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Résumé
Les systèmes de communications MIMO (Multiple Input Multiple Output) ainsi que leur récente

version à grande-échelle, appelée MIMO massive, sont considérés comme des technologies poten-

tielles pour les standards de communication sans fil actuels et futurs, grâce à leurs puissantes

capacités d’amélioration des performances. Néanmoins, afin d’exploiter pleinement tous leurs

potentiels, une grande attention doit être accordée aux opérations d’identification du système et

d’égalisation des canaux de transmission, qui restent une préoccupation actuelle.

Dans ce contexte, la principale contribution de cette thèse s’inscrit dans le cadre de

l’identification des systèmes de communication, à travers l’estimation des canaux, ainsi que

l’égalisation des canaux via les techniques de séparation de sources, et ce pour des modèles de

communications linéaires et non linéaires. Ainsi, en adoptant des approches semi-aveugles, des

analyses de performances ainsi que le développement d’algorithmes efficaces sont mis en avant

en considérant différents contraintes/problèmes tels que la contamination des pilotes, rencon-

trés principalement dans les systèmes MIMO massifs, les effets des non-linéarités ainsi que les

interférences inter-symboles et inter-utilisateurs .En plus, pour un meilleur gain en performance,

l’accent est mise aussi sur l’exploitation des a priori sur les systèmes tels que les séquences

d’entraînement (pilotes), la sparcité du canal et la structure de la matrice de données.

Pour ce faire, une analyse des performances limites est réalisée à travers les bornes de Cramèr-

Rao (CRB : Cramèr-Rao Bounds); et qui démontre l’efficacité des techniques semi-aveugles pour

surmonter le problème de la contamination des pilotes dans les systèmes MIMO-OFDM (MIMO

Orthogonal frequency-Division Multiplexing) massifs. Cette efficacité est démontrée pour le cas

de cellules synchrones et non-synchrones dans un réseau cellulaire.

Cette étude nous a motivé à adopter les approches semi-aveugles pour l’égalisation des

canaux et la détection des données via des techniques de séparation de sources. Une solution

basée sur les modules multiples (MM : Multi-Modulus) est proposée pour démixer des mélanges

instantanés dans des systèmes MIMO massifs. En l’absence d’informations préalables sur le

canal de communication, une optimisation d’une fonction coût semi-aveugle est effectuée de

manière itérative avec un pas optimisé. Cette solution est ensuite étendue au cas des systèmes
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de communication MIMO-OFDM massifs (modèle convolutif), ou nous estimons une matrice de

séparation indépendamment de la sous-porteuse. Les deux solutions présentent des performances

intéressantes sous l’effet de la contamination des pilotes.

Aussi, en considérant des a priori sur le système, tels que les pilotes; la parcimonie du

canal et la structure de la matrice de données, nous mettons en avant l’estimation conjointe du

canal de transmission parcimonial et des données sous forme d’un problème d’optimisation. La

solution semi-aveugle proposée est basée sur l’approche d’approximation convexe successive (SCA

: Successive Convex Approximation), où l’optimisation est effectuée sur un problème approximatif

convexe, plutôt que sur le problème original non convexe, avec convergence garantie vers un

point stationnaire.

Ensuite, en considérant des systèmes de communication multicanaux non linéaires, un

estimateur de canal basé sur le maximum de vraisemblance (ML : Maximum Likelihood) est

proposé. Une version aveugle est proposée en combinant une technique de sous-espace et

l’algorithme EM (Expectation-Maximization), avec de nouvelles techniques de suppression d’

ambiguïtés. Aussi, une version semi-aveugle est proposée, qui permet de se débarrasser de

l’ambiguïté inhérente au traitement aveugle et d’obtenir de meilleures performances d’estimation

du canal de transmission.

Enfin, nous initions une étude liée au potentiel de l’approche d’apprentissage profond (DL :

Deep Learning) au niveau de la couche physique. Ainsi, la détection de données dans les systèmes

non linéaires est traitée comme étant un problème de classification basé sur le DL. Les résultats

obtenus montrent que le DL offre un potentiel prometteur pour des applications au niveau de la

couche physique.

Mots Clés— MIMO/ MIMO massif, OFDM, CRB, semi-aveugle, méthode sous-espace,

algorithme EM, SCA, MMA, Deep Learning



Abstract
Multiple Input Multiple Output (MIMO) communications systems as well as their recent large-

scale version, called massive MIMO, are seen as potential technologies for current and future

wireless communications standards, thanks to their powerful performance-enhancing capabilities.

Nevertheless, in order to fully exploit all their potentials, great attention has to be given to the

system identification and communications channel equalization tasks, which remain a current

concern.

In this context, the main contribution of this thesis falls into the scope of communications

system identification, through channel estimation, as well as channel equalization via source

separation techniques, for linear and nonlinear system models. Thus, by adopting semi-blind

approaches, performance analysis as well as efficient algorithms development are put forward

by considering different constraints/issues such as pilot contamination, encountered mainly in

massive MIMO systems, nonlinearities effects as well as inter-symbol and inter-user interference.

Furthermore, for a better performance gain, emphasis is also put on the exploitation of priors on

the systems such as training sequences (pilots), channel’s sparsity, and data matrix structure.

To do so, a performance bounds analysis is carried out through the Cramèr-Rao Bounds (CRB);

which demonstrates the effectiveness of semi-blind techniques to overcome the problem of pilot

contamination in massive MIMO-OFDM (MIMO Orthogonal frequency-Division Multiplexing)

systems. This effectiveness is demonstrated for the case of synchronous and non-synchronous

cells in a cellular network.

This study motivated us to adopt semi-blind approaches for channel equalization and data

detection via source separation techniques. A Multi-Modulus based (MM) solution is proposed

for demixing instantaneous mixtures in massive MIMO systems. With no priors on the commu-

nications channel, an optimization of a semi-blind cost function is performed iteratively with an

optimized step size. This solution is then extended to the case of massive MIMO-OFDM commu-

nications systems (convolutive model), where we estimate a separating matrix independently of

the sub-carrier. Both solutions exhibit interesting performance under pilot contamination effect.

Also, by considering priors on the system, such as pilots; channel’s sparsity and data matrix
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structure, we put forward a joint sparse channel estimation and data recovery as an optimization

problem. The proposed semi-blind solution is based on the Successive Convex Approximation

(SCA) approach, where the optimization is performed on an approximate convex problem, rather

than the original non-convex one, with guaranteed convergence to a stationary point.

Then, by considering nonlinear multichannel communications systems, a Maximum Likelihood

(ML)-based channel estimator is proposed. A blind version is proposed by combining a subspace

technique and the Expectation-Maximization (EM) algorithm, with new ambiguity removal tech-

niques. Also, a semi-blind version is proposed, which helps getting rid off the inherent ambiguity

of blind processing and obtaining better communications channel estimation performance.

Finally, we initiate a study related to the potential of the Deep Learning (DL) approach on

the physical layer. Thus, data detection in nonlinear communications systems is treated as a

DL-based classification problem. The obtained results show that DL offers promising potential

for applications at the physical layer.

Keywords— MIMO/ massive MIMO, OFDM, CRB, semi-blind, subspace method, EM

algorithm, SCA, MMA, Deep Learning
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Introduction

“Creativity requires the courage to let go of certainties . ”Erich Fromm

1.1 Overview

Mobile and wireless technologies have improved substantially [2]; allowing continuous accessibility

to the user for situations where installation of physical equipment is not feasible and which

require on-the-spot access to information via voice or data. Along, wireless devices become

remarkably convenient and affordable, leading to the expansion of wireless communications

applications. Public welfare agencies such as police, fire safety, and ambulance services are using

extensively mobile computing devices for their daily tasks. Airline staff are gathering information

about ticketing, flight scheduling, and luggage using wireless devices. Electronic bills enable

consumers to receive and pay their bills using a phone by Wireless Application Protocol (WAP).

Hand-held devices used by courier companies such as Federal Express, UPS, and DHL have

adopted the wireless and mobile computing technology for parcel tracking, as well as emergency

drop or pickups of shipments. Also, besides the importance of transmitting voice, data and

video in real time with high accuracy, military leaders are focusing more and more on advanced

wireless technologies to help create a digitally networked force, which uses wearable computers

and wireless radios to help create composite view of the battlefield [3]. In the background, the

same wireless appliances are improving the efficiency of logistics and maintenance personnel.
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Moreover, mobile cellular communications have become the most common radio access

application for wireless communications in nowadays. Indeed, such an astonishing development

of the mobile cellular networks has gone through different technology generations ranging from

the first genaration (1G) to the fifth one (5G) so far [4]. While the first generation (1G) of mobile

communications refers to the analog mobile radio systems used in 1980s, the second generation

(2G) resulted from the appearance of the digital technologies mainly the Global System for

Mobile communications (GSM) and the Code Division Multiplexing Access (CDMA) [5] which,

with high system capacity and quality of service, have been standardized as 2G technologies

and have spread all over the world [6]. Later on appeared the standard GPRS (General Packet

Radio System) as 2.5G and the EDGE (Enhanced Data Rates for Global Evolution) norm

as 2.75G leading to high throughput. Such a success motivated the development of the third

generation (3G) through the norm UMTS (Universal Mobile Telecommunications System) and

the protocol HSDPA (High-Speed Downlink Packet Access) considered as 3.5G, which boosted

new applications such as internet browsing and audio/video streaming. The fourth Generation

(4G), introduced in 2012, aimed at delivering high speed communication with enhanced security to

enable high definition mobile TV, video-conferencing and pervasive computing with bandwidths

up to 150 Mbps. Long-Term Evolution (LTE) delivered the technological fundament to fulfill

the 4G standards. But only the enhanced LTE+ or LTE Advanced (LTE-A) has met the 4G

requirements. The milestone technologies of 4G systems were Multiple-Input Multiple-Output

(MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) techniques [7]. The 5-th

generation (5G) of mobile networks is a new global wireless standard, that enables a new kind

of network which is designed to connect virtually everyone and everything together including

machines, objects, and devices. Indeed, 5G wireless technologies are meant to deliver higher

multi-Gbps (Giga Bit per second) peak data speeds, ultra low latency, more reliability, massive

network capacity with increased availability. Among the prime technologies for sustaining the

requirements of 5G are the millimeter wave (mmWave) and massive MIMO systems [8].

For the purpose of increasing substantially the data throughput and radio communications

reliability, multiple antennas have been used at the transmitter side (Multiple-Input Single-

Output : MISO), at the receiver side (Single-Input Multiple Output : SIMO) or at both (MIMO)

[9, 10]. Indeed, MIMO architectures allow more degrees of freedom provided by the spatial

dimension, that can be exploited to either transmit simultaneously independent data-streams,

i.e. spatial multiplexing, or perform multiple transmission of single data stream, i.e. spatial

diversity. Furthermore, it has been noticed that, with a higher number of Base Station (BS)
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antennas, around few hundreds compared to the classical MIMO systems (8 antennas for the

LTE), important gains in spectral and energy efficiencies are obtained. Such systems are called

massive MIMO or large-scale MIMO systems [11, 12, 13]. These systems hold promises of

boosting system’s throughput by 10 times or more while simultaneously serving tens of users in

the same time-frequency resources [14], which allow enhancement of both throughput and system

capacity in order to satisfy the increasing amount of data exchange and demand for quality of

service for the future cellular networks.

For data modulation and multiplexing/demultiplexing, OFDM is a very efficient modulation

technique that can achieve very high throughput by transmitting on a great number of carriers

simultaneously. It helps improving the system robustness against frequency-selective fading

channels by converting the overall channel into a number of parallel flat fading channels [15].

Besides, the OFDM eliminates the inter-symbol interference and inter-carrier interference thanks

to the use of a cyclic prefix and an orthogonal transform. Moreover, the combination of MIMO

technology with OFDM called MIMO-OFDM systems, has enabled high speed data transmission

and broadband multimedia services over wireless links [15, 16]. Although being used successfully

for LTE and LTE-Advanced, many variants of OFDM, such as Constant-Envelope OFDM (CE-

OFDM) or Generalized FDM (GFDM), are proposed for 5G systems [17] in order to overcome

the inherent Peak-to-Average Power Ratio (PAPR) issue.

In order to fully exploit all of the potentials offered by the aforementioned technologies,

efficient system identification and channel equalization remain critical tasks. Actually, systems

identification aims at estimating the Channel State Information (CSI), which is exploited for

coherent detection of the transmitted signals at the receiver side. Whereas, on transmitter side,

it is used to design efficient precoding schemes for inter-user interference cancellation. The task

of channel equalization is usually performed to compensate the distortion of the transmitted

signal imposed by the communications channel, and hence recover the transmitted data. In this

context, source separation techniques, used essentially for the multi-user case, is an alternative

that aims to detect the transmitted data without direct priors on CSI.

On the other hand, an important interest has been given recently to machine learning and,

and perticularly Deep Learning (DL) approaches, for the purpose of obtaining gains over existing

physical layer algorithms. In deed, communications is a field of rich expert knowledge focusing

on modeling channels of different types, compensating for various hardware imperfections and

designing optimal signaling and detection schemes for reliable data transmission. However,

there still exist complex communications scenarios that are difficult to describe with tractable



4 Chapter 1. Introduction

mathematical models and hence, can be treated with leaned systems [18].

1.2 Communications channel estimation

Communications channel refers to the propagation environment between the transmitter and

the receiver. Several channel models and channel estimation approaches have been developed

and proposed in literature. Basically, two main classes of channel estimation approaches have

been adopted. The first class refers to pilot-based channel estimation which is performed by

using training sequences, called pilots, that are inserted in the data frames and are known a

priori by both the transmitter and the receiver. Such an approach is the most commonly used in

communications standards [19, 20] for its low computational complexity and high robustness.

However, its main drawbacks are the vulnerability to the problem of pilot contamination in

massive MIMO systems and the bandwidth waste induced by the use of pilots, since a relatively

important number of pilots is needed for accurate CSI. In the case where no pilots are available,

blind channel estimation approaches are adopted as the second class. They are fully based on the

statistical properties of the unknown transmitted symbols [21, 22]. Such approaches reduce the

overhead but still need a large number of data symbols. Nevertheless, each channel estimation

class has its own benefits and drawbacks. Generally, the first class (i.e. pilot-based channel

estimator) provides a more accurate CSI, at low computational complexity, compared to the blind

estimation class. However, the later, in most cases, increases the spectral efficiency compared to

the first one. Therefore, it would be advantageous to retain the benefits of the two techniques

through the use of semi-blind (SB) approaches [23, 24, 25] which exploit both data and pilots to

achieve the desired channel estimation performance.

1.3 Source separation for data detection

Source separation is a main field of research in signal processing, which aims at retrieving

a set of statistically independent source signals from a set of observed mixtures. In digital

communications, source separation is used for the task of channel equalization, in order to recover

the unknown data of different users transmitted through a distorting propagation medium known

as communications channel. With no training sequences nor prior knowledge on the channel,

Blind Source Separations (BSS) is an efficient alternative that has been widely investigated in

the literature[26] [27]. BSS processes the received signal based on a priori knowledge about the

statistics or the nature of the transmitted signals, through the optimization of an appropriate

cost function. However, when training symbols are availabkle, a semi-blind approach can be
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adopted through the minimization of a semi-blind cost function [28].

1.4 Deep learning for communications systems

DL-based approaches have been successfully used in many filds espacially in computer vision and

natural language processing. Indeed, while it is almost impossible to define a robust algorithm for

handwritten digits or objects detection in an image due to difficulties of characterizing real-world

images or languages with rigid mathematical models, it is almost trivial to design DL-based

techniques that can learn to accomplish such tasks even beyond human levels of accuracy [29].

In communications, on the other hand, researchers have designed channel models and transmit

signals that enable straightforward algorithms for symbol detection or system identification.

However, for complex communications scenarios that are difficult to describe with tractable

mathematical models[18], or for complex techniques/algorithms that are difficult to implement in

practice, DL-based techniques are expected to overcome such difficulties and even yield significant

improvements over classical approaches. Actually, it is believed that DL applications can be

useful and insightful way of fundamentally rethinking the communications system design; and

hold promise for performance improvements in the physical layer.

1.5 Thesis purpose and manuscript organization

This thesis is concerned with the channel estimation and data detection, for linear and nonlinear

communications systems, by relying on mathematics-based tools then by using deep learning

based approaches. More precisely, this thesis focuses on performance analysis and algorithms

development when adopting semi-blind approaches; and considering different issues such as pilot

contamination and nonlinearities effect. Besides, a focus is also given to the exploitation of priors

on the considered communications system for the purpose of performance enhancement.

Indeed, thanks to channel reciprocity property and according to the widely accepted Time

Division Duplexing (TDD) protocol, used in MIMO-OFDM and massive MIMO-OFDM systems

[30, 31], CSI is estimated only during the uplink transmission, then transmitted to the different

users for channel equalization during the downlink phase. Consequently, the BS estimates the

CSI by exploiting the known symbols (i.e. pilots), so that the pilots used within the same cell

and in the neighboring cells should be mutually orthogonal. However this necessitates a complex

cell synchronization and cooperation scheme. In addition, the channel time coherence [32, 33]

limits the total number of orthogonal pilots leading to the reuse of the same pilots in many

neighboring cells. This phenomenon is called pilot contamination [34], which is one of the major
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issues of massive MIMO systems that must be addressed because its effect cannot be reduced

by increasing the number of BS antennas. In the current thesis, the effectiveness of semi-blind

approaches is investigated, through performance limits and algorithms development, to overcome

pilot contamination effect.

Also, nonlinear behaviors can be encountered in many practical situations, in which case

appropriate (nonlinear) processing is needed, when such nonlinearities are too important to

be disregarded [35, 36]. Indeed, because most of real-life systems are inherently nonlinear in

nature, nonlinear problems have drawn important interest and extensive attention from engineers,

physicists, mathematicians and many other scientists [36]. In communications systems, and

due to the presence of nonlinear devices such as power amplifiers and optical equipments [37],

communication channels are sometimes corrupted by nonlinear distortions such as nonlinear inter-

symbol interference, nonlinear multiple access interference and nonlinear inter-carrier interference.

These nonlinear distortions can significantly deteriorate the signal reception, leading to poor

system performance. In order to overcome such an issue, nonlinear models are adopted to provide

an accurate channel representation which allows the development of efficient signal processing

techniques capable of mitigating these nonlinear distortions. Consequently, blind and semi-blind

approaches are proposed in this thesis to deal with nonlinear models.

In order to achieve the aforementioned goals, the current manuscript is organized as follows:

Chapter 2 is dedicated to investigate the effectiveness of semi-blind approaches for pilot

contamination mitigation, when considering massive MIMO-OFDM communications systems. A

performance bound analysis is carried out by using the Cramér-Rao Bound (CRB) as a basic

tool for an estimator-independent study. Two scenarios have been considered. Either the cell

under test along with the adjacent cells are synchronous or not. For the case of synchronous cells,

the analysis demonstrates the possibility to efficiently solve the pilot contamination problem,

with semi-blind approaches, when considering a finite alphabet (non Gaussian) communications

signal. However, considering only the signal’s Second Order Statistics (SOS) is not enough for

solving such an issue even if the semi-blind approach is adopted. Moreover, the analysis shows

that it is possible to get close to the optimal performance with a semi-blind approach even if the

pilots are non-orthogonal as long as they are not fully-coherent. For the asynchronous cells case,

it has been demonstrated that the pilot contamination still occurs under small inter-cell delays,

but can be strongly mitigated with large inter-cell delays.

Chapter 3 deals with the problem of semi-blind based demixing mixtures when considering,

at first instantaneous massive MIMO communications system, then convolutive systems through
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massive MIMO-OFDM communications system. In both cases, the issue of pilot contamination

is taken into account. To do so, a weighted hybrid cost function is introduced based upon the

Multi-Modulus (MM) criterion, applied to unknown data, and the Least Squares (LS) criterion for

pilot symbols. A simple but efficient semi-blind block gradient descent procedure is put forward,

in which the step size, which globally minimizes the cost function along the search direction,

is algebraically computed at each iteration for each user. Besides a reduced computational

complexity and an accelerated convergence, simulation results show that the proposed approach

allows to mitigate the inherent ambiguity of fully-blind methods, and to withstand to the pilot

contamination problem in massive MIMO systems

Chapter 4 aims to propose a semi-blind solution for joint channel estimation and data

detection, when considering the sparce nature of the communications channel. In the proposed

solution, an optimization problem is formulated then solved by using the successive convex

approximation approach. Accordingly, the optimization is performed on an approximate convex

problem, rather than the original nonconvex one. By exploiting available data (pilots) and system

structure, an iterative procedure is proposed where the channel coefficients and data symbols are

updated simultaneously at each iteration. Also an optimized step size, introduced according to

line search procedure, is used for convergence improvement with guaranteed convergence to a

stationary point. Simulation results show that the proposed solution exhibits fast convergence

with very attractive channel and data estimation performance.

In chapter 5, we propose solutions for blind and semi-blind channel estimation of nonlinear

multi-channel communications systems. For the system model, two nonlinearities have been

considered; a quadratic and a cubic. In the blind case, a first channel estimation solution is

proposed based on a subspace approach followed by an appropriate ambiguity removal method.

Then, to refine this first estimate, an original maximum likelihood approach is introduced based

on the Expectation-Maximization (EM) algorithm. In the semi-blind case, where both data and

pilots are available, an extension of this EM-based solution is proposed. Some identifiability results

and performance bounds related to the considered models (blind and semi-blind) are provided

and discussed. Simulation results show that the proposed solutions exhibit very interesting

channel estimation performance, with an attractive convergence speed for the EM-based iterative

solution.

The aim of chapter 6 is to propose a DL-based data detection solution for nonlinear MIMO

communications systems. To do so, a Neural Network (NN) is built up, trained offline with finite

alphabet data, then used for online data detection. With no direct priors about the channel
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impulse response nor the transmitted data, the proposed DL-based data detector can deal with

the performance degradation that might emerge from nonlinear components. The simulation

results show the effectiveness of the proposed solution for different nonlinear model order and

with attractive accuracy and data detection performance. Moreover, such a solution is promising

to overcome the inherent ambiguity/limitations of classical blind processing.
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Semi-blind channel estimation performance limits for mas-

sive MIMO-OFDM systems

Knowledge is the conformity of

the object and the intellect.

Averroes (Ibn Rochd)

The aim of this chapter is to investigate, via the Cramér-Rao Bound (CRB) tool, the effectiveness

of semi-blind methods for pilot contamination mitigation, when considering MIMO-OFDM com-

munications systems. For synchronous cells, the analysis demonstrated the possibility to efficiently

solve the pilot contamination problem with a finite alphabet (non Gaussian) communications

signal. However, considering only the signal’s Second Order Statistics (SOS) is not enough for

solving such an issue even if the semi-blind approach is adopted. Moreover, it has been shown

that it is possible to get close to the optimal performance with a semi-blind approach even if the

pilots are non-orthogonal as long as they are not fully-coherent. For the asynchronous cells case,

it has been demonstrated that the pilot contamination still occurs under small inter-cell delays,

but can be strongly mitigated with large inter-cell delays as shown in1[38] and 2[39].

Abstract
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2.1 Introduction

Massive Multiple-Input Multiple-Output (MIMO) is a promising technology for the next gen-

eration cellular networks [13]. With a higher number of BS antennas (beyond 100 antennas),

compared to the classical MIMO systems, massive MIMO technology has proven its ability to

improve the spectral and power efficiency [40, 14]. So that, both throughput and system capacity

will be highly enhanced in order to satisfy the increasing amount of data exchange and demand

for quality of service for the future cellular networks [41].

In order to fully exploit all of the potentials offered by a massive MIMO system, accurate

Channel State Information (CSI) is necessary. It is obtained only during the uplink transmission,

thanks to the channel reciprocity property and according to the widely accepted Time Division

Duplexing (TDD) protocol [41]. In that case, all users in all cells send their uplink training

sequences synchronously which are used, by the BS, to estimate the uplink channels. The

traditional methods used to get the CSI rely on the pilot-based channel estimation (e.g. [13]).

However, due to the non-orthogonality of the pilot sequences, these methods are severely affected

by what is called pilot contamination [34], as depicted in Figure 2.1. It is one of the major

issues of massive MIMO systems that must be addressed because its effect cannot be reduced by

increasing the number of BS antennas.

Figure 2.1: Illustration of pilot contamination in massive MIMO-OFDM systems where user1,2 and

user2,2 (resp. user1,1 and user2,1) share the same training sequence.

Many pilot contamination mitigation strategies have been proposed [42, 43, 44]. Some of

them propose to create more orthogonal pilots by slicing the time and frequency resources [45],

however such a choice will lead to a system capacity decrease. Other approaches are based
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on suppressing the inter-cell interference by appropriate signal processing techniques, based on

statistical information of channel matrices [46, 47]. In such approaches, only a small portion of

spatial dimensions is used for data transmission, whereas the unemployed dimensions will be

used for suppressing noise and interference. However, many assumptions have to be considered

to get statistical information of channel matrices. Instead of depending only on pilot sequences,

a data-aided channel estimation has been considered (e.g. [48]), where the decoded data is

used for channel estimation. Nonetheless, it requires perfect knowledge of the iner-cell large

scale coefficients and it is strongly assumed to have the ability to recover most of data for

accurate channel estimation. Some approaches have focused on designing appropriate inter-cell

communication protocols and resource allocation [49, 50, 51] in order to allow reusing pilots

without inter-cell interference. The counterpart is that the information exchange among cells

will add more complexity to the cellular networks.

In recent works, a particular attention has been drawn to blind (e.g. [52, 53]), and semi-blind

(e.g [54, 55]) methods. The former is fully based on the statistical properties of the transmitted

data, whereas the latter depends on the joint use of pilots and data.

In addition to pilot contamination mitigation techniques, many works have focused on the

effect of pilot contamination, in the case of unsynchronized BSs, on the channel estimation

performance [56, 57, 58].

Consequently, the focus of this work falls into the scope of performance bounds analysis of

semi-blind channel estimation approaches under the effect of pilot contamination in the context

of multi-cell massive MIMO-OFDM systems. The motivation for targeting semi-blind techniques

is that they allow to retain the advantages of pilot-based and blind-based approaches and hence

lead to better estimation accuracy and more robustness against pilot contamination.

In [39], a brief analysis of the semi-blind (SB) channel estimation performance bounds has

been initiated in certain simplified scenarios. Here, this draft work is extended to provide a

full Cramér-Rao Bound (CRB) based analysis of the pilot contamination effect and how it is

mitigated in such SB context. More precisely, the main contributions are as follows:

• Unlike prior works (e.g. [54, 55]) that focused on particular estimators for either the

synchronized or the unsynchronized cells cases, the current work is an estimator-independent

performance analysis, where the Cramér-Rao Bound (CRB) is derived for the two previous

cases when considering the pilot based or the semi-blind channel estimation. It is worth

noting that a thorough study has been conducted in [59] where the achievable performance

of semi-blind approaches, compared to pilot-based ones, has been quantified for channel
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estimation in a single cell MIMO-OFDM system. In the current study, a multi-cell massive

MIMO-OFDM system is considered, where the phenomenon of pilot contamination is taken

into account and thoroughly investigated.

