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Abstract/Résumé/Riassunto

Abstract

In this thesis, we are interested in the study of nonlinear eigenvalue problem
and the controllability of partial differential equations in a smooth bounded
domain with boundary.
The first part is devoted to the analysis of an eigenvalue problem for quasi-
linear elliptic operators involving homogeneous Dirichlet boundary conditions.
We investigate the asymptotic behaviour of the spectrum of the related prob-
lem by showing on the one hand the bifurcation results from trivial solutions
using the Krasnoselski bifurcation theorem and bifurcation from infinity using
the Leray-Schauder degree on the other hand. We also prove the existence of
multiple critical points using variational methods and the Krasnoselski genus.
At last, we show a stabilization result for the damped plate equation with log-
arithmic decay of the associated energy. The proof of this result is achieved
by means of a proper Carleman estimate for the fourth-order elliptic operators
involving the so-called Lopatinskĭı-Šapiro boundary conditions and a resolvent
estimate for the generator of the damped plate semigroup associated with these
boundary conditions.

Keywords: quasi-linear operators, bifurcation, bifurcation from infinity, mul-
tiple solutions, Carleman estimates; stabilization, Lopatinskĭı-Šapiro, resolvent
estimate.

Résumé

Dans cette thèse, on s’intéresse à l’étude des problèmes aux valeurs propres
nonlinéaires et à la contrôlabilité des équations aux dérivées partielles dans un
domaine borné, régulier avec bord.
La première partie est consacrée à l’analyse d’un problème aux valeurs pro-
pres pour des opérateurs elliptiques quasi-linéaires avec des conditions aux lim-
ites homogènes de Dirichlet. Nous étudions le comportement asymptotique du
spectre du problème correspondant en montrant d’une part les résultats de bi-
furcation à partir de solutions triviales en utilisant le théorème de bifurcation
de Krasnoselski et d’autre part la bifurcation à l’infini en utilisant le degré de
Leray-Schauder. Nous prouvons également l’existence de points critiques mul-
tiples en utilisant des méthodes variationnelles et le genre de Krasnoselski.
Enfin, nous montrons un résultat de stabilisation pour l’équation des plaques
amorties avec une décroissance logarithmique de l’énergie associée. La preuve de
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ce résultat est réalisée au moyen d’une estimation de Carleman pour les opéra-
teurs elliptiques d’ordre quatre avec les conditions au bord dites de Lopatinskĭı-
Šapiro et d’une estimation de la résolvante pour le générateur du semigroupe
de la plaque amortie associé à ces conditions aux limites.

Mots clés: operateurs quasi-linéaires, bifurcation, bifurcation à l’infini, solu-
tions multiples, stabilisation, inégalités de Carleman, inégalité de la reslovente,
Lopatinskĭı-Šapiro.

Riassunto

In questa tesi, siamo interessati allo studio di un problema non lineare agli au-
tovalori e alla controllabilità delle equazioni differenziali alle derivate parziali in
un dominio liscio e limitato. La prima parte è dedicata all’analisi di un problema
agli autovalori per operatori ellittici quasi lineari che coinvolgono condizioni al
contorno omogenee di Dirichlet. Indaghiamo il comportamento asintotico dello
spettro associato al problema, mostrando da un lato risultati di biforcazione da
soluzioni banali usando il teorema di biforcazione di Krasnoselski, e dall’atro
la biforcazione da infinito usando il grado di Leray-Schauder. Proviamo an-
che l’esistenza di punti critici multipli usando metodi variazionali e il genere di
Krasnoselski. Infine, mostriamo un risultato di stabilizzazione per l’equazione
della piastra incostrata con decadimento logaritmico dell’energia associata. La
dimostrazione di questo risultato è ottenuta per tramite di una stima di Car-
leman appropriata per operatori ellittici del quarto ordine che coinvolgono le
cosiddette condizioni al contorno di Lopatinskĭı-Šapiro e una stima del resol-
vente per il generatore del semigruppo della piastra incostrata associato a tali
condizioni al contorno.

Parole chiave: operatori quasi lineari, biforcazione, biforcazione da infinito,
soluzioni multipli, stabilizzazione, stima di Carleman, stima del resolvente,
Lopatinskĭı-Šapiro.
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4.9.2 Lopatinskĭı-Šapiro condition for the second-order factors 127
4.9.3 Microlocal estimates for a second-order factor . . . . . . 128

4.9.3.1 Case (i): one root lying in the upper complex
half-plane. . . . . . . . . . . . . . . . . . . . . . 129

4.9.3.2 Case (ii): one real root. . . . . . . . . . . . . . 134
4.9.3.3 Case (iii): both roots lying in the lower complex

half-plane. . . . . . . . . . . . . . . . . . . . . . 138
4.10 Local Carleman estimate for the fourth-order operator . . . . . 142

4.10.1 A first estimate . . . . . . . . . . . . . . . . . . . . . . . 142
4.10.2 Final estimate . . . . . . . . . . . . . . . . . . . . . . . . 144

4.11 Global Carleman estimate and observability . . . . . . . . . . . 145
4.11.1 A global Carleman estimate . . . . . . . . . . . . . . . . 145
4.11.2 Observability inequality . . . . . . . . . . . . . . . . . . 146

4.12 Solutions to the damped plate equations . . . . . . . . . . . . . 147
4.12.1 The unbounded operator associated with the bi-Laplace

operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.12.2 The plate semigroup generator . . . . . . . . . . . . . . . 151
4.12.3 Strong and weak solutions to the damped plate equation 153

4.13 Resolvent estimates and applications to stabilization . . . . . . 155
4.13.1 Resolvent estimate . . . . . . . . . . . . . . . . . . . . . 155
4.13.2 Stabilization result . . . . . . . . . . . . . . . . . . . . . 157



x

5 Perspectives 159
5.1 Fučik spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.2 Controllability and stablization . . . . . . . . . . . . . . . . . . 159

6 Appendix 163
6.1 A perfect elliptic estimate . . . . . . . . . . . . . . . . . . . . . 163
6.2 Basic resolvent estimation . . . . . . . . . . . . . . . . . . . . . 165
6.3 Basic estimation for the resolvent set . . . . . . . . . . . . . . . 165

References 167



1

1. General introduction
This thesis is done in cotutelle and consists of two parts: Part A and Part B.
The first part is related to the analysis of a nonlinear eigenvalue value problem
for quasi-linear operators and its applications to bifurcation. Those results were
obtained during my stay at the Università degli Studi di Milano in Italy. The
second part is related to control theory, more especially the stabilization of the
damped plate equation. The latter results were obtained during my stay at the
Université Sorbonne Paris Nord in France.
The goal of Part A is to study the asymptotic behavior of the spectrum and
the existence of multiple solutions of the following eigenvalue problem−∆pu−∆u = λu in Ω,

u = 0 on ∂Ω,
(1.0.1)

where p ∈ (1,∞)\{2} is a real number.
The goal of Part B is to answer the following question: How fast does the energy
of the following hyperbolic equation decrease?

∂2t y +∆2y + α(x)∂ty = 0 (t, x) ∈ R+ × Ω,

B1y|R+×∂Ω
= B2y|R+×∂Ω

= 0,

y|t=0 = y0, ∂ty|t=0 = y1,

where α ≥ 0 and where B1 and B2 denote two boundary differential operators.
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Part A: Nonlinear eigenvalue
problems
Nonlinear eigenvalue problems arise in many areas of computational science and
engineering, including acoustics, control theory, fluid mechanics and structural
engineering. We give the formulation of such a problems.

1.1 Description

Nonlinear eigenvalue problems are in general described by equation of the form

G(λ, u) = 0 λ ∈ K, u ∈ X, (1.1.1)

where K = R or C, and X is a Banach space that can be the n-space Rn of Cn.

In equation (1.1.1), G is a continuous map of K×X into X. It is assumed that
G(λ, 0) = 0 for all λ, that is, u = 0 solves trivially equation (1.1.1) for all scalars
λ. Then, one looks for those λ′s, i.e, the eigenvalues of G, such that equation
(1.1.1) has a solution u ̸= 0 (an eigenvector or eigenfunction of G corresponding
to λ).
A typical example of nonlinear eigenvalue problem is the so-called p-Laplace
equation −div(|∇u|p−2∇u) = λ|u|p−2u in Ω

u = 0 on ∂Ω,
(1.1.2)

where p > 1 and Ω is a bounded open set in Rn. Let X be the Sobolev space
W 1,p

0 (Ω). Let X ′ = W−1,p′(Ω) be the dual space of X. A weak solution of the
p-Laplace equation (1.1.2) is a function u ∈ X such that∫

Ω

|∇u|p−2∇u · ∇v dx = λ

∫
Ω

|u|p−2uv dx,

for all v ∈ W 1,p
0 (Ω). The proof of the existence of countably many eigenval-

ues and eigenfunctions of equation (1.1.2) relies on the Lusternik-Schnirelmann
theory of critical points for an even functional on a symmetric manifold. Pre-
sentations of this theory in both finite and infinite dimensional spaces can be
found among others in [6, 55].
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1.2 Bifurcation from the eigenvalues of the p-
Laplacian

For instance to study the bifurcation phenomena associated with the p-Laplacian
under Dirichlet boundary conditions, one considers the following problem−∆pu = λ|u|p−2u+ h(x, u, λ) in Ω

u = 0 on ∂Ω,
(1.2.1)

where h : Ω×R×R → R satisfies a Carathéodory condition in the two variables
(x, t) and

h(x, t, λ) = o(|t|p−1)

near t = 0, uniformly a.e with respect to x and uniformly with respect to λ on
bounded sets. We recall that −∆pu := −div(|∇u|p−2∇u) for all p > 1. By a
solution of (1.2.1) we understand a couple (λ, u) ∈ R ×W 1,p

0 (Ω) satisfying the
following integral equality in the weak sense,∫

Ω

|∇u|p−2∇u · ∇v dx = λ

∫
Ω

|u|p−2uv dx+

∫
Ω

h(x, u, λ)vdx,

for all v ∈ W 1,p
0 (Ω). We say that (λ∗, 0) is a bifurcation point of (1.2.1) if in any

neighborhood of (λ∗, 0) in R×W 1,p
0 (Ω) there is a nontrivial solution of (1.2.1).

One speaks of bifurcation from trivial solution.
In [68] Proposition 2.1, it is shown with a compactness argument that a nec-
essary condition for (λ∗, 0) to be a bifurcation point of (1.2.1) is that λ∗ be an
eigenvalue of −∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω.

Let λ1(p) denote the first eigenvalue of (1.1.2). We note that λ1(p) can be
characterized variationally as

λ1(p) = inf

{∫
Ω

|∇u|pdx : u ∈ W 1,p
0 (Ω),

∫
Ω

|u|pdx = 1

}
.

In [68] Theorem 1.1, it is shown that (λ1(p), 0) is a bifurcation point of (1.2.1).
This result is well known in the case p = 2 (see, [78]). The key ingredient in the
proof is the index formula which is proved via a suitable homotopic deformation
from a general p > 1 to p = 2.

Introducing the following change of variable w = u/∥u∥21,p for u ∈ W 1,p
0 (Ω) with
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u ̸= 0, into equation (1.2.1), this leads to the equation−∆pw = λ|w|p−2w + ∥w∥2(p−1)
1,p h(x,w, λ) in Ω

w = 0 on ∂Ω.
(1.2.2)

With this transformation, we have that the pair (λ∗,∞) is a bifurcation point
for the problem (1.2.1) if and only if the pair (λ∗, 0) is a bifurcation point for
the problem (1.2.2). One says that the point (λ∗,∞) is a bifurcation point from
infinity for problem (1.2.1).

We write equation (1.1.1) in the form

G(λ, u) = u− λLu−K(λ, u), (1.2.3)

where L is a compact linear operator and K : R × X → X is compact with
K = o(∥u∥X) at u = 0 uniformly on bounded λ intervals. In this context,
Krasnoselski [53] has shown that if µ is a real characteristic value of L of odd
multiplicity, then (µ, 0) is a bifurcation point for G. With a suitable change of
variable, one shows that if L is compact and linear, µ is a real characteristic
value of L of odd multiplicity, K = o(∥u∥X) at u = ∞ uniformly on bounded λ
intervals and is appropriately compact, then µ is a bifurcation point for
u = λLu + K(λ, u). We will address a problem in the form (1.2.3), which
corresponds to the first results concerning Part A given in Section 3.3.1.

1.3 Main results of Part A

In this section we give the main results concerning the bifurcation from the
trivial solutions and from infinity that are fully presented in Section 3.7. In
addition we state the result about the existence of multiple solutions, also pre-
sented in Section 3.8.

1.3.1 Bifurcation results

We set Sλ(u) = u − λ(−∆p −∆)u, for u ∈ L2(Ω) ⊂ W−1,p′(Ω) and λ > 0. We
recall that λDk stands for the k−th Dirichlet eigenvalue of the Laplacian.

Theorem 1.3.1. (bifurcation from zero) Let p > 2. Then every eigenvalue λDk
with odd multiplicity is a bifurcation point in R∗

+ ×W 1,p
0 (Ω) of Sλ(u) = 0, in

the sense that in any neighborhood of (λDk , 0) in R∗
+ ×W 1,p

0 (Ω) there exists a
nontrivial solution of Sλ(u) = 0.
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Introducing a suitable change of variable in equation (1.0.1), leads us to set
S̃λ(u) = u − λ(−∥u∥γ1,2∆p − ∆)u with γ = 4 − p for 1 < p < 2, λ > 0 and
u ∈ Br(0) ⊂ L2(Ω) ⊂ W−1,2(Ω).

