts is 56.

When Transformer neural networks emerged, many datasets did as well. For
instance, Raffel et al. (2020) introduced the T5 model and the C4 dataset. It is a
colossal and cleaned version of Common Crawl’s web crawl corpus. It consists of
350 million of web-pages (750GB). More details about this dataset can be found on
the TensorFlow (2020) website. Zhang et al. (2020a) used HugeNews to pre-train
their model. HugeNews is a news collection corpus that contains 1.5 billion articles
(3.8TB) from 2013-2019. It includes datasets such as XSum (Narayan et al., 2018a)
and CNN/Daily Mail (Hermann et al., 2015). The news articles were acquired from
news websites and blogs. Fabbri et al. (2019) introduced Multi-News dataset. It
is a large-scale news dataset for multi-document summarization. It contains 56,216
news articles and model summaries written by professional editors.

Other well-known datasets are BillSum (Kornilova and Eidelman, 2019), XSum
(Narayan et al., 2018a), NEWSROOM (Grusky et al., 2018), and WikiSum (Liu
et al., 2018). BillSum is a dataset collected from the Congressional Research Service
(CRS). It consists of three parts: U.S. training bills, U.S. test bills, and California
test bills. BillSum contains 22,218 U.S. Congressional bills. Each U.S. bill has a
human-written summary from the Congressional Research Service (CRS). XSum
(Extreme Summarization) contains 226,711 news article-summary pairs collected
from British Broadcasting Corporation (BBC) between 2010 and 2017. A summary
is a single sentence that answers the question "What is this article about?" written
by the article’s authors (Narayan et al., 2018a). NEWSROOM is a dataset that
contains 1.3 million articles and human-written summaries. Authors and editors
wrote summaries in NEWSROOM from 38 major news publications. The authors
collected the dataset from search and social media metadata between 1998 and
2017. WikiSum is a dataset from Wikipedia whose objective is to generate articles.
It contains 2,332,000 articles and is made from two subsets of documents. The first
one is taken from cited sources, and the second one is taken from web search results.

Over the years, researchers have been interested in the scientific domain whose
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characteristics are different from that of the general domain. For instance, scien-
tific texts are longer than news ones and contain specialized terms and keywords.
Examples of such medical datasets include Ziff–Davis and PubMed 200k RTC (Der-
noncourt and Lee, 2017). Ziff–Davis corpus is a collection of newspaper articles
announcing computer products. Some of the articles in the corpus are paired with
human-written abstracts. PubMed 200k is a dataset for classifying sentences in
medical abstracts. A label is assigned to each sentence’s of an abstract, depending
on the sentence role: background, objective, method, results, or conclusion. The
authors collected the abstracts from the PubMed website in 2016, which belong to
the RTC (Randomized Controlled Trials). The dataset contains 195,654 abstracts.

A couple of years later, Cohan et al. (2018) introduced two datasets. The first
one is arXiv, a dataset of long scientific papers collected from the arXiv website. It
consists of 215K documents, where the average number of words in the documents
is 4,938, and the average number of words in the abstracts is 220. The second is
the PubMed dataset. It contains long documents with discourse information. The
abstracts of the articles are used as gold summaries. The dataset consists of 133K
documents, having an average of 3,016 words per document and 203 words per
abstract. Another scientific dataset is Multi-XScience (Lu et al., 2019), a multi-
document abstractive summarization dataset inspired by XSum corpus. It consists
of 40,528 scientific articles. The dataset is built from Microsoft Academic Graph
(MAG) (Sinha et al., 2005) and arXiv (arXiv, 2021).

Besides the scientific datasets, researchers introduced corpora about patents,
kitchen recipes, opinions from users, and email messages such as BIGPATENT
(Sharma et al., 2019), Reddit TIFU (Kim et al., 2019), WikiHow (Koupaee and
Wang, 2018), and AESLC (Zhang and Tetreault, 2019). BIGPATENT consists of
1.3 million U.S. patent documents with human-written abstractive summaries. The
patent description is the input, and the patent’s abstract is the gold summary. The
documents are collected from Google Patents Public Datasets. Reddit TIFU dataset
consists of 122,933 posts published from January 2013 to March 2018 in the online
discussion forum "Reddit". Posts are source texts and have a corresponding long
or short summary written by the same user. WikiHow is an abstractive dataset
that contains 204,004 articles and summaries written by humans. The authors col-
lected the dataset from the online WikiHow knowledge base. The articles describe
a procedural task about various topics from 20 categories. AESLC is the annotated
version of the Enron dataset (Klimt and Yang, 2004). It is a collection of email



20 Chapter 2. State of the art

messages from employees in the Enron Corporation. AESLC uses the email body as
the source text and the email subject line as the gold summary. Only emails with
at least three sentences and 25 words in the email body are considered. Therefore,
the dataset contains 18,302 pairs, where humans evaluate 500 samples.

Once we reviewed the most popular corpora by the scientific community, we
present the automatic text summarization approaches in the state of the art in the
following section.

2.4 Methods for Automatic Summarization

2.4.1 Frequency Based Approaches

Luhn (1958) was one of the first to work on automatic summarization. He assumed
that the most important words are repeated most frequently in a text and can be
used to build the summary.

2.4.1.1 Word Probability

This technique consists of counting the number of times each word appears in the
document and then computing its probability as follows:

f(w) =
n(w)

N
(2.1)

where:

• n(w) is the frequency of the word w

• N is the total number of words in the document

A weight can also be attributed to a sentence Sj as following:

weight(S) =

∑
w∈S f(w)

|{w|w ∈ S}|
(2.2)

2.4.1.2 TF-IDF

This approach is a product of two terms TF × IDF
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• TF (Term-Frequency) is the number of times that a term appears in the doc-
ument. According to Kumar et al. (2016), TF is defined as following:

TF (t, d) =
ft,d∑

t′∈d
ft′,d

(2.3)

where ft,d is the frequency of the term t in document d.

• IDF (Inverse Document Frequency) was proposed for the first time in 1972 by
Sparck (1972). It attenuates the weight of terms that appear very frequently
in documents and increases the weight of terms that occur rarely. IDF is
defined as follows:

IDF (t,D) = log
|D|

|{d ∈ D : t ∈ d}|
(2.4)

where |D| is the total number of documents and |{d ∈ D : t ∈ d}| is the
number of documents that contain the term t.

Therefore:

TF − IDF (t, d,D) = TF (t, d)× IDF (t,D) (2.5)

The first works in summarization were based on TF −IDF such as Luhn (1958).
Over time, TF − IDF was included in other complex techniques. For instance,
Erkan and Radev (2004) worked on getting extractive summaries. They compute
the centrality of each sentence in the text. We can compute the sentence centrality
in terms of the centrality of the words contained by each sentence. The words’
centrality is related to the centroid set of documents. A threshold of TD − IDF

determines the salience of each word.

2.4.2 Feature Based Approaches

One way to determine a sentence’s relevance is to identify features that reflect the
importance of the sentence. According to Kumar et al. (2016), the following features
are essential to determine the most relevant sentences: (1) Title/Headline Word, (2)
Sentence Position, (3) Sentence Length, (4) Term Weight, and (5) Proper Noun.
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2.4.3 Probabilistic Models

A probabilistic language model defines a probability distribution on the set of char-
acters or strings based on a corpus analysis (text collection). Each element has an
associated probability, and these probabilities are learned from a corpus. We present
three probabilistic models: Context-Free Grammars, Markov Models, and N-gram
models.

2.4.3.1 Probabilistic Context Free Grammars

Probabilistic Context-Free Grammars (PCFG) are a probabilistic model of syntax
for tree structures. A context-free grammar consists of (Manning and Schutze, 1999):

• A set of terminals wk, where k = 1, ..., V and V is the vocabulary size

• A set of non-terminals N i, where i = 1, ..., n, and n the the number of non-
terminals

• A designed start symbol N1

• A set of rules {N i → ζj}, where ζj is a sequence of terminals and non-terminals

• A corresponding set of probabilities on rules such that Vi
∑
P (N i → ζj) = 1

The sentence to parse is represented as a sequence of words w1, .., wm and wab

is a subsequence wa...wb. Using the rules of grammar, we can derive sentences and
represent this derivation through a tree (Figure 2.1).

Figure 2.1: Derivation tree built from a Context Free Grammar

The probability of a sentence (according to a grammar G) is computed by Equa-
tion 2.6 (Manning and Schutze, 1999):

P (w1...wm) =
∑
t

P (w1...wm, t) (2.6)
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where w1...wm is a sentence to be parsed and t is a parse tree of the sentence.
We can use a grammar to generate text or analyze (parse) it. PCFGs have many

advantages, such as their effectiveness for grammar induction and their ability to
avoid some problems such as grammatical mistakes and disfluencies. However, they
suffer from some disadvantages like, for instance, the lack of sensitivity to lexical
information and structural frequencies.

Rahman et al. (2001) worked on automatic summarization of web pages. They
used PCFG to define syntactic structures, analyze and understand the content,
and determine its importance. Alternatively, Knight and Marcu (2002) focused on
sentence compression. They developed a probabilistic noisy-channel model that used
PCFG to assign probabilities to a tree.

2.4.3.2 Markov Model

Markov Model is a stochastic model in which an unknown (hidden) future value is
predicted in a Markov sequence (chain). The value to predict depends only on the
immediate previous value. X is a Markov chain if X = (X1, ..., XT ) is a sequence
of random variables that take values in a finite set S = {s1, ..., sN} and fulfill the
following properties describe in the Equations 2.7 and 2.8 (Manning and Schutze,
1999):

• Limited Horizon

P (Xt+1 = sk|X1, ..., Xt) = P (Xt+1 = sk|Xt) (2.7)

• Time invariant (stationary)

P (Xt+1 = sk|X1, ..., Xt) = P (X2 = sk|X1) (2.8)

where P is the probability.

Example: Given the sentence: "The dog is big". The time invariant is: P (dog|The),
P (is|dog) and P (big|is), because the order of the words does not change.

We can represent Markov Models as probability equations or as state diagrams.

2.4.3.3 Hidden Markov Models

The original goal of Hidden Markov Models (HMMs) was to model the letter se-
quences in Alexander Pushkin’s poetry in 1913. The model’s state sequence is
unknown in an HMM, but only some of its probabilistic functions.
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Following the notation of Manning and Schutze (1999), we consider the general
form of an HMM as

(S,K, II, A,B)

where S and K are the set of states and the output alphabet, respectively. II, A,
and B are the probabilities of the initial state (II = {πi}, i ∈ S), state transitions
(A = {aij}, i, j ∈ S) and symbol emissions probabilities (B = {bijk, i, j ∈ S, k ∈ K}),
respectively.

To find the best state sequence, it is possible to use the Viterbi algorithm (Equa-
tion 2.9) (Manning and Schutze, 1999), which can help in computing the most likely
state sequence.

δj(t) = maxx1...xt−1P (X1...Xt−1, o1, ..., ot−1, xt = j|µ) (2.9)

where:

O = o1, ..., oT is the observation sequence.

HMMs are a robust tool when combined with efficient algorithms such as Expec-
tation - Maximization (EM). Besides, they can be used to generate parameters for
linear interpolation of n-gram models.

Chen and Withgott (1992) applied Hidden Markov Models on speech summariza-
tion. Their method is based on identifying emphasized speech and then using prox-
imity measures to select summarizing fragments. Alternatively, Jing and McKeown
(1999) proposed an algorithm based on HMM that decomposes human-written sum-
mary sentences. The goal is to determine the relations between sentences in human-
written summaries and sentences in the original text. Also, Conroy and O’leary
(2001) proposed a method for text summarization that considers three features: (1)
the position of the sentence in the document (using Hidden Markov Model), (2) the
number of terms in the sentence, (3) the probability of the terms. The method aims
to compute the overall sentence probability and decide if it belongs to the summary.

2.4.3.4 N-gram models

N-gram models are Markov Models. As mentioned earlier, Markov models are used
to predict a future value in a sequence. We can predict the next word in a sequence
using Equation 2.10 (Russell and Norving, 2010):

P (w1, ..., wn) = P (w1)P (w2|w1)...P (wn|w1, ..., wn−1) (2.10)
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These probabilities are learned from a corpus.

Unigram Model As its name indicates, we can deduce each word’s probability
independently (Equation 2.11).

P (w1...wn) =
∏
i

P (wi) (2.11)

with P (wi) = N(wi)
N

where N(wi) is the number of times the word wi appears in the corpus, and N
is the total number of words (including repetitions).

Bigram Model We can compute the probability of a word knowing the previous
one but independently of the other words (Equation 2.12).

P (w1....wn) = P (w1)
∏
i

P (wi+1|wi) (2.12)

with P (wj|wi) =
N(wiwj)

N(wi)

where N(wiwj) is the number of occurrences of the bigram (consecutive words
wiwj) in the corpus, and N(wi) is the frequency of the word wi in the corpus.

Trigram Model In a Trigram model, we can get the probability of a trigram
(three consecutive words) by computing the probability of a word knowing the two
immediate preceding ones (Equation 2.13).

P (w1...wn) = P (w1)P (w2|w1)
∏
i

P (wi+2|wi+1, wi) (2.13)

N-gram Model The generalization of the previous models is formed by n con-
secutive words in the corpus. In these probabilistic models, except for the unigram
model, lexical-contextual relationships are taken into account.

2.4.4 Smoothing in n-gram models

The main disadvantage of N-gram models is their disability to handle Out-Of-
Vocabulary (OOV) terms. When a word does not belong to the training set vocab-
ulary, the language model associated with it tends to have zero probability, causing
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the whole product’s cancellation. The goal of smoothing techniques is to avoid zero
probabilities produced by unseen n-grams.

2.4.4.1 Laplace’s law

The most straightforward smoothing technique consists of adding 1 to the numer-
ators of the individual probabilities and appropriately compensating the total sum
by increasing the denominators (Manning and Schutze, 1999).

• Smoothing Unigram Models

P (w) =
N(w) + 1

N + V1
(2.14)

where V1 is the total number of words in the corpus.

• Smoothing Bigram Models

P (wj|wi) =
N(wiwj) + 1

N(wi) + V2
(2.15)

where V2 is the total number of bigrams in the corpus.

• Smoothing Trigram Models

To compute trigrams probability, we use a combination between bigram and
unigram (Equation 2.16).

P (w3|w1, w2) = λ3P3(w3|w1, w2) + λ2P2(w3|w2) + λ1P1(w3) (2.16)

where P1, P2, and P3 are Unigram, Bigram and Trigram probabilities, respec-
tively, and λ1 + λ2 + λ3 = 1.

Villatoro-Tello et al. (2006) represent sentences by word sequences (n-grams).
This approach improved the performance in automatic summarization. However,
considering sentences as a set of n words helps only in extractive approaches.

2.4.5 Machine Learning Approaches

In Machine Learning (ML), extractive automatic summarization can be handled
as a binary classification problem. Each sentence in the text is represented as a
numerical vector before being fed into the model. For each sentence, we associate
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a zero-label (summary sentence) if the sentence belongs to the reference summary
and a one-label (non-summary sentence) otherwise (Kumar et al., 2016).

2.4.5.1 Naive Bayes

Naive Bayes is a classification technique that constructs models by predicting condi-
tional probabilities. Kupiec et al. (1995) are one of the first to apply this algorithm
to the automatic summarization (Equation 2.17). Given a sentence s, its probability
of being included in the summary is:

P (s ∈ S|F1, F2, ..., Fn) =

∏n
i=1 P (Fi|s ∈ S).P (s ∈ S)∏n

i=1 P (Fi)
(2.17)

where F1, F2, ..., Fn are sentences for the classification and S is the summary to
generate.

Ramanujam and Kaliappan (2016) extended the application of the Naive Bayes
algorithm by combining it with the timestamp approach for the automatic summa-
rization of multi-documents. Obtained summaries were better in terms of coherence.

2.4.5.2 Clustering

Clustering is a type of unsupervised learning method. It consists of splitting a set of
objects into non-overlapping groups called clusters (Manning and Schutze, 1999) to
put similar objects in the same group. Clustering requires similarity metrics, which
are often computed at the word level in NLP.

One similarity technique is to use the whole distributional patterns of words to
measure the degree of overlap in the neighborhood distributions of two words.

Following Manning and Schutze (1999), many clustering algorithms can be clas-
sified in two different ways: (1) hierarchical clustering vs. flat clustering and (2)
hard clustering vs. soft clustering. In flat clustering, we set in advance the number
of clusters. However, in hierarchical clustering, we do not pre-define the number of
clusters. In hard clustering, each element belongs to one and only one cluster, which
is not the case for soft clustering.

Aliguliyev (2009) worked on extractive summarization. They proposed a method
based on sentence clustering. According to the content of the cluster, it identifies
the most salient sentences. Similarly, ShivaKumar and Soumya (2015) worked on
extractive summarization where authors generate the document clusters based on
the similarity between the documents. Then, they pick sentences with the best
scores from each cluster and add them to the summary.
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2.4.5.3 Support Vector Machines

Support Vector Machines (SVMs) are supervised algorithms proposed by Kecman
(2005). These models can be used to solve classification and regression problems.
An SVM can predict the new sample’s class from the previous training samples. An
SVM is a model that separates data points into classes by a hyperplane called a
support vector.

An ideal problem for an SVM consists of two classes, that can be separated by
a straight line (see Equation 2.18 and Figure 2.2).

(x1, y1), (x2, y2), ..., (xl, yl), x ∈ IR2, y ∈ {+1,−1} (2.18)

Figure 2.2: Linear splitting of a 2-dimensional set using a Support Vector Machine

When it comes to nonlinear classifiers, advanced algorithms can be used, such
as Euclidean space and Hilbert space (also known as maximum margin classifiers),
that can make an optimal separation.

Schilder and Kondadadi (2008) worked on query-based multi-document summa-
rization using SVMs to rank all sentences in the topic cluster. The summary is then
constructed by concatenating sentences with high scores. Similarly, Begun et al.
(2009) worked on automatic text summarization using SVMs. To train their model,
the authors extracted features from the text, such as the sentence’s position, the
centrality of the sentence, and the sentence’s resemblance with the title.

2.4.6 Deep Learning approaches

In the following sections, we describe some ATS approaches based on deep learning.
The latter refers to neural networks with several layers (dozens to hundreds).
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2.4.6.1 Encoder-decoder models

Sutskever et al. (2014) introduced sequence-to-sequence models that aim to map in-
put tokens to output tokens. The encoder-decoder model is a way of using Recurrent
Neural Networks (RNNs, explained in Subsection 2.4.6.2) for sequence-to-sequence
problems.

A sequence-to-sequence model has three components: an encoder, an inter-
mediate (encoded) vector, and a decoder. We define each one of them as fol-
lows (Kostadino, 2019):

Encoder - is a stack of many recurrent neural networks that takes as input
the text to summarize.

Encoded vector - (also called context vector) is the output of the encoder
and the input of the decoder.

Decoder - is also a stack of many recurrent neural networks. The decoder
receives the encoded vector and the gold standard and produces a summary.

In the case of translation and summarization, input and output sequences have
possibly different lengths. For instance, when translating the sentence "I like it"
from English to Spanish, "me gusta", the 3-tokens English phrase is the encoder’s
input, and the 2-tokens Spanish phrase is the decoder’s output (see Figure 2.3).

The emergence of encoder-decoder models improved the state of the art in both
translation and summarization, where there are two relevant sequences. The first
one is the text to translate or summarize, and the second one is the gold standard
(translated text or reference summary).

In the following subsection, we explain recurrent neural networks and their lead-
ing derivatives: LSTMs and GRUs.

2.4.6.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs, presented in Figure 2.4) are deep neural net-
works that take sequential steps to encode and decode an input token by token.

Unfortunately, RNNs cannot process a sequence parallelly. Besides, since the
number of time steps in the RNN corresponds to the number of tokens in the se-
quence, the longest the sequence, the more the RNN takes time to encode it. Also,
long sequences lead to information loss because of the vanishing gradient problem.
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Figure 2.3: Sequence-to-sequence model

The vanishing gradient problem. Like all types of neural networks, we train a
recurrent neural network with the help of a loss function L that is used to optimize
the model’s parameter values. A loss function quantifies the error between the
output predicted by the neural network and the target (Equation 2.19).

L =
∑
i

Li(ŷt, yt) (2.19)

where:

Li is the loss at time step i

ŷt is the target (ground-truth)

yt is the model’s output

Once the loss is computed, we minimize it by back-propagating its gradient
through the RNN layers and also through time. Hence, at each time step, we have
to sum up all the previous gradients, as shown in Equation 2.20.

∂L

∂W
=

T∑
i=0

∂Li
∂W

∝
T∑
i=0

(
y∏

i=k+1

∂hi
∂hi−1

)
∂hk
∂W

(2.20)
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Figure 2.4: RNNs way to handle sequence inputs

where:

W is the weight matrix

T is the total number of time steps

hk is the hidden state at time step k

In Equation 2.20, the contribution of a state at time step k to the gradient of
the entire loss function L, at time step t = T is calculated.

The vanishing gradient problem occurs when the part of the equation highlighted
in red tends to zero quickly. In such a case, it is challenging to learn long data
sequences. Two types of RNNs were born to help tackle the vanishing gradient
problem: LSTM and GRU.

LSTM (Long Short-Term Memory) networks were introduced by Hochreiter and
Schmidhuber (1997). They are used for sequential tasks such as machine translation
and language modeling. These recurrent neural networks can read long sequences
compared to RNNs. Besides, unlike RNNs, LSTMs have more than one hidden state,
which can help avoid the vanishing gradient problem.

In addition to work with long sequences, LSTMs have better control in memory
management than RNNs. This is because an LSTM can select which information to
store, update, delete, or forget through its components: cell state (memory), hidden
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state (used to calculate predictions), input gate, forget gate, and output gate. Figure
2.5 depicts LSTM components and how they are related.

As mentioned before, LSTM has three gates which are Sigma (σ) functions. A
Sigma function takes values from 0 to 1. It represents how much information will
flow. If the gate value is 0, the information will not flow, and if it is 1, the complete
information will flow. The following list describes the functionality of each gate and
its equation.

Figure 2.5: LSTM Neural Network

• Input gate regulates how much information the current input will read into
the cell state.

it = σ(Wixxt +Wihhi−1 + bi) (2.21)

where:

t is the time step

it is the input gate in the tth time step

W is the weight matrix

x is a training sample

h is the hidden state

b is the bias vector

• Forget gate regulates how much information of the previous cell state will
pass into the current cell state.

f̃t = σ(Wfxxt +Wfhht−1 + bf ) (2.22)
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• Output gate regulates how much information of the cell state will pass into
the hidden state.

ot = σ(Woxxt +Wohht−1 + bo) (2.23)

However, the main function of these gates is to update the current cell state and
determine the final hidden state. The cell state is described in the Equation 2.24
while Equation 2.26 describes the final hidden state.

ct = ftct−1 + itc̃t (2.24)

where c̃t is the candidate value (Equation 2.25):

c̃t = tanh(Wcxxt +Wchht−1 + bc) (2.25)

ht = ot tanh(ct) (2.26)

The final output (prediction) is computed using Equation 2.27.

yi = softmax(Wsht + bs) (2.27)

Over the years, researchers have improved LSTM neural networks to get better
predictions. These improvements include bidirectional LSTMs, Beam Search (Graves,
2012, Boulanger-Lewandowski et al., 2013, Sutskever et al., 2014), and the use of
word vectors (Mikolov et al., 2013, Peters et al., 2018).

GRU (Gated Recurrent Unit) was introduced by Cho et al. (2014). GRU is a
simplification of LSTM. In the following, we describe the differences between GRUs
and LSTMs.

• GRU combines the cell state and the final hidden state of an LSTM into a
single hidden state.

• GRUs introduced a reset gate, which is a Sigma function. If the GRU value is
1, all the previous state information is used to compute the current state. If
the GRU value is 0, all data from the previous state is ignored.
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• GRU introduced an update gate, which is a combination of the input gate and
the forget gate. If the update gate value is 0, the current state uses all the
information from the previous state, and nothing from the input is read into
the current state. Inversely, if the update gate value is 1, all the current input
is read, and the previous state’s information is not considered.

Lots of works have used LSTMs and GRUs for automatic summarization. LSTM
was used by Cheng and Lapata (2016) and Zhenpeng (2016). On the one hand, Cheng
and Lapata (2016) used LSTM for the extractive summarization of single documents.
Their decoder chooses output symbols from the document of interest rather than the
entire vocabulary. On the other hand, Zhenpeng (2016) applied a hierarchical LSTM
model to build the sentence representations in abstractive and long summaries.

GRUs were used by Nallapati et al. (2017). The authors proposed SummaRuN-
Ner (simple recurrent network-based sequence classifier) for extractive summariza-
tion and used two-layer bi-directional GRU as the basic building block of their
sequence classifier.

Despite the evolution of LSTM and GRU neural networks, there are still some
drawbacks. For instance, information loss for long sequences and the processing
time of a sequence depends on its length since these kinds of neural networks read
sequences token by token.

In LSTM and GRU neural networks, it is not possible to parallelize sequence
reading. For this reason, a new type of neural network was born to tackle these
drawbacks: Transformers (Vaswani et al., 2017).

2.4.6.3 Transformers

Transformers were introduced by Vaswani et al. (2017) to tackle some problems
that RNNs suffer from, such as loss of information with long sequences and the
vanishing gradient. A Transformer is a deep neural network based on an encoder
and a decoder (Section 2.4.6.1). Figure 2.6 shows a simplified representation of a
Transformer, while Figure 2.7 details the architecture of the encoder and the decoder.

The encoder is a set of six layers, where each layer contains two sub-layers: a
multi-head attention layer and a feed-forward network. The decoder also has six
layers but is different from the encoder in two aspects. First, it has an additional
multi-head attention sub-layer, and second, the self-attention sub-layer is modified
to avoid attending subsequent positions. Each sub-layer of the encoder and the
decoder is followed by a residual connection and a normalization layer. Each layer
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Figure 2.6: Transformers General Architecture

of the encoder and the decoder has a fully connected feed-forward network. All
the sub-layers in the model and the embedding layers produce outputs of the same
dimension (called dmodel).

The first sub-layer of both an encoder and a decoder is the multi-head attention
mechanism (a set of self-attentions). We first start by explaining how the sequence
input flows through a self-attention mechanism, and later we explain how these
self-attention heads are concatenated together.

Given an input sequence, each token from this sequence is converted to a fixed-
size vector using an embedding algorithm. In practice, we concatenate embedding
vectors to a matrix of size (batch size× dmodel).

Unlike recurrent neural networks, Transformers do not contain time steps to re-
tain tokens order in the input sequence. Instead, they rely on positional encoding
embeddings of dimension dmodel. The latter vectors are summed with input embed-
dings at the bottom of the encoder and the decoder stacks (Figure 2.8). We can
compute the positional encoding with Equation 2.28 or Equation 2.29.

PEpos,2i = sin(pos/100002i/dmodel) (2.28)

PEpos,2i+1 = cos(pos/100002i/dmodel) (2.29)

where pos is the position of the token in the sequence and i is the positional
encoding dimension.
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Figure 2.7: Transformer architecture (Vaswani et al., 2017)

Figure 2.8: Positional encoding in Transformers
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Once the input of the Transformer is ready (embedding + positional encoding),
the self-attention is computed as in Figure 2.9.

Figure 2.9: From input to self-attention

As shown in the figure above, self-attention is a model that integrates three fully
connected layers by which the input flows in order to get Q (queries), K (keys), and
V (values) matrices.

Equation 2.30 shows how self-attention is computed.

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2.30)

where Q and K contain vector representations of each word in the sequence, and
V contains values from each word in the sequence.

Therefore, attention weights come from a dot product between queries (Q) and
keys (K) matrices. A softmax function is needed to convert these weights into
probabilities. The attention weights indicate how much each key is similar to each
query.

As mentioned above, multi-head attention is a set of self-attentions (heads) con-
catenated as shown in Figure 2.10 and Equation 2.32. These layers simulate the
recurrence effect with attention.

MultiHead(Q,K, V ) = Concat(head1, ..., headh) W
O (2.31)

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (2.32)

where:

• h is the number of heads

• WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and WO ∈ Rhv×dmodel×dv
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Figure 2.10: Multi-head attention

• dk = dv = dmodel/h

There are three different ways to handle multi-head attention in Transformers:
(1) at the encoding level only, (2) at the decoding level only, or (3) at both the
encoding and the decoding levels.

The second transformer sub-layer of each layer in both the encoder and the
decoder is a fully connected feed-forward network. It is applied to each position
separately and identically.

Transformer neural network has improved state of the art in various tasks, such
as summarization. Its success has been increasing with the use of pre-trained models
such as BERT (Devlin et al., 2019), T5 (Raffel et al., 2020), and BART (Lewis et al.,
2019). Inspired by BERT, Zhang et al. (2019b) introduced HIBERT (HIerarchical
Bidirectional Encoder Representations from Transformer), an automatic system for
abstractive summarization, where the authors introduced some noise in the text,
and the model is trained to rebuild the source text.

In the following, we present the most influential Transformer-based approaches
that are adaptable for automatic text summarization.
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BERT Inspired by Transformers, BERT (Vaswani et al., 2017), (Bidirectional En-
coder Representations from Transformers) was introduced by (Devlin et al., 2019).
It is a bidirectional model that is based on an encoder only.

In BERT, it is possible to use pre-trained tasks such as multi-mask language
modeling and sentence prediction. Multi-mask language consists of masking some
words in the sentences. Later, the neural network attempts to predict the masked
words. Figure 2.11 describes both of them.

Figure 2.11: Multi-Mask Language Modeling and Sentence Prediction in BERT

• BERT’s input is a sum of position, segment, and token embeddings. There are
two special tokens used in BERT: [CLS] and [SEP ]. These tokens indicate the
beginning and the end of the sentence, respectively. Note that [SEP ] serves
as a sentence-separator.

• There are two main goals in BERT. The first one is Multi-Mask Language
Modeling (LM). The second one is the Next Sentence Prediction. For Multi-
Mask LM, the authors used Cross-Entropy Loss to predict masked words and
Binary Loss for Next Sentence Prediction.

• We can fine-tune BERT to transfer knowledge between different tasks. Once
BERT is pre-trained, we can use it, for example, in sentiment analysis, Multi-
Genre Natural Language Inference (MNLI), Named-entity recognition (NER),
question-answering, and summarization.
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T5 (Raffel et al., 2020) is an encoder-decoder architecture inspired by Vaswani
et al. (2017). T5 is designed for multi-task learning (learning many tasks at once)
in a bidirectional context. Unlike Transformers, T5 consists of 12 block layers in the
encoder/decoder, resulting in 220 million parameters.

When T5 is pre-trained on a multi-tasking mix, we can use it for classification,
question answering, machine translation, summarization, and sentiment analysis.
Figure 2.12 shows some of T5 applications.

Figure 2.12: T5 applications

To avoid overfitting, T5 masks some tokens from the original text using ordered
special tokens: <A>, <B>, <C>,..., etc. We provide an example in Figure 2.13.

Figure 2.13: T5 input
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PEGASUS (Pre-training with Extracted Gap-sentences for Abstractive Summa-
rization) was introduced by Zhang et al. (2020a). PEGASUS is a Transformer model
(Vaswani et al., 2017) that is pre-trained with a self-supervised objective.

Inspired by Raffel et al. (2020), Zhang et al. (2020a) proposed a new pre-training
objective: GSG (Gap Sentences Generation) (Figure 2.14). It consists of selecting
and masking whole sentences from the source documents where each mask label
keeps the order of the masked sentence. The masked sentences are concatenated
into a pseudo-summary. Furthermore, authors consider three criteria for selecting
the sentences to be masked: (1) Random (select m sentences arbitrarily), (2) Lead
(select the first m sentences), and (3) Principal (select the m sentences with the
highest ROUGE1-F1 score between the sentence and the rest of the document).

Figure 2.14: PEGASUS with an example of GSG

PEGASUS was trained with two corpora:

1. C4 (Raffel et al., 2020) - It consists of texts from 350 millions of Web-pages
(750GB)

2. HugeNews - It consists of 1.5 billions of news articles (3.8TB).

Zhang et al. (2020a) compare the performance of two tokenizers: Byte-pair-
encoding algorithm (BPE) (Wu et al., 2016, Sennrich et al., 2016) and SentencePiece
Unigram algorithm (Unigram) (Kudo, 2018). They evaluated Unigrams with differ-
ent vocabulary sizes ranging from 32k to 256k. Best results were obtained with a
vocabulary size of 96K. Besides, Unigrams overcome BPE on datasets are not news.
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BART is a sequence-to-sequence model introduced by Lewis et al. (2019), and
inspired by Vaswani et al. (2017). It is based on a bidirectional encoder and an
auto-regressive decoder. BART also masks some randomly-chosen tokens in the
input document (Figure 2.15). We can visualize BART as BERT in the encoder
because it is bidirectional, and GTP (Radford et al., 2018) model in the decoder
because it is from left to right.

The pre-training of BART incorporates two stages:

1. Some noise is introduced in the text using a noising-function.
2. The model is trained to rebuild the source text.

Figure 2.15: BART architecture

The authors of BART proposed some noising functions that improve the quality
of summaries. For instance, token masking, token deletion, text infilling, sentence
permutation, document rotation. Figure 2.16 provides examples of such functions.

Figure 2.16: Types of noisy inputs in BART

Once the model is pre-trained, we can fine-tune BART on different downstream
applications such as sequence classification tasks, sequence generation tasks, and
machine translation.
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Hierarchical Transformer was proposed by Liu and Lapata (2019b). It is based
on their previous system (Liu et al., 2018) that contains two main components:
(1) an extractive summarizer to get the most relevant passages from the source
text, and (2) an abstractive summarizer that takes the output of the extractive
summarizer and generates the final summary. The improvement brought by the
latter consists in learning latent dependencies among text units to help to share
hierarchical information between documents. This is achieved using an attention
mechanism that helps to concatenate text spans and process them as a flat sequence.

The disadvantage of the hierarchical Transformer is that its performance is heav-
ily dependent first on the quality of the extractive summarizer that guides the search
space of the abstractive summarizer and second on the quality of graphs used to cap-
ture relationships between text units. Contrarily to hierarchical Transformer, our
proposed method in Chapter 4 is end-to-end and entirely Transformer-based.

Reformer was proposed by Kitaev et al. (2020). It is an improvement of the basic
Transformer architecture to reduce their memory footprint and computational time.
A reformer neural network is mainly based on two modifications that improve a
transformer’s efficiency significantly:

• Replace the dot product attention with locality-sensitive hashing. This im-
provement reduces the complexity of processing input sequences from O(L2

input)

to O(Linput log Linput), but needs tuning the number of concurrent hashes in
order to find the original transformer performance.

• Use reversible residual layers instead of standard residuals, which allows storing
the activation only once at the end of the model instead of after each layer
of the model. This technique has a negligible impact on the training process
compared to the standard Transformer.

To our knowledge, Reformer has not been yet used for text summarization. Note
that Reformer, as well as most of the improved versions of Transformers, invoked
in Tay et al. (2020) was released in 2020. They are interesting approaches that could
be combined with our proposed method presented in Chapter 4. However, we keep
this possibility as a perspective for future research since these methods appeared
mostly at the end of this thesis.
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2.4.6.4 Choice of the best generated sequence in ATS

During the summary generation process, Neural-based approaches use a linear trans-
formation and a Softmax function to convert the model output to a prediction
probability distribution over the vocabulary tokens. The goal then is to use this
probability distribution to choose the next word to generate.

Many search algorithms can be applied to predict the next word given the
already-generated sequence. The most popular ones are:

• Greedy search - is the most intuitive way to produce tokens by choosing
each time the token having the highest conditional probability. This algorithm
has the advantage of running fast since no complicated heuristic is applied to
predict the next token. However, its main drawback is the possibility of losing
good-quality sequences that start with low-probability tokens and finish with
high-probability ones. At the time step t, the next token in a greedy search
algorithm is chosen as in Equation 2.33.

xt = argmax
x∈X

P (x|x1, ..., xt−1, c) (2.33)

where x is a token from the vocabulary X and c is a context variable that
encodes the input sequence information.

The final sequence probability in a greedy search is computed as in Equa-
tion 2.34:

p =
L∏
t=1

P (xt|x1, ..., xt−1, c) (2.34)

where L is the maximum generated summary length.

Unfortunately, there is no guarantee that a greedy search will obtain the op-
timal sequence.

• Beam search - (Graves, 2012, Boulanger-Lewandowski et al., 2013, Sutskever
et al., 2014) is the most popular search algorithm to predict the next token in
the generated sequence. Unlike greedy search, beam search builds beam size =

k candidate sequences and chooses the best one of them to be the generated
summary.

The algorithm terminates when one of the sequences encounters the end-of-
sequence token. However, if it reaches the maximum output length L and no



2.5. Overview of various Automatic Summarization systems 45

end-of-sequence token is founded, a length penalty rule is applied to favor long
sequences. The chosen sequence is the one maximizing the Equation 2.35:

1

Lα
log P (x1, ..., xL) =

1

Lα

L∑
t=1

log P (xt|x1, ..., xt−1, c) (2.35)

where α is a hyper-parameter usually set to 0.75.

Note that when the beam size k = 1, beam search is equivalent to greedy
search. While increasing the value of k improves search results, it increases
execution time as well.

We present below an overview of various automatic text summarization ap-
proaches from the state of the art.

2.5 Overview of various Automatic Summarization

systems

In this section, we describe the main systems developed in both extractive and
abstractive summarization. We report in Tables 2.1 and 2.2 the performance in terms
of ROUGE of various ATS systems. ROUGE is an automatic evaluation approach
that relies on humans intervention based on lexical overlaps between reference and
generated summaries. It has many variants, but we only report the most popular
ones: ROUGE-N (N = {1, 2} is the n-gram size) and ROUGE-L (Longest Common
Subsequence). More details about this metric are provided in Subsection 2.6.2.
Evaluation is done on datasets described in Section 2.3. Note that both tables
follow a descending chronological order.

2.5.1 Extractive Systems

The first automatic systems were focused on the extractive approach. Luhn (1958)
was one of the early pioneers to work on automatic summarization. He assumed
that the most important words in a summary are repeated most frequently in the
source text. He based his research on TF − IDF .

Over time, probabilistic metrics surged, such as Markov Models and Hidden
Markov Models (HMM). Researchers applied these methods to automatic summa-
rization (Jing and McKeown, 1999, Conroy and O’leary, 2001, Knight and Marcu,
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2002, Suneetha and Sameen, 2012). For instance, Jing and McKeown (1999) pro-
posed an algorithm based on HMM that decomposes human-written summary sen-
tences intending to determine the relations between the phrases of a reference sum-
mary and those of the original text. Alternatively, Conroy and O’leary (2001)
proposed a method for text summarization that considers three features: (1) the
sentence’s position in the document (using HMM), (2) the number of terms in the
sentence, and (3) the probability of each term. This approach aims to compute the
overall sentence probability and decide if it belongs to the summary or not.

Meanwhile, Knight and Marcu (2002) focused on sentence compression using
PCFG to assign probabilities to a tree, while Erkan and Radev (2004) computed the
centrality of each sentence in the text, where a threshold of TD − IDF determines
the salience of each term. Word’s centrality is related to the centroid set of doc-
uments. Mihalcea and Tarau (2004) introduced TextRank, which is a graph-based
ranking model. They proposed two unsupervised methods, the first one is keyword
extraction, and the second one is sentence extraction.

Nenkova and Vanderwende (2005) proposed SumBasic. It is a summarization
system based on word frequency. SumBasic incorporates content selection and re-
ranking depending on the context. Suneetha and Sameen (2012) proposed text
summarization based on HMM tagger to identify the key phrases within the Com-
puter Science documents. To evaluate their system, they used cosine, Jaccard,
Jaro-Winkler, and Sorenson similarities.

Probabilistic methods evolved into Machine Learning techniques. For instance,
Schilder and Kondadadi (2008) worked on query-based multi-document summariza-
tion. They used a Support Vector Machine to rank all sentences in the topic cluster
for summarization. Aliguliyev (2009) proposed a method based on sentence cluster-
ing. According to the content of the cluster, it identifies the most salient sentences.
Alternatively, ShivaKumar and Soumya (2015) used clustering to extractively get
summaries where cosine similarity is used to generate the documents clusters. Au-
thors start with finding unique tokens. Afterward, they compute each group’s score
and sort sentence clusters in reverse order of group score. Finally, they pick the best
score sentences from each cluster and add them to the summary.

Besides SVMs, researchers also used Naive Bayes methods to get summaries.
One of them is Ramanujam and Kaliappan (2016), who extended the Naive Bayes
algorithm’s application combined with the timestamp approach multi-document au-
tomatic summarization. Another approach is based on the sentences’ identified
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features to determine a sentence’s relevance. Kumar et al. (2016) used the following
features to determine the most important sentences: title/headline words, sentence
position, sentence length, term weight, and proper noun.

Hochreiter and Schmidhuber (1997) introduced LSTM (Long-Short Term Mem-
ory). With the emergence of these neural networks, automatic summarization sys-
tems outperformed scores obtained by probabilistic methods so far. For about twenty
years, most developed systems used LSTM and GRU (Gated Recurrent Unit). GRU
is a neural network introduced by Cho et al. (2014) and is a modification of the LSTM
neural network.

Cheng and Lapata (2016) used LSTM for the extractive summarization of sin-
gle documents. They used a decoder that chooses output symbols from the docu-
ment of interest rather than the entire vocabulary. Alternatively, Nallapati et al.
(2017) introduced SummaRuNNer (simple recurrent network-based sequence clas-
sifier). SummaRuNNer is a system based on a two-layer bidirectional GRU as the
basic building block of the sequence classifier. Furthermore, Sinha et al. (2018) used
an approach based entirely on data-driven and a feed-forward neural network to get
summaries from single documents.

Transformer Neural Networks (Vaswani et al., 2017) have been increasing the
scientific community’s interest in text summarization. These models have achieved
to improve the quality of automatic summaries when using pre-trained models. For
instance, some works were inspired by BERT (Devlin et al., 2019) model, such
as Zhang et al. (2019b) and Lu and Jin (2020).

Zhang et al. (2019b) introduced HIBERT (HIerarchical Bidirectional Encoder
Representations from Transformers). HIBERT aims to learn the representation of a
document on unlabeled data. Lu and Jin (2020) proposed ClinicalBertSum whose
goal is to fine-tune BERT for medical abstract summarization on PubMed 200k
RTC (Dernoncourt and Lee, 2017) dataset. Hence, they fine-tuned on medical notes
(ClinicalBERT), on scientific data (SciBERT (Beltagy et al., 2019)), and on BERT-
based text summarization model (BertSum (Liu and Lapata, 2019a)).

Corpus System R-1 R-2 R-L

CNN/DailyMail News
(Hermann et al., 2015)

Lu and Jin (2020) 42.98 20.03 39.38
Zhang et al. (2019b) 42.37 19.95 38.83

Nallapati et al. (2017) 39.6 16.2 35.3
Cheng and Lapata (2016) 21.2 8.3 12.0

PubMed 200k
(Dernoncourt and Lee, 2017)

Lu and Jin (2020) 33.58 11.87 27.41
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Corpus System R-1 R-2 R-L

New York Times (NYT)
(Sandhaus, 2008)

Zhang et al. (2019b) 49.47 30.11 41.63

DUC 2007
(Over et al., 2007)

Schilder and Kondadadi (2008) - 11.0 -

DUC 2006
(NIST, 2014)

Schilder and Kondadadi (2008) - 9.25 -

DUC02
(NIST, 2014)

Sinha et al. (2018) 55.1 22.6 -
Cheng and Lapata (2016) 47.4 23.0 43.5

Aliguliyev (2009) 45.65 11.36 -
Nenkova and Vanderwende (2005) 47.08 - -

DUC01
(NIST, 2014)

Aliguliyev (2009) 46.65 17.73 -

Table 2.1: ROUGE scores of some extractive systems from the state of the art

2.5.2 Abstractive Systems

The abstractive approach aims to generate automatic summaries that contain words
that are not present in the source text. Inspired by Bahdanau et al. (2014), Rush
et al. (2015) introduced an approach of abstractive sentence summarization. Their
method combined the Attentional RNN Encoder-Decoder model with an entirely
data-driven approach.

A year later, Nallapati et al. (2016) proposed a model that consists of a bidirec-
tional GRU-RNN encoder, a uni-directional GRU-RNN decoder, and an attention
mechanism over the source-hidden states. Besides, they adapted to this model a
Large Vocabulary Trick (LVT). In the same year, Chopra et al. (2016) produced the
abstractive summary of an entry sentence. The model uses a convolutional attention-
base conditional recurrent neural network. See et al. (2017) introduced Get To The
Point (GTTP) system. GTTP is a news hybrid extractive-abstractive summariza-
tion system inspired by Nallapati et al. (2016) and Vinyals et al. (2015). It consists
of two main parts: a pointer-generator network and a coverage model. Based on this
idea, Cohan et al. (2018) used the pointer-generator network idea applied to their
model on medical articles. They proposed a model based on LSTM. The model
consists of a hierarchical encoder and an attentive discourse-aware decoder.

Paulus et al. (2017) proposed reinforcement-learning-based algorithms on encoder-
decoder architecture. The model consists of a bidirectional LSTM encoder and a
single LSTM decoder. The authors used intra-attention in the encoder to focus on
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specific parts of the input sequence. In contrast, the decoder used this attention to
check which words have already been generated and avoid repetitions. While most
of the researchers used LSTMs and GRUs, Narayan et al. (2018a) introduced an
encoder-decoder abstractive model based on convolutional neural network (CNN)
blocks. The input length is fixed in such architectures, and the convolutional neu-
ral network blocks compute intermediate states. Further, the interaction between
tokens and hierarchical layers captures long-range dependences.

Inspired by Transformers neural networks (Vaswani et al., 2017), pre-trained
models such as BERT (Devlin et al., 2019) surged. Therefore, researchers developed
several automatic summarization systems. For instance, Liu et al. (2018) aimed to
generate English Wikipedia articles based on a Transformer architecture they mod-
ified. They used only a decoder with local attention and memory-compressed atten-
tion to be able to read long sequences. Interestingly, extractive summaries generated
by five well-known systems (identify, TF-IDF, TextRank, SumBasic, Cheating) are
used as an input for the neural network to generate abstractive summaries.

Liu and Lapata (2019a) worked on BERTSUM, a variant of BERT where authors
modified the input sequence to allow as input many sentences. The architecture is
an encoder-decoder called BERTSUMABS, where the encoder is the pre-trained
BERTSUM, and the decoder is a standard transformer. Alternatively, Hoang et al.
(2019) proposed two training processes for the initialization of the pre-trained GTP
model (Radford et al., 2018): domain-adaptive training and end-task training.

Meanwhile, Fabbri et al. (2019) proposed a hierarchical model for neural ab-
stractive multi-document summarization using Transformers Neural Networks. The
model consists of a pointer-generator network (See et al., 2017), and the Maximal
Marginal Relevance (MMR) (Carbonell and Stewart, 1998). Lewis et al. (2019) in-
troduced BART, which is a sequence-to-sequence model based on noisy objectives of
the input document in the pre-training stage. These techniques are token masking,
token deletion, text infilling, sentence permutation, and document rotation.

Kim et al. (2019) proposed a memory network model called multi-level memory
networks (MMN). This model stores information from the source text in different
levels, for instance, word-level, sentence-level, paragraph-level, and document-level.
MMN uses a multi-layer CNN as the write network. Zhang and Tetreault (2019)
developed a method to generate email subjects from the email body. The technique
works in two stages: the extractor selects the most relevant sentences, and later the
abstractor paraphrases the selected sentences into a subject line.
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Most recently, Zhang et al. (2020a) introduced PEGASUS (Pre-training with Ex-
tracted Gap-sentences for Abstractive SUmmarization sequence-to-sequence mod-
els). PEGASUS is a new pre-training objective using Transformers: GSG (Gap
Sentences Generation), which consists of masking whole sentences from a document
and generating these gap sentences from the rest of the document.

Corpus System R-1 R-2 R-L

arXiv
(arXiv, 2021)

Zhang et al. (2020a) 44.70 17.27 25.80
Cohan et al. (2018) 35.80 11.05 31.80

Multi-News
(Fabbri et al., 2019)

Zhang et al. (2020a) 47.52 18.72 24.91
Fabbri et al. (2019) 43.47 14.89 17.41

Reddit TIFU
(Kim et al., 2019)

Zhang et al. (2020a) 26.54 8.94 21.64
Kim et al. (2019) 20.2 7.4 19.8

BIGPATENT
(Sharma et al., 2019)

Zhang et al. (2020a) 53.63 33.16 42.25

AESLC
(Zhang and Tetreault, 2019)

Zhang et al. (2020a) 37.69 21.85 36.84
Zhang and Tetreault (2019) 23.67 10.29 23.44

BillSum
(Kornilova and Eidelman, 2019)

Zhang et al. (2020a) 57.31 40.19 45.82

NEWSROOM
(Grusky et al., 2018)

Kim et al. (2019) 17.5 4.7 14.2
Zhang et al. (2020a) 45.15 33.51 41.33

WikiHow
(Koupaee and Wang, 2018)

Zhang et al. (2020a) 43.06 19.71 34.80

WikiSum
(Liu et al., 2018)

Liu et al. (2018) - - 38.8

PubMed
(Cohan et al., 2018)

Zhang et al. (2020a) 45.49 19.90 27.69
Cohan et al. (2018) 38.93 15.37 35.21

XSum
(Narayan et al., 2018a)

Lewis et al. (2019) 45.14 22.27 37.25
Zhang et al. (2020a) 47.21 24.56 39.25

Liu and Lapata (2019a) 38.81 16.50 31.27
Kim et al. (2019) 32.0 12.1 26.0

Narayan et al. (2018a) 31.89 11.54 25.75

CNN/DailyMail News
(Hermann et al., 2015)

Lewis et al. (2019) 44.16 21.28 40.90
Zhang et al. (2020a) 44.17 21.47 41.11

Liu and Lapata (2019a) 42.13 19.60 39.18
Paulus et al. (2017) 41.16 15.75 39.08

See et al. (2017) 39.53 17.28 36.38
Nallapati et al. (2016) 35.46 13.30 32.65
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Corpus System R-1 R-2 R-L

Gigaword
(Napoles et al., 2012)

Zhang et al. (2020a) 39.12 19.86 36.24
Chopra et al. (2016) 33.78 15.97 31.15
Rush et al. (2015) 31.00 12.65 28.34

New York Times (NYT)
(Sandhaus, 2008)

Liu and Lapata (2019a) 49.02 31.02 45.55
Paulus et al. (2017) 47.22 30.51 43.27

DUC 2004
(NIST, 2014)

Chopra et al. (2016) 28.97 8.26 24.06
Rush et al. (2015) 28.18 8.49 23.81

DUC 2003
(NIST, 2014)

Fabbri et al. (2019) 35.78 8.90 11.43
Nallapati et al. (2016) 28.61 9.42 25.24

Table 2.2: ROUGE scores of some abstractive systems from the state of the art

In the following section, we present the most popular automatic summary eval-
uation approaches from the state of the art.

2.6 Methods for Summary Evaluation

Evaluation methods are fundamental techniques to assess if summaries generated
by an automatic system capture the original document’s idea. Different evaluation
methods have been developed in the last decade for the evaluation of automatically-
generated summaries. It exists two types of evaluation methods: (1) manual evalu-
ation methods like Pyramid (Nenkova and Passonneau, 2004) and Responsiveness,
where participation of human is mandatory, and (2) automatic evaluation meth-
ods (Lin, 2004, Torres-Moreno et al., 2010, Cohan and Goharian, 2016, Cabrera-
Diego and Torres-Moreno, 2018), where the presence of reference summaries gener-
ated by humans is not compulsory.

2.6.1 Manual evaluation methods

2.6.1.1 Precision and Recall

These two well-known metrics can be used to evaluate extractive summaries. Pre-
cision and Recall compare summaries generated by automatic systems with those
generated by humans (goal standards) and compute lexical overlap.

Precision is the fraction of correct system sentences (Nenkova, 2006):

Precision =
|system− human choice overlap|
|sentences chosen by system|

(2.36)
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Recall is the fraction of sentences chosen by the human that were also correctly
identified by the system (Nenkova, 2006):

Recall =
|system− human choice overlap|
|sentences chosen by human|

(2.37)

According to Nenkova (2006), Precision and Recall comprise many drawbacks
such as:

• Human variation - Since humans select the sentences, they can be highly
subjective, and many humans can select different sentences.

• Granularity - The sentences can be of different lengths, leading to informa-
tion granularity variation.

• Semantic equivalence - Two sentences can be written with different words
and have the same meaning.

2.6.1.2 Relative Utility

Relative Utility (RU) (Radev et al., 2003) is a method for evaluating single and
multi-document extractive summaries. It compares sentence selection between the
summaries generated by automatic systems and reference summaries. This method
can optionally penalize summaries that contain sentences with redundant informa-
tion. RU assigns numerical scores to individual sentences.

RU has shown better evaluation results compared to other methods like Preci-
sion, Recall, Percent Agreement (PA) (Owczarzak et al., 2012) and Kappa (Carletta,
1996). However, it is not suitable to distinguish between human-written and auto-
matic summaries.

2.6.1.3 DUC Manual Evaluation

DUC is an NLP annual challenge where researchers attempt to solve one or multiple
tasks, including automatic summarization.

The goal of DUC is to compile standard training and test collections that can be
shared among researchers and provide standard and large-scale evaluations in single
and multiple document summarization for their participants (Lin and Hovy, 2002).

The first DUC challenge was lead in 2001, and it included three tasks: (1)
fully automatic single-document summarization, (2) fully automatic multi-document
summarization, and (3) exploratory summarization. The main idea behind DUC’s
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summarization task is to produce automatic summaries and compare them to those
written by humans.

Human summarization was initially done by selecting the most important sen-
tences in the text. Nowadays, DUC relies on human abstracts as gold standard
models. Abstractive summarization is more complex than extractive summarization
because the text is paraphrased (Nenkova, 2006).

2.6.1.4 Pyramid

Manual evaluation with Pyramid (Nenkova and Passonneau, 2004) is based on Sum-
mary Content Units (SCUs). SCUs are groups of sub-parts of sentences taken from
several reference summaries, representing at most one clause and sharing the same
meaning. SCUs are weighted depending on the number of reference summaries they
are found in, and a candidate summary score is computed using the weights of its
SCUs.

The process of evaluation with Pyramid begins with the identification of similar
sentences in other summaries. After that, the sub-parts of these sentences are man-
ually studied in detail to get the SCUs. Note that each content unit has a unique
index, weight, and label.

We present below an example of four sentences:

1. World War II, or Second World War was a global war from 1939 to 1945.
2. The Second World War started in 1939. It marked between 70 and 85 million deaths.
3. Second World War began on September 1, 1939, with the invasion of Poland by Germany.
4. Second World War finished on September 2, 1945.

In this example, we identify three content units: SCU1 = Second World War
(weight=4 ), SCU2 = 1939 (weight = 3 ), and SCU3 = 1945 (weight= 2 ). The total
number of levels in the Pyramid is four because the maximum weight identified is
four. At a given level, the Pyramid can contain more than one SCU. For instance,
in the lowest level (content units frequency is equal to 1) there are words such as
started, began and finished. The Pyramid score ranges from 0 to 1. The score is
computed by dividing the sum of the SCUs weights by an optimal weights sum with
the same number of SCUs.

The advantage of Pyramid is that scores are stable over annotators and are
high for human summaries. However, the Pyramid metric is very costly due to the
necessity of manual annotations at the sub-clause level.
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2.6.1.5 PyrEval

Over the years, other variants of Pyramid have surged. For instance, Gao et al.
(2019) proposed an automated Pyramid called PyrEval. It produces human-readable
pyramids. The first PyrEval step consists of decomposing sentences into segments
from the reference summaries using Stanford Core NLP (Manning et al., 2014).
In the second step, these segments are converted to semantic vectors. The third
step uses the EDUA (Emergent Discovery of Units of Attraction) algorithm to get
an optimal pyramid by maximizing the semantic similarity of the segments to get
the SCUs. Finally, PyrEval makes use of WMIN (Shuichi et al., 2003) to find the
matches between candidate summaries and the SCUs.

2.6.1.6 LitePyramid

Proposed by Shapira et al. (2019), is a crowdsource-based lightweight version of
Pyramid (Nenkova and Passonneau, 2004). It emulates the two Pyramid phases:
pyramid creation and system evaluation. In the first phase, LitePyramid relies
on many reference summaries. However, unlike the pyramid, it guides two crowd
workers to extract 8 SCUs per reference summary, leading to 16 SCUs per reference
summary. After filtering long sentences, LitePyramid keeps 13 SCUs per reference
summary. In the second phase, a crowd-worker is presented with a system summary
and a fixed set of SCUs, where the candidate summary score is the percentage of
SCUs it matched among the set of judged SCUs.

2.6.2 Automatic evaluation methods with human references

2.6.2.1 ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) was proposed by Lin
(2004). ROUGE is the most influential method to evaluate automatic summaries.
It is based on word overlap between reference summaries and a candidate summary.
In the following, we describe different ROUGE variants.

ROUGE-N (Lin, 2004) is related to the recall between the candidate summary
and reference summaries. In general, the N values are 1,2 and 3. We call these
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values unigram, bigram, and trigram, respectively.

ROUGE-N =

∑
S∈RS

∑
gramn∈S Countmatch(gramn)∑

S∈RS
∑

gramn∈S Count(gramn)
(2.38)

where:

• RS are the reference summaries

• n is the n-gram size

• Countmatch(gramn) is the maximum number of n-grams co-ocurring in a can-
didate summary and set of reference summaries.

The equation above computes ROUGE-N using one reference summary. The
following equation computes it using multiple references:

ROUGE-Nmulti = argmaxi(ROUGE-N{ri, s)} (2.39)

where:

• s is a candidate summary

• ri is every reference summary in RS

ROUGE-L (Longest Common Subsequence). Given two word sequences (X and
Y ), ROUGE-L searches for the longest common sub-sequence of X in Y. We assume
that Y is larger than X.

ROUGE-W (Weighted Longest Common Sub-sequence) is an improved version
of ROUGE-L, where the sequence words can be consecutive or not (separated by
intermediate words). ROUGE-W keeps control over the size of the consecutive
terms.

ROUGE-S (Skip-Grams) measures the overlapping of skip-grams between the
candidate summary and reference summaries. A skip-gram is an ordered pair of
words in a sentence that allows an arbitrary gap.

ROUGE-SU (Skip-Unigrams) is an improved version of ROUGE-S that does not
consider the candidate sentences if they do not contain a skip-gram. ROUGE-SU
takes into account the unigrams in the evaluation.
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2.6.2.2 WE-ROUGE

It is an improved version of ROUGE proposed by Ng and Abrecht (2015) for ab-
stractive summary evaluation. Authors integrate word embeddings obtained with
Word2Vec into ROUGE in order to handle its bias towards lexical similarities.
WE-ROUGE (Word Embeddings ROUGE) uses word embeddings instead of raw
text to compute the semantic similarity of words between candidate and reference
summary where a zero value is attributed if one of the compared words is OOV
(Out-Of-Vocabulary). To handle n-gram OOVs, authors compose individual word
embeddings with the multiplicative approach from Mitchell and Lapata (2008).

This method is interesting insofar as it replaces syntactic tokens with word em-
beddings for semantic representations. However, it is still dependent on the quality
of the model used to get the word embeddings.

2.6.2.3 SERA

SERA (Summarization Evaluation by Relevance Analysis) (Cohan and Goharian,
2016) is based on a content relevance analysis between a candidate summary gener-
ated by an ATS system and reference summaries written by humans (at least one).
For this, a search engine for information retrieval is used. The search engine takes
as input: (1) a set of documents to index related to the candidate summary topic,
and (2) queries, which are a candidate summary and its corresponding reference
summaries. In SERA, queries can be reformulated in three ways:

• Raw text - only stop words and numbers are removed

• Noun phrases (NP) - only noun phrases are kept while other words are
deleted

• Keywords (KW) - only unigrams, bigrams, and trigrams are kept

An overview of the method is presented in Figure 2.17. SERA searches for the
queries in the index and provides a list of documents ranked according to their simi-
larity with the queries. A candidate summary score is then the similarity between the
lists of retrieved documents, both truncated at a given point. Thus, two summaries
are similar if they are related to the same set of documents (Equation 2.40).

SERA =
1

M

M∑
i=1

|RC ∩RGi
|

|RC |
(2.40)
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Figure 2.17: An overview of SERA evaluation approach

Where: RC is the ranked list of retrieved documents for the candidate summary
C, RGi

is the ranked list of retrieved documents for the gold summary Gi, and M
is the number of reference summaries. We assume that |RC | ≥ |RGi

|.

As shown in Equation 2.40, SERA is based on an intersection between the two
sets of documents related to the queries. The authors of SERA propose SERA-DIS,
a variant of SERA that considers the order of related documents (Equation 2.41).

SERA−DIS =

∑M
i=1(
∑|RC |

j=1

∑|RGi
|

k=1 Xj,k

M ∗Dmax

Xj,k =

{
1

log(|j−k|+2)
if R

(j)
C = R

(k)
Gi

0 otherwise

(2.41)

Where: R(j)
C is the jth result in the ranked list RC , and Dmax is the maximum

achievable score used as a normalization factor.

In both SERA variants, retrieved results are truncated at 5 and 10 documents
(Hence the notations SERA-5 and SERA-10 in Section 3.3).
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2.6.2.4 BERTScore

Proposed by Zhang et al. (2020b), BERTScore is a language generation evaluation
approach based on contextual embeddings extracted with the BERT model. It was
mainly designed for machine translation at the sentence level and image captioning
but can be adapted to summary evaluation. Evaluation with BERTScore is done
using a greedy matching of cosine similarity between candidate and reference sum-
maries’ embeddings. The matching consists of relating each token in the candidate
summary with the most similar token in the reference summary. The advantage of
using contextual embeddings is that a different embedding is attributed to a word
depending on its context. This way of processing is more flexible and robust com-
pared to exact-string (Papineni et al., 2002) or heuristic (Lavie and Agarwal, 2007)
matching.

Unlike ROUGE (Lin, 2004) that is based on lexical overlaps, BERTScore makes
use of contextual embeddings that are effective for paraphrase detection. An ad-
vanced version of BERTScore adds a weighting term obtained by computing the
Inverse Document Frequency (IDF) to give more importance to rare words that are
more indicative for sentences similarity (Vedantam et al., 2015).

2.6.2.5 SSAS

SSAS (Semantic Similarity for Abstractive Summarization) was proposed by Vada-
palli et al. (2017). As BERTScore (Zhang et al., 2020b), it is based on semantic
matching between candidate and reference summaries. First, SCUs are extracted
automatically from candidate and reference summaries using the PEAK model
from Yang et al. (2016). Second, a set of NLP inferences and paraphrasing fea-
tures are applied. Authors compute a weighted composition to leverage scores from
different measures in a single normalized score.

Used measures include (1) Combined Entailment Scores, (2) Combined Contra-
diction Scores, (3) Combined Topic Neutrality Scores, (4) Paraphrasing probabili-
ties using the model from Kiros et al. (2015) and (5) ROUGE-SU4 scores. SSAS
showed competitive performance compared to previous abstractive summary evalu-
ation methods. However, it is computationally very expensive because of the large
number of semantic models used to compute features.
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2.6.2.6 MoverScore

Proposed by Zhao et al. (2019), this evaluation method combines contextualized
representations with Earth Mover Distance (EMD) from Rubner et al. (2000). The
latter measures the travelling distance of moving from the word frequency distribu-
tion of the candidate summary to that of the human-written one. Authors explore
two variants of this distance: (1) word mover (Kusner et al., 2015) and (2) sentence
mover. The difference between both is in the granularity of comparison between
embeddings. According to the authors, contextual representations are beneficial
to encode both syntactic and semantic deviations between candidate and reference
summaries. Once again, MoverScore is also time-expensive insofar as it is based on
fine-tuning the BERT model on three Natural Language Inference (NLI) datasets
before being used for evaluation.

2.6.3 Automatic evaluation methods without human refer-

ences

Although gold standards are solid reference frames, summary evaluation using gold
standards is costly and time expensive. The subjectivity of humans when summa-
rizing articles makes evaluation heavily dependent on their expertise domain. For
these reasons, researchers are looking for efficient alternatives to evaluate automatic
summaries without any human intervention. One of the proposed solutions to assess
the content selection of systems is based on three features: distributional similar-
ity, summary likelihood, and topic words in the summary. Judgments of linguistic
quality join these features. These approaches led to lower correlations with respon-
siveness than the content-based pyramid evaluation (Louis and Nenkova, 2009). Very
recently, other sophisticated automatic methods were born and are described below.

2.6.3.1 SummTriver

SummTriver (ST) (Cabrera-Diego and Torres-Moreno, 2018) is an evaluation metric
that does not need any human intervention (model summaries). Instead, it computes
the trivergence between three probability distributions (R, P, and Q), where:

• R is the probability distribution generated by the summary to evaluate.