• A thorough study of the channel estimation non-identifiability caused by the pilot contami-

nation is given, leading to three propositions which describe such a phenomenon.

• The analysis has been carried out by taking into account two types of data statistics: only

the Second Order Statistics (SOS) by considering a Gaussian source signal, and Higher

Order Statistics (HOS) by using a finite alphabet signal. Besides, two types of pilots have

been used: Zadoff-Chu sequences and randomly generated i.i.d. pilots.

• Compared to prior works [56, 58] about the unsynchronized cells case, the influence of the

delay between the cell of interest and the neighboring cells, on the pilot contamination

problem, has been investigated by differentiating the effect of small delays from the one of

large delays.

• In addition to the previous CRB-based theoretical study and due to the heavy computational

cost of the FIM derivation, the asynchronous case has been investigated through the use

of a Least-Squares Decision Feedback (LS-DF) semi-blind channel estimator. This last

analysis demonstrates that large inter-cell delays might be sufficient to mitigate the pilot

contamination problem.

Practically, such performance limits analysis helps understanding the pilot contamination effect

and can be exploited as benchmark by researchers developing channel estimators for massive

MIMO communications systems. Moreover, the different scenarios considered (data models,

pilots models and orthogonality levels) can efficiently guide developers of communications systems

for the channel estimation task.

2.2 Massive MIMO-OFDM system model

This section presents the adopted massive MIMO-OFDM wireless system model as illustrated

in Figure 2.2. It is worth noting that vectors’ and matrices’ indices represent respectively the

cell and the receiver/transmitter that corresponds to the received/transmitted symbols. For the

channel taps, the indices indicate respectively the cell, the transmitter and the receiver.

An uplink transmission is considered. The system is composed of Nc cells each having one

BS with Nr antennas and Nt randomly located users using each a single antenna.
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Figure 2.2: MIMO-OFDM communications system.

Let’s ignore at first the received signals from the adjacent cells. Therefore the received signal,

after cyclic prefix removal and FFT, at the r-th BS antenna of the l-th cell, assumed to be a K

sub-carriers OFDM signal (K × 1), is given by [60]:

yl,r =
Nt∑
i=1

F T (hl,i,r)
FH

K
xl,i + vl,r, (2.1)

where K is the OFDM symbol length; F represents a K-point Fourier matrix; hl,i,r is a N × 1

vector representing the channel taps between the i-th user, of the l-th cell, and the r-th receive

antenna; T (hl,i,r) is a circulant matrix of dimension K ×K so that its first row is given by

[hl,i,r(0),01×K−N ,hl,i,r(N −1), . . . ,hl,i,r(1)] while the others are obtained by a simple cyclic shift

to the right of the previous one. xl,i is a vector of size K×1 which stands for the i-th user OFDM

symbol of cell l. vl,r, of size K × 1, is assumed to be an additive white Circulant Gaussian (CG)

noise so that E[vl,r(k)vl,r(i)H ] = σ2
vlIKδki where σ

2
vl is the noise variance at the l-th cell; δki

being the Kronecker delta operator.

Using the eigenvalue decomposition of the circulant matrix T (hl,i,r) given by:

T (hl,i,r) = FH

K
λl,i,rF, (2.2)

where λl,i,r is a K ×K diagonal matrix formed by the frequency gains of the channel at the

considered subcarriers, i.e. λl,i,r = diag{Whl,i,r} and W is formed by the N first columns of F,

and by stacking all the data in a single vector form, the received signal, of dimension NrK × 1,

at the l-th BS can be re-expressed as follows:

yl = λlxl + vl, (2.3)

where yl = [yTl,1...yTl,Nr ]
T ; xl = [xTl,1...xTl,Nt ]

T ; vl = [vTl,1...vTl,Nr ]
T ; λl = [λl,1...λl,Nt ] with λl,i =

[λl,i,1...λl,i,Nr ]T .
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In order to facilitate the derivation of the CRB w.r.t. h1, equation (2.3) is rewritten as

follows:

yl = X̃lhl + vl, (2.4)

where hl = [hTl,1,1...hTl,Nt,1......h
T
l,1,Nr ...h

T
l,Nt,Nr

]T is a NrNtN × 1 vector; X̃l = INr ⊗Xl is a

NrK ×NrNtN dimensional matrix. where Xl = [Xl,D1W...Xl,DNt
W] of size K ×NtN , and

Xl,Di is a K ×K diagonal matrix containing the i-th user symbols, i.e. Xl,Di = diag(xl,i), and

⊗ refers to the Kronecker product.

Now, let’s take into account the effect of the neighboring cells on the first one, considered

without loss of generality as the interest cell. With the assumption of perfect synchronization

between the Nc cells, equation (2.3) becomes:

y1 =
Nc∑
l=1
λlxl + v1 = λtotxtot + v1, (2.5)

where λtot = [λ1 . . .λNc ] and xtot = [xT1 . . .xTNc]T .

Similarly to (2.4), equation (2.5) can be rewritten as follows:

y1 =
Nc∑
l=1

X̃lhl + v1 = X̃tothtot + v1, (2.6)

where X̃tot = [X̃1 . . .X̃Nc ] and htot = [hT1 . . .hTNc ]
T .

2.3 Effect of pilot contamination with perfectly synchronized cells

In the following section, the effect of pilot contamination on the performance of semi-blind

channel estimation approaches is investigated, under the assumption of perfectly synchronized

BSs of the different Nc cells. In such a case, and with same pilots in all cells, the worst case of

pilot contamination occurs as explained next.

2.3.1 Pilot contamination effect

This subsection discusses the impact of the pilot contamination in a massive MIMO-OFDM

system. During the uplink data transmission, the BS has to learn the transmission channel by

exploiting the known symbols (i.e. pilots) at the uplink. To adopt this strategy the pilots used

within the same cell and in the neighboring cells should be mutually orthogonal. However this

necessitates a complex cell synchronization and cooperation scheme. In addition, the channel

time coherence [32, 33] limits the total number of orthogonal pilots leading to the reuse of the

same pilots in many neighboring cells. The worst case occurs when the same set of pilots is
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reused in all Nc adjacent cells. In this situation, equation (2.6) becomes:

y1 =
Nc∑
l=1

X̃1Phl + v1 = X̃1P

Nc∑
l=1

hl + v1, (2.7)

where X̃1P corresponds to the pilot symbols of the first cell.

To illustrate the pilot contamination effect in that case, the Least Squares (LS) estimate of

the first cell channel vector, i.e. h1, is given by:

ĥLS1 = X̃#
1Py1 = h1 +

Nc∑
l=1,l,1

hl + X̃#
1Pv1, (2.8)

with X̃#
1P = (X̃H

1P X̃1P )−1X̃H
1P is the pseudo inverse of X̃1P .

This equation clearly shows that the channel estimate ĥLS1 is affected by an additional bias

corresponding to the sum of channel components of the users sharing the same pilot sequences

in different cells. This phenomenon, referred to as pilot contamination, severely degrades the

channel estimation performance. To overcome this problem, an alternative solution consists of

using a semi-blind channel estimation approach. In the sequel, the potential of this approach is

analyzed and discussed through the use of the CRB tool.

2.3.2 Cramér-Rao Bound derivation
Before deriving the CRB for pilot-based and semi-blind channel estimation, it is worthwhile

to remind that the CRB expresses a lower bound on the variance of any unbiased estimator.

Thus, If θ̂ = [θ̂1, · · · , θ̂d]T is an unbiased estimator of θ, then Cov(θ̂) ≥ CRB(θ) in the sense

Cov(θ̂)−CRB(θ) is a positive semi-definite matrix (i.e. with non negative eigenvalues). In

particular, this inequality implies that the estimation error variance of parameter θi is lower

bounded by the i-th diagonal entry of the CRB matrix, i.e. var(θ̂i)≥ CRB(θ)i,i. In practice, such

a tool provides a benchmark for unbiased estimators and alerts us to the physical impossibility

of finding an estimator whose variance is less than the theoretical bound. Basically, the CRB is

obtained as the inverse of the Fisher Information Matrix (FIM) [61]. The latter is denoted by

Jθθ where θ is the unknown deterministic parameters vector to be estimated. For the complex

valued channel taps, the parameters vector θ is defined as follows:

θ = [hTtot (h∗tot)
T ]T , (2.9)

where, for simplicity, the signal and noise powers are assumed to be known. The FIM, taking

into account the pilots and data (that are statistically independent), is then expressed as follows:

Jθθ = Jpθθ + Jdθθ, (2.10)
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where Jpθθ is the FIM associated to the known pilots while Jdθθ is related to the unknown data.

A block-type pilot arrangement, as described in Figure 2.3, is adopted for this work. In that

scheme all sub-carriers are used for pilots within a specific period of time. For a pilot-based

channel estimation, Np pilot symbols will be considered. Nd i.i.d data symbols will be added to

the pilots for semi-blind approaches. Both pilots and data are assumed to be OFDM symbols of

size K.

Figure 2.3: Block-type pilot arrangement

2.3.2.1 CRB for pilot-based channel estimation

The noise components are assumed to be independent identically distributed (i.i.d.), and only

Np pilots are used for channel estimation. Based on the data model, the pilot-based FIM can be

expressed by:

Jpθθ =
Np∑
i=1

Jpiθθ, (2.11)

with Jpiθθ is the FIM associated to the pi-th pilot symbol.

The FIM for a complex parameter has been discussed in [62, 63], thus, it can be shown that

the pilot-based FIM is given for the pilot-based channel estimation case by:

Jpiθθ =

Jpihtothtot 0

0 Jpih∗toth∗tot

 , (2.12)

where Jpih∗toth∗tot
= (Jpihtothtot)

∗.

By considering a massive MIMO-OFDM system with Nc cells, the pilot-based FIM associated to

the channel vector htot is then expressed as follows:

Jpihtothtot =
X̃H
tot,piX̃tot,pi

σ2
v1

, (2.13)
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which can also be written in a more detailed form:

Jpihtothtot = 1
σ2

v1


X̃H

1pi
X̃1pi . . . X̃H

1pi
X̃Ncpi

...
. . .

...

X̃H
Ncpi

X̃1pi . . . X̃H
Ncpi

X̃Ncpi

 . (2.14)

Ideally, if the pilots of the cells are mutually orthogonal, i.e. X̃H
i,pi

X̃j,pi = 0 ∀ i , j, then the

FIM becomes a bloc diagonal matrix which is the most favorable case. On the other hand, if

the cells share the same set of pilots, i.e. the worst case of pilot contamination, the FIM is then

equivalent to:

Jpihtothtot = 1
σ2

v1


X̃H

1pi
X̃1pi . . . X̃H

1pi
X̃1pi

...
. . .

X̃H
1pi

X̃1pi . . . X̃H
1pi

X̃1pi

 . (2.15)

To compute the CRB, the FIM has to be inverted. However, according to this last equation,

Jpihtothtot , and consequently Jhtothtot , is not a full rank matrix. In fact, according to proposition1,

the kernel of this FIM is of dimension 2(Nc − 1)NtNrN , corresponding to the number of

indeterminacies we need to get rid of. In other words, this translates the non-identifiability of

the channel vector of the interest cell when pilot contamination occurs.

Proposition 1. The FIM in (11) is a singular matrix and its kernel dimension is 2(Nc−1)NtNrN

which corresponds to the number of indeterminacies of the problem (i.e. the number of unknown

real channel parameters for the Nc− 1 neighboring cells).

Proof:

The FIM kernel dimension corresponds to the number of indeterminacies we need to remove (or

equivalently the number of constraints we need to consider) to achieve full identifiability.

In the case of only pilots channel estimation in the presence of pilot contamination, the only

parameters vector that can be estimated without bias is htot =∑Nc
i=1 hi.

Now, from htot one is able to determine every single channel hi, i= 1, ...Nc iff (Nc−1) channel

vectors are known (besides htot). Since each channel vector is complex valued and of size NtNrN ,

this corresponds to 2(Nc−1)NtNrN unknown real-valued parameters needed for full identifibility.

2.3.2.2 CRB for semi-blind channel estimation

This section is devoted to the derivation of the CRB for the semi-blind channel estimation

for a multi-cell massive MIMO-OFDM system with pilot contamination. Both pilots and data
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are taken into account in the derivation of the FIM as shown in equation (2.10). At first,

we investigate the performance bounds of the semi-blind scheme when only the Second Order

Statistics (SOS) are considered. For that, a Circular Gaussian data model is used. Latter on, we

extend this analysis to the case where information based on Higher Order Statistics (HOS) is

available. This will be illustrated by using a finite alphabet source signal.

2.3.2.3 Gaussian source signal

As mentioned previously, only the SOS, corresponding to the Gaussian CRB, are considered

here. Hence, it assumed assume that the data symbols are i.i.d. circular Gaussian distributed

with zero mean and a diagonal covariance matrix composed of the users’ transmit powers i.e.

Cxl = diag(σ2
xl,i) with l = 1...Nc and i= 1...Nt. Under this assumption, the received signal y1 is

circular Gaussian with covariance matrix:

Cy1 =
Nc∑
l=1
λlCxlλ

H
l +σ2

v1IKNr . (2.16)

The data-based FIM can be expressed as follows (e.g.[64], [65]):

Jdhtothtot =

Jdhtothtot Jdhtoth∗tot
Jdh∗tothtot Jdh∗toth∗tot

 , (2.17)

where Jdhtothtot is a (NcNrNtN)-dimensional matrix with elements Jdhihj given by:

Jdhihj = tr

C−1
y1

∂Cy1

∂h∗i
C−1

y1

(
∂Cy1

∂h∗j

)H . (2.18)

The i-th component of the vector htot corresponds to the channel tap of indices {iNc , iNt , iNr , iN}

associated to the cell, the user, the BS antenna and the time lag of hi. Based on the results

provided in [61], Jdhihj is given by:

Jdhihj = (Jdh∗i h∗j )
∗ = tr{C−1

y1 σ
2
iNc ,iNt

λiNc ,iNt

∂λHiNc ,iNt
∂h∗i

C−1
y1 σ

2
jNc ,jNt

∂λjNc ,jNt
∂hj

λHjNc ,jNt
} (2.19)

and

Jdhih∗j
= (Jdh∗i hj )

∗ = tr{C−1
y1 σ

2
iNc ,iNt

λiNc ,iNt

∂λHiNc ,iNt
∂h∗i

C−1
y1 σ

2
jNc ,jNt

λjNc ,jNt

∂λHjNc ,jNt
∂h∗j

} (2.20)

It is important to notice that using a semi-blind estimation method with only the SOS of the

received data is not sufficient to alleviate the pilot contamination problem. Indeed, the SOS-SB

scheme reduces the number of indeterminacies but does not get rid of all of them. More precisely,

we have the following proposition:
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Proposition 2. The FIM in (17) is a singular matrix and, in the case Nr >NcNt, its kernel

dimension is (NcNt)2 correponding to the number of indeterminacies in the blind channel

estimation case. When considering the SOS-based semi-blind channel estimation, the kernel

dimension of the FIM in (10) becomes ((Nc− 1)Nt)2.

Proof:

Considering the data only first (i.e. blind context), it is known that if the Nr × (NcNt) channel

transfer function is irreductible, then one can estimate the channel parameters using the Second

Order Statistics (SOS) up to an (NcNt)× (NcNt) unknown constant matrix [66, 67].

Now, since we assumed the source power known, the latter indeterminacy reduces to an

unknown (NcNt)× (NcNt) unitary matrix, which can be modeled by (NcNt)2 free real an-

gle parameters. Somehow, the data SOS allows us to reduce the convolution model into an

instantaneous (NcNt) dimensional linear mixture model.

Finally, as in the only pilots case, due to the pilot contamination, the only way to complete

the channel identification via the pilot use, is to have (know) the space directions of the interfering

users of the neighboring cells corresponding to ((Nc− 1)Nt)2 real parameters to determine.

2.3.2.4 Finite alphabet source signal

Here, the non Gaussian nature of communications signals is considered through the use of a

finite alphabet data model (QPSK). The observed signal at the k-th sub-carrier is given by:

y1(k) = λtot(k)Cx
1
2 x(k) + v1(k) for k = 1, ...,K, (2.21)

where λtot(k) is the k-th Fourier component of htot; Cx is a block diagonal matrix formed by

users’ transmit powers of each cell; x(k) = [xT1,(k)...x
T
Nc,(k)]

T with xl,(k) = [xl,1,(k)...xl,Nt,(k)]T so

that xl,i,(k) for k = 1...K are i.i.d. QPSK symbols with equal probability values.

In this case, the likelihood function is given as a sum of QNcNt (Q= 4 for QPSK (4-QAM))

Gaussian pdfs as follows:

p(y1(k),θ) = 1
QNcNt

QNcNt∑
q=1

1
(πσ2

v1)Nr
e

−

∥∥∥∥∥y1(k)−λtot(k) Cx
1
2 xq

σ2
v1

∥∥∥∥∥
, (2.22)

where xq is the q-th realization of x(k).

Consequently, the data-based FIM is a weighted sum of Gaussian FIMs given by:

Jdhtothtot(k) = 1
σ2

v1Q
NcNt

QNcNt∑
q=1

∂λtot(k)Cx
1
2 xq

∂h∗tot

H∂λtot(k)Cx
1
2 xq

∂h∗tot

 . (2.23)
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To obtain a tractable FIM expression, a realistic approximation for a single cell MIMO-OFDM

system was proposed in [59]. This approximation can be easily extended to a multi-cell massive

MIMO-OFDM system. To do so, let’s express the elements of the data-based FIM:

Jdhihj (k) = 1
σ2

v1Q
NcNt

QNcNt∑
q=1

xqH
∂λtot(k)Cx

1
2

∂h∗i

H∂λtot(k)Cx
1
2

∂h∗j

xq. (2.24)

Jdhihj (k) = 1
σ2

v1Q
NcNt

∑
q,m,l

xq
∗(m)xq(l)Γ i,jm,l 1≤m,l ≤NcNt (2.25)

where Γ i,j =
(
∂λtot(k)Cx

1
2

∂h∗i

)H(
∂λtot(k)Cx

1
2

∂h∗j

)
.

Due to normalization and QAM constellations symmetry around zero, we have:

1
QNtNc

QNtNc∑
q=1

x∗q (m)xq (l) = 0 form , l

1
QNtNc

QNtNc∑
q=1

x∗q (m)xq (m) = 1 form= l

(2.26)

Finally, the data-based FIM for the finite alphabet signals (QAM) can be reduced to:

Jdhihj (k) = 1
σ2

v
tr
{
Γi,j

}
(2.27)

The total data-based FIM is then obtained as follows:

Jdhtothtot =Nd

K∑
k=1

Jdhtothtot(k), (2.28)

where Nd is the total number of data symbols.

Remark: Even though the proposed FIM simplification applies for any symmetric finite

alphabet signal, the accuracy of the approximation decreases with the constellation order level

and would be valid only for high SNRs in such a case.

Thanks to the implicit higher order statistics information available in this non-Gaussian case,

the semi-blind based channel estimation is able to alleviate completely the pilot contamination

problem according to the following proposition:

Proposition 3. The non Gaussian semi-blind FIM as given in (10) is non singular meaning

that all indeterminacies have been removed.

Proof:

For non-Gaussian (communications) signals, the information provided by the Second Order

Statistics as well as Higher Order Statistics of the data allows us to identify the channels up to
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an unknown (NcNt)× (NcNt) diagonal unitary matrix(see for example identifiability results in

[68]). This corresponds to NcNt unknown real parameters that can be easily estimated through

the use of the pilots. .

In this case, the top-left (NrNtN)× (NrNtN) block of the FIM inverse is considered as the

CRB for the semi-blind estimation of the first cell channel vector.

2.4 Effect of pilot contamination with unsynchronized cells

This section is devoted to the effect of pilot contamination on the performance of semi-blind

channel estimation approaches, when the BSs in the different Nc cells are not synchronized. Such

an assumption is more realistic and practical for the cellular network. It is shown in [56, 57], that

this desynchronization might help mitigating the pilot contamination problem. Here, this issue

is analyzed in detail and it is shown, in particular, that under certain conditions detailed below

(small inter-cell delays) the pilot contamination still occurs for asynchronous MIMO-OFDM

systems. For large inter-cell delays, the pilot contamination problem might be mitigated where

this case is investigated through the CRB derivation, by considering the adjacent cells signal

together with the AWGN noise as a colored noise. These results will be experimentally supported

by an estimator-dependent study, based on a Least Squares Decision Feedback (LS-DF) estimator.

2.4.1 Small inter-cell delay case

This subsection provides an explanation on why the pilot contamination problem persists when

the inter-cell delays are small. Indeed, without lose of generality, consider two time-domain

OFDM signals, sent from two adjacent cells using the same pilot sequence, and received at one

BS antenna:

z1(t) = h1(t) ∗xCP,1(t) (2.29)

z2(t) = h2(t) ∗xCP,1(t− τ) = h2(t− τ) ∗xCP,1(t) (2.30)

xCP,1(t) being the sequential OFDM signal in the time domain including the Cyclic Prefix (CP),

∗ is the convolution operator and τ is introduced here to model the inter-cell delay. Hence, when

the signal from cell 1 is corrupted by the one from cell 2, one observes:

z(t) = z1(t) + z2(t) = (h1(t) +h2(t− τ)) ∗xCP,1(t) (2.31)

Consequently, if the channel size N and the delay τ are such that:

τ +N ≤ L+ 1 (2.32)
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L being the CP length, the model given in equation (2.31) coincides with the one in equation

(2.7) which shows that the pilot contamination problem remains unsolved in this case, which

might represent a ’rough synchronization’ context. This situation is illustrated by the simulation

results in Figure 2.12.

2.4.2 Large inter-cell delay case

Now, an effective channel estimation becomes possible in this case (see for example [58]) and

to analyze it in the sequel, the pilots from the neighboring cells are considered as interference

signal where the interference and the noise term will be modeled as a colored Gaussian signal

vcol independent from the signals of the cell of interest. The noise vector is assumed to be of

zero mean and unknown covariance matrix Cv, so that the received signal model becomes:

y1 = X̃1h1 + vcol. (2.33)

When sending only known pilots, the received signal is so that y1 ∼N
(
µy1(θ) = X̃1ph1,Cy1(θ) = Cv

)
.

The parameters vector to be estimated is expressed as follows:

θ = [hT1 (h∗1)T qT (q∗)T ]T , (2.34)

where h1, of size NrNtN , is the vector of the channel components of the cell of interest,

q = [q1, q2, ...qNq ]T , where qi, i = 1, ...Nq are the parameters used to represent the covariance

matrix Cv.

According to the complex representation of θ, the global pilot-based FIM is given by:

Jpθθ =



Jph1h1
Jph1h∗1

Jph1q Jph1q∗

Jph∗1h1
Jph∗1h∗1

Jph∗1q Jph∗1q∗

Jpqh1
Jpqh∗1

Jpqq Jpqq∗

Jpq∗h1
Jpq∗h∗1 Jpq∗q Jpq∗q∗


, (2.35)

Their elements are derived according to the general Gaussian CRB derivation model:

Jpθiθj =
{
∂µy1(θ)
∂θ∗i

}H
C−1

y1 (θ)
{
∂µy1(θ)
∂θ∗j

}
+ tr

C−1
y1 (θ)∂Cy1(θ)

∂θ∗i
C−1

y1 (θ)
(
∂Cy1(θ)
∂θ∗j

)H .
(2.36)

Given equation (2.33), it can be shown that:

∂µy1(θ)
∂h1

= X̃1p ,
∂µy1(θ)
∂h∗1

= 0,
∂µy1(θ)
∂q = 0,

∂µy1(θ)
∂q∗ = 0

∂Cy1(θ)
∂h1

= 0, ∂Cy1(θ)
∂h∗1

= 0.
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Consequently, the FIM, for the pilot-based case, will be expressed as follows:

Jpθθ =


X̃H

1pC
−1
v X̃1p 0 0 0

0 X̃T
1p(C−1

v )∗X̃∗1p 0 0

0 0 Jpqq 0

0 0 0 Jpq∗q∗

 , (2.37)

Finally, the pilot-based CRB for the channel parameter vector is given by:

CRBOP = tr{(X̃H
1pC

−1
v X̃1p)−1}. (2.38)

By taking into account the known pilots and the unknown data, the semi-blind FIM is given by

equation (2.10). Moreover, by assuming known transmit powers, the vector of parameters to be estimated

is given by equation (2.34), whereas the global data-based FIM is given by:

Jdθθ =


Jdh1h1

Jdh1h∗1
Jdh1q Jdh1q∗

Jdh∗1h1
Jdh∗1h∗1

Jdh∗1q Jdh∗1q∗

Jdqh1
Jdqh∗1

Jdqq Jdqq∗

Jdq∗h1
Jdq∗h∗1 Jdq∗q Jdq∗q∗

 , (2.39)

Note that the received data signal satisfies y1 ∼N (µy1(θ) = 0, Cy1(θ) = λ1Cx1λ
H
1 + Cv).

Unfortunately, in that case, the off diagonal blocks Jdh1q and Jdh1q∗ are not equal to zero as in the

pilot-based case, and hence the channel estimation CRB depends on the estimation of the vector q. The

proper parameterization of the interference plus noise covariance matrix being quite challenging, we

propose next to investigate the performance of the semi-blind case in this cell asynchronous context by

using an estimator-dependent analysis.

Remark: Note that, the pilots of the cell of interest are known and hence they are considered as

deterministic. Therefore, in the case where neighboring cells share the same pilots, the randomness comes

only from the unknown data and noise terms. In such a case, the statistical independence assumption is

valid. However, the i.i.d. colored Gaussian model remains a limiting approximation. In addition to that,

a main difficulty comes from the ’non-synchronization’ of the cells which makes the data model of the

signals impinging from adjacent cells quite complex (we cannot rely on the simple OFDM model in (3)

obtained after CP removal and FFT) and consequently the exact FIM derivation becomes cumbersome

and numerically unattractive.

2.4.3 LS-DF estimator performance analysis

The derivation and performance of the Least Squares Decision Feedback (LS-DF) estimator, introduced in

[69], are presented in this section. This ’relatively simple’ estimator is used to illustrate the semi-blind

performance in the different contexts of cell desynchronization, discussed previously.

Traditionally used for data equalization, the LS-DF algorithm is defined as a LS estimator which

incorporates a feedback equalizer. During the LS-DF process, the estimated data are re-injected, as a
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feedback, to the equalization step in order to enhance the estimation performance of the transmitted data.

This process can be iterated several times for more accuracy.

We have exploited this method as a semi-blind channel estimator in [69], where the estimated data are

considered as extra "pilots" for the channel taps estimation. The use of LS-DF estimator, as a semi-blind

approach, for massive MIMO channel identification is illustrated in Figure 2.4 and resumed by the following

steps:

• A pilot-based channel estimation is performed using the conventional LS estimator as follows:

ĥop1 =
(
X̃H

1pX̃1p

)−1
X̃H

1py1, (2.40)

where X̃1p is as defined in equation (2.7).

• A Zero-Forcing (ZF) equalizer is used to estimate the transmitted data, by applying the inverse of

the channel frequency response to the received signal as follows:

xzf = λ̂#y1, (2.41)

where λ̂ is obtained from the channel frequency response of ĥop1 and xzf is the equalized signal.