Theorem 1.3.2. (bifurcation from infinity) The pair (λD1 , 0) is a bifurcation
point from infinity for the problem (1.0.1).

With the change of variable, Theorem 1.3.2 is equivalent to the following
theorem.

Theorem 1.3.3. The pair (λD1 , 0) is a bifurcation point in R+ × L2(Ω) of
S̃λ(u) = 0, for 1 < p < 2.

A more general result of Theorem 1.3.3 is the following.

Theorem 1.3.4. The pair (λDk , 0) (k > 1) is a bifurcation point of S̃λ(u) = 0

for 1 < p < 2 if λDk is of odd multiplicity.

1.3.2 Multiple solutions

We have obtained the following result.

Theorem 1.3.5. Let 1 < p < 2 or 2 < p <∞, and suppose that λ ∈ (λDk , λ
D
k+1)

for any k ≥ 1. Then the equation (1.0.1) has at least k pairs of nontrivial
solutions.
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Part B: Control theory
Control theory is an important subject in science engineering. Control theory
deals with the behaviour of dynamic systems and how to control such systems.
More precisely it deals with a dynamical system on which one can act by using
suitable controls.
We refer to the book of Jean-Michel Coron [26] for more details on the notions
of control theory.

1.4 Some different notions of control

We consider a system of differential or partial differential equation of the form∂tu = K(u, f)

u(0) = u0,
(1.4.1)

where ∀t ≥ 0, u(t) is the sought solution belonging to a certain state-space H
(a Banach or Hilbert space) K an operator that describes the system, and f

a source term acting on the system. Natural questions are : knowing f and
the initial data u0, is it possible to recover the solution u? Is this continuous
with respect to the data of the problem ? In control theory, problematics are
different. Here, we consider the question of controllability: given the initial
data u0 as well as a couple of state-time target (uT , T ), can we find a control f
belonging to some control space X such that the solution u to (1.4.1) satisfies
u(T ) = uT ? This means, controlling the solution so that it reaches a desired
state at the desired time.
We recall some notions of controllability.

Definition 1.4.1. (exact controllability) Let T > 0. We say that the control
system (1.4.1) is exactly controllable in time T, if for every u0 ∈ H and for
any target state uT ∈ H, there exists a control f ∈ L2((0, T );X ) such that the
solution u of the Cauchy problem (1.4.1) satisfies u(T ) = uT .

Definition 1.4.2. (approximate controllability) Let T > 0. We say that the
control system (1.4.1) is approximately controllable in time T, if for every u0 ∈
H and for any target state uT ∈ H, and for every ε > 0, there exists a control
f ∈ L2((0, T );X ) such that the solution u of the Cauchy problem (1.4.1) satisfies
∥u(T )− uT∥H < ε.

Definition 1.4.3. (null controllability) Let T > 0. We say that the control
system (1.4.1) is null controllable in time T if for every u0 ∈ H, there exists a
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control f ∈ L2((0, T );X ) such that the solution u of the Cauchy problem (1.4.1)
associated to f satisfies u(T ) = 0.

In the case of a system of linear ordinary differential equations in finite
dimension of the form ∂tu = Au+Bf

u(0) = u0,
(1.4.2)

where A and B are matrices of respective sizes n × n and n × m, u(t) ∈ Rn,

and f(t) ∈ Rm, these three notions of controllability are equivalent. This is
not the case in the context of partial differential equations. A necessary and
sufficient exact controllability criterion for the finite-dimensional system (1.4.2)
exists: the so-called Kalman criterion.

Theorem 1.4.4. (Kalman rank condition in finite dimension) The time invari-
ant linear control system (1.4.2) is controllable in time T if and only if

rank
(
B | AB | . . . | An−1B

)
= n.

In this theorem, we remark that the criterion does not depend on the chosen
time T > 0, so we can deduce the following: if the system is controllable in some
time T > 0, then it is controllable for any time T ′ > 0. However, this criterion
does not specify how the control depends on the time. In the context of partial
differential equations, some control systems are not exactly controllable in any
time T . Some are exactly controllable if T is chosen sufficiently large. Then one
speaks of minimal time of control. This is in articular the case of hyperbolic
equations since the influence of the control is limited by the finite speed of
propagation.
These notions of control have some weakness: they depend strongly on the
initial data, and do not depend on the state of the system when 0 < t < T. It is
often important to consider problems with feedback, where the control acts on
the system by responding continuously to the system (which does not undergo
any interruption in time). It is particularly the case when studying stablization
problems. Such systems can be written as∂tu = K(u, f(u))

u(0) = u0.
(1.4.3)

Defining an energy depending on the solution u of (1.4.3), we are then interested
in the decay properties of this energy.
When the control function f depends on the solution u and when the system
becomes dissipative (for instance if absorbing boundary conditions or damped
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terms are involved), the energy is a positive time-decreasing function. There-
fore, we study the long time asymptotic behavior of the energy. In particular,
the choice of various regularity for the initial data and/or geometrical hypothe-
ses gives different estimates for the decay rate of the energy.

In general the proof of the controllability of a linear system relies on the proof
of an observability criterium.

1.5 From control to observability

Here, we present how the null controllability can be reduced to obtaining a
functional inequality, known as observability, by a duality argument. These in-
equalities play a central role in the study of control and stabilization of partial
differential equations. Indeed, constructing a control is in general a difficult
problem. On the other hand, there are many existing tools that can be used to
show functional inequalities, such as energy inequalities, Carleman inequalities,
Ingham inequalities, or Gårding’s inequalities.

We place ourselves in the following case∂tu = Au+Bf,

u(0) = u0 ∈ H,
(1.5.1)

where A is an operator acting on a Hilbert space H with domain D(A) ⊂ H.

We suppose that A is the generator of a strongly continuous semigroup, denoted
S(t). We assume that the control operator B acts on the control space X (also a
Hilbert space) and in addition we assume that B ∈ L(X , H) for simplicity. Note
that this condition can be relaxed, then we must replace the continuity of the
operator B by the so-called admissibility condition (see [95] for more details).
This is particularly useful if one wishes to control a partial differential equation
from the boundary of the domain. One acts on the system by means of the
operator B, and in general, it restricts the possibilities of action. The definition
of the null controllability of system (1.5.1) is given by Definition 1.4.3.
With the assumptions made on S(t) and B, we can write the solution of (1.5.1)
with the Duhamel formula

u(t) = S(t)u0 +
∫ t

0

S(t− s)Bf(s)ds. (1.5.2)

Let B∗ ∈ L(H,X ) be the adjoint of B (the dual spaces H ′ and X ′ are identified
to H and X respectively). We introduce here the following dual system on
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(0, T ), ∂tv = −A∗v, on (0, T )

v(T ) = vT ∈ H,
(1.5.3)

where, A∗ is the adjoint operator of A in H. The generator of the adjoint
semigroup S∗(t) = (etA)∗ is A∗, and the solution of (1.5.3) can be written v(t) =
e(T−t)A

∗
vT , where e(T−t)A∗

= (e(T−t)A)∗. Note that (1.5.3) is homogeneous.
The question of the observability is the following : Is it possible, by observing
only the quantity B∗v(t), to know the energy of the system (1.5.3) at time t = 0,

i.e, ∥v(0)∥2H? The observability notion of system (1.5.3) is given by the following
definition.

Definition 1.5.1. One says that the system (1.5.3) is observable at time T > 0

if there exists a constant CObs,T > 0 such that for every vT ∈ H, the solution of
(1.5.3) satisfies

∥S∗(T )vT∥H ≤ CObs,T∥B∗v(t)∥L2((0,T );X ) = CObs,T

(∫ T

0

∥B∗v(t)∥2Xdt
)1/2

.

(1.5.4)

We note that S∗(t)vT = v(0), where v is the solution of (1.5.3). The constant
CObs,T is called the constant of observability. This notion of observability has its
own interest because it appears in many concrete situations when one would like
to know the state of a system on which one can only make partial measurements.
This is the case for instance in meteorology, in imaging or, more generally, in
the field of inverse problems.
Another interest of the observability for system (1.5.3) lies in its link with the
null controllability of the initial system (1.5.1). We then have the following
result, proved by S. Dolecki and D. L. Russell [31], and J.-L. Lions [66].

Theorem 1.5.2. The null controllability at time T > 0 of the system (1.5.3)
is equivalent to the inequality (1.5.4) with a constant CObs,T > 0. Moreover if
(1.5.4) holds with constant CObs,T , then one can find a control f ∈ L2((0, T ),X )

satisfying ∥f∥L2((0,T ),X ) ≤ CObs,T∥u0∥H .

We also note that the exact controllability of system (1.5.1) is equivalent
to the observability of system (1.5.3). More precisely, in this case the operator
S∗(T ) is replaced by the identity Id in the left part of inequality (1.5.4).
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1.6 Example of stabilization: case of the wave
equation

We give an example concerning the stabilization of the wave equation. Let Ω be
a smooth open bounded subset of Rd and ω an open subset of Ω. We consider
the following wave equation

∂2t u−∆u+ α(x)∂tu = 0 on [0,∞)× Ω

u|t=0 = u0, ∂tu|t=0 = u1,

u|∂Ω = 0,

(1.6.1)

where α(x) is a nonnegative bounded function that satisfies α(x) ≥ C > 0, for
x ∈ ω. Multiplying (1.6.1) by ∂tu and integrating over Ω, we obtain∫

Ω

∂2t u ∂tu dx+

∫
Ω

∇xu∇x∂tu dx+

∫
Ω

α(x)∂tu ∂tu dx = 0,

which implies that

1

2

d

dt

[
∥∂tu∥2L2(Ω) + ∥∇xu∥2L2(Ω)

]
= −∥α(x)1/2∂tu∥2L2(Ω).

Introducing the H1-energy

E(u, t) :=
1

2

(
∥∂tu∥2L2(Ω) + ∥∇xu∥2L2(Ω)

)
,

one finds
d

dt
E(u, t) = −∥α(x)1/2∂tu∥2L2(Ω) ≤ 0.

One calls α(x)∂tu the damping term; it is the responsible for the decay of the
energy. One refers to (1.6.1) as the damped wave equation. One proves that
the energy decays to zero. A natural question is thus the study of the rate of
convergence of this energy, i.e., to obtain an estimate of the type

E(u, t) ≤ h(t)G(u0, u1),

where h is a decreasing function that tends to zero at infinity and G a function.
The weak stabilization consists in showing that for any (u0, u1) in a suitable
space, lim

t→+∞
E(u, t) = 0 and the strong stabilization consists to show, under

suitable conditions the existence of C > 0 and K > 0 such that for any (u0, u1)

in a suitable space, we have a uniform and exponential decay rate

E(u, t) ≤ Ke−CtE(u, 0).
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The exponential decay of the energy can be achieved if the so-called geometrical
control condition (GCC) is fulfilled. This result was first proven in dimension
one or on manifolds without boundary by [80, J. Rauch and M. Taylor]. The
geometrical control condition expresses that all bicharacteristics (or rays of ge-
ometrical optics ) reach the damping region in a finite time. The generalization
of this exponential decay result to domains with boundaries in the case of ho-
mogeneous Dirichlet and Neumann conditions was proven [57,58, C. Bardos , G.
Lebeau and J. Rauch]. Bicharacteristics are then replaced by so-called general-
ized bicharacteristics that obey the laws of reflection at a boundary. There are
introduced by R. Melrose and J. Sjöstrand [70, 71] to describe the propagation
of singularities. The proof in [57] is based on this description of propagation of
singularities.
Note that exponential decay of the energy is equivalent to having an observabil-
ity estimate for the wave equation (without damping), the observation being
located in the region where the damping acts; we refer to the work of A. Ha-
raux [38]. For the wave equation, stabilization (and equivalently observability)
can also be expressed by means of the so-called Hautus test for the resolvent;
we refer to the works of D. Russel and G. Weiss [84] and L. Miler [75]. Under
weaker geometrical conditions one can obtain a polynomial decay rate of the
damped wave equation. We shall be interested in such weaker decay rates here.

1.7 Carleman estimates

In 1939, T. Carleman introduced some energy estimates with exponential weights
to prove a uniqueness result for some elliptic partial differential equations (PDE)
with smooth coefficients in dimension two [21]. This type of estimate, now re-
ferred to as Carleman estimates, were generalized by L. Hörmander and others
for a large class of differential operators in arbitrary dimensions (see, [42,43,98]).
Carleman estimates are weighted a priori inequalities for the solutions of a par-
tial partial differential equation of the form

∥eτφu∥L2(Ω) ≤ ∥eτφPu∥L2(Ω), (1.7.1)

where P is a differential operator, u a function, φ a function called the weight
function and τ > 0 a large parameter.
The interest of such inequalities is the presence of the weight function φ which
allows to “propagate” information from areas where φ is large to the whole
domain, by means of the large parameter τ > 0, known as large Carleman
parameter. Additional terms on the left-hand side of the inequality can be
obtained, including higher-order derivatives of the function u, depending of
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course of the order of the operator P itself. For a second-order elliptic operator
such as the Laplace operator one has

τ 3/2∥eτφu∥L2(Ω) + τ 1/2∥eτφDu∥L2(Ω) + τ−1/2
∑
|β|=2

∥eτφDβu∥L2(Ω) ≤ C∥eτφ∆u∥L2(Ω),

under the so-called sub-ellipticity condition; see Chapter 3 in [62]. Note that
the power of the large parameter τ adds to 3/2 with the order of the derivative
in each term on the left-hand side. In fact, in the calculus used to derive such
estimates one power of τ is equivalent to a derivative of order one. Thus with
this 3/2 compared with the order two of the operator one says that one looses
a half-derivative in the estimate.