• P is the probability distribution of a set of summaries that are different from
R but share the same source document.
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• Q is the probability distribution of the source document from which R and P
were obtained.

The trivergence is a combination of different divergences and is computed in two
ways:

• as a composition of two divergences:

Tc(P || Q || R)) = d

(
P || d(Q || R)

N

)
(2.42)

where d is a divergence and N is a normalization parameter.

• as a multiplication of three divergences :

Tm(P || Q || R)) = d(P || Q) · d(P || R) · d(Q || R) (2.43)

The authors used two types of divergences: Kullback-Leibler (KL) and Jensen-
Shannon (JS), such that:

Kullback-Leibler divergence measures the dissimilarity of two probability dis-
tributions over the same event space and is defined as:

KL(P || Q) =
∑
ω∈P

pP (ω) log2
pP (ω)

pQ(ω)
(2.44)

where:

• ω is an event

• pP (ω) is the probability of event ω in distribution P

• pQ(ω) is the probability of the same event but in distribution Q

Note that KL divergence is asymmetric, and authors use its smoothed version to
handle unseen events.

Jensen-Shannon divergence measures the dissimilarity of two probability dis-
tributions using their mean and is defined as:

JS(P || Q) =
1

2
KL(P, M) +

1

2
KL(Q, M) (2.45)

where M = 1
2

(P +Q).
Note that this divergence is symmetric, and thus both its smoothed and non-

smoothed versions are applicable.
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2.6.3.2 FRESA

FRESA (Torres-Moreno et al., 2010) (FRamework for Evaluating Summaries Auto-
matically)1 is a multilingual evaluation system that directly compares the candidate
summary with its source document. FRESA works in French, Spanish, English, and
German. SummTriver is also based on KL, JS, and sJS divergences to determine the
summary quality. Furthermore, different kinds of n-grams can be used to compute
divergences. Equation 2.46 describes the Jensen-Shannon divergence (Lin et al.,
2006) used in FRESA system.

Qw ==


Pω = CT

ω

N
CS

ω

NS
if ω ∈ S

CT
ω+δ

N+δ∗B otherwise

(2.46)

where:

• P is the probability distribution of the words w in text T

• Q is the probability distribution of words w in summary S

• N is the number of words in the text and in the summary N = NT +NS

• B = 1.5|V |

• CT
ω is the number of words in the text

• CS
ω is the number of words in the summary

2.6.3.3 SUM-QE

This approach was proposed by Xenouleas et al. (2019). It adapts Quality Es-
timation (QE) from machine translation to summary evaluation without human
references. This approach focuses on linguistic quality such as non-redundancy, ref-
erential quality, structure, and coherence. As BERTScore (Zhang et al., 2020b), a
BERT model is used to get word embedding, while a linear regression model predicts
the summary’s quality score. Three versions of SUM-QE were proposed depending
on how BERT is fine-tuned.

1http://fresa.talne.eu

http://fresa.talne.eu
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2.6.3.4 End-to-end SQA

Proposed by Bao et al. (2020), End-to-end SQA (End-to-end Semantics-based Sum-
mary Quality Assessment) is a deep-learning-based approach for summary evalua-
tion without human references. This method is based on two main stages:

• A deep model is trained on a summarization task (CNN/DailyMail, News-
room, and Big-Patent), where the model’s input is a concatenation of the
word embedding vectors of the document and candidate summary, while the
model’s output is a score telling how much the summary is similar to its source
document. To train the model in a supervised fashion, the authors generate
negative summaries in two ways: (1) by mutating randomly chosen tokens in
the gold-standard summary, and (2) by cross pairing summaries between doc-
uments. As in SUM-QE (Xenouleas et al., 2019), the BERT model was the
one achieving the best results.

• Once the deep model is trained, participants’ summaries from TAC 2010 are
passed through the network. The output score is used to compute correlation
with human evaluations in terms of linguistic quality, modified score, and
overall score.

The disadvantage of deep-learning-based approaches is the significant amount of
time needed to train the network and perform inference.

2.7 Conclusion

In this chapter, we presented the most important approaches in automatic text
summarization and automatic summary evaluation. The latter is essential insofar
as we need to assess the quality of generated summaries in order to be able to
compare and improve different summarization systems.

The most popular evaluation method used by the scientific community is ROUGE
(Lin, 2004), a lexical-based approach. When the research effort moved along abstrac-
tive summarization, ROUGE became unfair to evaluate abstractive summaries since
they do not necessarily contain tokens from reference summaries. For this reason, the
scientific community has proposed methods to evaluate summaries automatically.
Some systems do not need reference summaries, such as FRESA (Torres-Moreno
et al., 2010), and SummTriver (Cabrera-Diego and Torres-Moreno, 2018). However,
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they achieve lower correlations with human judgments compared to measures that
rely on human references. For instance, SERA (Cohan and Goharian, 2016) is a
metric based on content relevance analysis between a candidate summary and a
set of reference summaries. SERA achieved better correlations with human evalu-
ations than ROUGE in the medical domain. Inspired by this research, we propose
wikiSERA (Chapter 3). This open-source system evaluates summaries belonging to
the general domain, and it achieves better correlations with manual approaches than
SERA in most of the tested configurations.

Note that some evaluation methods such as End-to-end SQA (Bao et al., 2020),
BERTScore (Zhang et al., 2020b), MoverScore (Zhao et al., 2019) and SUM-QE (Xe-
nouleas et al., 2019) appeared very recently. In contrast, works such as SSAS (Vada-
palli et al., 2017) are computationally very expensive due to the use of multiple deep
learning models at once. Thanks to the system scores provided by Bhandari et al.
(2020), we could compare BERTScore and MoverScore with our method proposed
in Chapter 3, but we do not involve the other methods for comparison in this thesis.

Concerning automatic summarization, we studied the evolution of ATS methods
while focusing on each system’s merits and limitations. While the first summariza-
tion method developed by Luhn (1958) was based on a frequency-based approach,
the following methods used probabilistic methods, machine learning approaches,
and deep learning. According to the literature, deep learning techniques nowa-
days achieve the highest scores in the ATS task, especially Transformer neural net-
works (Vaswani et al., 2017). We choose to use these neural networks because we are
interested in summarizing long medical texts. In Chapter 4, we present HazPi, a
multi-encoder transformer that aims to produce summaries from long medical texts.





Chapter 3

Automatic Evaluation of

general-domain summaries

3.1 Introduction

Text summarization has gained lots of attraction in the last decade. Many ap-
proaches have been proposed to generate automatic text summaries, especially
neural-based abstractive ones (Chopra et al., 2016, Nallapati et al., 2016, See et al.,
2017, Liu and Lapata, 2019a). However, automatic summary evaluation is as cru-
cial as its summarization. To generate summaries of good quality, we need to assess
their quality in order to improve summarization systems (Lin, 2004, Torres-Moreno
et al., 2010, Cabrera-Diego and Torres-Moreno, 2018). Summaries generated by
humans are the best reference to evaluate summaries generated automatically (Lin
and Hovy, 2002). However, manual summarization is costly and time-consuming.
Equally, summary quality can be biased by the expert opinion, leading to subjective
summaries (Lin and Hovy, 2002).

Researchers have developed various methods to evaluate automatic summaries
(Cabrera-Diego and Torres-Moreno, 2018, Lin and Hovy, 2002, Lin, 2004, Torres-
Moreno et al., 2010). According to Sparck Jones and Galliers (1996), summaries
can be evaluated either extrinsically or intrinsically. On the one hand, extrinsic
evaluation methods assess summaries depending on their effect on a specific task.
They can be done by humans or automatic systems. On the other hand, intrinsic
evaluation approaches assess summaries against gold standard summaries and can
be manual or automatic. Furthermore, automatic text summarization can be mono-
or multi-document based (Aries et al., 2019). Mono-document based summarization
systems take as input one document and produce one summary. However, multi-
document based summarization systems take as input a set of documents (called
a topic) and produce one summary shared by these documents. In this thesis, we
are interested in intrinsic evaluation of mono-document, and multi-document based
summaries; we will explain the most relevant manual and automatic metrics of
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summary evaluation. In manual evaluation, human intervention is mandatory, while
in automatic evaluation, humans possibly participate in the evaluation process; some
evaluation approaches need human intervention while others do not.

The most popular manual methods are Pyramid (Nenkova and Passonneau, 2004)
and Responsiveness. The Pyramid approach starts with detecting SCUs (Summary
Content Units, defined in Subsection 2.6.1.4 of Chapter 2) in the human reference
summaries. The weight of each SCU is its frequency. Later, the human judges
search for the same SCUs in the summaries to evaluate, and a score is attributed
to each summary depending on the weight of its SCUs. Responsiveness evaluates
the content and linguistic quality of automatic summaries. The most popular au-
tomatic evaluation metric is ROUGE (Lin, 2004). ROUGE relies on human ref-
erences and provides a high correlation with manual methods, mostly in extrac-
tive summarization. ROUGE is based on the lexical overlap between tokens and
phrases in reference summaries and the generated one (Cohan and Goharian, 2016,
Lu and Jin, 2020). We also find AutoSummENG and MeMoG (Giannakopoulos
and Karkaletsis, 2011), two automatic evaluation approaches with human references
based on n-gram graphs. AutoSummENG and MeMoG are statistically equivalent
to ROUGE (Cabrera-Diego et al., 2016), and they are highly correlated with manual
measures like Pyramid. However, build graphs is expensive in terms of computa-
tion. The automatic evaluation of summaries without human references assesses the
summary generated by an automatic system against its source document(s), instead
of a gold summary. Among these systems, we find FRESA (Torres-Moreno et al.,
2010) and SummTriver (Cabrera-Diego and Torres-Moreno, 2018) defined later.

The vast advancements in NLP helped in migrating automatic summarization
from extractive to abstractive. In such protocols, ROUGE (Lin, 2004) fails to as-
sess the quality of abstractive summaries since it is possible to have a summary of
good quality that expresses the main idea of the document using only the essen-
tial terms that occurred in it. Abstractive summarization requires new evaluation
metrics. They do not heavily depend on the lexical content of documents. SERA
(Summarization Evaluation by Relevance Analysis) (Cohan and Goharian, 2016) was
proposed as an alternative to ROUGE in the biomedical domain. It focuses on the
documents’ semantic content, leading to efficiently assess the quality of summaries
that are lexically different but express the same idea.

ROUGE (Lin, 2004) was used as a benchmark in DUC 2001-2003 and TAC 2001
challenges to prove its effectiveness in evaluating automatic summarization, while
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the performance of SERA (Cohan and Goharian, 2016) was tested with TAC 2014
dataset that contains medical articles. SERA shows a better correlation with human
summaries than ROUGE since it is based on text content relevance. SERA would
effectively evaluate both abstractive and extractive summaries, while ROUGE could
fairly evaluate extractive summaries only. Researchers have tested SERA in the
biomedical domain. In this thesis, we take out SERA from the biomedical to the
general domain and test it with TAC 2008, TAC 2009, and CNNDM (Bhandari
et al., 2020) datasets. Besides, we propose wikiSERA, a new SERA version with
refined queries, based on the analysis of various corpora containing biomedical and
news texts.

3.2 Proposed approach: wikiSERA

SERA (Cohan and Goharian, 2016) was initially proposed for biomedical summary
evaluation, where it achieved a better correlation with Pyramid (Nenkova and Pas-
sonneau, 2004) than ROUGE (Lin, 2004) on the PubMed dataset (Table 3.1). We
hypothesize that it is possible to take out SERA from the biomedical domain to the
general one. Therefore, we led an experiment that consists of computing POS Tags
distribution percentages for (1) PubMed, a biomedical dataset built by Cohan et al.
(2018), (2) AQUAINT-2 (Advanced Question-Answering for Intelligence), a dataset
specialized in news, and (3) Wikipedia, a general-domain encyclopedic dataset. Fig-
ure 3.1 shows bar plots for Nouns, Verbs, Adjectives (Adj.), Prepositions (Prep.),
and others.

Metric Pearson Spearman Kendall

ROUGE-3-F 0.878 0.841 0.69
SERA-NP-5 0.859 1.0 1.0

Table 3.1: Best SERA and ROUGE results from Cohan and Goharian (2016) in
terms of Pearson, Spearman, and Kendall on the PubMed biomedical corpus

According to Kieuvongngam et al. (2020), nouns represent more accurate in-
formation in the generated summaries than the original abstracts, which in our
hypothesis explains why Cohan and Goharian (2016) achieves a higher correlation
than ROUGE against human evaluations. However, our analysis of three datasets
belonging to different domains shows that the distribution of verbs and adjectives
is higher in AQUAINT-2 (news) and Wikipedia (general domain) than PubMed
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Figure 3.1: POS Tags distribution percentages for Wikipedia, AQUAINT-2, and
PubMed datasets

(biomedical domain) dataset. Besides, we noticed a remarkable absence of prepo-
sitions from Wikipedia and AQUAINT-2 datasets. Based on this analysis, we pro-
posed wikiSERA, which redefines queries by considering the three most frequent
tags in the news and the general domain corpus: nouns, verbs, and adjectives.

According to Cohan and Goharian (2016), SERA was developed in the context of
scientific biomedical article summarization with the idea that its semantic specificity
is particularly useful. We drop this assumption and hypothesize that wikiSERA can
assess summaries from other domains for both abstractive and extractive summa-
rization. This hypothesis is based on the fact that SERA is a measure that considers
terms that are not lexically equivalent but are semantically related, thanks to the un-
derlying search engine matching algorithms. We conduct extensive experiments on
both SERA and wikiSERA to prove our hypothesis. Results show that wikiSERA
achieves better correlations with Pyramid (Nenkova and Passonneau, 2004) than
SERA and even outperforms ROUGE in some cases.

3.3 Experiments

3.3.1 Baselines

In the following, we describe some of the most influential evaluation metrics that
we used as baselines for evaluation: (1) ROUGE and SERA, two automatic eval-
uation approaches that rely on human intervention, (2) SummTriver and FRESA,
two entirely automatic evaluation metrics, and (3) BERTScore and MoverScore,
two BERT-based automatic approaches that rely on human intervention (Devlin



3.3. Experiments 69

et al., 2019). We also provide results with a simple Jensen-Shannon baseline used
in Bhandari et al. (2020).

• ROUGE (Lin, 2004) - (Recall-Oriented Understudy for Gisting Evaluation)
is a measure for evaluating automatic summaries that rely on human gold-
standard summaries. It is inspired by the successful evaluation method BLEU
(Papineni et al., 2002) in machine translation and is based on lexical overlaps.
As explained in Chapter 2, there are different variants of ROUGE, but we
only report results with the most popular ones: ROUGE-1, ROUGE-2, and
ROUGE-L.

• SERA (Cohan and Goharian, 2016) - Because an idea can be expressed in
different ways, abstractive summaries do not necessarily contain words that
are present in the text. In such cases, ROUGE scores drop since the latter is
based on lexical overlaps. SERA was proposed to overcome this issue by giving
more importance to the semantic content of summaries. SERA is based on
content relevance analysis between a candidate summary and its corresponding
reference summaries using information retrieval. This evaluation approach is
explained in detail in Subsection 2.6.2.3 of Chapter 2.

• SummTriver (Cabrera-Diego and Torres-Moreno, 2018) - is an automatic
evaluation method that does not need any reference summary. It is based on
trivergence between the source document(s), the candidate summary, and a
set of other candidate summaries generated by other summarization systems.
Trivergence is computed in two ways: as a composition of two divergences (Tc)
or as a multiplication of three divergences (Tm). Three kinds of divergences
are used: Kullback-Leibler (KL), Jensen-Shannon (JS), and smoothed Jensen-
Shannon (sJS) divergences. The combination of parameters results in the
following SummTriver variants: ST-JS-Tm, ST-sJS-Tm, ST-KL-Tm, ST-JS-Tc,
ST-sJS-Tc, and ST-KL-Tc.

• FRESA (Torres-Moreno et al., 2010) - (FRamework for Evaluating Sum-
maries Automatically) also does not need human intervention and is based
on the divergence between the source document and the candidate summary.
FRESA has five variants: uni-grams (FRESA-1), bi-grams (FRESA-2), tri-
grams (FRESA-3), and SU4 (FRESA-4). Since FRESA is basically designed
for mono-document evaluation, we concatenated all the articles on the same
topic to run it on TAC 2008 and TAC 2009.
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• BERTScore (Zhang et al., 2020b) - is a metric based on contextual embed-
dings representation. It needs a candidate summary and at least a reference
summary. BERTScore uses contextual embeddings to represent the text’s
tokens. It computes the matching between the candidate and the reference
summary through cosine similarity.

• JS-2 (Lin et al., 2006) - Jensen-Shannon divergence between bi-gram’s distri-
bution of the candidate and reference summaries. This metric is described in
Subsection 2.6.3.2 of Chapter 2.

• MoverScore (Zhao et al., 2019) - combines contextualized embeddings ex-
tracted from a pre-trained BERT model with Earth Mover Distance (EMD)
from Rubner et al. (2000) to quantify similarities and dissimilarities between
the candidate and the reference summaries.

3.3.2 Datasets

In the following, we describe the datasets used in our experiments.

3.3.2.1 Index datasets

We built various indexes using four corpora, and we indexed different numbers of
documents in order to evaluate the robustness of our system.

• AQUAINT-2 is a News corpus containing 825,148 documents taken from
“Agence France Presse” (afp), “Associated Press” (apw), “Xinhua News Agency”
(xin), “Central News Agency” (cna), “New York Times” (nyt) and “Los Angeles
Times” (ltw). Table 3.2 describes the sources and the number of files for each
set of news.

Source Description Number of articles

afp_en Agence France Presse 270,081

apw_eng Associated Press 187,234

cna_eng Central News Agency (Taiwan) English Service 14,960

ltw_eng Los Angeles Times - Washington Post News Service 59,282

nyt_eng New York Times 152,082

xin_eng Xinhua News Agency (Beijing) English Service 141,509

Table 3.2: Description of the AQUAINT-2 corpus (as at December 19, 2008)
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For experiments, we vary the number of documents D={10000, 15000, 30000,
60000, 179520, 825148}. All indexes are balanced (we take the same number
of documents from each subset of the corpus), except for the last one, where
we index all documents from AQUAINT-2. We select the files randomly (only
one draw was made).

• Wikipedia is a free online encyclopedia that contains 1,778,742 documents.
Wikipedia contains varied information from many sources and is useful to as-
sess the performance of wikiSERA in the general domain. For experiments, we
vary the number of documents D={10000, 15000, 30000, 1778742}. Note that
the last number corresponds to the full size of the dataset. Documents are also
selected randomly here using only one draw. Finally, since the number of to-
kens in the evaluated summaries is 100, we select files which contain at least 400
tokens in order to get Compression Radio CR = (lengthsummary)/(lengthtext) <=

0.25. The closer the CR score is from zero, the better the summary is Mitkov
(2004).

3.3.2.2 Queries datasets

Automatic summaries from the news datasets TAC 2008, TAC 2009, and CN-
NDM (Bhandari et al., 2020) (Section 3.3.2) are used as queries. The two TAC
datasets are a sub-set of AQUAINT dataset (Graff, 2002).

• TAC 2008 contains two sets: A and B, where the set B is the updated version
of set A. Each set contains 48 topics. Each topic includes 10 documents, where
humans provide 4 reference summaries for each topic. The candidate sum-
maries are proposed by 58 participants, where each participant provides one
automatic candidate summary per topic. In total, there are 960 documents,
5568 candidate summaries, and 384 reference summaries. For experiments, We
index 960 documents, which is the total number of documents in this dataset.

• TAC 2009 also contains two sets. Each set contains 44 topics. Each topic
includes 10 documents, where humans provide 4 reference summaries for each
topic. The candidate summaries are proposed by 55 participants, where each
participant provides one automatic candidate summary per topic. In total,
there are 880 documents, 4840 candidate summaries, and 352 reference sum-
maries. For experiments, We index 880 documents, which is the total number
of documents in this dataset.
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• CNN Daily Mail (Bhandari et al., 2020). This news-based database is of
great interest to us because it has candidate summaries obtained from both
extractive and abstractive systems. This will help us to check the robustness
of wikiSERA to evaluate extractive and abstractive approaches. The used
CNNDM dataset consists of 100 reference summaries, having each 25 candidate
summaries generated by 11 extractive systems and 14 abstractive systems. We
list the extractive and abstractive systems used in Bhandari et al. (2020) to get
the 25 candidate summaries for each reference summary. We used these results
to compare wikiSERA with the other evaluation measures. The systems are
the following:

– Extractive systems: REFRESH (Narayan et al., 2018b), NeuSum (Zhou
et al., 2018), BanditSum (Dong et al., 2018), Latent (Zhang et al., 2018),
CNN-LSTM-BiClassifier (Kedzie et al., 2018), HIBERT (Zhang et al.,
2019b), Sum-PreTr-Enc (Liu and Lapata, 2019a), Transformer-BiClassifier
(Zhong et al., 2019), Transformer-Pointer (Zhong et al., 2019), HETER-
SUMGRAPH (Wang et al., 2020), MatchSum (Zhong et al., 2020).

– Abstractive systems: GTTP (See et al., 2017), bottom-up (Gehrmann
et al., 2018), fastAbsRL (Chen and Bansal, 2018), fastAbsRL-rank (Chen
and Bansal, 2018), unilm-v1 (Dong et al., 2019), unilm-v2 (Dong et al.,
2019), twoStageRL (Zhang et al., 2019a), pre-summAbs (Liu and Lap-
ata, 2019a), preSummAbs-ext (Liu and Lapata, 2019a), T5 (Raffel et al.,
2020), BART (Lewis et al., 2019), SemSim-Summ (Yoon et al., 2020).

3.3.3 Evaluation metric

To compare wikiSERA with other state-of-the-art methods, we use the correlation
between the scores provided by each automatic method and the scores provided by
manual evaluation metrics.

The manual evaluation metrics used here are:

• Pyramid - (Nenkova and Passonneau, 2004) is a manual evaluation measure
that exploits the content distribution of human summaries. Pyramid is based
on SCUs (Summarization Content Units). A content unit is a set of sub-
sentences, at most a clause, that expresses the same semantic content. The
Pyramid approach attributes a weight for each SCU depending on its frequency
in the summary corpus. Afterward, a pyramid is created where the most
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frequent SCUs are at the top of the Pyramid, and the less frequent ones are
at its bottom. The number of levels in the Pyramid depends on the content
units’ weight, and the summary’s score is computed by dividing the sum of
the SCUs weights by an optimal weights sum with the same number of SCUs.

• LitePyramid (Shapira et al., 2019) - is a crowdsource-based lightweight ver-
sion of Pyramid that relies on statistical sampling instead of exhaustive SCU
extraction and testing. LitePyramid shows a high and stable correlation with
the standard Pyramid method, compared to Responsiveness.

• Responsiveness - another manual method suited for Question-Answering
problems. It incorporates aspects of linguistic quality to assign a score that
measures the quality of a summary.

Correlation metrics that we used are defined as follows:

• Pearson correlation (Benesty et al., 2009). It measures the linear relation-
ship between two datasets while assuming them to be normally distributed.
Pearson correlation varies between −1 and 1. A zero value means there ex-
ists no correlation between the two datasets. A positive correlation means
that when x increases, y also does. A negative correlation means that when x
increases, y decreases. The formula is given by:

rp =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(3.1)

where n is the number of samples, xi is a sample, and x̄ is the mean of the x
samples.

• Spearman correlation (Kokoska and Zwillinger, 2000). It is a non-parametric
rank-order correlation that measures the monotonicity of the relationship be-
tween two datasets. Spearman correlation does not assume that the two dis-
tributions are normally distributed. Correlations of -1 or +1 imply an exact
monotonic relationship. The formula is given by:

rs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
(3.2)

where di = xi − yi
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• Kendall tau-b correlation (Kendall, 1945). It measures the correspondence
between two rankings. A value of 1 means a strong agreement, while a value
of -1 means a strong disagreement. This version of Kendall’s correlation can
account for ties contrarily to the first version of this correlation. The formula
is given by

rk =
P −Q√

(P +Q+ T )(P +Q+ U)
(3.3)

where P is the number of concordant pairs, Q is the number of discordant
pairs, T is the number of ties that are only in x, and U is the number of ties
are only in y. If a tie occurs for the same pair in both x and y, it is not added
to either T or U .

3.3.4 Implementation details

SERA and wikiSERA were implemented in Python1. As mentioned before, there
are four types of queries: raw text, Noun Phrases (NP), KeyWords (KW), and
wikiSERA’s (nouns + verbs + adjectives). For all kinds of queries, the text is cleaned
by removing special characters (such as & and >), numbers, and stop words defined
in nltk (Loper and Bird, 2002). The text is converted to a lowercase afterward.

To extract nouns, verbs, and adjectives from the text, we use nltk’s Part-Of-
Speech Tagger. To extract text keywords, we use the feature extractor from sklearn
(Pedregosa et al., 2011). Specifically, we use TF − IDF method to get uni-gram,
bi-gram, and tri-gram keywords. Once the extraction is done, extracted tokens are
concatenated together before being passed to the index. Note that following the
authors Cabrera-Diego and Torres-Moreno (2018), we lowercase the documents and
delete numbers and stop-words from them before running SummTriver. Similarly,
FRESA applies filtering and stemming on the documents, while ROUGE does not
apply preprocessing since its correlations were not affected by stemming or removal
of stopwords (Lin, 2004).

To search the queries in the index documents, we used Whoosh (Chaput, 2007-
2012), a flexible and pure python search engine framework. We used the default
Okapi BM25F ranking function from Whoosh. Equally, we used the authors’ public
implementations to run ROUGE, SummTriver, and FRESA.

1Our system is available at https://github.com/JessicaLopezEspejel/wikiSERA/

https://github.com/JessicaLopezEspejel/wikiSERA/
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Following Cabrera-Diego and Torres-Moreno (2018), we evaluate SummTriver
using a total of 1800 summaries, where 900 are taken from each of the two sets of
TAC 2008 and TAC 2009. Also, we follow the authors and test different numbers of
summaries n={2, 5, 10, 15, 30} in the distribution P , since the size of this distribu-
tion heavily affects the performance of the approach. FRESA was designed initially
for mono-document evaluation. Therefore, the main limitation of our comparison
with this system is that we concatenated all the articles of the same topic to be able
to run it on TAC 2008 and TAC 2009.

For the sake of comparability, scores are averaged for each participant before
computing the correlations with Pyramid and Responsiveness.

To evaluate ROUGE, BERTScore, MoverScore, and JS-2 on the CNNDM dataset,
we directly used the scores provided by Bhandari et al. (2020) and computed their
correlations with LitePyramid human evaluation. Based on AQUAINT-2 andWikipedia
results, we use an index size D=10000 to run SERA and wikiSERA.

Note that all evaluation methods used here were run on a Central Processing
Unit (CPU). It is essential to highlight that the complexity of SERA and wikiSERA
is relative to the size of the index, where the biggest the index, the longest the
execution time. However, they are fortunately still functional in the absence of
a Graphical Processing Unit (GPU). For example, when running wikiSERA on a
CPU, it takes 40 minutes, 1 hour, 1 hour, and 30 minutes with index sizes of 10000,
15000, and 30000, respectively. The largest index size is the one from Wikipedia,
including 1778742 documents. Here, wikiSERA takes around 8 hours of execution-
only. More recent evaluation methods such as SSAS (Vadapalli et al., 2017) and
BERTScore (Zhang et al., 2020b) are costly and should be run on a GPU. For
example, SSAS needs to train multiple deep semantic models which are used to
compute various features (Hermann et al., 2015, Nallapati et al., 2016).

3.4 Results

3.4.1 Correlation on the TAC 2008 dataset

Table 3.4-left shows the correlation coefficients on the TAC 2008 dataset of ROUGE,
SERA, wikiSERA, SummTriver, and FRESA with two manual evaluation approaches:
Pyramid and Responsiveness. We computed correlation coefficients with Pyramid
using both four and three manual reference summaries, and the results are slightly
different in favor of the latter. For this reason, we present in Table 3.4-left cor-
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relation scores using three reference summaries for Pyramid, while we use the four
reference summaries for SERA and wikiSERA. Detailed results are in Appendix A.

We experimented with SERA and wikiSERA metrics by building various indexes
from AQUAINT-2 and Wikipedia corpora. Results show that, in AQUAINT-2, the
wikiSERA-5 method outperforms the SERA method when indexing 15000 docu-
ments. It outperforms SERA by approximately 0.2 points for Pyramid, and by
almost 0.3 points for Responsiveness. Scores in terms of Pearson and Spearman of
wikiSERA with AQUAINT-2 are fairly close to ROUGE, with the latter providing
the highest correlations with both Pyramid and Responsiveness. Besides, SERA and
wikiSERA outperform the scores achieved by SummTriver and FRESA with both
Pyramid and Responsiveness in terms of the three types of correlation tested here.

When we index documents from Wikipedia corpus using D=30000, we achieve
the highest correlation with SERA-DIS-NP-10, while the best wikiSERA variant
is wikiSERA-10. Once again, SERA outperforms the scores of SummTriver and
FRESA with both Pyramid and Responsiveness. In wikiSERA, this approach achieves
higher correlation coefficients in terms of Pearson and Spearman measures with
Pyramid and higher correlation in terms of Pearson measure with Responsiveness.
The SummTriver system provides higher scores than wikiSERA against Pyramid
when we use 900 summaries per corpus. Finally, the FRESA baseline achieves the
lowest correlation scores with manual methods. Here, the evaluation was done us-
ing summaries from all participants. Also important, we concatenated each topic’s
documents in order to be able to run this approach. As mentioned before, this
is the main limitation of our comparison with FRESA since it was designed for
mono-document summary evaluation.

Figure 3.2 shows the Pearson correlation coefficients with both Pyramid and
Responsiveness when indexing different numbers of documents from the AQUAINT-
2 dataset. We observe that the highest scores are obtained with D={10000, 15000,
30000, 60000} documents in the index dataset. Consequently, it is better to use
a limited set of documents instead of all the corpus. Moreover, Figure 3.3 shows
the Pearson correlation coefficients with both Pyramid and Responsiveness when
indexing different numbers of documents from Wikipedia. Once again, the lowest
scores appear when we index all the documents from the dataset.

Because the best results with AQUAINT-2 were obtained using small index sizes,
we varied the number of index documents in Wikipedia between D={10000, 15000,
30000} and all documents from the corpus. Obtained results confirm that the best
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Figure 3.2: Pearson correlation coefficients using TAC 2008 dataset as queries and
AQUAINT-2 documents as an index

number of index documents varies between 10000 and 30000.

3.4.2 Correlation on the TAC 2009 dataset

Table 3.4-right shows correlation coefficients of ROUGE, SERA, wikiSERA, SummTriver,
and FRESA against Pyramid and Responsiveness using TAC 2009 corpus as queries,
while using AQUAINT-2 and Wikipedia as index datasets. Correlation coefficients
were obtained using the four reference summaries scores for all automatic approaches.
In contrast, only three of them were used for Pyramid since they provide slightly
better results than the four manual scores. Detailed results are in Appendix A.

ROUGE presents the highest scores against SERA and wikiSERA when we index
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Figure 3.3: Pearson correlation coefficients using TAC 2008 dataset as queries and
Wikipedia documents as an index

documents from AQUAINT-2. However, the best results from AQUAINT-2 were
obtained when indexing 179520 documents. In addition, the wikiSERA method
achieves better scores than SERA. Actually, wikiSERA-DIS-5 and wikiSERA-5 ob-
tain the highest scores compared to the Pyramid method, and the Responsiveness
manual evaluation methods, respectively.

SERA and wikiSERA outperform, in terms of Pearson correlation, ROUGE
against the Pyramid manual method when indexing 10,000 documents fromWikipedia.
The best scores are achieved by SERA-DIS-10 in terms of Pearson and Kendall cor-
relations, while SERA-DIS-KW-10 behaves better when it comes to the Spearman
correlation. On the other hand, SERA and wikiSERA also outperform the ROUGE
method with Responsiveness in terms of Pearson correlation. For SERA methods,
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we get the best scores with SERA-NP-10 in terms of the three types of correlation
methods tested here. However, in wikiSERA, we get the highest Pearson correlation
with wikiSERA-10, while the highest scores are obtained with wikiSERA-DIS-10 in
terms of Spearman and Kendall correlations.

Results reported in Table 3.4-right were obtained using the four manual an-
notators in Pyramid contrarily to the experiments with TAC 2008. The highest
Pearson correlation achieved is 0.959. This score is obtained with SERA-DIS-10
and wikiSERA-DIS-10 using the average of three annotator scores.

Figure 3.4: Pearson correlation coefficients using TAC 2009 dataset as queries and
AQUAINT-2 documents as an index

Figure 3.4 and 3.5 show the Pearson correlation coefficients with both Pyramid
and Responsiveness when indexing a different number of documents from AQUAINT-
2 and Wikipedia datasets. This study shows that SERA and wikiSERA outperform
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in some cases the scores obtained with ROUGE variants, and they are closer to
manual metrics.

Figure 3.5: Pearson correlation coefficients using TAC 2009 dataset as queries and
Wikipedia documents as an index

3.4.3 Correlation on the CNNDM dataset

Table 3.3-left shows the correlation coefficients in terms of Pearson, Spearman, and
Kendall, of SERA, wikiSERA, ROUGE, BERTScore, JS-2, and MoverScore with
LitePyramid using both extractive and abstractive summaries from CNNDM (Bhan-
dari et al., 2020) dataset. To analyze the performance of different systems on each
type of summarization, we present in Table 3.3-middle and Table 3.3-right the cor-
relations using only the extractive summaries and only the abstractive summaries,



3.4. Results 81

respectively.

We first analyze Table 3.3-left since it provides an overview of the global behavior
of each system. Results show that the highest correlations of ROUGE are obtained
with ROUGE-2-Recall. Globally, the highest correlations in ROUGE are obtained
with the recall metric (ROUGE-R), followed by the ROUGE-F measure, and finally
by ROUGE-P. The second highest correlations are obtained with wikiSERA-10,
while the third highest correlations come from SERA. Although SERA-KW-10 has
the best score in Spearman and Kendall, all the SERA variants present very similar
scores. Behind the SERA method, BERScore and JS-2 measures present very similar
scores. Meanwhile, MoverScore shows the lowest correlations.

According to Table 3.3-middle, the highest correlation when we evaluate only
extractive summaries is obtained with ROUGE-2-Recall in terms of Pearson, and
ROUGE-1-Recall in terms of Spearman and Kendall. This finding is not surprising
since extractive approaches directly copy-paste sentences from the source document
to the summary, while humans write more abstractive reference summaries, leading
to a high matching of uni-grams and bi-grams only between candidate and reference
summaries.

The second metric achieving the highest correlation is SERA-DIS-NP-5. Unlike
the correlations obtained with both extractive and abstractive summaries (Table 3.3-
left), the correlations obtained using only extractive summaries vary considerably
for SERA. For instance, the difference in terms of Pearson score between SERA-
DIS-NP-5 and SERA-DIS-10 is 0.502. Behind SERA comes wikiSERA, where the
highest scores are obtained with wikiSERA-5 in Pearson, Kendall, and wikiSERA-10
in Spearman correlation. Once again, wikiSERA overcomes JS-2, BERTScore, and
MoverScore.

Finally, Table 3.3-right shows the correlations between tested approaches and
human evaluation using only abstractive summaries. Once again, the highest results
in ROUGE come from the Recall metric. Interestingly, ROUGE-2-R keeps the
highest correlations in comparison with the other tested metrics. Note that ROUGE-
2-R presents the same correlations with ROUGE-L-F in terms of Spearman and
Kendall. Based on these observations, we conclude that abstractive approaches can
produce larger common phrases between candidate and reference summaries than
extractive ones, where we find more uni-grams matching between them. Moreover,
wikiSERA outperforms once again the BERTScore, MoverScore, and JS-2 methods.
It is noteworthy that scores in this table are considerably higher than those in
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Both extractive and abstractive Extractive Abstractive

Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

R
O
U
G
E

ROUGE-1-F 0.600 0.468 0.358 0.111 -0.018 0.055 0.879 0.938 0.824
ROUGE-1-P -0.175 -0.212 -0.117 -0.179 -0.082 -0.055 0.308 0.367 0.275
ROUGE-1-R 0.914 0.922 0.773 0.703 0.691 0.564 0.913 0.705 0.538
ROUGE-2-F 0.648 0.452 0.311 0.190 -0.091 -0.055 0.876 0.938 0.802
ROUGE-2-P 0.099 0.050 0.023 -0.044 -0.082 -0.055 0.536 0.688 0.473
ROUGE-2-R 0.962 0.958 0.860 0.739 0.618 0.491 0.983 0.947 0.868

ROUGE-L-F 0.526 0.368 0.278 0.091 -0.036 -0.018 0.707 0.947 0.868

ROUGE-L-P -0.045 -0.148 -0.070 -0.188 -0.109 -0.055 0.372 0.367 0.319
ROUGE-L-R 0.871 -0.914 0.759 0.699 0.555 0.418 0.832 0.727 0.582

B
E
R
T
S BERTScore-1-F 0.385 0.374 0.258 -0.068 -0.073 0.055 0.631 0.635 0.495

BERTScore-1-P -0.021 0.093 0.064 -0.290 -0.136 -0.127 0.371 0.508 0.341
BERTScore-1-R 0.768 0.738 0.552 0.333 0.191 0.127 0.824 0.719 0.626

MS MoverScore 0.443 0.367 0.284 0.012 -0.009 -0.018 0.858 0.956 0.868

JS JS-2 0.780 0.665 0.512 0.129 -0.064 0.018 0.902 0.947 0.824
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SERA-5 0.773 0.710 0.508 0.143 -0.082 -0.127 0.866 0.759 0.522
SERA-10 0.858 0.789 0.616 0.032 -0.036 -0.091 0.925 0.868 0.736

SERA-NP-5 0.690 0.639 0.452 0.483 0.421 0.337 0.665 0.700 0.508
SERA-NP-10 0.743 0.705 0.502 0.451 0.393 0.278 0.761 0.823 0.619
SERA-KW-5 0.784 0.711 0.508 0.165 -0.141 -0.147 0.871 0.808 0.589
SERA-KW-10 0.864 0.782 0.621 0.050 -0.027 -0.073 0.941 0.904 0.773
SERA-DIS-5 0.748 0.668 0.472 0.421 0.309 0.164 0.870 0.824 0.582
SERA-DIS-10 0.827 0.781 0.605 0.102 0.091 0.018 0.904 0.925 0.802

SERA-DIS-NP-5 0.599 0.554 0.391 0.604 0.618 0.491 0.622 0.591 0.385
SERA-DIS-NP-10 0.671 0.568 0.393 0.593 0.573 0.455 0.718 0.744 0.486
SERA-DIS-KW-5 0.758 0.657 0.465 0.438 0.309 0.164 0.871 0.815 0.560
SERA-DIS-KW-10 0.828 0.752 0.565 0.143 0.164 0.091 0.910 0.921 0.780

wikiSERA-5 0.623 0.527 0.387 -0.586 -0.536 -0.418 0.803 0.667 0.522
wikiSERA-10 0.880 0.872 0.719 0.479 0.548 0.389 0.903 0.710 0.560

wikiSERA-DIS-5 0.566 0.469 0.315 -0.339 -0.464 -0.345 0.763 0.653 0.473
wikiSERA-DIS-10 0.817 0.788 0.605 0.409 0.345 0.200 0.885 0.727 0.560

Table 3.3: Correlation coefficients on CNNDM dataset, in terms of Pearson, Spearman

and Kendall, of multiple automatic evaluation methods with LitePyramid using both

extractive and abstractive summaries (left), only extractive summaries (middle), and only

abstractive summaries (right). Best results of each method are in bold.

Table 3.3-middle (only extractive summaries). Unlike the results from Tables 3.3-
left and 3.3-right, the lowest correlation scores are obtained with BERTScore-1-R
when we use only abstractive summaries.
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TAC 2008 TAC 2009
Pyramid Responsiveness Pyramid Responsiveness

Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

R
O
U
G
E

ROUGE-1-F 0.908 0.941 0.787 0.853 0.883 0.702 0.951 0.915 0.788 0.835 0.793 0.622
ROUGE-1-P 0.730 0.841 0.643 0.698 0.803 0.626 0.923 0.845 0.678 0.791 0.789 0.630
ROUGE-1-R 0.911 0.935 0.774 0.851 0.858 0.665 0.926 0.892 0.748 0.814 0.764 0.591
ROUGE-2-F 0.940 0.965 0.843 0.892 0.915 0.746 0.930 0.955 0.839 0.740 0.831 0.664
ROUGE-2-P 0.911 0.942 0.788 0.873 0.901 0.730 0.906 0.937 0.796 0.716 0.829 0.658
ROUGE-2-R 0.946 0.967 0.851 0.894 0.918 0.755 0.937 0.952 0.841 0.746 0.820 0.654
ROUGE-3-F 0.941 0.951 0.810 0.915 0.924 0.767 0.842 0.964 0.841 0.622 0.852 0.675

ROUGE-3-P 0.926 0.934 0.783 0.909 0.918 0.766 0.828 0.940 0.800 0.610 0.839 0.656
ROUGE-3-R 0.945 0.951 0.811 0.914 0.922 0.763 0.848 0.964 0.845 0.627 0.845 0.673
ROUGE-L-F 0.878 0.925 0.756 0.823 0.868 0.689 0.865 0.604 0.461 0.649 0.414 0.294
ROUGE-L-P 0.711 0.823 0.632 0.679 0.794 0.611 0.801 0.546 0.406 0.573 0.360 0.255
ROUGE-L-R 0.882 0.927 0.762 0.823 0.856 0.661 0.875 0.622 0.474 0.663 0.414 0.298

ROUGE-W-1.2-F 0.901 0.940 0.782 0.848 0.878 0.701 0.882 0.654 0.512 0.651 0.462 0.341
ROUGE-W-1.2-P 0.712 0.822 0.631 0.688 0.794 0.620 0.798 0.514 0.393 0.558 0.337 0.237
ROUGE-W-1.2-R 0.897 0.940 0.785 0.841 0.871 0.684 0.889 0.671 0.529 0.659 0.469 0.340
ROUGE-SU4-F 0.917 0.949 0.805 0.870 0.904 0.728 0.934 0.940 0.818 0.747 0.808 0.639
ROUGE-SU4-P 0.839 0.910 0.728 0.805 0.869 0.689 0.893 0.910 0.761 0.702 0.804 0.638
ROUGE-SU4-R 0.927 0.950 0.800 0.874 0.908 0.736 0.942 0.924 0.787 0.756 0.789 0.619
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SERA-5 0.913 0.908 0.732 0.845 0.821 0.624 0.904 0.818 0.656 0.814 0.664 0.502
SERA-10 0.887 0.871 0.693 0.817 0.766 0.572 0.881 0.817 0.651 0.813 0.675 0.513

SERA-NP-5 0.866 0.863 0.681 0.792 0.770 0.569 0.916 0.831 0.670 0.816 0.692 0.530

SERA-NP-10 0.908 0.905 0.739 0.849 0.827 0.632 0.885 0.828 0.662 0.806 0.702 0.529
SERA-KW-5 0.909 0.901 0.721 0.841 0.809 0.611 0.900 0.816 0.654 0.807 0.665 0.503
SERA-KW-10 0.890 0.880 0.705 0.823 0.779 0.579 0.880 0.810 0.646 0.807 0.670 0.511
SERA-DIS-5 0.905 0.885 0.713 0.840 0.800 0.593 0.942 0.829 0.666 0.811 0.660 0.501
SERA-DIS-10 0.900 0.888 0.711 0.829 0.797 0.592 0.941 0.836 0.671 0.806 0.673 0.521

SERA-DIS-NP-5 0.875 0.864 0.679 0.805 0.774 0.573 0.945 0.831 0.670 0.809 0.687 0.529
SERA-DIS-NP-10 0.907 0.905 0.735 0.843 0.819 0.616 0.947 0.825 0.665 0.806 0.683 0.518
SERA-DIS-KW-5 0.903 0.885 0.712 0.837 0.801 0.597 0.941 0.822 0.659 0.808 0.653 0.496
SERA-DIS-KW-10 0.902 0.888 0.709 0.832 0.804 0.601 0.939 0.826 0.658 0.802 0.669 0.515

wikiSERA-5 0.928 0.924 0.760 0.869 0.854 0.663 0.908 0.835 0.678 0.834 0.697 0.530

wikiSERA-10 0.902 0.890 0.708 0.843 0.800 0.604 0.874 0.813 0.652 0.814 0.686 0.517
wikiSERA-DIS-5 0.924 0.910 0.746 0.861 0.836 0.641 0.947 0.836 0.688 0.831 0.684 0.525
wikiSERA-DIS-10 0.918 0.896 0.724 0.852 0.806 0.610 0.940 0.818 0.657 0.818 0.673 0.514
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SERA-5 0.831 0.839 0.673 0.763 0.751 0.560 0.942 0.870 0.717 0.843 0.768 0.592
SERA-10 0.884 0.900 0.724 0.812 0.798 0.594 0.944 0.892 0.741 0.845 0.784 0.607

SERA-NP-5 0.900 0.898 0.733 0.839 0.819 0.616 0.926 0.863 0.704 0.831 0.749 0.573
SERA-NP-10 0.890 0.912 0.738 0.806 0.812 0.618 0.936 0.863 0.709 0.835 0.759 0.592
SERA-KW-5 0.837 0.838 0.667 0.767 0.749 0.552 0.939 0.863 0.701 0.834 0.761 0.588
SERA-KW-10 0.885 0.906 0.727 0.812 0.806 0.603 0.944 0.894 0.738 0.839 0.771 0.588
SERA-DIS-5 0.833 0.825 0.655 0.781 0.757 0.568 0.952 0.877 0.729 0.809 0.778 0.602
SERA-DIS-10 0.877 0.887 0.707 0.815 0.790 0.588 0.955 0.896 0.751 0.791 0.781 0.603

SERA-DIS-NP-5 0.894 0.884 0.718 0.838 0.809 0.604 0.945 0.842 0.684 0.811 0.733 0.563
SERA-DIS-NP-10 0.902 0.917 0.754 0.826 0.820 0.626 0.945 0.845 0.688 0.785 0.746 0.579
SERA-DIS-KW-5 0.838 0.837 0.667 0.783 0.761 0.567 0.949 0.868 0.713 0.801 0.773 0.596
SERA-DIS-KW-10 0.881 0.894 0.719 0.817 0.797 0.598 0.952 0.899 0.753 0.785 0.782 0.607

wikiSERA-5 0.873 0.865 0.698 0.803 0.774 0.581 0.926 0.854 0.701 0.838 0.737 0.570
wikiSERA-10 0.883 0.903 0.727 0.808 0.805 0.598 0.935 0.870 0.710 0.839 0.737 0.571

wikiSERA-DIS-5 0.870 0.865 0.701 0.802 0.773 0.580 0.952 0.867 0.717 0.819 0.768 0.592

wikiSERA-DIS-10 0.882 0.899 0.722 0.810 0.800 0.601 0.957 0.882 0.710 0.800 0.748 0.577
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m
m
Tr

iv
er

ST-JS-Tm -0.889 -0.827 -0.643 -0.820 -0.801 -0.608 -0.526 -0.755 -0.623 -0.650 -0.744 -0.587

ST-sJS-Tm -0.885 -0.822 -0.637 -0.822 -0.797 -0.605 -0.511 -0.751 -0.620 -0.636 -0.739 -0.585
ST-KL-Tm -0.694 -0.700 -0.510 -0.706 -0.695 -0.504 -0.371 -0.681 -0.558 -0.518 -0.683 -0.550
ST-JS-Tc -0.858 -0.805 -0.613 -0.771 -0.777 -0.578 -0.477 -0.718 -0.582 -0.619 -0.710 -0.563
ST-sJS-Tc -0.857 -0.805 -0.612 -0.771 -0.777 -0.577 -0.475 -0.717 -0.581 -0.618 -0.709 -0.562
ST-KL-Tc -0.216 -0.168 -0.123 0.025 0.134 0.091 -0.138 -0.062 -0.040 -0.014 -0.007 -0.005

F
R
E
SA

FRESA-1 -0.487 -0.638 -0.537 -0.385 -0.498 -0.371 -0.610 -0.650 -0.491 -0.594 -0.565 -0.410

FRESA-2 0.474 -0.062 -0.064 0.523 0.076 0.034 -0.630 0.046 -0.026 -0.385 -0.074 -0.063
FRESA-3 0.539 0.241 0.162 0.593 0.362 0.250 -0.556 0.055 0.056 -0.298 0.180 -0.147
FRESA-4 0.544 0.257 0.168 0.596 0.416 0.296 -0.516 0.189 0.142 -0.217 0.363 -0.278

Table 3.4: Correlation coefficients of TAC 2008 (left) and TAC 2009 (right)
datasets, in terms of Pearson, Spearman and Kendall, of multiple automatic
evaluation methods with Pyramid and Responsiveness. Best results of each

method are in bold.
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3.4.4 Impact of human annotators on SERA and wikiSERA

In Appendix A, we provide extensive ablation experiments to study the impact of
the human annotators in TAC 2008 and TAC 2009 datasets when we evaluate sum-
maries with SERA (the evaluation method proposed by Cohan and Goharian (2016))
and wikiSERA (the evaluation approach proposed in this thesis). In these experi-
ments, we compute the correlation using: (1) each human annotator A individually
(Ai∈[1,4]), (2) three human annotators (A1 & A2 & A3), (A1 & A2 & A4), (A2 & A3

& A4), and (3) all human annotators (A1 & A2 & A3 & A4).

We show experimentally that human annotators affect the performance of auto-
matic evaluation approaches. This finding is intuitive insofar as text summarization
is a hard task even for humans. Depending on the expertise of each annotator,
quality of manually written summaries varies, leading to biases in automatic evalua-
tion. In Figure 3.6, we show correlations of SERA and wikiSERA with the Pyramid
manual evaluation method, while considering the individual score of each annotator
Ai∈[1,4]. We thus provide the annotator(s) who achieve(s) the highest and lowest
correlations in each index-query combination. Results with Responsiveness follow
the same trend as with Pyramid.

TAC 2009 query dataset - Figures 3.6-a, 3.6-b, 3.6-c, and 3.6-d provide SERA
and wikiSERA correlations with Pyramid using TAC 2009 as a query dataset and
AQUAINT-2 and Wikipedia as indexes. Results show that the best human anno-
tator is always A1 as he provides summaries with the best SERA and wikiSERA
correlations in terms of Pearson, Spearman, and Kendall. Alternatively, the human
annotator A3 always gets the lowest correlations in terms of all correlation metrics
used.

In Table 3.5, we compare results obtained with the four manual annotators ver-
sus those obtained with the best three annotators (A1 & A2 & A4) for TAC 2009.
Results show there is a clear gain between using four and three manual annotators,
to the favor of the latter for all reported cases. For AQUAINT-2, the gain for SERA
is 0.002, 0.01, and 0.016 in terms of Pearson, Spearman, and Kendall, respectively.
The gain for wikiSERA is 0.004, 0.005, and 0.023. Alternatively, for Wikipedia, the
gain for SERA is 0.004, 0.013, and 0.025 in terms of the three correlation methods,
while the gain for wikiSERA is 0.002 and 0.033 in terms of Pearson and Kendall, re-
spectively. We conclude that the automatic evaluation methods that rely on human
intervention participate partially in automatic summary evaluation, while the hu-
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man annotators bias the automatic evaluation based on the quality of their manually
written summaries.

Figure 3.6: Impact of human annotators on the performance of SERA and
wikiSERA on TAC 2008 and TAC 2009 datasets
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TAC 2008 query dataset - Figures 3.6-e, 3.6-f, 3.6-g, and 3.6-h provide SERA
and wikiSERA correlations with Pyramid using TAC 2008 as a query dataset and
AQUAINT-2 and Wikipedia as indexes. Like in TAC 2009, human annotators affect
automatic evaluation with SERA and wikiSERA. In contrast, it is hard to retrieve
a pattern from TAC 2008 figures, as the best human annotator changes from one
case to another. For instance, A1 is the best human annotator for SERA with both
AQUAINT-2 and Wikipedia corpora in terms of Spearman and Kendall. However,
in terms of Pearson correlation, the best annotator is A4 for AQUAINT-2 and A2

for Wikipedia. Alternatively, the best annotator for wikiSERA is always A2 for
Wikipedia, while the same annotator provides the lowest results with AQUAINT-2.

AQUAINT-2 Wikipedia
SERA-DIS-NP-10 wikiSERA-DIS-5 SERA-DIS-10 wikiSERA-DIS-10

Annotators 4 3 4 3 4 3 4 3

Pearson 0.947 0.949 0.947 0.951 0.955 0.959 0.957 0.959

Spearman 0.825 0.835 0.836 0.841 0.896 0.909 0.882 0.882

Kendall 0.665 0.681 0.668 0.691 0.751 0.776 0.710 0.743

Table 3.5: Impact of human annotators on the evaluation with SERA and
wikiSERA using TAC 2009.

3.5 Discussion

The intuition behind SERA (Cohan and Goharian, 2016) is that a summary con-
text is represented by its most related articles. Thus, two summaries related to
the same documents are semantically related, even if they are lexically different.
Consequently, SERA is fairer to evaluate abstractive summaries contrarily to the
lexical-based ROUGE. However, SERA suffers from a series of limitations: (1) the
code is not open-source, (2) no information was provided concerning the subset of
PubMed used as an index, and (3) PubMed is specialized in the biomedical domain
only. The first two drawbacks make SERA unusable by the community, while the
third restricts its usage to the biomedical domain. We build on SERA merits and
limitations to propose wikiSERA, an open-source version of SERA that evaluates
summaries from the general domain. Novelties of wikiSERA are the index pool
and query reformulation adapted to the evaluation of summaries from the general
domain. We use Wikipedia as an index, and this dataset is public. It is thus possi-
ble to use wikiSERA to evaluate user summaries. Equally important, we make the
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code open-source to allow researchers to reproduce our results and improve further
automatic summary evaluation.

The performance of SERA depends on the number of index documents and the
domain to which they belong. In order to know how many documents are necessary
to get the highest correlation scores and evaluate the robustness of our system, we
indexed different numbers of documents belonging to different corpora. Depending
on the use case, we can select, for instance, 10000 documents in order to make a
compromise between the time needed for evaluation and the desired scores we want
to achieve.

According to Kieuvongngam et al. (2020), nouns in generated summaries repre-
sent more accurately the information conveyed by the original abstracts than other
POS tags. With this study, we can explain why Cohan and Goharian (2016) got
a better correlation than ROUGE when they defined queries using noun phrases.
However, migrating SERA to the general domain implies redefining the most rele-
vant POS Tags in the texts used for experimentation. We lead a POS-tag analysis to
know the distribution of nouns, verbs, adjectives, prepositions, and other POS Tags
on three corpora: PubMed (Cohan and Goharian, 2016), AQUAINT-2 (Consortium,
2008), and our Wikipedia corpus. Our study on three different corpora belonging to
different domains shows that the percentages of verbs and adjectives are higher in
AQUAINT-2 (news) and Wikipedia (general domain) than PubMed dataset. There-
fore, we propose a novel method based on query reformulation: wikiSERA. Our
approach extracts from the query nouns, verbs, and adjectives.

wikiSERA shows a better behavior for TAC 2009 than for TAC 2008 (Table 3.4).
Indeed, wikiSERA-DIS-10, the best variant of wikiSERA for TAC 2009, achieves
better results than ROUGE with Pearson correlation when using Wikipedia as an
index. This finding proves the effectiveness of wikiSERA to evaluate summaries
from the general domain. Equally, wikiSERA reduces the gap between SERA and
ROUGE in most of the other cases.

Furthermore, we extensively study the performance variation of both SERA and
wikiSERA when computing the correlation using: (1) the score of one human anno-
tator (A1, A2, A3, or A4), (2) the average score of three human annotators (A1 &
A2 & A3), (A1 & A2 & A4), (A2 & A3 & A4), and (3) the average score of all human
annotators. Experiments show that some annotators get, in most cases, a high cor-
relation with Pyramid and Responsiveness. For example, in TAC 2009 dataset, the
first annotator (A1) achieves the highest correlations against Pyramid and Respon-
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siveness. Inversely, the third manual annotator gets the lowest correlations when we
analyze his scores individually.

The experiments we led helped us to define the corpus properties and to study
the impact of human annotators and the index size on the performance of SERA and
wikiSERA. The POS Tags study was also relevant to propose a fair query redefinition
to evaluate summaries belonging to a general domain.

SummTriver achieves reasonably good results even without using any human
reference. This system is beneficial when human summaries are costly or hard to
find. However, when such references are available, SummTriver does not take advan-
tage of them, leading its correlation to be low compared to human-reference-based
evaluation approaches such as ROUGE and SERA. Note that the best results of
SummTriver were obtained with n = 30 summaries in the distribution P for Pyra-
mid and with n = 10 summaries for Responsiveness. More results are in Appendix A.

FRESA achieves the lowest correlation scores with manual methods. Its perfor-
mance drops approximately from 0.1 to 0.3 points compared to the lowest results
obtained by SERA. This is mainly because FRESA is based only on the divergence
between the evaluated summary and its source documents, without including any
comparison with summaries generated by other participants, as Summtriver does.
Thus, FRESA is barely correlated with manual evaluation in many cases where the
correlation gets close to zero (for instance, FRESA-2 with TAC 2009 using Kendall
correlation). Note that SummTriver and FRESA have mostly negative correlations
because they are based on divergence measure that increases when the summary’s
quality is low and decreases when its quality is high.

3.6 Conclusion

We introduced wikiSERA, an open-source system for summary evaluation that is
domain-independent. wikiSERA is an improved version of SERA, where we redefine
query reformulation based on POS Tags distribution of datasets issued from differ-
ent domains: AQUAINT-2 (news), PubMed (biomedical), and Wikipedia (general
domain). wikiSERA outperforms SERA and reduces its gap with ROUGE for TAC
2008, while it outperforms it in some cases on Wikipedia with TAC 2009.

Unsurprisingly, the comparison with evaluation methods that do not rely on
human references reveals a large gap in favor of wikiSERA since it relies on human
references. In contrast, the other two baselines do not. This finding is intuitive
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insofar wikiSERA exploits human references while the other two baselines do not.
Moreover, we extensively study the performance of SERA and wikiSERA by

computing its correlation with individual scores of human annotators and the average
score of each combination of three annotators and all the annotators. Based on the
conducted experiments, we note that each annotator presents different correlations
with Pyramid and Responsiveness. Consequently, it is sometimes better to use only
the human annotators with the highest correlation since using the average score of
the four of them affects the obtained results.

In addition, our extensive study includes building many indexes with a differ-
ent number of documents from AQUAINT-2, Wikipedia, TAC 2008, and TAC 2009
datasets. We build seven indexes with AQUAINT-2 (with sizes of 10000, 15000,
30000, 60000, 89760, 179520, and 825148 documents). We get the best correlation
from the indexes with few documents such as 10000, 15000, and 30000 documents.
Moreover, according to the indexes built with TAC 2008 and TAC 2009 documents,
we note that the correlations are lower than those obtained when built indexes con-
tain at least 10000 documents from AQUAINT-2. Based on the above experience, we
lead experiments using 10000, 15000, 30000, and all the documents from Wikipedia
documents. We outperform the Pearson correlation compared to ROUGE when
indexing 10000 documents. Consequently, we conclude that the ideal number of
documents to build the index is 10000 in terms of execution time and performance.

Finally, we conduct experiments on CNNDM to assess the quality of different
evaluation systems on both extractive and abstractive summaries. Based on the
correlation scores obtained with: (1) both extractive and abstractive systems (Ta-
ble 3.3-left), (2) only extractive summaries (Table 3.3-middle), and (3) only abstrac-
tive summaries (Table 3.3-right), we conclude that wikiSERA is a reliable automatic
evaluation measure for evaluating automatic summaries. According to Bhandari
et al. (2020), it is important to use a different evaluation metric for each dataset.
However, based on experiments we led on TAC 2008, TAC 2009, and CNNDM, we
prove that it is possible to have one robust metric to evaluate all types of summaries
(extractive and abstractive) from all domains. Interestingly, wikiSERA outperforms
not only JS-2 but also the other two recent methods (BERTscore and MoverScore).
It is also the only evaluation method that consistently approaches ROUGE’s corre-
lations and even exceeds it in one case on TAC 2009.





Chapter 4

Automatic Summarization of Long

Medical Texts

4.1 Introduction

Text summarization is the task of generating summaries from a source text. There
are two main families of text summarization approaches: extractive and abstractive.
On the one hand, extractive methods select the most relevant sentences from the
input text and concatenate them to obtain the summary. On the other hand, ab-
stractive approaches aim to generate summaries as humans do by paraphrasing the
most crucial sentences and possibly generating novel words.

Intuitively, extractive summarization is easier than abstractive one. For this rea-
son, most of the first research approaches were focused on extractive techniques (Luhn,
1958, Jing and McKeown, 1999). Over the years, abstractive summarization has been
gaining momentum with the introduction of RNNs (Recurrent Neural Networks). In
particular LSTMs (Hochreiter and Schmidhuber, 1997), GRUs (Cho et al., 2014),
and most recently, Transformers Neural Networks (Vaswani et al., 2017).

In abstractive summarization, sequence-to-sequence models use encoder-decoder
architectures. The first models were based on RNNs, and they obtain summaries at
the sentence level (Rush et al., 2015, Nallapati et al., 2016).

In the last years, the interest in working on abstractive summarization has been
increasing. In the beginning, sequence-to-sequence models focused on RNN-based
architectures (See et al., 2017, Nallapati et al., 2017). However, most recently, lots of
research surged using Transformer Neural Networks (Narayan et al., 2018a, Fabbri
et al., 2019, Zhang and Tetreault, 2019) with and without pre-training. The latter
setting gained attraction recently in the research community (Lewis et al., 2019,
Kim et al., 2019, Zhang and Tetreault, 2019, Zhang et al., 2020a) to make use of
previously learned powerful representations to improve summary generation.

Consequently, the interest to collect a variety of datasets increased as well. For
instance, the most recent corpora include larger texts than old ones, where docu-
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ments result from various domains compared to old corpora, where the news domain
was the predominant type of articles.

In this thesis, we introduce HazPi, an improved Transformer architecture for
abstractive text summarization in which we propose two contributions. The first
one is to use a multi-encoder to process parallelly long input sequences. The second
contribution is to add an extra training stage inspired by Hoang et al. (2019), where
we propose an end-chunk task training. This extra training phase consists of feeding
the reference summary chunk by chunk to the decoder instead of the token-by-token
technique proposed by Hoang et al. (2019).

We evaluate our proposed architecture on a medical dataset built by Cohan
et al. (2018), and conducted experiments to show that: (1) training is faster when
using more than one input encoder, (2) generated summaries are learned efficiently
and relatively fast when using the chuck-by-chunk decoding. HazPi achieves higher
scores than the traditional Transformer NN with and without pre-training the model.

To summarize our contributions:

• We propose HazPi, an improved Transformer (Vaswani et al., 2017) neural
network, where we use four encoders instead of one (Subsection 4.2.1).

• Inspired by Hoang et al. (2019), we propose an extra end-chunk task train-
ing step in order to improve quality of summaries generated by the system
(Subsection 4.2.2).

4.2 Proposed approach: HazPi

4.2.1 The multi-encoder Transformer model

Inspired by the original Transformer (Vaswani et al., 2017) (called TransformerORIGINAL
here), we propose HazPi, a modified Transformer architecture consisting of four en-
coders instead of one. Furthermore, HazPi adds a second phase of training. In the
following lines, we present these two contributions.

We consider each article in the training set as a sequence of tokens. Before
feeding this sequence of tokens to the model, we distinguish between two cases: (1)
if the text sequence contains 2,000 tokens or more, we truncate it to its first 2000
tokens; (2) if the text sequences contains less than 2,000 tokens, we add special
padding tokens until the sequence achieves a length of 2,000 tokens. We perform
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the same process for the gold standard until it achieves a length of 216 tokens, as
shown in Figure 4.1.

Figure 4.1: Truncating input text and gold abstract in HazPi

Once we have the 2,000 tokens per sequence, we split the sequence into four equal
chunks of text, where each chunk contains 500 tokens. As already mentioned, HazPi
consists of four encoders. Therefore, we feed each text chunk into a different encoder
(Figure 4.2), where each encoder processes one text chunk. Once the encoders
process the chunks, we concatenate the four encoders’ outputs before feeding the
resulting matrix to the decoder.

Contrarily to TransformerORIGINAL that uses one encoder with eight self-
attention heads for the whole input, we use four encoders with eight self-attention
heads each (see Figure 4.3). This choice is motivated by works such as Fabbri et al.
(2019) and Zhang et al. (2020a) that achieved competitive results compared to state
of the art by reading sequences of length Linput = 500 and Linput = 512 tokens as
input for the encoder, respectively. Since we experiment with sequences that are
2000-tokens long, it is fair to use four encoders, each having Linput = 500 tokens.