• A hard decision is performed on the equalized signal to obtain the estimate of the transmitted

signal x̂opd1
.

• A LS estimator is then applied using the new training sequences (i.e. pilots) given by xp =

[x̃T1p (C
1
2x1 x̂opd1

)T ]T , where Cx1 is the known transmit data power matrix introduced in equation(2.21)

. This step will lead to the semi-blind channel estimate ĥsb1 .

• A ZF equalizer, followed by a hard decision are performed to obtain the semi-blind estimate of the

transmitted data x̂SBd1
.

Figure 2.4: LS-DF semi-blind channel estimation approach.

The LS channel estimation performance has been widely discussed in literature, where it has been shown

that the mean squares error (MSE) of this estimator reaches the CRBOP in a single cell system with
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AWGN noise. Therefore the MSEOP is then given by:

MSEOP = CRBOP = σ2
v1tr

{(
X̃H

1pX̃1p

)−1
}
. (2.42)

However, in a multi-cell system, the effect of the adjacent cells signals will result in an extra bias term

of inter-cell interference which will affect the estimation performance, depending on the inter-cell delay

range. In that case, the LS-DF performance would be affected as well as can be seen in Figure 2.12 and

Figure 2.13.

2.5 Performance analysis and discussions

In the following section, numerical experiments will be performed to highlight the different results given

in the previous sections. The pilots are generated according to Zadoff-Chu sequences [70]. The NcNtNrN

channel coefficients are all generated using i.i.d. unit-power, zero-mean, Gaussian distribution. It is

important to note that the average Signal to Noise Ratio (SNR) is calculated based on the received signal y1

given in equations (2.5), i.e. SNR = E(‖λtotxtot‖2)/E(‖v1‖2) = tr(λtotCx⊗IKλHtot)/(NrKσ2
v). Moreover,

the differences in users powers reflect their random locations. The different simulation parameters are

summarized in Table 2.1, unless otherwise mentioned.

Parameters Specifications

Number of cells Nc = 3

Number of receive antennas Nr = 100

Number of users per cell Nt = 2

Channel taps N = 4

Number of OFDM sub-carriers K = 64

Number of OFDM pilot symbols Np = 4

Number of OFDM data symbols Nd = 40

Nc pilot signal powers (dBm) Pxp = [23 18 15]

(Nt)×Nc data signal powers (dBm) Pxd = [(20 18.8),

(15.7 13.3), (11.2 9.1)]

Table 2.1: Performance bounds analysis simulation parameters.

2.5.1 Perfectly synchronized BSs

This section discusses the potential of the semi-blind channel estimation approaches, when the worst case

of pilot contamination occurs in a massive MIMO-OFDM system.

Experiment 1 : Figure 2.5 illustrates the normalized CRB for the channel parameters vector h1, given

by tr{CRB}
‖h1‖2

, for semi-blind channel estimation (SB) with respect to the SNR for QPSK model as well
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as the Gaussian (G) data model using orthogonal pilots. A comparison is made with respect to the

pilot-based CRBO
OP case, which is the top-left block of the inverse of the FIM given in equation (2.14),

using orthogonal (O) intra and inter-cell pilots. Note that CRBNO
OP and CRBG−NO

SB for the non orthogonal

case (when the adjacent cells use the same pilots) are not considered since, as mentioned in sections 2.3.2.1

and 2.3.2.3, the channel parameters vector of the interest cell cannot be identified in that cases. However,

such an ambiguity is removed by semi-blind techniques for finite alphabet source signals as illustrated by

the plot of CRBQPSK−NO
SB , which is obtained from the FIM given in equation (2.23) and stands for the

semi-blind CRB of a QPSK signal for the worst case of non orthogonal (NO) pilots (i.e. adjacent cells

using the same pilots). As can be seen, CRBQPSK−NO
SB is almost superposed with CRBQPSK−O

SB , which

denotes the case of orthogonal pilots. Ideally, the latter CRB can be obtained by ignoring the adjacent

cells (i.e. Nc = 1).

Since the effect of pilot contamination is due to signals from adjacent cells, as described in subsection

2.3.1, Figure 2.6 illustrates the scenario of Figure 2.5 but with a higher number of cells (here the cell

of interest is surrounded by six cells). One can observe that the previous results still hold under severe

conditions of pilot contamination.

Experiment 2 : now, the impact of pilots orthogonality level is investigated through the following

metric:

ρ=

∥∥∥X̃H
iP

X̃jP

∥∥∥∥∥∥X̃iP

∥∥∥∥∥X̃jP

∥∥ , (2.43)

where ‖.‖ is the 2-norm.

Note that 0 ≤ ρ ≤ 1, so that ρ = 0 corresponds to the perfect orthogonality, whereas ρ = 1, corre-

sponding to fully coherent training sequences, stands for the worst case of pilot contamination, i.e. same

synchronized pilots.

As can be expected, in the case of non-perfectly orthogonal pilots, the channel vector estimation is slightly

degraded but even with a high level of non orthogonality (ρ= 70% for the SB case and ρ= 50% for the

OP case), the channel estimation for the OP and the Gaussian cases remains possible with relatively good

estimation accuracy for moderate and high SNRs as illustrated in Figure 2.7.

Experiment 3 : In order to further investigate the impact of the pilots structure on the pilot con-

tamination, i.i.d. Gaussian distributed pilots are considered in this experiment. As given in Figure 2.8,

CRBG−multi-cell
SB described in subsection 2.3.2.3 (respectively CRBQPSK−multi-cell

SB described in subsection

2.3.2.4) is almost superposed to CRBG−mono-cell
SB (respectively CRBQPSK−mono-cell

SB ) which indicates that

the pilot contamination no longer persists and, thus, it is possible to use only SOS for semi-blind channel

estimation. Besides, a pilot-based is now possible as given by CRBmulti-cell
OP but with a degradation

compared to the mono-cell case CRBmono-cell
OP , given by equation (2.42), due to the interference terms from

the neighboring cells. Actually, the independent pilots are different but not perfectly orthogonal which

refers to the same results announced in experiment 2 but given in terms of the orthogonality level.

Experiment 4 : By considering the worst scenario of pilot contamination, the effect of the number of

OFDM data symbols, i.e. Nd, on the CRBQPSK−NO
SB , for a given SNR= 10dB, is illustrated in Figure 2.9.
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It can be observed that, starting by one OFDM data symbol, the BS can successfully identify and estimate

the channel components of the interest cell. Moreover, the CRB is significantly lowered with just few tens

of OFDM data symbols and almost reaches the performance of the orthogonal case, i.e. CRBQPSK−O
SB .

Such a result matches perfectly with the limited coherence time constraint of massive MIMO systems and

helps to reduce the computational cost. As compared to CRBO
OP a significant performance gain in favor

of the semi-blind method is noticed.

Experiment 5 : By considering again the worst case of pilot contamination, the behavior of the CRBs

considered in Figure 2.5, with respect to the number of BS antennas, i.e. Nr, is investigated in Figure 2.10.

It is easily observed that when Nr increases, which leads also to the increase of the number of channel

components to be estimated, the CRBQPSK
SB is significantly lowered thanks to the increased receive diversity.

Such a result supports the effectiveness of semi-blind techniques for pilot contamination mitigation in the

context of massive MIMO-OFDM systems.

Experiment 6 : The channel order is often not known with accuracy and needs extra processing for its

estimation. Thus, in Figure 2.11 we investigate the behavior of the aforementioned performance when the

number of the channel taps is overestimated, i.e. considered equal to its maximum value corresponding

to the cyclic prefix size (N = L). For illustration purpose, we have considered two cells, each with one

user and a BS with Nr = 10 antennas. As can be seen from Figure 2.11, the channel order overestimation

leads to a performance loss of approximately 6 dB which corresponds to the ratio (in dB) between the

overestimated and the exact channel orders.
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2.5.2 Unsynchronized BSs

This section investigates the semi-blind channel estimation potential in the case of unsynchronized BSs.

The non synchronization was generated by using same pilots in all Nc cells but with different time delays

compared to the target cell. Data symbols are assumed to be drawn from a finite alphabet signal (QPSK).

Experiment 7 : Figure 2.12 illustrates the NMSE of the LS estimator, as a pilot-based one, and the
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Figure 2.9: Normalized CRB versus number of OFDM data symbols Nd.

LS-DF estimator, as a semi-blind approach, with respect to the SNR, in the case of small inter-cell delays.

As explained in subsection 2.4.1 and as given in the aforementioned figure, with small inter-cell delays,
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Figure 2.11: Normalized CRB versus SNR with channel order overestimation.

the problem of pilot contamination is still unsolved. For comparison, the results corresponding to the

mono-cell case are also provided in this figure. In particular, the latter highlights the effectiveness of the

LS-DF estimator (which reaches the CRB) in the absence of pilot contamination.

Experiment 8 : Figure 2.13 investigates the performance, through the NMSE, of the LS-DF estimator,
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as a semi-blind approach, in the case of large inter-cell delays. Compared to the small inter-cell case,

the performance is slightly improved in this context. For only pilot case with unsynchronized cells, it is

possible to identify and estimate the channel components of the interest cell with a moderate estimation

error. As expected, the semi-blind case (SB), described by hSB−multi−cell, outperforms the only pilot case,

but with a degradation compared to the case of perfectly orthogonal pilots hSB−mono−cell, which has a

near optimal performance as it is almost superposed to the lower bound given by CRBSB.

Experiment 9 : Figure 2.14 investigates effect of the pilots’ structure on the performance of the LS-DF

estimator, by using randomly generated i.i.d. pilots. The performance obtained are similar to those

obtained in the case of large inter-cell delays.

Experiment 10 : Since the signal power of users in the adjacent cells is usually less than the signal power

of users in the cell of interest, the effect of such a parameter, on the LS-DF performance, is investigated

in Figure 2.15. We have considered the system parameters of Table 1 but, for each cell the Nt users are

given the same power. The superscript stands for the ratio (in percentage) between each neighboring

cell users power and the interest cell users power. One can observe for example that, for an interference

level of 25% (corresponding approximately to 50% interference level if we add the interference terms of

the two neighboring cells), the channel estimation for low and moderate SNRs with the SB approach

(h25
SB−multi−cell) is better than the one with the interference-free OP approach (hOP−mono−cell).
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Figure 2.13: NMSE of LS and LS-DF estimators versus SNR with large inter-cell delays.
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Figure 2.14: NMSE of LS and LS-DF estimators versus SNR with i.i.d. pilots.

2.6 Conclusion

This chapter focused on the performance bounds analysis of semi-blind channel estimation approaches,

under the effect of pilot contamination, for multi-cell massive MIMO-OFDM systems. An estimator-
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Figure 2.15: NMSE of LS and LS-DF estimators versus SNR with different data powers.

independent analysis has been conducted on the basis of the CRB by considering, at first, the worst case

of pilot contamination for different data models, then, by taking into account unsynchronized BSs. It has

been shown that the pilot contamination issue introduces a non-identifiability of the channel vector of the

interest cell, which is not fully solved by considering only SOS, unless using non-perfectly orthogonal pilots,

but can be efficiently solved with finite alphabet signals. For unsynchronized BSs with small inter-cell

delays, the problem of pilot contamination remains unsolved. However, large inter-cell delays can allow to

mitigate the pilot based non-identifiability issue. It is worth pointing out that, under this assumption, the

colored Gaussian model is a limiting approximation. Besides, the ’non-synchronization’ of the cells makes

the data model of the signals impinging from adjacent cells quite complex and consequently the exact

FIM derivation becomes cumbersome and numerically unattractive.
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Semi-blind multi-modulus based source separation

In theory there is no difference

between theory and practice. In

practice there is.

Lawrence “Yogui” Berra,1925

This chapter presents an efficient semi-blind approach for demixing mixtures when considering,

at first instantaneous massive Multiple-Input Multiple-Output (MIMO) communications system,

then convolutive systems through massive Multiple-Input Multiple-Output Orthogonal Frequency

Division Multiplexing (MIMO-OFDM) communications system. In both cases, the issue of pilot

contamination will be taken into account. A weighted hybrid cost function is introduced based

upon the Multi-Modulus (MM) criterion, applied to unknown data, and the Least Squares (LS)

criterion for pilot symbols. A simple but efficient semi-blind block gradient descent procedure

is put forward, in which the step size, which globally minimizes the cost function along the

search direction, is algebraically computed at each iteration for each user. Besides a reduced

computational complexity and an accelerated convergence, simulation results show that the

proposed approach allows to mitigate the inherent ambiguity of fully-blind methods, and to

withstand to the pilot contamination problem in massive MIMO systems as shown in 1[71] and
2[72].

Abstract
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3.1 Introduction

Source separation and channel equalization in digital communications aim at recovering the unknown

data of the different users transmitted through a distorting propagation medium. In communications

systems, with no prior knowledge on the transmitted symbols (i.e. no pilot sequences) nor on the channel

state information, Blind Source Separation (BSS) is an efficient approach for data recovering. Indeed

many BSS techniques have been proposed in literature (see e.g [26, 73] and references therein), mainly

the Independent Component Analysis (ICA), the Sparse Component Analysis (SCA), the Non-Negative

matrix Factorization (NMF) and the Bounded Component Analysis (BCA) (see e.g. [74] for more details).

BSS processes the received signal based on a priori knowledge about the statistics or the nature of

the transmitted signals, through the optimization of an appropriate cost function. Various BSS cost

functions have been proposed in literature (e.g [26] and references therein) depending upon the type of

source signals. Among them; the Constant-Modulus (CM) criterion for phase/frequency modulated signals

such as PSK/FSK and Multi-Modulus (MM) criterion, where it has been shown that it outperforms the

CM one for the case of square QAM constellation [75], which is used in many modern communications

systems such as LTE and WiMAX. The optimization of the cost function can be performed through

a closed-form solution, such as Analytical Constant Modulus Algorithm (ACMA) [76] and Analytical

Constant Power Algorithm (ACPA) [28], when the channel accepts a noiseless AR model and the FIR

equalizer is sufficiently long. Otherwise, an iterative solution can be adopted, such as the gradient descent

technique, the Newton’s method, or Givens and Shear’s rotations-based techniques [77].

On the other hand, some pilot sequences are often available in most communications technologies,

thus, exploiting this available information should notably improve the source recovering performance of

BSS by incorporating a pilot-based Least Squares (LS) criterion in a semi-blind scheme. In particular,

this approach is shown to be an efficient solution to the pilot contamination problem in massive MIMO

systems (e.g. [13]).

In this context, the focus of current work is to propose a semi-blind source separation technique for

instantaneous mixtures and MIMO-OFDM communications systems. The motivation for adopting a SB

approach is to make use of available sequences and to avoid any issues that emerge from the BSS such as

the inherent ambiguity of blind processing. In particular, this approach is shown to be efficient to the

pilot contamination problem in massive MIMO systems (e.g. [13]). In the proposed solution, a hybrid

cost function is defined based on the blind MM criterion, for the unknown data, and on the pilot-based

LS or Least Fourth (LF) criterion, for the pilots. An iterative-based minimization of the aforementioned

cost function is performed through the gradient descent rule, where an optimized step-size procedure is

introduced for improving the convergence speed. Moreover, a batch-based full estimation procedure is

carried out so that, all sources are separated simultaneously.

3.2 Instantaneous system model

This section is dedicated to the case of instantaneous communications system model.
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3.2.1 Communications system model and problem formulation

Consider a MIMO system consisting of Nt sources (transmitters), each having a single antenna, and a

receiver equipped with Nr antennas. All sources transmit their signals over the same band of frequencies.

Each transmitted source signal is drawn from an M -ary square QAM constellation, then passed through a

flat fading channel represented by an unknown mixing matrix H ∈ CNr×Nt , which is assumed to be of full

column rank so that Nr >Nt. Thus, for the case of instantaneous mixtures, the noisy received signal is

given by:

y(k) = Hs(k) + n(k), (3.1)

where y(k) = [y1(k), ...,yNr (k)]T ; s(k) = [s1(k), ...,sNt(k)]T refers to the transmitted signals and n(k) =

[n1(k), ...,nNr (k)]T is an additive white Gaussian noise with a covariance matrix σ2
nINr .

The objective of source separation and channel equalization is to recover the transmitted data symbols,

by applying a separation matrix V ∈ CNr×Nt to the observed (received) signals as follows: z(k) = VHy(k).

It can be noticed that each row vi can extract one source signal. In batch processing approach, Ns samples

of the received data are collected before processing, so that the matrix formulation of the problem is given

by:

Y = HS + N, Z = VHY, (3.2)

where the received signals are given by Y ∈ CNr×Ns ; the transmitted signals are represented by S ∈ CNt×Ns ;

the additive white noise is given by N ∈ CNr×Ns ; whereas Z ∈ CNt×Ns is the estimated signals. Moreover,

in semi-blind approaches, both pilots and data are used, hence, without loss of generality, the pilots are

assumed to appear at the beginning of the transmitted frames in a block-type arrangement, thus each

frame is formed by Np pilots followed by Nd data samples, so that Ns =Np +Nd and Y = [Yp,Yd].

3.2.2 Semi-blind source separation

The proposed semi-blind source separation approach is based on the MM criterion for the unknown data

and on the LS criterion for the pilots. Indeed to take advantage of both pilots and data, a hybrid cost

function denoted JSB(V) is defined as follows:

JSB(V) = (1−α)JB(V) +αJLS(v), (3.3)

where JB(V) stands for a fully blind cost function; JLS(V) refers to the use of pilots; and α is a

real constant, taking values in the interval [0,1], considered as the weight given to the blind and the

training-based parts of the semi-blind cost function.

In what follows, an iterative method based on the gradient descent is adopted to minimize the cost

function, given by (3.3), according to:

Vn+1 = Vn−µGn, n= 0,1..., (3.4)

where Vn+1 (respectively Vn) represents the updated (respectively the old) value of the matrix V; µ is a

small positive value, called step size, that determines the speed of convergence; and Gn is the gradient of
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the cost function, at the n-th iteration, given by:

Gn =∇JSB(Vn) = (1−α)∇JB(Vn) +α∇JLS(Vn). (3.5)

As adopted in [28], the iterative procedure is stopped as soon as:

‖vn+1−Vn‖
‖Vn‖

<
0.1µ√
Ns

. (3.6)

Also, a maximum number of iterations can be defined for stopping the iteration process.

In the current work, we adopt a batch processing based on the use of block iterative implementation, as

opposed to stochastic algorithms. The latter approaches approximate the gradient by using a one-sample

estimate, which leads to dropping the expectation operator. Consequently, these methods generally lead

to a slow convergence. By contrast, batch-based methods approximate the gradient from a block of the

received samples repeatedly at each iteration. This more precise gradient estimate improves convergence

speed and accuracy [78]. Moreover, all the sources are simultaneously estimated, so that the accumulated

errors of the deflation-based methods are avoided [79].

3.2.2.1 Multi-Modulus criterion

In the current work, the blind process is based on the MM criterion, which penalizes the deviation of the

real and imaginary parts of the equalized signals from the squared constellation shape as follows:

JMM(V) =
Nt∑
i=1

1
Nd

Ns∑
k=Np+1

[(z2
i,R(k)−RR)2 + (z2

i,I(k)−RI)2], (3.7)

where zi,R = real(vHi Yd) (respectively zi,I = imag(vHi Yd)) is the real (respectively imaginary) part of

the (i,k)-th element of the recovered signal; RR = E[s4
R(k)]/E[s2

R(k)] and RI = E[s4
I(k)]/E[s2

I(k)] are the

real and imaginary dispersion constants.

The gradient of the MM criterion, for the i-th user, is defined as follows:

∇JMM(vi) = 1
Nd

Ns∑
k=Np+1

[yd(k)
(
(z2
i,R(k)−RR)zi,R(k)− j(z2

i,I(k)−RI)zi,I(k)
)
]. (3.8)

In what follows, the CM criterion is used for comparison. It is given by [76]:

JCM(V) =
Nt∑
i=1

1
Nd

Ns∑
k=Np+1

(| zi(k) |2 −R)2. (3.9)

The gradient of the CM criterion, for each user, is defined as follows:

∇JCM(vi) = 1
Nd

Ns∑
k=Np+1

[yd(k)
(
zi(k)∗(| zi(k) |2 −R)

)
]. (3.10)

Note that the multiplicative constants of the previous gradient formulas are omitted because they are

absorbed by the step size as given in (3.4).
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3.2.2.2 Pilot-based criterion

In the current work, the use of the pilots is through the LS criterion, which is based on the error between

the transmitted pilot symbols and their estimates, according to:

JLS(V) =
Nt∑
i=1

1
Np

Np∑
k=1
| zi(k)− spi(k) |2, (3.11)

where zi(k) and spi(k) stand for the k-th estimated and transmitted pilot sample of the i-th source.

The gradient of the pilot-based LS criterion, for the i-th user, is defined as follows:

∇JLS(vi) = 1
Np

Np∑
k=1

[yp(k)((zi(k)− spi(k))∗)]. (3.12)

It is clear that the MM and CM functions are 4-th order ones whereas the LS is a quadratic function.

In some works (e.g. [80] and references therein), the 4-th order CM cost function is approximated by

a quadratic function. To get a ’homogeneous’ hybrid criterion, an alternative pilot-based cost function

would be the Least mean Fourth (LF) [81] given by:

JLF(V) =
Nt∑
i=1

1
Np

Np∑
k=1
| zi(k)− spi(k) |4 . (3.13)

As can be seen in the sequel, the latter cost function leads to a slight improvement of the source separation

quality.

3.2.3 Optimal step size

Exact line search optimization technique has been successfully used recently for optimizing the step size

of the steepest-descent gradient-based algorithms for channel identification/equalization and independent

component analysis (e.g. [28] [82]), where the update rule is expressed as given in (3.4) but with a variable

step size. Indeed, it can be observed that JSB(Vn+1) is a polynomial function of the step size parameter

µ, thus, it is possible to perform a steepest descent of the objective function by finding the optimal step

size:

µopt = arg min
µ

JSB(Vn−µGn). (3.14)

Consequently, µopt is the appropriate root of the derivative of JSB(Vn+1) w.r.t. µ, which is a 3rd-degree

polynomial given by:

∇JSB(Vn+1) = (1−α)pB(µ) +αpLS(µ), (3.15)

where

pB(µ) = pMM (µ) = (β3R +β3I )µ3 + (β2R +β2I )µ2 + (β1R +β1I )µ+β0R +β0I , (3.16)
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so that

β3R = 2
Nd

Ns∑
k=Np+1

(a2
R), β2R = 3

Nd

Ns∑
k=Np+1

(aRbR),

β1R = 2
Nd

Ns∑
k=Np+1

(aRcR + b2
R),

β0R = 1
Nd

Ns∑
k=Np+1

(bRcR),

(3.17)

and

aR = |Gr |2, bR =−2real{VrGr
H},

cR = |Vr |2−R,
(3.18)

Gr = real{GHYd} and Vr = real{VHYd}.

For βxI ,x= 0, ...3 the same equations used in (3.17) still valid but with GI = imag{GHYd} and VI =

imag{VHYd}.

Also we have

pLS(µ) = α1µ+α0, (3.19)

where

α1 = 1
Np

Np∑
k=1

(|GHYp |2), (3.20)

α0 = −1
Np

Np∑
k=1

(real{GHY∗p(Yp−Sp)}), (3.21)

where Sp contains the pilots of all users.

Remark: For the CM criterion, an optimal step size can be calculated by considering the polynomial:

pCM (µ) = β3Cµ
3 +β2Cµ

2 +β1Cµ+β0C , (3.22)

where β3C ,β2C ,β1C and β0C are calculated in the same way as in (3.17) but by considering GC = GHYd

and VC = VHYd.

Finally, µopt is chosen as the real-valued root that minimizes the cost function JSB(Vn+1).

It is important to note that an optimal step size can be calculated for each user, so that, the upgrading

rule can be expressed as follows:

Vn+1 = Vn−Gndiag(µ), (3.23)

where µ= [µ1, ...,µNt ] contains all the optimal step size values of all users.

Remark: in the SB cost function, given by equation (3.3), a weighting parameter α has been

introduced to determine the influence of the blind or the pilot-based part. Experiments will be given in

section 3.5 to illustrate the effect of such parameter on the performance of the proposed approach.
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3.2.4 SB-MM source separation under the effect of pilot contamination

This section considers a multi-cell massive MIMO system composed of Nc cells. In such a case, the system

model is given by:

y(k) =
Nc∑
l=1

Hlsl(k) + n(k), (3.24)

where the first cell represents the cell of interest while the others are the interfering neighboring cells.

Traditionally, a channel estimation is performed before recovering the transmitted data during the

uplink phase according to the Time Division Duplexing (TDD) protocol. However, pilots of the cell of

interest are interfering with pilots of adjacent cells leading to the phenomenon of pilot contamination [13].

Recent work (e.g. [54]) show that semi-blind approaches represent a potential solution to this problem.

Thus, we propose to recover the data of users located in the cell of interest by means of the proposed

semi-blind source separation method. Interestingly, exploiting the pilots, through the LS or LF criterion

included in the semi-blind cost function (i.e. equation (3.3)), allows to recover only the data of the cell of

interest, from the observed mixture signal, and removing the inherent ambiguity of the blind-based source

separation techniques.

Indeed, massive MIMO systems are characterized by their large size antennas, so that we assume that

Nr is larger than the total number of users, i.e. Nt1 + · · ·+NtNc , coming from the Nc cells and hence the

global system matrix H is left invertible. In that case, the target separation matrix V is of size Nr ×Nt1 .

3.3 Convolutive system model: MIMO-OFDM system model

This section is dedicated to the convolutive model through MIMO-OFDM communications system model.

3.3.1 Communications system model and problem formulation

The system model adopted in this section is similar to that described in chapter 2, where an uplink

transmission is considered. Let’s consider a BS equipped with Nr antennas and receiving signals from Nt

randomly located single-antenna users. Thus, the received signal, after cyclic prefix removal and FFT, at

the r-th BS antenna, assumed to be a K sub-carriers OFDM signal, is given by [60]:

yr =
Nt∑
i=1

F T (hi,r)
FH

K
xi + nr, (3.25)

where F is a K-point Fourier matrix; (.)H is the transpose conjugate operator; hi,r is a N × 1 vector

representing the channel coefficients between the i-th user and the r-th receive antenna; T (hi,r) is a

K ×K circulant matrix so that its first row is given by [hi,r(0),01×K−N ,hi,r(N − 1), . . . ,hi,r(1)] while

the remaining rows are obtained by a simple cyclic shift to the right of the first one. xi is the i-th user

OFDM symbol of size K × 1. nr, of size K × 1, is assumed to be an additive white Circulant Gaussian

(CG) noise so that E[nr(k)nr(i)H ] = σ2
nIKδki where σ2

n is the noise variance, δki represents the Kronecker

delta operator and IK is the identity matrix of size K ×K.



3.3. Convolutive system model: MIMO-OFDM system model 45

By exploiting the eigenvalue decomposition of the circulant matrix T (hi,r), given by:

T (hi,r) = FH

K
λi,rF, (3.26)

where λi,r is a K ×K diagonal matrix formed by the frequency gain of the channel at the considered

sub-carriers, i.e. λi,r = diag{Whi,r} and W is formed by the first N columns of F, and by stacking all the

Nr received symbols in a single vector form, the received NrK × 1 signal, can be re-expressed as follows:

y = λx + n, (3.27)

where y = [yT1 ...yTNr ]
T ; xl = [xT1 ...xTNt ]

T ; nl = [nT1 ...nTNr ]
T ; λ= [λ1...λNt ] with λi = [λi,1...λi,Nr ]T .