In more recent years, the field of applications of Carleman estimates has
gone beyond the original domain; they are also used in the study of :

• Inverse problems, where Carleman estimates are used to obtain stability
estimates for the unknown sought quantity (e.g. coefficient, source term)
with respect to norms on measurements performed on the solution of the
PDEs see e.g. [18,45,54,96]; Carleman estimates are also fundamental in
the construction of complex geometrical optic solutions that lead to the
resolution of inverse problems such as the Calderón problem with partial
data [85,86].

• Control theory for PDEs; through unique continuation properties, Carle-
man estimates are used for the exact controllability of hyperbolic equa-
tions [57]. They also yield the null controllability of linear parabolic equa-
tions [60] and the null controllability of classes of semi-linear parabolic
equations [9, 33, 36].

For a function supported near a point at the boundary, in normal geodesic
coordinates where Ω is locally given by {xd > 0} (see Section 4.5.2 below) the
estimate can take the form∑
|β|≤2

τ 3/2−|β|∥eτφDβu∥L2(Ω) +
∑
|β|≤1

τ 3/2−|β||eτφDβu|xd=0+ |L2(Ω)
≤ C∥eτφ∆u∥L2(Ω).

This is the type of estimate we seek here for the operator Pσ = ∆2 − σ4, with
some uniformity with respect to σ. The main results concerning Part B are the

following.
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1.8 Main results of Part B

We state the main Carleman estimate for the operator Pσ in normal geodesic
coordinates as presented in Section 4.5.2.

1.8.1 Carleman estimate

A point x0 ∈ ∂Ω is considered and a weight function φ is assumed to be defined
locally and such that

(1) ∂dφ ≥ C > 0 locally.

(2) (−∆ ± σ2, φ) satisfies the sub-ellipticity condition of Definition 4.9.1 lo-
cally. This is a necessary and sufficient condition for a Carleman estimate
to hold for a second-order operator −∆±σ2 to hold regardless of boundary
conditions [62, Chapters 3 and 4].

(3) (Pσ, B1, B2, φ) satisfies the Lopatinskĭı-Šapiro condition of Definition 4.7.1
at ϱ′ = (x0, ξ′, τ, σ) for all (ξ′, τ, σ) ∈ Rd−1 × [0,+∞) × [0,+∞) such
that τ ≥ κ0σ, for some κ0 > 0. This means that the Lopatinskĭı-Šapiro
condition holds after the conjugation of the operator Pσ and the boundary
operators B1 and B2 by the weight function exp(τφ).

Theorem 1.8.1 (Carleman estimate). Let κ′0 > κ0 > 0. Let x0 ∈ ∂Ω. Let φ be
such that the properties above hold locally. Then, there exists W 0 a neighborhood
of x0, C > 0, τ0 > 0 such that

τ−1/2∥eτφu∥4,τ + | tr(eτφu)|3,1/2,τ ≤ C
(
∥eτφPσu∥+ +

2∑
j=1

|eτφBju|xd=0+ |7/2−kj ,τ
)
,

(1.8.1)

for τ ≥ τ0, κ0σ ≤ τ ≤ κ′0σ, and u ∈ C
∞
c (W 0

+).

The volume norm is given by

∥eτφu∥4,τ =
∑
|β|≤4

τ 4−|β|∥eτφDβu∥L2(Ω).

The trace norm is given by

| tr(eτφu)|3,1/2,τ =
∑

0≤n≤3

|∂nν (eτφu)|xd=0+ |7/2−n,τ ,

where the norm |.|7/2−n,τ is the L2-norm in Rd−1 after applying the Fourier
multiplier (τ 2 + |ξ′|2)7/4−n/2.
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Observe that the Carleman estimate of Theorem 1.8.1 exhibits a loss of a
half-derivative. A more precise statement is given in Theorem 4.10.3 in Sec-
tion 4.10.2.

1.8.2 Stabilization result

Let (P0, D(P0)) be the unbounded operator on L2(Ω) given by the domain

D(P0) =
{
u ∈ H4(Ω); B1u|∂Ω = B2u|∂Ω = 0

}
(1.8.2)

given by P0u = ∆2u for u ∈ D(P0). As written above the two boundary
differential operators are such that (P0, D(P0)) is self-adjoint and nonnegative.

Let y(t) be a strong solution of the plate equation (4.5.1). A precise defi-
nition of strong solutions is given in Section 4.12.3. One has y0 ∈ D(P0) and
y1 ∈ D(P

1/2
0 ). Its energy is defined as

E(y)(t) = 1

2

(
∥∂ty(t)∥2L2(Ω) + (P0y(t), y(t))L2(Ω)

)
.

Theorem 1.8.2 (logarithmic stabilization for the damped plate equation).
There exists C > 0 such that for any such strong solution to the damped plate
equation (4.5.1) one has

E(y)(t) ≤ C(
log(2 + t)

)4 (∥P0y
0 + αy1∥2L2(Ω) + ∥P1/2

0 y1∥
2

L2(Ω)

)
.

A more precise and more general statement is given in Theorem 4.13.3 in
Section 4.13.2.
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2. Some elements of functional
analysis

2.1 General facts

We deal with functions u defined almost everywhere (a.e.) on an open bounded
domain Ω ⊂ Rd. A point x ∈ Ω is written x = (x1, · · · , xd). The boundary of
Ω will be denoted by ∂Ω. We suppose that ∂Ω is sufficiently smooth, let say at
least of class C 2.

2.1.1 Functions space and definitions.

2.1.1.1 Functions spaces

Definition 2.1.1. A normed spaceX is a called a Banach space if it is complete,
i.e., if every Cauchy sequence is convergent, that is,

{un}n∈N is a Cauchy in X ⇒ ∃u ∈ X such that un → u as n→ ∞.

For functions u (measurable) defined a.e. in Ω, the following spaces will be
considered.

(i) The Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, where

Lp(Ω) =

{
u : Ω → R ;

∫
Ω

|u|p dx <∞
}
,

for 1 ≤ p <∞. We denote by

∥u∥p =
(∫

Ω

|u(x)|p dx
) 1

p

the norm on Lp(Ω).

For p = ∞, by L∞(Ω) we denote the space of measurable functions u
which are essentially bounded over Ω equipped with the norm

∥u∥∞ = inf{M ∈ R+ : |u(x)| ≤M a.e. in Ω}. (2.1.1)

The norms that make Lp(Ω) Banach space are respectively ∥.∥p and ∥.∥∞.

The space Lp(Ω) is reflexive for 1 < p < ∞ with its dual denoted by
Lp

′
(Ω) with 1

p
+ 1

p′
= 1.

(ii) By C ∞
c (Ω) we denote the set of all functions u defined and infinitely

differentiable on Ω such that their support supp(u) is compact and satisfies
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supp(u) ⊂ Ω. Recall that supp(u) is the closure of the set {x ∈ Ω;u(x) ̸=
0}.

(iii) For α a multi-index, |α| ≥ 1, the function vα is called a weak (or distri-
butional) derivative of u (of order α) if the identity∫

Ω

vα(x)φ(x) dx = (−1)|α|
∫
Ω

u(x)Dαφ(x) dx

holds true for every φ ∈ C ∞
c (Ω). Then vα is denoted by Dαu.

(iv) Sobolev spaces. For k ∈ N and 1 ≤ p < ∞ we denote by W k,p(Ω) the
set of all functions u ∈ Lp(Ω) for which the weak derivatives Dαu with
|α| ≤ k exists in the weak sense and belongs to Lp(Ω) as well.

The Sobolev spaceW k,p(Ω) is a Banach space (uniformly convex and hence
reflexive if 1 < p <∞) if equipped with the norm

∥u∥k,p =

∑
|α|≤k

∥Dαu∥pp

 1
p

. (2.1.2)

Further, the space W k,p
0 (Ω) is defined as the closure of C ∞

c (Ω) with respect
to the norm ∥.∥k,p. For Ω bounded the expression

∥u∥k,p =

∑
|α|=k

∥Dαu∥pp

 1
p

is a norm on W k,p
0 (Ω) equivalent to the one defines in (2.1.2). This is

based on the Poincaré inequality, see below Proposition 2.1.4.

2.1.1.2 Some definitions

Definition 2.1.2. Let X be a Banach space. A sequence {un}n∈N ⊂ X con-
verges weakly to u ∈ X, in which case we write un ⇀ u in X if f(un) → f(u)

for all f ∈ X ′ (the dual space of X). In addition if un ⇀ u in X, then un is
bounded in X and

∥u∥X ≤ lim inf
n→∞

∥un∥X .

Definition 2.1.3. One says that the sequence un converges strongly to u in X,
in which case we note un → u in X, if un, u ∈ X and if

lim
n→∞

∥un − u∥X = 0.
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Definition 2.1.4. Let x be an element of the open subset U ⊂ X. The mapping
F : U → Y is Fréchet-differentiable at x ∈ U if there exists a linear operator
A ∈ Lc(X, Y ), such that

F (x+ h)− F (x)− Ah = o(∥h∥) with F ′(x) = A.

We use the notation r(h) = o(∥h∥X) for the mapping r : X → Y if and only
if

lim
h→0

∥r(h)∥Y
∥h∥X

= 0,

which means that for every ε > 0 there exists δ > 0 such that if ∥h∥X < δ then
∥r(h)∥Y < ε∥h∥X .

Definition 2.1.5. Let X, Y be a Banach spaces and U ⊂ X a sub-open set
of X. Let F : U → Y be a mapping and x ∈ X. We say that F is Gâteaux-
differentiable at x if there exists A ∈ Lc(X, Y ), such that

lim
t→0

F (x+ th)− F (x)

t
= Ah, for all h ∈ U.

The mapping A is uniquely determined. It is call Gâteaux-derivative of F at x
and is denoted by F ′

G(x). If Y = R, F is said to be a functional.

Definition 2.1.6. Let X be a Banach space, U ⊆ X an open set and assume
that I : U → R is differentiable. A critical point of I is a point u ∈ U such that
I ′(u) = 0. As I ′(u) is an element of the dual space X ′, this means of course
⟨I ′(u), v⟩ = 0 for all v ∈ X.

2.1.1.3 well-known results

Theorem 2.1.7. (Gauss-Green)
Let U ⊂ Rd be a given open set and Ω any smooth subregion within U. Then we
have ∫

Ω

div(F ) dx =

∫
∂Ω

F · ν dS,

where F denote the flux density (F ∈ C1(U,Rd)) and ν the unit outer normal
field.

Corollary 2.1.8. (Integration by parts) Let Ω be a regular open set of class
C1. Let u and v be two C1(Ω) functions with bounded support in the closed set
Ω. Then they satisfy the integration by parts formula∫

Ω

u(x)
∂v

∂xi
(x) dx = −

∫
Ω

v(x)
∂u

∂xi
(x) dx+

∫
∂Ω

u(x)v(x)νi(x) dS. (2.1.3)
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Proposition 2.1.9. (Hölder inequality) Let Ω be an open subset of Rd and
p, q ∈ [1,∞] such that 1

p
+ 1

q
= 1. Let f ∈ Lp(Ω), g ∈ Lq(Ω), then

∥fg∥1 ≤ ∥f∥p∥g∥q.

Proposition 2.1.10. (Poincaré inequality) Let Ω be a bounded domain.
There exists a positive constant Cp such that, for every u ∈ W 1,p

0 (Ω),

∥u∥p ≤ Cp∥∇u∥p. (2.1.4)

Theorem 2.1.11. (Rellich-Kondrachov embedding) Suppose that Ω ⊂ Rd

is bounded and of class C1. Then we have following compact injections.

i. W 1,p(Ω) ⊂⊂ Lq(Ω), ∀ q ∈ [1, p⋆), where 1
p⋆

= 1
p
− 1

d
, if p < d.

ii. W 1,p(Ω) ⊂⊂ Lq(Ω), ∀ q ∈ [p,∞), if p = d.

iii. W 1,p(Ω) ⊂⊂ C(Ω) if p > d.

We have the following theorem.

Theorem 2.1.12. Suppose that f : U → R has a continuous Gâteaux-derivative
on U. Then f is Fréchet-differentiable and f ∈ C1(U,R).

Lemma 2.1.13. (Fatou’s lemma)
Let {fn} be a sequence of functions in L1(Ω) that satisfy

i. for all n, fn ≥ 0 a.e

ii. supn

∫
Ω

fn <∞.

For almost all x ∈ Ω we set f(x) = lim infn→∞ fn(x) <∞. Then f ∈ L1(Ω) and∫
Ω

f dx ≤ lim inf
n→∞

∫
Ω

fn dx.

2.1.2 Linear operators in Banach spaces

Here, X and Y will denote Banach spaces with their norms denoted by ∥ · ∥X ,
∥ · ∥Y or simply ∥ · ∥ if no confusion is possible.

An operator A from X to Y is a linear map on its domain. One denotes
by D(A) the domain of A. An operator from X to Y is thus characterized by
its domain and how it acts on this domain. Operators defined this way are
usually referred to as unbounded operators. One writes (A,D(A)) to denote
the operator along with its domain. The set of linear operators from X to Y is
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denoted by L (X, Y ). The set of linear and continuous operator from X to Y
will be denoted by Lc(X, Y )

If D(A) is dense in X the operator A is said to be densely defined. If D(A) = X

one says that the operator A is on X to Y.
The range of the operator A is denoted by Ran(A), that is

Ran(A) = {Ax : x ∈ D(A)} ⊂ Y

and its kernel, Ker(A), is the set of all x ∈ D(A) such that Ax = 0.

The graph of A, G (A) is given by

G (A) = {(x,Ax) : x ∈ D(A)} ⊂ X × Y.