This improvement tries to cope with Transformer’s attention under-performance
with long input sequences. Four encoders with eight multi-attention heads each
would improve the Transformer processing of long sequences and reduce the training
time without penalizing the quality of generated summaries (see Section 4.4). As
it is clearly stated in the original Transformer paper (Vaswani et al., 2017), self-
attention models tend to perform better with shorter token sequences. Thus, we
hypothesize that splitting long sequences and distributing them in the multi-encoder
layer would reduce the training time and improve long source documents’ processing.
Our goal here is to measure the impact of a substantial modification in the original
Transformer architecture with and without pre-training and then compare it with
the state-of-the-art PEGASUS approach (Zhang et al., 2020a).

Figure 4.3 shows multi-head attention layers in each of the four encoders of our
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Figure 4.2: Concatenation of the four encoders in HazPi

multi-encoder architecture. This input of multi-head attention encoders is a slice of
the source text’s embeddings and positional encodings. This input can be linearly
transformed to get queries (Q), keys (K), and values (V) matrices from the original
mono-encoder Transformer model. Each attention head uses different linear trans-
formations to represent words. For this reason, different heads can learn different
relationships between words. Consequently, using a multi-encoding schema with
four encoders, our model contains 32 attention heads compared to 8 in the original
Transformer. We hypothesize that this increase in the number of attention heads
would lead our multi-encoder Transformer to learn different relationships between
words. While most of the Transformer models read 512 or at most 1024 (Zhang
et al., 2020a) tokens, we use input sequences having Linput = 2000 tokens, which is
closer to the average size of 3016 tokens of medical documents from the PubMed
dataset (Cohan et al., 2018). However, this multi-encoding schema is only applied
at the encoder level, not at the decoder level, where sequences are short enough to
generate summaries of the desired length (216-tokens long).

4.2.2 End-Chunk Task Training (ECTT)

End task training was introduced by Hoang et al. (2019). The goal of their approach
was to adapt a generic pre-trained text generation Transformer to the ATS task. End
task training is an additional training step that aims to constrain the neural network
to maximize the log-likelihood probability of generating a pertinent summary given
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Figure 4.3: Multi-head attention in each encoder

the reference summary. We adapted the equation from Hoang et al. (2019) to re-
ceive sequences of tokens (or chunks) instead of a token-by-token flow. We call this
improvement end-chunk task training (ECTT). While the approach of Hoang et al.
(2019) feeds increasing 1-token differential sentences, we feed chunks of cs (chunk
size) tokens. The new loss function LECTT is provided in Equation 4.1.

LECTT = −
cn−1∑
i=0

log P ({xs}(i+1)×cs−1
0 |{xa}M−10 ) (4.1)

where:

• M is the number of tokens in the article

• cn is the number of chunks into which the summary is divided

• cs is the chunk size, such that cs = N/cn, where N is the number of tokens in
the summary

• xs is a token from the summary

• xa is a token from the article

• {xs}(i+1)×cs−1
0 is the summary chunk, counting from the first token (0) until

the token number (i+ 1)× cs− 1

• {xa}M−10 is the input article
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Figure 4.4: Example of how the decoder is fed by chunks of text progressively

Figure 4.4 shows an example of how the decoder is fed by chunks of text pro-
gressively. Assuming that we have a sequence of 8 tokens, and each chunk of text
consists of 2 tokens, we have four chunks. Therefore, in the first iteration, we feed
the decoder with two tokens. In the second iteration, the decoder is fed with four
tokens, and the process is repeated until iteration four, where the whole sequence
of text is fed to the decoder. We prove the effectiveness of ECTT experimentally in
Subsection 4.4.1 below.

4.3 Experimental framework

4.3.1 Datasets

We conduct our experiments using two experimental protocols: with and without
pre-training. In a non-pre-training protocol, the model is randomly initialized before
being trained on the target dataset. On the contrary, in a pre-training protocol, the
model is first pre-trained on a large source dataset before being updated with articles
from the target dataset. Pre-training the model on a sufficiently large source dataset
from the same domain of the target dataset helps accelerate the training process and
improve the model’s generalization (Zhang et al., 2020a). We present hereafter the
source and target datasets used in our experiments.

• Target dataset - we use PubMed, a dataset collected by Cohan et al. (2018)
from the well-known PubMed scientific repository (PubMed.gov). This dataset
comprises 130,397 documents, where 117,108 are in the training set, 6,631 are
in the validation set, and 6,658 are in the test set. We use the validation set
to tune hyper-parameters during the training process and the test set to get
the final summaries.

• Source dataset - In the pre-training protocol, we pre-train our models on a

PubMed.gov
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dataset (called CovMed below) that we built by mixing articles from the Covid-
19 (Coronavirus) dataset built by the White House (House, 2020) and articles
from PubMed that are different from those used in the target dataset. In total,
this dataset contains 646,960 articles, where 549,902 are in the training set,
32,348 are in the validation set, and 32,362 are in the test set. CovMed is thus
five times larger than the target dataset and has, on average, 4364 tokens and
156 sentences in articles, 301 tokens and 11 sentences in the summaries.

4.3.2 Baselines

Experiments were conducted with many strong baselines described as follows:

• TransformerORIGINAL - is a mono-encoder architecture described in Subsec-
tion 2.4.6.3 of Chapter 2. Inspired by Gehrmann et al. (2018), we use 4 layers
contrarily to the initially proposed 6-layers architecture (Vaswani et al., 2017)
for memory occupation issues.

• PEGASUS - is a novel Transformer-based approach with a new self-supervised
objective (Zhang et al., 2020a). Authors use very large models pre-trained on
massive text corpora (see Subsection 2.4.6.3 of Chapter 2). We compare Hazpi
with three variants of this system:

– TransformerBASE - The architecture of this model has L = 12, H = 768,
F = 4096, and A = 16, where L is the number of layers in the encoder
and the decoder (i.e. Transformer blocks), H is the hidden size, F is the
feed-forward layer size, and A is the number of self-attention heads.

– PEGASUSLARGE - is a larger version of TransformerBASE, where au-
thors use L = 16, H = 1024, F = 4096, and A = 16. Note that this
system is pre-trained on the C4 (Raffel et al., 2020) corpus that contains
350 million texts of size 750GB extracted from the web.

• LSTMAWARE - is an ATS system proposed by Cohan et al. (2018). It is based
on a hierarchical encoder to model the discourse structure of documents and
a discourse-aware decoder to generate summaries. Both the encoder and the
decoder are implemented as Long Short Term Memory (LSTM) networks.

• GTTP - (Get To The Point) is an extraction-abstraction hybrid system in-
troduced by See et al. (2017). It is based on a pointer-generator network and
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a coverage model. The pointer copies factual information, while the generator
paraphrases passages from the source text. The coverage model’s role is to
keep track of what has been generated so far in order to avoid repetitions.

4.3.3 Implementation details and evaluation methodology

Implementation - We implemented TransformerORIGINAL and HazPi (our
multi-encoder Transformer) in Python1 using Keras (Chollet et al., 2015). We used
the same parameters and authors’ public implementations to run LSTMAWARE and
GTTP from scratch and model checkpoints from HuggingFace2 to generate sum-
maries from the PEGASUS variants. We trained our models on 8 GPUs of Nvidia
Quadro P5000 with 16GB of RAM capacity each.

Hyper parameters - We truncate scientific documents to their first 2000 tokens
to evaluate our model’s performance on long sequences. Generated summaries are
of size Loutput = 216, and only the most frequent 100,000 tokens are kept in the
vocabulary. Compared to baselines, we use the same summary length than Cohan
et al. (2018). However, See et al. (2017) and Zhang et al. (2020a) generate 100 and
256 tokens-long summaries, respectively.

Following Vaswani et al. (2017), we use Adam algorithm for optimization (Kingma
and Ba, 2015) with batch size = 32, β1 = 0.9 and β2 = 0.98. We vary the learning
rate using the formula provided in Equation 4.2.

lr = d−0.5model ·min(step_num−0.5, step_num · warmup_steps−1.5) (4.2)

Following this formula, the learning rate increases linearly for the first warmup_steps =

4000 training steps and decreases later proportionally to the inverse square root of
the step number (step_num).

In the non-pre-training protocol, we train TransformerORIGINAL and HazPi

for 300 epochs. In the pre-training protocol, we train them for 350 epochs on the
source dataset and later fine-tune them for 200 epochs on the target dataset. The
end-chunk extra training stage lasts 10 epochs with and without pre-training, and
the optimal chunk size in this stage was empirically set to cs = 27 tokens. Besides,

1Our code is available at https://github.com/JessicaLopezEspejel/HazPi/
and is partially based on that in https://github.com/rojagtap/abstractive_summarizer/

2https://github.com/huggingface/transformers/

https://github.com/JessicaLopezEspejel/HazPi/
https://github.com/rojagtap/abstractive_summarizer/
https://github.com/huggingface/transformers/
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we use beam search with a beam size k = 6 and α = 0.8 for the length-penalty
technique described in Subsection 2.4.6.4 of Chapter 2.

Evaluation - To assess the performance of all tested methods, we use three evalua-
tion methods: (1) ROUGE (Lin, 2004) (based on lexical overlaps between tokens and
phrases in the generated summary and the gold-standard one), (2) SERA (Cohan
and Goharian, 2016) (based on the semantic content analysis between the generated
summary and the gold-standard one), and (3) wikiSERA (our proposed evaluation
approach presented in Chapter 3). We use all variants of SERA and wikiSERA for
evaluation. However, we only report scores with ROUGE-1 (unigrams), ROUGE-2
(bigrams), and ROUGE-L (longest common sub-sequence), the most popular ones
in the literature.

We also compare the training time between HazPi and TransfomerORIGINAL
to assess the merits of using a multi-encoder schema. Note that we do not compare
the training time with other tested methods since they are run on different hardware.

4.4 Results and discussion

In this section, we present obtained results with and without pre-training. In Sub-
section 4.4.1, we first discuss results in terms of ROUGE, the lexical-based evalua-
tion method. Here, we establish a comparison between TransformerORIGINAL and
HazPi to study the impact of using multi-encoding. We notably compare their ex-
ecution time and performance with and without pre-training the model. Second, we
compare HazPi with TransformerBASE (the baseline used in the PEGASUS pa-
per (Zhang et al., 2020a) without pre-training) as well as GTTP and LSTMAWARE,
two non-pre-trained LSTM-based approaches. Finally, we establish a comparison
with another competitive state-of-the-art approach (Zhang et al., 2020a) that is
pre-trained on huge corpora.

In Subsection 4.4.2, we discuss obtained results in terms of SERA and wikiSERA,
the semantic content-based evaluation approaches. Here, we present one large table
with all variants of the two methods, and we compare HazPi with works from
literature with and without pre-training. Note that all methods used for comparison
are abstractive except for GTTP , a hybrid extractive-abstractive system.
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4.4.1 Evaluation with ROUGE

4.4.1.1 Results without pre-training

The left part of Table 4.1 provides results without pre-training ofHazPi, TransformerBASE
from the PEGASUS paper (Zhang et al., 2020a) and TransformerORIGINAL from
Vaswani et al. (2017). Note that TransformerORIGINAL is implemented with the
End-Chunk Task Training (ECTT) that we propose. The reason behind this choice
is to assess the merits of using many input encoders.

Performance of Transformer-based approaches - Results show that HazPi
outperforms TransformerORIGINAL in terms of all ROUGE variants. Indeed, it
gets 1.41, 0.57, and 0.42 points more than TransformerORIGINAL, respectively.
The increase in ROUGE-1 is larger and is intuitive insofar ROUGE-1 is based on
the overlap of uni-grams between the candidate summary and the gold standard.
Thus, it is easier to satisfy than bi-grams (ROUGE-2) or the longest common sub-
sequence (ROUGE-L). Interestingly, HazPi outperforms the TransformerBASE in
terms of ROUGE-1 and ROUGE-2 scores, while it gives slightly lower scores than it
in terms of ROUGE-L. Note that TransformerBASE is much deeper than HazPi
since it contains 12 layers with 16 self-attention heads.

Transformer-based LSTM-based
Transformer Transformer HazPi Transformer GTTP LSTM

ORIGINAL ORIGINAL + ECTT (ours) BASE AWARE

Num. of encoders 1 1 4 1 × ×
Num. of layers 4 4 4 12 × ×

Linput 2000 2000 2000 512 400 2000

Loutput 216 216 216 256 100 216

Training time (epoch) × 58mn21s 33mn15s × × ×

ROUGE-1 31.49 32.7 34.11 33.94 35.86 38.93

ROUGE-2 6.37 7.11 7.68 7.43 10.22 15.37

ROUGE-L 16.97 18.14 18.56 19.02 29.69 35.21

Table 4.1: ROUGE scores of TransformerORIGINAL, HazPi (ours),
TransformerBASE (from the PEGASUS paper), GTTP , and LSTMAWARE

without pre-training. Note that Linput and Loutput refer to the length of the input
sequence and the generated summary, respectively. Best results are in bold.

For the second stage of training (called End-Chunk Task Training), learning
chunk by chunk helps to feed information progressively and relatively fast to the
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decoder. This training is inspired by how humans get knowledge incrementally over
time.

Execution time - Our HazPi model runs almost two times faster than the orig-
inal Transformer baseline (TransformerORIGINAL). According to Table 4.1, one
epoch takes 33mn15s in HazPi while it takes 58mn21s in TransformerORIGINAL.
The reason behind this is that our model can capture the most important tokens
from the input. This finding is intuitive insofar we increase the number of head
attentions when using more than an encoder at a time. In general, each encoder
has eight self-attention heads. However, in our experiments, we have four encoders,
leading to a total of 32 self-attention heads. Therefore, with more self-attentions, the
encoders capture more information from the large input sequences. As mentioned
before, we do not compare the execution time of HazPi and TransformerORIGINAL
with other methods since they are not run on the same hardware.

Performance of LSTM-based approaches - The right part of Table 4.1 shows
results obtained with GTTP and LSTMAWARE, two non-pre-trained LSTM-based
approaches. Interestingly, LSTMAWARE provides the best results in all tested meth-
ods while reading 2000 tokens as input. GTTP provides good results yet lower than
those of LSTMAWARE with 3.07, 5.13, and 5.52 points of ROUGE-1, ROUGE-2,
and ROUGE-L, respectively.

Even though Transformer neural networks outperform LSTMs in many NLP
tasks, they still lag behind them in terms of ROUGE scores when it comes to
the ATS task. Surprisingly, LSTMAWARE outperforms the best results obtained
with Transformer-based approaches with 4.81, 7.69, and 16.19 points of ROUGE-1,
ROUGE-2, and ROUGE-L, respectively. More discussion is provided in Subsec-
tion 4.4.2 of this chapter.

Input sequence length - Our model can read sequences of length Linput = 2000

tokens while increasing scores of TransformerORIGINAL. This number is closer
to the average size of a standard biomedical article (3016 tokens in Cohan et al.
(2018)) than the input length used by other Transformer-based state-of-the-art
approaches (Zhang et al., 2020a). For instance, TransformerBASE in Table 4.1
uses sequences of length Linput = 512. To the best of our knowledge, there is
no Transformer-based ATS system able to provide good performance using such a
large length in the biomedical domain. The longest input text used in literature
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is Linput = 1024 tokens by PEGASUSLARGE (Zhang et al., 2020a), the largest
pre-trained model used in that paper.

The LSTM-based approach (Cohan et al., 2018) (called LSTMAWARE in Sub-
section 4.3.2) is still the only ATS system that processes large sequence of length
Linput = 2000 tokens, while getting high ROUGE scores as discussed above. Unfor-
tunately, the input length (Linput = 400) used in GTTP is very low compared to
the length used by other systems. In fact, it is even comparable with the summary
length (Loutput = 256) generated by the TransformerBASE.

Effect of the ECTT training phase - The effect of the ECTT loss function
in the second training stage is to help the neural network to learn the text content
progressively. Since the text is passed to the decoder chunk by a chunk, the neural
network can learn little by little the gold standard. Therefore, the same text chunk
is seen multiple times by the decoder, where the older the chunk, the more it is seen
by the network.

We remind that our generated text sequences are 216 tokens long. Since we
divide each token sequence into eight chunks, each text chunk contains 27 tokens.
In the first iteration, the decoder is fed with the first 27 tokens. In the second
iteration, the decoder is fed with the first 27 × 2 = 54 tokens, etc. This process
is repeated eight times until the whole gold standard is consumed, and all of this
happens within one training epoch. Experimentally, we observe how the loss function
decreases as the decoder is progressively fed with each of the text chunks. In terms
of ROUGE scores, Table 4.1 shows that using the ECTT on top of the classical
training of TransformerORIGINAL yields a gain of 1.21, 0.74, and 1.17 points in
terms of ROUGE-1, ROUGE-2, and ROUGE-L, respectively.

4.4.1.2 Results with pre-training

We pre-trained our model using CovMed, the source dataset described in Sec-
tion 4.3.1. Afterward, we fine-tuned it on the target dataset described in the same
section. Table 4.2 is divided in two parts. The upper part shows results obtained
with TransformerORIGINAL (+ECTT) and HazPi with and without pre-training.
The lower part provides results of PEGASUSLARGE, the largest Transformer-based
pre-trained system used in Zhang et al. (2020a).

Effect of pre-training on HazPi and the baseline - Experiments show that
pre-trainingHazPi, and TransformerORIGINAL on a large medical source dataset is
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System Linput
Pre-training

corpus
ROUGE-1 ROUGE-2 ROUGE-L

TransformerORIGINAL
2000

× 32.70 7.11 18.14
(Vaswani et al., 2017) + ECTT CovMed (ours) 33.52 7.21 18.32

HazPi (ours) 2000
× 34.11 7.68 18.56

CovMed (ours) 36.05 8.11 18.98

PEGASUSLARGE

(Zhang et al., 2020a)
1024 C4 45.49 19.90 27.69

Table 4.2: ROUGE scores of TransformerORIGINAL, HazPi (ours), and
PEGASUSLARGE with pre-training. Best results are in bold.

beneficial in both cases. For the baseline (TransformerORIGINAL), the ROUGE-1,
ROUGE-2, and ROUGE-L scores increase by 0.82, 0.1, and 0.18 points, respectively.
The increase of scores for HazPi corresponds to 1.94, 0.73, and 0.42 points, respec-
tively. Unsurprisingly, pre-training a model on a large dataset belonging to the same
domain helps to start the training process and augment the model’s representation
capacity.

Comparison with Transformer-based approaches SinceGTTP and LSTMAWARE

are based on different neural network architecture than HazPi, we focus our atten-
tion on the detailed comparison of our model with T5 (Raffel et al., 2020) and
PEGASUSLARGE (Zhang et al., 2020a). Similarly to us, the latter systems are
based on a Transformer architecture with an encoder and a decoder, unlike lan-
guage models such as BERT (Devlin et al., 2019) that has only an encoder. The
difference between HazPi and these two approaches comes mainly from:

• Size of the source dataset - Unlike T5 and PEGASUSLARGE that use large
pre-training corpora from the news domain, we use a relatively small dataset
specialized in medical articles. Our CovMed source dataset contains 646,960
articles (occupying 17.2GB). However, both T5 and PEGASUS use the Colos-
sal Clean Crawled Corpus (C4) dataset, which comprises 350 million texts
extracted from the web (occupying 750GB). This huge gap in size between our
CovMed source dataset and the one used in PEGASUSLARGE largely explains
the gap of results between this approach and HazPi. The memory footprint
occupied by our source dataset is 2.3% of that occupied by C4. Consequently,
the negligible memory requirements that we need make HazPi more interest-
ing when working in a limited storage framework.
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• Domain of the source dataset - According to Keskar et al. (2019), Huang et al.
(2019), and Radford et al. (2019), pre-training a model on a very large dataset
containing articles from various domains increase the model’s representation
and its capacity to summarize heterogeneous texts. In our case, we are not
interested in developing a universal system, but one specialized in the medical
domain, and the most convenient is to pre-train it on a larger medical dataset
than the one used in our experiments.

• Complexity of the neural network - The number of layers in a neural network
is another relevant criterion that defines the complexity of the model and
thus its computational impact. T5 consists of 12 layers both in the encoder
and the decoder. Meanwhile, PEGASUSBASE and PEGASUSLARGE (Zhang
et al., 2020a) contain 12 and 16 layers, respectively. This is not the case
of TransformerORIGINAL and HazPi, where we use four layers. According
to Liu et al. (2019), unlike LSTMs, Transformer neural networks capture the
semantic of words in intermediate layers. This explains the high results ob-
tained with PEGASUSLARGE in Table 4.2, but more importantly, it explains
why HazPi gets ROUGE-1 scores that are closer to those from the state of
the art, while its performance lags for the overlap of bigrams (ROUGE-2) and
long common sub-sequences (ROUGE-L).

4.4.2 Evaluation with SERA and wikiSERA

Even though ROUGE is the most popular metric used in literature to evaluate sum-
maries automatically, it is based on lexical overlaps and is thus not fair to evaluate
abstractive summaries. As already explained, an abstractive summary is made by
paraphrasing the source document with possibly novel words such as synonyms.

In Table 4.3, we present results obtained with and without pre-training of ap-
proaches discussed above in terms of SERA and wikiSERA. These two approaches
are more convenient to evaluate abstractive summaries because they are based on
the semantic analysis between the generated summary and its goal standard. Note
that, contrarily to Chapter 3, we used as an index of wikiSERA ten thousand med-
ical documents selected randomly from our CovMed dataset instead of Wikipedia.
For the sake of comparability, we use the same index to run the SERA method.
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without pre-training with pre-training

GTTP

Transformer

ORIGINAL

+ ECTT

HazPi

(ours)

Transformer

ORIGINAL

+ ECTT

HazPi

(ours)
PEGASUS

LARGE

SERA-5 20.38 26.96 27.99 27.29 28.35 38.47

SERA-10 21.67 28.94 29.71 29.29 30.61 39.90

SERA-NP-5 20.36 25.25 26.15 25.67 26.42 37.15

SERA-NP-10 21.74 27.78 28.69 28.16 29.42 39.24

SERA-KW-5 20.48 26.98 27.98 27.40 28.51 38.79

SERA-KW-10 21.75 28.91 29.63 29.35 30.74 40.21

SERA-DIS-5 14.59 18.14 22.61 18.54 23.12 26.95

SERA-DIS-10 12.96 16.06 16.61 16.32 16.95 23.25

SERA-DIS-NP-5 14.54 16.97 17.61 17.17 18.85 25.87

SERA-DIS-NP-10 12.97 15.28 15.88 15.54 16.48 22.65

SERA-DIS-KW-5 14.65 19.52 18.14 19.03 18.57 27.17

SERA-DIS-KW-10 13.03 22.61 12.61 16.34 17.47 23.44

wikiSERA-5 20.51 26.17 27.50 26.86 28.84 38.08

wikiSERA-10 21.95 28.41 29.39 29.03 30.24 39.83

wikiSERA-DIS-5 14.77 17.56 18.53 18.01 19.34 26.57

wikiSERA-DIS-10 13.14 15.66 16.34 16.03 17.15 23.19

Table 4.3: SERA and wikiSERA scores of GTTP , TransformerORIGINAL, HazPi,
and PEGASUSLARGE. Best results are in bold.

4.4.2.1 Results without pre-training

Results show that GTTP (See et al., 2017), the LSTM-based ATS system obtains
largely lower scores compared to TransformerORIGINAL (Vaswani et al., 2017) and
HazPi without pre-training. On the one hand, the gap in scores between GTTP

and TransformerORIGINAL (Vaswani et al., 2017) varies between 2.31 and 9.58
points obtained with SERA-DIS-NP-10 and SERA-DIS-KW-10, respectively. On
the other hand, the gap in scores between GTTP and HazPi varies between 2.91
and 8.04 points obtained with SERA-DIS-NP-10 and SERA-10, respectively. Note
thatHazPi achieves slightly lower results than GTTP for SERA-DIS-KW-10, where
the gap between both is equal to 0.42 points.

As mentioned before, we use the same authors’ parameters to generate summaries
with See et al. (2017). Therefore, summaries generated by this system contain 100
tokens contrarily to HazPi that generates summaries that are 216 tokens long.
This difference in summary length can explain in part the gap of scores between the
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two approaches. However, according to the state of the art (Zhang et al., 2020a),
Transformer neural networks are capable of producing abstractive summaries more
effectively than LSTMs. Similar to the scores obtained with ROUGE, HazPi im-
proves the results of TransformerORIGINAL in most cases, where the gap between
both varies between 0.6 and 4.46 points obtained with SERA-DIS-NP-10 and SERA-
DIS-5, respectively. Surprisingly, TransformerORIGINAL outperforms HazPi with
1.37 and 10 points in terms of SERA-DIS-KW-5 and SERA-DIS-KW-10, respec-
tively. This result can be explained by the fact that HazPi generates a low number
of keywords than TransformerORIGINAL.

4.4.2.2 Results with pre-training

As already proved with ROUGE results, pre-training on the CovMed dataset is ben-
eficial in most cases for both HazPi and TransformerORIGINAL. On the one hand,
the gap between non-pre-trained TransformerORIGINAL and pre-trained TransformerORIGINAL
varies between 0.2 and 0.68 obtained with SERA-DIS-NP-5 and wikiSERA-5, respec-
tively. On the other hand, the gap between non-pre-trained HazPi and pre-trained
HazPi varies between 0.27 and 4.85 obtained with SERA-NP-5 and SERA-DIS-
KW-10, respectively.

PEGASUSLARGE achieves the best results compared to TransformerORIGINAL
and HazPi in terms of both SERA and wikiSERA evaluation methods. On the
one hand, the gap between PEGASUSLARGE and TransformerORIGINAL varies
between 6.93 and 11.47 obtained with SERA-DIS-10 and SERA-NP-5, respectively.
On the other hand, the gap between PEGASUSLARGE and HazPi varies between
3.82 and 10.72 obtained with SERA-DIS-5 and SERA-NP-5, respectively. This find-
ing is intuitive insofar PEGASUSLARGE is four times deeper than the other two ap-
proaches (it has 16 layers compared to 4 layers inHazPi and TransformerORIGINAL).
Besides, it is pre-trained on C4 that is 43.6 times larger than our CovMed dataset
(750GB vs. 17.2 GB). The variation of results obtained with SERA and wikiSERA
provides an idea of the POS tag distribution summaries generated by our system.
More precisely, summaries generated byHazPimainly contain words, keywords, and
nouns. According to Cohan and Goharian (2016) that based SERA on summaries
from the TAC 2014 dataset, the highest correlation in the medical domain is ob-
tained with SERA-NP-5. This finding is confirmed by results obtained with HazPi
where our generated medical summaries are better evaluated with SERA-NP-5.
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4.4.3 Example of summaries generated by HazPi

Table 4.4 and 4.5 present an example summaries generated by HazPi.

Human reference summary

this paper aims to highlight the importance of exercise in pa-

tients with rheumatoid arthritis ( ra ) and to demonstrate the

multitude of beneficial effects that properly designed exercise

training has in this population . ra is a chronic , systemic ,

autoimmune disease characterised by decrements to joint health

including joint pain and inflammation , fatigue , increased in-

cidence and progression of cardiovascular disease , and accel-

erated loss of muscle mass , that is , rheumatoid cachexia .

these factors contribute to functional limitation , disability ,

comorbidities , and reduced quality of life . exercise training

for ra patients has been shown to be efficacious in reversing

cachexia and substantially improving function without exacerbat-

ing disease activity and is likely to reduce cardiovascular risk

. thus , all ra patients should be encouraged to include aer-

obic and resistance exercise training as part of routine care .

understanding the perceptions of ra patients and health profes-

sionals to exercise is key to patients initiating and adhering

to effective exercise training .

Summary generated by HazPi (pre-trained)

rheumatoid arthritis ( ra ) is a chronic autoimmune disease that

is associated with an increased risk of cardiovascular disease

( cvd ) . the purpose of this paper is to review the litera-

ture on the role of physical activity in patients with ra . we

searched the pubmed , embase , and the cochrane library for ran-

domised controlled trials that assessed the effectiveness of the

intervention on cvd and cvd in ra patients . in addition , we

reviewed the evidence for their effectiveness in improving the

quality of life ( qol ) of ra in terms of qol .

Table 4.4: Example 1 of a reference summary and its corresponding automatically
generated summary with pre-trained HazPi
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Human reference summary

regmatogenous retinal detachments need prompt intervention par-

ticularly when macula is on . unfortunately this is not always

easy to ascertain clinically and the chronicity of the event is

often muddled in patient ’s histories . developments in opti-

cal coherence tomography ( oct ) have allowed high - resolution

axial scans which have enabled the characterisation of retinal

changes in retinal detachments . in this paper , we show the

changes in retinal morphology observed by spectral domain oct

and how this can be used to plan appropriate surgical interven-

tion .

Summary generated by HazPi (pre-trained)

the purpose of this paper is to describe the histological find-

ings of retinal detachments in a patient who presented with sub-

retinal haemorrhage . a - old female presented at our clinic

with visual acuity of . the patient was treated with pars plana

vitrectomy and retinal reattachment was done . spectral - do-

main optical coherence tomography ( sd - oct ) was used to as-

sess the changes in retinal morphology and morphology . oct

showed a marked reduction in the subretinal and subretinal

spaces . this is the first case report of macular detachment

in which spectral domain oct has been used for the diagnosis .

Table 4.5: Example 2 of a reference summary and its corresponding automatically
generated summary with pre-trained HazPi
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4.5 Conclusion

In this chapter, we propose two improvements of the Automatic Text Summarization
using Transformers (Vaswani et al., 2017). Our approach, called HazPi, makes it
possible to read long input sequences while reducing training time without penalizing
the quality of generated summaries. HazPi is based on a multi-encoder where we
split a long input sequence into four chunks and feed each one of them into a different
encoder. Our method is also based on an extra training stage where we modify the
End Task Training technique proposed by Hoang et al. (2019) to process chunks of
tokens when decoding instead of a token-by-token flow.

In our experiments, we use four layers in both the encoder and the decoder.
However, most of the Transformer-based architectures in ATS use at least 12 layers.
For instance, T5 (Raffel et al., 2020) and PEGASUSBASE use 12 layers, while
PEGASUSLARGE (Zhang et al., 2020a) uses 16 layers. Therefore, it would be
interesting to increment the number of layers in our model in order to increase its
representation capacity.

We evaluate different approaches with ROUGE, the lexical-based approach. We
also present results obtained with SERA and wikiSERA, two metrics based on the
content relevance of generated summaries. According to obtained results, we confirm
using the two automatic measures SERA and wikiSERA, that ROUGE is not fair
to evaluate abstractive summaries.

Moreover, conducted experiments measure the performance of different approaches
with and without pre-training. Intuitively, the highest results are obtained with pre-
trained models where the larger the source dataset, the best is the performance. In-
deed, pre-training a model on a large dataset helps to accelerate the training process
and improving summary generation.

The neural network depth is another factor that can highly affect a system’s
performance. PEGAUSLARGE produces abstractive summaries of better quality
because it is much deeper than HazPi. In fact, a transformer neural network cap-
tures the semantic of words at the intermediate layers level. This finding was already
confirmed by works such as Liu et al. (2019).





Chapter 5

Conclusions and future work

This thesis is articulated around the Automatic Text Summarization problem, where
we aim specifically to summarize abstractively long medical articles. Along with Text
Summarization, we tackle the Automatic Summary Evaluation in order to assess
the quality of our proposed summarization system. Here, we adapt an evaluation
method specialized in biomedical summaries to evaluate summaries from the general
domain. The latest adaptation is helpful to evaluate summaries that belong or not
to the biomedical domain.

This chapter presents the main conclusions we made from conducted experiments
and results obtained in both domains. Furthermore, we discuss potential future
directions to open new windows and allow researchers to further improve this work.

5.1 Conclusions and Discussions

5.1.1 Automatic Text Summarization

In Chapter 2, we explained the evolution of several techniques used by the com-
munity over time, starting from extractive to abstractive summarization. At the
emergence of automatic summarization, the scientific community focused its effort
on extractive summarization. Researchers used frequency-based approaches to iden-
tify the most relevant tokens and phrases in the source text. Later, attention was
put on probabilistic methods that improved the quality of generated summaries until
machine learning techniques arose.

Nowadays, deep learning techniques shifted the summarization from the extrac-
tive to the abstractive approach. Deep Neural Networks are at present the most
powerful models used by researchers. In this thesis, we work on abstractive text
summarization that necessitates deep linguistic knowledge to maintain proper lan-
guage constructs when reformulating text parts. Abstractive ATS is more convenient
to handle medical texts that comprise complex and delicate information where sim-
ple extraction is not enough.
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Proposed method To tackle the ATS task, we decided to adopt the Trans-
former (Vaswani et al., 2017) neural networks for their ability to process input se-
quences in parallel. In Chapter 4 of this manuscript, we propose HazPi, a modified
Transformer architecture that consists of using four input encoders instead of one.
Our method aims to reduce training times and allow reading larger input sequences
while improving the quality of generated summaries. We used two experimental
protocols as follows:

• Without pre-training - Here, we randomly initialize HazPi and train it on
PubMed (Cohan et al., 2018) target dataset.

• With pre-training - Here, we pre-train HazPi on an additional and inde-
pendent medical dataset before being fine-tuned on our target dataset. We
built CovMed, an additional dataset that comprises a mix of articles com-
ing from PubMed (for Biotechnology Information, 2018) repository (different
from those used in the target dataset) and articles from the Covid-19 (House,
2020) dataset. In total, this dataset consists of 646,960 pairs of abstracts and
articles.

Discussion of obtained results - The comparison with one of the best ap-
proaches from the state of the art reveals that our approach is promising, especially
in the pre-training protocol. The neural network takes advantage of previously
learned information to start the target dataset’s training process.

Summaries generated by our system are coherent and readable. In terms of
ROUGE scores, we could not outperform LSTMAWARE, the LSTM-based summa-
rization system developed by Cohan et al. (2018), while we could largely outperform
it using SERA and wikiSERA evaluation approaches that are better suited for ab-
stractive summary evaluation. Note that other systems inspired by Transformer
neural networks such as PEGASUS (Zhang et al., 2020a), and T5 (Raffel et al.,
2020) could outperform this approach in terms of ROUGE scores.

We present below the main differences between HazPi and these two systems
in order to investigate the reason behind their performance. Note that we base
our discussion about T5 and PEGASUS because, similarly to HazPi and unlike
architectures such as BERT (Devlin et al., 2019) (which consists only of a single
stack of layers), T5 and PEGASUS follow the architecture proposed by Vaswani
et al. (2017) (based on an encoder and a decoder).
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• Number of layers - On the one hand, T5 follows the same size and configuration
as BERT (Devlin et al., 2019): it consists of 12 layers both in the encoder and
in the decoder. On the other hand, PEGASUSBASE and PEGASUSLARGE
contain 12 and 16 layers, respectively. Unfortunately, this is not the case with
our architecture based on four layers for memory explosion issues. Accord-
ing to Liu et al. (2019), intermediate layers in a transformer neural network
produce more powerful representations for semantic tasks. Therefore, it makes
sense that incrementing the number of layers in our architecture would achieve
higher ROUGE scores.

• Size of pre-training dataset - According to Keskar et al. (2019), Huang et al.
(2019), and Radford et al. (2019), pre-training a model on a huge dataset
(with at least hundreds of millions of articles) before fine-tuning it on the
target dataset helps to improve the training process and generate better sum-
maries. For instance, Raffel et al. (2020) and Zhang et al. (2020a) pre-trained
their T5 and PEGASUS models on the Colossal Clean Crawled Corpus (C4)
that consists of English texts extracted from the web (350 million web-pages
≡ 750 GB). Unlike these works, our system was pre-trained with a relatively
small dataset (646,960 pairs of articles and abstracts ≡ 17.2 GB) for the same
reason mentioned above. That is to say, our CovMed source dataset occupies
a negligible size of 2.3% of the total size occupied by C4 used to pre-train
PEGASUS and T5. To the best of our knowledge, there is no such a huge
available medical dataset for summarization. Therefore, building a larger med-
ical dataset is necessary than the one we built in our approach.

5.1.2 Automatic Summary Evaluation

As mentioned before, Automatic Text Summarization is not enough alone. It is
crucial to have an automatic evaluation method to assess the quality of generated
summaries. We described in Chapter 2 the main approaches used in the automatic
evaluation, where we differentiated between extrinsic and intrinsic approaches, as
well as manual and automatic approaches. Automatic summary evaluation is essen-
tial insofar as it helps improving automatic summarization systems. Humans made
the first approach of manual summary evaluation. However, with the continuing in-
crease in the information volume and the emergence of big data, human evaluation
became time and money expensive. The need to have automatic evaluation systems
independent of any human evaluation is prominent. However, the performance of
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existing automatic systems is still far from having a high correlation with human
evaluation.

Proposed method - In Chapter 3 of this thesis, we highlighted that it is crucial
to have an automatic method that is efficient to evaluate abstractive summaries and
is not restricted to one domain of application. ROUGE (Lin, 2004) is until now the
most popular evaluation method, but it is unfair to evaluate abstractive summaries.
SERA (Cohan et al., 2018) was later proposed to tackle this problem. It relies
partially on human intervention and is based on a content relevance analysis that
considers candidate summaries as queries and searches them in an index built from
a large and related dataset of source texts. Unfortunately, SERA was designed to
assess the quality of summaries from the biomedical domain only. We started from
this motivation and proposed wikiSERA, an improvement of SERA (Cohan et al.,
2018) that is domain-independent. For this reason, and based on a POS tag analysis
of several corpora belonging to different domains, we redefined query reformulation
in SERA to make it generic and efficient to evaluate summaries from all domains.
Contrarily to the SERA system that was not publicly shared, wikiSERA is an open-
source system ready to be used by the community to evaluate summaries thanks to
the index that we built from theWikipedia public encyclopedia. wikiSERA improved
correlation scores of SERA with human references, especially for small-size indexes.
In few cases, wikiSERA even outperformed ROUGE (Lin, 2004), one of the most
popular evaluation approaches based on lexical overlaps.

Compared to automatic summary evaluation approaches that do not need any
human intervention, wikiSERA provides better results in all tested configurations.
This finding is intuitive insofar as wikiSERA needs reference summaries for the
information retrieval, while the other approaches do not.

Extensive study on query datasets - We led extensive experiments on SERA
and wikiSERA, and corresponding results are provided in Appendix A. We notably
studied the impact of human annotators on the score correlation of both SERA
and wikiSERA. We computed the correlation by taking the score of each human
reference individually, and we also averaged scores from two, three, and four (all)
human annotators. Results obtained on the TAC 2008 dataset is hard to retrieve
a pattern, as the best human annotator changes from one case to another. For the
TAC 2009 dataset, the first human annotator achieves the best correlations with
Pyramid. In contrast, the third human annotator gets the lowest correlations.
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The reasons behind studying extensively TAC 2008 and TAC 2009 datasets are:

• First, both of TAC 2008 and TAC 2009 datasets are news corpora. Accord-
ing to Kryscinski et al. (2020), news-related summarization datasets such as
CNN/Daily Mail contain strong layout biases. Therefore, these datasets’ eval-
uation provides a fair idea about each human annotator’s performance and the
tag distribution in news text.

• Second, a study conducted by Kryscinski et al. (2020) revealed that associating
each news article with only a single reference summary leaves the task of
summarization under-constrained. This is not the case for TAC datasets since
each article is associated with four reference summaries.

• Finally, our election to work with TAC 2008 and TAC 2009 is supported
by Gillick and Liu (2010), who showed that summary judgments obtained
by experts achieve better performance than using manual annotators from
non-experts. In our study, human reference summaries are written by expert
journalists.

In addition to the experiments with TAC datasets, we used CNNDM (Bhandari
et al., 2020). Contrarily to TAC datasets that contain summaries from extractive
systems only, this dataset contains candidate summaries obtained from both extrac-
tive and abstractive systems. Thus, CNNDM is helpful to assess the robustness of
wikiSERA to evaluate extractive and abstractive approaches.

5.2 Directions for future research

This section presents some future research directions that might help improve our
system’s current performance both in automatic text summarization and automatic
evaluation of summaries.

5.2.1 Automatic Text Summarization

Based on experiments that we led in Chapter 4, we propose the following perspec-
tives:

1. Based on experiments led with and without pre-training and the comparison
with the PEGASUS pre-training protocol, the size of the corpus used to pre-
train the language model has a huge influence on the quality of summaries
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generated by the system. Thus, building a very large medical corpus and
using it to pre-train our system could vastly improve its performance.

2. Our system is based on four layers in both the encoder and the decoder. How-
ever, according to state of the art, most of the systems use at least twelve
layers. Therefore, one direction could be to increment the number of layers in
our system. The idea is to keep the number of self-attention heads, and the size
of hidden layers fixed while increasing their capacity to learn representations,
which might also improve the quality of generated summaries.

3. When it comes to the medical and biomedical articles, we found that the arti-
cles are divided into sections. Therefore, there exist two different approaches
to select relevant sections as input for our model. The first one is selecting
the four most similar sections to the gold summary, where each encoder from
the multi-encoder architecture handles a section. In contrast to the current
approach where we truncate the whole document to the first 2000 tokens,
we could truncate each section to five hundred tokens to read in total two
thousand tokens. This way to read the input document will diversify the in-
formation read by our model and give more chance to later sections such as
the conclusions. The second way to choose input sections is inspired by Liu
et al. (2018). It consists of first getting a summary of a medical article using a
well-known automatic summarization system that provides long summaries of
good quality. The output summary of such a method will be the input of our
model. This approach could be seen as an overlaying of two automatic sum-
marization methods, where the second one compresses the summary generated
by the first one.

4. In the second stage of the training that we call end-chunk task training, we
feed the decoder with the gold summary chunk by chunk (each containing 27
tokens) until we consume all the sequence. An alternative way to proceed is
to vary the number of tokens per chunk. More specifically, attempt to read
the gold-standard token by token as Hoang et al. (2019) did. The difference
with the end-task training done by the latter authors is that we do not adapt a
language model designed for another NLP task to text summarization. Instead,
we adapt their approach to our task because we hypothesize that our model
is able to produce summaries of better quality if we feed the gold summary
tokens progressively.
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5. Our multi-encoder architecture was trained in an end-to-end manner with the
end-chunk task training. However, it would be interesting to build our end-
chunk task training on top of other pre-trained summarization systems, such
as the PEGASUS’ checkpoints, to assess the merits and limitations of our
chunk-by-chunk decoding scheme.

5.2.2 Automatic Summary Evaluation

In this section, we present some future directions that can improve the performance
of automatic evaluation approaches.

1. We evaluate TAC 2008 and TAC 2009 datasets because they contain texts
that belong to the general domain and because each summary has four manual
references. However, most of the candidate summaries associated with articles
from these datasets were generated from extractive systems. That is why
an interesting experiment would be to evaluate SERA and wikiSERA on an
extensive corpus where the summaries are generated by abstractive systems,
and each summary has more than one manual reference summary.

2. To have human annotators is time and money expensive. This is the main
reason why researchers are trying to avoid human references and automatically
evaluating candidate summaries. Therefore, an interesting direction is to get
the SERA and wikiSERA scores using as queries the article text as the (one
and unique) reference summary and its abstract as the candidate summary.
Once we have the scores from each summary, we can compute the correlation
with human assessments.

3. We analyze the news corpora and the medical dataset to detect which tags are
most frequent in each type of text belonging to different domains. Based on
the different distribution of tags in each domain, we propose a novel redefine
query method called wikiSERA. However, we studied the corpus according
to the domain to which each dataset belongs (medical or general domain).
However, it can be possible to use different redefinition queries depending on
each corpus’s tag distribution.

4. We refine the reference summaries and candidate summaries using a specific tag
such as nouns and keywords. In other words, we extract from the summaries
only the words having to the tag that we are searching for. However, we did not
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take into account the context of this term. We believe that if we consider the
context of the word extracted from summaries, the evaluation will be better.
We can specify a size window to determine how many tokens will be part of
the context forward and backward.



Appendix A

Extensive study of different

evaluation approaches

A.1 ROUGE

A.1.1 Correlation of ROUGE with Pyramid and Responsive-

ness on TAC 2008

Method
Pyramid 3M Responsiveness

Pearson Spearman Kendall Pearson Spearman Kendall

ROUGE-1-F 0.908 0.941 0.787 0.853 0.883 0.702
ROUGE-1-P 0.730 0.841 0.643 0.698 0.803 0.626
ROUGE-1-R 0.911 0.935 0.774 0.851 0.858 0.665
ROUGE-2-F 0.940 0.965 0.843 0.892 0.915 0.746
ROUGE-2-P 0.911 0.942 0.788 0.873 0.901 0.730
ROUGE-2-R 0.946 0.967 0.851 0.894 0.918 0.755
ROUGE-3-F 0.941 0.951 0.810 0.915 0.924 0.767

ROUGE-3-P 0.926 0.934 0.783 0.909 0.918 0.766
ROUGE-3-R 0.945 0.951 0.811 0.914 0.922 0.763
ROUGE-L-F 0.878 0.925 0.756 0.823 0.868 0.689
ROUGE-L-P 0.711 0.823 0.632 0.679 0.794 0.611
ROUGE-L-R 0.882 0.927 0.762 0.823 0.856 0.661

ROUGE-W-1.2-F 0.901 0.940 0.782 0.848 0.878 0.701
ROUGE-W-1.2-P 0.712 0.822 0.631 0.688 0.794 0.620
ROUGE-W-1.2-R 0.897 0.940 0.785 0.841 0.871 0.684
ROUGE-SU4-F 0.917 0.949 0.805 0.870 0.904 0.728
ROUGE-SU4-P 0.839 0.910 0.728 0.805 0.869 0.689
ROUGE-SU4-R 0.927 0.950 0.800 0.874 0.908 0.736

Table A.1: Correlation coefficients, in terms of Pearson, Spearman and Kendall, of
ROUGE with Pyramid (using 3 references) and Responsiveness, on TAC 2008.
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A.1.2 Correlation of ROUGE with Pyramid and Responsive-

ness on TAC 2009

Method
Pyramid 3M Responsiveness

Pearson Spearman Kendall Pearson Spearman Kendall

ROUGE-1-F 0.951 0.915 0.788 0.835 0.793 0.622
ROUGE-1-P 0.923 0.845 0.678 0.791 0.789 0.630
ROUGE-1-R 0.926 0.892 0.748 0.814 0.764 0.591
ROUGE-2-F 0.930 0.955 0.839 0.740 0.831 0.664
ROUGE-2-P 0.906 0.937 0.796 0.716 0.829 0.658
ROUGE-2-R 0.937 0.952 0.841 0.746 0.820 0.654
ROUGE-3-F 0.842 0.964 0.841 0.622 0.852 0.675
ROUGE-3-P 0.828 0.940 0.800 0.610 0.839 0.656
ROUGE-3-R 0.848 0.964 0.845 0.627 0.845 0.673
ROUGE-L-F 0.865 0.604 0.461 0.649 0.414 0.294
ROUGE-L-P 0.801 0.546 0.406 0.573 0.360 0.255
ROUGE-L-R 0.875 0.622 0.474 0.663 0.414 0.298

ROUGE-W-1.2-F 0.882 0.654 0.512 0.651 0.462 0.341
ROUGE-W-1.2-P 0.798 0.514 0.393 0.558 0.337 0.237
ROUGE-W-1.2-R 0.889 0.671 0.529 0.659 0.469 0.340
ROUGE-SU4-F 0.934 0.940 0.818 0.747 0.808 0.639
ROUGE-SU4-P 0.893 0.910 0.761 0.702 0.804 0.638
ROUGE-SU4-R 0.942 0.924 0.787 0.756 0.789 0.619

Table A.2: Correlation coefficients, in terms of Pearson, Spearman and Kendall, of
ROUGE with Pyramid (using 3 references) and Responsiveness, on TAC 2009

A.2 SERA and wikiSERA



A.2.1 Correlation of SERA and wikiSERA with Pyramid on TAC2008/AQUAINT-2
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.62 0.676 0.819 0.832 0.863 0.869 0.889 0.844 0.49 0.605 0.789 0.797 0.839 0.863 0.864 0.837 0.343 0.434 0.598 0.614 0.651 0.674 0.684 0.65
SERA-10 0.785 0.803 0.871 0.891 0.887 0.889 0.886 0.874 0.718 0.776 0.859 0.888 0.881 0.871 0.88 0.876 0.538 0.586 0.681 0.715 0.71 0.695 0.711 0.696

SERA-NP-5 0.659 0.745 0.751 0.856 0.889 0.848 0.813 0.808 0.585 0.669 0.737 0.831 0.876 0.837 0.79 0.775 0.409 0.484 0.54 0.651 0.704 0.665 0.604 0.595
SERA-NP-10 0.765 0.824 0.885 0.868 0.892 0.886 0.893 0.853 0.688 0.789 0.895 0.835 0.85 0.875 0.899 0.847 0.503 0.592 0.724 0.657 0.665 0.715 0.73 0.662
SERA-KW-5 0.625 0.68 0.838 0.844 0.861 0.86 0.889 0.858 0.503 0.609 0.823 0.798 0.841 0.857 0.865 0.816 0.352 0.435 0.628 0.61 0.658 0.67 0.689 0.641
SERA-KW-10 0.775 0.809 0.873 0.885 0.887 0.888 0.889 0.872 0.691 0.781 0.855 0.876 0.872 0.872 0.884 0.883 0.514 0.597 0.677 0.704 0.695 0.688 0.717 0.714
SERA-DIS-5 0.638 0.673 0.764 0.799 0.847 0.851 0.87 0.859 0.494 0.611 0.743 0.738 0.837 0.837 0.833 0.837 0.345 0.439 0.546 0.551 0.645 0.649 0.658 0.648
SERA-DIS-10 0.753 0.794 0.844 0.856 0.877 0.873 0.886 0.889 0.641 0.764 0.834 0.833 0.881 0.836 0.866 0.89 0.456 0.567 0.652 0.648 0.695 0.648 0.693 0.722

SERA-DIS-NP-5 0.64 0.736 0.738 0.835 0.857 0.846 0.818 0.78 0.575 0.675 0.741 0.822 0.835 0.843 0.798 0.741 0.39 0.488 0.535 0.624 0.633 0.655 0.594 0.56
SERA-DIS-NP-10 0.715 0.816 0.849 0.862 0.895 0.882 0.896 0.831 0.645 0.777 0.863 0.849 0.875 0.875 0.894 0.83 0.464 0.567 0.675 0.66 0.695 0.712 0.708 0.647
SERA-DIS-KW-5 0.641 0.677 0.78 0.812 0.839 0.84 0.867 0.866 0.517 0.611 0.752 0.768 0.811 0.836 0.834 0.827 0.367 0.441 0.552 0.583 0.622 0.647 0.658 0.648
SERA-DIS-KW-10 0.746 0.802 0.852 0.856 0.876 0.872 0.889 0.885 0.624 0.782 0.838 0.818 0.881 0.843 0.86 0.878 0.442 0.58 0.65 0.638 0.687 0.655 0.689 0.715

wikiSERA-5 0.644 0.663 0.832 0.842 0.862 0.86 0.911 0.867 0.556 0.571 0.804 0.819 0.871 0.847 0.891 0.823 0.391 0.402 0.606 0.628 0.686 0.666 0.739 0.656
wikiSERA-10 0.799 0.817 0.876 0.884 0.898 0.892 0.893 0.883 0.757 0.797 0.86 0.867 0.888 0.863 0.88 0.882 0.568 0.598 0.679 0.687 0.709 0.685 0.695 0.702

wikiSERA-DIS-5 0.66 0.622 0.819 0.823 0.858 0.867 0.902 0.872 0.584 0.543 0.779 0.783 0.861 0.871 0.868 0.819 0.419 0.371 0.581 0.587 0.672 0.701 0.694 0.637
wikiSERA-DIS-10 0.765 0.803 0.867 0.86 0.895 0.891 0.903 0.891 0.683 0.775 0.832 0.839 0.888 0.859 0.867 0.867 0.505 0.569 0.635 0.648 0.714 0.688 0.688 0.687
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Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.621 0.677 0.82 0.832 0.861 0.868 0.889 0.845 0.492 0.605 0.788 0.795 0.835 0.86 0.863 0.836 0.346 0.435 0.596 0.612 0.646 0.672 0.684 0.65
SERA-10 0.786 0.803 0.871 0.89 0.886 0.888 0.885 0.874 0.717 0.774 0.858 0.885 0.878 0.866 0.877 0.872 0.538 0.581 0.681 0.713 0.707 0.692 0.709 0.694

SERA-NP-5 0.659 0.746 0.752 0.857 0.888 0.847 0.813 0.808 0.584 0.671 0.735 0.831 0.874 0.834 0.787 0.773 0.407 0.487 0.538 0.651 0.702 0.663 0.602 0.595
SERA-NP-10 0.766 0.824 0.885 0.867 0.891 0.886 0.892 0.853 0.688 0.788 0.893 0.832 0.849 0.872 0.897 0.844 0.503 0.592 0.722 0.652 0.662 0.713 0.727 0.659
SERA-KW-5 0.627 0.681 0.839 0.843 0.859 0.859 0.888 0.858 0.505 0.61 0.822 0.797 0.837 0.854 0.863 0.813 0.355 0.438 0.625 0.608 0.653 0.668 0.689 0.641
SERA-KW-10 0.776 0.809 0.873 0.885 0.886 0.887 0.888 0.871 0.69 0.779 0.854 0.873 0.869 0.869 0.882 0.88 0.514 0.592 0.675 0.7 0.692 0.686 0.714 0.711
SERA-DIS-5 0.639 0.674 0.764 0.798 0.846 0.85 0.869 0.858 0.497 0.613 0.743 0.738 0.833 0.835 0.831 0.835 0.348 0.439 0.543 0.551 0.641 0.647 0.653 0.648
SERA-DIS-10 0.754 0.794 0.844 0.856 0.877 0.872 0.885 0.888 0.642 0.761 0.833 0.831 0.877 0.833 0.863 0.888 0.456 0.562 0.65 0.645 0.69 0.643 0.69 0.719

SERA-DIS-NP-5 0.641 0.737 0.739 0.835 0.857 0.845 0.818 0.78 0.575 0.676 0.74 0.822 0.835 0.841 0.797 0.739 0.39 0.491 0.533 0.624 0.631 0.653 0.591 0.557
SERA-DIS-NP-10 0.716 0.817 0.849 0.862 0.895 0.882 0.896 0.831 0.647 0.777 0.861 0.846 0.874 0.872 0.893 0.827 0.464 0.567 0.672 0.658 0.692 0.71 0.708 0.644
SERA-DIS-KW-5 0.642 0.678 0.78 0.812 0.837 0.84 0.867 0.866 0.52 0.612 0.752 0.767 0.807 0.834 0.831 0.824 0.369 0.441 0.55 0.58 0.617 0.644 0.653 0.648
SERA-DIS-KW-10 0.747 0.802 0.852 0.856 0.875 0.871 0.889 0.884 0.627 0.78 0.836 0.815 0.877 0.839 0.857 0.875 0.442 0.578 0.648 0.636 0.683 0.653 0.686 0.713

wikiSERA-5 0.645 0.664 0.832 0.842 0.861 0.859 0.911 0.867 0.556 0.572 0.803 0.816 0.868 0.844 0.889 0.821 0.391 0.402 0.603 0.626 0.684 0.664 0.739 0.654
wikiSERA-10 0.799 0.817 0.875 0.883 0.897 0.891 0.892 0.882 0.756 0.795 0.858 0.865 0.884 0.859 0.878 0.879 0.566 0.593 0.674 0.684 0.707 0.683 0.693 0.7

wikiSERA-DIS-5 0.661 0.623 0.819 0.823 0.857 0.867 0.901 0.872 0.585 0.545 0.779 0.782 0.858 0.869 0.866 0.817 0.422 0.371 0.581 0.587 0.667 0.699 0.691 0.637
wikiSERA-DIS-10 0.766 0.803 0.867 0.86 0.894 0.891 0.902 0.891 0.683 0.774 0.83 0.837 0.885 0.856 0.866 0.864 0.502 0.567 0.632 0.648 0.712 0.685 0.685 0.684

Table A.3: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2008/AQUAINT-2 dataset using the reference summary A1
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.663 0.738 0.764 0.863 0.868 0.897 0.88 0.845 0.559 0.691 0.725 0.833 0.867 0.866 0.876 0.822 0.402 0.505 0.541 0.643 0.69 0.695 0.695 0.634
SERA-10 0.81 0.812 0.871 0.909 0.869 0.891 0.855 0.837 0.783 0.793 0.845 0.894 0.845 0.869 0.826 0.82 0.577 0.594 0.678 0.736 0.657 0.692 0.638 0.627

SERA-NP-5 0.672 0.783 0.798 0.836 0.855 0.842 0.836 0.889 0.599 0.762 0.771 0.805 0.831 0.82 0.82 0.894 0.433 0.565 0.585 0.616 0.649 0.628 0.628 0.729

SERA-NP-10 0.808 0.804 0.861 0.902 0.902 0.882 0.883 0.857 0.805 0.756 0.834 0.884 0.885 0.875 0.869 0.84 0.612 0.567 0.657 0.724 0.722 0.701 0.681 0.659
SERA-KW-5 0.654 0.738 0.748 0.863 0.867 0.885 0.874 0.893 0.549 0.694 0.7 0.83 0.863 0.857 0.858 0.856 0.394 0.506 0.519 0.649 0.685 0.682 0.678 0.68
SERA-KW-10 0.808 0.806 0.872 0.913 0.868 0.892 0.855 0.899 0.781 0.778 0.844 0.9 0.847 0.876 0.828 0.879 0.576 0.583 0.68 0.749 0.663 0.693 0.649 0.704
SERA-DIS-5 0.633 0.721 0.777 0.87 0.835 0.887 0.865 0.847 0.526 0.663 0.747 0.822 0.813 0.87 0.856 0.825 0.385 0.48 0.556 0.629 0.615 0.696 0.673 0.638
SERA-DIS-10 0.775 0.778 0.871 0.9 0.852 0.892 0.863 0.843 0.73 0.758 0.845 0.872 0.837 0.884 0.846 0.827 0.543 0.557 0.675 0.707 0.643 0.706 0.653 0.631

SERA-DIS-NP-5 0.667 0.783 0.787 0.845 0.842 0.812 0.832 0.881 0.595 0.763 0.76 0.8 0.807 0.792 0.836 0.882 0.414 0.57 0.578 0.619 0.619 0.597 0.639 0.725
SERA-DIS-NP-10 0.751 0.804 0.845 0.905 0.884 0.871 0.872 0.858 0.697 0.763 0.81 0.878 0.859 0.862 0.863 0.835 0.503 0.563 0.621 0.713 0.668 0.689 0.673 0.655
SERA-DIS-KW-5 0.614 0.722 0.753 0.86 0.829 0.876 0.862 0.877 0.497 0.669 0.714 0.82 0.812 0.865 0.848 0.841 0.356 0.483 0.532 0.634 0.612 0.689 0.67 0.66
SERA-DIS-KW-10 0.768 0.78 0.865 0.896 0.851 0.883 0.864 0.89 0.726 0.762 0.84 0.87 0.835 0.885 0.846 0.859 0.534 0.567 0.661 0.701 0.632 0.703 0.656 0.685

wikiSERA-5 0.642 0.744 0.817 0.895 0.866 0.895 0.891 0.876 0.558 0.696 0.77 0.88 0.854 0.872 0.869 0.853 0.396 0.512 0.572 0.709 0.667 0.696 0.693 0.683
wikiSERA-10 0.785 0.824 0.859 0.908 0.879 0.893 0.851 0.871 0.754 0.806 0.816 0.891 0.861 0.862 0.805 0.86 0.545 0.613 0.641 0.739 0.682 0.683 0.611 0.671

wikiSERA-DIS-5 0.651 0.74 0.813 0.888 0.846 0.888 0.881 0.876 0.599 0.708 0.75 0.847 0.826 0.886 0.86 0.848 0.423 0.516 0.557 0.676 0.636 0.705 0.683 0.678
wikiSERA-DIS-10 0.736 0.798 0.85 0.917 0.867 0.881 0.87 0.875 0.695 0.784 0.799 0.891 0.847 0.863 0.834 0.871 0.498 0.58 0.635 0.73 0.659 0.681 0.644 0.688

Av
er
ag
e
sc
or
e
w
it
h
4
re
fe
re
nc
e
su
m
m
ar
ie
s

Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.664 0.738 0.764 0.862 0.867 0.896 0.88 0.845 0.56 0.689 0.726 0.832 0.863 0.864 0.875 0.822 0.405 0.505 0.541 0.643 0.685 0.693 0.695 0.634
SERA-10 0.811 0.812 0.87 0.908 0.869 0.891 0.855 0.837 0.781 0.791 0.844 0.892 0.843 0.867 0.824 0.818 0.575 0.594 0.678 0.734 0.654 0.692 0.638 0.627

SERA-NP-5 0.673 0.783 0.798 0.836 0.854 0.84 0.836 0.889 0.599 0.759 0.771 0.804 0.827 0.817 0.818 0.893 0.435 0.563 0.585 0.619 0.644 0.626 0.625 0.729

SERA-NP-10 0.809 0.804 0.861 0.901 0.901 0.881 0.882 0.857 0.803 0.753 0.833 0.882 0.883 0.871 0.868 0.838 0.609 0.567 0.657 0.721 0.719 0.698 0.679 0.659
SERA-KW-5 0.655 0.738 0.748 0.862 0.866 0.884 0.873 0.892 0.55 0.692 0.701 0.828 0.859 0.854 0.857 0.854 0.396 0.506 0.52 0.649 0.68 0.679 0.678 0.68
SERA-KW-10 0.808 0.806 0.871 0.912 0.868 0.891 0.855 0.898 0.778 0.776 0.843 0.898 0.844 0.874 0.826 0.876 0.574 0.583 0.68 0.747 0.658 0.693 0.649 0.701
SERA-DIS-5 0.633 0.722 0.778 0.869 0.834 0.886 0.865 0.847 0.526 0.661 0.748 0.82 0.81 0.868 0.854 0.823 0.385 0.48 0.556 0.629 0.613 0.696 0.673 0.638
SERA-DIS-10 0.775 0.778 0.87 0.9 0.851 0.891 0.863 0.842 0.729 0.756 0.845 0.87 0.833 0.882 0.843 0.825 0.543 0.557 0.675 0.705 0.638 0.706 0.653 0.631

SERA-DIS-NP-5 0.668 0.782 0.786 0.845 0.841 0.811 0.831 0.881 0.596 0.761 0.759 0.799 0.802 0.789 0.834 0.882 0.417 0.568 0.578 0.619 0.614 0.595 0.637 0.723
SERA-DIS-NP-10 0.752 0.803 0.844 0.905 0.883 0.871 0.872 0.858 0.696 0.76 0.809 0.876 0.855 0.859 0.86 0.833 0.503 0.563 0.621 0.71 0.666 0.687 0.671 0.653
SERA-DIS-KW-5 0.614 0.722 0.754 0.859 0.828 0.875 0.862 0.877 0.497 0.668 0.714 0.818 0.809 0.863 0.846 0.84 0.356 0.483 0.532 0.632 0.609 0.687 0.67 0.66
SERA-DIS-KW-10 0.769 0.779 0.865 0.896 0.85 0.883 0.864 0.889 0.725 0.759 0.839 0.867 0.831 0.883 0.844 0.856 0.534 0.567 0.661 0.699 0.63 0.703 0.656 0.683

wikiSERA-5 0.643 0.744 0.817 0.894 0.865 0.894 0.891 0.876 0.559 0.694 0.771 0.878 0.85 0.871 0.868 0.852 0.396 0.512 0.575 0.709 0.662 0.693 0.695 0.681
wikiSERA-10 0.785 0.824 0.859 0.908 0.879 0.892 0.85 0.871 0.752 0.803 0.815 0.889 0.86 0.861 0.803 0.857 0.545 0.613 0.641 0.738 0.682 0.683 0.611 0.671

wikiSERA-DIS-5 0.652 0.74 0.814 0.888 0.845 0.887 0.881 0.876 0.599 0.706 0.751 0.845 0.822 0.885 0.859 0.847 0.423 0.516 0.56 0.673 0.633 0.705 0.683 0.676
wikiSERA-DIS-10 0.736 0.798 0.849 0.916 0.866 0.881 0.87 0.875 0.694 0.781 0.799 0.889 0.844 0.862 0.832 0.869 0.498 0.58 0.635 0.728 0.656 0.681 0.644 0.688

Table A.4: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2008/AQUAINT-2 dataset using the reference summary A2
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.605 0.707 0.769 0.896 0.801 0.896 0.895 0.872 0.485 0.674 0.761 0.868 0.778 0.855 0.872 0.872 0.333 0.487 0.556 0.698 0.593 0.671 0.695 0.693
SERA-10 0.795 0.808 0.884 0.903 0.885 0.891 0.879 0.847 0.745 0.783 0.863 0.894 0.872 0.877 0.863 0.848 0.561 0.574 0.683 0.718 0.697 0.693 0.682 0.656