Moreover, by collecting Ns symbols, one can write the received signal, at the k-th sub-carrier, as

follows:

Yk = λkXk + Nk, (3.28)

where Yk ∈ CNr×Ns , Xk ∈ CNt×Ns , Nk ∈ CNr×Ns and λk ∈ CNr×Nt which is explicitly given by:

λk =
N−1∑
l=0

H(l)exp(−j2π k
K
l), (3.29)

where H(l) ∈ CNr×Nt is the l-th matrix coefficient of the considered MIMO transfer function.

In the sequel, the objective is to recover the transmitted data symbols by applying a separation matrix

V to the observed (received) signal. However, the first step is to determine the form of such a matrix.

Basically, the separating matrix is constructed so that V(z)λ(z) = INt , where INt is an identity

matrix and the elements of λ(z) are polynomials of the form λi,r(z) =
∑N−1
l=0 hi,r(l)z−l for every z. At

this step we assume that the conditions for the existence of the inverse of the polynomial matrix λ(z) are

satisfied, mainly λ(z) is irreducible (see [66, 83] for further details). Thus, V(z) would be a polynomial

matrix with elements vr,i(z) =
∑N−1
l=0 vr,i(l)z−l for every z, which means that, on the unit circle we have

V(exp(−j2πfk))λ(exp(−j2πfk)) = INt where fk = k
K . This result is equivalent to saying that Vkλk = INt

for every sub-carrier k. Consequently, we seek for the separating matrix given, at the k-th sub-carrier, by:

Vk =
N−1∑
l=0

V(l)exp(−j2π k
K
l), (3.30)

where V(l) ∈ CNt×Nr .
Thus, the recovered signal, at the k-th sub-carrier, is given by:

Zk = VkYk =
N−1∑
l=0

V(l)exp(−j2π k
K
l)Yk,

= [V(0) V(1) . . .V(N − 1)]


INr

exp(−j2π k
K )INr

...

exp(−j2π k
K (N − 1))INr ,

Yk,

= [V(0) V(1) . . .V(N − 1)](wT
k ⊗ INr )Yk,

= VW̄kYk, (3.31)
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where W̄k = wT
k ⊗ INr , with wk being the k-th row of W and V ∈ CNt×NrN .

Indeed, as given in equation (3.31), one needs to estimate only one matrix (V), independently of the

sub-carriers, rather than estimating W̄k. Moreover, it is worth noting that each row vi of V allows to

extract one source signal.

Moreover, in SB approaches, both pilots and data are used, hence, w.l.g the pilots are assumed to

appear at the beginning of the transmitted frames in a block-type arrangement. Thus each frame is

formed by Np pilots followed by Nd data symbols, so that Ns =Np +Nd and Y = [Yp,Yd].

3.3.2 Proposed Semi-blind source separation

In the sequel, we introduce the proposed solution described in section 3.2.2 for the case of MIMO-OFDM

communications system.

3.3.2.1 Multi-Modulus criterion (MM)

For the case of MIMO-OFDM communications system, the same MM criterion used in 3.2.2.1 is used but

for every sub-carrier as follows:

JB(V) = JMM(V) =
K∑
k=1

Nt∑
i=1

E[(z2
k,i,R(n)−RR)2 + (z2

k,i,I(n)−RI)2] (3.32)

where E is the expectation operator3, zk,i,R(n) = real(viW̄kYk(n)) (resp. zk,i,I(n) = imag(viW̄kYk(n)))

is the real (resp. imaginary) part of the (i,n)-th element of the recovered signal at the k-th sub-carrier.

RR = E[x4
R(n)]/E[x2

R(n)] (resp. RI = E[x4
I(n)]/E[x2

I(n)]) is the real (resp. imaginary) dispersion constant,

which depends on the constellation of the transmitted signal x; and n=Np + 1, ...Ns.

The gradient of the MM criterion, for the i-th user, is defined as follows:

∇JMM(vi) =
K∑
k=1

4E[(W̄kYk(n))∗
(

(z2
k,i,R(n)−RR)zk,i,R(n) + j(z2

k,i,I(n)−RI)zi,I(n)
)

] (3.33)

where (.)∗ refers to the complex conjugate.

Also, for benchmarking, the CM criterion [76] is introduced, since it has been widely used in literature.

In such a scenario, the CM criterion is given by:

JCM(V) =
K∑
k=1

Nt∑
i=1

E[(| zk,i(n) |2 −R)2], (3.34)

where zk,i(n) = viW̄kYk(n) and R= E[x4(n)]/E[x2(n)] for n=Np + 1, ...Ns.

3.3.2.2 Pilot-based criterion

The pilot-based part, defined through the LS criterion, is given by

JLS(V) =
K∑
k=1

Nt∑
i=1

E | zk,i(n)−xpk,i(n) |2, (3.35)

3Replaced in practice, by the time averaging operator.
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where zk,i(n) and xpk,i stand for the n-th estimated and transmitted pilot symbols of the i-th source at

the k-th sub-carrier, n= 1, ...Np.

The gradient of the pilot-based LS criterion, for the i-th user, is given by:

∇JLS(Vi) = 2E[(W̄kYk(n))∗
(
zk,i(n)−xpk,i(n)

)
]. (3.36)

Here again, one can notice that MM and CM criteria are 4-th order functions whereas the LS-based

criterion is a quadratic function. In order to get ’homogeneous’ criteria, some works approximated the

4-th order CM cost function by a quadratic one (e.g. [80] and references therein). Thus, for homogeneity

purpose, an alternative pilot-based cost function would be the Least mean Fourth (LF) [81], given by:

JLF(V) =
K∑
k=1

Nt∑
i=1

E | zk,i(n)−xpk,i(n) |4 . (3.37)

3.4 Multi-cell case and pilot contamination

In [38], authors have investigated the performance bounds of semi-blind channel estimation approaches

for multi-cell massive MIMO-OFDM systems (under the effect of pilot contamination). In the current

work, the performance of the proposed SB source separation technique is assessed under the effect of pilot

contamination (same pilots in all cells). In such a case, a multi-cell massive MIMO system composed of

Nc cells is considered. Thus, the system model is given by:

Y1,k =
Nc∑
i=1
λi,kXi,k + X1,k, (3.38)

where the first cell is considered as the cell of interest while the others are the interfering neighboring cells.

Mainly, pilot contamination occurs when same pilots are used in different adjacent cells, in which

case, the channel estimation using only pilot symbols would fail. Thus, we propose to recover directly

the transmitted data without performing channel estimation but rather source extraction of the desired

sources (i.e. the users signals of the cell of interest) via our SB algorithm.

3.5 Performance analysis and discussions

This section highlights the performance of the proposed semi-blind source separation and its effectiveness

under the effect of pilot contamination, for the case of instantaneous and convolutive communications

systems. MM-SB refers to the MM-based SB source separation technique where pilots are used for

initialization and in the cost function. However, MM-B stands for a blind cost function but with pilot-

based initialization. CM-SB refers to the use of CM criterion for a SB data recovering. LS refers to

the use of available pilots, which is calculated using the available training pilots: VLS = Y#
p SHp , where

Y#
p = (YpYH

p )−1Yp is the pseudo inverse of the received pilots Yp. Accordingly, we refer to the LS

solution with both data and pilots used for training as the "MMSE lower bound", which is introduced

for benchmarking. Except for the experiment of Figure 3.9 and Figure 3.10, pilots and data are drawn
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from a 4-QAM modulation, whereas channel coefficients are generated using i.i.d. unit-power, zero-mean,

Gaussian distribution. The results are averaged over 200 Monte Carlo runs, and the performance is

assessed through an average Symbol Error Rate (SER). Simulation parameters are defined as: Nt = 4, Nr
= 10, Nd = 100, Np = 1, K = 64, N = 4 and α = 0.5 and the fixed step size µ= 0.01.

Figure 3.1 illustrates the performance of the blind MM Algorithm (MMA-B), the blind CM Algorithm

(CMA-B), the semi-blind MM Algorithm (MMA-SB), and the semi-blind CM Algorithm (CMA-SB) for

source separation, in a mono-cell system, with separating matrix randomly initialized. One can notice

the enhancement, in terms of SER, of the semi-blind approaches compared to the blind ones. Moreover,

better performance is obtained with an optimal step size (MMA-SB-OSS, CMA-SB-OSS) compared to

the fixed step size case. By taking into account the nature of the cost function, the MM-based approaches

outperform slightly the CM-based ones, since the former takes into account the phase variation.

Since some training pilots are available, an LS-based initialization is used for the separating matrix. In

this context the performance of the different approaches are illustrated in Figure 3.2. One can observe that

the blind approaches have been clearly enhanced (compared to the results given in Figure 3.1), whereas a

local minimum convergence problem is observed for the semi-blind ones with a fixed step size at high

SNR. By contrast, one can notice that the performance with optimal step size is virtually independent of

the initialization, while dramatically reducing the iterations number as illustrated in Table 3.1. Notice

that this reduction compensates the additional consumed time of calculating the optimal step size.

As explained in section 3.35, a LF criterion is adopted to obtain two homogeneous 4-th order cost

functions (i.e. the MM and the LF). As shown in Figure 3.3, an enhancement of the semi-blind performance

with LF (MMA-SB4 and CMA-SB4) is observed for medium and high SNRs as compared to the case of

LS (MMA-SB and CMA-SB).

Remark: note that in figures 1, 2 and 3 the very small values of SER (<< 10−5) are not plotted.

Figure 3.4 illustrates the behavior of the semi-blind approaches when increasing the number of pilots,

for a given SNR=5dB. One can observe that with very few pilots (< 5 in our case), the fully blind case

performs better than the semi-blind one as if using too few pilot symbols could ’confuse’ the semi-blind

approaches and leads to ill convergence. Similar effect has been observed for the semi-blind equalization

in [28]. However, for a reasonable number of pilots, the semi-blind methods are able to attain the MMSE

lower bound while maintaining good spectral efficiency and an effective data rate.

Figure 3.5 illustrates the behavior of the blind and semi-blind approaches when increasing the number

of data symbols Nd (for MMSE lower bound Nd is kept fixed as reference). It can be clearly shown that

with higher number of data symbols (around Nd = 100), for a given SNR=5dB, the performance of the

blind and semi-blind source separation are enhanced. This result allows to use a small pilot/data size

ratio for better throughput.

Figure 3.6 illustrates the behavior of the proposed solution under the effect of pilot contamination.

One can observe that the LS-based equalizers are severely affected by the problem of pilot contamination

(LS-contam) compared to the single cell case (LS). However, such a problem can be alleviated by the semi-
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blind approach especially with MM criterion as compared to CM one (MMA-SB-contam, CMA-SB-contam).

This result is very promising for pilot contamination mitigation in massive MIMO communications systems.

Figure 3.7 illustrates the performance of the proposed MM-based SB source separation technique with

respect to SNR. One can notice the enhancement, in terms of SER, of the SB approaches as compared

to the blind and the pilot-based ones. Also, within an OFDM framework, it is possible to perform a

pilot-based and SB source separation with only one pilot symbol, which corresponds to K samples for the

case of single-carrier framework. As shown in Figure 3.8, an enhancement of the SB performance with LF

(MM-SB-4 and CM-SB-4) is observed for medium and high SNRs as compared to the case of LS (MM-SB

and CM-SB).

Moreover, using an optimal step size leads to reducing dramatically the iterations number, as illustrated

in Table 3.2. It is worth noting that this reduction compensates the additional time consumed for optimal

step size calculation.

According to Figure 3.9 and Figure 3.10 , the results obtained in Figure 3.7 are still valid for higher

order QAM modulations (16-QAM, 64-QAM). Moreover, one can notice that MM-based processing

outperforms the CM-based one for such modulations.

Figure 3.11 investigates the effect of the weighting constant α on the performance of MM-SB. It can

be noticed that, taking α values from the interval [0.45,0.65] allows better performance of the proposed

SB approach. Moreover, one can notice that with just a few pilots, interesting performance is obtained

with MM-SB. This result illustrates the efficiency of SB techniques for reducing the pilot overhead and

improving the throughput of MIMO-OFDM communications systems.

Figure 3.12 investigates the behavior of the proposed solution under the effect of pilot contamination.

One can observe that LS-based equalizers are severely affected by the problem of pilot contamination

(LS-contam) compared to the single-cell case (LS). However, such a problem can be alleviated by the SB

approach especially with MM criterion as compared to CM one (MM-SB-contam, CM-SB-contam). This

result is very promising for pilot contamination mitigation in massive MIMO-OFDM communications

systems.

Table 3.1: Average number of iterations for convergence (instantaneous model)

B-CMA SB-CMA B-MMA SB-MMA

Fixed Step Size 482 677 616 783

Optimized Step Size 280 392 350 460
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Figure 3.1: Average SER vs SNR for blind and semi-blind source separation with random initialization

(Nr = 20,Nt = 4,Nd = 100,Np = 5)
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Figure 3.2: Average SER vs SNR for blind and semi-blind source separation with pilot-based initialization

(Nr = 20,Nt = 4,Nd = 100,Np = 5)

3.6 Conclusion

This chapter proposed a new approach for semi-blind source separation, which can help mitigate the

problem of pilot contamination in massive instantaneous and convolutive MIMO communications systems.



3.6. Conclusion 51

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

 

 

CMA−SB
CMA−SB4
MMA−SB
MMA−SB4
LS
MMSE

Figure 3.3: Average SER vs SNR with LS and LF (Nr = 20,Nt = 4,Nd = 100,Np = 5)
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Figure 3.4: Average SER vs number of pilots Np for blind and semi-blind source separation (Nr =

20,Nt = 4,Nd = 100,SNR= 5dB)

A hybrid cost function is defined based on the MM criterion for the blind part and the LS or LF criterion

for the pilot-based one. A full estimation procedure has been adopted based on the gradient descent

rule and an optimized step size. Simulation results have shown that the proposed method exhibits an
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Figure 3.5: Average SER vs number of data symbols Nd for blind and semi-blind source separation

(Nr = 20,Nt = 4,Np = 5,SNR= 5dB)
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Figure 3.6: Average SER vs SNR under pilot contamination with asynchronous cells (Nr = 20,Nt =

2 per cell,Nc = 4,Nd = 100,Np = 5)

attractive data recovery accuracy, convergence speed, and a promising source separation (deconvolution)

performance under pilot contamination in massive MIMO-OFDM systems.
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Table 3.2: Average number of iterations for convergence (MIMO-OFDM model)

MM-SB CM-SB MM-B

Fixed Step Size 893 779 713

Optimized Step Size 574 496 472
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Figure 3.7: SER vs SNR with LS (MIMO-OFDM model).
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Figure 3.8: SER vs SNR with LF (MIMO-OFDM model).
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Figure 3.9: SER vs SNR with 16-QAM (MIMO-OFDM model).
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Figure 3.10: SER vs SNR with 64-QAM (MIMO-OFDM model).
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Figure 3.11: SER vs α with Np= 1,3,9 pilot symbols (MIMO-OFDM model).
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Figure 3.12: SER vs SNR with pilot contamination (Nc = 3 , Nt = 2) (MIMO-OFDM model).
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Joint channel estimation and data detection with succes-

sive convex approximation

Problems are not stop signs, they

are guidelines.

Robert H. Schuller.

This work has been done in collaboration with Pof. Marius Pesavento as part of a mobility to Germany

(Darmstadt).

The aim of this chapter is to propose a semi-blind solution, for joint sparse channel estimation

and data detection, based on the successive convex approximation approach. The optimization

is performed on an approximate convex problem, rather than the original nonconvex one. By

exploiting available data and system structure, an iterative procedure is proposed where the

channel coefficients and data symbols are updated simultaneously at each iteration. Also an

optimized step size, introduced according to line search procedure, is used for convergence

improvement with guaranteed convergence to a stationary point. Simulation results show that

the proposed solution exhibits fast convergence with very attractive channel and data estimation

performance. This work has been published in in 1[84]

Abstract

2 [84] O. Rekik, K. Abed-meraim, M. Pesavento and A. Mokraoui"Semi-blind Sparse Channel Estimation and

Data Detection by Successive Convex Approximation", 21st IEEE International Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), 2020, pp. 1-5.
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4.1 Introduction

Channel estimation and data detection is a key task in wireless communications systems and different

approaches have been proposed for joint channel and data estimation (e.g. [85, 86]). Moreover, In many

wireless communications, growing experimental studies have showed that many practical channels exhibit

sparsity as the delay spread could be very large but the number of distinguishable multi-path delays is

usually small. In such a case, sparse channel estimation should be considered (see [87] and references

therein).

A solution to perform channel identification and data recovery, by taking into account prior information

about the channel and/or the data, would be solving a regression-based Optimization Problem (OP).

Many techniques have been proposed for the problem of constrained linear regression, such as the Fast

Iterative Soft Thresholding Algorithm (FISTA) [88], the Block Coordinate Descent (BCD) algorithm [89],

the Alternating Direction Method of Multiplier (ADMM) [90] or the parallel best-response with exact line

search algorithm [91]. In our context, the sequential update algorithm seems to be a good alternative to

overcome difficulties arising from the nonconvexity of the problem, however, a major drawback of the

sequential update is the induced large delay, because the update of a block variable cannot be performed

until its predecessor block variable is updated (BCD algorithm [89]). In such a case, the delay may be

very large with big number of data blocks.

Conseqently, an appropriate approach would be the successive convex approximation framework ([92]

and references therein), where a sequence of successively refined approximate problems are solved, while

preserving the algorithm’s convergence to a stationary point of the original OP.

On the other hand, it bears mentioning that, in practice some training sequences, known by the

transmitter and the receiver, are usually sent periodically within the wireless network frames besides

the unknown data. Thus, the focus of the current work is to propose a solution for semi-blind sparse

channel estimation and data recovery by considering a single-carrier Single-Input Multiple-Output (SIMO)

system2. The motivation for adopting a semi-blind approach is to make use of available sequences and to

avoid the different difficulties and issues that emerge from the blind process such as the inherent ambiguity

of blind processing [67]. The proposed solution is based on the Successive Convex Approximation (SCA)

framework along with the Majorization-Maximization approach [93]. An iterative procedure is performed

where channel coefficients and data symbols are estimated simultaneously, at each iteration, with an

optimized step size introduced for improving the convergence speed.

4.2 System model

For this work, a SIMO convolutive communications system is considered, where the r-th system output,

r = 1, · · · ,Nr, is given by:

yr(k) =
M∑
n=0

hr(n)s(k−n) + vr(k), (4.1)

2This solution can easily be extended to the multi-user case (i.e. convolutive MIMO systems).
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where hr refers to the r-th channel finite impulse response of size M + 1, s(k) represents the transmitted

symbols and vr(k) is a white Gaussian noise with variance σ2
v . By considering Ns received samples, one

can write (4.1) as follows:

Y = HS + V, (4.2)

where Y,V ∈ CNr×Ns , H ∈ CNr×(M+1), and S ∈ C(M+1)×Ns is a Toeplitz matrix. Moreover, and

without loss of generality, Np training symbols (pilots) are sent at the beginning of the data

frame, so that the transmitted and received symbols are given by S̄ = [Sp,S] and Ȳ = [Yp,Y]

respectively.

4.3 Proposed channel estimation and data recovery framework

This section is dedicated to the formulation of the appropriate OP describing the aforementioned

scenario, then the derivation of the proposed solution.

4.3.1 Problem formulation

In what follows, we consider the problem of joint channel estimation and data recovery, by taking

into account the channel sparsity as prior information. Also, a number of data symbols (pilots)

are assumed to be known by the transmitter and the receiver. To do so, one can formulate an

appropriate OP that incorporates all available model information and requirements. Basically,

our OP is composed of the estimation error of a data matching function and regularization

(penalty) terms for promoting, in the solution, a certain structure known a priori. Hence, the

following OP is considered:

minimize
H,S

1
2‖Ȳ−HS̄‖2F +µ‖H‖1, (4.3)

where the l1 norm enforces the sparsity of the channel response H, with a regularization constant

µ, whereas the term ‖Ȳ−HS̄‖2F can be expressed as the sum of a data (blind) and a pilot-based

terms as follows:

‖Ȳ−HS̄‖2F = ‖[Yp,Y]−H[Sp,S]‖2F

= ‖Yp−HSp‖2F + ‖Y−HS‖2F . (4.4)

where Yp and Sp refer respectively to the received and transmitted pilot symbols.

Moreover, given equation (4.1), the data matrix S has a Teoplitz structure, which can be

added as a constraint to our OP (given by (4.3)). To do so, we define the matrix SL which

is formed by removing the last row and column of S, and the matrix SF which is formed by
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removing the first row and column of S. In such a case, we have: SL = SF where:

SL = JL1SJL2 , (4.5)

SF = JF1SJF2 , (4.6)

where JL1 = [IM ,0M×1] , JL2 = [INs−1,0T(Ns−1)×1]T , JF1 = [0M×1,IM ], JF2 = [0T(Ns−1)×1,INs−1]T ,

I and 0 refer to the identity matrix and all-zero matrix, respectively.

Thus, we can write:

SL−SF = M̃vec(S), (4.7)

where M̃ = JTL2
⊗JL1−JTF2

⊗JF1 (⊗ being the Kronecker product) and vec(.) denotes the matrix

vectorization operator. Consequently, the OP, given by equation (4.3), can be re-expressed as

follows:

minimize
H,S

1
2‖Ȳ−HS̄‖2F + λ

2 ‖M̃vec(S)‖2F +µ‖H‖1. (4.8)

N.B.: This OP can be easily extended to the multi-user case (i.e. MIMO system) by modifying

properly the matrix M̃.

4.3.2 Proposed solution

To solve the aforementionned OP, the successive convex approximation approach proposed in

[92] is adopted. Basically, this approach deals with OP given by:

minimize
Z∈Z

h(Z) = f(Z) + g(Z), (4.9)

where f(.) is a smooth nonconvex function, g(.) is a regularization nonsmooth function and Z is

a convex set.

First, an upper bound of the original function h is constructed, by the standard Majorization-

Maximization method, then, a convex approximation of this upper bound is defined, based on

the standard SCA framework. Finally, the obtained function is minimized so that it has the

same optimal points as the original one (see [92] for proofs). Also, a line search based procedure

is introduced for calculating an optimal step size.

In the sequel, the following notation is adopted:

Z = (H,S), (4.10)

f(Z) = 1
2‖Ȳ−HS̄‖2F + λ

2 ‖M̃vec(S)‖2F , (4.11)

g(Z) = µ‖H‖1. (4.12)
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One can notice that f(H,S) is not jointly convex w.r.t. (H,S) but it is individual convex in H

and S. This leads to the best OP approximation: given fixed values Zt = (Ht,St) at iteration t,

the original nonconvex function f(Z) is upper bounded by a proximal convex function f̃(Z,Zt)

given by:

f̃(Z,Zt) = f̃H(H,Zt) + f̃S(S,Zt), (4.13)

where

f̃H(H,Zt) = f(H,St) = 1
2‖Ȳ−HS̄t‖2F , (4.14)

f̃S(S,Zt) = f(Ht,S) = 1
2‖Y−HtS‖2F + λ

2 ‖M̃vec(S)‖2F , (4.15)

and St (resp. Ht) refers to a fixed value of the parameter S (resp. H). In such a case, at iteration

t, the approximate problem consists of minimizing:

minimize
H,S

f̃(Z,Zt) + g(Z). (4.16)

Since f̃(Z,Zt) is a convex function w.r.t. Z and g(Z) is convex in H, the approximate problem,

given by equation (4.16), is strongly convex and has a unique globally optimal solution, which is

denoted by BZt = (BHZt,BSZt). Moreover, the approximate problem (4.16) is separable w.r.t.

variables H and S, so that it can be decomposed into smaller problems that can be solved in

parallel:

BHZt = arg min
H

f̃H(H,Zt) + g(H), (4.17)

BSZt = arg min
S

f̃S(S,Zt). (4.18)

In order to compute BHZt while g(H) is not differentiable, the elements of H are updated

element-wise according to:

BHZt = diag(S̄tS̄tH )Sµ
(
diag(S̄tS̄tH )HtH − S̄t(S̄tHHH − ȲH)

)
, (4.19)

where Sµ(X) is an element-wise soft-thresholding function so that its complex (i, j)-th element is

given by [real(Xi,j)−µ]+− [−real(Xi,j)−µ]+ + j[[imag(Xi,j)−µ]+− [−imag(Xi,j)−µ]+] with

[x]+ = max(x,0).

On the other hand, we have:

BsZt = arg min
s

1
2‖y− H̃ts‖22 + λ

2 ‖M̃s‖2F

= (H̃HH̃ +λM̃HM̃)−1H̃Hy, (4.20)
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where H̃ = I⊗H, y = vec(Y) and s = vec(S) (or equivalently S = unvec(s)).

By using these optimal solutions, the variables update is given by:

Ht+1 = Ht + γ(BHZt−Ht), (4.21)

St+1 = St + γ(BSZt−St), (4.22)

where γ ∈ [0,1] is the algorithm’s step size (see [92] for more details).

As can be noticed, H and S are updated simultaneously at each iteration based only on the

old solutions of the approximate problems (4.19) and (4.20), respectively. Also, the approximate

problem (4.16) can be solved efficiently because the optimal solutions are provided in analytic

expressions.

4.3.3 Optimal step size computation

One can notice that in equations (4.21) and (4.22), the choice of the step size is crucial for the

convergence speed and accuracy. Therefore an optimal step size would notably improve such

characteristics. For this, a line search can be adopted to obtain an optimal step size value as

follows:

γopt = arg min
γ∈[0,1]

[f(Zt + γ(BZt−Zt)) + g(Zt + γ(BZt−Zt))]. (4.23)

Although it is a scalar problem, it has no closed form solution due to the non differentiable

function g. To overcome this limitation, we use the Jensen’s inequality:

g(Zt + γ(BZt−Zt))≤ g(Zt) + γg(BZt−Zt)). (4.24)

One can notice that, the function on the right hand side of (4.24) is differentiable and linear with

respect to γ. Hence, a closed form expression, of an approximate optimal step size, is obtained

by mimimizing the following polynomial function:

γopt = arg min
γ∈[0,1]

[f(Zt + γ(BZt−Zt)) + γ(g(BHZ)− g(Ht))]

= arg min
γ∈[0,1]

{1
4aγ

4 + 1
3bγ

3 + 1
2cγ

2 + dγ}, (4.25)

where terms independent of γ are omitted, and:

a = 2‖∆H∆S‖2F , (4.26)

b = 3tr(real(∆H∆S(H∆S +∆HS)H)), (4.27)

c = 2tr(real(∆H∆S(HS−Y)H)) + ‖H∆S +∆HS‖22 +λ‖M̃∆s‖22, (4.28)

d = tr(real((H∆S +∆HS)(HS−Y)H)) +λsHM̃HM̃∆s +µ(‖BHZt‖1−‖Ht‖1), (4.29)
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where tr(.) is the trace of a matrix and ∆H = BHZt−Ht, ∆S = BSZt−St, and ∆s = BsZt− st.