We naturally endow X × Y with the norm ∥(x, y)∥X×Y = ∥x∥2X + ∥y∥2Y which
makes X ×Y a Banach space. One says that A is a closed operator if its graph
G (A) is a closed subset of X × Y for this norm. The so-called graph norm on
D(A) is given by

∥x∥2D(A) = ∥(x,Ax)∥2X×Y = ∥x∥2X + ∥Ax∥2Y .

The operator A is closed if and only if the space D(A) is complete for the graph
norm ∥ · ∥D(A).

If a linear operator A from X to Y is injective, one can define the operator A−1

from Y to X such that

D(A−1) = Ran(A), Ran(A−1) = D(A), A−1A = IdD(A), AA−1 = IdRan(A).

One says that A is invertible and A−1 is called the inverse operator.

Definition 2.1.14. An linear operator A from X to Y is said to be continuous
if it is continuous at every x ∈ D(A) or equivalently if it is continuous at x = 0.

This is equivalent to having K > 0 such that ∥Ax∥Y ≤ K∥x∥X for all x ∈ D(A).

One says that A is a bounded operator.

The positive number

K = sup
x∈D(A)
x ̸=0

∥Ax∥Y
∥x∥X

is called the bound of A, and denoted by ∥A∥L (X,Y ) or simply ∥A∥. Note that
linear operator from X to Y that fails to be continuous are such that

sup
x∈D(A)
x ̸=0

∥Ax∥Y
∥x∥X

= +∞.
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This justifies the name unbounded for general linear operators from X to Y .

Theorem 2.1.15. (closed-graph theorem) Let A be such that D(A) is a closed
linear subspace in X. Then, A is bounded if and only if A is a closed operator.

For a proof we refer to [49].

2.1.3 Spectrum of linear operator in a Banach space

We consider here a linear operator from X to itself. One says that λ ∈ C is
in the resolvent set ρ(A) of an linear operator A from X to X if the operator
λId − A is injective and the inverse operator (λId − A)−1 has a dense domain
D((λId−A)−1) = Ran(λId−A) in X and is bounded. If λ ∈ ρ(A) then we set
Rλ(A) = (λId−A)−1. The spectrum is then simply the complement set of ρ(A)
in C. We denote by sp(A) the spectrum of A.
The spectrum of a linear operator is othen separated in three disjoints sets

(a) The point spectrum that gathers all λ ∈ C such that the operator λId−A
is not injective. Such a complex number λ is called an eigenvalue of A
and the (finite or infinite) dimension of the kernel ker(λId − A) is the
the geometric multiplicity associated with this eigenvalue. An element of
ker(λId − A) is called an eigenvector or an eigenfunction in the case the
Banach X is a function space.

(b) The continuous spectrum that gathers all λ ∈ C such that the operator
λId − A is injective, has a dense domain but its inverse Rλ(A) is not
bounded.

(c) The residual spectrum that gathers all λ ∈ C such that the operator
λId − A is injective but does not have a dense image.

2.1.4 Monotone mappings

Here X ′ denote the dual space of X.

Definition 2.1.16. Let X be a real Banach space. A mapping B : X → X ′ is
called hemi-continuous at x0 in X , if for all y in X, ∀sn ↓ 0 with x0+ sny ∈ X,

imply that B(x0 + sny) ⇀ Bx0. It is called demi-continuous at x0 ∈ X, if for
all xn ∈ E, xn → x0 in X implies that Bxn ⇀ Bx0, where ⇀ is the weak
convergence.

We observe that “continuous” ⇒ “demi-continuous” ⇒ “hemi-continuous” .
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Definition 2.1.17. Let X be a real Banach space. A mapping B : X → X ′ is
called monotone if

⟨Bx−By, x− y⟩ ≥ 0, for all x, y ∈ X.

An important property for monotone mappings reads as follows.

Lemma 2.1.18. Let E be a convex subset of a real Banach space X. If B : E ⊂
X → X ′ is hemi-continuous and monontone, then for any sequence xn ∈ E

with xn ⇀ x ∈ E and lim⟨Bxn, xn − x⟩ ≤ 0, we have

lim⟨Bxn, xn − y⟩ ≥ ⟨Bx, x− y⟩ ∀y ∈ E.

Proof. Since A is monotone, we have ⟨Bxn −Bx, xn − x⟩ ≥ 0 and this implies,

0 = lim⟨Bx, xn−x⟩ ≤ lim⟨Bxn, xn−x⟩ ≤ lim⟨Bxn, xn−x⟩ ≤ 0 (by assumption).

We then obtain that
lim⟨Bxn, xn − x⟩ = 0. (2.1.5)

Again by monotonicity and (2.1.5), for all z ∈ E we have

lim⟨Bxn, x− z⟩ = lim⟨Bxn, xn − z⟩ ≥ lim⟨Bz, xn − z⟩ = ⟨Bz, x− z⟩. (2.1.6)

For all z ∈ E and sk ∈ (0, 1) we set z = zk := (1− sk)x+ sky and substituting
this in (2.1.6), it follows that

lim⟨Bxn, x− y⟩ ≥ ⟨Bzk, x− y⟩. (2.1.7)

Now thanks to the hemi-continuity, the right hand side of (2.1.7) converges to
⟨Bx, x− y⟩ as sk → 0. Combining (2.1.5)-(2.1.7) together with the last fact, it
follows that

lim⟨Bxn, xn − y⟩ ≥ ⟨Bx, x− y⟩.

The following notion on pseudo-monotonicity is abstracted from the combi-
nation of the monotonicity and the hemi-continuity.

Definition 2.1.19. Let X be a reflexive Banach space and let E ⊂ X be a
nonempty closed convex subset. An operator B : E → X ′ is called pseudo-
monotone, if

(a) For all finite-dimensional linear subspace L ⊂ X, B|L∩E : L ∩ E → X ′ is
demi-continuous.
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(b) For all sequence {xn} ⊂ E with xn ⇀ x ∈ E, the condition lim⟨Bxn, xn−
x⟩ ≤ 0 implies lim⟨Bxn, xn − y⟩ ≥ ⟨Bx, x− y⟩, ∀y ∈ E.

One sees that a hemi-continuous monotone operator is pseudo-monotone.
Moreover, a completely continuous mapping B : X → X ′( that is, for any
xn ⇀ x in X, we have Bxn → Bx in X ′) is pseudo-monotone.

Theorem 2.1.20. (F. Browder) Suppose that X is a reflexive Banach space,
and that B : X → X ′ is pseudo-monotone and coercive, i.e., lim

∥x∥→+∞

⟨Bx,x⟩
∥x∥ =

+∞. Then A is surjective.

Proof. We need to show that ∀z ∈ X ′, ∃x0 ∈ X such that Bx0 = z. We define
T : x 7→ Bx− z. Then, T is hemi-continous and monotone, and so T is pseudo-
monotone. In addition T satisfies

⟨Tx, x⟩ > 0 as ∥x∥ > R0,

for some R0 > 0, provided by the coerciveness of B. We apply the Hartman-
Stampacchia theorem [55, Theorem 2.5.7] to conclude the existence of x0 ∈ X

satisfying ⟨Tx0, x0−y⟩ = ⟨Bx0−z, x0−y⟩ ≤ 0 for all y ∈ X. Since y is arbitrary
in the linear space X, it follows that Bx0 = z.

Corollary 2.1.21. Suppose that H is a real Hilbert space, and that B is a
continuous strongly operator, i.e., ∃C > 0 such that

(Bx−By, x− y) ≥ C∥x− y∥2 ∀x, y ∈ H. (2.1.8)

Then B is a homeomorphism.

Proof. We clearly have that B is pseudo-monotone and coercive. As the conse-
quence of Theorem 2.1.20, B is surjective. The injectivity of B as well as the
continuity of B−1 follows from the inequality (2.1.8).

2.1.5 Fredholm operators

We shall denote by B(X, Y ) the set of bounded operators A on X to Y, that is,
such that D(A) = X. Once we speak of a bounded operator A : X → Y without
any mention of its domain, this means that D(A) = X, that is, A is on X to
Y. Let A be a linear closed operator from X to Y. The nullity of A, denoted
nul(A), is defined as the dimension of ker(A) and the deficiency of A, denoted
def(A), is defined as the dimension of Y/Ran(A). Both nul(A) and def(A) take
value in N ∪ {∞}.

Definition 2.1.22. A linear operator A from X to Y is said to be Fredholm if
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i. it is closed,

ii. Ran(A) is closed,

iii. both nul(A) and def(A) are finite.

One then sets the index of A as ind(A) = nul(A)− def(A).

2.1.6 Characterization of bounded Fredholm operators

We denote by FrB(X, Y ) the space of Fredholm operators that are bounded
on X into Y. The following result states that those operators are the operators
in B(X, Y ) that have an inverse up to remainder operators that are compact.

Theorem 2.1.23. Let A ∈ B(X, Y ). It is Fredholm if and only if there exists
S ∈ B(X, Y ) such that

SA = IdX +Kp, AS = IdY +Kq, (2.1.9)

where Kp ∈ B(X,X) and Kq ∈ B(Y, Y ) are compact operators. In particular,
S is Fredholm and ind(A) = −ind(S).

For a proof we refer to [62, Theorem 11.7].

2.2 Semigroup theory

Semigroup theory is at the centre of the understanding of many evolution equa-
tions that can be put in the following form

d

dt
x(t) + Ax(t) = f(t), t > 0, x(0) = u0, (2.2.1)

with x(t) and x0 in a proper function space, usually a Banach space, denoted by
X, if not a Hilbert, with A an unbounded operator on X, with dense domain,
and f a function of the time variable t taking values in [0,∞). We will only
review the case of a homogeneous equation, that is f ≡ 0. For general references
on semigroups we refer to [28,40,76].

2.2.1 Strongly continuous semigroups

Consider the following homogeneous equation associated with the evolution
equation problem (2.2.1),

d

dt
x(t) + Ax(t) = 0, t > 0, x(0) = u0. (2.2.2)
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Under proper assumption on A we can write the solution in the form
x(t) = S(t)x0, where S(t) : X → X is a bounded operator. Since some sort of
differentiation with respect to time is expected in (2.2.2), a minimal assumption
is then that

S(0)x = x and t 7→ S(t)x be continuous for all x ∈ X. (2.2.3)

With t 7→ x(t) solution to (2.2.2), if the evolution problem is well posed, we
expect from uniqueness that solving the following problem, for some t0 ≥ 0,

d

dt
y(t) + Ay(t) = 0, t > 0, y(t0) = x(t0), (2.2.4)

yield a solution that satisfies y(t) = x(t) for t ≥ t0. In particular, this implies
the following property:

S(t+ t′) = S(t) ◦ S(t′), for t, t′ ∈ [0,+∞). (2.2.5)

Properties (2.2.3) and (2.2.5) are precisely the starting point of semigroup the-
ory in Banach spaces.

2.2.2 Definition and basic properties

Let X be a Banach space.

Definition 2.2.1. A family S(t) of bounded operators on X, with t ∈ [0,+∞)

is called a semigroup if:

S(0) = IdX and S(t+ t′) = S(t) ◦ S(t) for t, t′ ∈ [0,+∞). (2.2.6)

The semigroup is called strongly continuous if, moreover, for all x ∈ X we have
lim
t→0+

S(t)x = x. One says that S(t) is a C0-semigroup for short.

Theorem 2.2.2. Let S(t) be a C0-semigroup. There exist constants ω ≥ 0 and
M ≥ 1 such that

∥S(t)∥L (X) ≤Meωt, for 0 ≤ t <∞. (2.2.7)

Proof. We first show that ∥S(t)∥L (X) is bounded. More precisely, we show that
there is an µ > 0 such that

sup
t∈[0,µ]

∥S(t)∥L (X) <∞.
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Suppose that ∥S(t)∥L (X) is not bounded, that is, sup
t∈[0,µ]

∥S(t)∥L (X) = +∞, for

all µ = 1
k

with k ∈ N. Therefore for all k ∈ N, there exists tk ∈ [0, 1
k
] such

that sup
k≥1

∥S(tk)∥L (X) = +∞. From the Uniform boundedness theorem ∃x ∈ X :

sup
k≥1

∥S(tk)x∥L (X) = +∞, i.e, ∥S(tk)x∥L (X) is unbounded. On the other hand,

for all x ∈ X, R+ ∋ t 7→ S(t)x ∈ X is continuous at 0; that is,

∀ε > 0, ∃N > 0 : |t| < N ⇒ ∥S(t)u− u∥L (X) < ε.

In particular, letting ε = 1, it follows that ∥S(t)x − x∥L (X) < 1 and hence we
have the estimates

∥S(t)x∥L (X) − ∥x∥L (X) ≤
∣∣∥S(t)x∥L (X) − ∥x∥L (X)

∣∣ ≤ ∥S(t)x− x∥L (X) < 1.

This implies that ∥S(t)x∥L (X) ≤ 1+∥x∥L (X). But we have 0 ≤ tk ≤ 1
k

and then
tk → 0 as k → ∞, and taking N = ε,

∃k0 ∈ N : |tk| < N ; ∀k ≥ k0 ⇒ ∥S(tk)x∥L (X) ≤ 1 + ∥x∥L (X). (2.2.8)

Therefore sup
k≥k0

∥S(tk)x∥L (X) ≤ 1 + ∥x∥L (X). For k ∈ {1, . . . , k0 − 1} set K =

max ∥S(tk)x∥L (X) since we have a finite number of S(tk)x. Then, for k ∈
{1, . . . , k0 − 1} we have

sup ∥S(tk)x∥L (X) ≤ K. (2.2.9)

Combining (2.2.8) and (2.2.9) we get sup
≥1

∥S(tk)x∥L (X) ≤ 1+∥x∥L (X)+K <∞

and this a contradiction. Hence there is an µ > 0 such that

sup
t∈[0,µ]

∥S(t)∥L (X) <∞.