SERA-NP-5 0.671 0.716 0.794 0.838 0.845 0.888 0.816 0.872 0.605 0.725 0.783 0.826 0.821 0.883 0.806 0.879 0.412 0.551 0.563 0.636 0.631 0.698 0.609 0.696
SERA-NP-10 0.782 0.79 0.878 0.886 0.91 0.871 0.879 0.871 0.697 0.772 0.861 0.865 0.906 0.872 0.89 0.87 0.522 0.569 0.679 0.68 0.736 0.694 0.717 0.686
SERA-KW-5 0.593 0.706 0.771 0.897 0.805 0.888 0.893 0.883 0.468 0.673 0.764 0.869 0.792 0.849 0.861 0.846 0.323 0.484 0.557 0.701 0.602 0.654 0.681 0.663
SERA-KW-10 0.789 0.803 0.885 0.902 0.879 0.884 0.88 0.897 0.735 0.772 0.86 0.884 0.865 0.865 0.874 0.886 0.549 0.563 0.683 0.698 0.681 0.68 0.701 0.718

SERA-DIS-5 0.602 0.691 0.784 0.894 0.766 0.863 0.886 0.887 0.496 0.687 0.757 0.875 0.735 0.834 0.856 0.886 0.343 0.48 0.547 0.698 0.543 0.644 0.671 0.709
SERA-DIS-10 0.735 0.788 0.873 0.896 0.88 0.889 0.889 0.885 0.697 0.772 0.844 0.883 0.87 0.873 0.872 0.882 0.493 0.561 0.658 0.698 0.687 0.691 0.69 0.696

SERA-DIS-NP-5 0.636 0.672 0.759 0.843 0.834 0.875 0.818 0.86 0.597 0.673 0.768 0.841 0.813 0.872 0.82 0.852 0.405 0.489 0.547 0.656 0.615 0.688 0.625 0.649
SERA-DIS-NP-10 0.749 0.735 0.846 0.879 0.9 0.882 0.883 0.882 0.711 0.745 0.823 0.879 0.892 0.875 0.889 0.866 0.51 0.544 0.623 0.701 0.715 0.691 0.707 0.678
SERA-DIS-KW-5 0.604 0.693 0.787 0.889 0.774 0.849 0.882 0.88 0.53 0.69 0.764 0.866 0.75 0.817 0.848 0.862 0.368 0.491 0.557 0.683 0.546 0.623 0.665 0.689
SERA-DIS-KW-10 0.727 0.786 0.871 0.887 0.878 0.881 0.885 0.894 0.682 0.77 0.849 0.879 0.87 0.85 0.867 0.882 0.471 0.558 0.66 0.689 0.676 0.666 0.69 0.707

wikiSERA-5 0.605 0.682 0.771 0.86 0.849 0.893 0.908 0.918 0.501 0.648 0.75 0.829 0.839 0.883 0.87 0.921 0.349 0.459 0.554 0.639 0.653 0.701 0.702 0.758

wikiSERA-10 0.785 0.778 0.879 0.911 0.885 0.892 0.89 0.881 0.717 0.739 0.843 0.91 0.867 0.868 0.878 0.892 0.523 0.546 0.672 0.74 0.687 0.689 0.698 0.707
wikiSERA-DIS-5 0.639 0.665 0.754 0.864 0.818 0.878 0.903 0.914 0.599 0.651 0.724 0.858 0.799 0.869 0.874 0.898 0.42 0.452 0.528 0.661 0.602 0.678 0.684 0.73
wikiSERA-DIS-10 0.756 0.741 0.85 0.902 0.881 0.895 0.913 0.917 0.738 0.702 0.796 0.911 0.882 0.883 0.897 0.91 0.545 0.504 0.61 0.734 0.701 0.694 0.73 0.739
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Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.606 0.708 0.769 0.896 0.799 0.895 0.895 0.872 0.483 0.673 0.761 0.868 0.775 0.852 0.869 0.869 0.333 0.487 0.556 0.698 0.589 0.669 0.693 0.691
SERA-10 0.795 0.807 0.884 0.903 0.885 0.891 0.879 0.847 0.744 0.781 0.863 0.892 0.871 0.874 0.861 0.847 0.561 0.571 0.682 0.717 0.697 0.691 0.682 0.656

SERA-NP-5 0.671 0.716 0.794 0.838 0.844 0.887 0.816 0.872 0.604 0.723 0.781 0.826 0.819 0.882 0.804 0.879 0.412 0.548 0.563 0.636 0.629 0.698 0.607 0.696
SERA-NP-10 0.783 0.79 0.879 0.885 0.909 0.871 0.879 0.87 0.697 0.77 0.86 0.864 0.905 0.869 0.888 0.867 0.525 0.566 0.679 0.68 0.733 0.691 0.714 0.683
SERA-KW-5 0.594 0.706 0.771 0.897 0.804 0.887 0.892 0.883 0.467 0.674 0.764 0.869 0.789 0.845 0.857 0.844 0.323 0.484 0.557 0.701 0.6 0.652 0.679 0.663
SERA-KW-10 0.789 0.803 0.885 0.901 0.878 0.884 0.88 0.897 0.734 0.77 0.86 0.882 0.864 0.862 0.871 0.885 0.55 0.56 0.68 0.698 0.681 0.677 0.701 0.716

SERA-DIS-5 0.603 0.691 0.784 0.893 0.765 0.862 0.885 0.886 0.494 0.686 0.757 0.874 0.733 0.831 0.853 0.883 0.343 0.48 0.547 0.696 0.54 0.642 0.668 0.707
SERA-DIS-10 0.735 0.788 0.873 0.895 0.879 0.889 0.889 0.884 0.695 0.769 0.843 0.881 0.869 0.871 0.87 0.88 0.493 0.558 0.658 0.695 0.687 0.689 0.69 0.696

SERA-DIS-NP-5 0.637 0.672 0.759 0.843 0.833 0.875 0.818 0.86 0.597 0.672 0.766 0.84 0.81 0.869 0.817 0.852 0.407 0.489 0.547 0.656 0.613 0.685 0.623 0.649
SERA-DIS-NP-10 0.75 0.735 0.846 0.879 0.899 0.881 0.882 0.882 0.712 0.744 0.822 0.876 0.889 0.871 0.887 0.864 0.512 0.541 0.623 0.701 0.71 0.689 0.707 0.676
SERA-DIS-KW-5 0.604 0.693 0.787 0.889 0.773 0.848 0.882 0.88 0.528 0.689 0.764 0.866 0.748 0.814 0.845 0.861 0.368 0.491 0.557 0.683 0.544 0.62 0.662 0.689
SERA-DIS-KW-10 0.728 0.786 0.871 0.886 0.877 0.88 0.885 0.894 0.681 0.768 0.849 0.876 0.869 0.848 0.864 0.882 0.471 0.558 0.66 0.689 0.676 0.664 0.69 0.705

wikiSERA-5 0.606 0.682 0.771 0.86 0.848 0.892 0.908 0.917 0.5 0.647 0.749 0.827 0.835 0.881 0.869 0.918 0.349 0.457 0.554 0.639 0.648 0.699 0.702 0.755

wikiSERA-10 0.786 0.778 0.879 0.911 0.885 0.891 0.89 0.88 0.716 0.737 0.843 0.908 0.865 0.865 0.875 0.89 0.523 0.544 0.672 0.74 0.687 0.687 0.698 0.704
wikiSERA-DIS-5 0.64 0.665 0.754 0.864 0.816 0.877 0.902 0.913 0.597 0.65 0.724 0.855 0.795 0.867 0.872 0.896 0.42 0.452 0.528 0.661 0.597 0.676 0.681 0.73
wikiSERA-DIS-10 0.756 0.741 0.85 0.902 0.88 0.894 0.912 0.917 0.735 0.699 0.795 0.91 0.88 0.88 0.895 0.907 0.542 0.504 0.61 0.734 0.699 0.691 0.73 0.736

Table A.5: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2008/AQUAINT-2 dataset using the reference summary A3
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.638 0.771 0.821 0.9 0.867 0.883 0.885 0.844 0.526 0.711 0.8 0.869 0.854 0.852 0.884 0.854 0.367 0.528 0.604 0.701 0.667 0.667 0.696 0.667
SERA-10 0.818 0.823 0.905 0.867 0.894 0.9 0.872 0.877 0.76 0.793 0.874 0.859 0.881 0.885 0.853 0.887 0.574 0.595 0.702 0.679 0.702 0.704 0.668 0.704

SERA-NP-5 0.659 0.737 0.772 0.859 0.835 0.873 0.858 0.885 0.585 0.666 0.776 0.827 0.799 0.835 0.817 0.874 0.408 0.486 0.564 0.639 0.612 0.662 0.639 0.69
SERA-NP-10 0.831 0.845 0.879 0.879 0.889 0.89 0.906 0.886 0.803 0.817 0.847 0.866 0.891 0.864 0.881 0.878 0.596 0.624 0.664 0.686 0.715 0.686 0.713 0.702
SERA-KW-5 0.636 0.775 0.821 0.895 0.867 0.893 0.876 0.861 0.535 0.72 0.788 0.86 0.855 0.86 0.873 0.824 0.375 0.535 0.584 0.694 0.671 0.673 0.681 0.65
SERA-KW-10 0.815 0.825 0.905 0.866 0.889 0.899 0.878 0.909 0.758 0.795 0.872 0.853 0.881 0.883 0.865 0.887 0.561 0.595 0.702 0.674 0.7 0.707 0.68 0.727

SERA-DIS-5 0.586 0.747 0.79 0.881 0.865 0.853 0.88 0.864 0.443 0.705 0.772 0.854 0.866 0.815 0.861 0.86 0.31 0.504 0.572 0.679 0.672 0.621 0.672 0.671
SERA-DIS-10 0.776 0.818 0.868 0.857 0.894 0.893 0.893 0.888 0.713 0.797 0.841 0.839 0.889 0.874 0.889 0.892 0.517 0.585 0.655 0.664 0.7 0.701 0.713 0.706

SERA-DIS-NP-5 0.655 0.71 0.729 0.839 0.872 0.83 0.841 0.877 0.56 0.632 0.73 0.818 0.862 0.781 0.816 0.828 0.377 0.465 0.508 0.632 0.688 0.589 0.626 0.649
SERA-DIS-NP-10 0.758 0.811 0.84 0.861 0.886 0.878 0.88 0.896 0.715 0.761 0.84 0.838 0.884 0.867 0.852 0.859 0.514 0.56 0.649 0.648 0.696 0.685 0.673 0.679
SERA-DIS-KW-5 0.559 0.761 0.797 0.875 0.863 0.867 0.876 0.873 0.404 0.724 0.768 0.847 0.866 0.829 0.847 0.839 0.278 0.527 0.562 0.665 0.668 0.639 0.661 0.664
SERA-DIS-KW-10 0.767 0.829 0.871 0.849 0.894 0.9 0.896 0.913 0.707 0.806 0.845 0.833 0.89 0.892 0.885 0.882 0.516 0.597 0.655 0.653 0.704 0.713 0.711 0.714

wikiSERA-5 0.677 0.775 0.831 0.884 0.88 0.891 0.903 0.873 0.564 0.755 0.817 0.844 0.848 0.899 0.896 0.861 0.401 0.562 0.628 0.67 0.666 0.726 0.724 0.689

wikiSERA-10 0.794 0.836 0.892 0.866 0.893 0.899 0.903 0.888 0.748 0.81 0.846 0.852 0.88 0.876 0.904 0.864 0.551 0.608 0.678 0.68 0.706 0.701 0.734 0.684
wikiSERA-DIS-5 0.648 0.775 0.802 0.853 0.864 0.859 0.897 0.853 0.514 0.762 0.79 0.82 0.845 0.852 0.846 0.817 0.36 0.563 0.584 0.641 0.662 0.656 0.67 0.629
wikiSERA-DIS-10 0.762 0.832 0.861 0.863 0.889 0.895 0.914 0.884 0.698 0.812 0.825 0.842 0.866 0.89 0.886 0.867 0.511 0.614 0.639 0.666 0.694 0.716 0.71 0.685
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.638 0.772 0.821 0.899 0.866 0.882 0.884 0.843 0.526 0.712 0.8 0.867 0.851 0.848 0.882 0.851 0.367 0.528 0.604 0.699 0.664 0.664 0.694 0.667
SERA-10 0.818 0.823 0.904 0.867 0.893 0.899 0.871 0.877 0.756 0.792 0.871 0.855 0.878 0.881 0.851 0.886 0.572 0.595 0.698 0.675 0.701 0.702 0.666 0.701

SERA-NP-5 0.659 0.737 0.771 0.858 0.834 0.872 0.858 0.884 0.584 0.666 0.773 0.825 0.797 0.832 0.814 0.871 0.408 0.486 0.559 0.636 0.612 0.66 0.637 0.688
SERA-NP-10 0.831 0.845 0.877 0.878 0.889 0.89 0.905 0.885 0.801 0.817 0.843 0.862 0.889 0.86 0.879 0.876 0.596 0.624 0.659 0.684 0.713 0.683 0.711 0.702
SERA-KW-5 0.637 0.776 0.821 0.895 0.866 0.893 0.875 0.861 0.535 0.72 0.788 0.858 0.852 0.856 0.87 0.822 0.375 0.535 0.584 0.692 0.669 0.671 0.678 0.65
SERA-KW-10 0.815 0.825 0.905 0.866 0.888 0.899 0.877 0.908 0.754 0.794 0.868 0.849 0.878 0.879 0.863 0.883 0.558 0.595 0.698 0.672 0.697 0.704 0.677 0.724

SERA-DIS-5 0.587 0.748 0.789 0.881 0.864 0.852 0.879 0.863 0.442 0.705 0.772 0.853 0.864 0.812 0.858 0.856 0.31 0.504 0.572 0.677 0.672 0.619 0.667 0.668
SERA-DIS-10 0.777 0.818 0.867 0.856 0.894 0.892 0.892 0.888 0.709 0.796 0.838 0.835 0.886 0.871 0.886 0.89 0.515 0.585 0.65 0.661 0.695 0.699 0.711 0.704

SERA-DIS-NP-5 0.655 0.711 0.728 0.838 0.871 0.829 0.841 0.877 0.561 0.631 0.727 0.816 0.861 0.78 0.814 0.826 0.377 0.463 0.503 0.632 0.688 0.589 0.624 0.649
SERA-DIS-NP-10 0.759 0.811 0.839 0.86 0.885 0.877 0.879 0.896 0.715 0.759 0.836 0.834 0.881 0.864 0.85 0.857 0.512 0.56 0.644 0.643 0.691 0.683 0.671 0.679
SERA-DIS-KW-5 0.56 0.761 0.796 0.875 0.862 0.867 0.875 0.873 0.402 0.724 0.768 0.846 0.864 0.825 0.843 0.835 0.275 0.527 0.562 0.665 0.668 0.637 0.656 0.659
SERA-DIS-KW-10 0.767 0.829 0.87 0.849 0.893 0.9 0.895 0.912 0.703 0.805 0.842 0.829 0.887 0.888 0.883 0.877 0.514 0.597 0.65 0.65 0.701 0.711 0.708 0.71

wikiSERA-5 0.678 0.776 0.831 0.884 0.879 0.89 0.902 0.872 0.563 0.757 0.817 0.843 0.846 0.896 0.893 0.859 0.401 0.562 0.628 0.67 0.661 0.724 0.719 0.689

wikiSERA-10 0.794 0.836 0.892 0.865 0.892 0.898 0.903 0.887 0.742 0.809 0.843 0.848 0.878 0.872 0.902 0.861 0.549 0.608 0.673 0.678 0.704 0.698 0.734 0.682
wikiSERA-DIS-5 0.649 0.776 0.801 0.853 0.864 0.858 0.896 0.852 0.512 0.764 0.79 0.819 0.842 0.851 0.843 0.813 0.36 0.56 0.584 0.638 0.66 0.656 0.667 0.624
wikiSERA-DIS-10 0.763 0.832 0.86 0.862 0.889 0.895 0.914 0.883 0.694 0.811 0.822 0.839 0.863 0.887 0.885 0.863 0.509 0.612 0.637 0.664 0.691 0.713 0.71 0.683

Table A.6: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2008/AQUAINT-2 dataset using the reference summary A4
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.646 0.745 0.809 0.897 0.873 0.911 0.91 0.877 0.543 0.701 0.804 0.881 0.868 0.887 0.89 0.872 0.379 0.505 0.61 0.709 0.684 0.708 0.71 0.699
SERA-10 0.815 0.831 0.891 0.913 0.897 0.905 0.888 0.872 0.77 0.826 0.867 0.898 0.889 0.886 0.874 0.865 0.574 0.626 0.693 0.73 0.707 0.698 0.699 0.677

SERA-NP-5 0.686 0.795 0.815 0.876 0.892 0.893 0.851 0.885 0.635 0.787 0.823 0.869 0.882 0.877 0.847 0.888 0.45 0.592 0.623 0.691 0.696 0.707 0.653 0.707
SERA-NP-10 0.803 0.837 0.897 0.906 0.919 0.893 0.903 0.879 0.743 0.823 0.888 0.9 0.907 0.885 0.903 0.871 0.538 0.618 0.716 0.727 0.736 0.714 0.734 0.683
SERA-KW-5 0.643 0.744 0.811 0.901 0.872 0.904 0.908 0.898 0.548 0.706 0.802 0.891 0.867 0.881 0.892 0.87 0.39 0.518 0.603 0.718 0.687 0.699 0.71 0.704
SERA-KW-10 0.809 0.83 0.892 0.913 0.895 0.903 0.89 0.901 0.765 0.833 0.868 0.895 0.888 0.887 0.876 0.9 0.564 0.637 0.691 0.733 0.705 0.701 0.704 0.733

SERA-DIS-5 0.645 0.74 0.813 0.897 0.853 0.893 0.9 0.893 0.545 0.71 0.795 0.881 0.848 0.883 0.874 0.886 0.387 0.522 0.598 0.707 0.652 0.712 0.699 0.711
SERA-DIS-10 0.773 0.816 0.885 0.905 0.89 0.904 0.898 0.894 0.733 0.813 0.865 0.892 0.887 0.895 0.886 0.893 0.54 0.614 0.676 0.735 0.701 0.713 0.71 0.721

SERA-DIS-NP-5 0.67 0.78 0.805 0.885 0.883 0.884 0.863 0.891 0.606 0.789 0.825 0.876 0.865 0.877 0.856 0.89 0.416 0.589 0.621 0.698 0.676 0.707 0.67 0.713
SERA-DIS-NP-10 0.757 0.821 0.873 0.912 0.916 0.896 0.907 0.883 0.706 0.819 0.871 0.906 0.894 0.888 0.916 0.877 0.51 0.617 0.688 0.736 0.71 0.718 0.745 0.691
SERA-DIS-KW-5 0.64 0.742 0.812 0.897 0.85 0.884 0.899 0.899 0.557 0.722 0.802 0.876 0.842 0.874 0.874 0.87 0.395 0.532 0.604 0.699 0.639 0.694 0.698 0.699
SERA-DIS-KW-10 0.768 0.819 0.884 0.902 0.887 0.898 0.898 0.905 0.732 0.824 0.867 0.887 0.879 0.891 0.887 0.889 0.534 0.619 0.677 0.724 0.69 0.708 0.713 0.719

wikiSERA-5 0.651 0.737 0.836 0.9 0.884 0.912 0.926 0.911 0.598 0.705 0.808 0.885 0.883 0.903 0.914 0.903 0.423 0.512 0.618 0.701 0.7 0.723 0.749 0.735

wikiSERA-10 0.807 0.833 0.891 0.917 0.903 0.909 0.895 0.895 0.778 0.83 0.862 0.911 0.887 0.893 0.88 0.9 0.573 0.632 0.683 0.748 0.709 0.713 0.699 0.721
wikiSERA-DIS-5 0.67 0.726 0.835 0.904 0.875 0.909 0.923 0.918 0.63 0.706 0.808 0.897 0.879 0.907 0.914 0.903 0.451 0.509 0.617 0.72 0.691 0.739 0.748 0.734
wikiSERA-DIS-10 0.774 0.813 0.885 0.92 0.9 0.909 0.914 0.915 0.749 0.806 0.847 0.916 0.893 0.898 0.889 0.909 0.549 0.607 0.668 0.748 0.713 0.722 0.718 0.731
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.647 0.745 0.809 0.897 0.871 0.91 0.909 0.877 0.544 0.701 0.805 0.88 0.864 0.884 0.887 0.871 0.379 0.505 0.61 0.709 0.679 0.706 0.71 0.699
SERA-10 0.815 0.831 0.891 0.913 0.897 0.905 0.887 0.871 0.768 0.823 0.867 0.895 0.886 0.883 0.871 0.863 0.572 0.624 0.693 0.728 0.705 0.695 0.699 0.677

SERA-NP-5 0.687 0.795 0.814 0.876 0.891 0.892 0.851 0.885 0.634 0.785 0.821 0.868 0.879 0.875 0.845 0.887 0.45 0.589 0.621 0.691 0.693 0.704 0.65 0.707
SERA-NP-10 0.803 0.837 0.897 0.906 0.919 0.892 0.903 0.879 0.742 0.821 0.887 0.897 0.906 0.881 0.902 0.869 0.538 0.618 0.716 0.724 0.734 0.712 0.731 0.683
SERA-KW-5 0.644 0.744 0.811 0.901 0.87 0.903 0.907 0.897 0.548 0.706 0.802 0.89 0.863 0.878 0.889 0.868 0.39 0.518 0.603 0.718 0.682 0.696 0.71 0.704
SERA-KW-10 0.81 0.83 0.892 0.913 0.894 0.903 0.89 0.9 0.763 0.83 0.867 0.892 0.885 0.884 0.873 0.897 0.564 0.634 0.691 0.73 0.702 0.699 0.704 0.73

SERA-DIS-5 0.645 0.74 0.813 0.897 0.851 0.892 0.9 0.893 0.545 0.708 0.795 0.88 0.845 0.881 0.871 0.884 0.389 0.522 0.598 0.707 0.649 0.71 0.696 0.711
SERA-DIS-10 0.773 0.816 0.885 0.905 0.889 0.903 0.897 0.894 0.731 0.809 0.864 0.889 0.884 0.892 0.882 0.891 0.54 0.612 0.676 0.733 0.699 0.711 0.707 0.721

SERA-DIS-NP-5 0.671 0.78 0.805 0.885 0.882 0.884 0.863 0.89 0.607 0.787 0.824 0.875 0.861 0.874 0.854 0.887 0.418 0.586 0.619 0.698 0.671 0.705 0.667 0.711
SERA-DIS-NP-10 0.758 0.821 0.873 0.911 0.916 0.895 0.907 0.882 0.706 0.817 0.87 0.903 0.891 0.884 0.914 0.874 0.512 0.617 0.688 0.734 0.707 0.716 0.742 0.689
SERA-DIS-KW-5 0.64 0.742 0.812 0.897 0.848 0.883 0.898 0.898 0.557 0.721 0.802 0.874 0.839 0.872 0.872 0.868 0.397 0.532 0.602 0.699 0.637 0.691 0.698 0.699
SERA-DIS-KW-10 0.768 0.819 0.884 0.902 0.887 0.897 0.898 0.904 0.731 0.821 0.867 0.884 0.876 0.888 0.884 0.886 0.534 0.616 0.677 0.724 0.688 0.706 0.711 0.717

wikiSERA-5 0.652 0.738 0.836 0.9 0.883 0.911 0.926 0.911 0.598 0.704 0.808 0.883 0.879 0.901 0.914 0.901 0.426 0.51 0.618 0.701 0.695 0.721 0.749 0.732
wikiSERA-10 0.808 0.833 0.891 0.917 0.903 0.908 0.895 0.894 0.776 0.827 0.86 0.909 0.885 0.89 0.878 0.897 0.573 0.63 0.683 0.748 0.707 0.711 0.699 0.719

wikiSERA-DIS-5 0.671 0.726 0.836 0.904 0.874 0.909 0.923 0.918 0.629 0.705 0.808 0.895 0.875 0.905 0.912 0.901 0.453 0.506 0.617 0.72 0.687 0.736 0.748 0.734

wikiSERA-DIS-10 0.775 0.813 0.885 0.92 0.899 0.909 0.914 0.914 0.747 0.803 0.846 0.914 0.89 0.896 0.887 0.907 0.546 0.604 0.668 0.748 0.711 0.719 0.716 0.729

Table A.7: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2008/AQUAINT-2 dataset using the reference summary A1, A2, A3
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.656 0.764 0.827 0.897 0.891 0.906 0.909 0.868 0.539 0.709 0.823 0.868 0.887 0.883 0.908 0.862 0.384 0.517 0.631 0.694 0.707 0.706 0.729 0.682
SERA-10 0.825 0.832 0.898 0.902 0.899 0.906 0.886 0.881 0.795 0.818 0.881 0.89 0.882 0.891 0.869 0.877 0.592 0.614 0.711 0.722 0.701 0.71 0.687 0.691

SERA-NP-5 0.685 0.808 0.81 0.882 0.887 0.88 0.869 0.887 0.619 0.777 0.813 0.874 0.867 0.857 0.854 0.878 0.426 0.58 0.622 0.692 0.682 0.691 0.675 0.702
SERA-NP-10 0.821 0.85 0.898 0.902 0.913 0.897 0.91 0.884 0.79 0.825 0.895 0.883 0.901 0.876 0.907 0.88 0.579 0.625 0.718 0.7 0.731 0.704 0.738 0.705
SERA-KW-5 0.655 0.766 0.828 0.9 0.887 0.905 0.904 0.887 0.534 0.731 0.814 0.877 0.884 0.88 0.894 0.849 0.38 0.535 0.619 0.702 0.715 0.698 0.715 0.677
SERA-KW-10 0.82 0.833 0.9 0.902 0.896 0.906 0.89 0.907 0.798 0.809 0.883 0.889 0.879 0.892 0.876 0.892 0.592 0.604 0.707 0.724 0.698 0.709 0.696 0.728
SERA-DIS-5 0.638 0.757 0.811 0.89 0.881 0.89 0.902 0.885 0.517 0.722 0.809 0.857 0.876 0.869 0.89 0.874 0.362 0.526 0.616 0.681 0.694 0.689 0.716 0.694
SERA-DIS-10 0.787 0.822 0.882 0.892 0.893 0.902 0.899 0.896 0.748 0.814 0.864 0.874 0.887 0.884 0.882 0.895 0.551 0.614 0.679 0.71 0.701 0.701 0.71 0.718

SERA-DIS-NP-5 0.677 0.796 0.793 0.882 0.892 0.862 0.874 0.889 0.6 0.767 0.803 0.86 0.881 0.832 0.869 0.871 0.415 0.569 0.602 0.683 0.71 0.655 0.687 0.707
SERA-DIS-NP-10 0.762 0.839 0.871 0.906 0.911 0.894 0.906 0.889 0.72 0.807 0.875 0.892 0.898 0.879 0.896 0.88 0.516 0.611 0.689 0.715 0.724 0.71 0.721 0.709
SERA-DIS-KW-5 0.624 0.763 0.811 0.889 0.874 0.891 0.9 0.896 0.487 0.728 0.806 0.865 0.87 0.882 0.88 0.863 0.349 0.528 0.61 0.698 0.682 0.701 0.706 0.7
SERA-DIS-KW-10 0.782 0.83 0.884 0.89 0.89 0.902 0.902 0.911 0.735 0.819 0.867 0.872 0.881 0.891 0.883 0.892 0.538 0.616 0.679 0.708 0.692 0.71 0.711 0.735

wikiSERA-5 0.677 0.77 0.859 0.902 0.899 0.912 0.926 0.897 0.59 0.738 0.84 0.883 0.891 0.908 0.923 0.886 0.413 0.537 0.647 0.706 0.707 0.727 0.765 0.708

wikiSERA-10 0.812 0.847 0.893 0.902 0.906 0.911 0.9 0.895 0.79 0.842 0.869 0.883 0.888 0.889 0.882 0.889 0.585 0.641 0.69 0.718 0.719 0.713 0.698 0.706
wikiSERA-DIS-5 0.677 0.762 0.846 0.897 0.893 0.903 0.919 0.896 0.601 0.725 0.82 0.879 0.892 0.909 0.897 0.876 0.418 0.522 0.619 0.7 0.71 0.746 0.729 0.705
wikiSERA-DIS-10 0.779 0.84 0.887 0.91 0.904 0.906 0.914 0.901 0.751 0.836 0.875 0.905 0.889 0.896 0.887 0.888 0.547 0.623 0.701 0.745 0.716 0.727 0.717 0.705
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.656 0.765 0.827 0.896 0.89 0.906 0.908 0.868 0.54 0.709 0.824 0.866 0.882 0.88 0.905 0.861 0.386 0.517 0.629 0.694 0.702 0.704 0.729 0.682
SERA-10 0.825 0.832 0.897 0.901 0.899 0.906 0.885 0.881 0.792 0.815 0.879 0.886 0.879 0.887 0.867 0.875 0.589 0.614 0.711 0.717 0.699 0.707 0.685 0.689

SERA-NP-5 0.686 0.809 0.81 0.881 0.886 0.879 0.868 0.887 0.619 0.775 0.812 0.874 0.864 0.853 0.852 0.876 0.426 0.58 0.62 0.692 0.677 0.689 0.673 0.702
SERA-NP-10 0.821 0.85 0.898 0.901 0.912 0.897 0.91 0.883 0.789 0.824 0.892 0.88 0.899 0.872 0.905 0.878 0.579 0.625 0.715 0.697 0.729 0.701 0.736 0.705
SERA-KW-5 0.656 0.767 0.828 0.9 0.886 0.904 0.904 0.887 0.535 0.731 0.815 0.875 0.88 0.876 0.892 0.847 0.382 0.535 0.616 0.702 0.71 0.695 0.715 0.677
SERA-KW-10 0.821 0.833 0.899 0.901 0.896 0.905 0.889 0.906 0.796 0.807 0.881 0.885 0.876 0.888 0.874 0.888 0.589 0.604 0.705 0.719 0.695 0.707 0.693 0.725
SERA-DIS-5 0.638 0.757 0.811 0.89 0.88 0.89 0.901 0.884 0.518 0.722 0.81 0.856 0.872 0.867 0.887 0.872 0.362 0.526 0.614 0.681 0.689 0.686 0.713 0.694
SERA-DIS-10 0.787 0.822 0.881 0.891 0.893 0.902 0.898 0.895 0.746 0.812 0.863 0.871 0.883 0.881 0.879 0.892 0.551 0.614 0.677 0.71 0.696 0.699 0.707 0.716

SERA-DIS-NP-5 0.677 0.797 0.792 0.882 0.891 0.862 0.874 0.889 0.6 0.766 0.801 0.859 0.878 0.829 0.867 0.869 0.415 0.569 0.6 0.683 0.707 0.653 0.684 0.705
SERA-DIS-NP-10 0.763 0.838 0.871 0.905 0.91 0.893 0.906 0.889 0.719 0.805 0.873 0.888 0.895 0.875 0.894 0.877 0.516 0.611 0.687 0.713 0.722 0.708 0.718 0.706
SERA-DIS-KW-5 0.625 0.764 0.811 0.889 0.873 0.89 0.899 0.896 0.488 0.729 0.806 0.864 0.867 0.879 0.877 0.86 0.349 0.528 0.608 0.698 0.677 0.699 0.704 0.7
SERA-DIS-KW-10 0.782 0.829 0.884 0.889 0.889 0.901 0.901 0.91 0.733 0.817 0.866 0.869 0.878 0.888 0.881 0.888 0.538 0.616 0.677 0.706 0.687 0.707 0.708 0.73

wikiSERA-5 0.678 0.771 0.859 0.901 0.898 0.911 0.926 0.897 0.59 0.738 0.84 0.881 0.888 0.906 0.922 0.884 0.413 0.537 0.645 0.706 0.705 0.725 0.765 0.706

wikiSERA-10 0.812 0.847 0.893 0.901 0.905 0.91 0.9 0.895 0.786 0.84 0.866 0.88 0.885 0.885 0.881 0.886 0.583 0.641 0.687 0.716 0.717 0.711 0.698 0.703
wikiSERA-DIS-5 0.678 0.763 0.846 0.897 0.892 0.903 0.919 0.895 0.601 0.725 0.821 0.878 0.889 0.907 0.895 0.874 0.418 0.522 0.616 0.7 0.708 0.743 0.727 0.702
wikiSERA-DIS-10 0.78 0.84 0.887 0.909 0.904 0.905 0.913 0.9 0.749 0.833 0.873 0.902 0.886 0.893 0.885 0.885 0.545 0.623 0.699 0.742 0.713 0.724 0.714 0.702

Table A.8: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2008/AQUAINT-2 dataset using the reference summary A1, A2, A4
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.651 0.768 0.812 0.913 0.87 0.913 0.906 0.874 0.552 0.733 0.81 0.895 0.875 0.885 0.906 0.875 0.388 0.537 0.618 0.724 0.689 0.706 0.726 0.696
SERA-10 0.827 0.831 0.9 0.906 0.898 0.906 0.88 0.869 0.795 0.809 0.88 0.89 0.88 0.885 0.867 0.87 0.595 0.606 0.71 0.724 0.688 0.697 0.687 0.671

SERA-NP-5 0.688 0.79 0.815 0.87 0.873 0.894 0.863 0.906 0.633 0.758 0.807 0.864 0.871 0.87 0.857 0.913 0.433 0.564 0.603 0.687 0.683 0.698 0.673 0.736

SERA-NP-10 0.828 0.836 0.893 0.906 0.915 0.892 0.902 0.886 0.79 0.815 0.883 0.894 0.918 0.874 0.899 0.882 0.58 0.627 0.701 0.719 0.759 0.693 0.727 0.701
SERA-KW-5 0.645 0.767 0.806 0.912 0.869 0.911 0.9 0.895 0.551 0.737 0.8 0.888 0.871 0.881 0.89 0.861 0.39 0.539 0.606 0.721 0.69 0.695 0.707 0.685
SERA-KW-10 0.823 0.829 0.901 0.906 0.894 0.903 0.883 0.913 0.801 0.815 0.879 0.889 0.878 0.886 0.876 0.897 0.593 0.609 0.711 0.718 0.687 0.696 0.695 0.728
SERA-DIS-5 0.625 0.75 0.821 0.909 0.853 0.891 0.899 0.893 0.532 0.727 0.813 0.884 0.854 0.867 0.888 0.888 0.368 0.53 0.615 0.716 0.656 0.677 0.713 0.722
SERA-DIS-10 0.778 0.814 0.887 0.901 0.893 0.905 0.895 0.891 0.748 0.817 0.867 0.884 0.887 0.894 0.886 0.891 0.541 0.609 0.682 0.719 0.701 0.714 0.706 0.713

SERA-DIS-NP-5 0.677 0.774 0.79 0.872 0.878 0.872 0.865 0.909 0.624 0.749 0.799 0.857 0.861 0.853 0.863 0.894 0.429 0.551 0.591 0.689 0.676 0.675 0.678 0.711
SERA-DIS-NP-10 0.774 0.811 0.867 0.903 0.909 0.892 0.896 0.9 0.748 0.79 0.863 0.899 0.903 0.885 0.89 0.881 0.539 0.59 0.676 0.727 0.733 0.711 0.723 0.701
SERA-DIS-KW-5 0.61 0.754 0.817 0.904 0.851 0.889 0.896 0.897 0.506 0.739 0.81 0.882 0.854 0.872 0.879 0.864 0.356 0.543 0.607 0.71 0.66 0.677 0.701 0.691
SERA-DIS-KW-10 0.773 0.818 0.887 0.894 0.891 0.901 0.896 0.912 0.737 0.818 0.87 0.881 0.884 0.892 0.887 0.889 0.533 0.612 0.677 0.708 0.695 0.711 0.709 0.721

wikiSERA-5 0.666 0.765 0.837 0.905 0.887 0.918 0.92 0.908 0.582 0.741 0.812 0.88 0.881 0.918 0.909 0.906 0.406 0.545 0.616 0.706 0.693 0.754 0.731 0.734

wikiSERA-10 0.806 0.834 0.889 0.91 0.9 0.906 0.895 0.896 0.769 0.81 0.852 0.897 0.88 0.884 0.877 0.896 0.568 0.623 0.671 0.73 0.695 0.705 0.693 0.713
wikiSERA-DIS-5 0.669 0.761 0.827 0.897 0.871 0.901 0.916 0.908 0.608 0.745 0.802 0.885 0.861 0.9 0.896 0.893 0.425 0.55 0.601 0.712 0.665 0.719 0.723 0.724
wikiSERA-DIS-10 0.772 0.818 0.873 0.913 0.894 0.904 0.913 0.909 0.746 0.804 0.835 0.908 0.886 0.898 0.89 0.899 0.543 0.609 0.661 0.745 0.71 0.718 0.714 0.718

Av
er
ag
e
sc
or
e
w
it
h
4
re
fe
re
nc
e
su
m
m
ar
ie
s

Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.652 0.768 0.812 0.912 0.869 0.912 0.906 0.874 0.552 0.732 0.811 0.894 0.871 0.882 0.904 0.873 0.388 0.537 0.618 0.724 0.684 0.704 0.726 0.696
SERA-10 0.827 0.831 0.9 0.905 0.898 0.905 0.88 0.869 0.792 0.807 0.879 0.887 0.878 0.882 0.864 0.869 0.592 0.606 0.707 0.722 0.685 0.697 0.687 0.671

SERA-NP-5 0.689 0.79 0.814 0.869 0.871 0.893 0.863 0.905 0.632 0.755 0.805 0.864 0.868 0.867 0.855 0.911 0.43 0.561 0.6 0.687 0.681 0.695 0.67 0.736

SERA-NP-10 0.828 0.836 0.893 0.905 0.914 0.892 0.902 0.886 0.788 0.813 0.882 0.891 0.916 0.87 0.898 0.88 0.58 0.627 0.701 0.716 0.756 0.69 0.724 0.701
SERA-KW-5 0.645 0.767 0.807 0.911 0.868 0.91 0.9 0.894 0.551 0.737 0.8 0.887 0.867 0.878 0.887 0.859 0.388 0.539 0.606 0.721 0.685 0.692 0.707 0.685
SERA-KW-10 0.824 0.829 0.901 0.905 0.894 0.903 0.883 0.912 0.798 0.813 0.877 0.886 0.876 0.883 0.873 0.893 0.591 0.609 0.709 0.716 0.684 0.696 0.695 0.725
SERA-DIS-5 0.626 0.75 0.821 0.909 0.852 0.891 0.899 0.892 0.53 0.726 0.813 0.883 0.851 0.864 0.885 0.886 0.366 0.53 0.615 0.716 0.654 0.674 0.71 0.722
SERA-DIS-10 0.779 0.814 0.886 0.9 0.892 0.905 0.895 0.891 0.745 0.815 0.866 0.881 0.885 0.892 0.883 0.889 0.539 0.609 0.682 0.717 0.698 0.714 0.704 0.713

SERA-DIS-NP-5 0.678 0.774 0.79 0.871 0.877 0.871 0.864 0.909 0.624 0.746 0.797 0.856 0.858 0.851 0.861 0.893 0.429 0.549 0.588 0.689 0.673 0.672 0.676 0.711
SERA-DIS-NP-10 0.775 0.811 0.866 0.903 0.908 0.892 0.896 0.899 0.748 0.788 0.861 0.896 0.9 0.881 0.888 0.879 0.539 0.59 0.676 0.724 0.728 0.708 0.721 0.701
SERA-DIS-KW-5 0.611 0.754 0.817 0.904 0.849 0.888 0.895 0.896 0.505 0.738 0.81 0.88 0.852 0.869 0.876 0.862 0.354 0.543 0.607 0.71 0.658 0.675 0.699 0.691
SERA-DIS-KW-10 0.773 0.818 0.886 0.894 0.89 0.901 0.896 0.912 0.734 0.816 0.868 0.878 0.882 0.89 0.884 0.886 0.531 0.609 0.677 0.706 0.693 0.708 0.707 0.718

wikiSERA-5 0.667 0.765 0.836 0.904 0.886 0.917 0.92 0.908 0.581 0.741 0.812 0.878 0.877 0.917 0.908 0.904 0.406 0.545 0.616 0.706 0.688 0.752 0.731 0.731

wikiSERA-10 0.806 0.834 0.889 0.909 0.899 0.906 0.894 0.896 0.765 0.807 0.85 0.894 0.878 0.881 0.875 0.893 0.565 0.623 0.671 0.73 0.693 0.702 0.693 0.711
wikiSERA-DIS-5 0.67 0.761 0.827 0.897 0.87 0.901 0.916 0.907 0.606 0.744 0.802 0.883 0.857 0.898 0.894 0.891 0.425 0.547 0.601 0.712 0.66 0.719 0.723 0.722
wikiSERA-DIS-10 0.772 0.817 0.873 0.913 0.893 0.904 0.913 0.908 0.744 0.801 0.834 0.905 0.884 0.896 0.888 0.895 0.54 0.607 0.659 0.742 0.707 0.716 0.714 0.716

Table A.9: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2008/AQUAINT-2 dataset using the reference summary A2, A3, A4
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.649 0.763 0.823 0.908 0.88 0.912 0.913 0.876 0.549 0.727 0.818 0.89 0.881 0.886 0.908 0.874 0.383 0.532 0.627 0.726 0.695 0.708 0.732 0.698
SERA-10 0.823 0.835 0.899 0.907 0.902 0.907 0.887 0.878 0.791 0.822 0.882 0.893 0.891 0.887 0.871 0.88 0.594 0.62 0.706 0.723 0.706 0.704 0.693 0.696

SERA-NP-5 0.689 0.802 0.816 0.881 0.888 0.894 0.866 0.895 0.63 0.801 0.828 0.875 0.879 0.871 0.863 0.896 0.437 0.605 0.633 0.695 0.693 0.706 0.681 0.717
SERA-NP-10 0.818 0.847 0.9 0.905 0.917 0.896 0.908 0.886 0.778 0.828 0.897 0.891 0.912 0.879 0.905 0.884 0.566 0.628 0.721 0.711 0.745 0.704 0.739 0.704
SERA-KW-5 0.647 0.763 0.824 0.91 0.877 0.909 0.909 0.894 0.539 0.735 0.823 0.889 0.878 0.883 0.901 0.86 0.379 0.542 0.63 0.723 0.702 0.704 0.721 0.692
SERA-KW-10 0.818 0.835 0.901 0.906 0.899 0.905 0.89 0.908 0.791 0.823 0.884 0.893 0.885 0.888 0.88 0.898 0.587 0.62 0.711 0.724 0.701 0.704 0.705 0.735

SERA-DIS-5 0.636 0.753 0.821 0.904 0.866 0.892 0.905 0.895 0.532 0.728 0.818 0.888 0.87 0.866 0.885 0.888 0.374 0.532 0.624 0.724 0.676 0.683 0.713 0.712
SERA-DIS-10 0.78 0.823 0.887 0.9 0.897 0.905 0.9 0.899 0.733 0.819 0.871 0.89 0.897 0.896 0.888 0.898 0.538 0.614 0.684 0.728 0.711 0.716 0.711 0.722

SERA-DIS-NP-5 0.676 0.785 0.798 0.885 0.89 0.88 0.875 0.9 0.62 0.785 0.817 0.868 0.882 0.859 0.864 0.878 0.428 0.578 0.61 0.69 0.701 0.685 0.679 0.706
SERA-DIS-NP-10 0.767 0.828 0.874 0.908 0.915 0.897 0.907 0.895 0.738 0.823 0.881 0.901 0.897 0.889 0.905 0.879 0.534 0.62 0.702 0.727 0.721 0.718 0.735 0.695
SERA-DIS-KW-5 0.626 0.757 0.822 0.902 0.862 0.889 0.903 0.9 0.527 0.738 0.813 0.885 0.862 0.871 0.885 0.874 0.37 0.543 0.614 0.721 0.664 0.682 0.712 0.704
SERA-DIS-KW-10 0.775 0.829 0.888 0.895 0.893 0.902 0.902 0.912 0.731 0.831 0.872 0.884 0.893 0.892 0.888 0.895 0.532 0.627 0.682 0.718 0.704 0.711 0.709 0.73

wikiSERA-5 0.668 0.76 0.849 0.903 0.893 0.916 0.928 0.91 0.587 0.732 0.827 0.885 0.893 0.912 0.924 0.903 0.408 0.537 0.635 0.711 0.719 0.741 0.76 0.73

wikiSERA-10 0.812 0.842 0.895 0.911 0.906 0.91 0.902 0.898 0.783 0.832 0.872 0.892 0.885 0.897 0.89 0.897 0.578 0.635 0.695 0.723 0.707 0.717 0.708 0.714
wikiSERA-DIS-5 0.675 0.751 0.841 0.901 0.885 0.907 0.924 0.913 0.618 0.738 0.825 0.885 0.885 0.904 0.91 0.893 0.438 0.54 0.631 0.709 0.7 0.734 0.746 0.721
wikiSERA-DIS-10 0.78 0.828 0.887 0.915 0.903 0.91 0.918 0.912 0.753 0.826 0.854 0.909 0.893 0.899 0.896 0.904 0.549 0.623 0.673 0.75 0.718 0.727 0.724 0.722
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Method
Pearson Spearman Kendall

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.65 0.763 0.823 0.907 0.878 0.911 0.912 0.876 0.549 0.727 0.819 0.889 0.877 0.883 0.906 0.873 0.386 0.532 0.627 0.726 0.69 0.705 0.732 0.698
SERA-10 0.824 0.835 0.899 0.906 0.902 0.906 0.887 0.878 0.789 0.82 0.88 0.89 0.888 0.883 0.868 0.878 0.591 0.618 0.706 0.721 0.703 0.702 0.693 0.694

SERA-NP-5 0.69 0.802 0.816 0.881 0.887 0.893 0.866 0.894 0.63 0.8 0.826 0.874 0.876 0.868 0.86 0.895 0.434 0.602 0.63 0.695 0.691 0.704 0.678 0.717
SERA-NP-10 0.819 0.847 0.9 0.905 0.916 0.895 0.908 0.886 0.777 0.827 0.895 0.887 0.91 0.875 0.903 0.882 0.566 0.628 0.721 0.709 0.742 0.702 0.737 0.704
SERA-KW-5 0.648 0.763 0.824 0.909 0.876 0.908 0.908 0.893 0.539 0.735 0.824 0.887 0.874 0.88 0.898 0.857 0.381 0.542 0.63 0.723 0.697 0.702 0.721 0.692
SERA-KW-10 0.819 0.835 0.9 0.906 0.898 0.904 0.89 0.907 0.788 0.821 0.882 0.89 0.882 0.884 0.878 0.895 0.584 0.617 0.708 0.722 0.699 0.702 0.702 0.733

SERA-DIS-5 0.637 0.753 0.821 0.904 0.865 0.891 0.905 0.895 0.532 0.727 0.817 0.887 0.867 0.863 0.882 0.886 0.374 0.532 0.624 0.724 0.673 0.681 0.711 0.712
SERA-DIS-10 0.78 0.823 0.887 0.899 0.896 0.904 0.9 0.899 0.731 0.817 0.87 0.887 0.895 0.893 0.885 0.895 0.535 0.612 0.684 0.728 0.708 0.714 0.708 0.719

SERA-DIS-NP-5 0.677 0.785 0.797 0.885 0.889 0.88 0.875 0.9 0.621 0.783 0.815 0.867 0.878 0.856 0.861 0.876 0.428 0.575 0.608 0.69 0.696 0.683 0.677 0.704
SERA-DIS-NP-10 0.768 0.828 0.874 0.908 0.914 0.896 0.907 0.894 0.738 0.822 0.879 0.898 0.895 0.886 0.903 0.876 0.534 0.62 0.702 0.724 0.718 0.715 0.733 0.693
SERA-DIS-KW-5 0.627 0.758 0.822 0.902 0.861 0.888 0.902 0.899 0.527 0.738 0.813 0.884 0.859 0.868 0.882 0.871 0.37 0.543 0.612 0.721 0.661 0.679 0.71 0.704
SERA-DIS-KW-10 0.775 0.829 0.888 0.895 0.893 0.901 0.901 0.911 0.73 0.829 0.87 0.881 0.89 0.889 0.885 0.892 0.532 0.625 0.682 0.718 0.701 0.708 0.707 0.728

wikiSERA-5 0.669 0.761 0.849 0.903 0.892 0.915 0.928 0.909 0.587 0.732 0.827 0.883 0.889 0.91 0.923 0.901 0.408 0.536 0.635 0.711 0.714 0.739 0.76 0.728

wikiSERA-10 0.812 0.842 0.895 0.91 0.905 0.909 0.901 0.897 0.779 0.83 0.87 0.89 0.883 0.894 0.888 0.894 0.576 0.633 0.695 0.723 0.704 0.715 0.708 0.711
wikiSERA-DIS-5 0.676 0.751 0.841 0.901 0.884 0.906 0.924 0.912 0.617 0.737 0.825 0.883 0.881 0.902 0.908 0.891 0.438 0.538 0.629 0.709 0.695 0.731 0.743 0.718
wikiSERA-DIS-10 0.78 0.828 0.886 0.914 0.902 0.909 0.918 0.912 0.751 0.824 0.852 0.906 0.89 0.897 0.894 0.901 0.546 0.62 0.671 0.75 0.716 0.724 0.722 0.719

Table A.10: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2008/AQUAINT-2 dataset using the reference summary A1, A2, A3, A4
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A.2.2 Correlation of SERA and wikiSERA with Responsiveness on TAC2008/AQUAINT-2

Pearson Spearman Kendall

Method TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.528 0.598 0.698 0.737 0.783 0.822 0.838 0.795 0.361 0.508 0.654 0.713 0.726 0.804 0.797 0.775 0.258 0.369 0.472 0.533 0.54 0.609 0.607 0.584
SERA-10 0.681 0.698 0.748 0.801 0.81 0.831 0.824 0.807 0.585 0.665 0.756 0.803 0.786 0.777 0.769 0.767 0.426 0.488 0.558 0.604 0.598 0.579 0.582 0.578

SERA-NP-5 0.558 0.674 0.631 0.771 0.794 0.788 0.747 0.757 0.429 0.579 0.615 0.739 0.753 0.752 0.732 0.735 0.303 0.414 0.437 0.548 0.568 0.559 0.548 0.545
SERA-NP-10 0.655 0.735 0.784 0.79 0.811 0.818 0.831 0.771 0.561 0.693 0.79 0.746 0.747 0.796 0.812 0.731 0.409 0.504 0.581 0.552 0.564 0.596 0.614 0.536
SERA-KW-5 0.534 0.599 0.719 0.752 0.783 0.813 0.836 0.797 0.378 0.517 0.695 0.713 0.727 0.797 0.804 0.725 0.268 0.376 0.505 0.526 0.535 0.607 0.613 0.536
SERA-KW-10 0.668 0.707 0.752 0.79 0.813 0.828 0.828 0.789 0.55 0.675 0.743 0.786 0.779 0.774 0.776 0.774 0.396 0.494 0.546 0.587 0.588 0.568 0.589 0.588
SERA-DIS-5 0.544 0.61 0.655 0.71 0.763 0.814 0.821 0.795 0.346 0.529 0.632 0.661 0.721 0.798 0.768 0.759 0.24 0.383 0.45 0.462 0.534 0.611 0.581 0.561
SERA-DIS-10 0.664 0.699 0.732 0.771 0.789 0.821 0.826 0.818 0.528 0.645 0.737 0.748 0.775 0.761 0.779 0.796 0.374 0.462 0.547 0.546 0.581 0.568 0.588 0.594

SERA-DIS-NP-5 0.532 0.664 0.647 0.77 0.762 0.786 0.76 0.706 0.409 0.582 0.649 0.742 0.715 0.756 0.749 0.666 0.269 0.411 0.448 0.533 0.529 0.554 0.554 0.497
SERA-DIS-NP-10 0.608 0.732 0.764 0.788 0.813 0.814 0.837 0.749 0.503 0.683 0.778 0.76 0.777 0.782 0.828 0.721 0.365 0.48 0.563 0.554 0.586 0.585 0.636 0.528
SERA-DIS-KW-5 0.543 0.615 0.675 0.724 0.761 0.8 0.816 0.799 0.369 0.53 0.647 0.684 0.693 0.792 0.77 0.743 0.259 0.385 0.467 0.493 0.508 0.601 0.585 0.54
SERA-DIS-KW-10 0.656 0.713 0.742 0.767 0.795 0.818 0.831 0.807 0.514 0.678 0.736 0.728 0.784 0.763 0.776 0.775 0.357 0.487 0.538 0.523 0.594 0.568 0.596 0.587

wikiSERA-5 0.553 0.587 0.726 0.747 0.766 0.798 0.866 0.83 0.422 0.475 0.688 0.732 0.75 0.764 0.829 0.797 0.292 0.326 0.496 0.529 0.553 0.576 0.647 0.611

wikiSERA-10 0.707 0.72 0.76 0.796 0.814 0.835 0.837 0.8 0.645 0.683 0.756 0.782 0.78 0.778 0.774 0.779 0.462 0.494 0.56 0.591 0.586 0.576 0.591 0.58
wikiSERA-DIS-5 0.565 0.548 0.721 0.735 0.77 0.801 0.844 0.821 0.445 0.448 0.677 0.71 0.747 0.794 0.79 0.765 0.315 0.312 0.488 0.502 0.554 0.605 0.602 0.565
wikiSERA-DIS-10 0.685 0.712 0.761 0.777 0.815 0.825 0.837 0.817 0.583 0.667 0.745 0.764 0.791 0.773 0.761 0.784 0.421 0.474 0.537 0.558 0.603 0.573 0.573 0.585

Table A.11: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/AQUAINT-2 dataset using the reference summary A1
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Pearson Spearman Kendall

Method TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.55 0.61 0.658 0.773 0.774 0.817 0.82 0.787 0.403 0.531 0.602 0.722 0.744 0.769 0.808 0.785 0.295 0.378 0.427 0.53 0.549 0.569 0.622 0.597
SERA-10 0.722 0.69 0.774 0.826 0.766 0.831 0.787 0.779 0.683 0.651 0.735 0.802 0.729 0.801 0.738 0.739 0.483 0.474 0.558 0.609 0.539 0.603 0.537 0.543

SERA-NP-5 0.551 0.668 0.688 0.732 0.753 0.752 0.746 0.841 0.434 0.63 0.655 0.687 0.697 0.7 0.702 0.846 0.321 0.451 0.468 0.495 0.503 0.505 0.506 0.666

SERA-NP-10 0.697 0.69 0.777 0.829 0.808 0.813 0.825 0.794 0.687 0.604 0.738 0.792 0.771 0.773 0.791 0.764 0.49 0.439 0.548 0.608 0.585 0.574 0.595 0.565
SERA-KW-5 0.543 0.611 0.641 0.776 0.769 0.798 0.816 0.829 0.393 0.534 0.581 0.725 0.739 0.759 0.787 0.773 0.283 0.382 0.407 0.536 0.548 0.556 0.606 0.584
SERA-KW-10 0.722 0.685 0.777 0.827 0.765 0.832 0.796 0.856 0.686 0.627 0.742 0.804 0.729 0.808 0.75 0.805 0.49 0.451 0.569 0.61 0.54 0.607 0.558 0.61
SERA-DIS-5 0.507 0.587 0.67 0.776 0.758 0.802 0.806 0.776 0.367 0.497 0.624 0.705 0.707 0.786 0.786 0.765 0.258 0.363 0.446 0.512 0.512 0.588 0.591 0.57
SERA-DIS-10 0.668 0.645 0.775 0.803 0.754 0.819 0.798 0.771 0.614 0.599 0.744 0.766 0.726 0.805 0.765 0.737 0.436 0.436 0.571 0.563 0.53 0.605 0.563 0.533

SERA-DIS-NP-5 0.546 0.658 0.677 0.733 0.731 0.712 0.751 0.816 0.43 0.614 0.646 0.67 0.652 0.658 0.733 0.791 0.308 0.449 0.478 0.482 0.471 0.462 0.542 0.624
SERA-DIS-NP-10 0.628 0.677 0.754 0.817 0.786 0.794 0.806 0.787 0.553 0.599 0.706 0.777 0.723 0.747 0.769 0.736 0.392 0.428 0.51 0.588 0.531 0.554 0.573 0.547
SERA-DIS-KW-5 0.489 0.59 0.645 0.764 0.75 0.787 0.809 0.804 0.335 0.507 0.597 0.709 0.703 0.777 0.774 0.754 0.241 0.365 0.417 0.51 0.506 0.574 0.575 0.563
SERA-DIS-KW-10 0.668 0.651 0.772 0.797 0.754 0.812 0.809 0.827 0.623 0.605 0.743 0.76 0.724 0.807 0.774 0.766 0.444 0.439 0.562 0.553 0.527 0.605 0.564 0.574

wikiSERA-5 0.528 0.608 0.722 0.827 0.761 0.827 0.836 0.827 0.411 0.547 0.648 0.794 0.723 0.788 0.809 0.824 0.287 0.395 0.463 0.606 0.524 0.601 0.625 0.629

wikiSERA-10 0.69 0.702 0.766 0.844 0.78 0.832 0.797 0.815 0.638 0.665 0.705 0.816 0.749 0.795 0.737 0.791 0.438 0.487 0.535 0.631 0.554 0.603 0.533 0.59
wikiSERA-DIS-5 0.541 0.601 0.711 0.817 0.754 0.805 0.825 0.818 0.46 0.549 0.624 0.76 0.709 0.801 0.797 0.802 0.317 0.393 0.448 0.567 0.524 0.604 0.598 0.615
wikiSERA-DIS-10 0.634 0.666 0.759 0.847 0.765 0.803 0.81 0.808 0.567 0.634 0.698 0.811 0.733 0.785 0.762 0.79 0.387 0.457 0.528 0.613 0.54 0.582 0.567 0.597

Table A.12: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/AQUAINT-2 dataset using the reference summary A2
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Pearson Spearman Kendall

Method TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.49 0.597 0.655 0.792 0.707 0.833 0.828 0.814 0.318 0.549 0.634 0.758 0.648 0.765 0.785 0.784 0.219 0.395 0.438 0.574 0.461 0.574 0.593 0.59
SERA-10 0.688 0.69 0.779 0.816 0.816 0.827 0.808 0.782 0.621 0.648 0.757 0.797 0.787 0.78 0.761 0.752 0.447 0.457 0.563 0.594 0.595 0.58 0.567 0.553

SERA-NP-5 0.545 0.606 0.677 0.725 0.76 0.818 0.742 0.795 0.442 0.598 0.671 0.725 0.723 0.797 0.718 0.799 0.3 0.436 0.463 0.534 0.534 0.591 0.518 0.608

SERA-NP-10 0.675 0.665 0.771 0.814 0.842 0.81 0.818 0.792 0.596 0.632 0.753 0.788 0.811 0.788 0.81 0.766 0.43 0.452 0.558 0.588 0.615 0.583 0.604 0.564
SERA-KW-5 0.473 0.593 0.654 0.797 0.711 0.825 0.822 0.816 0.301 0.55 0.636 0.759 0.658 0.758 0.771 0.743 0.211 0.395 0.438 0.574 0.463 0.56 0.576 0.559
SERA-KW-10 0.678 0.682 0.781 0.812 0.808 0.815 0.81 0.822 0.605 0.634 0.754 0.785 0.784 0.766 0.774 0.782 0.443 0.442 0.564 0.578 0.59 0.563 0.581 0.588
SERA-DIS-5 0.485 0.572 0.677 0.795 0.668 0.781 0.816 0.826 0.318 0.547 0.641 0.769 0.608 0.733 0.769 0.803 0.217 0.382 0.451 0.576 0.426 0.54 0.565 0.605
SERA-DIS-10 0.61 0.669 0.764 0.804 0.801 0.813 0.818 0.813 0.538 0.637 0.735 0.783 0.774 0.768 0.779 0.773 0.376 0.437 0.539 0.585 0.568 0.57 0.577 0.57

SERA-DIS-NP-5 0.527 0.561 0.64 0.732 0.742 0.804 0.743 0.768 0.437 0.55 0.652 0.731 0.7 0.785 0.737 0.751 0.298 0.396 0.448 0.544 0.489 0.58 0.529 0.539
SERA-DIS-NP-10 0.643 0.61 0.734 0.79 0.832 0.816 0.817 0.793 0.604 0.603 0.709 0.779 0.793 0.795 0.802 0.758 0.427 0.423 0.501 0.581 0.592 0.588 0.601 0.569
SERA-DIS-KW-5 0.483 0.572 0.677 0.795 0.673 0.768 0.808 0.811 0.347 0.559 0.647 0.762 0.621 0.715 0.755 0.762 0.243 0.396 0.448 0.564 0.429 0.525 0.547 0.574
SERA-DIS-KW-10 0.603 0.666 0.76 0.795 0.799 0.802 0.811 0.815 0.521 0.633 0.74 0.782 0.778 0.744 0.774 0.769 0.356 0.437 0.541 0.576 0.569 0.547 0.57 0.581

wikiSERA-5 0.496 0.566 0.663 0.753 0.761 0.819 0.85 0.845 0.366 0.525 0.626 0.712 0.719 0.792 0.801 0.832 0.251 0.369 0.45 0.513 0.525 0.593 0.61 0.635

wikiSERA-10 0.685 0.644 0.781 0.826 0.811 0.829 0.82 0.815 0.605 0.59 0.739 0.809 0.775 0.778 0.782 0.803 0.427 0.416 0.546 0.611 0.584 0.581 0.586 0.607
wikiSERA-DIS-5 0.524 0.543 0.644 0.762 0.706 0.801 0.843 0.828 0.445 0.523 0.601 0.755 0.655 0.781 0.804 0.786 0.308 0.357 0.428 0.547 0.462 0.586 0.601 0.598
wikiSERA-DIS-10 0.641 0.608 0.748 0.812 0.785 0.829 0.839 0.84 0.589 0.561 0.69 0.816 0.764 0.8 0.81 0.804 0.423 0.391 0.505 0.614 0.559 0.608 0.621 0.613

Table A.13: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/AQUAINT-2 dataset using the reference summary A3
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Pearson Spearman Kendall

Method TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.501 0.645 0.71 0.826 0.793 0.82 0.802 0.783 0.323 0.554 0.675 0.764 0.762 0.767 0.774 0.778 0.226 0.405 0.489 0.579 0.574 0.57 0.575 0.571
SERA-10 0.7 0.704 0.813 0.78 0.835 0.837 0.797 0.808 0.612 0.64 0.776 0.75 0.795 0.783 0.75 0.791 0.437 0.47 0.572 0.558 0.608 0.578 0.545 0.588

SERA-NP-5 0.533 0.617 0.65 0.779 0.769 0.79 0.803 0.824 0.404 0.522 0.643 0.732 0.691 0.716 0.732 0.795 0.283 0.376 0.447 0.546 0.512 0.529 0.544 0.595
SERA-NP-10 0.709 0.739 0.775 0.794 0.809 0.817 0.854 0.811 0.653 0.683 0.73 0.764 0.786 0.752 0.8 0.796 0.471 0.497 0.538 0.564 0.587 0.548 0.604 0.599
SERA-KW-5 0.496 0.647 0.717 0.82 0.797 0.826 0.795 0.777 0.331 0.558 0.673 0.752 0.764 0.775 0.766 0.728 0.235 0.413 0.494 0.572 0.571 0.578 0.568 0.533
SERA-KW-10 0.697 0.708 0.817 0.777 0.83 0.831 0.804 0.842 0.613 0.637 0.773 0.738 0.794 0.776 0.765 0.789 0.441 0.469 0.57 0.545 0.606 0.573 0.559 0.609

SERA-DIS-5 0.448 0.618 0.684 0.799 0.799 0.784 0.807 0.798 0.235 0.546 0.659 0.759 0.775 0.727 0.774 0.778 0.181 0.399 0.478 0.567 0.58 0.529 0.564 0.564
SERA-DIS-10 0.634 0.699 0.777 0.773 0.834 0.825 0.811 0.809 0.538 0.643 0.743 0.741 0.797 0.78 0.793 0.792 0.386 0.466 0.545 0.57 0.605 0.577 0.587 0.586

SERA-DIS-NP-5 0.529 0.583 0.612 0.768 0.81 0.75 0.79 0.822 0.384 0.484 0.603 0.732 0.763 0.685 0.736 0.757 0.258 0.36 0.421 0.546 0.573 0.484 0.534 0.562
SERA-DIS-NP-10 0.62 0.691 0.729 0.775 0.813 0.806 0.823 0.837 0.55 0.602 0.714 0.741 0.781 0.775 0.772 0.784 0.383 0.431 0.525 0.537 0.588 0.564 0.57 0.592
SERA-DIS-KW-5 0.415 0.628 0.702 0.794 0.798 0.796 0.802 0.795 0.2 0.562 0.668 0.753 0.769 0.748 0.75 0.742 0.157 0.414 0.48 0.565 0.565 0.548 0.539 0.539
SERA-DIS-KW-10 0.624 0.709 0.791 0.763 0.833 0.83 0.812 0.833 0.532 0.641 0.761 0.733 0.797 0.793 0.788 0.768 0.38 0.462 0.561 0.556 0.598 0.587 0.585 0.577

wikiSERA-5 0.565 0.663 0.731 0.809 0.819 0.796 0.831 0.787 0.399 0.617 0.696 0.724 0.765 0.801 0.812 0.753 0.281 0.452 0.514 0.548 0.577 0.608 0.614 0.559
wikiSERA-10 0.672 0.723 0.803 0.78 0.83 0.831 0.852 0.819 0.597 0.667 0.75 0.74 0.788 0.776 0.828 0.777 0.418 0.49 0.557 0.545 0.608 0.571 0.639 0.574

wikiSERA-DIS-5 0.545 0.668 0.705 0.766 0.801 0.765 0.828 0.767 0.363 0.647 0.673 0.696 0.749 0.762 0.773 0.7 0.25 0.464 0.49 0.516 0.557 0.553 0.565 0.502
wikiSERA-DIS-10 0.646 0.717 0.77 0.776 0.82 0.816 0.854 0.808 0.55 0.668 0.721 0.732 0.763 0.796 0.814 0.773 0.389 0.483 0.527 0.537 0.582 0.585 0.611 0.57