The proposed solution will be named ST-SCA for Soft Thresholding Successive Convex

Approximation algorithm. This method is resumed in Algorithm 1.

Algorithm 1 the proposed ST-SCA algorithm
Initialization:

1: pilot-based initialization for H, zero-forcing equalization for the initialization of S and stop

criterion ε;

Processing:

2: Compute BHZt and BSZt according to (4.19) and (4.20);

3: Compute the optimal step size according to (4.25);

4: Update H and S according to (4.21) and (4.22);

5: While | tr((BZt−Zt)H∇f(Zt)) + g(BZt)− g(Zt) |≥ ε repeat from step 2.

4.3.4 Alternative solutions

In what follows, and for benchmarking, the OP given by equation (4.8) can be optimized by

using the widely used ADMM approach. To do so, (4.8) can be reformulated as:

minimize
A,B,S

1
2‖Ȳ−AS̄‖2F + λ

2‖M̃vec(S)‖2F +µ‖B‖1,

subject to A = B. (4.30)

Consequently, the augmented Lagrangian of (4.30) is given by:

L(A,B,S,Π) = 1
2‖Ȳ−AS̄‖2F + λ

2 ‖M̃vec(S)‖2F +µ‖B‖1 +tr(ΠH(A−B))+ c

2‖A−B‖2F , (4.31)

where the matrix Π is the dual variable (the Lagrange multiplier) which adds the constraint

to the cost function and c is a positive constant. Within ADMM framework, the variables are

updated as follows:

At+1 = arg min
A
L(A,Bt,St,Πt), (4.32)

Bt+1 = arg min
B
L(At+1,B,St,Πt), (4.33)

St+1 = arg min
S
L(At+1,Bt+1,S,Πt), (4.34)

Πt+1 = Πt + c(At+1−Bt+1). (4.35)
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The solutions to the above OP are as given by:

At+1 = (Ȳ(S̄t)H + cBt−Πt)(S̄t(S̄t)H + cI)−1, (4.36)

Bt+1 = Sµ
c
(At+1 + (Πt)H

c
), (4.37)

st+1 = ((Ãt+1)HÃt+1 +λM̃HM̃)−1(Ãt+1)Hy, (4.38)

where st+1 = vec(St+1) and Ã = I⊗A.

Also a BCD-based solution is considered in the sequel (for simulation comparison) for solving

OP (4.8) where the channel matrix is updated row-wise, whereas the data symbols are updated

by considering the channel’s matrix as fixed.

It is important to notice that the numerical cost of the proposed algorithm increases signifi-

cantly mainly due to the number of the observation samples. To reduce this cost, due mainly to

equation (4.20), one should exploit the block-tridiagonal structure of (H̃HH̃ +λM̃HM̃) and its

quasi block-Toeplitz property for its fast inversion [94]. Another alternative would be to replace

the term associated to the data matrix structure by a term associated to the channel matrix. For

example, one can use the Cross-Relation (CR) quadratic criterion [95] for blind SIMO channel

estimation according to:

minimize
H,S

1
2‖Ȳ−HS̄‖2F + λ

2 hHQCRh +µ‖H‖1, (4.39)

where h = vec(H) and QCR is the quadratic form (obtained from the observations) associated to

the CR method. In the case of large sample sizes, the minimization of the latter cost function is

much cheaper than the minimization of (4.8).

4.4 Performance analysis and discussion

This section highlights the performance of the proposed solution for channel estimation and data

detection. A pilot-based initialization is used for channel coefficients, which are, in turn, used for

zero-forcing equalization to get the initial data values. Also, for comparison, we have used a fully

pilot-based channel estimator (i.e. we assume the data symbols known for benchmarking), and

a subspace-based (SS) channel and data estimators [66, 96]. The pilots and data symbols are

drawn from a 4-QAM modulation, whereas the channel coefficients are generated randomly using

i.i.d. unit-power, zero-mean, Gaussian distribution, with some randomly chosen null coefficients

(60% of columns in our case) to model the channel sparsity. The results are averaged over 100

Monte Carlo runs, and the performance is assessed through the normalized mean squared error
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Parameters Specifications

Number of transmitters Nt = 1

Number of receive antennas Nr = 20

Number of data symbols Nd = 100

Number of pilot symbols Np = 10

Channel’s taps M = 15

Cost function constants λ=0.25 ‖Y‖ (‖Y‖: spectral norm of Y)

µ=1.8

c= 104 (for ADMM-based algorithm)

Table 4.1: ST-SCA simulation parameters.

(NMSE) and an average symbol error rate (SER). Simulation parameters are summarized in

TABLE 4.1, unless otherwise mentioned.

Figure 4.1 investigates the performance of channel estimation, in terms of NMSE w.r.t.

SNR, of the different techniques described previously. One can notice that the proposed

solution (HST−SCA) outperforms the ADMM-based (HADMM ), the BCD-based (HBCD) and

the subspace-based (HSS) solutions, while becoming close to the fully pilot-based one (HPilots)

for high SNRs.

Figure 4.2 assesses the performance of data estimation, in terms of NMSE w.r.t. SNR, of the

different techniques described previously. Note that for SPilots, a zero forcing is applied by using

the estimated channel matrix HPilots. It can be seen that the proposed solution (SST−SCA)

performs better than all other techniques SADMM , SBCD, SSS and SPilots.

By using the estimated data symbols, a hard decision is performed to obtain a 4-QAM

symbols. Hence, Figure 4.3 illustrates the obtained SER w.r.t. SNR of the different solutions

described previously. One can notice that the results obtained in Figure 4.2 are confirmed here.

Figure 4.4 illustrates the behavior of the cost function, given in (4.8), w.r.t. the number

of iterations needed for convergence. One can notice the gain obtained by using an optimal

step size illustrated by ST-SCA (optimal step size), compared to the use of a fixed step size

(γ = 0.06) illustrated by ST-SCA (fixed step size). On the other hand, it is shown that a similar

behavior is observed for the proposed solution (ST-SCA (optimal step size)) and the BCD-based

algorithm, whereas slightly lower number of iterations is observed for the ADMM-based solution.

Nevertheless, small number of iterations are needed for convergence for the three techniques, in

this context. However, it is worth noting that the choice of the appropriate constant c for the
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ADMM-based solution remains a very hard task that influences the algorithm’s convergence.

Whereas for the BCD-based solution, the sequential update may incur large delays, especially for

high dimensions (see TABLE 4.2), which becomes not suitable for real-time processing.

TABLE 4.2 illustrates the CPU time (in seconds) needed for one iteration of the proposed

channel’s memory ST-SCA BCD ADMM

M = 15 2.0296 1.0991 1.9881

M = 80 26.1254 30.7365 27.0012

Table 4.2: CPU time (in seconds) for one iteration.

algorithm (ST-SCA), the ADMM-based and the BCD-based solutions. In this comparison we

considered a brute-force implementation of the algorithms (i.e. without exploiting the close to

Toeplitz, block tridiagonal structure of the involved matrices). Compared to the ADMM-based

solution, ST-SCA has similar time consumption, but still performs better in terms of channel

and data estimation as illustrated in Figures 4.1, 4.2 and 4.3. However, one can notice that the

BCD-based solution needs more time for longer channels (e.g. M = 80). Note also that the CPU

time given in TABLE 4.2 has been calculated for a sequential implementation, and can be further

reduced, by around the half, for ST-SCA when using parallel processing or multithreading, since

the variable update at iteration t+ 1 depends only on the variables of the t-th iteration.
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Figure 4.1: NMSE of channel matrix H estimate vs. SNR.
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Figure 4.2: NMSE of data matrix S estimate vs. SNR.
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4.5 Conclusion

This chapter proposed a semi-blind solution for joint sparse channel estimation and data recovery,

by solving an appropriate OP. The proposed solution is based on the successive convex approxi-

mation approach, where the optimization is performed on an approximate convex problem, rather

than dealing with the original nonconvex one. An OP is formulated, based on available data

(pilots) and convolutive system structure, then an iterative procedure is proposed where the
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Figure 4.4: Cost function vs. number of iterations at SNR = 10dB.

channel coefficients and data symbols are updated (estimated) simultaneously, at each iteration.

Along the iterations, an optimized step size procedure is introduced for convergence improve-

ment with guaranteed convergence to a stationary point. Simulation results show that ST-SCA

outperforms state-of-the-art techniques by exhibiting moderate-complexity, fast-convergence and

a promizing channel and data estimation accuracy. Moreover, the adopted approach is suitable

for parallel processing or multithreading since all variables are updated simultaneously.
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The only way of discovering the

limits of the possible is to venture a

little way past them into the

impossible.

Clarke’s Second Law.
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The aim of chapter is to propose solutions for blind and semi-blind channel estimation of

nonlinear Single-Input Multiple-Output (SIMO) communications systems. For the system model,

two nonlinearities have been considered; a quadratic and a cubic. In the blind case, a first

channel estimation solution is proposed based on a subspace approach followed by an appropriate

ambiguity removal method. Then, to refine this first estimate, an original maximum likelihood

approach is introduced based on the Expectation-Maximization (EM) algorithm. In the semi-blind

case, where both data and pilots are available, an extension of this EM-based solution is proposed.

Some identifiability results and performance bounds related to the considered models (blind and

semi-blind) are provided and discussed. Simulation results show that the proposed solutions

exhibit very interesting channel estimation performance, with an attractive convergence speed for

the EM-based iterative solution. A part of this work has been published in 1[97].

Abstract

1 [97] O. Rekik, K. Abed-meraim, A. Mokraoui and M. Nait-meziane,"Contribution à l’estimation aveugle du

canal de transmission dans les systèmes SIMO non linéaires", in GRETSI, 2019.
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5.1 Introduction

Nonlinear behaviors can be encountered in many practical situations, in which case appro-

priate (nonlinear) processing is needed, when such nonlinearities are too important to be

disregarded [35, 36]. Indeed, because most of real-life systems are inherently nonlinear in nature,

nonlinear problems have drawn important interest and extensive attention from engineers, physi-

cists, mathematicians and many other scientists [36]. In communications systems, and due to

the presence of nonlinear devices such as power amplifiers and optical equipments [37], communi-

cation channels are sometimes corrupted by nonlinear distortions such as nonlinear inter-symbol

interference, nonlinear multiple access interference and nonlinear inter-carrier interference. These

nonlinear distortions can significantly deteriorate the signal reception, leading to poor system

performance. In order to overcome such an issue, nonlinear models are adopted to provide

an accurate channel representation and to allow the development of efficient signal processing

techniques capable of mitigating these nonlinear distortions. In the case of system identification,

a widely used class of nonlinear models is the class of linear-in-the-parameters models. The

input-output relation is essentially nonlinear but the estimation problem is linear with respect

to the channel coefficients. Popular examples are polynomial filters, and more particularly

Volterra filters [98]. They have been applied in many fields such as, electronic and electrical

engineering, mechanical engineering, aeroelasticity problems and control engineering [99]. Indeed,

the motivation for adopting these filters is that, they have the ability of modeling the behavior

of nonlinear real-life phenomena, especially the ability to capture their “memory” effects [36];

and have mathematical relationship with other nonlinear system models namely the Wiener

series, Hammerstein model, Wiener model, Wiener-Hammerstein model (block-oriented nonlinear

systems), Taylor series or NARMAX model [99].

For nonlinear system identification, several approaches, most of them based on Volterra

filters, have been proposed in the literature. Some works exploited training sequences and

are essentially based on Least-Mean-Squares adaptive filters [100], Recursive Least-Squares

algorithms [101, 102], and Affine Projection algorithms [103]. Other approaches are fully blind,

thus, they seek to determine the system’s kernel using the output data only. One could cite

the higher order output cumulant-based approach [1], the subspace-based approach [104], the

genetic programming-based method using Volterra filter [105] or the tensor-based frameworks

in [106, 107]. One can notice that, these methods have been adopted and adapted to nonlinear

systems mainly due to their efficiency for the linear case. Consequently, and due to the attractive

advantages of the Maximum-Likelihood (ML) approaches (which is used in the current work),
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namely the consistency, and the asymptotic efficiency of the estimates, some works proposed

ML-based identification techniques of certain nonlinear systems [108, 109]. In these works, an

approximation of the complex likelihood function is minimized via modified Gauss-Newton

methods assuming the input data to be white Gaussian and a block-structured system model.

However, a review of the current literature reveals that an ML solution for the case of nonlinear,

finite alphabet, multi-channel communications systems does not exist.

Other works, like those in [110, 111], have considered a Hammerstein model with cascaded

nonlinear and linear blocks, where the initialization and the system identification (channel

estimation) are performed by firstly estimating the impulse response of the linear filter, which is

then used to estimate the nonlinear function parameters. By contrast, in the proposed work,

both linear and nonlinear parameters are estimated simultaneously through solutions that fit

into the framework of joint channel estimation and data detection.

Also, in [112] a blind nonlinear system identification is proposed based on the parallel factors

(PARAFAC) tensor decomposition. However, it is shown that the input signals must satisfy some

orthogonality constraints associated with the channel nonlinearities in order to allow the desired

PARAFAC decomposition. Hence, a precoding scheme is introduced using temporal redundancy

on the signals, which is carried out by imposing some constraints on the symbol transitions.

The aim of the current work is to present ML-like blind and semi-blind channel estimators for

Volterra-like nonlinear Single-Input Multiple-Output (SIMO) systems, that can be easily extended

to MIMO scenarios. The proposed blind channel estimator combines a subspace-based estimation

and an EM-based one. More precisely, firstly we exploits the Second Order Statistics (SOS)

using a subspace approach for channel estimation where the nonlinear SIMO system is treated

as a linear Multiple-Input Multiple-Output (MIMO) system. A straightforward motivation is

that, the use of SOS-based estimators avoids the need of high number of data symbols often

required for High Order Statistics based methods, e.g. [1]. Then, unlike many blind-based

works (e.g. [104]), we propose also an original method to remove the ambiguity inherent to such

a blind approach. Finally, a second estimation is performed based on a maximum likelihood

approach, where an iterative optimization is performed using the Expectation-Maximization (EM)

algorithm. Indeed, due to its sensitivity to initialization, the EM-based estimator is initialized

using the subspace-based one. Note that, efficient and practical initialization for blind EM-based

techniques is often missing in the literature. Moreover, within the proposed EM-based framework,

one could perform a joint channel estimation and data detection as will be highlighted later in

this chapter.
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The global scheme of the proposed blind EM-based estimator is given in Figure 5.1, in which

the signal at the received antennas is the input for the subspace-based estimator, whereas the

estimates of linear and nonlinear channel coefficients represent the output of the EM algorithm

after convergence.

Convergence? Stop

Maximization step

Expectation step

No

Ambiguity
removal

Subspace-based
estimator

Yes

EM algorithm

Refinement

Initialization

Figure 5.1: Proposed blind channel estimation scheme.

To make our method more flexible, and to consider the case where training sequences (pilots)

are available, this work is extended to the semi-blind framework where data and pilot symbols

are jointly exploited to improve the estimation accuracy and overcome certain limitations of the

blind processing. In this case, the initialization of the EM algorithm is performed by exploiting

the available pilots.

The proposed blind and semi-blind approaches are supported by some identifiability results

and performance bounds related to our context, that allow the reader getting more insights on

the problem’s identifiability and its inherent performance limits.

5.2 System model

This section details the data model adopted. A nonlinear SIMO system is considered as illustrated

in Figure 5.2. It is composed of one single-antenna transmitter and a receiver equipped withNr > 2

antennas. The received signal at the r-th receive antenna, denoted yr(k) with 1 ≤ r ≤ Nr, is
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given by:

yr(k) =
Mr,L∑
n=0

hr,L(n)u(k−n) +
Mr,NL∑
n=0

hr,NL(n)ũ(k−n) + vr(k), (5.1)

where hr,L(n) (resp. hr,NL(n)) refers to the elements of the linear (resp. nonlinear), r-th receiver,

channel’s finite impulse response coefficient vector of size Mr,L + 1 (resp. Mr,NL + 1), u(k) is

the transmitted (input) symbol sequence assumed to be independent and identically distributed

(i.i.d.) complex random variables taking values, with equal probabilities, in a finite alphabet

set A= {a1,a2, . . . ,a2B} where B is the number of bits per symbol. ũ(k) stands for a nonlinear

combination of the input signal so that ũ(k) = f(u(k),u(k− 1), . . .) (f being an appropriate

nonlinear function, chosen to accurately model the system’s non-linearity) and vr(k) is a white

circular Gaussian noise (uncorrelated from sensor to sensor) with variance σ2
v .

Figure 5.2: Architecture of the considered SIMO system, where f(.) is a nonlinear function w.r.t. the

linear signal u

.

In the sequel, two models for the nonlinear function ũ(k) will be considered. The first one

is a second-order (quadratic) model (e.g., [100, 113]), where ũ(k) = u(k)2, whereas the second

one is a third-order (cubic) model (e.g., [1, 114]) where ũ(k) = |u(k)|2u(k). These models have

been used to model real-life nonlinearties, namely those related to power amplifiers and optical

devices.

Since the system model is nonlinear with respect to the transmitted signal but linear in regards

to the channel coefficients, we propose to treat this nonlinear SIMO model as a linear MIMO
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model with two inputs (u(k) and ũ(k)) [115]. For this, let us define the following vectors: hr,L =

[hr,L(0), . . . ,hr,L(M)]T ,hr,NL = [hr,NL(0), . . . ,hr,NL(M)]T ,u(k) = [u(k),u(k − 1), . . . ,u(k −M)]T

and ũ(k) = [ũ(k), ũ(k − 1), . . . , ũ(k −M)]T where M = max(Mr,L,Mr,NL), 1 ≤ r ≤ Nr. The

received signal, given by equation (5.1), can be represented as:

yr (k) = hTr ū(k) + vr(k), (5.2)

where hr = [hTr,L,hTr,NL]T and ū(k) = [u(k)T , ũ(k)T ]T . Moreover, by considering the Nr receive

antennas, one can write:

y(k) = Hū(k) + v(k), (5.3)

where y(k) = [y1(k), . . . ,yNr(k)]T , H = [h1, . . . ,hNr ]T and v(k) = [v1(k), . . . ,vNr(k)]T .

The system model, provided by equation (5.3), is considered as a Markov process where

the state vector defined as s(k) = [u(k − 1), . . . ,u(k −M)]T contains M successive symbols.

The set of N = 2BM states is denoted Q = {q1, . . . ,qN}. The transition vector is defined as

xnm = [u(k), . . . ,u(k−M)]T , containing (M + 1) symbols associated with the transition between

two connected successive states qn and qm. The set of the 2B(M+1) possible transitions is

denoted X . For convenience, sequences of observations y(n), . . . ,y(m) and states s(n), . . . ,s(m)

are denoted Y[n:m] and S[n:m], respectively. Note that the number of possible transitions and

states depends only on the number of linear terms since the nonlinear terms are directly obtained

from the former.

In what follows, the parameters to be estimated are the channel coefficients and the noise

variance, grouped in a single vector denoted θ = [vect(HT )T ,σ2
v ]T .

5.3 Blind EM-based estimation

This section details the proposed blind channel estimation approach. A subspace-based estimation,

for the nonlinear SIMO system, is firstly considered. Then, solutions for ambiguity removal

are proposed to get rid of the inherent ambiguity of the blind processing. After that, an EM-

based channel estimation is detailed, which helps refining the subspace-based estimation already

performed, as illustrated in Figure 5.1. Besides, a data estimation scheme, within the EM

framework, is provided.

5.3.1 Subspace-based estimation

Blind subspace-based techniques have been used successfully for channel estimation based on

Second Order Statistics (SOS) in the case of linear MIMO systems [66]. In what follows, the
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nonlinear SIMO system will be considered as a linear MIMO (2×Nr) system, where the term

ũ(k) will be treated as the second source signal. The following assumptions are supposed to hold:

• The polynomial matrix H(z) = [hL(z),hNL(z)] =∑M
l=0 H(l)z−l of size (Nr×2) is irreducible

[66] and its highest order coefficient H(M) is full column-rank. Its (r, i)-th input is the

transfer function given by hr,i(z) =∑M
l=0hr,L(l)z−l for i= 1 and hr,i(z) =∑M

l=0hr,NL(l)z−l

for i= 2.

• The 2× 2 covariance matrix of the input signal [u(k), ũ(k)]T is of full rank.

With the aforementioned assumptions, the subspace channel estimation technique introduced

in [66] will be adopted. It allows us to identify the polynomial matrix H(z) up to a constant

matrix Q of size (2×2), which represents the inherent ambiguity of the blind subspace technique.

This technique exploits the received signal’s SOS through the use of the covariance matrix

of random vector yw(k) = [y(k)T ,y(k− 1)T , . . . ,y(k−Nw)T ]T , Nw being the window length2

assumed sufficiently large (Nw ≥ 2M). In this case the channel matrix has a Sylvester block-

Toeplitz structure, denoted by TNw(h) (h = vectHT ), of size Nr(Nw + 1)× 2(M +Nw + 1) where

its first block row is given by [H(0), . . . ,H(M),0Nr×2, . . . ,0Nr×2].

Under the previous assumptions, the noise variance σ2
v is the smallest eigenvalue of the

covariance matrix Rw of yw(k). The eigenspace associated with σ2
v is referred to as the noise

subspace, which is the orthogonal complement of the signal subspace (i.e., rangeTNw(h) where

rangeX denotes the subspace generated by the column vectors of matrix X) and is denoted

ΠN = rangeTNw(h)⊥. The subspace identification method used is ultimately related to the fact

that:

ΠH
NTNw(h) = 0. (5.4)

To take into account the noise effect, one solves equation (5.4) in the Least-Squares (LS) sense,

which leads to the following quadratic expression (see [66] for details):

ĥss = argmin
h

hHQh, (5.5)

where the subscript "ss" stands for subspace and Q is a 2Nr(M + 1)×2Nr(M + 1) symmetric

matrix corresponding to the considered LS cost function.

Note that to avoid degenerate solutions, different constraints on h can be considered including

the unit-norm constraint for which the solution of equation (5.5) is given by the eigenvector

associated to the smallest eigenvalue of Q.
2This technique processes the signal using windows of length Nw.
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This method allows to estimate the polynomial matrix H(z) up to a 2×2 constant matrix Q,

i.e., Ĥ(z) =H(z)Q. In order to use the estimated channels’ vector ĥss for further processing,

one needs to remove the latter matrix ambiguity. In the sequel, solutions are proposed to get rid

of Q by exploiting the nonlinear relation between u(k) and ũ(k).

5.3.2 Ambiguity removal for quadratic nonlinearity

In this section, it is assumed that ũ(k) = u2(k). At first, a channel equalization is performed

based on the subspace channel estimate ĥ. More precisely, a zero-forcing equalizer of delay M

has been used in our simulations. It is given by the (2M + 1)-th row3 of the pseudo inverse

matrix T #
Nw

(ĥ). The obtained signal, in the noiseless case, is given by:

x(k) = Q−1u(k) with u(k) = [u(k),u2(k)]T , (5.6)

The unknown matrix Q = (qi,j)1≤i,j≤2 can be seen here as the separating matrix of the previous

mixture, characterized (up to a diagonal) by the fact that vector z(k) = Qx(k) verifies z2(k) =

z1(k)2. Thus, in order to estimate the unknown matrix Q, we propose to minimize the following

LS criterion:
Ns∑
k=1
|z2(k)− z2

1(k)|2 = ‖Xq‖2, (5.7)

where q = [q2,1, q2,2, q2
1,1, q

2
1,2, q1,1q1,2]T ; Ns is the size of the equalized signal and

X =


−x1(1) −x2(1) x2

1(1) x2
2(1) 2x1(1)x2(1)

...
...

−x1(Ns) −x2(Ns) x2
1(Ns) x2

2(Ns) 2x1(Ns)x2(Ns)

 .
Vector q is estimated up to a constant. It is proportional to the eigenvector v = [v1,v2,v3,v4,v5]T

associated to the smallest eigenvalue of XHX. The latter is shown to be uniquely identified under

some mild assumptions on the input signal as it will be detailed in section 5.5. Consequently, it

is possible to estimate Q as follows:

q =



q2,1

q2,2

q2
1,1

q2
1,2

q1,1q1,2


= α



v1

v2

v3

v4

v5


(5.8)

3Note that the odd rows of T #
Nw

(ĥ) extract symbols u(n) at different delays while even rows of T #
Nw

(ĥ) extract

delayed samples of ũ(k).
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where α is an unknown scalar factor. Hence taking into account the structure of q, one can write

Q =

 √αv3
√
αv5√
v3

αv1 αv2

=
√
α

 1 0

0 λ

Q̃. (5.9)

The common scalar factor
√
α can be disregarded due to the scale ambiguity of such blind

processing. However, for the diagonal matrix term, scalar λ=
√
α is estimated by substituting

the expression (5.9) in the criterion given by equation (5.7), leading to:

λ=
∑Ns
k=1 z̃

2
1(k)z̃∗2(k)∑Ns

k=1 |z̃2(k)|2
, (5.10)

where z̃(k) = Q̃x(k).

In the case of blind processing, the source signal (and also the channel coefficients) is estimated

up to a constant, which represents the inherent ambiguity of the considered problem. However, it

is possible to further reduce this indetermination (unknown phase multiple of π/2 for Quadrature

Amplitude Modulation (QAM) signals) by exploiting the independence of the real and imaginary

parts of the transmitted symbols. In our simulations, we have used the phase rotation given

in [116].

5.3.3 Ambiguity removal for cubic nonlinearity

In this section, it is assumed that ũ(k) = |u(k)|2u(k). Similarly to the previous case, after channel

equalization the obtained signal, in the noiseless case, is expressed as:

x(k) = Q−1u(k) with u(k) = [u(k), |u(k)|2u(k)]T , (5.11)

To get rid of the unknown mixing matrix Q, one can minimize:
Ns∑
k=1
|z2(k)− |z1(k)|2z1(k)|2, (5.12)

with z(k) = Qx(k). This multivariate optimization problem can be reduced to the search of one

complex parameter b= q̄1,2, by normalizing q̄1,1 = 1 (this is possible thanks to the inherent scale

ambiguity of the considered problem) and by solving equation (5.12) with respect to [q̄2,1, q̄2,2] in

terms of b. Indeed, for a fixed value of b, the criterion in (5.12) reduces to a LS optimization

problem with respect to [q̄2,1, q̄2,2], for which a closed-form solution exists:

[q̄2,1, q̄2,2] = [1, b](XX#), (5.13)

with X = [x(1), . . . ,x(Ns)]. Plugging equation (5.13) into equation (5.12) leads to a nonlinear

cost function in terms of parameter b that can be solved using numerical optimization techniques.
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Note that, as it will be shown in section 5.5, criterion given by equation (5.12) has spurious

solutions for small or moderate size constellations (e.g., QAM 4, 16 and 32) in which case an

alphabet matching cost function (see [117] and references therein) should be used instead.

5.3.4 EM-based estimation

This section is devoted to the proposed EM-based, maximum likelihood channel estimator for

the system model given by equation (5.1).