Let M = sup
t∈[0,µ]

∥S(t)∥L (X), we have M ≥ 1 since ∥S(0)∥L (X) = 1.

Set ω = logM
µ

≥ 0. Given t ≥ 0 with t > δ, we have t = kµ+ δ, where 0 ≤ δ < µ

and therefore by the semigroup property

∥S(t)∥L (X) = ∥S(µ)kS(δ)∥L (X) ≤ ∥S(µ)k∥L (X)∥S(δ)∥L (X) ≤MMk =MM
t−δ
µ .

This implies that

∥S(t)∥L (X) ≤MM
t
µ =Meωµ×

t
µ =Meωt.
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Theorem 2.2.3. If (S(t))t≥0 is a C0-semigroup then for all u ∈ X, (t, u) 7→
S(t)u is continous from [0,∞)×X into X.

A C0-semigroup is said to be bounded if there exists M ≥ 1 such that
∥S(t)∥L (X) ≤ M, for t ≥ 0. In the case M = 1, one says that the the C0-
semigroup is of contraction.
We define the unbounded linear operator A from X to X, with domain

D(A) = {x ∈ X; lim
t→0+

t−1(x− S(t)x) exists}, (2.2.10)

and given by
Ax = lim

t→0+
t−1(x− S(t)x), x ∈ D(A). (2.2.11)

The domain D(A) is equiped with the graph norm

∥x∥D(A) = ∥x∥X + ∥Ax∥X .

Since A is closed one finds that (D(A), ∥ · ∥D(A)) is complete. This operator
(A,D(A)) is called the generator of the C0-semigroup .

We have the following theorem whose proof can be found in [76].

Theorem 2.2.4. Let S(t) be a C0-semigroup and A its generator. Then

a) For x ∈ X,

lim
h→0

1

h

∫ t+h

t

S(s)x ds = S(t)x. (2.2.12)

b) For x ∈ X,
∫ t
0
S(t)x ds ∈ D(A) and

A

(∫ t

0

S(t)x ds
)

= S(t)x− x. (2.2.13)

c) For x ∈ D(A), S(t)x ∈ D(A) and

d

dt
S(t)x = AS(t)x = S(t)Ax. (2.2.14)

d) For x ∈ D(A),

S(t)x− S(s) =
∫ t

s

S(θ)Ax dθ =
∫ t

s

AS(θ)x dθ. (2.2.15)

Corollary 2.2.5. If A is a generator of a C0-semigroup (S(t))t≥0 then the
domain D(A) of A, is dense in X and A is closed operator.
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For a proof we refer to [76].

Observe that if S(t) is a C0-semigroup and z ∈ C then eztS(t) statisfies (2.2.6).
We have the following proposition.

Proposition 2.2.6. Let S(t) be a C0-semigroup and z ∈ C. Then eztS(t) is also
a C0-semigroup and its generator is A− zIdX .

Note that because of the uniqueness of the generator of a C0-semigroup [76,
Theorem 1.2.6], conversely, if A generates a C0-semigroup, then A− zIdX is the
generator of a C0-semigroup, namely eztS(t).

The Hille-Yosida theorem

The natural question is to wonder if an unbounded operator on X is the gen-
erator of C0-semigroup. The Hille-Yosida theorem is central in the semigroup
theory, providing a clear answer to this question. We refer to [76, Theorem 1.3.1]
for a proof.

Theorem 2.2.7. Let (A,D(A)) be a linear unbounded operator on a Banach
space X. It generates a C0-semigroup of contraction if and only if

(a) A is closed and D(A) is dense in X.

(b) The resolvent set ρ(A) of A contains (−∞, 0) and we have the following
estimate

∥Rλ(A)∥L (X) ≤ 1/|λ|, λ < 0, Rλ(A) = (λIdX − A)−1.

This result is limited to contraction C0-semigroups. The following corollary
provides a charcaterization of all generators of C0-semigroups, we refer to [76,
Theorem 1.5.3] for a proof.

Corollary 2.2.8. Let (A,D(A)) be a linear unbounded operator on a Banach
space X. It generates a C0-semigroup S(t) such that ∥S(t)∥L (X) ≤ Meωt, for
some M ≥ 1 and ω ∈ R, if and only if

i. A is closed and D(A) is dense in X.

ii. The resolvent set ρ(A) of A contains (−∞,−ω) and we have the following
estimate

∥Rλ(A)
n∥L (X) ≤ 1/|ω+λ|n, λ < −ω, n ∈ N∗, Rλ(A) = (λIdX−A)−1.

The Hille-Yosida theorem has the following simple consequence.
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Corollary 2.2.9. Let (A,D(A)) be the generator of a bounded C0-semigroup
S(t), that is, ∥S(t)∥L (X) ≤ M, for t ≥ 0, for some M > 0. Then, its spectrum
satisfies sp(A) ⊂ {z ∈ C : Re z ≥ 0}.

Proof. Let c ∈ R, the C0-semigroup eictS(t) is generated by A − icIdX . Since
eictS(t) satisfies ∥eictS(t)∥L (X) ≤ M, for t ≥ 0, the conclusion follows from
Corollary 2.2.8 in the case ω = 0.

The Lumer-Phillips theorem

The Lumer-Phillips theorem provides another characterization of generators of
contraction semigroups.

Let X ′ be the dual space of X equipped with the strong topology. For x ∈ X

we set
F(x) = {φ ∈ X ′ : φ(x) = ⟨φ, x⟩X′,X = ∥φ∥2X′ = ∥x∥2X},

which is not empty by the Hahn-Banach theorem.

Definition 2.2.10. A linear unbounded operator (A,D(A)) on X is said to be
monotone (or accretive) if for all x ∈ D(A), x ̸= 0, there exists φ ∈ F(x) such
that Re⟨φ,Ax⟩X′,X ≥ 0.

Definition 2.2.11. A linear unbounded operator (A,D(A)) on X is said to be
maximal monotone if it is monotone and if moreover there exists λ0 > 0 such
that the range of λ0IdX + A, Ran(λ0IdX + A) = X.

The Lumer-Phillips theorem reads as follows.

Theorem 2.2.12. Let (A,D(A)) be a linear unbounded operator. It generates
a C0-semigroup of contraction if and only if

1) A has a dense domain.

2) A is maximal monotone

A proof based on the Hille-Yosida theorem directly follows from the two
lemmata below.

Remark 2.2.13. Observe that there is no need to assume that the operator
A is closed in the converse part of the Lumer-Phillips theorem as in the Hille-
Yosida theorem. In fact, as proven below, a maximal monotone operator is
closed. In the case of a reflexive Banach space, the dense domain assumption
may be dropped in the converse part of the Lumer-Phillips theorem: a maximal
monotone operator has a dense domain, see [76, Theorem 1.4.6] and also [15,
Proposition 7.1] for Hilbert space case.
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This lemma gives a characterization of monotone operators. We refer to [62,
Lemma 12.13] for a proof.

Lemma 2.2.14. An unbounded operator (A,D(A)) on X is monotone if and
only if

∥(λIdX + A)x∥X ≥ λ∥x∥X , x ∈ D(A) and λ > 0. (2.2.16)

The value of λ0 > 0 in Definition 2.2.11 is not of great significance. In fact,
we have the following result.

Lemma 2.2.15. Let A be a maximal monotone operator on X. Then, A is
closed and for all λ > 0 the operator λIdX + A is bijective from D(A) onto X.
Moreover, if λ > 0, its inverse (λIdX +A)−1 is a bounded operator and we have
the following estimation ∥(λIdX + A)−1∥L (X) ≤ 1/λ.

Proof. Let λ > 0, for x ∈ X, we have (λId+A)x = 0 and ∥(λIdX +A)x∥X = 0

implies that λ∥x∥X = 0 thanks to Lemma 2.2.14. It follows that x = 0 and
λIdX +A is injective. As A is maximal monotone, there exists λ0 > 0 such that
Ran(λ0IdX + A) = X, so λ0IdX + A is surjective. Its inverse (λ0IdX + A)−1 is
thus well defined on X. By Lemma 2.2.14, we have ∥(λ0IdX +A)−1∥L (X) ≤ 1

λ0
.

By the closed-graph theorem (see, Theorem 2.1.15), the graph of (λ0IdX+A)−1

is closed in X ×X and so is the graph of A.
We now prove that if λIdX +A is surjective then so is λ′IdX +A for any λ′ such
that λ > λ′/2 > 0. By induction, starting with λ = λ0 we then reach to the
conclusion that λIdX +A is surjective for any λ > 0 and then the boundedness
of its inverse follows from Lemma 2.2.14.
Let λ, λ′ > 0 be such that λIdX + A is surjective and 2λ > λ′ > 0. Let y ∈ X.

We want to find x ∈ X such that (λ′IdX+A)x = y. This reads as (λIdX+A)x =

y+ (λ− λ′)x and thus we have x = (λIdX +A)−1(y+ (λ− λ′)x), meaning that
we seek fixed point for the bounded map M : x 7→ (λIdX +A)−1(y+(λ−λ′)x).

By the computation above, we have ∥(λIdX + A)−1∥L (X) ≤ 1
λ
, we then find

∥M(x) − M(x′)∥X ≤ |1 − λ′

λ
|∥x − x′∥X . Since 0 < |1 − λ′

λ
| < 1, the Banach

contraction fixed point theorem applies.
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3. Part A: Nonlinear eigenvalue
problems

3.1 Calculus of variations

The calculus of variations uses variations, which are small changes in functions
and functionals, to find extrema(maxima, minima or other critical values) of
functionals: mappings from a set of functions to the real numbers. Functionals
are often expressed as definite integrals involving functions and their derivatives.

3.1.1 Functionals and critical points

Let X be a Banach space. A functional on X is a continuous real valued map
I : X → R. In general, one could consider functionals defined on open subsets
of X. But we will deal with functionals defined on all of X. In the applications,
critical points turn out to be weak solutions of differential equations.

Definition 3.1.1. We say that u ∈ X is a local minimum, respectively maxi-
mum of the functional I ∈ C(E,R) if there exists a neighbourhood V of u such
that

I(u) ≤ I(v), respectively I(u) ≥ I(v), ∀ v ∈ V \{u}. (3.1.1)

If the inequalities in (3.1.1) are strict we say that u is a strict local minimum
respectively maximum. If (3.1.1) holds for every u ∈ X, not only on V \{u}, u
is a global minimum respectively maximum.

Next, we state some results dealing with the existence of maxima or minima.
We restrict ourself to classical result dealing with functionals which are coercive
and wealky lower-semi-continuous (shortly : w.l.s.c.).

Let us recall that I ∈ C(X,R) is coercive if

lim
∥u∥X→+∞

I(u) = +∞.

The functional I is w.l.s.c. if for every sequence un ∈ X such that un ⇀ u one
has that

I(u) ≤ lim inf
n→+∞

I(un).

Lemma 3.1.2. Let X be a reflexive Banach space and let I : X → R be
coercive and w.l.s.c. Then I is bounded from below on X, namely there exists
a ∈ R such that I(u) ≥ a for all u ∈ X.
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Proof. Suppose by contradiction that there exists un ∈ X such that I(un) →
−∞. Since I is coercive there exists M > 0 such that ∥u∥X ≤M. Hence (un)n is
bounded in X. But since X is a reflexive Banach space (un)n has a subsequence
un (without relabelling) which converges weakly to some u ∈ X. Since I is
w.l.s.c. we infer that 0 < I(u) ≤ lim inf

n→+∞
I(un) = −∞, contradiction, proving

the lemma.

Remark 3.1.3. The same arguments show that a w.l.s.c. functional is bounded
from below on any ball Bρ = {u ∈ X : ∥u∥X ≤ ρ}.

Theorem 3.1.4. Let X be a reflexive Banach space and let I : X → R be
coercive and w.l.s.c. Then I has a global minimum, namely there exists u ∈ X

such that I(u) = min{I(v) : v ∈ X}. If I is differentiable at u, then I ′(u) = 0.

Proof. From Lemma 3.1.2, it follows that m = inf{I(u) : u ∈ X} is finite.
Let un be a minimizing sequence, namely such that I(un) → m. Again, the
coercivity of I implies that ∥un∥X ≤ M ′, and un ⇀ u for some u ∈ X. Since I
is w.l.s.c. it follows that I(u) ≤ lim inf

n→+∞
I(un) = m. Thus I achieves its infimum

at u : I(u) = m.

3.1.2 Bifurcation: definition and necessary conditions

Let X, Y be Banach spaces. We deal with an equation like

S(λ, u) = 0 (3.1.2)

where S : R×X → Y is such that

S(λ, 0) = 0 ∀ λ ∈ R.

The solution u = 0 will be called trivial solution of (3.1.2). The set

Σ = {(λ, u) ∈ R×X : u ̸= 0, S(λ, u) = 0}

will be called the set of nontrivial solutions of (3.1.2). The following phe-
nomenon has been observed: a branch of solutions u(λ) depending on λ, either
disappeared or split into several branches, as λ approaches some critical values.
This kind of phenomenon is called bifurcation. Many problems arising in ap-
plications can be modelled in this way.

For example, the following algebraic equation

u3 − λu = 0, λ ∈ R
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has a solution u = 0 for all λ ∈ R. For λ ≤ 0, this is the unique solution, but
for λ > 0 we have two more branches of solutions u = ±

√
λ.