Table A.14: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/AQUAINT-2 dataset using the reference summary A4
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Pearson Spearman Kendall

Method TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.537 0.631 0.692 0.797 0.781 0.846 0.848 0.82 0.383 0.555 0.674 0.78 0.744 0.809 0.813 0.805 0.272 0.393 0.488 0.59 0.537 0.609 0.617 0.611
SERA-10 0.713 0.713 0.781 0.826 0.813 0.843 0.82 0.807 0.641 0.687 0.756 0.805 0.794 0.791 0.771 0.768 0.464 0.497 0.558 0.608 0.602 0.579 0.579 0.568

SERA-NP-5 0.567 0.689 0.694 0.77 0.795 0.817 0.772 0.825 0.467 0.659 0.709 0.77 0.757 0.772 0.758 0.821 0.335 0.485 0.507 0.58 0.561 0.576 0.561 0.629

SERA-NP-10 0.691 0.723 0.796 0.83 0.838 0.826 0.842 0.803 0.624 0.69 0.784 0.815 0.811 0.787 0.825 0.767 0.448 0.509 0.59 0.616 0.621 0.581 0.63 0.567
SERA-KW-5 0.532 0.629 0.693 0.805 0.778 0.836 0.846 0.832 0.386 0.558 0.679 0.797 0.742 0.799 0.812 0.78 0.272 0.407 0.491 0.607 0.541 0.602 0.621 0.587
SERA-KW-10 0.706 0.711 0.784 0.822 0.811 0.839 0.826 0.833 0.63 0.697 0.756 0.8 0.792 0.792 0.776 0.802 0.45 0.507 0.559 0.603 0.602 0.577 0.582 0.61
SERA-DIS-5 0.528 0.624 0.7 0.799 0.762 0.822 0.839 0.826 0.365 0.557 0.673 0.776 0.729 0.803 0.798 0.805 0.256 0.404 0.479 0.58 0.524 0.613 0.596 0.601
SERA-DIS-10 0.664 0.694 0.777 0.812 0.799 0.835 0.831 0.821 0.596 0.669 0.755 0.799 0.782 0.802 0.798 0.792 0.426 0.483 0.563 0.61 0.581 0.605 0.597 0.593

SERA-DIS-NP-5 0.553 0.668 0.692 0.782 0.778 0.804 0.788 0.809 0.434 0.653 0.72 0.77 0.729 0.768 0.765 0.78 0.301 0.477 0.517 0.579 0.534 0.569 0.573 0.584
SERA-DIS-NP-10 0.642 0.702 0.773 0.825 0.832 0.824 0.842 0.8 0.567 0.682 0.759 0.812 0.787 0.784 0.834 0.767 0.398 0.492 0.561 0.611 0.59 0.581 0.636 0.571
SERA-DIS-KW-5 0.521 0.627 0.698 0.8 0.76 0.81 0.836 0.827 0.379 0.574 0.684 0.771 0.722 0.791 0.797 0.772 0.269 0.414 0.484 0.575 0.519 0.597 0.597 0.579
SERA-DIS-KW-10 0.661 0.7 0.777 0.806 0.8 0.828 0.834 0.83 0.594 0.684 0.756 0.791 0.776 0.796 0.801 0.786 0.422 0.49 0.562 0.593 0.575 0.597 0.603 0.596

wikiSERA-5 0.543 0.619 0.729 0.807 0.784 0.842 0.872 0.855 0.443 0.565 0.683 0.79 0.756 0.818 0.851 0.846 0.308 0.411 0.503 0.597 0.559 0.628 0.658 0.654

wikiSERA-10 0.71 0.71 0.787 0.838 0.816 0.847 0.833 0.825 0.658 0.693 0.752 0.826 0.783 0.81 0.786 0.81 0.463 0.499 0.558 0.628 0.601 0.607 0.597 0.611
wikiSERA-DIS-5 0.56 0.603 0.726 0.813 0.775 0.831 0.863 0.85 0.472 0.562 0.686 0.8 0.746 0.825 0.842 0.827 0.338 0.408 0.504 0.61 0.552 0.637 0.65 0.635
wikiSERA-DIS-10 0.673 0.687 0.782 0.837 0.805 0.837 0.846 0.84 0.614 0.664 0.745 0.828 0.784 0.81 0.791 0.815 0.439 0.48 0.561 0.631 0.59 0.608 0.601 0.622

Table A.15: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/AQUAINT-2 dataset using the reference summary A1, A2, A3
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Pearson Spearman Kendall

Method TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.539 0.646 0.711 0.808 0.807 0.841 0.842 0.811 0.367 0.56 0.693 0.767 0.777 0.803 0.823 0.799 0.271 0.402 0.511 0.571 0.576 0.603 0.616 0.601
SERA-10 0.719 0.713 0.793 0.814 0.819 0.845 0.816 0.815 0.657 0.675 0.777 0.794 0.779 0.794 0.766 0.775 0.47 0.491 0.582 0.599 0.593 0.59 0.567 0.571

SERA-NP-5 0.566 0.697 0.688 0.788 0.797 0.8 0.796 0.832 0.438 0.635 0.685 0.773 0.739 0.745 0.755 0.813 0.314 0.462 0.489 0.583 0.55 0.552 0.556 0.625

SERA-NP-10 0.704 0.743 0.799 0.821 0.827 0.826 0.852 0.809 0.648 0.688 0.783 0.782 0.801 0.77 0.829 0.787 0.467 0.5 0.582 0.586 0.611 0.568 0.634 0.587
SERA-KW-5 0.538 0.647 0.715 0.813 0.803 0.836 0.838 0.816 0.355 0.582 0.694 0.781 0.775 0.794 0.809 0.762 0.257 0.429 0.508 0.588 0.583 0.588 0.615 0.566
SERA-KW-10 0.714 0.716 0.797 0.811 0.817 0.842 0.824 0.842 0.663 0.664 0.777 0.786 0.776 0.793 0.776 0.796 0.478 0.479 0.58 0.59 0.592 0.584 0.578 0.61
SERA-DIS-5 0.515 0.639 0.699 0.799 0.803 0.824 0.839 0.816 0.335 0.571 0.69 0.76 0.771 0.796 0.81 0.796 0.239 0.408 0.499 0.57 0.577 0.6 0.605 0.588
SERA-DIS-10 0.672 0.701 0.78 0.801 0.81 0.837 0.828 0.82 0.604 0.666 0.764 0.777 0.785 0.796 0.793 0.794 0.427 0.484 0.567 0.588 0.586 0.59 0.588 0.588

SERA-DIS-NP-5 0.554 0.678 0.681 0.794 0.798 0.779 0.807 0.822 0.419 0.613 0.689 0.761 0.75 0.719 0.779 0.771 0.298 0.439 0.499 0.575 0.559 0.529 0.579 0.581
SERA-DIS-NP-10 0.636 0.723 0.772 0.82 0.825 0.819 0.844 0.817 0.559 0.661 0.759 0.787 0.791 0.767 0.812 0.783 0.393 0.471 0.557 0.589 0.597 0.564 0.616 0.588
SERA-DIS-KW-5 0.497 0.645 0.704 0.797 0.798 0.821 0.838 0.822 0.298 0.579 0.693 0.769 0.763 0.804 0.8 0.77 0.216 0.42 0.502 0.577 0.568 0.599 0.597 0.573
SERA-DIS-KW-10 0.668 0.711 0.788 0.795 0.809 0.835 0.834 0.836 0.596 0.675 0.769 0.771 0.782 0.8 0.797 0.789 0.423 0.487 0.574 0.577 0.592 0.596 0.602 0.597

wikiSERA-5 0.567 0.654 0.755 0.821 0.809 0.835 0.867 0.838 0.429 0.6 0.713 0.79 0.773 0.817 0.853 0.826 0.307 0.431 0.527 0.599 0.574 0.621 0.664 0.63

wikiSERA-10 0.706 0.733 0.793 0.822 0.823 0.847 0.845 0.824 0.652 0.715 0.769 0.791 0.781 0.798 0.799 0.798 0.462 0.516 0.565 0.591 0.601 0.599 0.604 0.598
wikiSERA-DIS-5 0.571 0.645 0.742 0.811 0.809 0.819 0.856 0.828 0.443 0.585 0.701 0.782 0.783 0.82 0.825 0.8 0.315 0.421 0.511 0.59 0.589 0.626 0.624 0.602
wikiSERA-DIS-10 0.677 0.722 0.788 0.827 0.819 0.829 0.851 0.827 0.619 0.697 0.775 0.814 0.783 0.806 0.8 0.798 0.436 0.496 0.587 0.616 0.599 0.603 0.608 0.598

Table A.16: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/AQUAINT-2 dataset using the reference summary A1, A2, A4
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Pearson Spearman Kendall

Method TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.526 0.641 0.697 0.821 0.781 0.843 0.835 0.814 0.369 0.572 0.68 0.786 0.761 0.793 0.816 0.8 0.269 0.414 0.488 0.6 0.563 0.593 0.615 0.599
SERA-10 0.72 0.709 0.8 0.819 0.82 0.842 0.808 0.803 0.664 0.655 0.77 0.789 0.782 0.796 0.766 0.774 0.476 0.479 0.575 0.59 0.585 0.584 0.57 0.563

SERA-NP-5 0.56 0.668 0.694 0.767 0.785 0.81 0.788 0.842 0.45 0.615 0.685 0.757 0.753 0.762 0.76 0.841 0.319 0.441 0.485 0.563 0.549 0.562 0.558 0.646

SERA-NP-10 0.711 0.718 0.792 0.828 0.833 0.824 0.845 0.812 0.66 0.665 0.775 0.806 0.814 0.76 0.823 0.793 0.474 0.492 0.579 0.61 0.617 0.562 0.627 0.594
SERA-KW-5 0.518 0.639 0.693 0.821 0.779 0.837 0.829 0.821 0.365 0.577 0.676 0.777 0.759 0.786 0.799 0.764 0.264 0.423 0.484 0.587 0.562 0.577 0.602 0.565
SERA-KW-10 0.716 0.706 0.804 0.816 0.816 0.837 0.815 0.85 0.67 0.662 0.77 0.78 0.779 0.793 0.78 0.804 0.482 0.482 0.574 0.576 0.584 0.579 0.584 0.61
SERA-DIS-5 0.495 0.616 0.709 0.815 0.77 0.811 0.831 0.825 0.34 0.556 0.688 0.776 0.742 0.77 0.8 0.81 0.238 0.404 0.489 0.587 0.533 0.567 0.594 0.609
SERA-DIS-10 0.652 0.687 0.786 0.808 0.813 0.832 0.821 0.815 0.595 0.661 0.757 0.782 0.785 0.797 0.792 0.788 0.418 0.478 0.559 0.587 0.579 0.591 0.585 0.576

SERA-DIS-NP-5 0.554 0.644 0.671 0.77 0.786 0.785 0.793 0.835 0.44 0.588 0.677 0.747 0.734 0.751 0.767 0.8 0.305 0.421 0.487 0.561 0.537 0.547 0.569 0.597
SERA-DIS-NP-10 0.648 0.683 0.759 0.814 0.828 0.819 0.832 0.825 0.599 0.628 0.744 0.8 0.795 0.78 0.802 0.785 0.419 0.455 0.547 0.607 0.599 0.574 0.602 0.577
SERA-DIS-KW-5 0.477 0.62 0.708 0.81 0.766 0.807 0.827 0.822 0.311 0.57 0.694 0.777 0.744 0.775 0.79 0.768 0.226 0.416 0.487 0.582 0.542 0.571 0.577 0.569
SERA-DIS-KW-10 0.648 0.692 0.79 0.8 0.81 0.827 0.824 0.837 0.585 0.663 0.765 0.779 0.783 0.792 0.796 0.78 0.408 0.482 0.561 0.576 0.575 0.586 0.589 0.58

wikiSERA-5 0.55 0.638 0.732 0.818 0.8 0.836 0.857 0.838 0.414 0.596 0.689 0.772 0.772 0.827 0.832 0.822 0.286 0.432 0.501 0.581 0.562 0.636 0.627 0.625

wikiSERA-10 0.697 0.708 0.795 0.831 0.82 0.842 0.835 0.831 0.627 0.659 0.748 0.802 0.781 0.795 0.794 0.809 0.442 0.49 0.553 0.605 0.588 0.593 0.597 0.61
wikiSERA-DIS-5 0.556 0.63 0.719 0.807 0.779 0.815 0.853 0.829 0.444 0.601 0.671 0.784 0.741 0.809 0.821 0.795 0.311 0.434 0.487 0.588 0.545 0.615 0.622 0.599
wikiSERA-DIS-10 0.658 0.686 0.776 0.829 0.804 0.829 0.847 0.834 0.604 0.652 0.728 0.809 0.772 0.805 0.806 0.802 0.428 0.479 0.541 0.61 0.58 0.601 0.608 0.604

Table A.17: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/AQUAINT-2 dataset using the reference summary A2, A3, A4
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Pearson Spearman Kendall

Method TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

TAC2008
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.532 0.644 0.705 0.814 0.791 0.847 0.845 0.818 0.373 0.574 0.692 0.787 0.765 0.799 0.821 0.804 0.264 0.419 0.507 0.604 0.564 0.601 0.624 0.606
SERA-10 0.716 0.716 0.794 0.819 0.824 0.844 0.817 0.812 0.653 0.674 0.775 0.796 0.792 0.792 0.766 0.784 0.47 0.488 0.575 0.598 0.6 0.578 0.572 0.576

SERA-NP-5 0.566 0.689 0.693 0.781 0.798 0.815 0.792 0.833 0.452 0.661 0.708 0.771 0.756 0.762 0.77 0.827 0.326 0.484 0.506 0.582 0.558 0.566 0.569 0.635

SERA-NP-10 0.703 0.734 0.798 0.827 0.835 0.827 0.849 0.81 0.646 0.689 0.787 0.8 0.816 0.772 0.827 0.785 0.462 0.505 0.586 0.601 0.621 0.568 0.632 0.582
SERA-KW-5 0.527 0.643 0.708 0.818 0.789 0.841 0.841 0.823 0.36 0.581 0.702 0.787 0.767 0.796 0.809 0.763 0.26 0.426 0.518 0.605 0.564 0.6 0.611 0.566
SERA-KW-10 0.71 0.715 0.797 0.815 0.821 0.84 0.823 0.84 0.651 0.675 0.778 0.793 0.789 0.788 0.779 0.799 0.465 0.487 0.579 0.59 0.598 0.569 0.579 0.611
SERA-DIS-5 0.513 0.632 0.708 0.809 0.781 0.821 0.84 0.828 0.344 0.572 0.696 0.786 0.758 0.788 0.8 0.809 0.241 0.412 0.507 0.596 0.556 0.592 0.593 0.605
SERA-DIS-10 0.662 0.701 0.783 0.808 0.814 0.836 0.829 0.824 0.583 0.67 0.761 0.795 0.795 0.8 0.797 0.796 0.414 0.48 0.565 0.603 0.596 0.596 0.592 0.592

SERA-DIS-NP-5 0.555 0.666 0.682 0.789 0.795 0.799 0.805 0.824 0.438 0.626 0.699 0.767 0.754 0.753 0.774 0.777 0.308 0.448 0.5 0.581 0.557 0.555 0.573 0.588
SERA-DIS-NP-10 0.644 0.708 0.77 0.821 0.833 0.824 0.843 0.817 0.588 0.672 0.764 0.801 0.79 0.784 0.819 0.778 0.415 0.485 0.564 0.603 0.593 0.578 0.616 0.576
SERA-DIS-KW-5 0.5 0.636 0.712 0.808 0.778 0.815 0.837 0.826 0.337 0.581 0.702 0.787 0.748 0.788 0.801 0.779 0.241 0.422 0.503 0.599 0.55 0.592 0.597 0.579
SERA-DIS-KW-10 0.657 0.708 0.788 0.801 0.812 0.831 0.832 0.835 0.583 0.682 0.766 0.784 0.791 0.797 0.804 0.789 0.412 0.493 0.57 0.588 0.586 0.596 0.601 0.594

wikiSERA-5 0.557 0.642 0.742 0.814 0.803 0.839 0.869 0.846 0.424 0.592 0.703 0.78 0.779 0.822 0.854 0.833 0.293 0.431 0.519 0.591 0.581 0.632 0.663 0.641

wikiSERA-10 0.707 0.72 0.795 0.829 0.825 0.846 0.843 0.828 0.646 0.693 0.767 0.801 0.783 0.804 0.8 0.804 0.457 0.502 0.569 0.603 0.599 0.603 0.604 0.605
wikiSERA-DIS-5 0.565 0.629 0.733 0.809 0.792 0.824 0.861 0.839 0.456 0.599 0.7 0.785 0.764 0.814 0.836 0.806 0.323 0.434 0.517 0.595 0.57 0.619 0.641 0.608
wikiSERA-DIS-10 0.673 0.704 0.786 0.83 0.814 0.835 0.852 0.837 0.614 0.687 0.746 0.816 0.782 0.808 0.806 0.807 0.434 0.502 0.556 0.619 0.586 0.605 0.61 0.608

Table A.18: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/AQUAINT-2 dataset using the reference summary A1, A2, A3, A4
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A.2.3 Correlation of SERA and wikiSERA with Pyramid on TAC2009/AQUAINT-2
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.849 0.904 0.895 0.863 0.837 0.843 0.857 0.866 0.697 0.818 0.833 0.8 0.812 0.832 0.833 0.796 0.524 0.635 0.664 0.622 0.64 0.668 0.657 0.624
SERA-10 0.771 0.9 0.887 0.851 0.822 0.858 0.845 0.859 0.674 0.818 0.856 0.852 0.778 0.871 0.818 0.797 0.521 0.646 0.691 0.688 0.599 0.699 0.648 0.626

SERA-NP-5 0.875 0.917 0.914 0.855 0.826 0.795 0.848 0.85 0.766 0.81 0.852 0.779 0.752 0.776 0.824 0.793 0.58 0.632 0.689 0.619 0.582 0.609 0.665 0.617
SERA-NP-10 0.8 0.905 0.888 0.821 0.844 0.842 0.843 0.859 0.745 0.808 0.836 0.81 0.82 0.827 0.838 0.816 0.571 0.635 0.679 0.647 0.641 0.657 0.673 0.639
SERA-KW-5 0.838 0.896 0.886 0.86 0.828 0.839 0.857 0.861 0.68 0.808 0.826 0.792 0.807 0.817 0.832 0.791 0.503 0.626 0.657 0.614 0.635 0.652 0.659 0.62
SERA-KW-10 0.771 0.899 0.88 0.852 0.814 0.853 0.844 0.856 0.672 0.811 0.848 0.855 0.776 0.862 0.815 0.792 0.518 0.634 0.685 0.683 0.601 0.691 0.64 0.629
SERA-DIS-5 0.87 0.924 0.933 0.906 0.895 0.901 0.893 0.908 0.696 0.809 0.865 0.804 0.825 0.847 0.842 0.836 0.511 0.626 0.692 0.636 0.654 0.681 0.67 0.665
SERA-DIS-10 0.894 0.935 0.946 0.924 0.91 0.927 0.913 0.932 0.719 0.813 0.878 0.835 0.834 0.906 0.847 0.852 0.554 0.642 0.712 0.668 0.661 0.754 0.678 0.678

SERA-DIS-NP-5 0.89 0.932 0.939 0.908 0.879 0.882 0.898 0.903 0.745 0.828 0.832 0.827 0.728 0.806 0.858 0.848 0.57 0.643 0.662 0.67 0.557 0.628 0.7 0.689
SERA-DIS-NP-10 0.906 0.935 0.944 0.912 0.911 0.92 0.924 0.94 0.774 0.823 0.844 0.81 0.809 0.819 0.873 0.873 0.62 0.647 0.689 0.647 0.635 0.643 0.721 0.702

SERA-DIS-KW-5 0.863 0.918 0.93 0.903 0.886 0.894 0.893 0.899 0.664 0.8 0.853 0.794 0.83 0.82 0.85 0.825 0.486 0.615 0.682 0.624 0.665 0.652 0.675 0.654
SERA-DIS-KW-10 0.891 0.936 0.94 0.923 0.902 0.927 0.911 0.929 0.708 0.826 0.866 0.833 0.819 0.888 0.842 0.835 0.53 0.653 0.694 0.666 0.654 0.732 0.667 0.666

wikiSERA-5 0.84 0.905 0.904 0.853 0.823 0.834 0.856 0.861 0.719 0.808 0.862 0.802 0.745 0.847 0.827 0.803 0.551 0.636 0.704 0.626 0.576 0.68 0.675 0.62
wikiSERA-10 0.788 0.905 0.884 0.838 0.813 0.842 0.843 0.855 0.667 0.817 0.858 0.859 0.762 0.874 0.811 0.812 0.514 0.64 0.698 0.695 0.587 0.699 0.637 0.644

wikiSERA-DIS-5 0.882 0.922 0.944 0.911 0.881 0.891 0.891 0.906 0.753 0.808 0.862 0.83 0.779 0.864 0.862 0.859 0.576 0.639 0.704 0.666 0.609 0.69 0.696 0.682
wikiSERA-DIS-10 0.908 0.939 0.949 0.924 0.897 0.92 0.916 0.932 0.746 0.832 0.894 0.884 0.808 0.886 0.863 0.862 0.584 0.651 0.743 0.719 0.635 0.728 0.697 0.688
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.848 0.904 0.894 0.863 0.837 0.842 0.857 0.866 0.7 0.818 0.835 0.802 0.816 0.832 0.833 0.797 0.527 0.635 0.668 0.627 0.643 0.668 0.66 0.627
SERA-10 0.77 0.9 0.887 0.851 0.821 0.858 0.845 0.858 0.676 0.821 0.859 0.852 0.781 0.872 0.819 0.799 0.522 0.651 0.696 0.688 0.599 0.702 0.647 0.631

SERA-NP-5 0.874 0.917 0.914 0.855 0.825 0.795 0.848 0.85 0.768 0.812 0.855 0.781 0.756 0.775 0.825 0.793 0.582 0.635 0.69 0.621 0.584 0.607 0.67 0.616
SERA-NP-10 0.799 0.903 0.888 0.821 0.844 0.842 0.843 0.858 0.748 0.813 0.84 0.812 0.824 0.828 0.838 0.816 0.574 0.641 0.681 0.649 0.643 0.657 0.673 0.641
SERA-KW-5 0.838 0.896 0.886 0.86 0.827 0.838 0.857 0.86 0.683 0.809 0.828 0.793 0.811 0.817 0.833 0.792 0.505 0.626 0.66 0.619 0.637 0.651 0.661 0.622
SERA-KW-10 0.77 0.899 0.88 0.851 0.813 0.852 0.844 0.855 0.674 0.814 0.851 0.855 0.778 0.863 0.816 0.793 0.518 0.639 0.69 0.684 0.601 0.694 0.64 0.633
SERA-DIS-5 0.87 0.924 0.933 0.906 0.894 0.9 0.893 0.908 0.698 0.809 0.867 0.806 0.828 0.848 0.844 0.838 0.513 0.624 0.695 0.641 0.659 0.683 0.668 0.667
SERA-DIS-10 0.894 0.935 0.946 0.924 0.909 0.927 0.913 0.931 0.721 0.814 0.879 0.836 0.836 0.906 0.848 0.855 0.555 0.644 0.715 0.667 0.66 0.756 0.678 0.683

SERA-DIS-NP-5 0.89 0.932 0.939 0.908 0.878 0.881 0.898 0.903 0.747 0.829 0.835 0.829 0.731 0.807 0.86 0.849 0.572 0.647 0.666 0.672 0.559 0.632 0.705 0.694
SERA-DIS-NP-10 0.905 0.934 0.944 0.911 0.91 0.92 0.923 0.94 0.776 0.821 0.847 0.812 0.813 0.82 0.874 0.874 0.621 0.653 0.694 0.649 0.637 0.644 0.723 0.703

SERA-DIS-KW-5 0.862 0.918 0.93 0.903 0.885 0.894 0.893 0.899 0.667 0.801 0.855 0.796 0.834 0.821 0.85 0.827 0.488 0.613 0.686 0.629 0.67 0.652 0.674 0.656
SERA-DIS-KW-10 0.89 0.936 0.939 0.922 0.902 0.927 0.911 0.929 0.709 0.828 0.867 0.834 0.822 0.889 0.842 0.838 0.531 0.655 0.698 0.666 0.653 0.734 0.667 0.671

wikiSERA-5 0.84 0.905 0.904 0.852 0.822 0.833 0.855 0.861 0.72 0.807 0.864 0.804 0.747 0.848 0.829 0.805 0.552 0.634 0.706 0.629 0.579 0.68 0.676 0.623
wikiSERA-10 0.787 0.905 0.883 0.837 0.812 0.841 0.843 0.855 0.669 0.82 0.861 0.86 0.765 0.876 0.812 0.813 0.516 0.645 0.703 0.697 0.587 0.701 0.637 0.649

wikiSERA-DIS-5 0.882 0.921 0.944 0.911 0.88 0.891 0.891 0.906 0.755 0.806 0.864 0.833 0.78 0.866 0.864 0.861 0.577 0.639 0.707 0.668 0.612 0.694 0.699 0.686
wikiSERA-DIS-10 0.907 0.939 0.949 0.924 0.897 0.92 0.916 0.932 0.748 0.834 0.896 0.885 0.81 0.886 0.865 0.864 0.586 0.653 0.748 0.721 0.634 0.732 0.699 0.692

Table A.19: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2009/AQUAINT-2 dataset using the reference summary A1
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.889 0.886 0.901 0.88 0.876 0.834 0.862 0.874 0.746 0.766 0.792 0.805 0.882 0.746 0.746 0.775 0.587 0.585 0.629 0.638 0.732 0.564 0.578 0.6
SERA-10 0.845 0.905 0.879 0.865 0.858 0.868 0.873 0.888 0.805 0.822 0.802 0.83 0.846 0.85 0.802 0.809 0.639 0.651 0.649 0.662 0.671 0.681 0.634 0.644

SERA-NP-5 0.877 0.883 0.91 0.867 0.85 0.86 0.851 0.863 0.744 0.757 0.804 0.756 0.829 0.818 0.791 0.78 0.578 0.596 0.643 0.588 0.651 0.641 0.624 0.604
SERA-NP-10 0.85 0.881 0.886 0.866 0.856 0.862 0.869 0.882 0.796 0.809 0.808 0.8 0.821 0.847 0.813 0.829 0.619 0.626 0.646 0.627 0.648 0.666 0.64 0.655

SERA-KW-5 0.883 0.879 0.895 0.878 0.867 0.83 0.848 0.871 0.74 0.761 0.781 0.798 0.873 0.741 0.735 0.752 0.579 0.58 0.624 0.633 0.724 0.562 0.567 0.58
SERA-KW-10 0.837 0.905 0.879 0.865 0.852 0.864 0.868 0.887 0.776 0.815 0.792 0.828 0.831 0.841 0.784 0.812 0.604 0.642 0.636 0.655 0.656 0.668 0.607 0.644
SERA-DIS-5 0.893 0.893 0.928 0.924 0.917 0.884 0.894 0.89 0.698 0.757 0.783 0.825 0.869 0.732 0.765 0.734 0.538 0.561 0.616 0.666 0.72 0.55 0.599 0.566
SERA-DIS-10 0.927 0.928 0.929 0.937 0.93 0.925 0.915 0.926 0.779 0.811 0.793 0.845 0.857 0.829 0.787 0.814 0.619 0.627 0.634 0.674 0.696 0.654 0.613 0.642

SERA-DIS-NP-5 0.89 0.888 0.93 0.91 0.908 0.906 0.889 0.893 0.708 0.732 0.807 0.746 0.832 0.811 0.762 0.755 0.547 0.561 0.644 0.585 0.658 0.636 0.581 0.582
SERA-DIS-NP-10 0.916 0.92 0.939 0.93 0.923 0.919 0.921 0.917 0.737 0.797 0.794 0.79 0.832 0.814 0.8 0.81 0.572 0.615 0.638 0.616 0.658 0.631 0.636 0.635
SERA-DIS-KW-5 0.891 0.885 0.925 0.919 0.909 0.882 0.883 0.885 0.724 0.736 0.772 0.818 0.862 0.721 0.742 0.719 0.554 0.542 0.603 0.665 0.706 0.539 0.566 0.558
SERA-DIS-KW-10 0.914 0.926 0.927 0.933 0.923 0.92 0.907 0.915 0.753 0.805 0.78 0.83 0.863 0.815 0.761 0.792 0.595 0.622 0.624 0.663 0.702 0.64 0.589 0.626

wikiSERA-5 0.874 0.891 0.906 0.887 0.863 0.828 0.841 0.862 0.724 0.779 0.813 0.808 0.84 0.751 0.726 0.769 0.557 0.594 0.663 0.642 0.694 0.568 0.556 0.591
wikiSERA-10 0.843 0.905 0.872 0.864 0.849 0.85 0.866 0.892 0.796 0.802 0.786 0.833 0.823 0.822 0.796 0.838 0.625 0.623 0.625 0.666 0.644 0.643 0.621 0.672

wikiSERA-DIS-5 0.898 0.899 0.933 0.925 0.901 0.887 0.885 0.886 0.703 0.775 0.78 0.796 0.806 0.773 0.723 0.748 0.537 0.594 0.62 0.63 0.646 0.595 0.547 0.566
wikiSERA-DIS-10 0.923 0.923 0.927 0.931 0.921 0.918 0.909 0.926 0.794 0.79 0.778 0.819 0.827 0.805 0.76 0.817 0.634 0.614 0.612 0.648 0.65 0.622 0.582 0.651
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.889 0.886 0.901 0.879 0.875 0.833 0.862 0.874 0.749 0.769 0.795 0.807 0.884 0.747 0.749 0.778 0.59 0.587 0.634 0.641 0.734 0.566 0.58 0.602
SERA-10 0.844 0.905 0.878 0.864 0.858 0.868 0.873 0.888 0.807 0.825 0.805 0.831 0.848 0.852 0.802 0.809 0.641 0.653 0.652 0.665 0.674 0.683 0.636 0.646

SERA-NP-5 0.877 0.883 0.91 0.866 0.85 0.859 0.851 0.863 0.747 0.759 0.809 0.758 0.832 0.817 0.792 0.781 0.58 0.597 0.648 0.591 0.656 0.641 0.624 0.604
SERA-NP-10 0.85 0.881 0.886 0.866 0.855 0.861 0.868 0.882 0.798 0.808 0.812 0.8 0.822 0.848 0.813 0.829 0.621 0.631 0.651 0.626 0.648 0.666 0.64 0.655

SERA-KW-5 0.883 0.88 0.895 0.877 0.867 0.829 0.848 0.871 0.744 0.765 0.784 0.8 0.875 0.743 0.738 0.754 0.581 0.582 0.629 0.635 0.726 0.565 0.569 0.582
SERA-KW-10 0.836 0.905 0.879 0.865 0.851 0.863 0.868 0.887 0.777 0.819 0.795 0.829 0.833 0.843 0.785 0.813 0.606 0.644 0.638 0.657 0.658 0.67 0.61 0.647
SERA-DIS-5 0.893 0.894 0.929 0.924 0.917 0.884 0.894 0.89 0.701 0.761 0.785 0.827 0.872 0.733 0.768 0.736 0.54 0.563 0.621 0.668 0.722 0.552 0.601 0.569
SERA-DIS-10 0.927 0.928 0.929 0.937 0.93 0.925 0.915 0.926 0.782 0.814 0.795 0.846 0.86 0.831 0.789 0.815 0.621 0.629 0.636 0.676 0.698 0.656 0.616 0.641

SERA-DIS-NP-5 0.89 0.888 0.93 0.91 0.908 0.905 0.889 0.893 0.71 0.735 0.81 0.747 0.835 0.811 0.763 0.756 0.55 0.563 0.649 0.587 0.663 0.636 0.581 0.585
SERA-DIS-NP-10 0.916 0.925 0.939 0.93 0.923 0.919 0.921 0.918 0.74 0.804 0.798 0.791 0.834 0.815 0.799 0.811 0.574 0.616 0.643 0.616 0.657 0.631 0.636 0.635
SERA-DIS-KW-5 0.891 0.885 0.926 0.92 0.909 0.882 0.883 0.886 0.727 0.74 0.774 0.82 0.866 0.722 0.745 0.721 0.556 0.544 0.608 0.667 0.709 0.542 0.568 0.56
SERA-DIS-KW-10 0.914 0.926 0.927 0.933 0.923 0.92 0.907 0.916 0.755 0.808 0.782 0.832 0.866 0.817 0.763 0.793 0.597 0.624 0.626 0.666 0.705 0.643 0.591 0.625

wikiSERA-5 0.874 0.892 0.906 0.887 0.863 0.827 0.841 0.862 0.727 0.781 0.815 0.81 0.844 0.753 0.728 0.771 0.559 0.596 0.666 0.644 0.697 0.57 0.558 0.593
wikiSERA-10 0.843 0.905 0.872 0.864 0.849 0.849 0.865 0.892 0.798 0.804 0.789 0.834 0.824 0.824 0.796 0.838 0.627 0.625 0.628 0.668 0.644 0.645 0.62 0.672

wikiSERA-DIS-5 0.898 0.9 0.934 0.925 0.901 0.887 0.884 0.886 0.707 0.777 0.782 0.797 0.808 0.774 0.725 0.75 0.539 0.596 0.625 0.632 0.648 0.597 0.55 0.567
wikiSERA-DIS-10 0.923 0.924 0.927 0.931 0.921 0.918 0.909 0.926 0.797 0.792 0.78 0.821 0.828 0.806 0.761 0.817 0.636 0.617 0.614 0.651 0.649 0.624 0.585 0.651

Table A.20: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2009/AQUAINT-2 dataset using the reference summary A2



A
.2.

S
E
R
A

an
d
w
ikiS

E
R
A

139

Av
er
ag
e
sc
or
e
w
it
h
3
re
fe
re
nc
e
su
m
m
ar
ie
s

Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.794 0.864 0.858 0.813 0.802 0.816 0.843 0.851 0.519 0.638 0.743 0.749 0.733 0.764 0.764 0.757 0.383 0.488 0.571 0.569 0.563 0.582 0.598 0.582
SERA-10 0.784 0.882 0.845 0.803 0.81 0.85 0.858 0.879 0.679 0.714 0.776 0.776 0.79 0.789 0.784 0.816 0.512 0.542 0.604 0.598 0.625 0.624 0.611 0.655

SERA-NP-5 0.806 0.852 0.881 0.841 0.842 0.808 0.832 0.846 0.599 0.625 0.775 0.749 0.771 0.787 0.798 0.746 0.437 0.465 0.622 0.581 0.597 0.618 0.643 0.574
SERA-NP-10 0.806 0.875 0.854 0.808 0.811 0.845 0.859 0.871 0.687 0.659 0.763 0.759 0.739 0.783 0.807 0.769 0.519 0.534 0.593 0.589 0.565 0.615 0.646 0.607
SERA-KW-5 0.803 0.856 0.858 0.821 0.802 0.821 0.845 0.851 0.537 0.623 0.765 0.748 0.726 0.759 0.763 0.765 0.396 0.466 0.591 0.57 0.555 0.569 0.601 0.584
SERA-KW-10 0.785 0.885 0.847 0.805 0.81 0.847 0.859 0.882 0.691 0.723 0.756 0.787 0.789 0.782 0.785 0.823 0.525 0.549 0.585 0.613 0.625 0.612 0.616 0.665
SERA-DIS-5 0.802 0.874 0.908 0.882 0.871 0.875 0.891 0.896 0.444 0.621 0.766 0.754 0.791 0.75 0.814 0.789 0.316 0.463 0.584 0.57 0.615 0.566 0.635 0.605
SERA-DIS-10 0.879 0.907 0.92 0.897 0.902 0.916 0.918 0.934 0.586 0.707 0.79 0.784 0.821 0.781 0.778 0.843 0.434 0.533 0.609 0.608 0.647 0.608 0.612 0.682

SERA-DIS-NP-5 0.849 0.871 0.924 0.898 0.905 0.867 0.888 0.888 0.528 0.601 0.778 0.735 0.797 0.756 0.804 0.756 0.397 0.448 0.623 0.566 0.626 0.577 0.627 0.584
SERA-DIS-NP-10 0.895 0.894 0.933 0.9 0.904 0.909 0.923 0.92 0.596 0.715 0.796 0.744 0.767 0.784 0.812 0.777 0.448 0.54 0.636 0.568 0.592 0.607 0.647 0.604
SERA-DIS-KW-5 0.811 0.872 0.908 0.887 0.869 0.869 0.892 0.899 0.457 0.609 0.763 0.736 0.77 0.711 0.799 0.787 0.333 0.449 0.584 0.554 0.593 0.534 0.623 0.603
SERA-DIS-KW-10 0.881 0.91 0.92 0.901 0.898 0.911 0.92 0.93 0.622 0.716 0.789 0.779 0.813 0.752 0.782 0.846 0.461 0.541 0.603 0.608 0.635 0.575 0.614 0.678

wikiSERA-5 0.79 0.854 0.863 0.822 0.816 0.809 0.849 0.846 0.519 0.597 0.81 0.773 0.717 0.702 0.799 0.724 0.376 0.436 0.646 0.592 0.549 0.529 0.629 0.558
wikiSERA-10 0.77 0.877 0.832 0.806 0.799 0.846 0.85 0.887 0.673 0.736 0.763 0.804 0.773 0.788 0.77 0.821 0.501 0.556 0.596 0.633 0.602 0.625 0.603 0.66

wikiSERA-DIS-5 0.833 0.865 0.912 0.883 0.875 0.876 0.894 0.884 0.521 0.581 0.783 0.746 0.766 0.726 0.834 0.724 0.367 0.434 0.612 0.576 0.587 0.552 0.665 0.549
wikiSERA-DIS-10 0.881 0.902 0.912 0.895 0.893 0.915 0.916 0.932 0.632 0.706 0.762 0.777 0.773 0.806 0.801 0.804 0.471 0.531 0.592 0.595 0.584 0.641 0.631 0.63
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.793 0.864 0.858 0.813 0.801 0.815 0.843 0.851 0.519 0.639 0.747 0.754 0.737 0.765 0.766 0.76 0.383 0.488 0.575 0.571 0.565 0.584 0.603 0.584
SERA-10 0.783 0.882 0.845 0.802 0.809 0.849 0.858 0.879 0.681 0.716 0.78 0.778 0.793 0.788 0.788 0.819 0.514 0.544 0.609 0.6 0.625 0.622 0.616 0.657

SERA-NP-5 0.805 0.852 0.88 0.84 0.842 0.807 0.832 0.846 0.599 0.626 0.777 0.751 0.774 0.787 0.797 0.748 0.438 0.466 0.624 0.583 0.599 0.618 0.64 0.576
SERA-NP-10 0.805 0.87 0.854 0.807 0.811 0.845 0.859 0.871 0.689 0.671 0.766 0.76 0.742 0.783 0.807 0.771 0.521 0.508 0.595 0.591 0.567 0.617 0.645 0.609
SERA-KW-5 0.803 0.857 0.858 0.82 0.801 0.82 0.844 0.85 0.536 0.624 0.768 0.753 0.73 0.76 0.764 0.769 0.397 0.467 0.595 0.572 0.557 0.57 0.606 0.587
SERA-KW-10 0.784 0.885 0.846 0.804 0.809 0.847 0.859 0.881 0.694 0.724 0.761 0.79 0.793 0.781 0.789 0.826 0.527 0.551 0.59 0.615 0.627 0.611 0.621 0.67
SERA-DIS-5 0.802 0.874 0.907 0.882 0.871 0.875 0.891 0.896 0.443 0.621 0.767 0.759 0.795 0.751 0.815 0.792 0.317 0.462 0.587 0.573 0.62 0.569 0.635 0.61
SERA-DIS-10 0.879 0.907 0.92 0.896 0.901 0.916 0.918 0.934 0.587 0.708 0.793 0.787 0.824 0.781 0.782 0.847 0.437 0.532 0.614 0.61 0.649 0.608 0.614 0.687

SERA-DIS-NP-5 0.849 0.871 0.924 0.897 0.905 0.867 0.887 0.888 0.526 0.6 0.778 0.737 0.799 0.757 0.804 0.758 0.395 0.449 0.621 0.571 0.628 0.577 0.624 0.586
SERA-DIS-NP-10 0.895 0.897 0.933 0.9 0.904 0.909 0.923 0.92 0.598 0.715 0.798 0.745 0.769 0.785 0.813 0.779 0.449 0.541 0.637 0.57 0.594 0.609 0.647 0.606
SERA-DIS-KW-5 0.811 0.873 0.907 0.887 0.869 0.868 0.892 0.899 0.456 0.609 0.764 0.741 0.774 0.712 0.799 0.789 0.334 0.449 0.587 0.556 0.598 0.534 0.622 0.608
SERA-DIS-KW-10 0.881 0.91 0.919 0.9 0.898 0.911 0.919 0.931 0.622 0.717 0.792 0.782 0.816 0.751 0.785 0.849 0.463 0.54 0.608 0.61 0.637 0.575 0.617 0.683

wikiSERA-5 0.79 0.854 0.863 0.821 0.815 0.809 0.848 0.846 0.519 0.596 0.813 0.776 0.721 0.704 0.799 0.728 0.377 0.434 0.647 0.594 0.553 0.528 0.628 0.562
wikiSERA-10 0.769 0.877 0.832 0.806 0.798 0.845 0.85 0.887 0.675 0.739 0.767 0.806 0.776 0.787 0.773 0.824 0.503 0.558 0.598 0.635 0.604 0.624 0.605 0.665

wikiSERA-DIS-5 0.833 0.865 0.912 0.882 0.875 0.876 0.894 0.884 0.52 0.581 0.785 0.75 0.77 0.729 0.835 0.727 0.365 0.434 0.613 0.578 0.589 0.554 0.664 0.554
wikiSERA-DIS-10 0.881 0.902 0.912 0.895 0.892 0.915 0.916 0.932 0.632 0.707 0.766 0.779 0.777 0.807 0.805 0.808 0.469 0.533 0.595 0.597 0.589 0.644 0.633 0.635

Table A.21: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2009/AQUAINT-2 dataset using the reference summary A3
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.861 0.885 0.906 0.871 0.874 0.859 0.892 0.908 0.714 0.748 0.798 0.797 0.811 0.762 0.746 0.776 0.548 0.576 0.641 0.624 0.635 0.59 0.57 0.609
SERA-10 0.829 0.904 0.891 0.854 0.87 0.881 0.914 0.931 0.775 0.773 0.821 0.808 0.795 0.826 0.827 0.816 0.6 0.602 0.657 0.639 0.632 0.655 0.66 0.645

SERA-NP-5 0.849 0.888 0.912 0.872 0.852 0.867 0.882 0.893 0.766 0.745 0.773 0.761 0.765 0.81 0.813 0.753 0.597 0.574 0.608 0.6 0.6 0.646 0.656 0.588
SERA-NP-10 0.836 0.891 0.89 0.859 0.845 0.868 0.892 0.913 0.776 0.746 0.812 0.785 0.715 0.801 0.796 0.809 0.603 0.577 0.649 0.616 0.541 0.633 0.626 0.646
SERA-KW-5 0.863 0.885 0.902 0.87 0.872 0.853 0.892 0.904 0.73 0.745 0.783 0.797 0.802 0.747 0.774 0.784 0.563 0.576 0.633 0.626 0.626 0.573 0.599 0.61
SERA-KW-10 0.828 0.908 0.89 0.854 0.868 0.877 0.916 0.93 0.762 0.78 0.819 0.805 0.783 0.82 0.83 0.817 0.588 0.613 0.657 0.639 0.618 0.658 0.656 0.646
SERA-DIS-5 0.89 0.895 0.931 0.912 0.927 0.896 0.916 0.928 0.696 0.731 0.775 0.76 0.826 0.766 0.705 0.798 0.533 0.565 0.608 0.581 0.659 0.592 0.541 0.623
SERA-DIS-10 0.907 0.911 0.939 0.918 0.936 0.924 0.927 0.928 0.717 0.733 0.799 0.778 0.807 0.822 0.784 0.823 0.552 0.558 0.638 0.595 0.644 0.655 0.609 0.643

SERA-DIS-NP-5 0.876 0.897 0.934 0.931 0.915 0.927 0.908 0.921 0.748 0.728 0.775 0.784 0.791 0.858 0.787 0.769 0.569 0.561 0.605 0.614 0.62 0.684 0.627 0.6
SERA-DIS-NP-10 0.897 0.902 0.945 0.937 0.923 0.937 0.921 0.928 0.746 0.741 0.811 0.823 0.753 0.852 0.789 0.799 0.574 0.577 0.647 0.654 0.591 0.688 0.624 0.643
SERA-DIS-KW-5 0.897 0.896 0.929 0.912 0.922 0.891 0.915 0.923 0.708 0.731 0.785 0.783 0.808 0.764 0.748 0.811 0.547 0.566 0.619 0.603 0.639 0.58 0.574 0.634
SERA-DIS-KW-10 0.906 0.91 0.939 0.918 0.93 0.919 0.927 0.923 0.721 0.733 0.805 0.784 0.791 0.821 0.786 0.827 0.555 0.557 0.638 0.601 0.624 0.655 0.615 0.655

wikiSERA-5 0.834 0.885 0.903 0.878 0.868 0.837 0.887 0.913 0.675 0.756 0.781 0.788 0.785 0.74 0.791 0.815 0.51 0.577 0.622 0.619 0.624 0.564 0.62 0.643
wikiSERA-10 0.848 0.911 0.885 0.862 0.869 0.883 0.913 0.932 0.746 0.771 0.803 0.813 0.802 0.822 0.812 0.803 0.572 0.603 0.64 0.649 0.639 0.649 0.639 0.633

wikiSERA-DIS-5 0.875 0.894 0.928 0.919 0.918 0.891 0.93 0.942 0.664 0.748 0.782 0.75 0.8 0.787 0.799 0.844 0.486 0.565 0.622 0.574 0.631 0.608 0.636 0.681
wikiSERA-DIS-10 0.916 0.915 0.942 0.934 0.936 0.931 0.939 0.933 0.748 0.76 0.808 0.804 0.818 0.824 0.821 0.831 0.572 0.578 0.639 0.636 0.646 0.651 0.654 0.684

Av
er
ag
e
sc
or
e
w
it
h
4
re
fe
re
nc
e
su
m
m
ar
ie
s

Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.861 0.885 0.906 0.871 0.874 0.858 0.892 0.908 0.716 0.748 0.802 0.801 0.816 0.761 0.747 0.78 0.548 0.579 0.645 0.626 0.64 0.587 0.573 0.614
SERA-10 0.828 0.904 0.891 0.854 0.869 0.881 0.914 0.931 0.776 0.775 0.824 0.809 0.799 0.828 0.829 0.818 0.602 0.604 0.66 0.641 0.634 0.657 0.665 0.648

SERA-NP-5 0.849 0.888 0.912 0.872 0.852 0.866 0.882 0.893 0.768 0.746 0.776 0.763 0.769 0.812 0.816 0.757 0.599 0.576 0.61 0.604 0.604 0.647 0.659 0.591
SERA-NP-10 0.836 0.895 0.889 0.858 0.845 0.868 0.892 0.912 0.78 0.753 0.815 0.786 0.718 0.801 0.797 0.81 0.605 0.59 0.651 0.618 0.546 0.631 0.625 0.648
SERA-KW-5 0.863 0.886 0.902 0.87 0.872 0.852 0.892 0.904 0.731 0.745 0.787 0.801 0.807 0.745 0.775 0.789 0.564 0.578 0.636 0.629 0.631 0.571 0.601 0.615
SERA-KW-10 0.827 0.908 0.89 0.854 0.868 0.876 0.916 0.93 0.764 0.781 0.822 0.805 0.787 0.821 0.832 0.819 0.591 0.615 0.66 0.641 0.62 0.661 0.661 0.651
SERA-DIS-5 0.89 0.896 0.931 0.912 0.927 0.896 0.915 0.928 0.697 0.731 0.778 0.764 0.83 0.766 0.705 0.802 0.531 0.567 0.612 0.586 0.664 0.594 0.539 0.628
SERA-DIS-10 0.907 0.911 0.939 0.918 0.935 0.924 0.927 0.928 0.719 0.736 0.801 0.78 0.811 0.823 0.785 0.825 0.554 0.563 0.64 0.595 0.647 0.657 0.612 0.648

SERA-DIS-NP-5 0.876 0.897 0.935 0.93 0.916 0.927 0.908 0.921 0.748 0.731 0.777 0.786 0.795 0.861 0.787 0.771 0.569 0.566 0.61 0.618 0.625 0.686 0.625 0.602
SERA-DIS-NP-10 0.896 0.911 0.945 0.937 0.923 0.937 0.921 0.928 0.749 0.748 0.813 0.825 0.756 0.852 0.789 0.8 0.577 0.592 0.649 0.656 0.593 0.686 0.624 0.645
SERA-DIS-KW-5 0.897 0.896 0.929 0.912 0.921 0.89 0.915 0.923 0.71 0.733 0.788 0.787 0.813 0.764 0.749 0.815 0.546 0.571 0.621 0.608 0.644 0.582 0.573 0.636
SERA-DIS-KW-10 0.906 0.911 0.939 0.918 0.93 0.918 0.927 0.923 0.722 0.735 0.807 0.786 0.795 0.822 0.788 0.829 0.557 0.562 0.64 0.602 0.626 0.657 0.62 0.658

wikiSERA-5 0.834 0.885 0.904 0.877 0.868 0.836 0.887 0.912 0.675 0.755 0.784 0.792 0.79 0.74 0.791 0.816 0.511 0.577 0.625 0.624 0.627 0.565 0.619 0.644
wikiSERA-10 0.848 0.911 0.885 0.861 0.868 0.882 0.913 0.932 0.748 0.773 0.807 0.814 0.805 0.824 0.815 0.805 0.574 0.608 0.642 0.652 0.642 0.652 0.642 0.635

wikiSERA-DIS-5 0.876 0.895 0.929 0.919 0.918 0.891 0.929 0.942 0.664 0.748 0.785 0.755 0.805 0.789 0.799 0.846 0.485 0.567 0.626 0.579 0.636 0.61 0.636 0.683
wikiSERA-DIS-10 0.916 0.915 0.942 0.934 0.936 0.931 0.939 0.933 0.75 0.761 0.811 0.806 0.823 0.826 0.823 0.834 0.574 0.581 0.641 0.639 0.651 0.653 0.656 0.684

Table A.22: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2009/AQUAINT-2 dataset using the reference summary A4
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.869 0.908 0.897 0.863 0.845 0.839 0.865 0.873 0.724 0.792 0.812 0.81 0.818 0.806 0.822 0.786 0.538 0.607 0.651 0.631 0.645 0.626 0.654 0.611
SERA-10 0.807 0.905 0.876 0.845 0.835 0.864 0.866 0.885 0.732 0.806 0.82 0.837 0.817 0.855 0.821 0.825 0.56 0.632 0.653 0.667 0.642 0.684 0.654 0.661

SERA-NP-5 0.879 0.901 0.913 0.862 0.846 0.831 0.854 0.865 0.757 0.767 0.845 0.795 0.805 0.812 0.822 0.799 0.582 0.577 0.683 0.631 0.63 0.638 0.668 0.626
SERA-NP-10 0.825 0.903 0.881 0.838 0.844 0.855 0.864 0.884 0.772 0.798 0.818 0.784 0.807 0.843 0.84 0.842 0.597 0.616 0.653 0.605 0.631 0.678 0.671 0.667
SERA-KW-5 0.867 0.902 0.893 0.864 0.84 0.839 0.861 0.871 0.719 0.774 0.813 0.799 0.817 0.8 0.815 0.779 0.541 0.588 0.654 0.625 0.642 0.616 0.641 0.607
SERA-KW-10 0.805 0.906 0.874 0.846 0.83 0.86 0.864 0.884 0.73 0.803 0.813 0.84 0.812 0.852 0.815 0.831 0.561 0.623 0.643 0.671 0.642 0.681 0.648 0.669
SERA-DIS-5 0.881 0.914 0.938 0.917 0.903 0.897 0.905 0.911 0.687 0.781 0.83 0.827 0.865 0.811 0.847 0.804 0.508 0.6 0.665 0.662 0.702 0.64 0.688 0.632
SERA-DIS-10 0.913 0.932 0.938 0.926 0.92 0.929 0.923 0.939 0.736 0.811 0.836 0.837 0.855 0.864 0.831 0.851 0.561 0.629 0.669 0.665 0.693 0.7 0.662 0.693

SERA-DIS-NP-5 0.9 0.911 0.942 0.914 0.908 0.895 0.901 0.907 0.751 0.77 0.838 0.8 0.813 0.82 0.828 0.829 0.58 0.58 0.678 0.627 0.636 0.653 0.661 0.651
SERA-DIS-NP-10 0.917 0.923 0.944 0.92 0.92 0.922 0.928 0.937 0.763 0.802 0.827 0.791 0.83 0.828 0.852 0.852 0.601 0.612 0.667 0.619 0.662 0.654 0.692 0.68
SERA-DIS-KW-5 0.88 0.91 0.937 0.916 0.898 0.893 0.902 0.908 0.686 0.768 0.828 0.821 0.847 0.779 0.842 0.795 0.503 0.589 0.669 0.657 0.682 0.609 0.682 0.623
SERA-DIS-KW-10 0.907 0.931 0.936 0.925 0.915 0.926 0.921 0.934 0.74 0.807 0.824 0.844 0.854 0.848 0.817 0.841 0.561 0.62 0.653 0.67 0.697 0.684 0.646 0.677

wikiSERA-5 0.86 0.908 0.903 0.864 0.841 0.832 0.858 0.867 0.685 0.786 0.841 0.805 0.789 0.796 0.806 0.782 0.519 0.615 0.684 0.631 0.626 0.605 0.641 0.605
wikiSERA-10 0.808 0.906 0.868 0.841 0.825 0.852 0.859 0.887 0.741 0.796 0.817 0.841 0.794 0.856 0.807 0.848 0.581 0.62 0.656 0.671 0.619 0.684 0.638 0.684

wikiSERA-DIS-5 0.894 0.915 0.944 0.918 0.896 0.895 0.904 0.906 0.701 0.784 0.838 0.822 0.818 0.832 0.846 0.799 0.525 0.604 0.688 0.653 0.665 0.646 0.685 0.613
wikiSERA-DIS-10 0.917 0.931 0.937 0.923 0.911 0.925 0.921 0.939 0.786 0.799 0.818 0.847 0.809 0.863 0.825 0.856 0.604 0.619 0.65 0.679 0.646 0.698 0.661 0.685
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.869 0.908 0.897 0.863 0.845 0.838 0.865 0.873 0.726 0.794 0.815 0.813 0.821 0.807 0.824 0.788 0.539 0.609 0.654 0.633 0.648 0.628 0.659 0.613
SERA-10 0.807 0.905 0.876 0.844 0.834 0.864 0.865 0.885 0.734 0.809 0.823 0.838 0.82 0.856 0.823 0.827 0.562 0.635 0.655 0.67 0.644 0.686 0.656 0.663

SERA-NP-5 0.879 0.901 0.913 0.862 0.846 0.83 0.853 0.864 0.759 0.768 0.848 0.797 0.809 0.811 0.823 0.801 0.584 0.578 0.688 0.633 0.635 0.637 0.667 0.628
SERA-NP-10 0.825 0.903 0.88 0.837 0.843 0.854 0.863 0.884 0.775 0.798 0.822 0.786 0.811 0.844 0.841 0.842 0.6 0.623 0.655 0.608 0.634 0.68 0.671 0.669
SERA-KW-5 0.866 0.902 0.893 0.863 0.839 0.838 0.861 0.871 0.721 0.776 0.816 0.802 0.821 0.801 0.817 0.782 0.542 0.59 0.657 0.627 0.644 0.618 0.644 0.609
SERA-KW-10 0.804 0.906 0.874 0.846 0.829 0.86 0.864 0.884 0.732 0.805 0.816 0.841 0.815 0.853 0.817 0.833 0.563 0.625 0.645 0.674 0.644 0.684 0.65 0.671
SERA-DIS-5 0.881 0.915 0.938 0.917 0.903 0.897 0.905 0.911 0.69 0.783 0.832 0.829 0.868 0.813 0.849 0.807 0.511 0.602 0.668 0.664 0.704 0.643 0.691 0.635
SERA-DIS-10 0.912 0.932 0.938 0.925 0.92 0.929 0.923 0.939 0.74 0.813 0.839 0.839 0.858 0.865 0.833 0.854 0.563 0.631 0.674 0.667 0.695 0.702 0.664 0.695

SERA-DIS-NP-5 0.9 0.911 0.942 0.914 0.907 0.895 0.9 0.907 0.752 0.771 0.84 0.801 0.816 0.821 0.829 0.83 0.581 0.581 0.682 0.629 0.639 0.655 0.66 0.653
SERA-DIS-NP-10 0.917 0.925 0.944 0.919 0.919 0.922 0.928 0.937 0.766 0.8 0.83 0.793 0.832 0.829 0.852 0.853 0.604 0.618 0.672 0.621 0.664 0.656 0.691 0.682
SERA-DIS-KW-5 0.88 0.911 0.937 0.916 0.897 0.892 0.902 0.908 0.689 0.771 0.83 0.824 0.852 0.78 0.844 0.797 0.505 0.591 0.672 0.659 0.687 0.612 0.682 0.625
SERA-DIS-KW-10 0.907 0.931 0.936 0.925 0.915 0.926 0.921 0.934 0.743 0.809 0.826 0.846 0.857 0.849 0.819 0.843 0.563 0.622 0.655 0.672 0.699 0.686 0.648 0.679

wikiSERA-5 0.859 0.908 0.903 0.864 0.84 0.832 0.857 0.866 0.686 0.786 0.844 0.808 0.792 0.798 0.807 0.785 0.52 0.616 0.688 0.633 0.628 0.607 0.644 0.608
wikiSERA-10 0.807 0.905 0.868 0.841 0.824 0.851 0.858 0.887 0.743 0.798 0.82 0.843 0.797 0.857 0.809 0.85 0.583 0.622 0.658 0.673 0.618 0.686 0.637 0.684

wikiSERA-DIS-5 0.894 0.915 0.944 0.918 0.896 0.894 0.903 0.906 0.704 0.785 0.84 0.824 0.821 0.834 0.848 0.801 0.526 0.606 0.691 0.655 0.67 0.648 0.687 0.614
wikiSERA-DIS-10 0.917 0.931 0.937 0.923 0.91 0.924 0.921 0.94 0.789 0.8 0.82 0.849 0.811 0.865 0.828 0.859 0.605 0.621 0.655 0.682 0.645 0.701 0.663 0.69

Table A.23: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2009/AQUAINT-2 dataset using the reference summary A1, A2, A3
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.884 0.909 0.914 0.879 0.869 0.855 0.881 0.896 0.766 0.795 0.82 0.817 0.856 0.807 0.806 0.805 0.593 0.617 0.661 0.643 0.69 0.631 0.631 0.635
SERA-10 0.821 0.912 0.891 0.861 0.856 0.874 0.886 0.908 0.768 0.822 0.828 0.844 0.813 0.847 0.835 0.826 0.598 0.655 0.662 0.679 0.644 0.677 0.664 0.655

SERA-NP-5 0.886 0.912 0.922 0.873 0.851 0.852 0.873 0.887 0.795 0.796 0.834 0.793 0.812 0.826 0.84 0.812 0.612 0.612 0.675 0.626 0.639 0.658 0.677 0.631
SERA-NP-10 0.835 0.904 0.893 0.854 0.854 0.864 0.876 0.898 0.803 0.798 0.841 0.814 0.81 0.841 0.839 0.844 0.627 0.623 0.681 0.641 0.64 0.674 0.665 0.666
SERA-KW-5 0.88 0.905 0.908 0.877 0.863 0.851 0.877 0.893 0.778 0.791 0.819 0.813 0.85 0.802 0.813 0.806 0.612 0.619 0.651 0.636 0.685 0.622 0.635 0.633
SERA-KW-10 0.818 0.913 0.888 0.862 0.851 0.869 0.885 0.906 0.758 0.828 0.818 0.838 0.809 0.846 0.833 0.823 0.586 0.659 0.654 0.671 0.639 0.675 0.659 0.652
SERA-DIS-5 0.903 0.917 0.946 0.926 0.922 0.905 0.917 0.925 0.758 0.787 0.836 0.823 0.874 0.802 0.802 0.823 0.585 0.608 0.669 0.651 0.723 0.632 0.644 0.657
SERA-DIS-10 0.92 0.932 0.944 0.933 0.933 0.932 0.931 0.941 0.769 0.816 0.826 0.842 0.853 0.865 0.826 0.842 0.607 0.644 0.665 0.671 0.698 0.702 0.659 0.674

SERA-DIS-NP-5 0.905 0.918 0.947 0.926 0.912 0.915 0.91 0.925 0.782 0.785 0.84 0.818 0.817 0.86 0.835 0.836 0.618 0.607 0.678 0.654 0.646 0.693 0.686 0.666
SERA-DIS-NP-10 0.916 0.928 0.949 0.934 0.925 0.933 0.931 0.941 0.777 0.815 0.835 0.831 0.833 0.845 0.853 0.858 0.611 0.642 0.681 0.665 0.666 0.686 0.693 0.702

SERA-DIS-KW-5 0.902 0.913 0.945 0.924 0.917 0.9 0.914 0.92 0.757 0.783 0.838 0.825 0.865 0.792 0.821 0.805 0.584 0.608 0.671 0.651 0.708 0.622 0.651 0.631
SERA-DIS-KW-10 0.914 0.931 0.942 0.931 0.928 0.928 0.928 0.936 0.767 0.815 0.822 0.841 0.847 0.851 0.819 0.841 0.597 0.64 0.653 0.663 0.696 0.689 0.647 0.675

wikiSERA-5 0.87 0.911 0.918 0.881 0.858 0.841 0.872 0.889 0.729 0.803 0.836 0.81 0.807 0.807 0.802 0.814 0.551 0.629 0.679 0.639 0.644 0.608 0.632 0.634
wikiSERA-10 0.833 0.915 0.885 0.86 0.849 0.864 0.882 0.908 0.758 0.813 0.824 0.844 0.806 0.856 0.826 0.832 0.589 0.642 0.662 0.679 0.639 0.684 0.655 0.663

wikiSERA-DIS-5 0.903 0.92 0.951 0.93 0.911 0.901 0.918 0.927 0.741 0.812 0.841 0.817 0.818 0.84 0.833 0.835 0.563 0.638 0.691 0.644 0.657 0.657 0.67 0.661
wikiSERA-DIS-10 0.926 0.934 0.946 0.937 0.927 0.931 0.934 0.944 0.794 0.823 0.832 0.853 0.83 0.867 0.836 0.871 0.622 0.654 0.677 0.686 0.667 0.705 0.667 0.704
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.883 0.909 0.914 0.879 0.869 0.854 0.881 0.896 0.769 0.797 0.824 0.819 0.86 0.807 0.808 0.808 0.595 0.619 0.664 0.645 0.692 0.631 0.633 0.638
SERA-10 0.821 0.912 0.89 0.861 0.856 0.873 0.886 0.907 0.77 0.825 0.831 0.845 0.817 0.849 0.836 0.828 0.6 0.66 0.664 0.682 0.646 0.679 0.666 0.657