The EM algorithm is an iterative method aiming at finding maximum likelihood or maximum

a posteriori estimates of parameters in statistical models, where the model depends on unobserved

latent variables. Thus, the sequence of Ns states S[1:Ns], which are not observed, represent

the missing data, whereas the Ns received symbols Y[1:Ns] stand for the incomplete data

(observations). Moreover, the complete-data is given by the sequence (Y[1:Ns],S[1:Ns]). Each EM

iteration alternates between two steps: E-step and M-step as described below.

5.3.4.1 E-step

The objective of this step is to find the auxiliary function, denoted by Q(θ,θ(m)), which is defined
as the conditional expectation of the complete-data log-likelihood, with respect to the conditional
distribution of the missing data S[1:Ns], given the observations Y[1:Ns] and the current estimated
parameter value at the m-th iteration θ(m) =

(
vect(H(m))T ,σ2

v
(m)). Thus, such an auxiliary

function can be expressed as:

Q(θ,θ(m)) = E
(

logfθ
(
Y[1:Ns],S[1:Ns]

)∣∣∣Y[1:Ns],θ
(m)
)
, (5.14)

where E(·) refers to the expectation with respect to the distribution of the missing data.
After some straightforward derivations and by ignoring terms that are independent of θ,

Q(θ,θ(m)) is shown to be proportional to (see [118]):

∑
xij∈X

Ns∑
k=1

(
−Nr log(σ2

v)−‖y(k)−Hx̄ij‖2/σ2
v

)
γθ(m)(k; i, j), (5.15)

where x̄ij = [xTij , x̃Tij ]T (x̃ij being the nonlinear term associated to xij), and γθ(m)(k; i, j) =

fθ(m)

(
s(k) = qi,s(k+ 1) = qj |Y[1:Ns]

)
represents the posterior probability of the trellis branch

(s(k) = qi,s(k+1) = qj) given the observations Y[1:Ns] and the current estimate of the parameter

θ(m). This probability can be efficiently computed using the forward-backward variables ([119,

120]) denoted by αθ(m)(k; i) and βθ(m)(k;j). Consequently, by omitting multiplicative scaling

factors independent of k, i, j, it can be shown that:

γθ(m)(k; i, j) ∝ αθ(m)(k; i) βθ(m)(k+ 1;j) bθ(m)(k; i, j),
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where

αθ(m)(k; i) = fθ(m)(Y[1:k−1],s(k) = qi), (5.16)

βθ(m)(k;j) = fθ(m)(Y[k:Ns] | s(k) = qj), (5.17)

bθ(m)(k, i, j)∝
(
σ

2(m)
v

)−Nr exp
(
−‖y(k)−H(m)x̄ij‖2

σ
2(m)
v

)
. (5.18)

The forward and backward variables can be evaluated recursively as:

αθ(m)(k+ 1; i) = 1
N

∑
l∈F(i)

αθ(m)(k; l)bθ(m)(k, l, i), (5.19)

βθ(m)(k;j) = 1
N

∑
l∈B(j)

βθ(m)(k+ 1; l)bθ(m)(k,j, l), (5.20)

where F(i) (resp. B(j)) denotes the set of states connected to qi (resp. qj) in forward

(predecessors) (resp. backward (successors)) directions. Note that, the predecessors of the state

qi = s(k) = [u(k − 1), . . . ,u(k −M)]T take the form s(k − 1) = [u(k − 2), . . . ,u(k −M − 1)]T ,

whereas its successors are given by s(k+ 1) = [u(k), . . . ,u(k−M + 1)]T , where the symbols u(k)

and u(k−M − 1) take values from the set A with equal probabilities. Hence, the total number

of a state’s predecessors and successors is 2B.

5.3.4.2 M-step

The objective of this step is to find the parameter θ(m+1) that maximizes Q
(
θ;θ(m)

)
, i.e.,

θ(m+1) = argmax
θ

Q
(
θ;θ(m)

)
. (5.21)

This process is shown in [61] and [121] to increase the likelihood function, and consequently it

leads to the algorithm’s convergence to a global maximum point.

Since Q
(
θ;θ(m)

)
is quadratic in its argument, the maximization step reduces to:

H(m+1) = RyxR−1
xx , (5.22)

(σ2
v)(m+1) = 1

NsNr
traceRyy −H(m+1)Rxy, (5.23)

where Ryy is the autocorrelation matrix of observations, Rxy is the “weighted” cross-correlation

matrix between the unobserved symbol transitions and the observations, and Rxx stands for the

“weighted” auto-correlation matrix of the unobserved symbol transitions. These matrices are
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given by:

Ryy =
Ns∑
k=1

y(k)y(k)H , (5.24)

Rxy = RH
yx =

Ns∑
k=1

∑
xij∈X

x̄ijy(k)Hγθ(m)(k; i, j)

=
Ns∑
k=1

Eθ(m)(x(k)|Y[1:Ns])y(k)H , (5.25)

Rxx =
Ns∑
k=1

∑
xij∈X

x̄ijx̄Hij γθ(m)(k; i, j)

=
Ns∑
k=1

Eθ(m)(x(k)x(k)H |Y[1:Ns]). (5.26)

The iterative procedure can be stopped as soon as:∥∥∥θ(m+1)−θ(m)
∥∥∥∥∥∥θ(m)

∥∥∥ < ε, (5.27)

for a chosen positive threshold ε.

5.3.5 Data detection within EM framework

Several data detection methods can be designed given the value of the estimated parameter

obtained at the end of the iterations, denoted by θ(∞); the observation sequence Y[1:Ns] and the

trellis diagram of the channel. The optimal criterion retained in the current work is the minimum

symbol-error probability [122], which can be easily implemented within an EM framework.

Minimizing the symbol-error probability aims at choosing, at each instant k, the data symbol

which maximizes the posterior probability of the symbol u(k) given the observations Y[1:Ns] and

the channel parameters θ(∞) as follows:

û(k) = argmax
ai0∈A

fθ(∞)

(
u(k) = ai0

∣∣∣Y[1:Ns];θ
(∞)

)
. (5.28)

This quantity may be simply expressed, as a function of the posterior probability γθ(∞)(k; i, j) of
the trellis branch (s(k) = qi,s(k+ 1) = qj) given the observations Y[1:Ns] and θ

(∞) as:

f
θ(∞)

(
u(k) = ai0

∣∣∣Y[1:Ns];θ
(∞)
)

=
∑

i,j∈S(i0)

γ
θ(∞)(k; i, j), (5.29)

where S(i0) is the set of all trellis branch values so that xij = [u(k) = ai0 ,u(k−1), . . . ,u(k−M)].

Consequently, the EM-based solutions presented in this work can be further considered as a joint

channel estimation and data detection within a maximum likelihood framework.
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5.4 Semi-blind EM-based estimation

In most communications systems, some training symbols (pilots) are usually sent periodically

within the wireless network frames besides the unknown data. Hence, a Semi-Blind (SB)

approach, exploiting pilots, can be adopted in order to take advantage of this available data

and reduce the different difficulties and issues related to the blind processing. To do so, and

without loss of generality, the transmitted sequences and the received observations are assumed

to be composed of Np pilots and Nd data symbols so that S[1:Ns] = [Sp[1:Np] ,Sd[Np+1:Ns] ] and

Y[1:Ns] = [Yp[1:Np] ,Yd[Np+1:Ns] ] where Np +Nd = Ns (indices p and d stand for pilot and data,

respectively). Moreover, since the initialization can be performed using the available pilot

symbols, the constraints on the number of receive antennas Nr > 2 as well as channel diversity

conditions defined in section 5.2, are no longer required.

In what follows, we describe the E-step and the M-step for the case of EM-based semi-blind

framework.

5.4.1 E-step

By considering pilots and data, the auxiliary function, given in equation (5.15) for the blind case,
has now an additional term corresponding to the pilot sequence. The new function becomes:

Q(θ,θ(m))∝
Np∑
k=1

(
−Nr log(σ2

v)− ‖y(k)−Hūp(k)‖2
σ2
v

)
+
∑

xij∈X

Ns∑
k=Np+1

(
−Nr log(σ2

v)−‖y(k)−Hx̄ij‖2

σ2
v

)
γθ(m)(k; i, j),

(5.30)

where ūp(k) = [up(k), . . . ,up(k−M), ũp(k), . . . , ũp(k−M)]T , of size 2(M + 1), is composed of linear and

nonlinear terms of the pilot signal.

5.4.2 M-step

In the case of semi-blind processing, equations (5.25) and (5.26) become:

Ryx = RH
xy =

Np∑
k=1

y(k)ūp(k)H +
Ns∑

k=Np+1

∑
xij∈X

y(k)x̄Hij γθ(m)(k; i, j),

Rxx =
Np∑
k=1

ūp(k)ūp(k)H +
Ns∑

k=Np+1

∑
xij∈X

x̄ij x̄Hij γθ(m)(k; i, j). (5.31)

Remark: A normalization of the posterior probability of the data terms might be performed when

considering such semi-blind context. To do so, one can write4:

γθ(m)(k; i, j) =
γθ(m)(k; i, j)∑

xij∈X γθ(m)(k; i, j) . (5.32)

4To avoid introducing a new notation, we kept the same expression for the normalized posterior probability

γθ(m)(k; i, j).
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5.4.3 Extension to Nonlinear MIMO systems

The previous results can be easily extended to the multi-user case (i.e., MIMO system). To do so, the

system model given in equation (5.1), is re-written as follows:

yr(k) =
Nt∑
i=1

Mi,r,L∑
n=0

hi,r,L(n)ui(k−n) +
Nt∑
i=1

Mi,r,NL∑
n=0

hi,r,NL(n)ũi(k−n) + vr(k), (5.33)

where hi,r,L (resp. hi,r,NL) refers to the linear (resp. nonlinear) channel impulse response between the i-th

user and the r-th receive antenna; while ui(k) represents the transmitted symbol of the i-th user.

Consequently, the system model given by equation (5.2) will be based on the following vectors: hr,L =

[h1,r,L(0), . . . ,h1,r,L(M), . . . ,hNt,r,L(M)]T , hr,NL = [h1,r,NL(0), . . . ,h1,r,NL(M), . . . ,hNt,r,NL(M)]T , u(k) =

[u1(k), . . . ,u1(k−M), . . . ,uNt(k−M)]T and ũ(k) = [ũ1(k), . . . , ũ1(k−M), . . . , ũNt(k−M)]T , where M =

maxi,r{Mi,r,L,Mi,r,NL}.

In such a case, the state vector is given by s(k) = [u1(k−1), . . . ,u1(k−M), . . . ,uNt(k−1), . . . ,uNt(k−

M)]T containing NtM symbols, with 2BNtM possible state values. Whereas, the transition vector is

defined by xnm = [u1(k), . . . ,u1(k−M), . . . ,uNt(k), . . . ,uNt(k−M)]T of Nt(M + 1) symbols.

By using this new vectors, equations (5.31), (5.31), (5.22) and (5.23) are still valid, leading to an

EM-based channel estimation for nonlinear MIMO communications systems.

5.5 Identifiability results and performance bounds

To get more insights on the problem’s identifiability and its inherent performance limits, some supplemen-

tary results are provided below.

5.5.1 Identifiability results

In the blind context, there exist certain inherent ambiguities with respect to the identification of the

channel parameters. In particular, since we are using the subspace method for the initialization of our EM

algorithm, we are interested in the SOS-based identifiability. Under the assumption of i.i.d. input symbols

considered for the data model, the power spectral density (PSD) of the observed data is expressed as:

Py(ej2πf ) = [hL(ej2πf ),hNL(ej2πf )]× Ru[hL(ej2πf ),hNL(ej2πf )]H +σ2
vI, (5.34)

where hL(ej2πf ) = [h1,L(ej2πf ), . . . ,hM,L(ej2πf )]T (resp. hNL(ej2πf ) = [h1,NL(ej2πf ), . . . ,hM,NL(ej2πf )]T )

is the frequency response of the linear (resp. the nonlinear) channels, while Ru is the 2× 2 covariance

matrix (assumed full rank) of [u(k), ũ(k)]T . As shown in [66], by considering u(k) and ũ(k) as two different

source signals, the SOS allow us to identify H(z) up to a constant matrix Q. Indeed, the PSD can be

rewritten as

Py(ej2πf ) =
(

[hL(ej2πf ),hNL(ej2πf )]Q
)
× Ru,Q

(
[hL(ej2πf ),hNL(ej2πf )]Q

)H
+σ2

vI, (5.35)

where Ru,Q = Q−1RuQ−H . Now, to get rid of this ambiguity, we need to use higher order information

through the nonlinear cost functions in equations (5.7) and (5.12). The latter help to reduce the ambiguity
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from a 2× 2 matrix factor to a scalar factor under certain additional assumptions given in the following

lemma.

Proposition 4. For the quadratic nonlinearity case with ũ(k) = u2(k), the minimization of the criterion

given by equation (5.7) in the large sample size and noiseless case leads to the desired input signal

(up to a constant factor c), i.e., z1(k) = cu(k), if and only if the correlation matrix of vector u(k) =

[1,u(k),u2(k),u3(k)]T is full rank, i.e., E(u(k)u(k)H)> 0.

For the cubic nonlinearity with ũ(k) = |u(k)|2u(k), the minimization of the criterion given by equation

(5.12) in the asymptotic and noiseless case leads to the desired input signal (up to a constant factor), if

and only if the number of possible modulus values of the input signal, denoted d, satisfies d > 4.

Proof. Consider an instantaneous mixture of u(k) and ũ(k): z1(k)

z2(k)

=

 m11 m12

m21 m22

 u(k)

ũ(k)

 .
For the quadratic nonlinearity case, we would like to prove that criterion given by equation (5.7) is

minimum (null in the noiseless case) if and only if (iff): m11 m12

m21 m22

=

 c 0

0 c2

 , (5.36)

for a given constant c. We have

z2(k) = z2
1(k) ⇐⇒ u(k)mTu(k) = 0

⇐⇒ mTu(k) = 0 sinceu(k) , 0,

where m = [−m21,m2
11−m22,2m11m12,m2

12]T . Hence, by taking the mean value, E(|z2(k)− z2
1(k)|2) = 0

is equivalent to mTE(u(k)u(k)H)m∗ = 0. This latter equality has a unique solution m = 0 under the

full-rank condition, i.e., E(u(k)u(k)H)> 0. Finally, the vector m is null iff equation (5.36) holds.

For the cubic nonlinearity, we would like to prove that the criterion given by equation (5.12) is null

(in the noiseless case) iff:  m11 m12

m21 m22

=

 c 0

0 |c|2c

 , (5.37)

for a given constant c. We have:

z2(k) = |z1(k)|2z1(k) ⇐⇒ u(k)mTu(k) = 0

⇐⇒ mTu(k) = 0 since u(k) , 0,

wherem= [−m21,(m11|m11|2−m22),2m11Real(m11m∗12)+m12|m11|2,m11|m12|2+2m12Real(m11m∗12),m12|m12|2]T

and u(k) = [1, |u(k)|2, |u(k)|4, |u(k)|6, |u(k)|8]T . Now, the equation system mTu(k) = 0, for all k will

have a unique solution m = 0, if the Vandermonde-like matrix formed by vectors u(k) has a full (row)

rank equal to 5. This is the case iff symbols u(k) have at least d > 4 different modulus values. Finally,

vector m is null iff (5.37) holds.
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For M-QAM modulations, one can easily check that in the case of quadratic nonlinearity, the lemma’s

condition is met for M > 4. However, for the cubic nonlinearity, the lemma’s condition is quite restrictive

and requires large modulation sizes with M > 64. In such a case, when the modulation size is small or

moderate (i.e. M ≤ 64), the ambiguity removal requires the use of another criterion such as the alphabet

matching one [117].

Also, note that when the polynomial degrees of the nonlinear and linear channels are not the same, i.e.,

deg(hL(z)) , deg(hNL(z)), the subspace method would identify the channel matrix H(z) up to a certain

2×2 polynomial matrix Q(z) (see [66] for details). In such a case, the proposed ambiguity removal method

does not apply and consequently the EM algorithm’s initialization might be ineffective leading to potential

ill-convergence of the considered blind algorithm. All these issues can be avoided in the semi-blind context

where the knowledge of pilot signals can be exploited to initialize our EM algorithm but also to remove

the previous blind processing indeterminations. Next, we derive the deterministic5 Cramér Rao Bound

(CRB) relative to the SB context, that will be used later for our algorithm’s performance benchmarking.

5.5.2 Deterministic Cramér-Rao Bound (CRB)

Given a parametric statistical model, the CRB provides a lower bound of the error variance for all unbiased

estimators of the system’s parameter vector. In particular, the Gaussian CRB (G-CRB) represents a

lower bound within the class of estimators using only the SOS of the observed data. It is also the least

favorable CRB as shown in [123]. In the sequel, we derive the expression of the deterministic G-CRB for

our system model.

The data model in equation (5.1) can be rewritten in a more compact way by considering all data

samples Ns and all outputs Nr as:

y =HLuL +HNLuNL + v = ULhL +UNLhNL + v, (5.38)

where y = [y1(0), . . . ,y1(N−1), . . . ,yNr (0), . . . ,yNr (N−1)]T (N =Np+Ns the total number of transmitted

pilot and data symbols), v = [v1(0), . . . ,v1(N − 1), . . . ,vNr (0), . . . ,vNr (N − 1)]T , uL = [u(0), . . . ,u(N − 1)]T ,

uNL = [ũ(0), . . . , ũ(N − 1)]T , hL = [h1,L(0), . . . ,h1,L(M), . . . ,hNr ,L(0), . . . ,hNr ,L(M)]T , hNL = [h1,NL(0), . . . ,

h1,NL(M), . . . ,hNr ,NL(0), . . . ,hNr ,NL(M)]T , H‡ = [HT
1,‡, . . . ,H

T
Nr,‡]

T, U‡ = I ⊗U‡ (‡ = L or NL) where ⊗

denotes the Kronecker product, and Hr,‡ and U‡ are defined as (u‡(k) equals u(k) if ‡ = L or ũ(k) if

5The input symbols are treated as deterministic unknown parameters.
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‡= NL):

Hr,‡ =


hr,‡(M) · · · hr,‡(0) 0

. . .
. . .

0 hr,‡(M) · · · hr,‡(0)


N×(N+M)

, (5.39)

U‡ =



u‡(0) · · · u‡(−M)
. . .

...
... u‡(0)

...

u‡(Ns− 1) · · · u‡(Ns− 1−M)


N×(M+1)

. (5.40)

Since we assumed a semi-blind approach, we can write u‡ = [uT‡,p,uT‡,d]T where u‡,p contains pilot-data

samples and u‡,d contains unknown-data samples. We consider the vector of unknown parameters to be

θ = [hTL ,hTNL,uTd ]T (of size 2(M + 1)Nr +Ns) where ud = uL,d.

The unconstrained complex Fisher Information Matrix (FIM) is defined as:

J =

 Jθθ Jθθ∗

Jθ∗θ Jθ∗θ∗

=

 Jθθ Jθθ∗

(Jθθ∗)H (Jθθ)∗

 , (5.41)

where

Jθθ = 1
σ2
v

(
∂µ̃

∂θ

)H ∂µ̃

∂θ
, (5.42)

µ̃ = [µT ,µH ]T , µ = HL,pup +HL,dud +HNL,pũp +HNL,dũd, and ∂f
∂x (f ∈ Cm×1,x ∈ Cn×1) denotes the

differentiation operator defined as:

∂f
∂x =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fm
∂x1

. . . ∂fm
∂xn

 , (5.43)

where the matrix elements represent Wirtinger’s derivatives [124]. Note from equation (5.41) that we only

need to find Jθθ and Jθθ∗ in order to find J. After derivation, we find that:

Jθθ = 1
σ2
v


UHL UL UHL UNL UHL Λ

UHNLUL UHNLUNL UHNLΛ

ΛHUL ΛHUNL ΛHΛ+ Γ T Γ ∗

 , (5.44)

Jθθ∗ = 1
σ2
v


0 0 UHL Γ

0 0 UHNLΓ

Γ TU∗L Γ TU∗NL ΛHΓ + (ΛHΓ )T

 , (5.45)

where Λ =HL,d + 2HNL,ddiagabsud2, and Γ =HNL,ddiagu2
d for the cubic case. For the quadratic case, we

found Jθθ∗ = 0,Λ =HL,d + 2HNL,ddiagud, and Γ = 0.
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The G-CRB is computed as the inverse6 of equation (5.41). The G-CRB for the channel parameters is

given by the top left submatrix of the global G-CRB.

5.6 Generalization and numerical complexity

This section is dedicated to the extension of our methods to other non-linear models. It provides also

details about the computational complexity of our algorithms.

5.6.1 Generalization

The proposed semi-blind estimator can be easily generalized to other, finite memory, nonlinear models,

like the one considered in [126]. Indeed, since the initialization is performed by using the pilots, and the

state vector, exploited in the EM procedure, depends only on the linear terms, the extension remains

possible upon certain derivation adaptations. However, for the blind case, it is feasible only when using

‘another’ appropriate initialization, since the main difficulty comes from the ambiguity removal of the

blind initialization (subspace-based in our case). To do that, one could rely on some algorithms given

in the literature (e.g., [126]). In fact, by assuming a linear-in-the-parameters model, a known nonlinear

function and a finite impulse response, the proposed techniques can be applied to the following general

model (given also in [113]):

yr(k) =
Mr,L∑
n=0

hr,L(n)u(k−n) + vr(k) +
Mr,NL∑
n=0

Mr,NL∑
l=n

h
(2)
r,NL(n, l)u(k−n)u(k− l)

+
∑
n

∑
l

∑
m

h
(3)
r,NL(n, l,m)u(k−n)u(k− l)u∗(k−m) + · · · (5.46)

Furthermore, by considering the input-output relation, a block-oriented nonlinear model (e.g., Hammerstein

model) can be expressed (approximated) as in (5.46) and hence, treated by the proposed techniques.

However in this case, the estimated coefficients would represent products of the block-oriented linear and

nonlinear parameters.

5.6.2 Algorithms’ complexity discussion

It can be seen that the parameter estimation given by equations (5.22) and (5.23) requires, at each iteration,

the calculation of the different conditional expectations given in equations (5.25), (5.26), (5.31) and

(5.31). Hence, the global complexity of the proposed techniques is of order O(NiterNs2BNt(M+1)2Nt(M +

1)(4Nt(M + 1) + 2Nr)), where Nt is the number of transmitters and Niter is the total number of iterations

needed for convergence.

It can be noticed that the algorithms’ computational complexity is of the same order as the linear case7.

6Note that, in the blind case, the FIM is singular (due to the problem’s ambiguities), in which case one needs

to rely on the constrained CRB [125].
7For our model, there is approximately a factor 2 between the costs of the NL and the L cases.
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It is worth pointing out that the computational complexity of our EM-based algorithm is mainly affected

by the number of transitions, given by 2BNt(M+1). However, as it will be seen through simulation results,

a relatively small number of pilots, data symbols and iterations are needed for convergence.

On the other hand, to reduce the computational complexity, one can apply some approximations for

the posterior probability (as in [118] and references therein), use independent symbols through OFDM

coding to avoid the forward-backward variables calculation or exploit some approximation/simplification

approaches as proposed in [127]. Such complexity reduction is left for future work.

5.7 Performance analysis and discussion

This section provides the performance analysis of the proposed blind and semi-blind channel estimators

for the considered nonlinear systems. For benchmarking, we consider a ‘full’ training-based (fully-pilot)

estimator, as done in many works (e.g., [113]), where all transmitted symbols (pilots and data) are assumed

known and used to estimate the channel parameters. The estimation performance is evaluated in terms of

the Normalized Root-Mean-Square Error (NMSE) given by:

NMSE = 1
Nmc

Nmc∑
mc=1

∥∥∥ĥmc−hexact
∥∥∥2

‖hexact‖2
, (5.47)

where Nmc = 500 represents the number of independent Monte-Carlo runs used, ĥmc is the vector of

estimated channel parameters at the mc-th run, and hexact contains the true (exact) values of the channel

coefficients. For data detection, the performance is evaluated in terms of the Symbol Error Rate (SER),

which is the ratio between the wrongly detected symbols and the total number of transmitted data symbols.

The channel coefficients are generated as i.i.d., unit-power, zero-mean (complex) Gaussian random variables,

whereas the pilots and data symbols are uniformly randomly drawn from different QAM modulations

(specified later for each experiment). The Signal-to-Noise Ratio (SNR) was defined as SNR = ‖Hu‖2F /‖v‖
2
F ,

where ‖ · ‖F is the Frobenius norm, H is defined in equation (5.3), and u = [u(1), . . . ,u(Ns)] ∈ C2(M+1)×Ns

and v = [v(1), . . . ,v(Ns)] ∈ CNr×Ns are formed by stacking all values of u(k) and v(k) (see equation (5.3)),

respectively.

In the following, different experiments highlighting different aspects of our estimators are presented.

Simulation parameters are summarized in Table 5.1. They are used for all experiments, unless otherwise

specified.

Experiment 1 : Effect of neglecting the nonlinear terms (Figures 5.3–5.4)

In order to illustrate the effect of ignoring the nonlinear term and considering only a linear model, the

system model given by (5.1) is rewritten as follows:

yr(k) =
Mr,L∑
n=0

hr,L(n)u(k−n) +α

Mr,NL∑
n=0

hr,NL(n)ũ(k−n) + vr(k), (5.48)

where α determines the weight of the nonlinear term that exists in the assumed underlying model (e.g.,

α= 0: the underlying model is linear, α= 1: the weight of the nonlinear term is equal to the linear one).
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Table 5.1: Nonlinear models simulation parameters

Parameter Specification

Number of data symbols Ns = 100

Number of pilot symbols Np = 10

Number of receive antennas Nr = 4

Window length for SS Nw = 5

Order of linear and nonlinear channels M = 4

Figure 5.3 illustrates the NMSE vs. SNR behave when there is a nonlinearity (assuming different weights

α indicated in superscript) in the underlying model. One can notice that, depending on the weight of the

nonlinear term, the performance of the linear EM-based blind and semi-blind estimators could be highly

degraded.

Furthermore, Figure 5.4 illustrates the SER vs. the weight α, for SNR = 5 dB. We notice a clear gain

(especially for high α values) obtained by considering a nonlinear model (NL-B, NL-SB) as compared to

the case where only linear terms are taken into account (L-B, L-SB).

In the sequel, the nonlinear model will be considered by setting α= 1.

Experiment 2: NMSE vs. SNR (Figures. 5.5–5.8)

Figure 5.5 investigates the performance, in terms of NMSE, of the subspace(SS)-based estimator (hSS), and

the blind and semi-blind EM-based estimators (hEM−B,hEM−SB) with respect to SNR for the quadratic

nonlinearity considering 4-QAM (Figure 5.5a) and 16-QAM (Figure 5.5b) modulations. These estimators

are benchmarked against the semi-blind Gaussian CRB (G-CRBSB) and the fully-pilot-based estimator

(hPILOT). The blind EM-based estimator is initialized by the subspace-based one, whereas the semi-blind

estimator is initialized by some pilots. One can observe that hSS presents sub-optimal performance

compared to hPILOT (to all other estimators as well), whereas a significant improvement is observed with

hEM−B and hEM−SB. Moreover, the exploitation of the available pilots enhances the performance as

hEM−SB outperforms hEM−B and hugs very tightly hPILOT for moderate and high SNRs. On the other

hand, the EM-based estimators are found, interestingly, below the G-CRBSB, which reflects the fact that

our channel identification solution outperforms all SOS-based identification methods. This result strongly

supports the effectiveness of the aforementioned estimators for non-Gaussian QAM signals.