Bifurcation phenomena occur frequently in nature. Early in 1744, Euler ob-
served the bending of a rod pressed along the direction of its axis. Let θ be the
angle between the real axis and the tangent of the central line of the rod, and
let λ be the pressure. The length of the rod is normalized to be π. We obtain
the following differential equation with the two free end point conditionsθ̈ + λ sin θ = 0

θ̇(0) = θ̇(π) = 0.
(3.1.3)

Obviously, θ = 0 is always a solution of the ordinary differential equation (3.1.3).
Actually the solution is unique, if λ is not large. As λ increasingly passes through
a certain value λ0, it is shown by experiment that there exists a bending solu-
tion θ ̸= 0.

The same phenomenon occurs in the bending of plates, shells etc. Also, bifur-
cation occurs in the study of thermodynamics, rotation of fluids, solitary waves,
superconductivity and lasers, etc.
Mathematically, we describe the bifurcation by the following:

Definition 3.1.5. (bifurcation from trivial solution)
A bifurcation point for (3.1.2) is a number λ∗ ∈ R such that (λ∗, 0) belongs to
the closure of Σ. In other words, λ∗ is a bifurcation point if there exist sequences
λn ∈ R, un ∈ X\{0} such that

(i) S(λn, un) = 0,

(ii) (λn, un) → (λ∗, 0).

The main purpose of the theory of bifurcation is to establish conditions for
finding bifurcation points and in general, to study the structure of Σ. If S ∈
C1(R × X, Y ) a necessary condition for λ∗ to be a bifurcation point can be
immediately deduced from the implicit function theorem.

Definition 3.1.6. (bifurcation from infinity)
We say that λ∗∞ is a bifurcation point from infinity for (3.1.2) if there exist
λn → λ∗∞ and un ∈ X, such that ∥un∥X → ∞ and (λn, un) ∈ Σ.

We state a remarkable bifurcation result due to M. A. Krasnoselski [53].

Theorem 3.1.7. (Krasnoselski bifurcation theorem)
Let X be a Banach space and let T ∈ C1(X,X) be a compact operator such
that T (0) = 0 and T ′(0) = 0. Moreover, let A ∈ L (X) also be compact.
Then every characteristic value λ∗ of A with odd (algebraic) multiplicity is a
bifurcation point for u = λAu+ T (u).
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For the proof of Theorem 3.1.7, we refer to [6].

3.1.3 Palais-Smale condition

Definition 3.1.8. Let X be a Banach space and F : X → R be a differentiable
functional. A sequence {un}n ⊆ X such that

{F (un)}n is bounded (in R) and

F ′(un) → 0 (in X ′) as n→ ∞,

is called a Palais-Smale sequence for F.

Remark 3.1.9. In a Hilbert space E we can identify the differential with the
gradient through the scalar product. Therefore, the second property of a Palais-
Smale sequence reads ∇F (un) → 0 in E.

We recall that the convergence takes place in the strong topology of E.

Definition 3.1.10. Let X be a Banach space and let F : X → R be a differen-
tiable functional. We say that F satisfies the Palais-Smale condition (shortly:
F satisfies (PS)) if every Palais-Smale sequence for F has a converging subse-
quence (in X).

The following lemma shows that the search for critical points can be split into
two independent parts : the existence of Palais-Smale sequences, which will
follow from topological reasons, and the convergence of these sequences, which
is a compactness problem.

Lemma 3.1.11. Let X be a Banach space and let F : X → R be C1 functional.
If there exists a Palais-Smale sequence for F and F satisfies (PS), then F has
a critical point.

In the following section we discuss the notion of degree.

3.2 Topological degree

The reader who meets the notion of topological degree (shortly, degree) for
the first time, could maybe start by asking the following question : what is
the topological degree ? As a rough answer, the degree is a tool, precisely
a number which gives information about the solution of particular equations.
The degree was introduced by L. Brouwer in finite dimensional spaces and
extended by J. Leray and J. Schauder to infinite dimensional spaces. The
Leray–Schauder degree is an important topological tool in the study of nonlinear
partial differential equations while the Brouwer degree is a powerful tool in
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algebraic topology. The nontriviality of the degree ensures the existence of a
fixed point of the compact mapping in the domain. It enjoys the properties
of homotopy invariance and additivity, which make the topological tool more
convenient in application, and provides more information on fixed points. There
is a very broad literature dealing with degree, among those we cite the following
books [5, 6, 16,29,55].

3.2.1 Brouwer degree and its properties

Let us assume that

(1) Ω is an open bounded set in Rd, with boundary ∂Ω,

(2) h is a continuous function map from Ω to Rd, the components of h will
be denoted by hi,

(3) p is a point in Rd such that p /∈ h(∂Ω).

To each triple (h,Ω, p) satisfying (1)-(3), one can associate an integer deg(h,Ω, p),
called the degree of h (with respect to Ω and p), with the following properties.

(P1) Normalization: if IdRd denotes the identity map in Rd, then

deg(IdRd ,Ω, p) =


1 if p ∈ Ω,

0 if p /∈ Ω.

(P2) Solution property: if deg(h,Ω, p) ̸= 0 then there exists y ∈ Ω such that
h(y) = p.

(P3) deg(h,Ω, p) = deg(h− p,Ω, 0).

(P4) Decomposition: if Ω1 ∩ Ω2 = ∅ then

deg(h,Ω1 ∪ Ω2, p) = deg(h,Ω1, p) + deg(h,Ω2, p).

An outline of the procedure usually followed to define the degree, omitting the
consistency of the definition and the verification of (P1)-(P4) is given by the
following.
Consider a C1 map h and a regular value p. Let us recall that p is said to be
regular value for h, if the Jacobian Jh(x) ̸= 0 for every x ∈ h−1(p). The Jacobian
is the determinant of the matrix h′(x) with entries

eij =
∂hi
∂xj

.
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If p is a regular value then the set h−1(p) is finite and one can define the degree
by setting

deg(h,Ω, p) =
∑

x∈h−1(p)

sign[Jh(x)], (3.2.1)

where, for a ∈ R\{0}, we set

sign[a] =


+1 if a > 0,

−1 if a < 0.

We see that the degree defined in (3.2.1) verifies the properties of (P1)-(P4) of
the degree defined above.
An important property of the degree defined above is the invariance by homo-
topy. An homotopy is a map H = H(λ, x) such that H ∈ C([0, 1] × Ω,Rd).
An homotopy is admissible (with respect to Ω an p), if H(λ, x) ̸= p for all
(λ, x) ∈ [0, 1]× ∂Ω.

(P5) Homotopy invariance : ifH is an admissible homotopy, then deg(H(λ, ·),Ω, p)
is constant with respect to λ ∈ [0, 1]. In particular, if f(x) = H(0, x) and
g(x) = H(1, x) then deg(f,Ω, p) = deg(g,Ω, p).

As an immediate consequence of the homotopy invariance, we can deduce the
following

Theorem 3.2.1. (Dependence on the boundary values)
Let f, g ∈ C(Ω,Rd) be such that f(x) = g(x) for all x ∈ ∂Ω and let p ∈ f(∂Ω) =

g(∂Ω). Then deg(f,Ω, p) = deg(g,Ω, p).

Proof. Consider the homotopy defined by

H(λ, x) = λg(x) + (1− λ)f(x).

One has g(x) = f(x) for all x ∈ ∂Ω and thus H(λ, x) = g(x) ̸= p. Hence H is
admissible and the homotopy invariance yields :

deg(f,Ω, p) = deg(H(0, ·),Ω, p) = deg(H(1, ·),Ω, p) = deg(g,Ω, p).

We list below some further properties of the degree.

(P6) Continuity : if hk → h uniformly in Ω, then deg(hk,Ω, p) → deg(h,Ω, p).

Moreover, deg(h,Ω, p) is continuous with respect to p.

(P7) Excision property: let Ω0 ⊂ Ω be an open set such that f(x) ̸= p, for all
x ∈ Ω\Ω0. Then deg(f,Ω, p) = deg(f,Ω0, p).
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3.2.2 The Leray-Schauder degree

The Leray-Schauder degree is defined for mappings of the form Id−C, where C

is a compact mapping from the closure of an open bounded subset of a Banach
space X.

Leray and Schauder extend as follows the Brouwer degree to compact per-
turbations of the identity in a Banach space X. If Ω ⊂ X is an open bounded
set, h : Ω → X is compact, and p /∈ (Id − h)(∂Ω), the Leray-Schauder degree
degLS(Id − h,Ω, p) of Id − h in Ω over p is constructed from the Brouwer de-
gree by approximating the compact map h over Ω by mappings hε with range
in a finite-dimensional subspace Xε (containing p) of X, and showing that the
Brouwer degrees degB((Id−hε)|Xε,Ω∩Xε, p) stabilize for sufficiently small pos-
itive ε to a common value defining degLS(Id − h,Ω, p). This topological degree
"algebraically counts" the number of fixed point of h(·) − p in Ω, and for h of
class C1, and Id − h′(a) invertible for each fixed point h(·)− p in Ω, Leray and
Schauder show that

degLS(Id − h,Ω, p) =
∑

a∈(Id−h)−1(p)

(−1)σj(a),

where σj(a) is the sum of the algebraic multiplicities of the eigenvalues h′(a).

The Leray-Schauder degree conserves the basic properties of Brouwer degree.

Theorem 3.2.2. The Leray-Schauder degree has the following properties.

(a) (Additivity) If Ω = Ω1 ∪ Ω2, where Ω1 and Ω2 are open and disjoint, and
if p /∈ (Id − h)(∂Ω1) ∪ (Id − h)(∂Ω2), then

degLS(Id − h,Ω, p) = degLS(Id − h,Ω1, p) + degLS(Id − h,Ω2, p).

(b) (Existence) If degLS(Id − h,Ω, p) ̸= 0, then p ∈ (Id − h)(Ω).

(c) (Homotopy invariance) Let Ω ⊂ X be a bounded open set, and let
F : R × Ω → X be compact. If x − F (λ, x) ̸= p for all (λ, x) ∈ R × ∂Ω,

then degLS(Id − F (λ, ·),Ω, p) is independent of λ.

3.3 The Krasnoselski genus

The genus was introduced by M. A. Krasnoselski [53]. Let E be a infinite
dimensional Hilbert space. We say that a subset O ⊂ E is symmetric if it is
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symmetric with respect to the origin of E, namely

u ∈ O ⇒ −u ∈ O.

Let Γ be the class of all the symmetric subsets A ⊆ E\{0} which are closed in
E\{0}.

Definition 3.3.1. Let A ∈ Γ. The genus of A is defined as the least integer
number n ∈ N such that there exists ψ : A → Rn continuous, odd and such
that

ψ(x) ̸= 0 for all x ∈ A.

The genus of A is usually denoted by γ(A). If such a number does not exists,
we set γ(A) = ∞ and, if A = ∅, we conventionally set γ(A) = 0.

Remark 3.3.2. An equivalent way to define the genus γ(A) is to take the min-
imal integer d such that there exists an odd map ψ ∈ C(A,Rd\{0}). Actually,
such a ψ can be extended to a map ψ̂ ∈ C(E,Rd). If ψ∗ is the odd part of ψ̂,
namely

ψ∗(u) =
1

2

(
ψ̂(u)− ψ̂(−u)

)
,

ψ∗ verifies the properties required in the above definition.

Remark 3.3.3. The definition of the genus does not change if we require ψ
to be function with values in the sphere Sn−1 instead of Rn\{0} since we can
compose with the projection

proj(x) :=
x

|x|
·

Lemma 3.3.4. Let E = L2(Rd) and let A = SE be the unit sphere in L2(Rd).
Then γ(A) = +∞ .

Proof. Let n ∈ N be any positive integer, and let ψ : A → Rn be continuous
and odd map. The infinite dimensional sphere contains the k-sphere
Sk ⊂ Rk+1; thus by Borsuk-Ulam theorem it follows that, for k > n

0 ∈ ψ(Sk) ⇒ 0 ∈ ψ(A).

Since A contains every finite dimensional sphere, for every n ∈ N we can take
k = n + 1 and obtain that 0 is in the image. This proves that the genus is
+∞.

Remark 3.3.5. In a similar way, one shows that γ(∂Ω) = n, where Ω ⊂ Rn is
an open bounded symmetric subset such that 0 ∈ Ω. In particular,

γ(Sn−1) = n.
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The following proposition gives some properties of the genus.

Proposition 3.3.6. Let A and B be elements of the class Γ.

(i) The set A is empty if and only if the genus γ(A) = 0.

(ii) If ψ : A→ B is a continuous odd map, then γ(A) ≤ γ(B). In particular

A ⊆ B ⇒ γ(A) ≤ γ(B).

(iii) The genus is subadditive, namely, γ(A ∪B) ≤ γ(A) + γ(B).

(iv) If A is compact then γ(A) < +∞ and there exists a symmetric neighbour-
hood UA of A such that γ(UA) = γ(A).

3.3.1 Existence of multiple critical points of functionals

The genus can be used to prove existence results of critical points of functional
provided that the functional is even and M ∈ Γ, where M is a the constraint
set. Here, we consider the functional J ∈ C1(E,R). For any positive integer,
we define

Γm = {A ⊂M : A ∈ Γ, A is compact and γ(A) ≥ m}

and
σm = inf

A∈Γm

sup
u∈A

J(u).

We explicitly remark that σm < +∞ and σm ≤ σm+1. Moreover, if J is bounded
from below on M , then σ1 > −∞ and hence any σm is finite. If we deal with
problems without constraints, namely if we are looking for stationary points of
J ∈ C1(E,R) on E, we understand Γ = {A ∈ E\{0} : A is symmetric}, that

Γm = {A ⊂ Γ, A is compact and γ(A) ≥ m},

and that σm is defined as above.
We state the following general result which holds both in the case of critical
points of J constrained on M and in the case without constraints. We refer
to [6, Proposition 10.8] for a proof.