SERA-NP-5 0.885 0.912 0.922 0.873 0.85 0.851 0.872 0.887 0.798 0.798 0.837 0.795 0.816 0.826 0.842 0.813 0.614 0.616 0.68 0.629 0.644 0.657 0.679 0.633
SERA-NP-10 0.834 0.904 0.892 0.854 0.854 0.863 0.876 0.898 0.807 0.795 0.844 0.816 0.813 0.842 0.84 0.844 0.629 0.625 0.683 0.643 0.643 0.676 0.665 0.668
SERA-KW-5 0.88 0.905 0.908 0.877 0.863 0.85 0.877 0.893 0.781 0.793 0.822 0.816 0.854 0.803 0.814 0.809 0.614 0.621 0.655 0.639 0.687 0.624 0.635 0.635
SERA-KW-10 0.817 0.913 0.888 0.861 0.85 0.869 0.885 0.906 0.76 0.831 0.821 0.84 0.813 0.848 0.835 0.824 0.588 0.664 0.656 0.674 0.641 0.678 0.662 0.654
SERA-DIS-5 0.902 0.917 0.946 0.926 0.922 0.905 0.917 0.925 0.761 0.789 0.838 0.825 0.879 0.803 0.804 0.826 0.587 0.61 0.672 0.656 0.728 0.635 0.647 0.659
SERA-DIS-10 0.919 0.932 0.944 0.933 0.933 0.932 0.931 0.941 0.772 0.818 0.828 0.844 0.855 0.867 0.828 0.844 0.609 0.647 0.667 0.674 0.698 0.705 0.662 0.676

SERA-DIS-NP-5 0.905 0.918 0.947 0.926 0.912 0.915 0.91 0.925 0.785 0.787 0.843 0.82 0.82 0.862 0.836 0.838 0.62 0.61 0.683 0.659 0.651 0.694 0.684 0.668
SERA-DIS-NP-10 0.916 0.93 0.949 0.933 0.925 0.932 0.931 0.941 0.781 0.815 0.838 0.833 0.836 0.846 0.853 0.859 0.613 0.645 0.686 0.667 0.668 0.687 0.692 0.702

SERA-DIS-KW-5 0.902 0.914 0.945 0.923 0.916 0.899 0.914 0.92 0.76 0.785 0.84 0.828 0.869 0.793 0.823 0.807 0.586 0.61 0.675 0.656 0.713 0.624 0.651 0.633
SERA-DIS-KW-10 0.913 0.932 0.942 0.931 0.928 0.928 0.928 0.936 0.77 0.817 0.824 0.843 0.85 0.852 0.82 0.843 0.6 0.643 0.655 0.666 0.695 0.691 0.649 0.677

wikiSERA-5 0.87 0.911 0.918 0.881 0.858 0.841 0.871 0.889 0.73 0.803 0.839 0.813 0.81 0.808 0.804 0.816 0.552 0.631 0.683 0.641 0.647 0.61 0.635 0.636
wikiSERA-10 0.832 0.915 0.885 0.86 0.849 0.863 0.881 0.908 0.76 0.816 0.828 0.845 0.808 0.858 0.828 0.833 0.591 0.644 0.665 0.681 0.639 0.686 0.655 0.663

wikiSERA-DIS-5 0.903 0.92 0.951 0.93 0.911 0.901 0.918 0.927 0.743 0.813 0.843 0.821 0.822 0.841 0.835 0.836 0.565 0.64 0.695 0.647 0.662 0.659 0.672 0.662
wikiSERA-DIS-10 0.926 0.934 0.946 0.937 0.926 0.931 0.934 0.944 0.797 0.824 0.835 0.854 0.832 0.869 0.837 0.873 0.625 0.656 0.679 0.688 0.667 0.707 0.67 0.706

Table A.24: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2009/AQUAINT-2 dataset using the reference summary A1, A2, A4
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.871 0.896 0.901 0.863 0.857 0.842 0.877 0.89 0.712 0.746 0.786 0.797 0.837 0.767 0.794 0.797 0.548 0.57 0.617 0.626 0.674 0.585 0.625 0.621
SERA-10 0.825 0.907 0.877 0.845 0.852 0.872 0.891 0.91 0.774 0.801 0.801 0.809 0.834 0.843 0.816 0.833 0.6 0.633 0.638 0.636 0.674 0.677 0.647 0.665

SERA-NP-5 0.867 0.888 0.912 0.868 0.855 0.852 0.867 0.884 0.745 0.741 0.815 0.783 0.813 0.814 0.823 0.809 0.573 0.56 0.658 0.618 0.639 0.641 0.657 0.633
SERA-NP-10 0.838 0.899 0.881 0.849 0.842 0.863 0.88 0.899 0.793 0.786 0.807 0.779 0.771 0.84 0.821 0.828 0.62 0.622 0.646 0.601 0.597 0.676 0.655 0.658
SERA-KW-5 0.871 0.893 0.898 0.864 0.854 0.84 0.873 0.889 0.724 0.744 0.78 0.796 0.826 0.755 0.797 0.792 0.559 0.562 0.614 0.622 0.659 0.576 0.624 0.618
SERA-KW-10 0.823 0.909 0.877 0.847 0.849 0.868 0.89 0.91 0.756 0.8 0.8 0.812 0.822 0.841 0.818 0.834 0.582 0.628 0.636 0.64 0.657 0.675 0.654 0.666
SERA-DIS-5 0.883 0.902 0.937 0.917 0.914 0.894 0.915 0.921 0.654 0.723 0.807 0.8 0.858 0.765 0.801 0.804 0.49 0.546 0.639 0.626 0.708 0.585 0.631 0.628
SERA-DIS-10 0.914 0.923 0.935 0.924 0.93 0.926 0.929 0.938 0.731 0.779 0.803 0.822 0.851 0.834 0.81 0.843 0.57 0.592 0.636 0.653 0.692 0.667 0.65 0.685

SERA-DIS-NP-5 0.894 0.897 0.941 0.922 0.918 0.908 0.906 0.915 0.704 0.728 0.812 0.788 0.824 0.83 0.795 0.811 0.534 0.541 0.65 0.622 0.648 0.658 0.631 0.639
SERA-DIS-NP-10 0.913 0.918 0.944 0.929 0.922 0.926 0.927 0.93 0.74 0.781 0.805 0.803 0.815 0.832 0.822 0.825 0.572 0.613 0.643 0.632 0.644 0.653 0.659 0.663
SERA-DIS-KW-5 0.887 0.9 0.936 0.917 0.909 0.89 0.912 0.918 0.674 0.714 0.81 0.809 0.846 0.744 0.797 0.793 0.504 0.537 0.646 0.634 0.689 0.564 0.628 0.618
SERA-DIS-KW-10 0.91 0.923 0.935 0.924 0.925 0.921 0.928 0.933 0.726 0.778 0.799 0.825 0.845 0.816 0.808 0.852 0.566 0.597 0.627 0.653 0.684 0.643 0.649 0.689

wikiSERA-5 0.854 0.895 0.904 0.87 0.856 0.83 0.869 0.887 0.664 0.767 0.819 0.797 0.802 0.739 0.792 0.803 0.499 0.587 0.653 0.622 0.639 0.556 0.616 0.628
wikiSERA-10 0.829 0.907 0.868 0.849 0.844 0.865 0.884 0.914 0.779 0.791 0.791 0.823 0.802 0.84 0.8 0.833 0.599 0.624 0.63 0.657 0.635 0.674 0.631 0.674

wikiSERA-DIS-5 0.886 0.903 0.94 0.919 0.908 0.892 0.917 0.922 0.662 0.758 0.807 0.785 0.823 0.78 0.81 0.801 0.492 0.574 0.65 0.612 0.662 0.605 0.634 0.622
wikiSERA-DIS-10 0.918 0.923 0.934 0.927 0.924 0.926 0.931 0.94 0.775 0.781 0.794 0.828 0.827 0.828 0.819 0.843 0.596 0.6 0.635 0.657 0.665 0.659 0.654 0.681
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.871 0.896 0.901 0.863 0.857 0.842 0.877 0.89 0.714 0.748 0.79 0.801 0.841 0.768 0.796 0.8 0.549 0.572 0.622 0.628 0.676 0.587 0.627 0.626
SERA-10 0.825 0.907 0.876 0.845 0.851 0.871 0.89 0.91 0.776 0.803 0.804 0.81 0.838 0.845 0.818 0.835 0.602 0.635 0.64 0.639 0.676 0.679 0.649 0.667

SERA-NP-5 0.867 0.888 0.911 0.868 0.855 0.851 0.866 0.883 0.747 0.743 0.818 0.785 0.817 0.814 0.824 0.811 0.575 0.56 0.663 0.62 0.644 0.641 0.656 0.635
SERA-NP-10 0.838 0.897 0.881 0.849 0.842 0.863 0.88 0.899 0.796 0.754 0.81 0.78 0.774 0.841 0.822 0.829 0.622 0.622 0.648 0.601 0.6 0.675 0.655 0.657
SERA-KW-5 0.871 0.893 0.897 0.864 0.854 0.84 0.872 0.888 0.726 0.746 0.783 0.8 0.83 0.756 0.799 0.796 0.56 0.564 0.619 0.625 0.661 0.578 0.626 0.621
SERA-KW-10 0.822 0.909 0.876 0.846 0.848 0.868 0.89 0.91 0.758 0.803 0.803 0.814 0.825 0.842 0.821 0.836 0.584 0.631 0.639 0.643 0.659 0.678 0.656 0.668
SERA-DIS-5 0.883 0.902 0.937 0.917 0.913 0.894 0.915 0.921 0.657 0.725 0.81 0.803 0.862 0.766 0.802 0.807 0.492 0.548 0.643 0.628 0.713 0.587 0.633 0.631
SERA-DIS-10 0.914 0.923 0.935 0.924 0.93 0.926 0.929 0.938 0.734 0.781 0.806 0.824 0.854 0.835 0.813 0.846 0.573 0.594 0.639 0.655 0.694 0.669 0.652 0.687

SERA-DIS-NP-5 0.894 0.897 0.941 0.922 0.918 0.908 0.906 0.915 0.705 0.73 0.813 0.789 0.828 0.83 0.795 0.813 0.536 0.543 0.652 0.626 0.653 0.66 0.631 0.639
SERA-DIS-NP-10 0.913 0.918 0.944 0.928 0.922 0.926 0.927 0.931 0.743 0.784 0.807 0.805 0.817 0.833 0.823 0.826 0.574 0.602 0.645 0.635 0.646 0.655 0.659 0.663
SERA-DIS-KW-5 0.887 0.9 0.936 0.917 0.908 0.889 0.912 0.918 0.676 0.716 0.812 0.812 0.851 0.745 0.799 0.796 0.507 0.539 0.649 0.636 0.694 0.566 0.631 0.62
SERA-DIS-KW-10 0.91 0.923 0.935 0.924 0.925 0.921 0.928 0.933 0.728 0.781 0.801 0.828 0.848 0.817 0.811 0.854 0.569 0.6 0.629 0.655 0.686 0.645 0.652 0.691

wikiSERA-5 0.853 0.895 0.904 0.87 0.855 0.83 0.869 0.887 0.665 0.767 0.823 0.8 0.806 0.741 0.793 0.806 0.5 0.59 0.657 0.624 0.641 0.558 0.618 0.63
wikiSERA-10 0.828 0.907 0.868 0.849 0.844 0.865 0.884 0.913 0.782 0.794 0.795 0.825 0.805 0.842 0.801 0.835 0.601 0.626 0.632 0.659 0.635 0.676 0.633 0.673

wikiSERA-DIS-5 0.886 0.903 0.94 0.919 0.908 0.892 0.916 0.921 0.664 0.759 0.809 0.789 0.828 0.782 0.812 0.804 0.494 0.577 0.653 0.614 0.666 0.608 0.636 0.624
wikiSERA-DIS-10 0.918 0.923 0.934 0.926 0.924 0.926 0.931 0.94 0.778 0.783 0.797 0.83 0.83 0.83 0.821 0.846 0.598 0.602 0.637 0.659 0.664 0.662 0.656 0.683

Table A.25: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2009/AQUAINT-2 dataset using the reference summary A2, A3, A4
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.874 0.907 0.904 0.867 0.855 0.847 0.877 0.889 0.725 0.794 0.818 0.808 0.827 0.803 0.817 0.798 0.544 0.612 0.656 0.637 0.664 0.622 0.654 0.623
SERA-10 0.815 0.908 0.881 0.848 0.846 0.87 0.882 0.903 0.755 0.802 0.817 0.83 0.821 0.853 0.825 0.83 0.584 0.628 0.651 0.663 0.652 0.684 0.662 0.665

SERA-NP-5 0.877 0.903 0.916 0.868 0.851 0.843 0.867 0.881 0.768 0.768 0.831 0.797 0.802 0.816 0.832 0.809 0.59 0.582 0.67 0.635 0.633 0.652 0.675 0.635
SERA-NP-10 0.83 0.902 0.885 0.845 0.846 0.861 0.874 0.896 0.78 0.793 0.828 0.79 0.788 0.843 0.833 0.845 0.6 0.624 0.662 0.615 0.617 0.679 0.67 0.681
SERA-KW-5 0.873 0.903 0.9 0.867 0.85 0.845 0.873 0.887 0.741 0.788 0.816 0.804 0.818 0.793 0.826 0.796 0.562 0.609 0.654 0.631 0.651 0.613 0.66 0.628
SERA-KW-10 0.812 0.91 0.88 0.85 0.842 0.866 0.882 0.903 0.743 0.805 0.81 0.832 0.81 0.852 0.819 0.831 0.573 0.635 0.646 0.663 0.646 0.688 0.657 0.667
SERA-DIS-5 0.89 0.914 0.942 0.92 0.913 0.901 0.916 0.923 0.71 0.778 0.829 0.813 0.865 0.798 0.833 0.82 0.528 0.597 0.666 0.635 0.71 0.62 0.675 0.653
SERA-DIS-10 0.914 0.929 0.941 0.926 0.928 0.93 0.93 0.942 0.742 0.795 0.836 0.829 0.853 0.857 0.83 0.853 0.576 0.619 0.671 0.657 0.696 0.693 0.669 0.69

SERA-DIS-NP-5 0.901 0.912 0.945 0.922 0.913 0.907 0.908 0.92 0.753 0.77 0.831 0.812 0.818 0.839 0.835 0.828 0.587 0.59 0.67 0.65 0.65 0.668 0.675 0.648
SERA-DIS-NP-10 0.916 0.927 0.947 0.927 0.922 0.928 0.93 0.939 0.766 0.794 0.825 0.819 0.827 0.84 0.851 0.847 0.599 0.619 0.665 0.65 0.659 0.675 0.69 0.685
SERA-DIS-KW-5 0.891 0.912 0.941 0.919 0.908 0.896 0.914 0.92 0.691 0.768 0.822 0.819 0.854 0.788 0.838 0.808 0.51 0.591 0.659 0.644 0.694 0.62 0.679 0.635
SERA-DIS-KW-10 0.91 0.929 0.939 0.926 0.923 0.926 0.929 0.937 0.744 0.79 0.826 0.841 0.851 0.84 0.821 0.854 0.565 0.616 0.658 0.666 0.693 0.674 0.658 0.694

wikiSERA-5 0.86 0.907 0.908 0.869 0.85 0.835 0.869 0.884 0.695 0.792 0.835 0.8 0.786 0.79 0.814 0.799 0.519 0.619 0.678 0.63 0.626 0.6 0.65 0.624
wikiSERA-10 0.821 0.91 0.874 0.848 0.838 0.862 0.877 0.905 0.748 0.805 0.813 0.836 0.8 0.85 0.817 0.842 0.578 0.637 0.652 0.673 0.642 0.677 0.648 0.682

wikiSERA-DIS-5 0.894 0.915 0.947 0.922 0.906 0.897 0.917 0.923 0.709 0.787 0.836 0.809 0.817 0.822 0.839 0.815 0.533 0.612 0.688 0.641 0.659 0.64 0.675 0.639
wikiSERA-DIS-10 0.921 0.93 0.94 0.929 0.921 0.929 0.932 0.944 0.783 0.797 0.818 0.844 0.832 0.864 0.837 0.861 0.603 0.622 0.657 0.673 0.671 0.701 0.672 0.693
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Method
Pearson Spearman Kendall

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.874 0.907 0.904 0.867 0.854 0.847 0.876 0.888 0.728 0.796 0.821 0.811 0.831 0.803 0.819 0.8 0.545 0.614 0.659 0.639 0.666 0.624 0.656 0.626
SERA-10 0.814 0.908 0.881 0.848 0.845 0.87 0.882 0.903 0.757 0.804 0.821 0.832 0.824 0.855 0.827 0.832 0.586 0.63 0.653 0.666 0.654 0.686 0.664 0.667

SERA-NP-5 0.877 0.903 0.916 0.867 0.85 0.842 0.866 0.881 0.771 0.77 0.834 0.799 0.806 0.816 0.833 0.811 0.593 0.582 0.675 0.638 0.638 0.651 0.675 0.637
SERA-NP-10 0.83 0.904 0.884 0.844 0.845 0.86 0.874 0.896 0.784 0.796 0.832 0.792 0.792 0.844 0.835 0.846 0.602 0.615 0.665 0.617 0.622 0.682 0.67 0.684
SERA-KW-5 0.873 0.904 0.9 0.867 0.85 0.845 0.873 0.886 0.743 0.789 0.819 0.807 0.822 0.793 0.827 0.799 0.562 0.611 0.657 0.633 0.653 0.615 0.66 0.63
SERA-KW-10 0.812 0.91 0.88 0.849 0.842 0.866 0.882 0.903 0.745 0.808 0.814 0.834 0.814 0.853 0.822 0.833 0.576 0.637 0.648 0.665 0.648 0.69 0.659 0.669
SERA-DIS-5 0.89 0.914 0.942 0.919 0.912 0.901 0.916 0.923 0.712 0.78 0.831 0.816 0.87 0.8 0.835 0.823 0.53 0.6 0.67 0.637 0.715 0.622 0.678 0.655
SERA-DIS-10 0.914 0.929 0.941 0.926 0.928 0.93 0.93 0.942 0.745 0.797 0.838 0.831 0.856 0.858 0.833 0.855 0.578 0.621 0.674 0.659 0.695 0.695 0.671 0.695

SERA-DIS-NP-5 0.901 0.912 0.945 0.922 0.913 0.906 0.908 0.92 0.755 0.772 0.833 0.814 0.822 0.84 0.836 0.829 0.589 0.591 0.675 0.655 0.652 0.67 0.675 0.651
SERA-DIS-NP-10 0.916 0.927 0.947 0.927 0.922 0.928 0.93 0.939 0.77 0.795 0.827 0.821 0.83 0.84 0.851 0.849 0.601 0.62 0.67 0.652 0.662 0.676 0.689 0.684
SERA-DIS-KW-5 0.891 0.912 0.941 0.919 0.907 0.896 0.914 0.92 0.693 0.77 0.824 0.822 0.858 0.789 0.839 0.81 0.512 0.593 0.663 0.647 0.699 0.622 0.679 0.637
SERA-DIS-KW-10 0.91 0.929 0.939 0.926 0.923 0.926 0.929 0.938 0.747 0.792 0.829 0.842 0.854 0.841 0.823 0.856 0.567 0.618 0.66 0.668 0.695 0.676 0.66 0.697

wikiSERA-5 0.86 0.907 0.908 0.869 0.85 0.835 0.869 0.884 0.697 0.792 0.838 0.803 0.789 0.791 0.816 0.801 0.52 0.62 0.681 0.632 0.628 0.602 0.652 0.626
wikiSERA-10 0.82 0.91 0.874 0.848 0.838 0.861 0.876 0.905 0.751 0.807 0.816 0.838 0.803 0.852 0.818 0.844 0.581 0.639 0.654 0.675 0.641 0.679 0.651 0.682

wikiSERA-DIS-5 0.895 0.915 0.947 0.922 0.905 0.897 0.917 0.923 0.711 0.787 0.838 0.813 0.82 0.824 0.841 0.818 0.534 0.614 0.691 0.644 0.664 0.643 0.678 0.64
wikiSERA-DIS-10 0.92 0.931 0.94 0.929 0.921 0.928 0.932 0.944 0.786 0.798 0.821 0.845 0.834 0.866 0.84 0.864 0.605 0.624 0.659 0.675 0.67 0.703 0.675 0.698

Table A.26: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Pyramid on
TAC2009/AQUAINT-2 dataset using the reference summary A1, A2, A3, A4
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A.2.4 Correlation of SERA and wikiSERA with Responsiveness on TAC2009/AQUAINT-2

Pearson Spearman Kendall

Method TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.792 0.807 0.821 0.817 0.802 0.796 0.823 0.816 0.637 0.699 0.685 0.697 0.706 0.685 0.751 0.698 0.474 0.526 0.524 0.547 0.545 0.508 0.572 0.522
SERA-10 0.781 0.833 0.83 0.805 0.785 0.814 0.804 0.813 0.697 0.699 0.729 0.713 0.679 0.746 0.698 0.698 0.507 0.53 0.571 0.546 0.517 0.559 0.532 0.539

SERA-NP-5 0.795 0.808 0.837 0.805 0.778 0.754 0.821 0.851 0.666 0.676 0.718 0.664 0.655 0.636 0.743 0.738 0.5 0.506 0.548 0.512 0.499 0.475 0.58 0.59
SERA-NP-10 0.784 0.82 0.813 0.777 0.807 0.823 0.827 0.844 0.727 0.689 0.707 0.669 0.718 0.73 0.744 0.755 0.55 0.506 0.533 0.513 0.554 0.56 0.582 0.584
SERA-KW-5 0.779 0.795 0.813 0.809 0.791 0.789 0.821 0.803 0.625 0.684 0.68 0.681 0.708 0.673 0.757 0.699 0.46 0.505 0.52 0.526 0.545 0.498 0.575 0.526
SERA-KW-10 0.781 0.832 0.819 0.801 0.778 0.807 0.801 0.803 0.71 0.697 0.717 0.72 0.679 0.743 0.701 0.677 0.518 0.531 0.559 0.548 0.516 0.556 0.531 0.518
SERA-DIS-5 0.762 0.784 0.819 0.826 0.822 0.817 0.829 0.827 0.617 0.69 0.722 0.692 0.73 0.698 0.738 0.739 0.451 0.513 0.54 0.521 0.581 0.526 0.548 0.556
SERA-DIS-10 0.808 0.803 0.825 0.822 0.826 0.828 0.821 0.834 0.681 0.677 0.721 0.703 0.725 0.758 0.74 0.753 0.51 0.511 0.552 0.531 0.561 0.577 0.553 0.58

SERA-DIS-NP-5 0.757 0.781 0.831 0.822 0.796 0.813 0.822 0.841 0.603 0.717 0.694 0.711 0.634 0.674 0.756 0.756 0.453 0.544 0.529 0.537 0.479 0.51 0.569 0.591
SERA-DIS-NP-10 0.804 0.807 0.814 0.804 0.814 0.845 0.836 0.855 0.724 0.684 0.722 0.669 0.7 0.727 0.77 0.78 0.557 0.519 0.553 0.505 0.549 0.554 0.602 0.599

SERA-DIS-KW-5 0.753 0.776 0.814 0.813 0.81 0.807 0.827 0.807 0.602 0.679 0.713 0.681 0.719 0.679 0.754 0.723 0.441 0.499 0.549 0.509 0.563 0.508 0.568 0.537
SERA-DIS-KW-10 0.804 0.803 0.814 0.81 0.815 0.826 0.815 0.819 0.683 0.693 0.706 0.693 0.709 0.745 0.734 0.726 0.502 0.525 0.534 0.521 0.546 0.561 0.55 0.552

wikiSERA-5 0.781 0.8 0.849 0.823 0.786 0.798 0.814 0.82 0.644 0.688 0.757 0.713 0.658 0.699 0.711 0.726 0.475 0.52 0.587 0.54 0.495 0.533 0.55 0.545
wikiSERA-10 0.783 0.83 0.835 0.806 0.78 0.797 0.803 0.825 0.683 0.693 0.742 0.732 0.661 0.745 0.68 0.718 0.499 0.521 0.573 0.563 0.512 0.557 0.506 0.558

wikiSERA-DIS-5 0.756 0.782 0.841 0.849 0.815 0.822 0.825 0.831 0.665 0.675 0.749 0.747 0.692 0.716 0.748 0.743 0.505 0.513 0.579 0.575 0.526 0.541 0.565 0.56
wikiSERA-DIS-10 0.809 0.8 0.842 0.844 0.815 0.831 0.827 0.836 0.739 0.691 0.762 0.765 0.712 0.743 0.74 0.747 0.577 0.519 0.588 0.59 0.559 0.565 0.553 0.563

Table A.27: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/AQUAINT-2 dataset using the reference summary A1
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Pearson Spearman Kendall

Method TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.813 0.786 0.804 0.818 0.818 0.771 0.808 0.793 0.66 0.638 0.626 0.685 0.794 0.614 0.679 0.658 0.501 0.476 0.479 0.516 0.601 0.454 0.512 0.491
SERA-10 0.839 0.823 0.81 0.794 0.798 0.809 0.803 0.819 0.777 0.684 0.668 0.7 0.726 0.723 0.678 0.706 0.601 0.524 0.509 0.518 0.548 0.547 0.516 0.539

SERA-NP-5 0.815 0.761 0.82 0.784 0.788 0.793 0.795 0.796 0.659 0.622 0.699 0.625 0.704 0.722 0.705 0.685 0.493 0.47 0.527 0.465 0.536 0.548 0.543 0.512
SERA-NP-10 0.818 0.814 0.801 0.781 0.792 0.797 0.804 0.833 0.757 0.653 0.676 0.669 0.705 0.742 0.68 0.765 0.582 0.505 0.499 0.495 0.543 0.552 0.511 0.583

SERA-KW-5 0.803 0.779 0.796 0.811 0.809 0.763 0.79 0.785 0.65 0.645 0.616 0.678 0.797 0.606 0.659 0.638 0.487 0.477 0.47 0.503 0.607 0.448 0.503 0.473
SERA-KW-10 0.828 0.822 0.804 0.791 0.788 0.8 0.796 0.809 0.754 0.669 0.656 0.699 0.709 0.706 0.666 0.711 0.584 0.515 0.496 0.52 0.529 0.533 0.505 0.545
SERA-DIS-5 0.769 0.756 0.797 0.829 0.823 0.792 0.788 0.765 0.634 0.636 0.625 0.697 0.753 0.595 0.646 0.628 0.483 0.472 0.472 0.528 0.592 0.444 0.488 0.478
SERA-DIS-10 0.819 0.788 0.798 0.81 0.818 0.81 0.779 0.781 0.738 0.681 0.654 0.69 0.729 0.716 0.654 0.719 0.577 0.514 0.499 0.51 0.559 0.544 0.486 0.546

SERA-DIS-NP-5 0.783 0.713 0.804 0.779 0.805 0.802 0.778 0.76 0.644 0.594 0.692 0.602 0.717 0.68 0.613 0.596 0.488 0.441 0.53 0.45 0.546 0.515 0.457 0.442
SERA-DIS-NP-10 0.808 0.802 0.798 0.788 0.793 0.789 0.789 0.783 0.737 0.662 0.671 0.652 0.695 0.676 0.652 0.694 0.572 0.501 0.51 0.48 0.534 0.499 0.495 0.514
SERA-DIS-KW-5 0.767 0.746 0.794 0.819 0.812 0.782 0.768 0.751 0.65 0.615 0.618 0.683 0.74 0.579 0.611 0.609 0.485 0.456 0.457 0.514 0.571 0.43 0.458 0.464
SERA-DIS-KW-10 0.805 0.786 0.795 0.802 0.806 0.8 0.768 0.764 0.711 0.668 0.637 0.677 0.732 0.694 0.624 0.685 0.548 0.506 0.487 0.499 0.554 0.519 0.459 0.519

wikiSERA-5 0.801 0.777 0.822 0.816 0.815 0.772 0.79 0.811 0.648 0.62 0.658 0.683 0.75 0.615 0.632 0.696 0.472 0.46 0.5 0.512 0.593 0.455 0.482 0.527
wikiSERA-10 0.821 0.818 0.809 0.793 0.783 0.799 0.801 0.825 0.754 0.66 0.663 0.708 0.688 0.717 0.673 0.747 0.587 0.51 0.494 0.532 0.516 0.532 0.499 0.567

wikiSERA-DIS-5 0.778 0.758 0.818 0.809 0.825 0.796 0.786 0.8 0.62 0.638 0.635 0.661 0.717 0.628 0.61 0.681 0.449 0.478 0.478 0.495 0.546 0.472 0.464 0.513
wikiSERA-DIS-10 0.792 0.78 0.806 0.801 0.812 0.805 0.785 0.795 0.695 0.653 0.653 0.674 0.711 0.672 0.63 0.741 0.522 0.509 0.488 0.503 0.542 0.511 0.472 0.568

Table A.28: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/AQUAINT-2 dataset using the reference summary A2
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Pearson Spearman Kendall

Method TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.688 0.706 0.771 0.772 0.745 0.752 0.777 0.773 0.36 0.432 0.584 0.639 0.582 0.615 0.597 0.613 0.264 0.33 0.422 0.473 0.44 0.442 0.437 0.455
SERA-10 0.782 0.774 0.779 0.748 0.762 0.787 0.802 0.812 0.642 0.518 0.631 0.626 0.642 0.634 0.662 0.677 0.493 0.389 0.472 0.466 0.479 0.473 0.498 0.511

SERA-NP-5 0.758 0.696 0.777 0.771 0.779 0.746 0.792 0.813 0.498 0.469 0.622 0.608 0.628 0.628 0.689 0.674 0.381 0.355 0.477 0.454 0.479 0.473 0.538 0.515
SERA-NP-10 0.769 0.725 0.778 0.749 0.753 0.786 0.806 0.814 0.618 0.483 0.636 0.611 0.583 0.651 0.683 0.644 0.454 0.334 0.476 0.447 0.422 0.489 0.512 0.502
SERA-KW-5 0.698 0.696 0.769 0.773 0.738 0.751 0.775 0.77 0.372 0.419 0.602 0.641 0.577 0.611 0.598 0.619 0.266 0.315 0.446 0.473 0.432 0.438 0.444 0.458
SERA-KW-10 0.779 0.774 0.776 0.748 0.759 0.783 0.803 0.81 0.646 0.523 0.616 0.639 0.654 0.632 0.663 0.683 0.497 0.39 0.46 0.472 0.491 0.472 0.505 0.527
SERA-DIS-5 0.649 0.686 0.767 0.776 0.775 0.758 0.792 0.775 0.285 0.412 0.585 0.617 0.611 0.578 0.662 0.615 0.2 0.302 0.434 0.455 0.455 0.422 0.475 0.464
SERA-DIS-10 0.761 0.738 0.779 0.771 0.787 0.784 0.796 0.801 0.491 0.495 0.616 0.619 0.642 0.607 0.646 0.699 0.356 0.372 0.456 0.46 0.471 0.453 0.478 0.53

SERA-DIS-NP-5 0.74 0.685 0.78 0.788 0.786 0.755 0.792 0.788 0.41 0.476 0.617 0.559 0.644 0.594 0.67 0.656 0.293 0.359 0.468 0.42 0.479 0.437 0.488 0.496
SERA-DIS-NP-10 0.778 0.763 0.79 0.777 0.77 0.781 0.796 0.789 0.531 0.503 0.658 0.598 0.588 0.625 0.683 0.656 0.389 0.38 0.498 0.444 0.437 0.464 0.501 0.509
SERA-DIS-KW-5 0.661 0.685 0.768 0.774 0.762 0.748 0.793 0.774 0.303 0.412 0.584 0.604 0.587 0.563 0.649 0.608 0.215 0.299 0.437 0.441 0.436 0.409 0.465 0.453
SERA-DIS-KW-10 0.763 0.742 0.779 0.77 0.777 0.778 0.8 0.793 0.523 0.499 0.631 0.615 0.643 0.581 0.652 0.703 0.383 0.378 0.474 0.455 0.467 0.43 0.477 0.537

wikiSERA-5 0.698 0.696 0.799 0.782 0.747 0.74 0.797 0.771 0.357 0.373 0.678 0.659 0.561 0.55 0.667 0.588 0.253 0.283 0.513 0.491 0.421 0.411 0.512 0.44
wikiSERA-10 0.763 0.773 0.777 0.758 0.748 0.791 0.787 0.82 0.605 0.541 0.639 0.664 0.627 0.644 0.648 0.686 0.454 0.409 0.473 0.489 0.475 0.488 0.479 0.53

wikiSERA-DIS-5 0.686 0.685 0.794 0.793 0.778 0.778 0.808 0.776 0.364 0.383 0.615 0.614 0.607 0.568 0.691 0.581 0.248 0.29 0.455 0.452 0.448 0.416 0.505 0.434
wikiSERA-DIS-10 0.754 0.736 0.786 0.784 0.778 0.801 0.794 0.804 0.478 0.502 0.6 0.603 0.606 0.672 0.672 0.668 0.349 0.381 0.444 0.444 0.442 0.509 0.502 0.507

Table A.29: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/AQUAINT-2 dataset using the reference summary A3
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Pearson Spearman Kendall

Method TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.805 0.753 0.806 0.804 0.819 0.772 0.793 0.797 0.593 0.576 0.633 0.686 0.722 0.602 0.634 0.646 0.444 0.428 0.479 0.516 0.542 0.445 0.473 0.484
SERA-10 0.817 0.817 0.812 0.771 0.805 0.799 0.807 0.804 0.766 0.625 0.669 0.646 0.698 0.712 0.71 0.691 0.587 0.473 0.507 0.486 0.532 0.519 0.537 0.533

SERA-NP-5 0.791 0.736 0.788 0.782 0.796 0.792 0.817 0.821 0.693 0.593 0.607 0.63 0.661 0.679 0.75 0.7 0.52 0.445 0.459 0.475 0.496 0.52 0.592 0.534
SERA-NP-10 0.806 0.78 0.815 0.782 0.774 0.801 0.808 0.81 0.729 0.605 0.706 0.635 0.579 0.699 0.71 0.692 0.546 0.443 0.532 0.469 0.438 0.525 0.533 0.526
SERA-KW-5 0.81 0.753 0.795 0.796 0.816 0.764 0.797 0.791 0.604 0.578 0.613 0.687 0.721 0.583 0.677 0.686 0.454 0.432 0.466 0.512 0.539 0.432 0.512 0.503
SERA-KW-10 0.812 0.818 0.806 0.77 0.8 0.794 0.811 0.794 0.742 0.631 0.669 0.647 0.691 0.709 0.715 0.696 0.568 0.483 0.506 0.491 0.525 0.525 0.538 0.531
SERA-DIS-5 0.787 0.734 0.8 0.793 0.827 0.77 0.765 0.778 0.548 0.582 0.623 0.644 0.718 0.586 0.549 0.668 0.403 0.448 0.469 0.479 0.554 0.44 0.393 0.499
SERA-DIS-10 0.809 0.754 0.797 0.765 0.813 0.782 0.757 0.755 0.689 0.586 0.656 0.594 0.698 0.652 0.637 0.721 0.519 0.442 0.498 0.438 0.532 0.488 0.472 0.536

SERA-DIS-NP-5 0.758 0.708 0.778 0.794 0.82 0.807 0.805 0.809 0.616 0.584 0.609 0.65 0.684 0.709 0.689 0.681 0.459 0.432 0.455 0.493 0.519 0.523 0.53 0.517
SERA-DIS-NP-10 0.773 0.787 0.8 0.791 0.796 0.804 0.778 0.777 0.667 0.61 0.681 0.669 0.646 0.729 0.671 0.664 0.494 0.447 0.518 0.506 0.506 0.545 0.498 0.503
SERA-DIS-KW-5 0.795 0.733 0.794 0.784 0.818 0.76 0.764 0.773 0.557 0.58 0.629 0.655 0.71 0.579 0.594 0.7 0.414 0.441 0.472 0.49 0.542 0.425 0.434 0.515
SERA-DIS-KW-10 0.805 0.751 0.795 0.762 0.803 0.773 0.754 0.744 0.68 0.584 0.658 0.598 0.686 0.654 0.639 0.718 0.509 0.436 0.492 0.442 0.525 0.488 0.475 0.534

wikiSERA-5 0.758 0.763 0.816 0.81 0.818 0.764 0.807 0.816 0.543 0.611 0.622 0.671 0.729 0.593 0.702 0.719 0.403 0.462 0.473 0.505 0.556 0.439 0.537 0.55
wikiSERA-10 0.821 0.812 0.817 0.777 0.809 0.807 0.814 0.809 0.716 0.617 0.675 0.644 0.689 0.728 0.718 0.691 0.547 0.471 0.508 0.489 0.526 0.542 0.542 0.531

wikiSERA-DIS-5 0.753 0.733 0.81 0.806 0.821 0.777 0.801 0.804 0.515 0.621 0.643 0.651 0.73 0.625 0.668 0.721 0.375 0.463 0.492 0.485 0.554 0.459 0.513 0.552

wikiSERA-DIS-10 0.801 0.749 0.812 0.786 0.817 0.798 0.781 0.761 0.678 0.603 0.676 0.625 0.715 0.682 0.694 0.719 0.499 0.463 0.515 0.469 0.549 0.509 0.519 0.552

Table A.30: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/AQUAINT-2 dataset using the reference summary A4
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Pearson Spearman Kendall

Method TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.788 0.786 0.81 0.812 0.795 0.781 0.813 0.803 0.596 0.632 0.655 0.696 0.693 0.659 0.699 0.658 0.424 0.472 0.5 0.515 0.522 0.482 0.525 0.486
SERA-10 0.808 0.819 0.811 0.787 0.785 0.808 0.81 0.823 0.722 0.663 0.683 0.693 0.689 0.714 0.686 0.693 0.54 0.506 0.518 0.518 0.511 0.534 0.518 0.53

SERA-NP-5 0.814 0.769 0.822 0.794 0.788 0.773 0.812 0.83 0.649 0.63 0.712 0.668 0.678 0.671 0.744 0.731 0.487 0.472 0.546 0.494 0.511 0.503 0.576 0.568

SERA-NP-10 0.797 0.807 0.801 0.774 0.79 0.807 0.818 0.843 0.718 0.657 0.696 0.647 0.68 0.731 0.727 0.741 0.544 0.502 0.517 0.482 0.518 0.552 0.546 0.562
SERA-KW-5 0.783 0.778 0.804 0.808 0.786 0.775 0.806 0.796 0.594 0.622 0.652 0.684 0.697 0.65 0.696 0.648 0.424 0.468 0.502 0.507 0.525 0.478 0.523 0.482
SERA-KW-10 0.803 0.818 0.805 0.785 0.779 0.802 0.807 0.816 0.722 0.658 0.679 0.691 0.692 0.715 0.677 0.703 0.546 0.502 0.517 0.514 0.514 0.536 0.515 0.538
SERA-DIS-5 0.749 0.757 0.808 0.822 0.814 0.798 0.814 0.8 0.576 0.623 0.657 0.697 0.73 0.647 0.708 0.677 0.422 0.469 0.499 0.522 0.562 0.48 0.535 0.507
SERA-DIS-10 0.807 0.783 0.807 0.806 0.815 0.813 0.805 0.812 0.684 0.652 0.678 0.686 0.714 0.705 0.694 0.722 0.519 0.5 0.521 0.511 0.542 0.526 0.521 0.538

SERA-DIS-NP-5 0.781 0.736 0.815 0.803 0.805 0.799 0.805 0.806 0.629 0.644 0.7 0.65 0.697 0.661 0.703 0.727 0.479 0.475 0.542 0.482 0.523 0.499 0.525 0.548
SERA-DIS-NP-10 0.807 0.795 0.805 0.794 0.798 0.81 0.811 0.818 0.732 0.645 0.695 0.647 0.678 0.691 0.729 0.743 0.569 0.487 0.526 0.479 0.511 0.517 0.545 0.558
SERA-DIS-KW-5 0.748 0.751 0.806 0.813 0.804 0.788 0.807 0.789 0.575 0.61 0.664 0.686 0.707 0.624 0.704 0.656 0.42 0.456 0.509 0.506 0.537 0.46 0.529 0.487
SERA-DIS-KW-10 0.801 0.783 0.802 0.799 0.805 0.807 0.801 0.799 0.682 0.649 0.67 0.693 0.709 0.7 0.677 0.71 0.517 0.491 0.518 0.511 0.536 0.521 0.505 0.536

wikiSERA-5 0.783 0.779 0.834 0.816 0.789 0.778 0.809 0.81 0.57 0.615 0.714 0.687 0.669 0.645 0.688 0.681 0.423 0.456 0.553 0.515 0.514 0.481 0.528 0.513
wikiSERA-10 0.797 0.816 0.812 0.79 0.774 0.802 0.803 0.832 0.713 0.648 0.692 0.702 0.662 0.732 0.669 0.73 0.545 0.494 0.52 0.523 0.495 0.549 0.505 0.561

wikiSERA-DIS-5 0.76 0.758 0.83 0.827 0.816 0.807 0.819 0.815 0.581 0.623 0.689 0.693 0.7 0.667 0.709 0.686 0.422 0.464 0.525 0.521 0.548 0.494 0.534 0.518
wikiSERA-DIS-10 0.796 0.78 0.817 0.814 0.808 0.818 0.809 0.82 0.702 0.634 0.669 0.695 0.678 0.713 0.683 0.743 0.525 0.483 0.503 0.521 0.523 0.536 0.514 0.563

Table A.31: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/AQUAINT-2 dataset using the reference summary A1, A2, A3
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Pearson Spearman Kendall

Method TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.819 0.797 0.822 0.82 0.819 0.789 0.818 0.814 0.671 0.663 0.663 0.695 0.756 0.658 0.714 0.682 0.488 0.495 0.499 0.527 0.573 0.487 0.545 0.51
SERA-10 0.819 0.833 0.822 0.794 0.802 0.811 0.813 0.824 0.761 0.693 0.687 0.693 0.712 0.727 0.711 0.706 0.581 0.532 0.522 0.522 0.536 0.54 0.538 0.541

SERA-NP-5 0.818 0.781 0.825 0.798 0.794 0.789 0.822 0.84 0.7 0.647 0.7 0.67 0.696 0.702 0.769 0.74 0.525 0.48 0.538 0.504 0.526 0.534 0.591 0.569
SERA-NP-10 0.809 0.831 0.814 0.785 0.796 0.812 0.82 0.841 0.773 0.668 0.718 0.684 0.694 0.739 0.739 0.765 0.584 0.51 0.542 0.513 0.53 0.566 0.556 0.588

SERA-KW-5 0.815 0.791 0.814 0.813 0.812 0.781 0.813 0.806 0.687 0.656 0.665 0.697 0.749 0.656 0.727 0.692 0.509 0.484 0.503 0.529 0.568 0.48 0.554 0.505
SERA-KW-10 0.813 0.832 0.814 0.792 0.794 0.805 0.811 0.815 0.753 0.698 0.678 0.693 0.706 0.73 0.714 0.698 0.576 0.538 0.517 0.519 0.537 0.538 0.542 0.531
SERA-DIS-5 0.788 0.769 0.819 0.826 0.832 0.804 0.808 0.804 0.654 0.653 0.671 0.691 0.762 0.635 0.673 0.709 0.496 0.495 0.509 0.525 0.596 0.475 0.51 0.529
SERA-DIS-10 0.821 0.788 0.812 0.805 0.826 0.812 0.795 0.799 0.733 0.673 0.668 0.683 0.737 0.713 0.691 0.732 0.557 0.513 0.514 0.51 0.569 0.534 0.51 0.549

SERA-DIS-NP-5 0.783 0.743 0.815 0.806 0.817 0.816 0.811 0.819 0.66 0.646 0.697 0.683 0.719 0.718 0.725 0.729 0.501 0.486 0.534 0.517 0.554 0.54 0.554 0.553
SERA-DIS-NP-10 0.803 0.81 0.809 0.8 0.806 0.818 0.807 0.815 0.735 0.671 0.698 0.683 0.708 0.722 0.741 0.762 0.565 0.509 0.529 0.517 0.542 0.541 0.557 0.577
SERA-DIS-KW-5 0.788 0.763 0.815 0.816 0.823 0.792 0.802 0.791 0.646 0.646 0.677 0.687 0.755 0.623 0.687 0.686 0.488 0.484 0.514 0.514 0.587 0.461 0.514 0.506
SERA-DIS-KW-10 0.813 0.786 0.807 0.797 0.816 0.805 0.789 0.785 0.727 0.671 0.661 0.676 0.73 0.7 0.683 0.723 0.553 0.509 0.505 0.502 0.561 0.523 0.503 0.54

wikiSERA-5 0.799 0.795 0.841 0.824 0.813 0.786 0.813 0.826 0.627 0.656 0.696 0.702 0.732 0.66 0.698 0.727 0.449 0.489 0.529 0.532 0.554 0.482 0.53 0.553
wikiSERA-10 0.815 0.827 0.824 0.797 0.796 0.807 0.814 0.833 0.739 0.67 0.7 0.698 0.683 0.737 0.708 0.717 0.566 0.515 0.532 0.525 0.524 0.543 0.533 0.55

wikiSERA-DIS-5 0.778 0.77 0.836 0.831 0.83 0.808 0.818 0.825 0.624 0.669 0.702 0.701 0.737 0.666 0.695 0.741 0.447 0.506 0.538 0.529 0.568 0.496 0.528 0.569
wikiSERA-DIS-10 0.809 0.783 0.825 0.815 0.822 0.817 0.807 0.808 0.733 0.68 0.695 0.702 0.728 0.727 0.704 0.759 0.555 0.527 0.53 0.53 0.565 0.544 0.532 0.579

Table A.32: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/AQUAINT-2 dataset using the reference summary A1, A2, A4
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Pearson Spearman Kendall

Method TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.791 0.764 0.805 0.806 0.8 0.771 0.803 0.799 0.589 0.571 0.621 0.682 0.723 0.606 0.669 0.659 0.433 0.434 0.464 0.502 0.546 0.438 0.499 0.481
SERA-10 0.819 0.814 0.805 0.775 0.794 0.803 0.812 0.821 0.741 0.649 0.657 0.655 0.715 0.714 0.684 0.713 0.572 0.507 0.495 0.482 0.54 0.542 0.513 0.548

SERA-NP-5 0.81 0.743 0.805 0.787 0.794 0.783 0.812 0.825 0.666 0.592 0.671 0.646 0.691 0.676 0.738 0.73 0.496 0.43 0.497 0.479 0.524 0.515 0.563 0.558

SERA-NP-10 0.805 0.803 0.802 0.775 0.778 0.799 0.812 0.828 0.747 0.631 0.68 0.636 0.627 0.723 0.722 0.716 0.563 0.492 0.515 0.464 0.468 0.541 0.544 0.54
SERA-KW-5 0.791 0.76 0.798 0.801 0.794 0.765 0.797 0.794 0.6 0.571 0.617 0.684 0.717 0.599 0.674 0.667 0.446 0.423 0.464 0.501 0.539 0.437 0.506 0.495
SERA-KW-10 0.812 0.813 0.8 0.774 0.788 0.798 0.812 0.814 0.719 0.64 0.657 0.66 0.703 0.712 0.688 0.712 0.55 0.496 0.494 0.486 0.525 0.538 0.519 0.549
SERA-DIS-5 0.755 0.738 0.801 0.809 0.816 0.781 0.795 0.786 0.525 0.558 0.63 0.667 0.715 0.596 0.654 0.669 0.389 0.424 0.471 0.494 0.563 0.441 0.483 0.499
SERA-DIS-10 0.805 0.767 0.797 0.788 0.813 0.796 0.785 0.786 0.673 0.61 0.646 0.656 0.708 0.679 0.668 0.723 0.513 0.463 0.494 0.491 0.541 0.504 0.495 0.544

SERA-DIS-NP-5 0.779 0.711 0.797 0.795 0.812 0.795 0.801 0.798 0.581 0.584 0.661 0.629 0.7 0.669 0.671 0.7 0.433 0.43 0.509 0.471 0.529 0.498 0.505 0.526
SERA-DIS-NP-10 0.796 0.787 0.801 0.79 0.791 0.795 0.792 0.79 0.686 0.611 0.664 0.657 0.666 0.696 0.684 0.698 0.523 0.473 0.501 0.49 0.508 0.505 0.502 0.523
SERA-DIS-KW-5 0.76 0.735 0.799 0.802 0.806 0.771 0.788 0.779 0.534 0.55 0.64 0.673 0.704 0.576 0.645 0.645 0.393 0.406 0.486 0.491 0.546 0.425 0.48 0.478
SERA-DIS-KW-10 0.799 0.766 0.795 0.784 0.802 0.788 0.782 0.774 0.662 0.609 0.642 0.661 0.699 0.656 0.667 0.729 0.492 0.463 0.487 0.494 0.53 0.482 0.503 0.548

wikiSERA-5 0.772 0.762 0.824 0.81 0.8 0.764 0.807 0.811 0.542 0.602 0.671 0.679 0.69 0.585 0.684 0.697 0.397 0.451 0.513 0.509 0.522 0.441 0.522 0.528
wikiSERA-10 0.81 0.81 0.806 0.781 0.785 0.805 0.808 0.827 0.731 0.627 0.662 0.669 0.669 0.727 0.682 0.715 0.553 0.49 0.495 0.496 0.501 0.546 0.508 0.55

wikiSERA-DIS-5 0.755 0.74 0.82 0.812 0.817 0.79 0.81 0.808 0.527 0.602 0.645 0.662 0.71 0.612 0.675 0.684 0.38 0.449 0.486 0.499 0.545 0.456 0.507 0.519
wikiSERA-DIS-10 0.792 0.763 0.807 0.795 0.809 0.805 0.794 0.794 0.659 0.608 0.653 0.656 0.69 0.683 0.68 0.726 0.482 0.465 0.492 0.487 0.533 0.506 0.514 0.546

Table A.33: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/AQUAINT-2 dataset using the reference summary A2, A3, A4
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Pearson Spearman Kendall

Method TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

TAC2009
AQUAINT-2

825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000 825,148 179,520 89,760 60,000 30,000 15,000 10,000

SERA-5 0.799 0.782 0.814 0.812 0.803 0.782 0.812 0.807 0.607 0.628 0.664 0.687 0.712 0.641 0.698 0.665 0.439 0.468 0.502 0.515 0.538 0.472 0.533 0.494
SERA-10 0.812 0.822 0.813 0.784 0.793 0.808 0.813 0.824 0.74 0.662 0.675 0.683 0.703 0.722 0.69 0.705 0.564 0.509 0.513 0.514 0.528 0.54 0.518 0.541

SERA-NP-5 0.814 0.766 0.816 0.794 0.793 0.781 0.818 0.837 0.671 0.625 0.692 0.662 0.682 0.671 0.753 0.734 0.504 0.466 0.53 0.49 0.521 0.513 0.578 0.558
SERA-NP-10 0.802 0.816 0.806 0.778 0.787 0.807 0.819 0.839 0.74 0.626 0.702 0.649 0.651 0.733 0.735 0.75 0.552 0.484 0.529 0.482 0.498 0.554 0.557 0.57

SERA-KW-5 0.797 0.776 0.807 0.807 0.796 0.775 0.808 0.801 0.62 0.624 0.665 0.681 0.711 0.629 0.716 0.672 0.456 0.465 0.503 0.51 0.537 0.462 0.543 0.495
SERA-KW-10 0.807 0.821 0.807 0.783 0.787 0.802 0.812 0.817 0.732 0.665 0.67 0.687 0.7 0.725 0.687 0.707 0.56 0.516 0.511 0.513 0.529 0.544 0.519 0.542
SERA-DIS-5 0.764 0.755 0.811 0.818 0.821 0.795 0.809 0.801 0.583 0.615 0.66 0.677 0.732 0.629 0.699 0.689 0.428 0.459 0.501 0.506 0.57 0.457 0.519 0.514
SERA-DIS-10 0.81 0.779 0.806 0.798 0.818 0.807 0.798 0.802 0.693 0.636 0.673 0.666 0.712 0.699 0.692 0.725 0.523 0.484 0.521 0.492 0.545 0.525 0.517 0.544

SERA-DIS-NP-5 0.781 0.733 0.809 0.804 0.812 0.803 0.81 0.815 0.629 0.638 0.687 0.664 0.707 0.685 0.722 0.728 0.484 0.474 0.529 0.502 0.532 0.52 0.545 0.55
SERA-DIS-NP-10 0.801 0.782 0.806 0.796 0.799 0.81 0.805 0.811 0.719 0.639 0.687 0.67 0.679 0.711 0.732 0.736 0.556 0.487 0.518 0.505 0.514 0.53 0.546 0.549
SERA-DIS-KW-5 0.766 0.75 0.808 0.81 0.811 0.785 0.804 0.791 0.564 0.6 0.653 0.681 0.726 0.623 0.7 0.671 0.414 0.441 0.496 0.502 0.56 0.457 0.523 0.502
SERA-DIS-KW-10 0.804 0.777 0.802 0.792 0.808 0.8 0.795 0.79 0.694 0.632 0.669 0.68 0.705 0.685 0.682 0.726 0.523 0.482 0.515 0.507 0.537 0.509 0.514 0.545

wikiSERA-5 0.783 0.779 0.834 0.816 0.799 0.776 0.812 0.817 0.583 0.631 0.697 0.683 0.682 0.638 0.697 0.698 0.429 0.47 0.53 0.511 0.521 0.477 0.535 0.527
wikiSERA-10 0.805 0.818 0.814 0.789 0.785 0.805 0.81 0.832 0.711 0.652 0.686 0.686 0.672 0.728 0.692 0.724 0.54 0.502 0.517 0.51 0.511 0.541 0.519 0.557

wikiSERA-DIS-5 0.763 0.756 0.831 0.825 0.82 0.802 0.82 0.819 0.578 0.628 0.684 0.688 0.714 0.655 0.707 0.698 0.41 0.469 0.525 0.518 0.55 0.483 0.538 0.522
wikiSERA-DIS-10 0.801 0.775 0.818 0.81 0.814 0.815 0.807 0.81 0.705 0.635 0.673 0.686 0.709 0.719 0.706 0.745 0.527 0.485 0.514 0.511 0.55 0.54 0.534 0.565

Table A.34: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/AQUAINT-2 dataset using the reference summary A1, A2, A3, A4
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A.2.5 Correlation of SERA and wikiSERA with Pyramid on

TAC2008/Wikipedia
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.807 0.802 0.854 0.807 0.773 0.822 0.874 0.845 0.58 0.639 0.697 0.658
SERA-10 0.821 0.877 0.864 0.848 0.804 0.9 0.887 0.873 0.612 0.728 0.717 0.692

SERA-NP-5 0.826 0.88 0.858 0.807 0.806 0.874 0.874 0.824 0.615 0.696 0.687 0.63
SERA-NP-10 0.821 0.853 0.862 0.822 0.771 0.878 0.885 0.852 0.59 0.703 0.721 0.671
SERA-KW-5 0.769 0.813 0.85 0.802 0.732 0.83 0.863 0.843 0.542 0.648 0.684 0.652
SERA-KW-10 0.79 0.874 0.872 0.848 0.749 0.895 0.891 0.877 0.555 0.723 0.719 0.69
SERA-DIS-5 0.794 0.807 0.851 0.818 0.775 0.828 0.881 0.876 0.584 0.648 0.702 0.691
SERA-DIS-10 0.786 0.876 0.854 0.851 0.77 0.908 0.87 0.888 0.577 0.733 0.684 0.711

SERA-DIS-NP-5 0.789 0.885 0.86 0.829 0.759 0.856 0.875 0.827 0.562 0.682 0.69 0.637
SERA-DIS-NP-10 0.799 0.881 0.874 0.85 0.75 0.904 0.891 0.869 0.567 0.73 0.725 0.684
SERA-DIS-KW-5 0.744 0.821 0.852 0.805 0.726 0.834 0.878 0.855 0.532 0.65 0.699 0.667
SERA-DIS-KW-10 0.762 0.883 0.865 0.846 0.746 0.908 0.874 0.882 0.55 0.736 0.682 0.701

wikiSERA-5 0.79 0.849 0.851 0.819 0.767 0.866 0.853 0.833 0.565 0.691 0.679 0.651
wikiSERA-10 0.828 0.874 0.869 0.826 0.781 0.894 0.876 0.845 0.592 0.717 0.706 0.656

wikiSERA-DIS-5 0.783 0.833 0.839 0.826 0.784 0.847 0.836 0.849 0.584 0.67 0.662 0.668
wikiSERA-DIS-10 0.818 0.867 0.864 0.837 0.797 0.89 0.861 0.865 0.607 0.713 0.693 0.682
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.807 0.802 0.854 0.807 0.771 0.82 0.873 0.843 0.58 0.637 0.694 0.656
SERA-10 0.82 0.876 0.864 0.848 0.801 0.9 0.885 0.87 0.61 0.725 0.714 0.688

SERA-NP-5 0.826 0.88 0.857 0.807 0.806 0.874 0.874 0.823 0.615 0.696 0.687 0.628
SERA-NP-10 0.821 0.853 0.861 0.821 0.769 0.877 0.882 0.848 0.588 0.701 0.718 0.668
SERA-KW-5 0.768 0.814 0.851 0.802 0.729 0.829 0.862 0.839 0.54 0.645 0.682 0.649
SERA-KW-10 0.786 0.874 0.871 0.848 0.749 0.895 0.889 0.874 0.553 0.721 0.717 0.688
SERA-DIS-5 0.793 0.807 0.85 0.818 0.774 0.825 0.879 0.873 0.581 0.645 0.7 0.689
SERA-DIS-10 0.785 0.876 0.854 0.851 0.767 0.907 0.869 0.884 0.575 0.73 0.681 0.708

SERA-DIS-NP-5 0.789 0.885 0.86 0.829 0.758 0.855 0.874 0.826 0.56 0.679 0.688 0.635
SERA-DIS-NP-10 0.798 0.881 0.873 0.85 0.748 0.903 0.889 0.866 0.564 0.728 0.723 0.682
SERA-DIS-KW-5 0.743 0.821 0.852 0.805 0.722 0.832 0.877 0.852 0.527 0.648 0.696 0.665
SERA-DIS-KW-10 0.759 0.883 0.864 0.846 0.74 0.907 0.872 0.878 0.544 0.734 0.679 0.699

wikiSERA-5 0.789 0.85 0.85 0.819 0.764 0.865 0.852 0.831 0.56 0.688 0.677 0.649
wikiSERA-10 0.827 0.874 0.869 0.826 0.779 0.894 0.875 0.843 0.59 0.717 0.704 0.656

wikiSERA-DIS-5 0.781 0.833 0.839 0.826 0.78 0.844 0.835 0.847 0.579 0.667 0.66 0.666
wikiSERA-DIS-10 0.817 0.867 0.864 0.836 0.795 0.889 0.86 0.863 0.604 0.711 0.69 0.682

Table A.35: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2008/Wikipedia dataset using the

reference summary A1
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.808 0.831 0.859 0.817 0.772 0.811 0.834 0.789 0.571 0.633 0.648 0.599
SERA-10 0.833 0.887 0.876 0.842 0.777 0.877 0.889 0.843 0.594 0.708 0.706 0.654

SERA-NP-5 0.818 0.91 0.854 0.798 0.787 0.896 0.854 0.776 0.59 0.721 0.673 0.579
SERA-NP-10 0.839 0.882 0.861 0.855 0.844 0.885 0.839 0.867 0.648 0.698 0.649 0.672

SERA-KW-5 0.805 0.846 0.857 0.815 0.758 0.811 0.828 0.794 0.564 0.639 0.641 0.606
SERA-KW-10 0.825 0.885 0.885 0.844 0.773 0.87 0.891 0.852 0.582 0.693 0.707 0.66
SERA-DIS-5 0.808 0.825 0.848 0.825 0.772 0.798 0.813 0.781 0.574 0.609 0.621 0.59
SERA-DIS-10 0.805 0.871 0.871 0.84 0.749 0.853 0.856 0.826 0.554 0.668 0.661 0.637

SERA-DIS-NP-5 0.777 0.892 0.868 0.814 0.76 0.865 0.852 0.771 0.555 0.665 0.653 0.573
SERA-DIS-NP-10 0.821 0.901 0.872 0.846 0.819 0.9 0.857 0.818 0.625 0.724 0.671 0.624
SERA-DIS-KW-5 0.759 0.842 0.851 0.826 0.749 0.815 0.808 0.792 0.549 0.632 0.621 0.606
SERA-DIS-KW-10 0.775 0.872 0.876 0.843 0.762 0.853 0.855 0.821 0.565 0.671 0.666 0.633

wikiSERA-5 0.813 0.89 0.867 0.83 0.805 0.871 0.857 0.841 0.624 0.716 0.671 0.656
wikiSERA-10 0.863 0.891 0.866 0.858 0.834 0.891 0.867 0.859 0.652 0.718 0.683 0.673

wikiSERA-DIS-5 0.774 0.877 0.851 0.826 0.752 0.861 0.821 0.807 0.558 0.685 0.631 0.624
wikiSERA-DIS-10 0.833 0.892 0.865 0.862 0.805 0.904 0.861 0.846 0.615 0.739 0.669 0.653
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.807 0.83 0.858 0.816 0.769 0.808 0.832 0.785 0.568 0.631 0.646 0.596
SERA-10 0.832 0.886 0.875 0.841 0.775 0.875 0.887 0.841 0.594 0.706 0.704 0.652

SERA-NP-5 0.818 0.909 0.853 0.797 0.786 0.896 0.853 0.773 0.59 0.721 0.671 0.577
SERA-NP-10 0.839 0.882 0.86 0.854 0.842 0.884 0.837 0.864 0.646 0.698 0.647 0.669

SERA-KW-5 0.804 0.845 0.856 0.814 0.757 0.808 0.826 0.79 0.564 0.636 0.639 0.603
SERA-KW-10 0.821 0.884 0.884 0.843 0.777 0.868 0.889 0.85 0.582 0.691 0.705 0.658
SERA-DIS-5 0.808 0.824 0.847 0.824 0.77 0.794 0.81 0.777 0.572 0.607 0.619 0.587
SERA-DIS-10 0.804 0.87 0.871 0.839 0.747 0.85 0.853 0.823 0.551 0.666 0.659 0.635

SERA-DIS-NP-5 0.776 0.892 0.868 0.814 0.758 0.865 0.852 0.768 0.555 0.662 0.65 0.57
SERA-DIS-NP-10 0.82 0.9 0.872 0.845 0.816 0.899 0.855 0.815 0.623 0.724 0.668 0.621
SERA-DIS-KW-5 0.757 0.842 0.85 0.825 0.748 0.811 0.806 0.788 0.546 0.63 0.619 0.603
SERA-DIS-KW-10 0.772 0.871 0.876 0.842 0.763 0.849 0.852 0.819 0.558 0.668 0.664 0.631

wikiSERA-5 0.812 0.889 0.866 0.828 0.802 0.868 0.855 0.837 0.622 0.713 0.669 0.651
wikiSERA-10 0.862 0.891 0.866 0.858 0.832 0.89 0.865 0.858 0.649 0.715 0.68 0.671

wikiSERA-DIS-5 0.773 0.877 0.85 0.824 0.75 0.859 0.818 0.802 0.556 0.683 0.629 0.621
wikiSERA-DIS-10 0.832 0.892 0.865 0.862 0.803 0.902 0.858 0.843 0.613 0.736 0.667 0.65

Table A.36: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2008/Wikipedia dataset using the

reference summary A2
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.804 0.747 0.825 0.813 0.755 0.764 0.837 0.829 0.578 0.577 0.643 0.629
SERA-10 0.829 0.835 0.848 0.851 0.784 0.852 0.891 0.884 0.601 0.673 0.695 0.7

SERA-NP-5 0.819 0.811 0.828 0.742 0.757 0.83 0.837 0.742 0.587 0.65 0.639 0.554
SERA-NP-10 0.831 0.862 0.84 0.836 0.804 0.896 0.863 0.888 0.624 0.709 0.668 0.699
SERA-KW-5 0.795 0.75 0.823 0.812 0.759 0.765 0.83 0.825 0.581 0.577 0.63 0.625
SERA-KW-10 0.812 0.839 0.848 0.852 0.775 0.862 0.885 0.88 0.599 0.682 0.693 0.699
SERA-DIS-5 0.806 0.751 0.794 0.793 0.75 0.751 0.806 0.822 0.569 0.563 0.602 0.621
SERA-DIS-10 0.82 0.82 0.833 0.836 0.785 0.828 0.856 0.867 0.598 0.633 0.659 0.677

SERA-DIS-NP-5 0.788 0.818 0.799 0.705 0.753 0.817 0.83 0.707 0.58 0.632 0.638 0.529
SERA-DIS-NP-10 0.804 0.865 0.823 0.793 0.787 0.886 0.844 0.838 0.606 0.696 0.646 0.643
SERA-DIS-KW-5 0.793 0.742 0.791 0.783 0.761 0.728 0.788 0.8 0.568 0.537 0.59 0.602
SERA-DIS-KW-10 0.812 0.819 0.832 0.825 0.774 0.834 0.849 0.859 0.583 0.638 0.652 0.67

wikiSERA-5 0.815 0.803 0.835 0.803 0.812 0.815 0.849 0.851 0.626 0.635 0.678 0.665
wikiSERA-10 0.83 0.838 0.859 0.838 0.77 0.856 0.875 0.859 0.588 0.672 0.694 0.677

wikiSERA-DIS-5 0.809 0.8 0.793 0.808 0.809 0.779 0.802 0.852 0.619 0.597 0.621 0.667
wikiSERA-DIS-10 0.824 0.827 0.835 0.839 0.787 0.836 0.837 0.854 0.606 0.655 0.66 0.675
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.804 0.748 0.825 0.813 0.755 0.763 0.835 0.826 0.578 0.575 0.641 0.627
SERA-10 0.828 0.835 0.848 0.851 0.782 0.851 0.889 0.882 0.601 0.67 0.692 0.698