Also, a comparison has been performed with a cumulant-based technique [1], as illustrated in Figure 5.5a

and Figure 5.5b, where, in the context of our scenarios, poor performance has been obtained since such a

method requires higher number of symbols for convergence (at least 16000 data symbols as mentioned

in [1]).

As mentioned in section 5.4.3, the proposed estimators can be easily applied to MIMO systems, where

similar performance to the SIMO case is observed (see Figure 5.6).
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From Figure 5.7, one can observe that an important spatial diversity (higher number of receive

antennas, as is the case for massive MIMO systems) improves the performance for both hEM−B and

hEM−SB at low SNRs.

In Figure 5.8, a cubic nonlinear model has been used with a 16-QAM modulated input signal. One can

note similar performance as provided in Figures. 5.5–5.7; EM-based estimators outperform the SS-based

estimator and all SOS-based estimators (represented by the G-CRBSB) for moderate to high SNRs, and

hEM−SB outperforms hEM−B as it hugs more tightly the hPILOT curve.

Note that using a 4-QAM signal modulation with our cubic model will render the model linear, leading

to a loss of identifiability. This can be easily seen by writing the 4-QAM sequence as u(k) =
√

2ej(
π
4 +η(k)π2 )

where η(k)∼ U{0,1,2,3}, then, ũ(k) = absu(k)2u(k) = 2u(k), which is linear.

Experiment 3: NMSE vs. SNR with different linear and nonlinear channel orders (Figure 5.9)

In many practical situations, the channel order of the linear and nonlinear channels are different. Figure 5.9

illustrates the behavior of two different scenarios considered in Experiment 1 with a channel orderMNL = 2

for the nonlinear channel (the last two channel coefficients out of the previously used five coefficients have

been considered null). On can note, particularly, that for high SNRs hSS performs badly affecting the

performance of hEM−B.

Experiment 4: Speed of convergence (number of iterations vs. SNR, Figures. 5.10–5.11)

Figure 5.10 shows the number of iterations needed for convergence for blind (B) and semi-blind (SB)

EM-based estimators with respect to SNR. Considering 4-QAM and 16-QAM signal modulations and

the considered nonlinear models (Quadratic and Cubic), we observe that for low SNRs (0− 5 dB), the

number of iterations varies according to the signal’s model and modulation but is still relatively small

(less than 30 at 5 dB). For moderate to high SNRs (> 10 dB), very few iterations (less than 8) are needed.

In fact, for high SNRs (≥ 15 dB) only 2 or 3 iterations are needed independently of the signal’s model

and modulation. Moreover, using a higher number of antennas at the receiver (e.g., as in massive MIMO

systems) leads to further reducing the number of iterations needed for convergence, especially at low

SNRs, as can be seen from Figure 5.11.

Experiment 5: NMSE vs. number of iterations at fixed SNR (Figure 5.12)

Figure 5.12 illustrates the variation of the NMSE with respect to the number of iterations needed for

convergence of the subspace(SS)-based estimator (hSS), and the blind and semi-blind EM-based estimators

(hEM−B,hEM−SB) at SNR = 10 dB. Note that hEM−B is initialized by hSS, whereas hEM−SB is initialized

by some pilots such that hEM−B and hEM−SB start from the same initial point (i.e., no iterations yet). We

observe that after two iterations, hEM−SB converges to the solution given by the fully-pilot-based estimator

(hPILOT). We also observe that hEM−B comes very close to hPILOT after being initialized by hSS. This

result illustrates better the use of the word “refinement” in Figure 5.1, for the blind EM-based processing

and is very interesting with regards to the computational complexity, especially for the nonlinear case

where the number of channel coefficients is, in general, higher than the linear case.

Experiment 6: NMSE vs. number of pilots Np (Figure 5.13)
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We consider the quadratic model and 4-QAM modulation and we investigate the impact of the number of

pilots Np on the NMSE of the semi-blind EM-based estimator hEM−SB, at SNR = 10 dB (Figure 5.13a;

hSS and hEM−B are included for reference). We observe (Figure 5.13b) that only a slight decrease

(around 3× 10−3) in the NMSE accompanies the increase in the number of pilots from 1 to 30, which

indicates that only few pilots are needed to allow a quasi-optimal semi-blind channel estimation within

the EM framework.

Experiment 7: Symbol Error Rate (SER) vs. SNR (Figure 5.14)

Figure 5.14 investigates the performance of the proposed estimators in terms of Symbol Error Rate (SER)

with respect to SNR. For blind and semi-blind EM-based estimators (EM-B and EM-SB), a data detection

is performed within an EM-based framework as described in section 5.3.5. For the subspace (SS) and

the fully-pilots approaches, a zero-forcing is applied using the estimated channel coefficients. It can be

noticed that performing data detection, using a ML-based approach leads to a significant performance

gain and is part of a joint channel estimation and data detection.
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Figure 5.3: NMSE vs. SNR with different values of the weight α (see (5.48)), indicated in superscript,

for the blind and semi-blind ‘linear’ EM-based estimators.

5.8 Conclusion

In this chapter, a Maximum Likelihood (ML) solution is presented for the identification of nonlinear multi-

channel communications systems. The ML criterion is maximized through the Expectation-Maximization

(EM) algorithm. In the blind case, the EM algorithm is initialized by the subspace method followed by an

original ambiguity removal technique introduced in this work. However, an identifiability study reveals

that the success of the initialization step requires some stringent conditions that might not be verified for

low order QAM modulations. An alternative solution is proposed, based on the Semi-Blind (SB) approach.
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Figure 5.4: SER vs. α with SNR = 5 dB for linear blind and semi-blind (L-B, L-SB) EM-based estimators

and for nonlinear (NL-B, NL-SB) ones.
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Figure 5.5: NMSE vs. SNR for subspace-based estimator (hSS), blind (hEM−B) and semi-blind (hEM−SB)

EM-based estimators benchmarked against the semi-blind Gaussian CRB (G-CRBSB), the cumulant-based

technique [1] (hcum) and the fully-pilot-based estimator (hPILOT), in both cases: (a) quadratic model and

4-QAM modulation, and (b) quadratic model and 16-QAM modulation.

The EM extension to the SB context is first provided followed by simulation experiments that highlight

the efficiency of our EM-based method.
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Figure 5.6: NMSE vs. SNR for blind (hEM−B) and semi-blind (hEM−SB) EM-based estimators bench-

marked against the fully-pilot-based estimator (hPILOT). We consider a quadratic model, 4-QAM modulation

and a MIMO system with Nt = 2,Nr = 4, and M = 2. hinit is included for reference and refers to a

pilot-based estimator using available pilot symbols.
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Figure 5.7: NMSE vs. SNR for subspace-based estimator (hSS), blind (hEM−B) and semi-blind (hEM−SB)

EM-based estimators benchmarked against the semi-blind Gaussian CRB (G-CRBSB) and the fully-pilot-

based estimator (hPILOT), in the case of a quadratic model, 4-QAM modulation and Nr = 9 receive

antennas.
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Figure 5.8: NMSE vs. SNR for subspace-based estimator (hSS), blind (hEM−B) and semi-blind (hEM−SB)

EM-based estimators benchmarked against the semi-blind Gaussian CRB (G-CRBSB) and the fully-pilot-

based estimator (hPILOT). We consider a cubic model and 16-QAM modulation.
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Figure 5.9: NMSE vs. SNR with ML = 4 and MNL = 2 for subspace-based estimator (hSS), blind

(hEM−B) and semi-blind (hEM−SB) EM-based estimators benchmarked against the fully-pilot-based estimator

(hPILOT). We consider: (a) quadratic model and 4-QAM modulation, and (b) cubic model and 16-QAM

modulation.
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Figure 5.10: Number of iterations for convergence vs. SNR for blind (B) and semi-blind (SB) EM-based
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Figure 5.12: NMSE vs. number of iterations for subspace-based estimator (hSS), blind (hEM−B) and

semi-blind (hEM−SB) EM-based estimators benchmarked against the fully-pilot-based estimator (hPILOT),

in the case of a quadratic model and 4-QAM modulation at SNR = 10 dB.
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Figure 5.13: NMSE vs. number of pilots Np for subspace-based estimator (hSS), blind (hEM−B) and

semi-blind (hEM−SB) EM-based estimators benchmarked against the fully-pilot-based estimator (hPILOT),

with a quadratic model and 4-QAM modulation at SNR = 10 dB.
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Figure 5.14: SER vs. SNR for subspace-based estimator (SS), blind (EM-B) and semi-blind (EM-SB)

EM-based estimators benchmarked against the fully-pilot-based estimator (PILOT), with a quadratic model

and 4-QAM modulation.
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Deep Learning based data detection for nonlinear commu-

nications systems

It always seems impossible

until it’s done.

Nelson Mandela.

The aim of this chapter is to propose Deep Learning (DL) based data detection solution for

nonlinear Multiple-Input Multiple-Output (MIMO) communications systems. A Neural Network

(NN) is built up, trained offline with finite alphabet data, and then used for online data detection.

With no direct priors about the channel impulse response nor the transmitted data, the proposed

DL-based data detector can deal with the performance degradation that might emerge from

nonlinear components. The simulation results show the effectiveness of the proposed solution for

different nonlinear model order and with attractive accuracy and data detection performance.

Moreover, such a solution is promising to overcome the inherent ambiguity/limitations of classical

blind processing.

Abstract
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6.1 Introduction

DL-based applications have showed recently important potential for the physical layer, when considering

a wireless communications system [18]. Indeed, DL has become a new way of fundamentally rethinking

the communications system design problem while promising performance improvements in complex

communications scenarios, that are difficult to describe with tractable mathematical models, or that have

solutions/algorithms with large complexity when implemented in practice. Moreover, open-source DL

libraries [18] and readily available specialized hardware along with the astonishing progress of DL in

computer vision have stimulated renewed interest in DL applications for communications and networking

[128]. Currently, there are essentially two different main approaches of applying DL to the physical layer.

Either to improve/augment parts of existing algorithms with DL or to completely replace them. Among the

works falling into the first category are [129] and [130] that consider improved belief propagation channel

decoding and MIMO detection, respectively. These works are inspired by the idea of deep unfolding [131]

of existing iterative algorithms by essentially interpreting each iteration as a set of NN layers. In the

second category, one can cite [132], that deals with blind detection for MIMO systems with low-resolution

quantization, and [133], which investigates the detection for molecular communications; for which no

mathematical channel model exists. The idea of learning to solve complex optimization tasks for wireless

resource allocation, such as power control, is investigated in [134].

On the other hand, nonlinear behaviors can be encountered in many practical situations, in which

case appropriate (nonlinear) processing is needed, when such nonlinearities are too important to be

disregarded [35, 36]. Indeed, because most of real-life systems are inherently nonlinear in nature, nonlinear

problems have drawn important interest and extensive attention from engineers, physicists, mathematicians

and many other scientists [36]. In terms of machine learning point of view, a DL-based solution is proposed

in [135] for Wiener-Hammerstein systems identification in the case of nonlinearities faced in electrical

circuits. The solution is based on the Restricted Boltzmann Machine (RBM) along with the Randomized

algorithms. Authors in [136] investigated the effectiveness of DL-based approaches for nonlinear system

identification when considering soft-robot actuators nonlinearities. A Hammerstein model is used with

a heating cooling signal as input for the DL network. In [137], a DL-based solution is proposed for

nonlinear systems that describe coupled electrical drivers (two electric motors driving a pulley using a

flexible belt). The solution is based on the Bayesian framework by combining deterministic and stochastic

layers of recurrent network. However, it can be noticed that DL-based solutions that deal with nonlinear

communications system models are still missing in the literature.

Hence, the aim of this chapter is to propose a DL-based solution for data detection, when considering

nonlinear MIMO communications systems. By considering a finite alphabet transmitted signal, drawn

from QAM modulation, the data detection is formulated as a DL classification problem. The proposed

solution is performed blindly, i.e. based only on the observed data and on the trained network. The latter

is trained according to a supervised learning fashion, with pairs of generated input-output data according

to a nonlinear data model. So far, it is assumed to know the active users and the modulation constellation.



104Chapter 6. Deep Learning based data detection for nonlinear communications systems

6.2 Communications system model and problem formulation

This section describes the communications system model adopted in this chapter. A MIMO system

composed of Nt transmitters and a receiver equipped with Nr antennas is considered. At the receiver,

nonlinear components, associated to the transmitted symbols, are assumed to be present. Thus, the

instantaneous received signal, according to Volterra nonlinear models [98], is given at the r-th receive

antenna by:

yr(k) = hTLrx(k) +
P∑
i=2

hTirxi(k) +n(k), (6.1)

where k refers to time index, hLr ,hir ∈ CNt×1 contain the channel coefficients for linear and nonlinear

terms; with P being the nonlinear model order. x(k) = [x1(k),x2(k), ...,xNt(k)]T contains the instantaneous

users transmitted symbols; whereas xi(k) refers to the data nonlinear terms so that xi(k) = [xi1, ...,xiNt ]
T .

n(k) is a white circular Gaussian noise, uncorrelated from sensor to sensor, with zero mean and variance

σ2
v . Hence, by considering all the antennas of the receiver, equation (6.1) can be expressed as follows:

y(k) = HLx(k) +
P∑
i=2

Hixi(k) + n(k), (6.2)

where y(k) = [y1(k),y2(k), ...,yNr (k)]T is the observed signal, HL = [hL1 , ...,hLNr ]T ;Hi = [hi1 , ...,hiNr ]T ∈

CNr×Nt contain respectively the channel coefficients for the linear and nonlinear terms and n(k) =

[n1(k), ...,nNr (k)]T .

The objective of blind data detection is to detect the transmitted symbols x(k), relying only on the

observed signals y(k) and with no ’strong’ priors on the channel impulse response nor the transmitted

data.

Many techniques have been proposed in the literature to deal with nonlinear models. However, in

such approaches, more complex solutions with higher size data are exploited as will be briefly discussed in

section 6.3.

Consequently, in the current work, we propose a solution based on the use of deep learning approach

for the problem of data detection, when considering nonlinear data models. Indeed, deep learning based

approaches are, in general, applied to solve regression or classification problems. In our case, data detection

is treated as a classification problem, where according to the received symbol vector, a well trained neural

network is able to assign to it the corresponding transmitted data vector. Actually, such a procedure is

somehow similar to a maximum likelihood one, where the network chooses one (the most likely) of the

possible realizations of the transmitted signal vector for a given observation.

6.3 Classical approaches for nonlinear systems data detection

Many approaches have been proposed in the literature for the problem of system identification when

dealing with nonlinear systems (see e.g. [1, 105, 106, 107]). Few of them have focused on data detection,

since it can be performed after channel estimation. Nevertheless, one can notice that, these techniques rely
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on new vector representation of data and channel. The system model given in equation (6.2) is re-written

as follows:

y(k) = Hx̄(k) + n(k), (6.3)

where H = [HLH2...HP ] and x̄(k) = [x(k)x2(k)...xP (k)]T .

These extended variables are then exploited either with analytical techniques or by iterative procedures

which might involve complex operations like matrix inversion, eigenvalue decomposition PARAFAC

representation and so on. Furthermore, these techniques are applied online with (in general) some

assumptions on data or communications channel. Besides, efficient blind-based data detection techniques

require important amount of data to be processed online, while estimating the transmitted signals up to

scaling factors and permutation matrix (the blind inherent ambiguity).

For the purpose of estimating the transmitted data while overcoming these constraints, a new deep

learning based approach is investigated in the sequel, which aims at competing with the classical approaches,

in terms of data detection performance, while providing low online computational complexity.

6.4 Proposed deep learning based data detection

By considering the problem of data detection as a DL-based classification task, the proposed solution is

based on a learning phase, performed offline, that results in a Deep Neural Network (DNN), which is in

turn, used for online data detection (inference phase) as illustrated in Figure 6.1.

Figure 6.1: DL based data detection.

6.4.1 DL network architecture

Generally speaking, Deep Neural Networks (DNNs) are deeper versions of artificial neural networks

(ANNs) by increasing the number of hidden layers and using appropriate mathematical tools. Each layer

of the network consists of multiple neurons (nodes), each of which has an output that is a function of

neurons of its preceding layer and a set of parameters.

For the proposed solution, the adopted DL architecture is given in Figure 6.2. The input layer receives

the signal observed at the output of the MIMO system given by y(k) (as illustrated in Figure 6.1). Since
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the available libraries treat only real-valued variables, the size of the input layer is 2×Nr, which results

from stacking real and imaginary parts of the observed symbols.

Figure 6.2: DL network architecture adopted.

The output layer returns the corresponding class (one node) out of Nc classes, which is then exploited

to find the corresponding transmitted symbols x(k). This is performed through a predefined mapping

between the Nc classes and the corresponding Nc possible realizations of the transmitted symbols x(k).

For the hidden layers, the network describes a mapping f(x0;θ) : RN0 → RNc of an input vector x0 ∈ RN0

to an output vector xL ∈ RNc through L iterative processing steps:

xl = fl(xl−1;θl) l = 1...L, (6.4)

where L is the hidden layers (L = 4 in our case as given in Figure 6.2) and θ = [θ1, ...,θL] being the

parameters for all hidden layers; N0 = 2×Nr; xl refers to the input data at the l-th hidden layer and

fl(xl−1;θl) ∈ RNl−1 → RNl stands for the l-th activation function, which depends on the chosen hidden

layer. Such a function introduces a non-linearity which is important for the so called expressive power of

the NN. Otherwise there would be not much of an advantage of stacking multiple layers on top of each

other.

A Long Short Time Memory (LSTM) structure was adopted, which is followed by a fully connected

layer then a softmax layer. The motivation behind using LSTM cells is to allow capturing dependencies

between time steps in time series and sequence data. The fully connected layer multiplies the input data

by a weight matrix and then adds a bias vector; while allowing a size adaptation between LSTM and

softmax layers. The later implements the softmax function which assigns a probability to each output

class, by maintaining the individual outputs to be within the interval [0,1], with a sum equals to one. The

parameters of hidden layers (i.e. θ) will be estimated during the learning phase.

It is worth noting that the proposed DL architecture, for the considered realistic scenario, is not

obvious. Actually, many investigations have focused on the choice and the design of the DL architecture

(e.g. number and nature of hidden layers) as well as the training strategy which is tailored by taking into

account the nature of transmitted signals. In the sequel, the performance of the proposed DL architecture

is confirmed by experimental results.
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6.4.2 Learning strategy

The learning phase consists at giving the network enough data (y(k),x(k)) to be able to assign to

each unknown received signal y(k) the corresponding transmitted symbol vector x(k) (performing a

classification). To do so, the network is provided with all possible cases for the transmitted signal vector

x(k). We consider that every transmitted symbol; for each user xi(k), i= 1, ...,Nt, is taken from a finite

alphabet set A= {a1, ...,aM} with M = 2B is the cardinal of A and B is the number of bits used to code

each alphabet. Hence, the total number of possible realizations of x(k) is Nc =MNt . From deep learning

point of view, Nc is the number of classes to which will be assigned each symbol y(k). Consequently, by

taking into account the effect of the communications channel and the noise, the received signal and the

original transmitted data are collected as the training data set.

Basically, the learning process aims to minimize, with respect to θ, a loss function. Different loss

functions can be used, mainly the mean squared error (MSE) and the Categorical cross-entropy or its

variants [138]. In the proposed solution, the network is trained to minimize the difference between the

output of the neural network and the known transmitted data class. The difference can be portrayed in

several ways. In our experiment settings, we choose the L2 loss function defined as follows:

L2 = 1
Ntot

Ntot∑
i=1

(‖xi− x̃i‖22), (6.5)

where Ntot is the size of the training data set; xi refers to the transmitted symbol class, whereas x̃i stands

for the inferred class.

The minimization of the loss function; and hence the estimation of vector θ; is performed in general

iteratively through the Stochastic Gradient Descent (SGD) algorithm. The gradient in SGD can be

computed efficiently through the backpropagation algorithm [139]. Also, instead of updating the parameters

at each training sample, small batches of the data set can be used within a mini-batch Gradient descent

framework. In the proposed solution, the optimization of the loss function is performed through the

"Adam" optimization algorithm [140], which is considered as a combination of RMSprop and SGD with

momentum. It uses the squared gradients to scale the learning rate as in RMSprop and takes advantage of

momentum by using moving average of the gradient instead of gradient itself like SGD with momentum.

When the entire training dataset is passed forward and backward through the neural network only

once, this is called one epoch. Many epochs are performed to obtained a well trained network.

6.5 Complexity discussion

One can notice that the main computational complexity of the proposed DL-based solution comes from

the learning step, which needs important amount of data and the use of iterative procedures for parameter

estimation. However, this constraints concern only the learning phase which is performed offline. For the

online step, basic operations are performed; additions and multiplications; through hidden layers to obtain

the final decision (output) of the network for given observations. Thus, no need for complex calculation

like matrix inversion that consumes time and memory space. Moreover, for an optimal implementation,
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one could easily take advantages from the available open-source DL libraries [18] and readily available

specialized hardware.

On the other hand, to make the proposed solution more efficient and to alleviate the learning parameters

dependency, one could use many prelearned models with different parameters; SNR, number of users,

nonlinear model orders or data modulation. Also, it could be advantageous to associate other classification

approaches, such as modulation classification as in [141, 142] to the proposed one. Nevertheless, one could

notice that with high order modulations and high number of users, the number of classes become very

important which may require more complex network. Actually, this issue is left for future work.

6.6 Experimental results and discussion

This section highlights the performance of the proposed deep learning based data detection. Unlike other

DL applications (e.g. image classification) no specific data set are available for performing experiments.

Thus, synthetic data will be generated and used. The performance evaluation is based on the accuracy,

which is widely used for DL-based performance assessment and on the Symbol Error Rate (SER) which is

mostly used for data detection performance evaluation.

6.6.1 Experimental settings

A 4×4 (Nt = 4,Nr = 4) MIMO system was considered for simulations. The transmitted symbols are drawn

from 4-QAM modulation, thus, the number of the possible realizations for the vector x is Ntot = 44 = 256.

Linear and nonlinear channel coefficients are generated as i.i.d., unit-power, complex Gaussian random

variables, so that HL = H0 +δH, where H0 is supposed to be known up to δH which takes different values

at each realization according to a Gaussian random process, with zero mean and a standard deviation of

10−1 in our experiments. For each possible realization of x and each SNR value, 1000 realizations are

generated, where at each of which, δH, Hi and n(k) take new values. Consequently, 256000 pairs (y,x)

are obtained, where 80% of these pairs are used for training, 10% for validation, whereas 10% are left for

testing. It is worth pointing out that the simulation results given latter are based on the testing data,

i.e. using the network obtained after training. By contrast to the validation data, which are used during

training process for parameters tuning. Also, since most of the available deep learning libraries are based

on real-valued variables, each complex variable is represented by concatenating the real and imaginary

parts, i.e. yreal = [real(y), imag(y)]T . Simulation parameters are summarized in Table I.

6.6.2 Simulation results and discussion

Figure 6.3 illustrates the accuracy of the trained network v.s. the SNR; for the case with only linear terms

(DL-L), a 3-rd order (DL-NL-3rd) and a 5-th order (DL-NL-5th) nonlinear models, which are benchmarked

with the case of perfect knowledge of linear and nonlinear channel coefficients (DL-Perfect-H). One could

notice that the accuracy of the trained network is not very affected by the presence of nonlinear terms,
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Parameters Specifications

Number of LSTM hidden layers 2

Number of fully connected hidden layers 1

Number of softmax hidden layers 1

Nodes per hidden layer for LSTM layers 100

Nodes per hidden layer for fully connected

and softmax layers Ntot

Input layer size 2Nr
Output layer size 1

Number of epochs 2

Mini-batch size 40

Training optimization algorithm Adam

Learning rate 0.001

Table 6.1: Simulation parameters.

and is almost independent of the nonlinear model order. Moreover, on could notice that the obtained

performance are acceptable compared to the most favorable case given by (DL-Perfect-H).

Figure 6.4 illustrates the performance of the deep learning based data detection in terms of the symbol

error rate (SER). Similar to results of Figure 6.3, very interesting performance is obtained when considering

nonlinear terms. Also, it can be noticed that the nonlinear model order does not affect much the obtained

performance. Moreover, the proposed solution outperforms the Zero Forcing (ZF) based (ZF-NL-3rd) one

even with true channel coefficients, i.e. ˆ̄x(k) = H#y(k), with (.)# being the pseudo-inverse operator.

Figure 6.5 assesses the performance in terms of SER when considering different signal levels between

linear and nonlinear terms (PL−PNL in dB), since in practice nonlinear terms have usually less power

than linear terms. Also we considered a variable linear channel estimate accuracy, given by NMSE(HL) =
‖HL−H0‖2
‖H0‖2

, which is used during the offline learning phase. Here again, it can be noticed that the proposed

solution still presents promising potential under different realistic scenarios.

Figure 6.6 assesses the performance in terms of SER w.r.t. SNR for different values of the receive

antennas number. One can notice that the space diversity offers important performance gain for the

proposed DL based solution. This result allows to say that such a solution is promising for large scale (or

massive) MIMO systems.

Figure 6.7 assesses the performance in terms of SER w.r.t. SNR when considering 4-QAM and 16-QAM

modulations. One could notice that the used network architecture provides interesting performance with

relatively higher order modulations, 16-QAM in our case.
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Figure 6.4: SER v.s. SNR.

6.7 Conclusion

This chapter proposes a deep learning based data detection solution for nonlinear MIMO systems. A

neural network is built up, trained offline, then used for online data detection. With no strong priors

about the channel impulse response nor the transmitted data, the proposed DL-based data detector

can overcome the performance degradation that emerge from nonlinear components. Simulation results

show that the proposed solution can be easily used for high order nonlinear models and offers attractive
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channel estimate accuracy NMSE(HL) at SNR= 10dB.
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accuracy and data detection performance. Also, such a solution is promising to overcome the inherent

ambiguity of classical blind processing.
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Conclusion and future work

“We ought not to be embarrassed of appreciating the truth and

of obtaining it wherever it comes from, even if it comes from

races distant and nations different from us. Nothing should be

dearer to the seeker of truth than the truth itself, and there is

no deterioration of the truth, nor belittling either of one who

speaks it or conveys it. ” Al-Kindi.
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7.1 Achieved work

System identification refers generally to the problem of developing empirical mathematical models of

systems based on excitation and response measurements, then designing appropriate approaches/algorithms

for the model’s parameters estimation. It is an important issue in many areas including process control

and communications. For wireless communications, channel estimation is of paramount importance for

equalization and data detection problems in most wireless communications, especially (massive) MIMO-

OFDM systems. Nevertheless, in the case of non availability of CSI, one could adopt source separation

approaches as an alternative to detect the transmitted data without direct priors on CSI. Either for

channel estimation or source separation, semi-blind techniques are adopted in this thesis, in order to take

advantages of blind and pilot-based approaches, while reducing their drawbacks. Besides, the astonishing

advances of machine learning approaches, especially deep learning, motivates us to investigate, in the

current thesis, the potential of DL-based techniques for the problem of data detection.