Proposition 3.3.7. Each finite σm is a critical level for J ∈ C1(E,R) (or
a critical level for J on M) provided (PS)σm holds. Moreover, if σ̃ = σm =

σm+1 = · · · = σm+n ∈ R for some integer n ≥ 1, then γ(Zσ) ≥ n+ 1, where Zσ
denotes the set of critical points of J at the critical level σ̃.
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The following theorem, known as Clark’s theorem asserts the existence of a
sequence of negative critical values tending to 0 for even coercive functionals.

Theorem 3.3.8. (Clark, [24])
Let X be a Banach space and G ∈ C1(X,R) satisfying the Palais-Smale condi-
tion with G(0) = 0. Let Γk = { A ∈ Σ : γ(A) ≥ k } with Σ = { A ⊂ X ; A =

−A and A closed }. If ck = inf
A∈Γk

sup
u∈A

G(u) ∈ (−∞, 0), then ck is a critical value.
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Nonlinear eigenvalue problems for
quasi-linear operators and
applications to bifurcation
In this part we present the results obtained in [97].

3.4 Setting of the problem

We consider Ω ⊂ RN (N ≥ 2) an open bounded domain with smooth boundary
∂Ω. A classical result in the theory of eigenvalue problems guarantees that the
problem {

−∆u = λu in Ω,

u = 0 on ∂Ω
(3.4.1)

possesses a nondecreasing sequence of eigenvalues and a sequence of correspond-
ing eigenfunctions which define a Hilbert basis in L2(Ω) [see, [39]]. Moreover,
it is known that the first eigenvalue of problem (3.4.1) is characterized in the
variational point of view by,

λD1 := inf
u∈W 1,2

0 (Ω)\{0}

{∫
Ω
|∇u|2 dx∫
Ω
u2 dx

}
.

Suppose that p > 1 is a given real number and consider the nonlinear eigenvalue
problem with Neumann boundary condition{

−∆pu = λu in Ω,
∂u
∂ν

= 0 on ∂Ω
(3.4.2)

where ∆pu := div(|∇u|p−2∇u) stands for the p-Laplace operator and λ ∈ R.
This problem was considered in [74], and using a direct method in calculus of
variations (if p > 2) or a mountain-pass argument (if p ∈ ( 2N

N+2
, 2)) it was shown

that the set of eigenvalues of problem (3.4.2) is exactly the interval [0,∞). In-
deed, it is sufficient to find one positive eigenvalue, say −∆pu = λu. Then a
continuous family of eigenvalues can be found by the reparametrization u = αv,

satisfying −∆pv = µ(α)v, with µ(α) = λ
αp−2 .

We consider the so-called (p, 2)-Laplace operator [see, [37]] with Dirichlet bound-
ary conditions. More precisely, we analyze the following nonlinear eigenvalue
problem,
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{
−∆pu−∆u = λu in Ω,

u = 0 on ∂Ω
(3.4.3)

where p ∈ (1,∞)\{2} is a real number. We recall that if 1 < p < q, then
Lq(Ω) ⊂ Lp(Ω) and as a consequence, one has W 1,q

0 (Ω) ⊂ W 1,p
0 (Ω). We will say

that λ ∈ R is an eigenvalue of problem (3.4.3) if there exists u ∈ W 1,p
0 (Ω)\{0}

(if p > 2 ), u ∈ W 1,2
0 (Ω)\{0} (if 1 < p < 2) such that∫

Ω

|∇u|p−2∇u · ∇v dx+
∫
Ω

∇u · ∇v dx = λ

∫
Ω

u v dx, (3.4.4)

for all v ∈ W 1,p
0 (Ω) (if p > 2), v ∈ W 1,2

0 (Ω) (if 1 < p < 2). In this case,
such a pair (u, λ) is called an eigenpair, and λ ∈ R is called an eigenvalue and
u ∈ W 1,p

0 (Ω)\{0} is an eigenfunction associated to λ. We say that λ is a "first
eigenvalue”, if the corresponding eigenfunction u is positive or negative.
The operator −∆p − ∆ appears in quantum field theory [see, [35]], where it
arises in the mathematical description of propagation phenomena of solitary
waves. We recall that a solitary wave is a wave which propagates without any
temporal evolution in shape.
The operator −∆p −∆ is a special case of the so called (p, q)-Laplace operator
given by −∆p −∆q which has been widely studied; for some results related to
our studies, see e.g., [13, 14,23,69,89] .
We investigate the nonlinear eigenvalue problem (3.4.3) when p > 2, and
1 < p < 2 respectively. In particular, we show in section 3.5 that the set of the
first eigenvalues is given by the interval (λD1 ,∞), where λD1 is the first Dirichlet
eigenvalue of the Laplacian. We show that the first eigenvalue of (3.4.3) can
be obtained variationally, using a Nehari set for 1 < p < 2, and a minimiza-
tion for p > 2. Also in the same section, we recall some results of [74], [72]
and [73]. In section 3.6, we prove that the eigenfunctions associated to λ belong
to L∞(Ω), the first eigenvalue λD1 of problem (3.4.3) is simple and the corre-
sponding eigenfunctions are positive or negative. In addition, in section 3.6.3
we show a homeomorphism property related to −∆p −∆.
In section 3.7, we prove that λD1 is a bifurcation point for a branch of first
eigenvalues from zero if p > 2, and λD1 is a bifurcation point from infinity if
p < 2. Also the higher Dirichlet eigenvalues λDk are bifurcation points (from 0 if
p > 2, respectively from infinity if 1 < p < 2 ), if the multiplicity of λDk is odd.
Finally in section 3.8, we prove by variational methods that if λ ∈ (λDk , λ

D
k+1)

then there exist at least k nonlinear eigenvalues using Krasnoselski’s genus.
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3.5 The spectrum of the nonlinear problem

We start with the discussion of the properties of the spectrum of the nonlinear
eigenvalues problem (3.4.3).

Remark 3.5.1. Any λ ≤ 0 is not an eigenvalue of problem (3.4.3).

Indeed, suppose by contradiction that λ = 0 is an eigenvalue of equation (3.4.3),
then relation (3.4.4) with v = u0 gives∫

Ω

|∇u0|p dx+
∫
Ω

|∇u0|2 dx = 0.

Consequently |∇u0| = 0, therefore u0 is constant on Ω and u0 = 0 on Ω. And
this contradicts the fact that u0 is a nontrivial eigenfunction. Hence λ = 0 is
not an eigenvalue of problem (3.4.3).

Now it remains to show that any λ < 0 is not an eigenvalue of (3.4.3). Suppose
by contradiction that λ < 0 is an eigenvalue of (3.4.3), with uλ ∈ W 1,p

0 (Ω)\{0}
the corresponding eigenfunction. The relation (3.4.4) with v = uλ implies

0 ≤
∫
Ω

|∇uλ|p dx+
∫
Ω

|∇uλ|2 dx = λ

∫
Ω

u2λ dx < 0.

Which yields a contradiction and thus λ < 0 cannot be an eigenvalue of problem
(3.4.3).

Lemma 3.5.2. Any λ ∈ (0, λD1 ] is not an eigenvalue of (3.4.3).

For the proof see also [74].

Proof. Let λ ∈ (0, λD1 ), i.e., λD1 > λ. Let’s assume by contradiction that there
exists a λ ∈ (0, λD1 ) which is an eigenvalue of (3.4.3) with uλ ∈ W 1,2

0 (Ω)\{0}
the corresponding eigenfunction. Letting v = uλ in relation (3.4.4), we have on
the one hand, ∫

Ω

|∇uλ|p dx+
∫
Ω

|∇uλ|2 dx = λ

∫
Ω

u2λ dx

and on the other hand,

λD1

∫
Ω

u2λdx ≤
∫
Ω

|∇uλ|2 dx. (3.5.1)

By subtracting both side of (3.5.1) by λ
∫
Ω

u2λ dx, we obtain

(λD1 − λ)

∫
Ω

u2λ dx ≤
∫
Ω

|∇uλ|2 dx− λ

∫
Ω

u2λ dx,
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(λD1 − λ)

∫
Ω

u2λ dx ≤
∫
Ω

|∇uλ|2 dx− λ

∫
Ω

u2λ dx+

∫
Ω

|∇uλ|p dx = 0.

Therefore (λD1 − λ)

∫
Ω

u2λ dx ≤ 0, which is a contradiction. Hence, we conclude

that λ ∈ (0, λD1 ) is not an eigenvalue of problem (3.4.3). In order to complete
the proof of the Lemma 3.5.2 we shall show that λ = λD1 is not an eigenvalue
of (3.4.3).
By contradiction we assume that λ = λD1 is an eigenvalue of (3.4.3). So there
exists uλD1 ∈ W 1,2

0 (Ω)\{0} such that relation (3.4.4) holds true. Letting v = uλD1
in relation (3.4.4), it follows that∫

Ω

|∇uλD1 |
p dx+

∫
Ω

|∇uλD1 |
2 dx = λD1

∫
Ω

u2λD1
dx.

But λD1

∫
Ω

u2λD1
dx ≤

∫
Ω

|∇uλD1 |
2 dx, therefore

∫
Ω

|∇uλD1 |
p dx+

∫
Ω

|∇uλD1 |
2 dx ≤

∫
Ω

|∇uλD1 |
2 dx⇒

∫
Ω

|∇uλD1 |
p dx ≤ 0.

Using relation (2.1.4), we have uλD1 = 0, which is a contradiction since uλD1 ∈
W 1,2

0 (Ω)\{0}. So λ = λD1 is not an eigenvalue of (3.4.3).

Theorem 3.5.3. Assume p ∈ (1, 2). Then the set of first eigenvalues of
problem (3.4.3) is given by

(λD1 ,∞), where λD1 denotes the first eigenvalue of −∆ on Ω.

Proof. Let λ ∈ (λD1 ,∞), and define the energy functional

Jλ : W
1,2
0 (Ω) → R by Jλ(u) =

∫
Ω

|∇u|2 dx+ 2

p

∫
Ω

|∇u|p dx− λ

∫
Ω

u2 dx.

One shows that Jλ ∈ C1(W 1,2
0 (Ω),R) (see, [37]) with its derivatives given by

⟨J ′
λ(u), v⟩ = 2

∫
Ω

∇u·∇v dx+2

∫
Ω

|∇u|p−2∇u·∇v dx−2λ

∫
Ω

u v dx , ∀ v ∈ W 1,2
0 (Ω).

Thus we note that λ is an eigenvalue of problem (3.4.3) if and only if Jλ possesses
a nontrivial critical point. Considering Jλ(ρe1), where e1 is the L2-normalized
first eigenfunction of the Laplacian, we see that

Jλ(ρe1) ≤ λD1 ρ
2 + Cρp − λρ2 → −∞, as ρ→ +∞.

Hence, we cannot establish the coercivity of Jλ on W 1,2
0 (Ω) for p ∈ (1, 2), and

consequently we cannot use a direct method in calculus of variations in order
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to determine a critical point of Jλ. To overcome this difficulty, the idea will be
to analyze the functional Jλ on the so called Nehari manifold defined by

Nλ :=

{
u ∈ W 1,2

0 (Ω)\{0} :

∫
Ω

|∇u|2 dx+
∫
Ω

|∇u|p dx = λ

∫
Ω

u2 dx

}
.

Note that all non-trivial solutions of (3.4.3) lie on Nλ. On Nλ the functional Jλ
takes the form

Jλ(u) =

∫
Ω

|∇u|2 dx+ 2

p

∫
Ω

|∇u|p dx− λ

∫
Ω

u2 dx

= (
2

p
− 1)

∫
Ω

|∇u|p dx > 0.

We have seen in Lemma 3.5.2, that any λ ∈ (0, λD1 ] is not an eigenvalue of
problem (3.4.3); see also [74]. It remains to prove the :

Claim : Every λ ∈ (λD1 ,∞) is a first eigenvalue of problem (3.4.3). Indeed, we
will split the proof of the claim into four steps.

Step 1. Here we will show that Nλ ̸= ∅ and every minimizing sequence for Jλ on
Nλ is bounded in W 1,2

0 (Ω). Since λ > λD1 there exists vλ ∈ W 1,2
0 (Ω) such

that ∫
Ω

|∇vλ|2 dx < λ

∫
Ω

v2λ dx.

Then there exists t > 0 such that tvλ ∈ Nλ. In fact∫
Ω

|∇(tvλ)|2 dx+
∫
Ω

|∇(tvλ)|p dx = λ

∫
Ω

(tvλ)
2 dx⇒

t2
∫
Ω

|∇vλ|2 dx+ tp
∫
Ω

|∇vλ|p dx = t2λ

∫
Ω

v2λ dx⇒

t =

( ∫
Ω
|∇vλ|p dx

λ
∫
Ω
v2λ dx−

∫
Ω
|∇vλ|2 dx

) 1
2−p

> 0.

With such t we have tvλ ∈ Nλ and Nλ ̸= ∅.

Note that for u ∈ Br(vλ), r > 0 small, the inequality λ
∫
Ω
|u|2dx >∫

Ω
|∇u|2dx remains valid, and then t(u)u ∈ Nλ for u ∈ Br(vλ). Since

t(u) ∈ C1 we conclude that Nλ is a C1-manifold.
Let {uk} ⊂ Nλ be a minimizing sequence of Jλ|Nλ

, i.e. Jλ(uk) → m =
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inf
w∈Nλ

Jλ(w). Then

λ

∫
Ω

u2k dx−
∫
Ω

|∇uk|2 dx =

∫
Ω

|∇uk|p dx→
(
2

p
− 1

)−1

m as k → ∞.

(3.5.2)

Assume by contradiction that {uk} is not bounded inW 1,2
0 (Ω), i.e.