SERA-NP-5 0.818 0.812 0.828 0.743 0.756 0.829 0.838 0.74 0.584 0.648 0.642 0.551
SERA-NP-10 0.831 0.862 0.839 0.836 0.803 0.895 0.861 0.886 0.622 0.707 0.666 0.696
SERA-KW-5 0.794 0.751 0.822 0.811 0.758 0.765 0.829 0.823 0.581 0.575 0.628 0.622
SERA-KW-10 0.811 0.839 0.848 0.852 0.771 0.861 0.883 0.877 0.596 0.679 0.69 0.697
SERA-DIS-5 0.805 0.751 0.794 0.792 0.749 0.751 0.805 0.819 0.567 0.561 0.599 0.619
SERA-DIS-10 0.82 0.819 0.833 0.835 0.782 0.827 0.855 0.864 0.598 0.631 0.656 0.675

SERA-DIS-NP-5 0.787 0.819 0.799 0.705 0.752 0.816 0.83 0.704 0.578 0.63 0.636 0.527
SERA-DIS-NP-10 0.803 0.866 0.823 0.793 0.785 0.885 0.842 0.836 0.603 0.694 0.644 0.641
SERA-DIS-KW-5 0.792 0.742 0.791 0.782 0.758 0.727 0.787 0.797 0.568 0.534 0.587 0.6
SERA-DIS-KW-10 0.81 0.819 0.832 0.825 0.775 0.833 0.847 0.856 0.579 0.636 0.649 0.667

wikiSERA-5 0.814 0.803 0.835 0.802 0.808 0.814 0.849 0.849 0.623 0.633 0.678 0.663
wikiSERA-10 0.829 0.838 0.859 0.838 0.767 0.856 0.874 0.857 0.585 0.67 0.691 0.674

wikiSERA-DIS-5 0.808 0.8 0.793 0.807 0.806 0.778 0.801 0.849 0.616 0.597 0.621 0.665
wikiSERA-DIS-10 0.823 0.827 0.835 0.839 0.783 0.836 0.835 0.852 0.603 0.653 0.657 0.672

Table A.37: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2008/Wikipedia dataset using the

reference summary A3
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.806 0.817 0.869 0.799 0.76 0.81 0.863 0.824 0.589 0.632 0.689 0.634
SERA-10 0.834 0.861 0.887 0.858 0.774 0.867 0.9 0.864 0.59 0.69 0.726 0.679

SERA-NP-5 0.857 0.866 0.854 0.804 0.81 0.859 0.883 0.815 0.608 0.692 0.696 0.627
SERA-NP-10 0.811 0.87 0.856 0.855 0.772 0.882 0.876 0.854 0.588 0.704 0.7 0.663
SERA-KW-5 0.831 0.809 0.869 0.792 0.802 0.812 0.871 0.813 0.617 0.634 0.7 0.613
SERA-KW-10 0.85 0.869 0.884 0.856 0.82 0.879 0.888 0.873 0.63 0.703 0.714 0.687

SERA-DIS-5 0.828 0.829 0.858 0.796 0.764 0.803 0.858 0.813 0.581 0.619 0.682 0.623
SERA-DIS-10 0.825 0.864 0.888 0.856 0.777 0.852 0.896 0.863 0.593 0.676 0.714 0.681

SERA-DIS-NP-5 0.847 0.843 0.84 0.816 0.814 0.803 0.871 0.813 0.624 0.627 0.678 0.614
SERA-DIS-NP-10 0.831 0.873 0.846 0.86 0.791 0.88 0.875 0.846 0.591 0.7 0.69 0.66
SERA-DIS-KW-5 0.848 0.821 0.864 0.788 0.821 0.801 0.859 0.812 0.638 0.619 0.681 0.607
SERA-DIS-KW-10 0.865 0.866 0.882 0.854 0.839 0.864 0.885 0.854 0.656 0.684 0.706 0.659

wikiSERA-5 0.849 0.846 0.865 0.822 0.831 0.836 0.885 0.845 0.645 0.648 0.701 0.664
wikiSERA-10 0.842 0.858 0.871 0.855 0.792 0.876 0.852 0.851 0.609 0.691 0.67 0.671

wikiSERA-DIS-5 0.853 0.85 0.839 0.816 0.839 0.838 0.857 0.823 0.656 0.658 0.668 0.638
wikiSERA-DIS-10 0.849 0.86 0.86 0.856 0.781 0.876 0.848 0.85 0.598 0.693 0.66 0.671
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.806 0.817 0.869 0.799 0.758 0.808 0.862 0.82 0.587 0.632 0.689 0.632
SERA-10 0.834 0.861 0.887 0.858 0.772 0.866 0.897 0.861 0.59 0.69 0.723 0.677

SERA-NP-5 0.856 0.866 0.854 0.804 0.807 0.857 0.881 0.814 0.605 0.69 0.693 0.624
SERA-NP-10 0.811 0.87 0.855 0.855 0.77 0.88 0.874 0.851 0.586 0.702 0.697 0.66
SERA-KW-5 0.83 0.81 0.87 0.792 0.799 0.809 0.869 0.81 0.617 0.634 0.698 0.611
SERA-KW-10 0.848 0.869 0.884 0.856 0.816 0.877 0.886 0.871 0.63 0.701 0.712 0.684

SERA-DIS-5 0.828 0.829 0.858 0.796 0.76 0.802 0.858 0.811 0.579 0.619 0.682 0.62
SERA-DIS-10 0.824 0.864 0.888 0.856 0.775 0.851 0.895 0.86 0.593 0.676 0.714 0.678

SERA-DIS-NP-5 0.846 0.843 0.84 0.816 0.81 0.802 0.87 0.813 0.621 0.625 0.676 0.614
SERA-DIS-NP-10 0.83 0.873 0.846 0.859 0.788 0.878 0.873 0.844 0.589 0.698 0.688 0.658
SERA-DIS-KW-5 0.847 0.821 0.864 0.788 0.817 0.799 0.859 0.81 0.638 0.619 0.681 0.604
SERA-DIS-KW-10 0.867 0.866 0.882 0.855 0.835 0.863 0.884 0.851 0.656 0.684 0.706 0.656

wikiSERA-5 0.848 0.847 0.865 0.821 0.828 0.832 0.884 0.843 0.643 0.646 0.699 0.662
wikiSERA-10 0.841 0.859 0.871 0.855 0.789 0.875 0.85 0.849 0.609 0.688 0.67 0.668

wikiSERA-DIS-5 0.852 0.85 0.839 0.816 0.835 0.835 0.857 0.821 0.654 0.655 0.668 0.636
wikiSERA-DIS-10 0.849 0.86 0.86 0.856 0.778 0.875 0.847 0.849 0.595 0.69 0.66 0.668

Table A.38: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2008/Wikipedia dataset using the

reference summary A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.824 0.822 0.871 0.843 0.79 0.832 0.881 0.843 0.603 0.65 0.7 0.657
SERA-10 0.844 0.884 0.878 0.866 0.798 0.906 0.906 0.891 0.614 0.737 0.731 0.713

SERA-NP-5 0.841 0.902 0.88 0.819 0.805 0.898 0.887 0.818 0.607 0.726 0.7 0.623
SERA-NP-10 0.85 0.885 0.873 0.861 0.833 0.904 0.888 0.884 0.648 0.72 0.711 0.705
SERA-KW-5 0.81 0.833 0.868 0.842 0.777 0.844 0.875 0.853 0.587 0.669 0.689 0.667
SERA-KW-10 0.829 0.884 0.884 0.866 0.794 0.91 0.906 0.888 0.606 0.737 0.734 0.706
SERA-DIS-5 0.828 0.823 0.859 0.847 0.793 0.819 0.864 0.863 0.606 0.643 0.678 0.676
SERA-DIS-10 0.82 0.874 0.872 0.869 0.789 0.898 0.872 0.89 0.6 0.724 0.682 0.704

SERA-DIS-NP-5 0.806 0.896 0.875 0.819 0.781 0.891 0.873 0.82 0.589 0.716 0.688 0.641
SERA-DIS-NP-10 0.83 0.901 0.879 0.851 0.814 0.915 0.884 0.873 0.624 0.748 0.699 0.683
SERA-DIS-KW-5 0.789 0.832 0.86 0.842 0.776 0.829 0.864 0.856 0.585 0.652 0.681 0.668
SERA-DIS-KW-10 0.807 0.879 0.879 0.864 0.792 0.898 0.879 0.878 0.597 0.724 0.696 0.695

wikiSERA-5 0.828 0.872 0.881 0.854 0.814 0.868 0.887 0.868 0.62 0.693 0.713 0.691
wikiSERA-10 0.855 0.884 0.882 0.861 0.814 0.909 0.891 0.875 0.625 0.737 0.719 0.699

wikiSERA-DIS-5 0.816 0.865 0.863 0.854 0.811 0.861 0.857 0.87 0.616 0.69 0.671 0.69
wikiSERA-DIS-10 0.842 0.88 0.876 0.867 0.809 0.895 0.87 0.881 0.624 0.719 0.689 0.696
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.823 0.822 0.871 0.843 0.79 0.83 0.879 0.84 0.603 0.648 0.698 0.655
SERA-10 0.843 0.884 0.878 0.865 0.796 0.906 0.904 0.888 0.614 0.735 0.729 0.71

SERA-NP-5 0.84 0.902 0.88 0.819 0.804 0.898 0.887 0.816 0.604 0.724 0.7 0.62
SERA-NP-10 0.85 0.885 0.873 0.861 0.831 0.904 0.885 0.881 0.645 0.718 0.709 0.702
SERA-KW-5 0.809 0.833 0.867 0.841 0.775 0.842 0.873 0.849 0.587 0.666 0.687 0.665
SERA-KW-10 0.827 0.884 0.884 0.865 0.792 0.909 0.904 0.885 0.601 0.735 0.731 0.704
SERA-DIS-5 0.827 0.823 0.859 0.847 0.791 0.817 0.862 0.859 0.603 0.641 0.676 0.673
SERA-DIS-10 0.819 0.874 0.872 0.868 0.787 0.896 0.87 0.887 0.597 0.722 0.679 0.701

SERA-DIS-NP-5 0.805 0.896 0.875 0.819 0.78 0.89 0.872 0.818 0.587 0.713 0.685 0.638
SERA-DIS-NP-10 0.829 0.901 0.879 0.851 0.811 0.914 0.881 0.87 0.621 0.746 0.696 0.681
SERA-DIS-KW-5 0.788 0.832 0.86 0.842 0.774 0.827 0.862 0.853 0.582 0.649 0.678 0.666
SERA-DIS-KW-10 0.806 0.878 0.879 0.863 0.79 0.897 0.877 0.875 0.599 0.722 0.694 0.693

wikiSERA-5 0.827 0.872 0.88 0.853 0.811 0.865 0.887 0.866 0.617 0.691 0.71 0.689
wikiSERA-10 0.854 0.884 0.882 0.86 0.812 0.909 0.889 0.873 0.623 0.735 0.716 0.696

wikiSERA-DIS-5 0.815 0.865 0.863 0.854 0.807 0.858 0.855 0.866 0.614 0.688 0.668 0.688
wikiSERA-DIS-10 0.841 0.88 0.875 0.867 0.807 0.894 0.868 0.878 0.621 0.716 0.687 0.694

Table A.39: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2008/Wikipedia dataset using the

reference summary A1, A2, A3
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.827 0.844 0.886 0.841 0.78 0.839 0.89 0.84 0.591 0.666 0.716 0.652
SERA-10 0.845 0.894 0.89 0.87 0.797 0.903 0.909 0.888 0.61 0.725 0.734 0.712

SERA-NP-5 0.857 0.909 0.883 0.838 0.828 0.897 0.901 0.84 0.631 0.727 0.725 0.654
SERA-NP-10 0.842 0.891 0.879 0.867 0.831 0.908 0.89 0.877 0.647 0.735 0.719 0.696
SERA-KW-5 0.823 0.852 0.884 0.836 0.797 0.852 0.893 0.847 0.61 0.682 0.717 0.66
SERA-KW-10 0.842 0.894 0.895 0.87 0.814 0.908 0.91 0.887 0.628 0.74 0.737 0.707
SERA-DIS-5 0.834 0.845 0.88 0.854 0.786 0.836 0.874 0.86 0.602 0.659 0.702 0.678
SERA-DIS-10 0.823 0.888 0.889 0.875 0.779 0.901 0.885 0.894 0.591 0.724 0.704 0.718

SERA-DIS-NP-5 0.83 0.9 0.886 0.858 0.807 0.879 0.897 0.843 0.606 0.707 0.721 0.66
SERA-DIS-NP-10 0.838 0.905 0.888 0.874 0.815 0.912 0.9 0.881 0.627 0.747 0.723 0.694
SERA-DIS-KW-5 0.806 0.855 0.884 0.849 0.785 0.839 0.882 0.849 0.595 0.667 0.707 0.665
SERA-DIS-KW-10 0.825 0.892 0.894 0.876 0.805 0.906 0.893 0.891 0.606 0.734 0.714 0.706

wikiSERA-5 0.839 0.884 0.89 0.856 0.83 0.881 0.902 0.864 0.633 0.71 0.731 0.677
wikiSERA-10 0.862 0.891 0.885 0.865 0.824 0.909 0.891 0.87 0.642 0.734 0.714 0.688

wikiSERA-DIS-5 0.826 0.879 0.878 0.857 0.821 0.872 0.875 0.863 0.629 0.704 0.694 0.681
wikiSERA-DIS-10 0.849 0.892 0.885 0.875 0.817 0.909 0.876 0.873 0.629 0.742 0.695 0.694
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.826 0.844 0.886 0.841 0.778 0.837 0.888 0.836 0.589 0.664 0.713 0.649
SERA-10 0.844 0.894 0.889 0.87 0.795 0.902 0.906 0.885 0.61 0.723 0.731 0.71

SERA-NP-5 0.856 0.909 0.883 0.837 0.827 0.896 0.899 0.838 0.628 0.724 0.723 0.652
SERA-NP-10 0.842 0.89 0.878 0.867 0.828 0.907 0.887 0.873 0.644 0.733 0.717 0.694
SERA-KW-5 0.822 0.852 0.884 0.836 0.795 0.849 0.891 0.844 0.608 0.679 0.715 0.658
SERA-KW-10 0.839 0.894 0.895 0.87 0.807 0.907 0.907 0.884 0.625 0.737 0.735 0.705
SERA-DIS-5 0.833 0.845 0.88 0.854 0.783 0.834 0.872 0.857 0.6 0.656 0.7 0.676
SERA-DIS-10 0.822 0.888 0.889 0.875 0.776 0.899 0.883 0.892 0.589 0.722 0.701 0.716

SERA-DIS-NP-5 0.829 0.9 0.886 0.858 0.804 0.878 0.897 0.842 0.604 0.705 0.718 0.657
SERA-DIS-NP-10 0.837 0.905 0.888 0.873 0.812 0.911 0.898 0.878 0.625 0.745 0.721 0.691
SERA-DIS-KW-5 0.805 0.855 0.884 0.849 0.781 0.836 0.88 0.846 0.59 0.665 0.705 0.662
SERA-DIS-KW-10 0.825 0.892 0.894 0.876 0.8 0.904 0.89 0.888 0.606 0.731 0.712 0.704

wikiSERA-5 0.839 0.884 0.889 0.856 0.827 0.878 0.9 0.861 0.631 0.708 0.729 0.675
wikiSERA-10 0.861 0.891 0.885 0.865 0.822 0.908 0.889 0.868 0.639 0.731 0.712 0.685

wikiSERA-DIS-5 0.825 0.879 0.878 0.856 0.817 0.87 0.873 0.86 0.624 0.701 0.691 0.678
wikiSERA-DIS-10 0.848 0.891 0.885 0.874 0.815 0.908 0.874 0.87 0.626 0.74 0.693 0.691

Table A.40: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2008/Wikipedia dataset using the

reference summary A1, A2, A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.82 0.824 0.874 0.833 0.783 0.816 0.875 0.827 0.6 0.643 0.689 0.633
SERA-10 0.843 0.877 0.886 0.866 0.791 0.884 0.908 0.881 0.609 0.7 0.726 0.702

SERA-NP-5 0.848 0.897 0.878 0.815 0.803 0.892 0.893 0.81 0.606 0.721 0.702 0.616
SERA-NP-10 0.841 0.89 0.873 0.869 0.819 0.907 0.88 0.881 0.629 0.73 0.7 0.702

SERA-KW-5 0.825 0.827 0.871 0.829 0.798 0.816 0.865 0.824 0.61 0.638 0.676 0.633
SERA-KW-10 0.843 0.878 0.889 0.866 0.817 0.888 0.903 0.877 0.627 0.705 0.725 0.695
SERA-DIS-5 0.834 0.829 0.862 0.833 0.782 0.808 0.857 0.829 0.593 0.63 0.671 0.641
SERA-DIS-10 0.829 0.869 0.881 0.862 0.784 0.87 0.884 0.864 0.597 0.69 0.702 0.673

SERA-DIS-NP-5 0.826 0.886 0.871 0.817 0.794 0.874 0.885 0.796 0.595 0.704 0.7 0.597
SERA-DIS-NP-10 0.835 0.899 0.874 0.858 0.815 0.904 0.884 0.848 0.619 0.734 0.695 0.665
SERA-DIS-KW-5 0.82 0.83 0.863 0.826 0.791 0.814 0.854 0.824 0.606 0.641 0.664 0.635
SERA-DIS-KW-10 0.837 0.87 0.881 0.861 0.808 0.875 0.88 0.863 0.62 0.694 0.694 0.672

wikiSERA-5 0.843 0.865 0.875 0.84 0.84 0.86 0.885 0.86 0.655 0.684 0.703 0.671
wikiSERA-10 0.858 0.877 0.879 0.866 0.806 0.897 0.882 0.864 0.629 0.72 0.705 0.689

wikiSERA-DIS-5 0.834 0.864 0.853 0.841 0.827 0.844 0.855 0.859 0.645 0.676 0.671 0.675
wikiSERA-DIS-10 0.849 0.878 0.87 0.868 0.806 0.886 0.866 0.859 0.63 0.705 0.687 0.675
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.82 0.825 0.873 0.833 0.782 0.814 0.872 0.823 0.597 0.641 0.687 0.631
SERA-10 0.842 0.876 0.886 0.866 0.789 0.883 0.905 0.878 0.609 0.698 0.724 0.7

SERA-NP-5 0.847 0.897 0.878 0.815 0.801 0.891 0.892 0.809 0.603 0.718 0.7 0.614
SERA-NP-10 0.84 0.89 0.872 0.869 0.817 0.905 0.877 0.878 0.626 0.728 0.698 0.7

SERA-KW-5 0.825 0.827 0.871 0.828 0.796 0.813 0.863 0.82 0.61 0.636 0.673 0.63
SERA-KW-10 0.842 0.878 0.888 0.866 0.81 0.887 0.9 0.874 0.627 0.702 0.723 0.693
SERA-DIS-5 0.833 0.829 0.862 0.832 0.779 0.807 0.856 0.825 0.591 0.627 0.668 0.638
SERA-DIS-10 0.828 0.869 0.881 0.862 0.781 0.868 0.882 0.861 0.597 0.687 0.7 0.671

SERA-DIS-NP-5 0.825 0.886 0.871 0.817 0.791 0.873 0.884 0.794 0.592 0.701 0.698 0.595
SERA-DIS-NP-10 0.834 0.899 0.874 0.858 0.812 0.903 0.883 0.846 0.616 0.731 0.693 0.662
SERA-DIS-KW-5 0.819 0.83 0.863 0.825 0.788 0.812 0.852 0.82 0.603 0.638 0.661 0.633
SERA-DIS-KW-10 0.839 0.87 0.881 0.86 0.806 0.873 0.878 0.86 0.614 0.691 0.691 0.67

wikiSERA-5 0.842 0.865 0.875 0.839 0.837 0.857 0.884 0.857 0.653 0.682 0.7 0.668
wikiSERA-10 0.857 0.877 0.878 0.866 0.803 0.896 0.881 0.863 0.626 0.718 0.702 0.686

wikiSERA-DIS-5 0.833 0.864 0.853 0.841 0.823 0.842 0.854 0.857 0.643 0.673 0.668 0.672
wikiSERA-DIS-10 0.848 0.878 0.869 0.868 0.803 0.885 0.865 0.857 0.627 0.702 0.684 0.672

Table A.41: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2008/Wikipedia dataset using the

reference summary A2, A3, A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.826 0.831 0.88 0.841 0.774 0.839 0.885 0.85 0.592 0.673 0.707 0.664
SERA-10 0.846 0.884 0.886 0.87 0.797 0.9 0.912 0.89 0.616 0.724 0.739 0.711

SERA-NP-5 0.853 0.9 0.884 0.827 0.817 0.898 0.896 0.833 0.618 0.733 0.71 0.644
SERA-NP-10 0.845 0.89 0.877 0.867 0.822 0.912 0.89 0.884 0.637 0.738 0.712 0.702
SERA-KW-5 0.822 0.837 0.878 0.837 0.798 0.838 0.883 0.846 0.609 0.667 0.695 0.659
SERA-KW-10 0.841 0.885 0.89 0.87 0.815 0.906 0.908 0.89 0.627 0.727 0.734 0.713

SERA-DIS-5 0.835 0.833 0.871 0.846 0.783 0.825 0.87 0.856 0.598 0.655 0.693 0.672
SERA-DIS-10 0.827 0.877 0.882 0.871 0.792 0.887 0.888 0.891 0.602 0.707 0.708 0.71

SERA-DIS-NP-5 0.828 0.894 0.879 0.833 0.796 0.884 0.894 0.828 0.606 0.718 0.713 0.637
SERA-DIS-NP-10 0.837 0.902 0.881 0.862 0.811 0.917 0.891 0.874 0.621 0.754 0.714 0.685
SERA-DIS-KW-5 0.812 0.838 0.873 0.84 0.791 0.837 0.872 0.849 0.606 0.667 0.691 0.659
SERA-DIS-KW-10 0.832 0.881 0.887 0.87 0.807 0.894 0.891 0.886 0.626 0.719 0.706 0.702

wikiSERA-5 0.84 0.873 0.885 0.851 0.829 0.865 0.897 0.864 0.634 0.698 0.72 0.685
wikiSERA-10 0.858 0.883 0.884 0.865 0.818 0.903 0.894 0.877 0.632 0.727 0.727 0.698

wikiSERA-DIS-5 0.832 0.87 0.869 0.852 0.828 0.865 0.87 0.86 0.638 0.701 0.685 0.671
wikiSERA-DIS-10 0.849 0.882 0.878 0.87 0.809 0.899 0.875 0.874 0.626 0.722 0.695 0.69
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.826 0.831 0.88 0.841 0.773 0.836 0.884 0.846 0.59 0.671 0.704 0.661
SERA-10 0.845 0.884 0.885 0.87 0.795 0.899 0.909 0.888 0.616 0.722 0.736 0.708

SERA-NP-5 0.853 0.9 0.883 0.827 0.815 0.897 0.895 0.831 0.616 0.73 0.708 0.641
SERA-NP-10 0.845 0.889 0.876 0.866 0.82 0.911 0.888 0.881 0.635 0.735 0.709 0.7
SERA-KW-5 0.822 0.837 0.878 0.837 0.796 0.836 0.882 0.843 0.609 0.664 0.692 0.656
SERA-KW-10 0.842 0.885 0.889 0.87 0.811 0.905 0.906 0.887 0.624 0.725 0.732 0.711

SERA-DIS-5 0.835 0.833 0.871 0.846 0.78 0.823 0.868 0.852 0.596 0.653 0.69 0.67
SERA-DIS-10 0.826 0.877 0.882 0.871 0.789 0.885 0.886 0.888 0.6 0.705 0.706 0.707

SERA-DIS-NP-5 0.827 0.894 0.878 0.833 0.794 0.883 0.893 0.826 0.603 0.716 0.711 0.635
SERA-DIS-NP-10 0.836 0.902 0.881 0.862 0.808 0.915 0.889 0.871 0.619 0.752 0.712 0.683
SERA-DIS-KW-5 0.811 0.838 0.873 0.84 0.788 0.835 0.871 0.845 0.604 0.665 0.689 0.656
SERA-DIS-KW-10 0.83 0.88 0.886 0.869 0.803 0.892 0.889 0.883 0.616 0.717 0.704 0.7

wikiSERA-5 0.839 0.873 0.885 0.851 0.826 0.862 0.896 0.862 0.631 0.695 0.718 0.683
wikiSERA-10 0.857 0.883 0.883 0.864 0.816 0.902 0.892 0.875 0.63 0.725 0.725 0.696

wikiSERA-DIS-5 0.831 0.87 0.868 0.852 0.825 0.862 0.869 0.857 0.636 0.699 0.683 0.668
wikiSERA-DIS-10 0.848 0.882 0.878 0.87 0.806 0.898 0.873 0.872 0.624 0.719 0.692 0.688

Table A.42: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2008/Wikipedia dataset using the

reference summary A1, A2, A3, A4



A.2.6 Correlation of SERA and wikiSERA with Responsiveness on TAC2008/Wikipedia

Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.718 0.742 0.786 0.709 0.669 0.742 0.781 0.726 0.474 0.545 0.593 0.538
SERA-10 0.724 0.812 0.785 0.758 0.683 0.811 0.803 0.789 0.49 0.616 0.613 0.592

SERA-NP-5 0.722 0.825 0.785 0.696 0.709 0.801 0.784 0.691 0.517 0.607 0.59 0.505
SERA-NP-10 0.728 0.767 0.774 0.725 0.659 0.768 0.772 0.751 0.483 0.576 0.58 0.556
SERA-KW-5 0.688 0.756 0.784 0.7 0.639 0.744 0.773 0.72 0.459 0.553 0.585 0.534
SERA-KW-10 0.705 0.808 0.796 0.765 0.651 0.803 0.809 0.8 0.471 0.609 0.621 0.608
SERA-DIS-5 0.69 0.749 0.783 0.733 0.642 0.754 0.786 0.774 0.462 0.55 0.592 0.58
SERA-DIS-10 0.677 0.816 0.775 0.768 0.629 0.822 0.776 0.813 0.444 0.622 0.579 0.608

SERA-DIS-NP-5 0.686 0.828 0.78 0.729 0.655 0.795 0.776 0.706 0.456 0.601 0.574 0.519
SERA-DIS-NP-10 0.705 0.796 0.788 0.749 0.631 0.799 0.785 0.761 0.459 0.609 0.592 0.563
SERA-DIS-KW-5 0.642 0.759 0.788 0.718 0.596 0.748 0.793 0.741 0.422 0.539 0.598 0.552
SERA-DIS-KW-10 0.657 0.822 0.79 0.768 0.615 0.822 0.791 0.81 0.44 0.62 0.594 0.621

wikiSERA-5 0.697 0.801 0.773 0.711 0.657 0.811 0.751 0.724 0.481 0.62 0.566 0.55
wikiSERA-10 0.744 0.804 0.782 0.721 0.674 0.802 0.791 0.752 0.486 0.606 0.605 0.556

wikiSERA-DIS-5 0.678 0.77 0.763 0.723 0.66 0.767 0.734 0.731 0.482 0.574 0.551 0.551
wikiSERA-DIS-10 0.723 0.798 0.778 0.736 0.676 0.792 0.766 0.77 0.495 0.602 0.587 0.579

Table A.43: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/Wikipedia dataset using the reference summary A1
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.729 0.775 0.795 0.724 0.674 0.745 0.745 0.686 0.484 0.556 0.56 0.51
SERA-10 0.738 0.823 0.805 0.746 0.655 0.794 0.799 0.736 0.461 0.604 0.609 0.536

SERA-NP-5 0.723 0.856 0.788 0.701 0.667 0.848 0.745 0.642 0.477 0.658 0.55 0.474
SERA-NP-10 0.748 0.799 0.776 0.753 0.728 0.759 0.732 0.746 0.525 0.563 0.535 0.535
SERA-KW-5 0.735 0.788 0.792 0.722 0.676 0.743 0.742 0.687 0.471 0.558 0.556 0.509
SERA-KW-10 0.753 0.818 0.816 0.746 0.692 0.788 0.805 0.743 0.485 0.605 0.616 0.547

SERA-DIS-5 0.724 0.795 0.775 0.741 0.667 0.763 0.708 0.674 0.472 0.569 0.514 0.501
SERA-DIS-10 0.703 0.825 0.795 0.747 0.618 0.791 0.755 0.717 0.423 0.598 0.562 0.519

SERA-DIS-NP-5 0.668 0.849 0.815 0.723 0.622 0.81 0.758 0.63 0.433 0.609 0.573 0.449
SERA-DIS-NP-10 0.716 0.826 0.808 0.749 0.692 0.792 0.763 0.695 0.494 0.588 0.571 0.502
SERA-DIS-KW-5 0.673 0.808 0.779 0.74 0.656 0.771 0.712 0.677 0.46 0.584 0.524 0.5
SERA-DIS-KW-10 0.693 0.82 0.805 0.749 0.669 0.787 0.765 0.711 0.48 0.597 0.573 0.518

wikiSERA-5 0.735 0.821 0.791 0.743 0.72 0.77 0.752 0.73 0.517 0.592 0.564 0.54
wikiSERA-10 0.771 0.828 0.786 0.768 0.715 0.809 0.765 0.76 0.523 0.624 0.571 0.562

wikiSERA-DIS-5 0.683 0.818 0.776 0.747 0.645 0.782 0.702 0.687 0.45 0.593 0.517 0.5
wikiSERA-DIS-10 0.734 0.838 0.784 0.772 0.677 0.823 0.749 0.744 0.482 0.626 0.553 0.548

Table A.44: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/Wikipedia dataset using the reference summary A2
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.734 0.667 0.752 0.707 0.66 0.664 0.742 0.699 0.477 0.471 0.535 0.501
SERA-10 0.749 0.766 0.751 0.76 0.68 0.751 0.792 0.789 0.484 0.558 0.592 0.593

SERA-NP-5 0.732 0.741 0.764 0.647 0.644 0.728 0.773 0.631 0.466 0.538 0.572 0.447
SERA-NP-10 0.74 0.785 0.731 0.733 0.686 0.798 0.745 0.771 0.487 0.601 0.544 0.56
SERA-KW-5 0.741 0.669 0.747 0.705 0.691 0.669 0.733 0.697 0.509 0.481 0.528 0.504
SERA-KW-10 0.759 0.771 0.753 0.761 0.708 0.761 0.785 0.787 0.528 0.563 0.586 0.586
SERA-DIS-5 0.721 0.686 0.715 0.678 0.639 0.668 0.705 0.685 0.448 0.462 0.507 0.495
SERA-DIS-10 0.739 0.749 0.728 0.728 0.687 0.727 0.745 0.75 0.493 0.524 0.547 0.551

SERA-DIS-NP-5 0.687 0.752 0.723 0.596 0.638 0.724 0.757 0.573 0.444 0.533 0.548 0.411
SERA-DIS-NP-10 0.698 0.797 0.72 0.676 0.667 0.797 0.736 0.703 0.474 0.592 0.533 0.503
SERA-DIS-KW-5 0.73 0.677 0.71 0.667 0.687 0.639 0.682 0.665 0.49 0.44 0.488 0.482
SERA-DIS-KW-10 0.749 0.751 0.726 0.716 0.703 0.732 0.737 0.742 0.503 0.527 0.544 0.541

wikiSERA-5 0.747 0.729 0.756 0.684 0.722 0.727 0.734 0.718 0.536 0.539 0.544 0.516
wikiSERA-10 0.731 0.762 0.762 0.739 0.631 0.75 0.777 0.76 0.445 0.553 0.58 0.567

wikiSERA-DIS-5 0.733 0.728 0.694 0.682 0.717 0.695 0.674 0.711 0.528 0.501 0.491 0.512
wikiSERA-DIS-10 0.728 0.74 0.726 0.728 0.662 0.719 0.727 0.741 0.476 0.524 0.543 0.544

Table A.45: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/Wikipedia dataset using the reference summary A3
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.716 0.75 0.796 0.692 0.641 0.719 0.769 0.695 0.473 0.527 0.588 0.507
SERA-10 0.745 0.778 0.8 0.774 0.666 0.759 0.812 0.774 0.468 0.572 0.62 0.584

SERA-NP-5 0.763 0.808 0.769 0.708 0.669 0.778 0.776 0.699 0.475 0.59 0.577 0.527
SERA-NP-10 0.715 0.788 0.762 0.754 0.649 0.793 0.765 0.739 0.46 0.593 0.573 0.53
SERA-KW-5 0.751 0.737 0.792 0.68 0.703 0.719 0.78 0.679 0.514 0.527 0.596 0.49
SERA-KW-10 0.769 0.782 0.8 0.776 0.72 0.767 0.798 0.785 0.534 0.583 0.606 0.587

SERA-DIS-5 0.726 0.785 0.799 0.704 0.62 0.728 0.788 0.701 0.445 0.538 0.603 0.517
SERA-DIS-10 0.721 0.799 0.816 0.776 0.656 0.755 0.824 0.77 0.463 0.565 0.631 0.577

SERA-DIS-NP-5 0.762 0.793 0.758 0.725 0.693 0.735 0.778 0.7 0.493 0.551 0.57 0.516
SERA-DIS-NP-10 0.736 0.801 0.756 0.764 0.666 0.799 0.775 0.737 0.471 0.596 0.573 0.536
SERA-DIS-KW-5 0.75 0.77 0.803 0.693 0.697 0.721 0.796 0.696 0.51 0.528 0.61 0.502
SERA-DIS-KW-10 0.765 0.798 0.811 0.774 0.714 0.762 0.806 0.757 0.528 0.567 0.612 0.563

wikiSERA-5 0.773 0.767 0.775 0.711 0.72 0.731 0.779 0.705 0.517 0.537 0.577 0.516
wikiSERA-10 0.752 0.774 0.782 0.761 0.67 0.764 0.761 0.757 0.48 0.558 0.573 0.565

wikiSERA-DIS-5 0.756 0.784 0.758 0.716 0.707 0.744 0.756 0.689 0.516 0.55 0.557 0.5
wikiSERA-DIS-10 0.757 0.789 0.776 0.762 0.647 0.775 0.748 0.749 0.462 0.575 0.561 0.557

Table A.46: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/Wikipedia dataset using the reference summary A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.743 0.754 0.801 0.74 0.695 0.749 0.789 0.72 0.511 0.552 0.593 0.533
SERA-10 0.752 0.817 0.795 0.771 0.683 0.812 0.815 0.793 0.489 0.612 0.625 0.594

SERA-NP-5 0.743 0.84 0.81 0.713 0.685 0.816 0.793 0.696 0.496 0.61 0.599 0.516
SERA-NP-10 0.756 0.801 0.777 0.757 0.713 0.793 0.773 0.769 0.511 0.594 0.575 0.557
SERA-KW-5 0.74 0.765 0.797 0.737 0.691 0.761 0.782 0.728 0.499 0.563 0.581 0.544
SERA-KW-10 0.758 0.816 0.804 0.773 0.711 0.818 0.818 0.788 0.514 0.622 0.63 0.59
SERA-DIS-5 0.734 0.77 0.784 0.748 0.677 0.752 0.766 0.743 0.485 0.558 0.577 0.547
SERA-DIS-10 0.721 0.814 0.784 0.771 0.661 0.81 0.772 0.791 0.471 0.607 0.58 0.587

SERA-DIS-NP-5 0.698 0.839 0.802 0.714 0.653 0.819 0.781 0.692 0.461 0.613 0.584 0.511
SERA-DIS-NP-10 0.725 0.823 0.793 0.744 0.684 0.815 0.778 0.75 0.485 0.62 0.585 0.547
SERA-DIS-KW-5 0.703 0.776 0.786 0.741 0.676 0.759 0.771 0.734 0.479 0.565 0.58 0.547
SERA-DIS-KW-10 0.72 0.816 0.794 0.767 0.691 0.808 0.783 0.775 0.494 0.608 0.59 0.576

wikiSERA-5 0.746 0.806 0.8 0.745 0.715 0.786 0.776 0.748 0.516 0.59 0.592 0.563
wikiSERA-10 0.762 0.813 0.792 0.76 0.678 0.815 0.802 0.783 0.487 0.611 0.601 0.579

wikiSERA-DIS-5 0.722 0.798 0.777 0.747 0.693 0.775 0.732 0.746 0.499 0.575 0.54 0.552
wikiSERA-DIS-10 0.743 0.809 0.782 0.764 0.68 0.796 0.765 0.775 0.487 0.59 0.573 0.573

Table A.47: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/Wikipedia dataset using the reference summary A1, A2, A3
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.738 0.781 0.816 0.738 0.67 0.755 0.8 0.716 0.491 0.564 0.609 0.528
SERA-10 0.75 0.821 0.81 0.777 0.679 0.799 0.819 0.793 0.48 0.596 0.625 0.592

SERA-NP-5 0.756 0.852 0.807 0.732 0.7 0.823 0.8 0.71 0.503 0.627 0.605 0.528
SERA-NP-10 0.746 0.805 0.788 0.764 0.711 0.803 0.774 0.764 0.505 0.602 0.574 0.553
SERA-KW-5 0.744 0.787 0.812 0.729 0.703 0.764 0.805 0.721 0.51 0.565 0.613 0.531
SERA-KW-10 0.763 0.819 0.818 0.781 0.723 0.81 0.822 0.788 0.521 0.613 0.624 0.593
SERA-DIS-5 0.734 0.799 0.811 0.763 0.657 0.773 0.785 0.753 0.474 0.579 0.601 0.558
SERA-DIS-10 0.715 0.83 0.812 0.787 0.643 0.809 0.794 0.801 0.45 0.608 0.601 0.596

SERA-DIS-NP-5 0.728 0.849 0.812 0.759 0.676 0.819 0.802 0.717 0.479 0.626 0.608 0.538
SERA-DIS-NP-10 0.738 0.826 0.806 0.773 0.687 0.815 0.796 0.767 0.49 0.615 0.597 0.562
SERA-DIS-KW-5 0.708 0.804 0.816 0.755 0.665 0.769 0.798 0.734 0.468 0.58 0.608 0.546
SERA-DIS-KW-10 0.726 0.83 0.821 0.789 0.683 0.812 0.808 0.8 0.483 0.615 0.614 0.594

wikiSERA-5 0.755 0.816 0.806 0.751 0.725 0.791 0.797 0.742 0.524 0.598 0.603 0.561
wikiSERA-10 0.772 0.817 0.798 0.767 0.706 0.815 0.801 0.778 0.514 0.61 0.607 0.581

wikiSERA-DIS-5 0.726 0.814 0.797 0.76 0.695 0.779 0.765 0.741 0.504 0.586 0.57 0.557
wikiSERA-DIS-10 0.752 0.825 0.799 0.777 0.683 0.817 0.778 0.773 0.487 0.624 0.584 0.574

Table A.48: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/Wikipedia dataset using the reference summary A1, A2, A4



A
.2.

S
E
R
A

an
d
w
ikiS

E
R
A

167

Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.74 0.755 0.802 0.727 0.677 0.723 0.783 0.699 0.495 0.525 0.59 0.503
SERA-10 0.754 0.803 0.8 0.774 0.675 0.781 0.817 0.783 0.478 0.583 0.62 0.582

SERA-NP-5 0.754 0.835 0.804 0.715 0.68 0.808 0.796 0.69 0.477 0.604 0.592 0.505
SERA-NP-10 0.746 0.808 0.775 0.765 0.691 0.807 0.761 0.758 0.489 0.609 0.559 0.548
SERA-KW-5 0.756 0.754 0.796 0.722 0.707 0.722 0.775 0.697 0.508 0.525 0.575 0.506
SERA-KW-10 0.775 0.803 0.805 0.775 0.72 0.781 0.811 0.781 0.519 0.585 0.618 0.582

SERA-DIS-5 0.741 0.781 0.79 0.732 0.653 0.743 0.762 0.708 0.463 0.548 0.57 0.52
SERA-DIS-10 0.732 0.807 0.795 0.766 0.662 0.774 0.792 0.762 0.467 0.576 0.594 0.561

SERA-DIS-NP-5 0.726 0.831 0.798 0.715 0.665 0.794 0.788 0.663 0.467 0.596 0.588 0.484
SERA-DIS-NP-10 0.731 0.826 0.786 0.752 0.685 0.813 0.775 0.719 0.476 0.618 0.575 0.522
SERA-DIS-KW-5 0.735 0.778 0.79 0.723 0.689 0.744 0.763 0.701 0.495 0.552 0.563 0.515
SERA-DIS-KW-10 0.751 0.806 0.798 0.764 0.708 0.779 0.788 0.76 0.508 0.582 0.591 0.554

wikiSERA-5 0.768 0.789 0.791 0.732 0.743 0.755 0.781 0.73 0.536 0.554 0.581 0.533
wikiSERA-10 0.763 0.801 0.789 0.77 0.676 0.795 0.791 0.772 0.485 0.592 0.599 0.575

wikiSERA-DIS-5 0.743 0.797 0.766 0.737 0.709 0.754 0.74 0.727 0.517 0.567 0.545 0.536
wikiSERA-DIS-10 0.751 0.806 0.777 0.768 0.673 0.785 0.758 0.757 0.491 0.579 0.563 0.562

Table A.49: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/Wikipedia dataset using the reference summary A2, A3, A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.742 0.763 0.809 0.736 0.669 0.751 0.796 0.724 0.488 0.56 0.605 0.53
SERA-10 0.754 0.812 0.801 0.777 0.685 0.798 0.823 0.793 0.486 0.594 0.627 0.594

SERA-NP-5 0.756 0.839 0.809 0.722 0.691 0.819 0.8 0.713 0.489 0.616 0.603 0.533
SERA-NP-10 0.75 0.806 0.78 0.763 0.703 0.812 0.772 0.771 0.501 0.618 0.571 0.561
SERA-KW-5 0.749 0.767 0.804 0.729 0.708 0.749 0.792 0.717 0.514 0.552 0.599 0.526
SERA-KW-10 0.764 0.812 0.808 0.78 0.725 0.806 0.818 0.793 0.526 0.603 0.623 0.594

SERA-DIS-5 0.739 0.781 0.799 0.748 0.652 0.757 0.778 0.738 0.466 0.568 0.59 0.546
SERA-DIS-10 0.726 0.815 0.798 0.778 0.664 0.79 0.797 0.796 0.472 0.588 0.603 0.591

SERA-DIS-NP-5 0.725 0.838 0.803 0.73 0.671 0.809 0.798 0.7 0.478 0.604 0.602 0.52
SERA-DIS-NP-10 0.734 0.826 0.793 0.757 0.681 0.82 0.787 0.75 0.482 0.626 0.586 0.55
SERA-DIS-KW-5 0.722 0.783 0.801 0.739 0.681 0.761 0.786 0.727 0.484 0.567 0.591 0.537
SERA-DIS-KW-10 0.742 0.817 0.805 0.776 0.694 0.797 0.802 0.789 0.497 0.598 0.601 0.584

wikiSERA-5 0.759 0.803 0.801 0.741 0.725 0.774 0.784 0.739 0.527 0.581 0.589 0.55
wikiSERA-10 0.765 0.808 0.794 0.765 0.69 0.805 0.806 0.79 0.501 0.598 0.606 0.587

wikiSERA-DIS-5 0.736 0.802 0.782 0.746 0.707 0.773 0.749 0.73 0.513 0.58 0.55 0.54
wikiSERA-DIS-10 0.751 0.81 0.786 0.769 0.673 0.8 0.774 0.769 0.479 0.601 0.579 0.569

Table A.50: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2008/Wikipedia dataset using the reference summary A1, A2, A3, A4
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A.2.7 Correlation of SERA and wikiSERA with Pyramid on

TAC2009/Wikipedia
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.816 0.881 0.928 0.921 0.788 0.844 0.84 0.885 0.619 0.689 0.674 0.724
SERA-10 0.856 0.899 0.91 0.924 0.85 0.841 0.855 0.924 0.679 0.674 0.693 0.777

SERA-NP-5 0.808 0.881 0.897 0.899 0.737 0.789 0.753 0.868 0.576 0.615 0.601 0.716
SERA-NP-10 0.844 0.896 0.897 0.909 0.847 0.859 0.831 0.856 0.673 0.713 0.683 0.694
SERA-KW-5 0.815 0.876 0.92 0.914 0.789 0.844 0.811 0.861 0.615 0.684 0.64 0.699
SERA-KW-10 0.853 0.901 0.9 0.925 0.855 0.833 0.848 0.922 0.688 0.666 0.69 0.77
SERA-DIS-5 0.86 0.908 0.939 0.95 0.787 0.828 0.829 0.881 0.612 0.663 0.665 0.719
SERA-DIS-10 0.912 0.939 0.946 0.964 0.842 0.822 0.834 0.915 0.667 0.657 0.675 0.774

SERA-DIS-NP-5 0.858 0.922 0.926 0.938 0.742 0.818 0.752 0.862 0.574 0.643 0.596 0.702
SERA-DIS-NP-10 0.912 0.942 0.937 0.95 0.83 0.853 0.802 0.844 0.659 0.697 0.636 0.681
SERA-DIS-KW-5 0.857 0.902 0.932 0.944 0.788 0.823 0.82 0.855 0.617 0.663 0.651 0.683
SERA-DIS-KW-10 0.906 0.934 0.941 0.959 0.83 0.814 0.831 0.907 0.659 0.64 0.671 0.754

wikiSERA-5 0.82 0.904 0.907 0.905 0.808 0.848 0.795 0.864 0.642 0.69 0.633 0.704
wikiSERA-10 0.849 0.923 0.899 0.911 0.859 0.857 0.853 0.899 0.693 0.702 0.684 0.753

wikiSERA-DIS-5 0.867 0.922 0.931 0.941 0.787 0.83 0.794 0.859 0.618 0.685 0.638 0.696
wikiSERA-DIS-10 0.913 0.953 0.945 0.961 0.849 0.882 0.829 0.892 0.677 0.731 0.662 0.739
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.815 0.88 0.928 0.921 0.791 0.846 0.84 0.885 0.624 0.691 0.672 0.723
SERA-10 0.856 0.898 0.91 0.923 0.853 0.842 0.856 0.926 0.684 0.673 0.697 0.782

SERA-NP-5 0.807 0.881 0.897 0.899 0.739 0.789 0.759 0.869 0.58 0.615 0.606 0.719
SERA-NP-10 0.843 0.896 0.897 0.909 0.848 0.861 0.833 0.858 0.675 0.711 0.685 0.698
SERA-KW-5 0.815 0.875 0.919 0.914 0.792 0.847 0.812 0.861 0.62 0.686 0.642 0.699
SERA-KW-10 0.852 0.9 0.9 0.925 0.857 0.834 0.849 0.925 0.693 0.665 0.694 0.775
SERA-DIS-5 0.86 0.908 0.939 0.95 0.79 0.83 0.83 0.882 0.617 0.666 0.667 0.721
SERA-DIS-10 0.912 0.939 0.946 0.964 0.844 0.821 0.836 0.917 0.672 0.655 0.679 0.776

SERA-DIS-NP-5 0.858 0.922 0.926 0.938 0.744 0.818 0.755 0.863 0.577 0.641 0.6 0.703
SERA-DIS-NP-10 0.912 0.942 0.937 0.95 0.832 0.854 0.804 0.846 0.662 0.697 0.637 0.682
SERA-DIS-KW-5 0.856 0.902 0.932 0.944 0.79 0.825 0.822 0.855 0.622 0.665 0.656 0.685
SERA-DIS-KW-10 0.905 0.933 0.941 0.959 0.832 0.814 0.833 0.91 0.664 0.639 0.675 0.757

wikiSERA-5 0.82 0.904 0.907 0.904 0.811 0.85 0.796 0.865 0.647 0.694 0.634 0.705
wikiSERA-10 0.849 0.923 0.899 0.911 0.861 0.858 0.855 0.901 0.698 0.701 0.689 0.755

wikiSERA-DIS-5 0.866 0.922 0.931 0.941 0.788 0.831 0.796 0.86 0.62 0.683 0.64 0.698
wikiSERA-DIS-10 0.913 0.952 0.945 0.961 0.85 0.882 0.831 0.894 0.682 0.73 0.664 0.741

Table A.51: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2009/Wikipedia dataset using the

reference summary A1
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.869 0.927 0.903 0.919 0.807 0.818 0.758 0.766 0.643 0.648 0.6 0.604
SERA-10 0.909 0.926 0.926 0.935 0.872 0.839 0.791 0.861 0.711 0.668 0.624 0.71

SERA-NP-5 0.875 0.908 0.895 0.91 0.803 0.741 0.738 0.792 0.631 0.563 0.57 0.616
SERA-NP-10 0.895 0.931 0.942 0.939 0.865 0.829 0.878 0.86 0.697 0.671 0.72 0.702
SERA-KW-5 0.869 0.925 0.894 0.919 0.808 0.81 0.763 0.767 0.646 0.637 0.609 0.599
SERA-KW-10 0.913 0.92 0.92 0.933 0.877 0.827 0.796 0.865 0.713 0.667 0.621 0.705
SERA-DIS-5 0.914 0.944 0.91 0.925 0.813 0.802 0.729 0.756 0.635 0.62 0.573 0.587
SERA-DIS-10 0.949 0.943 0.922 0.946 0.877 0.837 0.777 0.877 0.725 0.67 0.605 0.728

SERA-DIS-NP-5 0.914 0.917 0.906 0.923 0.795 0.742 0.686 0.758 0.623 0.578 0.521 0.585
SERA-DIS-NP-10 0.937 0.933 0.923 0.938 0.846 0.852 0.808 0.827 0.673 0.688 0.649 0.657
SERA-DIS-KW-5 0.909 0.939 0.902 0.924 0.815 0.796 0.72 0.761 0.639 0.615 0.561 0.6
SERA-DIS-KW-10 0.951 0.936 0.916 0.943 0.885 0.813 0.762 0.85 0.729 0.654 0.595 0.696

wikiSERA-5 0.887 0.905 0.885 0.911 0.811 0.78 0.685 0.769 0.643 0.612 0.527 0.606
wikiSERA-10 0.905 0.924 0.926 0.926 0.879 0.83 0.817 0.823 0.72 0.657 0.663 0.648

wikiSERA-DIS-5 0.917 0.929 0.905 0.935 0.82 0.779 0.691 0.81 0.654 0.613 0.535 0.661
wikiSERA-DIS-10 0.947 0.946 0.934 0.948 0.866 0.828 0.792 0.851 0.693 0.673 0.64 0.704
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.869 0.927 0.904 0.919 0.81 0.819 0.761 0.769 0.645 0.651 0.605 0.606
SERA-10 0.908 0.926 0.927 0.935 0.872 0.842 0.797 0.865 0.713 0.673 0.629 0.715

SERA-NP-5 0.875 0.909 0.895 0.91 0.803 0.743 0.742 0.793 0.63 0.567 0.574 0.619
SERA-NP-10 0.894 0.931 0.942 0.939 0.866 0.83 0.88 0.863 0.699 0.673 0.722 0.707
SERA-KW-5 0.869 0.925 0.895 0.919 0.812 0.811 0.766 0.77 0.648 0.639 0.614 0.601
SERA-KW-10 0.913 0.92 0.92 0.934 0.877 0.831 0.802 0.869 0.716 0.67 0.626 0.71
SERA-DIS-5 0.913 0.944 0.91 0.925 0.815 0.803 0.731 0.76 0.637 0.622 0.575 0.59
SERA-DIS-10 0.949 0.943 0.923 0.947 0.877 0.841 0.781 0.882 0.728 0.672 0.61 0.732

SERA-DIS-NP-5 0.914 0.917 0.906 0.923 0.796 0.747 0.69 0.759 0.622 0.583 0.526 0.587
SERA-DIS-NP-10 0.937 0.933 0.924 0.938 0.848 0.855 0.81 0.83 0.675 0.693 0.652 0.662
SERA-DIS-KW-5 0.909 0.939 0.902 0.924 0.818 0.797 0.721 0.765 0.641 0.617 0.563 0.602
SERA-DIS-KW-10 0.951 0.936 0.917 0.944 0.885 0.816 0.766 0.855 0.732 0.656 0.6 0.701

wikiSERA-5 0.887 0.905 0.886 0.911 0.812 0.781 0.69 0.769 0.645 0.615 0.53 0.606
wikiSERA-10 0.905 0.924 0.926 0.926 0.881 0.831 0.819 0.825 0.722 0.657 0.662 0.647

wikiSERA-DIS-5 0.917 0.929 0.905 0.936 0.822 0.779 0.693 0.809 0.656 0.613 0.538 0.663
wikiSERA-DIS-10 0.947 0.946 0.934 0.948 0.867 0.828 0.793 0.854 0.695 0.672 0.643 0.706

Table A.52: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2009/Wikipedia dataset using the

reference summary A2
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.87 0.908 0.922 0.88 0.823 0.872 0.759 0.695 0.676 0.731 0.603 0.537
SERA-10 0.88 0.919 0.923 0.931 0.835 0.804 0.802 0.852 0.678 0.65 0.637 0.688

SERA-NP-5 0.864 0.873 0.902 0.875 0.804 0.753 0.763 0.757 0.645 0.594 0.588 0.58
SERA-NP-10 0.873 0.91 0.917 0.902 0.773 0.807 0.809 0.783 0.62 0.65 0.623 0.608
SERA-KW-5 0.868 0.904 0.913 0.878 0.811 0.855 0.738 0.691 0.658 0.715 0.576 0.524
SERA-KW-10 0.884 0.915 0.926 0.93 0.826 0.791 0.816 0.845 0.666 0.636 0.657 0.668
SERA-DIS-5 0.914 0.942 0.922 0.899 0.815 0.855 0.753 0.729 0.655 0.714 0.591 0.566
SERA-DIS-10 0.936 0.938 0.93 0.934 0.825 0.816 0.809 0.817 0.665 0.653 0.661 0.657

SERA-DIS-NP-5 0.902 0.911 0.922 0.906 0.825 0.761 0.761 0.728 0.657 0.605 0.582 0.557
SERA-DIS-NP-10 0.932 0.931 0.922 0.922 0.811 0.783 0.796 0.738 0.646 0.613 0.621 0.566
SERA-DIS-KW-5 0.908 0.94 0.919 0.894 0.819 0.847 0.744 0.738 0.659 0.705 0.591 0.566
SERA-DIS-KW-10 0.937 0.935 0.931 0.934 0.826 0.817 0.822 0.833 0.665 0.655 0.669 0.678

wikiSERA-5 0.851 0.912 0.91 0.897 0.818 0.842 0.766 0.745 0.673 0.69 0.602 0.575
wikiSERA-10 0.879 0.926 0.925 0.91 0.823 0.841 0.784 0.794 0.669 0.685 0.614 0.62

wikiSERA-DIS-5 0.897 0.937 0.918 0.924 0.801 0.826 0.769 0.78 0.644 0.682 0.602 0.608
wikiSERA-DIS-10 0.934 0.943 0.932 0.938 0.826 0.826 0.806 0.821 0.663 0.681 0.657 0.654
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.869 0.908 0.922 0.88 0.824 0.873 0.76 0.696 0.677 0.733 0.607 0.537
SERA-10 0.879 0.919 0.922 0.931 0.835 0.805 0.803 0.854 0.678 0.652 0.636 0.688

SERA-NP-5 0.863 0.872 0.901 0.875 0.803 0.752 0.762 0.756 0.644 0.592 0.588 0.578
SERA-NP-10 0.873 0.909 0.917 0.902 0.773 0.808 0.809 0.784 0.619 0.65 0.625 0.611
SERA-KW-5 0.868 0.904 0.912 0.878 0.813 0.855 0.74 0.693 0.657 0.717 0.581 0.525
SERA-KW-10 0.883 0.915 0.926 0.93 0.825 0.792 0.817 0.847 0.665 0.638 0.656 0.671
SERA-DIS-5 0.914 0.941 0.922 0.899 0.816 0.855 0.754 0.731 0.657 0.712 0.594 0.569
SERA-DIS-10 0.936 0.938 0.93 0.934 0.825 0.817 0.81 0.819 0.664 0.655 0.66 0.656

SERA-DIS-NP-5 0.902 0.911 0.922 0.906 0.825 0.76 0.759 0.726 0.656 0.604 0.582 0.555
SERA-DIS-NP-10 0.931 0.931 0.922 0.922 0.811 0.783 0.796 0.738 0.645 0.613 0.62 0.568
SERA-DIS-KW-5 0.908 0.94 0.918 0.895 0.821 0.847 0.746 0.74 0.662 0.706 0.594 0.569
SERA-DIS-KW-10 0.936 0.935 0.931 0.934 0.826 0.818 0.824 0.836 0.664 0.655 0.668 0.678

wikiSERA-5 0.85 0.912 0.91 0.897 0.818 0.843 0.766 0.745 0.673 0.691 0.604 0.574
wikiSERA-10 0.878 0.926 0.925 0.91 0.823 0.842 0.786 0.795 0.669 0.687 0.614 0.619

wikiSERA-DIS-5 0.897 0.937 0.918 0.924 0.801 0.828 0.77 0.779 0.644 0.681 0.604 0.608
wikiSERA-DIS-10 0.934 0.943 0.932 0.938 0.827 0.828 0.807 0.821 0.663 0.68 0.657 0.653

Table A.53: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2009/Wikipedia dataset using the

reference summary A3
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.896 0.92 0.938 0.948 0.797 0.858 0.847 0.877 0.64 0.707 0.687 0.707
SERA-10 0.926 0.946 0.943 0.948 0.852 0.878 0.838 0.866 0.695 0.725 0.674 0.708

SERA-NP-5 0.921 0.924 0.927 0.935 0.836 0.852 0.766 0.844 0.675 0.692 0.614 0.684
SERA-NP-10 0.927 0.933 0.954 0.943 0.863 0.838 0.865 0.806 0.7 0.672 0.714 0.65
SERA-KW-5 0.9 0.914 0.939 0.941 0.803 0.856 0.83 0.878 0.648 0.697 0.666 0.707
SERA-KW-10 0.925 0.947 0.94 0.948 0.831 0.879 0.849 0.863 0.668 0.724 0.683 0.704
SERA-DIS-5 0.931 0.936 0.939 0.951 0.82 0.845 0.863 0.878 0.658 0.682 0.693 0.717
SERA-DIS-10 0.951 0.944 0.934 0.946 0.873 0.875 0.88 0.876 0.723 0.721 0.732 0.719

SERA-DIS-NP-5 0.939 0.941 0.94 0.944 0.85 0.846 0.753 0.821 0.677 0.673 0.596 0.655
SERA-DIS-NP-10 0.946 0.942 0.933 0.934 0.874 0.855 0.806 0.797 0.714 0.697 0.647 0.635
SERA-DIS-KW-5 0.926 0.931 0.935 0.944 0.825 0.831 0.853 0.868 0.662 0.665 0.691 0.693
SERA-DIS-KW-10 0.943 0.94 0.933 0.941 0.862 0.875 0.886 0.858 0.705 0.715 0.732 0.696

wikiSERA-5 0.89 0.911 0.924 0.923 0.785 0.822 0.799 0.816 0.628 0.661 0.638 0.653
wikiSERA-10 0.93 0.934 0.945 0.944 0.884 0.841 0.863 0.855 0.734 0.68 0.704 0.698

wikiSERA-DIS-5 0.928 0.928 0.938 0.944 0.804 0.809 0.822 0.842 0.647 0.636 0.657 0.675
wikiSERA-DIS-10 0.947 0.941 0.941 0.946 0.863 0.832 0.875 0.848 0.715 0.662 0.719 0.694
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.895 0.92 0.938 0.948 0.801 0.858 0.849 0.877 0.645 0.705 0.689 0.706
SERA-10 0.926 0.945 0.943 0.947 0.854 0.879 0.839 0.868 0.7 0.73 0.676 0.708

SERA-NP-5 0.921 0.924 0.927 0.935 0.839 0.852 0.77 0.845 0.677 0.696 0.619 0.682
SERA-NP-10 0.927 0.933 0.954 0.942 0.865 0.842 0.868 0.81 0.705 0.675 0.716 0.652
SERA-KW-5 0.9 0.913 0.939 0.94 0.806 0.856 0.832 0.878 0.65 0.696 0.668 0.709
SERA-KW-10 0.924 0.947 0.94 0.948 0.834 0.881 0.852 0.865 0.673 0.729 0.688 0.707
SERA-DIS-5 0.931 0.936 0.939 0.951 0.823 0.845 0.866 0.88 0.66 0.68 0.698 0.719
SERA-DIS-10 0.951 0.944 0.934 0.946 0.875 0.877 0.884 0.878 0.728 0.723 0.737 0.723

SERA-DIS-NP-5 0.939 0.941 0.94 0.944 0.852 0.846 0.758 0.822 0.679 0.672 0.601 0.655
SERA-DIS-NP-10 0.946 0.942 0.934 0.934 0.876 0.857 0.81 0.8 0.719 0.699 0.652 0.637
SERA-DIS-KW-5 0.926 0.93 0.935 0.944 0.827 0.832 0.856 0.869 0.664 0.664 0.696 0.698
SERA-DIS-KW-10 0.943 0.94 0.934 0.942 0.864 0.876 0.889 0.861 0.71 0.718 0.737 0.701

wikiSERA-5 0.89 0.911 0.924 0.923 0.788 0.824 0.801 0.818 0.63 0.666 0.641 0.654
wikiSERA-10 0.929 0.934 0.944 0.944 0.885 0.844 0.865 0.856 0.737 0.683 0.705 0.697

wikiSERA-DIS-5 0.928 0.928 0.938 0.944 0.806 0.81 0.824 0.845 0.649 0.635 0.659 0.678
wikiSERA-DIS-10 0.947 0.941 0.941 0.946 0.866 0.835 0.876 0.849 0.72 0.664 0.718 0.694

Table A.54: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2009/Wikipedia dataset using the

reference summary A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.861 0.922 0.943 0.929 0.821 0.88 0.861 0.836 0.662 0.734 0.71 0.677
SERA-10 0.89 0.927 0.933 0.938 0.863 0.873 0.851 0.896 0.717 0.726 0.7 0.735

SERA-NP-5 0.861 0.906 0.921 0.917 0.812 0.787 0.802 0.857 0.64 0.617 0.632 0.697
SERA-NP-10 0.881 0.926 0.934 0.928 0.846 0.868 0.882 0.848 0.686 0.716 0.719 0.679
SERA-KW-5 0.86 0.92 0.938 0.928 0.823 0.868 0.843 0.825 0.661 0.724 0.685 0.656
SERA-KW-10 0.893 0.926 0.93 0.938 0.864 0.861 0.853 0.892 0.714 0.708 0.697 0.735
SERA-DIS-5 0.907 0.946 0.946 0.944 0.822 0.861 0.833 0.844 0.66 0.713 0.681 0.687
SERA-DIS-10 0.942 0.95 0.943 0.955 0.872 0.866 0.856 0.899 0.719 0.713 0.719 0.755

SERA-DIS-NP-5 0.903 0.936 0.938 0.94 0.813 0.828 0.788 0.837 0.646 0.662 0.624 0.674
SERA-DIS-NP-10 0.936 0.947 0.939 0.944 0.847 0.856 0.844 0.841 0.682 0.708 0.688 0.678
SERA-DIS-KW-5 0.902 0.943 0.941 0.942 0.829 0.853 0.82 0.845 0.663 0.698 0.658 0.685
SERA-DIS-KW-10 0.941 0.945 0.939 0.952 0.867 0.851 0.863 0.903 0.713 0.698 0.727 0.754

wikiSERA-5 0.862 0.923 0.921 0.921 0.823 0.87 0.801 0.839 0.664 0.73 0.646 0.681
wikiSERA-10 0.886 0.937 0.931 0.927 0.875 0.888 0.86 0.866 0.725 0.756 0.713 0.705

wikiSERA-DIS-5 0.904 0.944 0.935 0.949 0.828 0.855 0.787 0.852 0.665 0.722 0.63 0.706
wikiSERA-DIS-10 0.94 0.955 0.945 0.957 0.871 0.88 0.843 0.885 0.713 0.745 0.698 0.733
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.861 0.922 0.944 0.929 0.824 0.881 0.864 0.838 0.666 0.737 0.715 0.679
SERA-10 0.889 0.927 0.933 0.938 0.864 0.875 0.854 0.899 0.717 0.726 0.705 0.74

SERA-NP-5 0.86 0.906 0.921 0.917 0.812 0.787 0.805 0.858 0.639 0.615 0.637 0.7
SERA-NP-10 0.881 0.926 0.934 0.928 0.848 0.869 0.883 0.851 0.688 0.715 0.721 0.682
SERA-KW-5 0.86 0.92 0.938 0.928 0.826 0.87 0.845 0.827 0.666 0.726 0.69 0.658
SERA-KW-10 0.892 0.925 0.93 0.938 0.865 0.863 0.856 0.896 0.714 0.707 0.701 0.74
SERA-DIS-5 0.906 0.946 0.946 0.945 0.824 0.862 0.835 0.846 0.662 0.715 0.686 0.689
SERA-DIS-10 0.942 0.95 0.943 0.955 0.873 0.867 0.858 0.904 0.721 0.713 0.723 0.76