Several contributions to semi-blind channel estimation and source separation have been proposed in

this thesis, mainly through performance bounds analyses and the development of efficient algorithms by

exploiting priors on the system for performance improvement. In the sequel, we briefly summarize the

overall thesis work, before listing the main contributions.

For semi-blind communications channel estimation, a performance bound analysis, based on the CRB,

has been conducted by considering massive MIMO-OFDM communications systems. The aim of such

an analysis is to assess the effectiveness of semi-blind approaches for pilot contamination mitigation,

either when the cell under test along with the adjacent cells are synchronous or not. For synchronous

cells case, the analysis demonstrates the potential of semi-blind approaches to efficiently overcome the

pilot contamination problem, when considering a finite alphabet (non Gaussian) communications signal.

However, relying only on the signal’s Second Order Statistics (SOS) is not enough for solving such an

issue. Nevertheless, it is possible to get close to the optimal performance with a semi-blind approach even

if the pilots are non-orthogonal as long as they are not fully-coherent. For the asynchronous cells case, it

has been demonstrated that the pilot contamination still occurs under small inter-cell delays, but can be

strongly mitigated with large inter-cell delays.

For channel equalization and data detection via source separation approaches, a semi-blind MM-

based source separation solution has been proposed for instantaneous mixtures in a massive MIMO

communications system, then extended to a MIMO-OFDM communications system, i.e. convolutive

case. In the latter case, a separating matrix has been defined independently on the sub-carriers, leading

to computational complexity reduction. For both cases, a hybrid cost function is defined based on the

MM criterion, for the blind part, and on the Least Squares (LS) criterion for the pilot-based part. The

optimization is performed through a simple but efficient semi-blind block gradient descent procedure, with

an optimized step size computed at each iteration and for each user. Besides interesting source separation

performance and accelerated convergence, the proposed approach is very promising for source recovering

when pilot contamination occurs in massive MIMO-OFDM communications systems.
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Besides, when taking into account the problem of system identification with data detection, a semi-

blind solution for joint channel estimation and data detection, by considering the sparce nature of the

communications channel, has been proposed. An optimization problem is formulated then solved by

using the successive convex approximation (SCA) approach. Accordingly, the optimization is performed

on an approximate convex problem, rather than the original nonconvex one. An iterative procedure

has been performed where the channel coefficients and data symbols are estimated simultaneously at

each iteration. Also an optimized step size, introduced according to line search procedure, is used for

convergence improvement with guaranteed convergence to a stationary point. Simulation results showed

that the proposed solution exhibits fast convergence with very attractive channel and data estimation

performance.

In order to deal with system identification for multichannel nonlinear communications system, blind

and semi-blind solutions have been proposed based on the ML approach. For the blind solution, an

original combination of a subspace approach and the EM algorithm is proposed. Basically, an initial

channel estimation is performed based on a subspace approach, which is followed by an appropriate

ambiguity removal method. Then, to refine this estimate, a maximum likelihood approach is introduced

based on the EM algorithm. For the semi-blind case, both pilots and data are used to define the different

steps of the EM algorithms. This solutions are supported by some identifiability results and performance

bounds analysis, related to the considered models (blind and semi-blind). Basically, the simulation results

highlighted the very interesting channel estimation performance and the attractive convergence speed for

the EM-based iterative solution for the considered nonlinear communications system.

In this thesis, besides the mathematics-based techniques, a DL-based data detection solution is

proposed for nonlinear MIMO communications systems. Basically, data detection is treated as a DL

based classification problem, where a Neural Network (NN) has been built up and trained offline with

appropriately chosen finite alphabet data. Then, it has been used for online data detection. With no direct

priors about the channel impulse response nor the transmitted data, the proposed DL-based solution is

shown to deal with the performance degradation that might emerge from nonlinear components. Also, the

simulation results showed the effectiveness of the proposed solution for different nonlinear model order

and with attractive accuracy and data detection performance. Moreover, such a solution is promising to

overcome the inherent ambiguity/limitations of classical blind processing.

7.2 Thesis contributions

The main contributions of this research are listed below:

• Derivation of semi-blind channel estimation CRBs for multi-cell massive MIMO-OFDM system

under pilot contamination phenomenon and highlighting the resulting non-identifiability.

• Thorough study of the effectiveness of semi-blind techniques for pilot contamination mitigation in

massive MIMO-OFDM systems, by considering SOS, HOS, different pilot structures, synchronous
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cells and non-synchronous cells with small and large inter-cell delays.

• Highlighting the effect of pilot’s orthogonality level to mitigate pilot contamination.

• For finite alphabet signals, i.e. QPSK data model, a realistic CRB approximation has been given to

bypass the high complexity of the exact CRB computation.

• Proposition of a multi-moduls based semi-blind technique for source recovery when considering

instantaneous MIMO systems under pilot contamination effect. Then, extending this solution to

the convolutive systems, i.e. MIMO-OFDM, where a separation matrix is defined independently on

the sub-carrier then estimated.

• Highlighting the importance of optimal step size, for iterative algorithms, to improve convergence

speed.

• Putting forward the importance of semi-blind approaches for throughput gain and channel/data

estimation performance improvement.

• Proposition of a joint sparse channel estimation and data detection solution based on the successive

convex approximation (SCA). This solution deals with an approximate convex problem rather than

with the original non convex one.

• Exploiting priors on the system for performance improvement, such as pilots, channel’s sparsity

and data matrix structure.

• Contribution to blind and semi-blind channel estimation for nonlinear system models by combining

a subspace method with the EM-algorithm.

• Proposition of two techniques for blind channel estimation ambiguity removal. The first one concerns

the quadratic nonlinearity, whereas the second one is designed for cubic nonlinear models.

• CRB derivation and identifiability study of system identification for nonlinear systems.

• Assessing the potential of a machine learning for communications systems, by a deep learning based

solution for data detection; when considering instantaneous nonlinear MIMO systems.

7.3 Future work

The research work related to semi-blind channel estimation and source separation for linear and nonlinear

multi-channel communications systems, carried out in this thesis can be extended in several directions.

Some recommendations for future work are listed below.

• Extend the semi-blind channel estimation performance analysis, carried out for massive MIMO-

OFDM systems, to the stochastic channel model (instead of deterministic one) where Bayesian

approach can be considered to evaluate the CRB for a given channel type.
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• Investigate the possibility to develop an analytical multi-modulus based solution for source separa-

tion.

• Investigate on a solution for computational complexity reduction for the proposed EM-based

solutions.

• Propose a DL-based solution for system identification and/or for joint channel estimation and data

detection.

• Implement the proposed algorithms in this thesis in a real-world system, such as a video/image

transmission system, in order to further evaluate the performance gain in practice.
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fication

Success is not final, failure is not

fatal: it is the courage to continue

that counts.

Winston Churchill.
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This paper studies the impact of different priors on semi-blind channel estimation performance

for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM)

communications systems. To do so, for an estimator-independent study, the Cramèr-Rao Bound

(CRB) is considered to quantify and analyze the performance limits. The analysis is carried

out by considering three cases: (i) no modeling while estimating the channel coefficients in the

frequency domain (for each frequency bin); (ii) a finite memory linear time invariant channel

model while estimating the channel taps in the time domain; and finally (iii) a specular channel

model while estimating the propagation channel parameters, i.e. the fading, the delay and the

angle of arrival of each path. In particular, this analysis quantifies the performance gain obtained

by properly exploiting side information about the propagation channel.

Abstract
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A.1 Introduction

Channel State Information (CSI) remains a current concern in Multiple-Input Multiple-Output Orthogonal

Frequency Division Multiplexing (MIMO-OFDM) wireless communications systems, since the system’s

overall performance depends strongly on it [143]. Several channel estimation approaches have been proposed.

Some techniques fall into the scope of blind channel estimation which have been extensively studied.

These techniques are fully based on the statistical properties of the transmitted data (e.g. [21, 22, 144]).

While other techniques rely on some inserted known symbols, called pilots, in the transmitted frames

as specified in most communications standards [19, 20]. However all of these approaches have their own

merits and weaknesses. In general, pilot-based channel estimators provide an easier and more accurate

channel estimation, but leads to decreasing the spectral efficiency and the throughput as compared to the

blind methods. Consequently, it would be advantageous to benefit from the two strategies where both

data and pilots are exploited through a semi-blind estimation approach [59, 24, 25].

Besides known data or statistical information, some priors (or side information) on the communications

system can be available and can therefore affect the performance of the channel estimation.

Consequently, this paper aims to study the impact of different priors, relative to the channel, on

a MIMO-OFDM system identification performance when adopting semi-blind approaches. To do so,

Cramèr-Rao Bound (CRB) is used to quantify the performance limits independently of the estimator.

Furthermore, a comparative study is conducted by considering three cases. The first case concerns the

estimation of the channel fading coefficients in the frequency domain (for each frequency bin) disregarding

its (finite memory) time domain structure. In the second case, a finite memory linear time-invariant

channel model is considered and the channel taps are estimated in the time domain. In the third case, a

specular channel model is considered and the propagation channel parameters, i.e. the fading, the delay

and the angle of arrival of each path are estimated.

It is worth pointing out that authors in [59] carried out a through study on the CRB derivation

when only considering the channel taps estimation in time domain. In the current work; and as an

extension of this work, a comparative study of the performance gain is conducted by considering also the

CRB derivation for estimating the channel coefficients in the frequency domain as well as the CRB for

estimating the propagation channel parameters (i.e. the fading, the delay and the angle of arrival of each

path) corresponding to a specular channel model.

A.2 MIMO-OFDM Communications System Model

The MIMO-OFDM communications system considered in this paper is represented by Nt mono-antenna

transmitters and a receiver equipped with Nr receive antennas. The transmitted symbols are assumed to

be OFDM ones. Each OFDM symbol is composed of K samples extended by the insertion of a Cyclic

Prefix (CP) corresponding to the last L samples at the beginning of the OFDM symbol, so that the CP

length is assumed to be greater than or equal to the maximum channel delay denoted N (i.e. N ≤ L).

Once removing the CP and taking the K-point FFT of the received OFDM symbols, the received signal
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(of size K) at the r-th antenna is given, in time domain, by [60]:

yr =
Nt∑
i=1

F T(hi,r)
FH

K
xi + vr, (A.1)

where F stands for the K-point Fourier matrix; hi,r = [hi,r(0), · · · ,hi,r(N − 1)]T is the N × 1 vector

containing the channel taps between the i-th transmitter and the r-th receive antenna; T(hi,r) is a

circulant matrix and xi is the i-th OFDM symbol of length K. vr is assumed to be an additive white

Circular Gaussian noise with E
[
vr(k)vr(i)H

]
= σ2

vIKδki; with (.)H being the Hermitian operator; σ2
v the

noise variance; IK the identity matrix of size K ×K and δki the Kronecker delta operator.

By exploiting the eigenvalue decomposition of the circulant matrix T(hi,r) given by: T(hi,r) =
FH
K diag

{
Whi,r

}
F, where W is a matrix containing the N first columns of F and diag is the diagonal

matrix composed by its vector argument, equation (A.1) becomes:

yr =
Nt∑
i=1

diag
{
Whi,r

}
xi + vr. (A.2)

By taking into account the Nr receive antennas, the observed signal can be written as:

y = λx + v, (A.3)

where y =
[
yT1 · · ·yTNr

]T ; x =
[
xT1 · · ·xTNt

]T
; v =

[
vT1 · · ·vTNr

]T ; and λ= [λ1 · · ·λNt ] and λi =
[
λi,1 · · ·λi,Nr

]T
where λi,r = diag

{
Whi,r

}
.

Note that, equation (A.3) is expressed w.r.t. the channel coefficients in the frequency domain. In

order to facilitate the analytical CRB derivations w.r.t. channel coefficients in the time domain, it is

rewritten in a most appropriate form. To do so, let’s introduce the following notation: h =
[
hT1 · · ·hTNr

]T
is a vector of size NrNtN × 1 where hr =

[
hT1,r · · ·hTNt,r

]T
; XDi = diag{xi} is a diagonal matrix of size

K ×K; X =
[
XD1W · · ·XDNt

W
]
of size K ×NNt; and X̃ = INr ⊗X is a matrix of size NrK ×NNtNr

with ⊗ being the Kronecker product. Accordingly, equation (A.3) is rewritten as follows:

y = X̃h + v. (A.4)

Furthermore, some priors on the channel impulse response and/or on the communications system

can be available. Hence, by assuming a specular channel model in our case, the communications channel

impulse response, of the i-th user, is expressed as a function of the fading, the delay and the Direction Of

Arrival (DOA), in time domain, as follows:

hi(t) =
M∑
l=1

h̄i,la(αi,l)sinc(t− τi,l), (A.5)

where M is the number of paths for each transmitter, h̄i,l is the complex fading related to the l-th path,

τi,l being the l-th path delay and a(αi,l) = [1 e−j2π
d
λ cos(αi,l)...e−j2π

d
λ r1cos(αi,l)...e−j2π

d
λ (Nr−1)cos(αi,l)]T is

the steering vector with αi,l being the corresponding DOA1; while λ and d represent respectively the wave

length and the distance separating two adjacent receive antennas.
1For simplicity, we assumed that the receive antenna corresponds to a uniform linear array.
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Without loss of generality, a block-type pilot arrangement is adopted in this paper. In such a scheme

all sub-carriers are used for pilots and data within a specific period of time. For a pilot-based channel

estimation, Np pilot symbols will be considered. Nd i.i.d data symbols will be added to the pilots for

semi-blind approaches. Both pilots and data are assumed to be OFDM symbols of size K.

A.3 CRB derivation for subcarrier channel coefficients estimation

This section is dedicated to the CRB derivation for subcarrier channel coefficients estimation. Basically,

the CRB is obtained as the inverse of the Fisher Information Matrix (FIM) denoted by Jθθ where θ is

the unknown deterministic parameters vector to be estimated [61]. Hence, by taking into account the

pilots and data (that are statistically independent) in a semi-blind fashion, the total FIM is expressed as

follows:

Jθθ = Jpθθ + Jdθθ, (A.6)

where Jpθθ is the FIM associated to the known pilots while Jdθθ is related to the unknown data.

Actually, instead of estimating the channel taps, many existing OFDM receivers estimate the subcarrier

channel coefficients (i.e. the vector λi,r) as if they were ’independent’ (see e.g. [145]), by ignoring the

relation between these coefficients through the Fourier transform of the channel taps. Therefore, under

the assumption of known signal and noise powers2, the parameters vector to be estimated is given by:

θ = [ΛT (Λ∗)T ]T , (A.7)

where Λ =
[
λ̃
T
1,1 · · · λ̃

T
i,r · · · λ̃

T
Nt,Nr

]T
, which is a KNrNt× 1 vector with λ̃i,r = Whi,r of size K × 1.

A.3.1 Pilot-based CRB derivation

By considering only pilots and in order to have explicitly the vector Λ, the system model given by equation

(A.3) is re-expressed as:

y = X̄Λ+ v, (A.8)

where X̄ = [INr ⊗x1...INr ⊗xNt ].

Since the noise is an i.i.d. random process and according to the results in [59], the FIM when considering

Np pilot OFDM symbols can be expressed as follows:

Jpθθ =
Np∑
i=1

Jpiθθ, (A.9)

where Jpiθθ, which refers to the FIM associated to the i-th pilot OFDM symbol, is given by [146, 147]:

Jpiθθ = E

{(
∂ lnp(y(i),Λ)

∂θ∗

)(
∂ lnp(y(i),Λ)

∂θ∗

)H}
, (A.10)

with E(.) being the expectation operator and p(y(i),Λ) is the probability density function of the received

signal given Λ.
2The case of unknown noise and signal powers leads to similar conclusions and is omitted here for simplicity.
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One could show that equation (A.10) can be expressed by:

Jpiθθ = X̄(i)HX̄(i)
σ2

v
. (A.11)

Moreover, based on the FIM for a complex parameter (see [62, 63]), the pilot-based FIM is given by:

Jpiθθ =

Jpihh 0

0 Jpih∗h∗

 , (A.12)

where Jpih∗h∗ = (Jpihh)∗. Therefore, the pilot-based CRB is obtained as the inverse of Jpθθ.

A.3.2 Semi-blind CRB derivation

For the semi-blind channel estimation case, both pilots and data are taken into account in the derivation

of the FIM as shown in equation (A.6). Let’s assume that the data symbols are i.i.d. circular Gaussian

distributed with zero mean and a diagonal covariance matrix composed of the users’ transmit powers i.e.

Cx = diag
(
σ2

x
)
with σ2

x
def=
[
σ2

x1 · · ·σ
2
xNt

]T
where σ2

xi denotes the transmit power of the i-th user. Under

this assumption, the received signal y is circular Gaussian with covariance matrix:

Cy =
Nt∑
i=1

σ2
xiλiλ

H
i +σ2

vIKNr . (A.13)

The total data FIM has the following form:

Jdθθ =Nd

 JdΛΛ Jd
ΛΛ∗

Jd
Λ∗Λ Jd

Λ∗Λ∗

 , (A.14)

where JdΛΛ is a (NrNtK)-dimensional matrix with elements JdΛiΛj given by:

JdΛiΛj = tr

C−1
y
∂Cy
∂Λ∗i

C−1
y

(
∂Cy
∂Λ∗j

)H . (A.15)

Once the total FIM Jθθ is obtained, it is inverted to obtain the CRB matrix. Then, the top-left

KNtNr×KNtNr subblock of the CRB matrix is extracted to deduce the CRB for the subcarrier channel

coefficients estimation (i.e. in the frequency domain).

A.4 CRB derivation for channel taps estimation

This section is dedicated to the CRB derivation for channel estimation considering directly the channel

coefficients in the time domain. In this case, the complex representation of parameters vector θ is defined

as follows:

θ = [hT (h∗)T ]T . (A.16)

A.4.1 Pilot-based CRB derivation

In a similar way as in A.3.1, the FIM associated to the i-th pilot OFDM symbol, is given by

Jpiθθ = E

{(
∂ lnp(y(i),h)

∂θ∗

)(
∂ lnp(y(i),h)

∂θ∗

)H}
, (A.17)
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with p(y(i),h) being the probability density function of the received signal given h.

According to results in [59], the FIM associated to the i-th pilot OFDM symbol is deduced as:

Jpiθθ = X̃(i)HX̃(i)
σ2

v
. (A.18)

Then, the pilot-based CRB is obtained as the inverse of Jpθθ.

A.4.2 Semi-blind CRB derivation

In this section, the derivation of the CRB for the semi-blind channel estimation case is considered. Only

the Second Order Statistics (SOS) are considered via a Circular Gaussian data model. More details about

the case of Higher Order Statistics (HOS), using a finite alphabet source signal, can be found in [59]. The

derivation is similar to that introduced in section A.3.2, however in this case we have:

Jdθθ =Nd

 Jdhh Jdhh∗

Jdh∗h Jdh∗h∗

 , (A.19)

where Jdhh is a (NrNtN)-dimensional matrix with elements Jdhihj given by:

Jdhihj = tr

C−1
y
∂Cy
∂h∗i

C−1
y

(
∂Cy
∂h∗j

)H , (A.20)

with ∂Cy
∂h∗i

= λCx
∂λH

∂h∗i
.

Actually, this derivation is performed by specifying for each index i= 1, · · · , NNrNt, the corresponding

channel tap, receive antenna and user indices i.e. iN = 1, · · · , N ; iNr = 1, · · · , Nr and iNt = 1, · · · , Nt.

Therefore, after some simplifications, one could obtain

∂Cy
∂h∗i

= σ2
xiNt

λiNt

∂λHiNt
∂h∗i

. (A.21)

Finally, the top-left NNtNr ×NNtNr subblock of the CRB matrix, obtained by inverting Jθθ, refers

to the CRB for the channel coefficients estimation.

A.5 CRB derivation for specular channel estimation

This section derives the CRB of semi-blind channel estimation when considering a specular model for the

channel impulse response as given in equation (A.5). The vector parameter of size 4NNrNt× 1 to be

estimated is given by:

θ = [h̄T (h̄∗)T τT αT ]T , (A.22)

with h̄,τ ,α being vectors of size NNrNt× 1 containing respectively the complex fading, the delay and

the DOA of channel taps between all users and the receive antennas.

According to the FIM derivation of parameter transformation [61], the FIM in such a case is based

on that derived in section A.4. Thus, by denoting Jh
θθ the FIM of the semi-blind channel coefficients

estimation, we have:

Jθθ = ∂h
∂θ

H

Jh
θθ

∂h
∂θ

, (A.23)
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where
∂h
∂θ

= [∂h
∂h̄

,
∂h
∂h̄
∗ ,
∂h
∂τ

,
∂h
∂α

], (A.24)

with Jh
θθ ∈ CNNrNt×NNrNt and Jθθ ∈ C4NNrNt×4NNrNt .

The former derivatives of h w.r.t. to the propagation parameters are obtained thanks to the formula

(A.5). Note that for real parameters (τ and α), the derivation is straightforward. However for complex

parameters, i.e. h, one can use either the derivation w.r.t. real and imaginary parts or equivalently, the

derivation w.r.t. the complex parameter and its conjugate [148]. Finally, the CRB is obtained by inverting

the FIM.

A.6 Simulation results

This section is dedicated to analyze the behavior of the CRB for different scenarios as described pre-

viously: the sub-carrier channel coefficient estimation (CRBλOP ,CRBλSB), the channel taps estimation

(CRBh
OP ,CRBh

SB) and the specular channel coefficients estimation (CRBspecularOP ,CRBspecularSB ) where OP

stands for the pilot-based estimation; whereas SB refers to the semi-blind framework. The pilot symbols

are generated according to Zadoff-Chu sequences [70]. The simulation parameters are summarized in table

A.1 otherwise mentioned.

Figure A.1 illustrates the behavior of the normalized CRB
(
tr{CRB}
‖h‖2

)
versus SNR for the three

considered scenarios. Adopting a semi-blind framework helps lowering the CRB and hence performing

better than pilot-based approaches. One could notice that with only one pilot symbol and few data

symbols (40 in our case), the efficiency of the semi-blind framework is well illustrated while preserving

a lower overhead. On the other hand, one notices that compared to the frequency domain, estimating

directly the channel taps in time domain gives much better performance, which is further enhanced when

considering a parametric propagation model for the communications channel (specular representation in

our case).

Figure A.2 illustrates the semi-blind CRB behavior of the channel coefficients estimation in frequency

(CRBλSB) and time (CRBh
SB) domain w.r.t. to the number of pilot symbols Np. It can be noticed that, in

order to reach same performance as the semi-blind CRB for specular channel estimation(CRBspecularSB )

with one pilot symbol, one needs around 60 pilot symbols when estimating the channel coefficients in time

domain and, seemingly, even much more when directly estimating the frequency coefficients.

Figure A.3 assesses the effect of the number of data symbols on the CRBs semi-blind framework. One

can notice that with just tens of data symbols, the semi-blind channel estimation is further enhanced,

when considering the channel parameters. Also, it is noticed that the CRB curves tends to flatten with

high number of data symbols, which indicates that only a reasonable number of data symbols is needed

for better channel estimation performance.
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Parameters Specifications

Number of receive antennas Nr = 2

Number of transmitters Nt = 2

Number of channel paths M = 4

Number of OFDM sub-carriers K = 64

Number of OFDM pilot symbols Np = 1

Number of OFDM data symbols Nd = 40

Pilot signal powers (dBm) Pxp = [23 13]

Data signal powers (dBm) Pxd = [20 18.8]

Channel Fading [0.4 0.6 0.1 0.01;0.3 0.9 0.5 0.3];

Channel delay [0.4 0.6 0.1 0.4;0.3 0.9 0.5 0.1];

DOA [π2 ,
π
4 ,

π
6 ,

π
8 ; π3 ,

π
4 ,

π
7 ,

π
8 ]

Table A.1: Simulation parameters.
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Figure A.1: Normalized CRB vs SNR.

A.7 Conclusion

This paper focused on the effect of side information on the performance of semi-blind channel estimation;

when considering MIMO-OFDM communications systems. Three scenarios have been investigated,
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Figure A.3: Normalized CRB vs number of data symbols.

estimating: (i) the channel fading coefficients in the frequency domain; (ii) the channel taps in the time

domain; and (iii) the propagation channel parameters when considering a specular channel model. To

quantify and compare their performance limits, CRBs have been derived. An experimental comparative

analysis revealed that estimating the channel taps in time domain, leads to better performance than

estimating the frequency response. Furthermore, this performance gain is more enhanced by exploiting

priors on the channels (channel model in our case) while preserving a lower overhead.
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Titre : Conception et performance limites pour les futurs récepteurs
mobiles.

Mots clefs : MIMO massif, Bandes de Cramer-Rao, systèmes non linéaires,
apprentissage profond.

Résumé : Les systèmes de communication MIMO (Multiple Input Multiple Output) ainsi
que leur récente version à grande-échelle, appelée MIMO massive, sont considérés comme des
technologies potentielles pour les standards de communication sans fil actuels et futurs, grâce à
leurs puissantes capacités d’amélioration des performances. Néanmoins, afin d’exploiter pleinement
leurs potentiels, une grande attention doit être accordée aux opérations d’identification du système
et d’égalisation des canaux de transmission, qui restent une préoccupation actuelle. Dans ce
contexte, la principale contribution de cette thèse s’inscrit dans le cadre de l’identification des
systèmes de communication, à travers l’estimation des canaux, ainsi que l’égalisation des canaux
via les techniques de séparation de sources. Ainsi, en adoptant des approches semi-aveugles,
des analyses de performances ainsi que le développement d’algorithmes efficaces sont mis en
avant en considérant différents contraintes/problèmes telle que la contamination des pilotes,
rencontrés principalement dans les systèmes MIMO massifs, les effets des non-linéarités ainsi
que les interférences inter-symboles et inter-utilisateurs .En plus, pour un meilleur gain en
performance, l’accent est mis aussi sur l’exploitation des a priori sur les systèmes telles que les
séquences d’entraînement (pilotes), la sparcité du canal et la structure de la matrice de données.

Title : Design and performance bounds of future mobile receivers

Keywords : massive MIMO, Cramer-Rao bounds, nonlinear systems, deep
learning.

Abstract : Multiple Input Multiple Output (MIMO) communications systems as well as their
recent large-scale version, called massive MIMO, are seen as potential technologies for current
and future wireless communications standards, thanks to their powerful performance-enhancing
capabilities. Nevertheless, in order to fully exploit all their potentials, great attention has to be
given to the system identification and communications channel equalization tasks, which remain
a current concern. In this context, the main contribution of this thesis falls into the scope of
communications system identification, through channel estimation, as well as channel equalization
via source separation techniques, for linear and nonlinear system models. Thus, by adopting
semi-blind approaches, performance analysis as well as efficient algorithms development are put
forward by considering different constraints/issues such as pilot contamination, encountered
mainly in massive MIMO systems, nonlinearities effects as well as inter-symbol and inter-user
interference. Furthermore, for a better performance gain, emphasis is also put on the exploitation
of priors on the systems such as training sequences (pilots), channel’s sparsity, and data matrix
structure.
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