SERA-DIS-NP-5 0.902 0.936 0.938 0.94 0.814 0.829 0.79 0.836 0.645 0.664 0.626 0.672
SERA-DIS-NP-10 0.936 0.947 0.94 0.945 0.847 0.858 0.845 0.843 0.682 0.707 0.69 0.68
SERA-DIS-KW-5 0.902 0.943 0.941 0.942 0.831 0.855 0.823 0.847 0.666 0.701 0.663 0.687
SERA-DIS-KW-10 0.94 0.945 0.939 0.952 0.868 0.852 0.866 0.907 0.715 0.698 0.732 0.759

wikiSERA-5 0.862 0.922 0.921 0.921 0.824 0.871 0.804 0.839 0.666 0.732 0.648 0.68
wikiSERA-10 0.885 0.936 0.931 0.927 0.876 0.889 0.862 0.868 0.727 0.756 0.715 0.705

wikiSERA-DIS-5 0.904 0.944 0.935 0.949 0.829 0.856 0.789 0.852 0.667 0.722 0.632 0.706
wikiSERA-DIS-10 0.94 0.955 0.945 0.957 0.872 0.88 0.845 0.886 0.715 0.745 0.698 0.733

Table A.55: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2009/Wikipedia dataset using the

reference summary A1, A2, A3
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.87 0.924 0.947 0.949 0.814 0.872 0.876 0.893 0.648 0.721 0.724 0.74
SERA-10 0.907 0.936 0.942 0.945 0.881 0.897 0.863 0.903 0.722 0.752 0.71 0.758

SERA-NP-5 0.884 0.922 0.924 0.934 0.821 0.826 0.798 0.878 0.652 0.655 0.635 0.723
SERA-NP-10 0.9 0.932 0.944 0.942 0.888 0.87 0.887 0.872 0.728 0.719 0.738 0.721
SERA-KW-5 0.872 0.921 0.944 0.946 0.82 0.869 0.865 0.89 0.654 0.716 0.7 0.732
SERA-KW-10 0.908 0.935 0.935 0.946 0.878 0.885 0.861 0.902 0.723 0.742 0.711 0.754
SERA-DIS-5 0.913 0.944 0.948 0.958 0.82 0.857 0.867 0.889 0.654 0.7 0.705 0.74
SERA-DIS-10 0.949 0.952 0.944 0.959 0.884 0.877 0.875 0.909 0.731 0.718 0.731 0.776

SERA-DIS-NP-5 0.918 0.945 0.94 0.951 0.807 0.858 0.769 0.848 0.634 0.688 0.6 0.689
SERA-DIS-NP-10 0.943 0.948 0.942 0.949 0.867 0.88 0.834 0.851 0.706 0.721 0.685 0.7
SERA-DIS-KW-5 0.908 0.941 0.943 0.954 0.826 0.855 0.86 0.887 0.666 0.694 0.693 0.74
SERA-DIS-KW-10 0.945 0.947 0.94 0.955 0.875 0.867 0.868 0.909 0.721 0.712 0.714 0.768

wikiSERA-5 0.877 0.92 0.925 0.93 0.815 0.871 0.823 0.867 0.653 0.721 0.666 0.713
wikiSERA-10 0.905 0.938 0.938 0.938 0.895 0.894 0.881 0.882 0.748 0.755 0.721 0.729

wikiSERA-DIS-5 0.916 0.941 0.94 0.954 0.819 0.844 0.807 0.871 0.653 0.695 0.639 0.723
wikiSERA-DIS-10 0.947 0.955 0.948 0.959 0.882 0.878 0.875 0.888 0.731 0.735 0.724 0.743
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.87 0.923 0.947 0.949 0.817 0.873 0.879 0.894 0.653 0.723 0.729 0.742
SERA-10 0.907 0.936 0.942 0.945 0.883 0.899 0.866 0.906 0.724 0.754 0.715 0.763

SERA-NP-5 0.883 0.922 0.924 0.934 0.822 0.827 0.803 0.879 0.652 0.656 0.64 0.725
SERA-NP-10 0.9 0.932 0.944 0.942 0.89 0.873 0.889 0.875 0.73 0.721 0.74 0.726
SERA-KW-5 0.871 0.921 0.944 0.946 0.823 0.87 0.867 0.891 0.659 0.718 0.705 0.734
SERA-KW-10 0.908 0.935 0.935 0.946 0.88 0.887 0.864 0.906 0.725 0.745 0.716 0.759
SERA-DIS-5 0.912 0.944 0.949 0.958 0.823 0.858 0.87 0.891 0.656 0.702 0.71 0.745
SERA-DIS-10 0.949 0.952 0.945 0.959 0.886 0.879 0.878 0.913 0.733 0.72 0.736 0.781

SERA-DIS-NP-5 0.918 0.945 0.94 0.951 0.809 0.86 0.773 0.848 0.636 0.692 0.605 0.688
SERA-DIS-NP-10 0.943 0.948 0.943 0.949 0.868 0.882 0.836 0.854 0.709 0.723 0.687 0.705
SERA-DIS-KW-5 0.908 0.94 0.944 0.954 0.829 0.856 0.863 0.89 0.668 0.697 0.698 0.745
SERA-DIS-KW-10 0.945 0.947 0.941 0.955 0.877 0.868 0.871 0.913 0.723 0.714 0.719 0.773

wikiSERA-5 0.876 0.92 0.925 0.929 0.817 0.872 0.826 0.868 0.655 0.724 0.668 0.713
wikiSERA-10 0.905 0.938 0.938 0.938 0.897 0.896 0.883 0.884 0.75 0.757 0.726 0.729

wikiSERA-DIS-5 0.916 0.941 0.94 0.954 0.821 0.845 0.809 0.872 0.655 0.697 0.641 0.725
wikiSERA-DIS-10 0.947 0.955 0.948 0.959 0.883 0.879 0.877 0.889 0.733 0.734 0.726 0.742

Table A.56: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2009/Wikipedia dataset using the

reference summary A1, A2, A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.886 0.931 0.942 0.936 0.826 0.875 0.848 0.822 0.679 0.736 0.696 0.663
SERA-10 0.913 0.94 0.94 0.945 0.874 0.88 0.835 0.874 0.735 0.749 0.675 0.721

SERA-NP-5 0.896 0.917 0.925 0.923 0.835 0.804 0.785 0.84 0.675 0.63 0.619 0.669
SERA-NP-10 0.907 0.934 0.948 0.939 0.849 0.854 0.895 0.854 0.7 0.698 0.735 0.696
SERA-KW-5 0.888 0.928 0.938 0.934 0.83 0.865 0.827 0.833 0.679 0.72 0.671 0.665
SERA-KW-10 0.916 0.938 0.938 0.944 0.867 0.866 0.841 0.876 0.727 0.727 0.682 0.72
SERA-DIS-5 0.926 0.95 0.941 0.944 0.82 0.872 0.846 0.849 0.658 0.717 0.69 0.689
SERA-DIS-10 0.952 0.948 0.935 0.948 0.879 0.876 0.855 0.875 0.735 0.721 0.715 0.725

SERA-DIS-NP-5 0.928 0.94 0.937 0.938 0.848 0.832 0.775 0.823 0.678 0.667 0.623 0.659
SERA-DIS-NP-10 0.945 0.944 0.934 0.94 0.855 0.855 0.852 0.841 0.694 0.694 0.696 0.679
SERA-DIS-KW-5 0.921 0.947 0.937 0.94 0.827 0.861 0.826 0.863 0.666 0.706 0.678 0.704
SERA-DIS-KW-10 0.95 0.944 0.933 0.945 0.879 0.855 0.854 0.876 0.732 0.696 0.708 0.724

wikiSERA-5 0.885 0.925 0.925 0.924 0.821 0.851 0.786 0.817 0.669 0.702 0.626 0.648
wikiSERA-10 0.912 0.938 0.942 0.936 0.879 0.883 0.853 0.841 0.732 0.744 0.696 0.675

wikiSERA-DIS-5 0.922 0.945 0.935 0.947 0.824 0.844 0.79 0.862 0.665 0.693 0.644 0.716

wikiSERA-DIS-10 0.949 0.95 0.942 0.95 0.874 0.861 0.871 0.865 0.72 0.713 0.732 0.71
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.886 0.931 0.943 0.936 0.828 0.875 0.85 0.823 0.682 0.737 0.701 0.666
SERA-10 0.913 0.94 0.94 0.945 0.875 0.882 0.838 0.877 0.734 0.754 0.678 0.721

SERA-NP-5 0.896 0.916 0.925 0.923 0.836 0.804 0.788 0.84 0.675 0.629 0.622 0.671
SERA-NP-10 0.907 0.934 0.948 0.939 0.851 0.857 0.897 0.857 0.699 0.7 0.737 0.701
SERA-KW-5 0.887 0.928 0.939 0.934 0.833 0.865 0.829 0.834 0.681 0.721 0.676 0.667
SERA-KW-10 0.916 0.938 0.938 0.944 0.869 0.868 0.845 0.879 0.726 0.732 0.687 0.722
SERA-DIS-5 0.926 0.95 0.941 0.944 0.822 0.873 0.848 0.851 0.66 0.719 0.695 0.691
SERA-DIS-10 0.951 0.948 0.936 0.948 0.88 0.878 0.858 0.879 0.737 0.723 0.72 0.728

SERA-DIS-NP-5 0.927 0.94 0.938 0.938 0.848 0.833 0.777 0.823 0.677 0.667 0.625 0.659
SERA-DIS-NP-10 0.945 0.944 0.934 0.94 0.856 0.857 0.853 0.843 0.694 0.696 0.698 0.682
SERA-DIS-KW-5 0.921 0.947 0.937 0.94 0.83 0.862 0.828 0.865 0.668 0.709 0.683 0.706
SERA-DIS-KW-10 0.95 0.944 0.934 0.946 0.88 0.857 0.857 0.88 0.734 0.698 0.713 0.729

wikiSERA-5 0.884 0.925 0.925 0.924 0.822 0.852 0.789 0.817 0.671 0.705 0.629 0.648
wikiSERA-10 0.912 0.938 0.942 0.936 0.88 0.885 0.855 0.843 0.735 0.744 0.695 0.675

wikiSERA-DIS-5 0.922 0.945 0.935 0.947 0.825 0.845 0.792 0.862 0.667 0.695 0.647 0.715

wikiSERA-DIS-10 0.949 0.95 0.942 0.951 0.875 0.863 0.872 0.866 0.722 0.715 0.732 0.71

Table A.57: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2009/Wikipedia dataset using the

reference summary A2, A3, A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.873 0.925 0.95 0.942 0.82 0.88 0.873 0.871 0.661 0.743 0.722 0.717
SERA-10 0.903 0.936 0.94 0.944 0.87 0.881 0.861 0.892 0.725 0.737 0.707 0.741

SERA-NP-5 0.882 0.915 0.927 0.926 0.83 0.811 0.798 0.863 0.663 0.641 0.635 0.704
SERA-NP-10 0.898 0.931 0.943 0.936 0.865 0.866 0.892 0.863 0.708 0.718 0.734 0.709
SERA-KW-5 0.874 0.923 0.946 0.939 0.83 0.869 0.859 0.863 0.67 0.721 0.709 0.701
SERA-KW-10 0.905 0.935 0.937 0.944 0.865 0.875 0.861 0.894 0.722 0.725 0.706 0.738
SERA-DIS-5 0.916 0.947 0.95 0.952 0.824 0.866 0.868 0.877 0.663 0.714 0.709 0.729
SERA-DIS-10 0.948 0.951 0.943 0.955 0.877 0.879 0.871 0.896 0.729 0.728 0.736 0.751

SERA-DIS-NP-5 0.917 0.942 0.943 0.945 0.829 0.842 0.796 0.842 0.659 0.673 0.636 0.684
SERA-DIS-NP-10 0.943 0.947 0.941 0.945 0.866 0.872 0.853 0.845 0.703 0.717 0.706 0.688
SERA-DIS-KW-5 0.911 0.944 0.945 0.949 0.821 0.86 0.863 0.868 0.658 0.704 0.706 0.713
SERA-DIS-KW-10 0.945 0.946 0.94 0.952 0.872 0.868 0.871 0.899 0.72 0.715 0.727 0.753

wikiSERA-5 0.873 0.924 0.929 0.926 0.827 0.871 0.818 0.854 0.671 0.728 0.66 0.701
wikiSERA-10 0.901 0.94 0.939 0.935 0.885 0.893 0.867 0.87 0.741 0.764 0.716 0.71

wikiSERA-DIS-5 0.914 0.944 0.941 0.952 0.824 0.856 0.812 0.867 0.665 0.713 0.656 0.717
wikiSERA-DIS-10 0.946 0.954 0.947 0.957 0.877 0.883 0.878 0.882 0.723 0.748 0.735 0.732
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.873 0.925 0.95 0.942 0.823 0.881 0.875 0.872 0.666 0.745 0.727 0.719
SERA-10 0.903 0.936 0.94 0.944 0.872 0.883 0.863 0.895 0.727 0.74 0.71 0.743

SERA-NP-5 0.881 0.915 0.928 0.926 0.831 0.811 0.802 0.863 0.662 0.639 0.64 0.705
SERA-NP-10 0.897 0.93 0.943 0.936 0.866 0.868 0.893 0.866 0.71 0.72 0.737 0.714
SERA-KW-5 0.874 0.923 0.946 0.939 0.832 0.87 0.862 0.865 0.675 0.724 0.714 0.703
SERA-KW-10 0.905 0.935 0.937 0.944 0.866 0.877 0.864 0.897 0.724 0.727 0.711 0.741
SERA-DIS-5 0.916 0.947 0.95 0.952 0.827 0.867 0.87 0.88 0.666 0.717 0.714 0.732
SERA-DIS-10 0.948 0.951 0.943 0.955 0.879 0.881 0.873 0.899 0.732 0.73 0.741 0.756

SERA-DIS-NP-5 0.917 0.942 0.943 0.946 0.83 0.843 0.798 0.842 0.659 0.672 0.639 0.683
SERA-DIS-NP-10 0.943 0.948 0.941 0.946 0.867 0.875 0.855 0.848 0.703 0.719 0.709 0.69
SERA-DIS-KW-5 0.911 0.944 0.946 0.949 0.823 0.862 0.866 0.871 0.66 0.706 0.711 0.715
SERA-DIS-KW-10 0.945 0.946 0.941 0.952 0.873 0.87 0.874 0.902 0.722 0.718 0.732 0.758

wikiSERA-5 0.873 0.924 0.929 0.926 0.829 0.872 0.821 0.854 0.673 0.73 0.662 0.701
wikiSERA-10 0.901 0.939 0.939 0.935 0.887 0.894 0.869 0.872 0.743 0.764 0.719 0.71

wikiSERA-DIS-5 0.914 0.944 0.941 0.952 0.825 0.857 0.814 0.868 0.667 0.715 0.658 0.717
wikiSERA-DIS-10 0.946 0.954 0.947 0.957 0.878 0.884 0.88 0.883 0.726 0.748 0.734 0.732

Table A.58: Correlation coefficients, in terms of Pearson, Spearman and Kendall of
SERA and wikiSERA, with Pyramid on TAC2009/Wikipedia dataset using the

reference summary A1, A2, A3, A4



A.2.8 Correlation of SERA and wikiSERA with Responsiveness on TAC2009/Wikipedia

Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.77 0.822 0.845 0.862 0.669 0.742 0.742 0.799 0.502 0.568 0.573 0.62

SERA-10 0.824 0.842 0.846 0.85 0.765 0.732 0.735 0.791 0.601 0.562 0.568 0.615
SERA-NP-5 0.799 0.796 0.81 0.839 0.708 0.646 0.641 0.751 0.552 0.495 0.488 0.587
SERA-NP-10 0.822 0.841 0.838 0.829 0.778 0.736 0.715 0.725 0.603 0.574 0.546 0.555
SERA-KW-5 0.766 0.815 0.834 0.854 0.676 0.742 0.717 0.769 0.507 0.568 0.551 0.598
SERA-KW-10 0.819 0.84 0.835 0.846 0.77 0.729 0.73 0.797 0.605 0.553 0.561 0.618
SERA-DIS-5 0.779 0.804 0.823 0.841 0.653 0.708 0.748 0.796 0.488 0.532 0.579 0.617
SERA-DIS-10 0.816 0.811 0.812 0.819 0.715 0.7 0.724 0.779 0.549 0.527 0.546 0.595

SERA-DIS-NP-5 0.81 0.799 0.8 0.84 0.708 0.664 0.632 0.756 0.54 0.499 0.475 0.588
SERA-DIS-NP-10 0.833 0.811 0.802 0.812 0.755 0.725 0.687 0.721 0.575 0.546 0.528 0.559
SERA-DIS-KW-5 0.772 0.797 0.812 0.833 0.643 0.714 0.728 0.773 0.477 0.539 0.557 0.6
SERA-DIS-KW-10 0.806 0.802 0.802 0.809 0.704 0.696 0.718 0.774 0.538 0.522 0.534 0.599

wikiSERA-5 0.796 0.823 0.831 0.85 0.712 0.709 0.74 0.764 0.53 0.555 0.563 0.597
wikiSERA-10 0.831 0.869 0.845 0.862 0.767 0.762 0.755 0.783 0.601 0.602 0.59 0.634

wikiSERA-DIS-5 0.813 0.806 0.807 0.842 0.692 0.686 0.716 0.785 0.517 0.532 0.548 0.606
wikiSERA-DIS-10 0.842 0.831 0.805 0.843 0.751 0.777 0.717 0.788 0.584 0.608 0.549 0.622

Table A.59: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/Wikipedia dataset using the reference summary A1
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.807 0.829 0.808 0.832 0.709 0.722 0.634 0.689 0.52 0.544 0.485 0.54
SERA-10 0.851 0.843 0.821 0.834 0.78 0.741 0.676 0.75 0.619 0.566 0.507 0.589

SERA-NP-5 0.808 0.791 0.789 0.82 0.734 0.654 0.655 0.722 0.555 0.494 0.503 0.562
SERA-NP-10 0.829 0.836 0.835 0.83 0.785 0.735 0.761 0.725 0.597 0.575 0.595 0.552
SERA-KW-5 0.801 0.824 0.802 0.83 0.714 0.712 0.64 0.684 0.534 0.537 0.488 0.538
SERA-KW-10 0.857 0.836 0.809 0.828 0.794 0.741 0.678 0.745 0.618 0.57 0.509 0.573
SERA-DIS-5 0.812 0.803 0.77 0.808 0.719 0.713 0.609 0.717 0.521 0.532 0.46 0.549
SERA-DIS-10 0.831 0.792 0.758 0.793 0.792 0.744 0.664 0.786 0.617 0.585 0.51 0.611

SERA-DIS-NP-5 0.807 0.766 0.754 0.781 0.725 0.679 0.607 0.662 0.55 0.515 0.469 0.498
SERA-DIS-NP-10 0.806 0.771 0.747 0.768 0.773 0.743 0.694 0.698 0.581 0.581 0.532 0.537
SERA-DIS-KW-5 0.802 0.799 0.765 0.805 0.719 0.703 0.602 0.709 0.522 0.522 0.451 0.542
SERA-DIS-KW-10 0.83 0.784 0.751 0.788 0.796 0.727 0.648 0.757 0.61 0.572 0.498 0.577

wikiSERA-5 0.818 0.818 0.777 0.823 0.733 0.697 0.568 0.645 0.553 0.537 0.426 0.501
wikiSERA-10 0.853 0.855 0.831 0.822 0.794 0.743 0.684 0.672 0.612 0.579 0.53 0.51

wikiSERA-DIS-5 0.816 0.808 0.757 0.814 0.718 0.701 0.567 0.709 0.526 0.537 0.424 0.548
wikiSERA-DIS-10 0.831 0.813 0.769 0.797 0.772 0.746 0.636 0.718 0.579 0.58 0.488 0.553

Table A.60: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/Wikipedia dataset using the reference summary A2
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.804 0.806 0.808 0.751 0.699 0.703 0.606 0.542 0.53 0.551 0.473 0.41
SERA-10 0.814 0.809 0.798 0.825 0.701 0.655 0.676 0.745 0.539 0.507 0.519 0.575

SERA-NP-5 0.807 0.755 0.82 0.767 0.721 0.585 0.683 0.645 0.536 0.441 0.521 0.49
SERA-NP-10 0.794 0.814 0.797 0.807 0.659 0.695 0.698 0.726 0.498 0.519 0.522 0.561
SERA-KW-5 0.797 0.793 0.79 0.735 0.693 0.688 0.579 0.527 0.519 0.537 0.447 0.399
SERA-KW-10 0.813 0.799 0.798 0.818 0.703 0.647 0.693 0.736 0.54 0.502 0.538 0.572
SERA-DIS-5 0.816 0.792 0.769 0.722 0.713 0.7 0.59 0.585 0.542 0.545 0.449 0.445
SERA-DIS-10 0.811 0.767 0.756 0.755 0.697 0.67 0.681 0.704 0.533 0.505 0.527 0.541

SERA-DIS-NP-5 0.816 0.754 0.784 0.765 0.734 0.572 0.647 0.643 0.556 0.424 0.494 0.476
SERA-DIS-NP-10 0.803 0.767 0.746 0.765 0.686 0.636 0.659 0.674 0.507 0.473 0.498 0.513
SERA-DIS-KW-5 0.803 0.785 0.765 0.712 0.705 0.69 0.576 0.583 0.532 0.536 0.441 0.437
SERA-DIS-KW-10 0.806 0.76 0.756 0.754 0.7 0.666 0.694 0.713 0.529 0.505 0.534 0.552

wikiSERA-5 0.803 0.81 0.785 0.781 0.715 0.677 0.607 0.611 0.543 0.522 0.466 0.468
wikiSERA-10 0.816 0.823 0.801 0.795 0.707 0.685 0.657 0.667 0.544 0.533 0.514 0.507

wikiSERA-DIS-5 0.81 0.797 0.76 0.763 0.708 0.684 0.613 0.644 0.533 0.52 0.465 0.483
wikiSERA-DIS-10 0.812 0.782 0.755 0.762 0.706 0.686 0.681 0.681 0.53 0.54 0.524 0.515

Table A.61: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/Wikipedia dataset using the reference summary A3
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.82 0.811 0.816 0.835 0.688 0.727 0.722 0.788 0.534 0.562 0.542 0.61
SERA-10 0.83 0.85 0.811 0.839 0.747 0.756 0.696 0.777 0.577 0.583 0.535 0.613

SERA-NP-5 0.825 0.836 0.827 0.824 0.741 0.749 0.656 0.726 0.575 0.573 0.505 0.556
SERA-NP-10 0.83 0.846 0.84 0.828 0.765 0.766 0.777 0.743 0.591 0.601 0.615 0.585
SERA-KW-5 0.82 0.804 0.811 0.819 0.694 0.729 0.699 0.779 0.541 0.57 0.526 0.604
SERA-KW-10 0.825 0.847 0.806 0.831 0.735 0.769 0.708 0.76 0.563 0.595 0.546 0.598
SERA-DIS-5 0.817 0.783 0.769 0.792 0.699 0.693 0.728 0.759 0.538 0.513 0.542 0.58
SERA-DIS-10 0.804 0.78 0.747 0.774 0.757 0.747 0.739 0.769 0.595 0.576 0.565 0.6

SERA-DIS-NP-5 0.818 0.819 0.795 0.8 0.766 0.756 0.661 0.719 0.585 0.573 0.502 0.545
SERA-DIS-NP-10 0.797 0.79 0.767 0.769 0.77 0.755 0.732 0.734 0.595 0.584 0.58 0.579
SERA-DIS-KW-5 0.806 0.773 0.761 0.778 0.694 0.687 0.719 0.743 0.534 0.517 0.547 0.559
SERA-DIS-KW-10 0.789 0.771 0.746 0.765 0.755 0.745 0.747 0.748 0.592 0.573 0.57 0.58

wikiSERA-5 0.821 0.821 0.808 0.835 0.69 0.71 0.688 0.779 0.523 0.538 0.536 0.615

wikiSERA-10 0.842 0.843 0.823 0.835 0.788 0.754 0.747 0.728 0.619 0.581 0.567 0.557
wikiSERA-DIS-5 0.814 0.792 0.773 0.804 0.68 0.7 0.71 0.772 0.509 0.531 0.527 0.599
wikiSERA-DIS-10 0.801 0.785 0.761 0.775 0.766 0.738 0.768 0.714 0.592 0.573 0.595 0.549

Table A.62: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/Wikipedia dataset using the reference summary A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.802 0.834 0.844 0.836 0.697 0.747 0.71 0.726 0.518 0.573 0.551 0.56
SERA-10 0.837 0.843 0.833 0.843 0.759 0.744 0.721 0.78 0.594 0.573 0.553 0.6

SERA-NP-5 0.815 0.797 0.826 0.828 0.751 0.642 0.71 0.745 0.574 0.475 0.551 0.574
SERA-NP-10 0.825 0.842 0.837 0.832 0.76 0.751 0.757 0.738 0.58 0.575 0.58 0.567
SERA-KW-5 0.797 0.827 0.835 0.83 0.698 0.736 0.687 0.72 0.517 0.561 0.526 0.553
SERA-KW-10 0.838 0.838 0.826 0.838 0.766 0.731 0.726 0.774 0.599 0.563 0.55 0.6

SERA-DIS-5 0.812 0.812 0.806 0.808 0.707 0.726 0.703 0.749 0.528 0.554 0.549 0.573
SERA-DIS-10 0.827 0.798 0.783 0.795 0.75 0.748 0.73 0.782 0.577 0.579 0.557 0.6

SERA-DIS-NP-5 0.82 0.789 0.796 0.81 0.733 0.669 0.672 0.733 0.559 0.502 0.514 0.563
SERA-DIS-NP-10 0.821 0.792 0.774 0.787 0.753 0.728 0.707 0.728 0.568 0.548 0.54 0.556
SERA-DIS-KW-5 0.801 0.808 0.8 0.802 0.71 0.729 0.692 0.751 0.53 0.548 0.534 0.571
SERA-DIS-KW-10 0.822 0.79 0.777 0.789 0.746 0.727 0.74 0.781 0.569 0.553 0.569 0.599

wikiSERA-5 0.814 0.831 0.815 0.833 0.72 0.729 0.685 0.711 0.539 0.565 0.529 0.552
wikiSERA-10 0.841 0.861 0.839 0.836 0.778 0.766 0.732 0.732 0.6 0.599 0.574 0.571

wikiSERA-DIS-5 0.822 0.816 0.788 0.82 0.729 0.732 0.659 0.75 0.55 0.561 0.507 0.576

wikiSERA-DIS-10 0.835 0.816 0.783 0.806 0.765 0.762 0.698 0.749 0.588 0.596 0.536 0.573

Table A.63: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/Wikipedia dataset using the reference summary A1, A2, A3
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.808 0.833 0.844 0.86 0.69 0.753 0.752 0.811 0.513 0.573 0.585 0.634
SERA-10 0.845 0.856 0.839 0.849 0.783 0.788 0.732 0.786 0.62 0.612 0.56 0.61

SERA-NP-5 0.825 0.823 0.824 0.844 0.754 0.703 0.692 0.767 0.58 0.527 0.53 0.589
SERA-NP-10 0.838 0.851 0.85 0.839 0.8 0.78 0.772 0.746 0.622 0.608 0.605 0.581
SERA-KW-5 0.805 0.829 0.838 0.853 0.706 0.753 0.735 0.808 0.531 0.571 0.57 0.628
SERA-KW-10 0.844 0.852 0.829 0.844 0.781 0.784 0.731 0.786 0.612 0.619 0.563 0.608
SERA-DIS-5 0.812 0.809 0.802 0.827 0.703 0.732 0.755 0.814 0.526 0.554 0.581 0.637

SERA-DIS-10 0.826 0.802 0.779 0.801 0.767 0.76 0.744 0.791 0.595 0.576 0.569 0.616
SERA-DIS-NP-5 0.824 0.81 0.796 0.82 0.739 0.745 0.665 0.74 0.564 0.565 0.509 0.559
SERA-DIS-NP-10 0.821 0.797 0.78 0.789 0.783 0.769 0.721 0.738 0.598 0.592 0.561 0.575
SERA-DIS-KW-5 0.803 0.804 0.796 0.819 0.701 0.735 0.745 0.802 0.527 0.554 0.575 0.623
SERA-DIS-KW-10 0.818 0.794 0.773 0.793 0.758 0.743 0.739 0.797 0.585 0.567 0.561 0.619

wikiSERA-5 0.821 0.833 0.822 0.851 0.715 0.764 0.725 0.76 0.536 0.602 0.557 0.595
wikiSERA-10 0.852 0.866 0.846 0.848 0.801 0.8 0.761 0.753 0.629 0.633 0.584 0.584

wikiSERA-DIS-5 0.824 0.814 0.791 0.831 0.715 0.733 0.705 0.784 0.536 0.574 0.541 0.611

wikiSERA-DIS-10 0.834 0.816 0.784 0.81 0.774 0.779 0.741 0.759 0.6 0.608 0.564 0.59

Table A.64: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/Wikipedia dataset using the reference summary A1, A2, A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.818 0.827 0.83 0.826 0.713 0.73 0.71 0.715 0.538 0.561 0.553 0.556
SERA-10 0.84 0.844 0.819 0.838 0.765 0.757 0.701 0.771 0.595 0.599 0.541 0.606

SERA-NP-5 0.823 0.807 0.827 0.818 0.744 0.679 0.701 0.731 0.559 0.503 0.543 0.565
SERA-NP-10 0.826 0.84 0.833 0.831 0.746 0.752 0.784 0.757 0.572 0.579 0.617 0.594
SERA-KW-5 0.814 0.819 0.822 0.816 0.717 0.724 0.678 0.723 0.539 0.558 0.523 0.557
SERA-KW-10 0.84 0.837 0.813 0.832 0.766 0.744 0.707 0.764 0.598 0.581 0.545 0.594
SERA-DIS-5 0.821 0.801 0.783 0.791 0.714 0.736 0.706 0.741 0.538 0.565 0.542 0.571
SERA-DIS-10 0.821 0.785 0.759 0.779 0.767 0.751 0.726 0.766 0.596 0.573 0.557 0.594

SERA-DIS-NP-5 0.822 0.794 0.79 0.794 0.758 0.703 0.676 0.721 0.576 0.525 0.534 0.55
SERA-DIS-NP-10 0.808 0.783 0.759 0.774 0.754 0.736 0.734 0.74 0.569 0.565 0.575 0.576
SERA-DIS-KW-5 0.809 0.795 0.779 0.783 0.712 0.725 0.687 0.754 0.538 0.559 0.527 0.577
SERA-DIS-KW-10 0.814 0.778 0.756 0.774 0.759 0.735 0.73 0.765 0.585 0.559 0.563 0.595

wikiSERA-5 0.822 0.831 0.806 0.826 0.716 0.719 0.651 0.696 0.541 0.557 0.513 0.533
wikiSERA-10 0.844 0.851 0.828 0.825 0.783 0.756 0.721 0.704 0.605 0.595 0.561 0.544

wikiSERA-DIS-5 0.82 0.811 0.775 0.805 0.724 0.731 0.648 0.742 0.548 0.567 0.505 0.567

wikiSERA-DIS-10 0.82 0.8 0.767 0.784 0.764 0.756 0.723 0.723 0.587 0.59 0.556 0.557

Table A.65: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/Wikipedia dataset using the reference summary A2, A3, A4
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Pearson Spearman Kendall

1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000 1,778,742 30,000 15,000 10,000

SERA-5 0.81 0.832 0.843 0.843 0.692 0.746 0.736 0.768 0.517 0.576 0.575 0.592
SERA-10 0.839 0.849 0.832 0.845 0.759 0.759 0.733 0.784 0.593 0.596 0.562 0.607

SERA-NP-5 0.824 0.811 0.831 0.831 0.748 0.67 0.702 0.749 0.567 0.5 0.548 0.573
SERA-NP-10 0.831 0.845 0.841 0.835 0.771 0.76 0.781 0.759 0.593 0.59 0.609 0.592
SERA-KW-5 0.806 0.825 0.836 0.834 0.705 0.746 0.709 0.761 0.53 0.572 0.553 0.588
SERA-KW-10 0.839 0.843 0.825 0.839 0.761 0.75 0.735 0.771 0.598 0.588 0.567 0.588
SERA-DIS-5 0.816 0.808 0.801 0.809 0.703 0.733 0.736 0.778 0.527 0.556 0.569 0.602
SERA-DIS-10 0.824 0.795 0.775 0.791 0.762 0.753 0.743 0.781 0.585 0.577 0.569 0.603

SERA-DIS-NP-5 0.825 0.801 0.799 0.811 0.745 0.7 0.686 0.733 0.569 0.526 0.532 0.563
SERA-DIS-NP-10 0.818 0.793 0.774 0.785 0.77 0.751 0.73 0.746 0.582 0.569 0.564 0.579
SERA-DIS-KW-5 0.805 0.802 0.795 0.801 0.696 0.73 0.729 0.773 0.519 0.55 0.561 0.596
SERA-DIS-KW-10 0.817 0.788 0.771 0.785 0.752 0.738 0.738 0.782 0.576 0.558 0.565 0.607

wikiSERA-5 0.82 0.833 0.819 0.838 0.723 0.74 0.693 0.737 0.553 0.575 0.542 0.57
wikiSERA-10 0.845 0.86 0.839 0.839 0.787 0.777 0.738 0.737 0.611 0.615 0.574 0.571

wikiSERA-DIS-5 0.823 0.814 0.788 0.819 0.719 0.736 0.697 0.768 0.542 0.568 0.546 0.592

wikiSERA-DIS-10 0.83 0.81 0.779 0.8 0.773 0.77 0.744 0.748 0.601 0.6 0.568 0.577

Table A.66: Correlation coefficients, in terms of Pearson, Spearman and Kendall of SERA and wikiSERA, with Responsiveness on
TAC2009/Wikipedia dataset using the reference summary A1, A2, A3, A4
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A.3 SummTriver

A.3.1 Correlation of SummTriver with Pyramid on TAC 2008

Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

60
0
su
m
m
ar
ie
s
pe

r
co
rp
us

3
m
od

el
s

JS Tm -0.705 -0.735 -0.883 -0.885 -0.871 -0.874 -0.846 -0.854 -0.823 -0.831
sJS Tm -0.697 -0.731 -0.879 -0.883 -0.866 -0.871 -0.844 -0.853 -0.823 -0.832
KL Tm -0.347 -0.450 -0.543 -0.647 -0.615 -0.684 -0.578 -0.668 -0.639 -0.701
JS Tc -0.393 -0.412 -0.804 -0.807 -0.813 -0.816 -0.827 -0.831 -0.788 -0.797
sJS Tc -0.393 -0.412 -0.804 -0.807 -0.812 -0.815 -0.826 -0.830 -0.788 -0.797
KL Tc 0.065 0.047 0.107 0.127 0.045 0.212 0.011 -0.049 0.047 0.109

4
m
od

el
s

JS Tm -0.703 -0.733 -0.881 -0.883 -0.872 -0.875 -0.848 -0.855 -0.824 -0.831
sJS Tm -0.695 -0.729 -0.877 -0.881 -0.867 -0.871 -0.845 -0.854 -0.824 -0.832
KL Tm -0.344 -0.447 -0.539 -0.643 -0.616 -0.685 -0.583 -0.673 -0.643 -0.703
JS Tc -0.392 -0.410 -0.802 -0.805 -0.814 -0.817 -0.828 -0.832 -0.788 -0.797
sJS Tc -0.392 -0.410 -0.801 -0.805 -0.813 -0.816 -0.828 -0.832 -0.788 -0.797
KL Tc 0.068 0.049 0.114 0.132 0.048 0.213 0.013 -0.048 0.045 0.107

90
0
su
m
m
ar
ie
s
pe

r
co
rp
us

3
m
od

el
s

JS Tm -0.807 -0.830 -0.799 -0.808 -0.869 -0.878 -0.824 -0.836 -0.880 -0.889
sJS Tm -0.807 -0.832 -0.794 -0.804 -0.863 -0.875 -0.820 -0.833 -0.876 -0.885
KL Tm -0.623 -0.704 -0.552 -0.605 -0.620 -0.699 -0.614 -0.663 -0.609 -0.694
JS Tc -0.534 -0.553 -0.710 -0.714 -0.825 -0.832 -0.792 -0.799 -0.854 -0.858
sJS Tc -0.534 -0.553 -0.709 -0.714 -0.824 -0.831 -0.791 -0.799 -0.853 -0.857
KL Tc -0.269 -0.241 -0.006 0.153 0.177 0.183 0.103 0.254 -0.274 -0.216

4
m
od

el
s

JS Tm -0.809 -0.832 -0.801 -0.809 -0.868 -0.878 -0.822 -0.834 -0.882 -0.890
sJS Tm -0.809 -0.834 -0.796 -0.805 -0.863 -0.874 -0.818 -0.831 -0.877 -0.887
KL Tm -0.625 -0.706 -0.554 -0.608 -0.622 -0.700 -0.613 -0.663 -0.611 -0.696
JS Tc -0.537 -0.556 -0.712 -0.716 -0.825 -0.832 -0.789 -0.797 -0.855 -0.859
sJS Tc -0.537 -0.556 -0.712 -0.716 -0.824 -0.832 -0.788 -0.796 -0.854 -0.858
KL Tc -0.269 -0.243 -0.005 0.157 0.188 0.192 0.106 0.257 -0.273 -0.216

Table A.67: Correlation coefficients in terms of Pearson of SummTriver with
Pyramid 3 reference summaries and Pyramid 4 reference summaries on TAC 2008

dataset, using 600 and 900 summaries per corpus
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Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

60
0
su
m
m
ar
ie
s
pe

r
co
rp
us

3
m
od

el
s

JS Tm -0.676 -0.709 -0.875 -0.876 -0.834 -0.838 -0.826 -0.833 -0.807 -0.815
sJS Tm -0.681 -0.718 -0.868 -0.865 -0.832 -0.836 -0.820 -0.827 -0.811 -0.817
KL Tm -0.393 -0.475 -0.581 -0.651 -0.635 -0.689 -0.584 -0.675 -0.630 -0.696
JS Tc -0.420 -0.437 -0.788 -0.793 -0.783 -0.787 -0.809 -0.806 -0.780 -0.796
sJS Tc -0.420 -0.437 -0.788 -0.793 -0.783 -0.787 -0.810 -0.806 -0.780 -0.796
KL Tc 0.076 0.006 0.052 0.073 0.016 0.183 -0.040 -0.142 0.093 0.142

4
m
od

el
s

JS Tm -0.679 -0.711 -0.870 -0.871 -0.836 -0.840 -0.827 -0.834 -0.800 -0.808
sJS Tm -0.685 -0.721 -0.863 -0.861 -0.833 -0.837 -0.822 -0.828 -0.806 -0.811
KL Tm -0.395 -0.476 -0.572 -0.643 -0.633 -0.688 -0.587 -0.677 -0.627 -0.690
JS Tc -0.424 -0.441 -0.782 -0.788 -0.784 -0.788 -0.810 -0.807 -0.774 -0.790
sJS Tc -0.424 -0.441 -0.782 -0.788 -0.784 -0.788 -0.811 -0.807 -0.774 -0.790
KL Tc 0.080 0.004 0.060 0.080 0.020 0.180 -0.039 -0.141 0.097 0.143

90
0
su
m
m
ar
ie
s
pe

r
co
rp
us

3
m
od

el
s

JS Tm -0.756 -0.791 -0.745 -0.744 -0.831 -0.841 -0.777 -0.795 -0.813 -0.827
sJS Tm -0.755 -0.792 -0.740 -0.739 -0.830 -0.838 -0.775 -0.793 -0.813 -0.822
KL Tm -0.627 -0.703 -0.546 -0.583 -0.642 -0.735 -0.609 -0.669 -0.636 -0.700
JS Tc -0.565 -0.574 -0.681 -0.677 -0.810 -0.812 -0.744 -0.745 -0.799 -0.805
sJS Tc -0.565 -0.574 -0.679 -0.677 -0.810 -0.812 -0.746 -0.745 -0.799 -0.805
KL Tc -0.192 -0.196 -0.018 0.101 0.221 0.241 0.066 0.152 -0.275 -0.168

4
m
od

el
s

JS Tm -0.755 -0.791 -0.748 -0.746 -0.839 -0.849 -0.772 -0.791 -0.813 -0.826
sJS Tm -0.755 -0.792 -0.743 -0.742 -0.837 -0.846 -0.771 -0.789 -0.814 -0.821
KL Tm -0.632 -0.707 -0.550 -0.588 -0.649 -0.742 -0.606 -0.665 -0.640 -0.701
JS Tc -0.567 -0.575 -0.685 -0.681 -0.819 -0.821 -0.737 -0.737 -0.799 -0.805
sJS Tc -0.567 -0.575 -0.683 -0.681 -0.819 -0.821 -0.739 -0.737 -0.799 -0.805
KL Tc -0.194 -0.197 -0.015 0.109 0.220 0.239 0.070 0.152 -0.269 -0.164

Table A.68: Correlation coefficients in terms of Spearman of SummTriver with
Pyramid 3 reference summaries and Pyramid 4 reference summaries on TAC 2008

dataset, using 600 and 900 summaries per corpus



A.3. SummTriver 187

Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

60
0
su
m
m
ar
ie
s
pe

r
co
rp
us

3
m
od

el
s

JS Tm -0.495 -0.519 -0.699 -0.699 -0.645 -0.648 -0.636 -0.647 -0.606 -0.614
sJS Tm -0.493 -0.529 -0.693 -0.693 -0.639 -0.645 -0.629 -0.643 -0.613 -0.616
KL Tm -0.270 -0.330 -0.435 -0.492 -0.464 -0.514 -0.405 -0.474 -0.443 -0.497
JS Tc -0.295 -0.315 -0.600 -0.610 -0.579 -0.583 -0.614 -0.613 -0.561 -0.586
sJS Tc -0.295 -0.315 -0.600 -0.610 -0.579 -0.583 -0.615 -0.613 -0.562 -0.587
KL Tc 0.057 0.004 0.043 0.050 -0.005 0.111 -0.024 -0.107 0.053 0.091

4
m
od

el
s

JS Tm -0.493 -0.522 -0.690 -0.690 -0.643 -0.645 -0.638 -0.649 -0.601 -0.609
sJS Tm -0.491 -0.532 -0.687 -0.684 -0.637 -0.643 -0.631 -0.645 -0.608 -0.612
KL Tm -0.273 -0.333 -0.431 -0.488 -0.464 -0.511 -0.407 -0.476 -0.441 -0.492
JS Tc -0.295 -0.314 -0.593 -0.604 -0.581 -0.585 -0.616 -0.613 -0.561 -0.584
sJS Tc -0.295 -0.314 -0.593 -0.604 -0.581 -0.585 -0.618 -0.613 -0.562 -0.585
KL Tc 0.066 0.005 0.044 0.056 -0.001 0.113 -0.024 -0.105 0.053 0.089

90
0
su
m
m
ar
ie
s
pe

r
co
rp
us

3
m
od

el
s

JS Tm -0.572 -0.606 -0.567 -0.561 -0.639 -0.655 -0.593 -0.609 -0.630 -0.643
sJS Tm -0.569 -0.607 -0.561 -0.552 -0.638 -0.653 -0.587 -0.604 -0.627 -0.637
KL Tm -0.442 -0.510 -0.378 -0.402 -0.451 -0.531 -0.425 -0.479 -0.460 -0.510
JS Tc -0.400 -0.406 -0.499 -0.489 -0.612 -0.612 -0.561 -0.563 -0.606 -0.613
sJS Tc -0.400 -0.406 -0.497 -0.489 -0.610 -0.612 -0.563 -0.563 -0.604 -0.612
KL Tc -0.132 -0.126 -0.014 0.072 0.153 0.166 0.027 0.103 -0.183 -0.123

4
m
od

el
s

JS Tm -0.579 -0.615 -0.568 -0.560 -0.644 -0.660 -0.591 -0.607 -0.629 -0.637
sJS Tm -0.579 -0.614 -0.560 -0.554 -0.643 -0.658 -0.585 -0.602 -0.626 -0.633
KL Tm -0.449 -0.515 -0.382 -0.408 -0.456 -0.535 -0.425 -0.476 -0.459 -0.511
JS Tc -0.400 -0.406 -0.503 -0.493 -0.616 -0.616 -0.551 -0.554 -0.604 -0.612
sJS Tc -0.400 -0.406 -0.500 -0.493 -0.615 -0.616 -0.554 -0.554 -0.603 -0.610
KL Tc -0.128 -0.126 -0.013 0.078 0.151 0.162 0.027 0.101 -0.180 -0.119

Table A.69: Correlation coefficients in terms of Kendall of SummTriver with
Pyramid 3 reference summaries and Pyramid 4 reference summaries on TAC 2008

dataset, using 600 and 900 summaries per corpus
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A.3.2 Correlation of SummTriver with Responsiveness on TAC

2008

Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

60
0
su
m
m
ar
ie
s

JS Tm -0.645 -0.671 -0.781 -0.775 -0.821 -0.828 -0.744 -0.749 -0.815 -0.820
sJS Tm -0.639 -0.668 -0.779 -0.774 -0.816 -0.824 -0.744 -0.749 -0.817 -0.822
KL Tm -0.314 -0.408 -0.509 -0.593 -0.568 -0.644 -0.540 -0.603 -0.652 -0.706
JS Tc -0.391 -0.409 -0.730 -0.725 -0.754 -0.761 -0.727 -0.730 -0.768 -0.771
sJS Tc -0.391 -0.409 -0.730 -0.725 -0.753 -0.760 -0.727 -0.730 -0.768 -0.771
KL Tc 0.100 0.095 0.154 0.189 0.141 0.233 -0.103 -0.107 -0.089 -0.025

90
0
su
m
m
ar
ie
s

JS Tm -0.645 -0.671 -0.781 -0.775 -0.821 -0.828 -0.744 -0.749 -0.815 -0.820
sJS Tm -0.639 -0.668 -0.779 -0.774 -0.816 -0.824 -0.744 -0.749 -0.817 -0.822
KL Tm -0.314 -0.408 -0.509 -0.593 -0.568 -0.644 -0.540 -0.603 -0.652 -0.706
JS Tc -0.391 -0.409 -0.730 -0.725 -0.754 -0.761 -0.727 -0.730 -0.768 -0.771
sJS Tc -0.391 -0.409 -0.730 -0.725 -0.753 -0.760 -0.727 -0.730 -0.768 -0.771
KL Tc 0.100 0.095 0.154 0.189 0.141 0.233 -0.103 -0.107 -0.089 -0.025

Table A.70: Correlation coefficients in terms of Pearson of SummTriver with
Responsiveness on TAC 2008 dataset, using 600 and 900 summary per corpus

Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

60
0
su
m
m
ar
ie
s

JS Tm -0.629 -0.659 -0.780 -0.771 -0.801 -0.802 -0.696 -0.712 -0.776 -0.800
sJS Tm -0.632 -0.667 -0.773 -0.759 -0.802 -0.798 -0.704 -0.708 -0.783 -0.801
KL Tm -0.337 -0.417 -0.555 -0.612 -0.615 -0.672 -0.533 -0.593 -0.665 -0.736
JS Tc -0.401 -0.425 -0.714 -0.709 -0.751 -0.762 -0.699 -0.698 -0.752 -0.760
sJS Tc -0.401 -0.425 -0.714 -0.709 -0.751 -0.762 -0.699 -0.698 -0.757 -0.761
KL Tc 0.112 0.060 0.102 0.080 0.077 0.183 -0.083 -0.126 0.015 0.053

90
0
su
m
m
ar
ie
s

JS Tm -0.698 -0.714 -0.718 -0.724 -0.779 -0.784 -0.590 -0.602 -0.786 -0.801
sJS Tm -0.701 -0.722 -0.717 -0.725 -0.778 -0.782 -0.587 -0.603 -0.789 -0.797
KL Tm -0.606 -0.668 -0.594 -0.633 -0.649 -0.712 -0.502 -0.547 -0.620 -0.695
JS Tc -0.548 -0.552 -0.690 -0.689 -0.801 -0.800 -0.574 -0.576 -0.768 -0.777
sJS Tc -0.548 -0.552 -0.689 -0.689 -0.801 -0.800 -0.576 -0.576 -0.769 -0.777
KL Tc -0.136 -0.120 -0.023 0.184 0.181 0.178 0.152 0.172 -0.177 -0.134

Table A.71: Correlation coefficients in terms of Spearman of SummTriver with
Responsiveness on TAC 2008 dataset, using 600 and 900 summary per corpus
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Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

60
0
su
m
m
ar
ie
s

JS Tm -0.451 -0.483 -0.589 -0.576 -0.604 -0.602 -0.512 -0.523 -0.572 -0.590
sJS Tm -0.454 -0.488 -0.581 -0.565 -0.605 -0.595 -0.514 -0.517 -0.577 -0.590
KL Tm -0.233 -0.296 -0.409 -0.443 -0.437 -0.483 -0.382 -0.412 -0.483 -0.529
JS Tc -0.280 -0.301 -0.529 -0.526 -0.562 -0.568 -0.515 -0.519 -0.533 -0.539
sJS Tc -0.280 -0.301 -0.529 -0.526 -0.562 -0.568 -0.514 -0.519 -0.539 -0.540
KL Tc 0.071 0.047 0.068 0.072 0.035 0.113 -0.056 -0.081 0.022 0.026

90
0
su
m
m
ar
ie
s

JS Tm -0.530 -0.550 -0.538 -0.539 -0.589 -0.595 -0.427 -0.433 -0.590 -0.608
sJS Tm -0.533 -0.556 -0.530 -0.538 -0.588 -0.595 -0.423 -0.433 -0.595 -0.605
KL Tm -0.441 -0.497 -0.430 -0.459 -0.475 -0.514 -0.376 -0.405 -0.442 -0.504
JS Tc -0.397 -0.406 -0.507 -0.501 -0.610 -0.607 -0.404 -0.409 -0.563 -0.578
sJS Tc -0.397 -0.406 -0.504 -0.501 -0.608 -0.607 -0.406 -0.409 -0.565 -0.577
KL Tc -0.075 -0.063 -0.009 0.113 0.135 0.130 0.093 0.114 -0.124 -0.091

Table A.72: Correlation coefficients in terms of Kendall of SummTriver with
Responsiveness on TAC 2008 dataset, using 600 and 900 summary per corpus
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A.3.3 Correlation of SummTriver with Pyramid on TAC 2009

Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

P
yr
am

id
M
3

JS mul -0.461 -0.475 -0.447 -0.470 -0.506 -0.526 -0.389 -0.405 -0.427 -0.450
sJS mul -0.452 -0.468 -0.433 -0.459 -0.488 -0.511 -0.376 -0.393 -0.403 -0.427
KL mul -0.227 -0.286 -0.246 -0.316 -0.323 -0.371 -0.261 -0.301 -0.273 -0.319
JS com -0.295 -0.307 -0.401 -0.416 -0.461 -0.477 -0.385 -0.392 -0.410 -0.423
sJS com -0.295 -0.307 -0.400 -0.414 -0.460 -0.475 -0.383 -0.390 -0.405 -0.417
KL com -0.039 0.059 -0.100 -0.084 -0.176 -0.138 -0.089 -0.056 0.042 0.059

P
yr
am

id
M
4

JS mul -0.459 -0.473 -0.447 -0.469 -0.504 -0.524 -0.388 -0.404 -0.423 -0.445
sJS mul -0.449 -0.465 -0.432 -0.458 -0.487 -0.509 -0.374 -0.391 -0.398 -0.422
KL mul -0.225 -0.283 -0.246 -0.316 -0.323 -0.371 -0.258 -0.299 -0.270 -0.315
JS com -0.293 -0.305 -0.400 -0.415 -0.459 -0.475 -0.384 -0.390 -0.406 -0.419
sJS com -0.293 -0.305 -0.399 -0.414 -0.457 -0.473 -0.382 -0.388 -0.400 -0.413
KL com -0.041 0.058 -0.101 -0.085 -0.180 -0.142 -0.089 -0.057 0.042 0.058

Table A.73: Correlation coefficients in terms of Pearson of SummTriver with
Pyramid on TAC 2009 dataset, using 900 summaries per corpus

Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

P
yr
am

id
M
3

JS mul -0.745 -0.731 -0.717 -0.715 -0.759 -0.755 -0.680 -0.669 -0.719 -0.720
sJS mul -0.755 -0.740 -0.711 -0.713 -0.754 -0.751 -0.674 -0.670 -0.718 -0.712
KL mul -0.585 -0.597 -0.522 -0.591 -0.633 -0.681 -0.575 -0.628 -0.608 -0.621
JS com -0.600 -0.604 -0.676 -0.682 -0.718 -0.718 -0.690 -0.686 -0.706 -0.702
sJS com -0.600 -0.604 -0.676 -0.681 -0.716 -0.717 -0.689 -0.686 -0.706 -0.702
KL com -0.024 0.165 -0.118 -0.063 -0.104 -0.062 -0.052 0.015 0.069 0.087

P
yr
am

id
M
4

JS mul -0.745 -0.732 -0.718 -0.716 -0.757 -0.754 -0.682 -0.672 -0.716 -0.718
sJS mul -0.754 -0.740 -0.712 -0.715 -0.752 -0.749 -0.676 -0.673 -0.716 -0.709
KL mul -0.584 -0.597 -0.524 -0.593 -0.633 -0.681 -0.577 -0.630 -0.607 -0.620
JS com -0.601 -0.605 -0.679 -0.685 -0.714 -0.714 -0.691 -0.688 -0.704 -0.701
sJS com -0.601 -0.605 -0.679 -0.684 -0.712 -0.713 -0.690 -0.688 -0.704 -0.700
KL com -0.020 0.167 -0.114 -0.058 -0.101 -0.059 -0.058 0.010 0.066 0.085

Table A.74: Correlation coefficients in terms of Spearman of SummTriver with
Pyramid on TAC 2009 dataset, using 900 summaries per corpus
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Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

P
yr
am

id
M
3

JS mul -0.603 -0.591 -0.589 -0.584 -0.626 -0.623 -0.562 -0.547 -0.608 -0.599
sJS mul -0.611 -0.601 -0.588 -0.589 -0.626 -0.620 -0.553 -0.552 -0.604 -0.592
KL mul -0.442 -0.461 -0.455 -0.492 -0.552 -0.558 -0.467 -0.507 -0.523 -0.525
JS com -0.446 -0.453 -0.553 -0.554 -0.585 -0.582 -0.566 -0.557 -0.588 -0.587
sJS com -0.446 -0.452 -0.553 -0.552 -0.585 -0.581 -0.566 -0.558 -0.585 -0.585
KL com -0.022 0.119 -0.076 -0.040 -0.075 -0.040 -0.038 0.015 0.044 0.065

P
yr
am

id
M
4

JS mul -0.603 -0.591 -0.589 -0.587 -0.626 -0.623 -0.561 -0.549 -0.605 -0.599
sJS mul -0.611 -0.601 -0.591 -0.592 -0.626 -0.620 -0.552 -0.553 -0.601 -0.592
KL mul -0.440 -0.461 -0.460 -0.498 -0.552 -0.558 -0.468 -0.508 -0.523 -0.525
JS com -0.449 -0.453 -0.556 -0.557 -0.582 -0.580 -0.565 -0.553 -0.588 -0.587
sJS com -0.449 -0.455 -0.556 -0.554 -0.582 -0.578 -0.565 -0.554 -0.585 -0.585
KL com -0.017 0.122 -0.079 -0.037 -0.072 -0.037 -0.040 0.011 0.044 0.065

Table A.75: Correlation coefficients in terms of Kendall of SummTriver with
Pyramid on TAC 2009 dataset, using 900 summaries per corpus
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A.3.4 Correlation of SummTriver with Responsiveness on TAC

2009

Set Size 2 Summaries 5 Summaries 10 Summaries 15 Summaries 30 Summaries
Methods Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4 Bigram SU4

P
ea
rs
on

JS mul -0.495 -0.501 -0.436 -0.449 -0.637 -0.650 -0.511 -0.523 -0.416 -0.427
sJS mul -0.493 -0.501 -0.422 -0.437 -0.620 -0.636 -0.499 -0.513 -0.396 -0.407
KL mul -0.320 -0.363 -0.252 -0.305 -0.473 -0.518 -0.382 -0.426 -0.294 -0.323
JS com -0.363 -0.371 -0.390 -0.396 -0.609 -0.619 -0.524 -0.530 -0.384 -0.389
sJS com -0.363 -0.371 -0.388 -0.394 -0.607 -0.618 -0.523 -0.528 -0.379 -0.384
KL com 0.025 0.078 -0.007 0.017 -0.034 0.014 -0.043 0.007 -0.031 -0.020

Sp
ea
rm

an

JS mul -0.541 -0.515 -0.534 -0.512 -0.748 -0.744 -0.590 -0.574 -0.553 -0.547
sJS mul -0.558 -0.528 -0.530 -0.513 -0.742 -0.739 -0.588 -0.575 -0.553 -0.539
KL mul -0.483 -0.455 -0.407 -0.449 -0.622 -0.683 -0.525 -0.569 -0.458 -0.450
JS com -0.481 -0.461 -0.517 -0.506 -0.712 -0.710 -0.624 -0.618 -0.531 -0.529
sJS com -0.481 -0.461 -0.517 -0.506 -0.712 -0.709 -0.623 -0.617 -0.531 -0.529
KL com 0.073 0.188 0.007 0.057 -0.033 0.007 -0.011 0.063 -0.039 -0.030

K
en
da

ll

JS mul -0.390 -0.370 -0.412 -0.387 -0.587 -0.587 -0.442 -0.442 -0.432 -0.418
sJS mul -0.404 -0.381 -0.413 -0.393 -0.585 -0.585 -0.441 -0.444 -0.428 -0.411
KL mul -0.370 -0.343 -0.340 -0.365 -0.527 -0.550 -0.390 -0.422 -0.356 -0.349
JS com -0.336 -0.316 -0.397 -0.385 -0.566 -0.563 -0.483 -0.476 -0.418 -0.416
sJS com -0.336 -0.317 -0.397 -0.385 -0.566 -0.562 -0.483 -0.475 -0.415 -0.415
KL com 0.045 0.119 0.007 0.044 -0.030 0.005 -0.012 0.042 -0.034 -0.020

Table A.76: Correlation coefficients in terms of Pearson, Spearman and Kendall of
SummTriver with Responsiveness on TAC 2009 dataset, using 900 summaries per

corpus
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A.4 FRESA

A.4.1 Correlation of FRESA with Pyramid and Responsive-

ness on TAC 2008

Pyramid Responsiveness

Average score with 3 reference summaries Average score with 4 reference summaries -
Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

FRESA_1 -0.487 -0.638 -0.537 -0.486 -0.636 -0.537 -0.385 -0.498 -0.371
FRESA_2 0.474 -0.062 -0.064 0.475 -0.063 -0.064 0.523 0.076 0.034
FRESA_3 0.539 0.241 0.162 0.540 0.238 0.162 0.593 0.362 0.250
FRESA_4 0.544 0.257 0.168 0.544 0.255 0.168 0.596 0.416 0.296
FRESA_M 0.464 -0.090 -0.090 0.464 -0.090 -0.090 0.523 0.081 0.040

Table A.77: Correlation coefficients, in terms of Pearson, Spearman and Kendall,
of FRESA with Pyramid and Responsiveness, on TAC 2008 dataset

A.4.2 Correlation of FRESA with Pyramid and Responsive-

ness on TAC 2009

Pyramid Responsiveness

Average score with 3 reference summaries Average score with 4 reference summaries -
Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

FRESA_1 -0.610 -0.650 -0.491 -0.609 -0.652 -0.493 -0.594 -0.565 -0.410
FRESA_2 -0.630 -0.046 -0.026 -0.630 -0.048 -0.027 -0.385 0.074 0.063
FRESA_3 -0.556 0.055 0.056 -0.556 0.054 0.055 -0.298 0.180 0.147
FRESA_4 -0.516 0.189 0.142 -0.516 0.187 0.141 -0.217 0.369 0.278
FRESA_M -0.643 -0.066 -0.041 -0.643 -0.069 -0.042 -0.373 0.090 0.062

Table A.78: Correlation coefficients, in terms of Pearson, Spearman and Kendall,
of FRESA with Pyramid and Responsiveness, on TAC 2009 dataset





Appendix B

Résumé en français

Les dernières statistiques faites par l’IDC (International Data Corporation)1 mon-
trent que le volume d’information en exabytes dans le domaine médical a aug-
menté de plus de 1400% entre les années 2013 et 2020. Cette croissance mon-
strueuse fait que des sites tel que "PubMed" (for Biotechnology Information, 2018)
de "MEDLINE" (Solutions, 2021) et "Dimensions" contiennent à présent des mil-
lions d’articles médicaux portant sur des sujets variés. Cependant, et afin de suivre
le rapide progrès dans le domaine médical, les chercheurs et les médecins ont besoin
d’accéder aux informations pertinentes le plus rapidement possible.

Grâce à l’intelligence artificielle et les avancements dans le traitement automa-
tique du langage naturel, le domaine du résumé automatique de textes a émergé
pour le but de proposer des solutions efficaces afin de transformer un ou plusieurs
textes longs en un résumé de petite taille concentrant leur information la plus utile.

Les premiers travaux dans le domaine du résumé automatique étaient extrac-
tifs, où les phrases les plus pertinentes du texte sont copiées et concaténées afin
de construire le résumé. Avec l’apparition de l’apprentissage profond, le résumé au-
tomatique est basé désormais sur des approches abstractives, où le système reformule
le texte en un résumé qui ne contient pas forcément des mots du texte original.

Malgré l’évolution dans le domaine du résumé automatique, il est nécessaire
d’évaluer automatiquement la qualité des résumés générés afin de pouvoir com-
parer et améliorer les différentes approches de l’état de l’art. Ceci dit que le do-
maine d’évaluation automatique des résumés est aussi important pour le fait que
l’évaluation manuelle est coûteuse en termes d’argent et de temps, même si elle
constitue la meilleure référence d’évaluation.

Il existe deux types d’approches automatiques d’évaluation de résumé : celles qui
nécessitent une intervention humaine (telles que ROUGE (Lin, 2004) et SERA (Co-
han and Goharian, 2016)), et celles qui ne la nécessitent pas (telles que SummTriver (Cabrera-
Diego and Torres-Moreno, 2018) et FRESA (Torres-Moreno et al., 2010)). Les
dernières approches ont l’avantage de fonctionner sans avoir besoin d’un résumé

1https://www.idc.com/
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de référence, mais elles ont jusqu’à présent une faible corrélation avec les méthodes
d’évaluation manuelles.

Dans cette thèse, nous nous focalisons sur le résumé automatique abstractif des
textes médicaux longs, ainsi que l’évaluation automatique des résumés appartenant
au domaine général. Pour la première problématique, nous proposons une amélio-
ration de l’architecture originale des réseaux de neurones de type Transformers.
Notre méthode (appelée HazPi) consiste à augmenter le nombre d’encodeurs du
modèle en découpant l’entrée entre eux afin de concentrer l’attention du modèle
sur des sous parties du texte (Multi-encoder Transformer). En plus, notre méthode
favorise l’apprentissage progressif en présentant les résumés au décodeur partie par
partie jusqu’à la consommation de toute la séquence (End-chunk Task Training).
Nous menons des expérimentations sans et avec pré-entraînement du modèle sur des
datasets médicales et les résultats obtenus sont encourageants en comparant HazPi
avec des méthodes compétitives de l’état de l’art.

Pour la deuxième problématique, nous présentons wikiSERA, une amélioration
de la méthode SERA pour l’évaluation automatique des résumés biomédicaux en se
basant sur l’intervention humaine. SERA est basée sur une analyse de la pertinence
de contenu entre un résumé candidat et un ensemble de résumés de référence à l’aide
d’un moteur de recherche qui compare les résultats de recherche dans un ensemble
de documents qui constituent l’index, avec comme requêtes en entrée d’une part les
résumés de référence et d’autre part les résumés automatiques.

Nous proposons de redéfinir la reformulation des requêtes dans SERA en util-
isant les parties du discours et d’utiliser comme index des documents extraits de
l’encyclopédie Wikipédia, afin de s’abstraire du domaine biomédical vers le domaine
général. Notre méthode, wikiSERA, est un système sous licence libre disponible
pour la communauté et prêt pour évaluer des résumés du domaine général. Les
résultats obtenus montrent que wikiSERA améliore les résultats de SERA dans le
domaine général et parfois même dépasse les scores obtenus par ROUGE.

De plus, nous menons des expérimentations approfondies sur les performances de
SERA et wikiSERA sur les datasets TAC 2008, TAC 2009 et CNNDM afin d’établir
une comparaison complète sous plusieurs contraintes telles que l’impact de la taille
de l’index et la performance de chaque résumateur humain.
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