∫
Ω

|∇uk|2 dx→

∞ as k → ∞. It follows that
∫
Ω

u2k dx→ ∞ as k → ∞, thanks to relation

(3.5.2). We set vk = uk
∥uk∥2

. Since
∫
Ω

|∇uk|2 dx < λ

∫
Ω

u2k dx, we deduce that∫
Ω

|∇vk|2 dx < λ, for each k and ∥vk∥1,2 <
√
λ. Hence {vk} ⊂ W 1,2

0 (Ω)

is bounded in W 1,2
0 (Ω). Therefore there exists v0 ∈ W 1,2

0 (Ω) such that
vk ⇀ v0 in W 1,2

0 (Ω) ⊂ W 1,p
0 (Ω) and vk → v0 in L2(Ω). Dividing relation

(3.5.2) by ∥uk∥p2, we get

∫
Ω

|∇vk|p dx =

λ

∫
Ω

u2k dx−
∫
Ω

|∇uk|2 dx

∥uk∥p2
→ 0 as k → ∞,

since λ
∫
Ω

u2k dx −
∫
Ω

|∇uk|2 dx →
(
2

p
− 1

)−1

m < ∞ and ∥uk∥p2 → ∞

as k → ∞. On the other hand, since vk ⇀ v0 in W 1,p
0 (Ω), we have∫

Ω

|∇v0|p dx ≤ lim
k→∞

inf

∫
Ω

|∇vk|p dx = 0 and consequently v0 = 0. It

follows that vk → 0 in L2(Ω), which is a contradiction since ∥vk∥2 = 1.
Hence, {uk} is bounded in W 1,2

0 (Ω).

Step 2. m = inf
w∈Nλ

Jλ(w) > 0. Indeed, assume by contradiction that m = 0. Then,

for {uk} as in step 1, we have

0 < λ

∫
Ω

u2k dx−
∫
Ω

|∇uk|2 dx =

∫
Ω

|∇uk|p dx→ 0, as k → ∞. (3.5.3)

By Step 1, we deduce that {uk} is bounded in W 1,2
0 (Ω). Therefore there

exists u0 ∈ W 1,2
0 (Ω) such that uk ⇀ u0 in W 1,2

0 (Ω) and W 1,p
0 (Ω) and

uk → u0 in L2(Ω).

Thus
∫
Ω

|∇u0|p dx ≤ lim
k→∞

inf

∫
Ω

|∇uk|p dx = 0. And consequently u0 = 0,

uk ⇀ 0 in W 1,2
0 (Ω) and W 1,p

0 (Ω) and uk → 0 in L2(Ω). Writing again
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vk =
uk

∥uk∥2
we have

0 <

λ

∫
Ω

u2k dx−
∫
Ω

|∇uk|2 dx

∥uk∥22
= ∥uk∥p−2

2

∫
Ω

|∇vk|p dx,

therefore

∫
Ω

|∇vk|p dx = ∥uk∥2−p2

λ∥uk∥22∥uk∥22
−

∫
Ω

|∇uk|2 dx

∥uk∥22


= ∥uk∥2−p2

(
λ−

∫
Ω

|∇vk|2 dx
)

→ 0 as k → ∞,

since ∥uk∥2 → 0 and p ∈ (1, 2), and {vk} is bounded in W 1,2
0 (Ω). Next

since vk ⇀ v0 in W 1,2
0 (Ω) ⊂ W 1,p

0 (Ω), we deduce that
∫
Ω

|∇v0|p dx ≤

lim
k→∞

inf

∫
Ω

|∇vk|p dx = 0 and we have v0 = 0. And it follows that vk → 0

in L2(Ω) which is a contradiction since ∥vk∥2 = 1 for each k. Hence, m is
positive.

Step 3. There exists u0 ∈ Nλ such that Jλ(u0) = m.

Let {uk} ⊂ Nλ be a minimizing sequence, i.e., Jλ(uk) → m as k → ∞.

Thanks to Step 1, we have that {uk} is bounded in W 1,2
0 (Ω). It follows

that there exists u0 ∈ W 1,2
0 (Ω) such that uk ⇀ u0 in W 1,2

0 (Ω) and W 1,p
0 (Ω)

and strongly in L2(Ω). The results in the two steps above guarantee that
Jλ(u0) ≤ lim

k→∞
inf Jλ(uk) = m. Since for each k we have uk ∈ Nλ, we have

∫
Ω

|∇uk|2 dx+
∫
Ω

|∇uk|p dx = λ

∫
Ω

u2k dx for all k. (3.5.4)

Assuming u0 ≡ 0 on Ω implies that
∫
Ω

u2k dx → 0 as k → ∞, and by

relation (3.5.4) we obtain that
∫
Ω

|∇uk|2 dx → 0 as k → ∞. Combining

this with the fact that uk converges weakly to 0 in W 1,2
0 (Ω), we deduce

that uk converges strongly to 0 in W 1,2
0 (Ω) and consequently in W 1,p

0 (Ω).
Hence we infer that

λ

∫
Ω

u2k dx−
∫
Ω

|∇uk|2 dx =

∫
Ω

|∇uk|p dx→ 0, as k → ∞.

Next, using similar argument as the one used in the proof of Step 2, we
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will reach to a contradiction, which shows that u0 ̸≡ 0. Letting k → ∞ in
relation (3.5.4), we deduce that∫

Ω

|∇u0|2 dx+
∫
Ω

|∇u0|p dx ≤ λ

∫
Ω

u20 dx.

If there is equality in the above relation then u0 ∈ Nλ and m ≤ Jλ(u0).
Assume by contradiction that∫

Ω

|∇u0|2 dx+
∫
Ω

|∇u0|p dx < λ

∫
Ω

u20 dx. (3.5.5)

Let t > 0 be such that tu0 ∈ Nλ, i.e.,

t =

λ
∫
Ω

u20 dx−
∫
Ω

|∇u0|2 dx∫
Ω

|∇u0|p dx


1

p−2

.

We note that t ∈ (0, 1) since 1 < tp−2 (thanks to (3.5.5)). Finally, since
tu0 ∈ Nλ with t ∈ (0, 1) we have

0 < m ≤ Jλ(tu0) =

(
2

p
− 1

)∫
Ω

|∇(tu0)|p dx = tp
(
2

p
− 1

)∫
Ω

|∇u0|p dx

= tpJλ(u0)

≤ tp lim
k→∞

inf Jλ(uk) = tpm < m for t ∈ (0, 1),

and this is a contradiction which assures that relation (3.5.5) cannot hold
and consequently we have u0 ∈ Nλ. Hence m ≤ Jλ(u0) and m = Jλ(u0).

Step 4. We conclude the proof of the claim. Let u ∈ Nλ be such that Jλ(u) = m

(thanks to Step 3). Since u ∈ Nλ, we have∫
Ω

|∇u|2 dx+
∫
Ω

|∇u|p dx = λ

∫
Ω

u2 dx,

and ∫
Ω

|∇u|2 dx < λ

∫
Ω

u2 dx.

Let v ∈ ∂B1(0) ⊂ W 1,2
0 (Ω) and ε > 0 be very small such that u + δv ̸= 0

in Ω for all δ ∈ (−ε, ε) and∫
Ω

|∇(u+ δv)|2 dx < λ

∫
Ω

(u+ δv)2 dx;
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this is equivalent to

λ

∫
Ω

u2 dx−
∫
Ω

|∇u|2 dx > δ

(
2

∫
Ω

∇u · ∇v dx− 2λ

∫
Ω

uv dx

)
+ δ2

(∫
Ω

|∇v|2 dx− λ

∫
Ω

v2 dx

)
,

which holds true for δ small enough since the left hand side is positive
while the function

h(δ) := |δ|
∣∣∣∣2 ∫

Ω

∇u · ∇v dx− 2λ

∫
Ω

uv dx

∣∣∣∣+δ2 ∣∣∣∣∫
Ω

|∇v|2 dx− λ

∫
Ω

v2 dx

∣∣∣∣
dominates the term from the right hand side and h(δ) is a continuous
function (polynomial in δ) which vanishes in δ = 0. For each δ ∈ (−ε, ε),
let t(δ) > 0 be given by

t(δ) =

λ
∫
Ω

(u+ δv)2 dx−
∫
Ω

|∇(u+ δv)|2 dx∫
Ω

|∇(u+ δv)|p dx


1

p−2

,

so that t(δ) · (u+ δv) ∈ Nλ. We have that t(δ) is of class C1(−ε, ε) since
t(δ) is the composition of some functions of class C1. On the other hand,
since u ∈ Nλ we have t(0) = 1.

Define ι : (−ε, ε) → R by ι(δ) = Jλ(t(δ)(u + δv)) which is of class
C1(−ε, ε) and has a minimum at δ = 0. We have

ι′(δ) = [t′(δ)(u+ δv) + vt(δ)]J ′
λ(t(δ)(u+ δv)) ⇒

0 = ι′(0) = J ′
λ(t(0)(u))[t

′(0)u+ vt(0)] = ⟨J ′
λ(u), v⟩

since t(0) = 1 and t′(0) = 0.

This shows that every λ ∈ (λD1 ,∞) is an eigenvalue of problem (3.4.3).

In the next theorem we consider the case p > 2. For similar results for the
Neumann case, [see, [72]].

Theorem 3.5.4. For p > 2, the set of first eigenvalues of problem (3.4.3) is
given by (λD1 ,∞).

The proof of Theorem 3.5.4 will follow as a direct consequence of the lemmas
proved below:
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Lemma 3.5.5. Let

λ1(p) := inf
u∈W 1,p

0 \{0}


1
p

∫
Ω

|∇u|p dx+ 1

2

∫
Ω

|∇u|2 dx

1
2

∫
Ω

u2 dx

 .

Then λ1(p) = λD1 , for all p > 2.

Proof. We clearly have λ1(p) ≥ λD1 since a positive term is added. On the other
hand, consider un = 1

n
e1 (where e1 is the first eigenfunction of −∆), we get

λ1(p) ≤
1

2n2

∫
Ω
|∇e1|2dx+ 1

pnp

∫
Ω
|∇e1|pdx

1
2n2

∫
Ω
|e1|2dx

→ λD1 as n→ ∞.

Lemma 3.5.6. For each λ > 0, we have

lim
∥u∥1,p→∞

(
1

2

∫
Ω

|∇u|2 dx+ 1

p

∫
Ω

|∇u|p dx− λ

2

∫
Ω

u2 dx

)
= ∞.

Proof. Clearly

1

p

∫
Ω

|∇u|p dx+ 1

2

∫
Ω

|∇u|2 dx ≥ 1

p

∫
Ω

|∇u|p dx.

On the one hand, using Poincaré’s inequality with p = 2,

we have
∫
Ω

u2 dx ≤ C2(Ω)

∫
Ω

|∇u|2 dx,∀u ∈ W 1,p
0 (Ω) ⊂ W 1,2

0 (Ω) and then

applying the Hölder inequality to the right hand side term of the previous
estimate, we obtain ∫

Ω

|∇u|2 dx ≤ |Ω|
p−2
p ∥u∥21,p,

so
∫
Ω

u2 dx ≤ D∥u∥21,p, where D = C2(Ω)|Ω|
p−2
p . Therefore for λ > 0,

1

2

∫
Ω

|∇u|2 dx+ 1

p

∫
Ω

|∇u|p dx− λ

2

∫
Ω

u2 dx ≥ C∥u∥p1,p −
λ

2
D∥u∥21,p, (3.5.6)

and the the right-hand side of (3.5.6) tends to ∞, as ∥u∥1,p → ∞, since p >
2.

Lemma 3.5.7. Every λ ∈ (λD1 ,∞) is a first eigenvalue of problem (3.4.3).
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Proof. For each λ > λD1 define Fλ : W 1,p
0 (Ω) → R by

Fλ(u) =
1

2

∫
Ω

|∇u|2 dx+ 1

p

∫
Ω

|∇u|p dx− λ

2

∫
Ω

u2 dx ,∀u ∈ W 1,p
0 (Ω).

Standard arguments shows that Fλ ∈ C1(W 1,p
0 (Ω),R) [see, [37]] with its deriva-

tive given by

⟨F ′
λ(u), φ⟩ =

∫
Ω

(|∇u|p−2 + 1)∇u · ∇φ dx− λ

∫
Ω

uφ dx,

for all u, φ ∈ W 1,p
0 (Ω). Estimate (3.5.6) shows that Fλ is coercive in W 1,p

0 (Ω). On
the other hand, Fλ is also weakly lower semi-continuous on W 1,p

0 (Ω) since Fλ is a
continuous convex functional, (see [8, Proposition 1.5.10 and Theorem 1.5.3]) .
Then we can apply a calculus of variations result, in order to obtain the existence
of a global minimum point of Fλ, denoted by θλ, i.e., Fλ(θλ) = min

W 1,p
0 (Ω)

Fλ. Note

that for any λ > λD1 there exists uλ ∈ W 1,p
0 (Ω) such that Fλ(uλ) < 0 . Indeed,

taking uλ = re1, we have

Fλ(re1) =
r2

2
(λD1 − λ) +

rp

p

∫
Ω

|∇e1|p dx < 0 for r > 0 small.

But then Fλ(θλ) ≤ Fλ(uλ) < 0, which means that θλ ∈ W 1,p
0 (Ω)\{0}. On the

other hand, we have ⟨F ′
λ(θλ), φ⟩ = 0,∀φ ∈ W 1,p

0 (Ω) (θλ is a critical point of
Fλ) with θλ ∈ W 1,p

0 (Ω)\{0} ⊂ W 1,2
0 (Ω)\{0}. Consequently each λ > λD1 is an

eigenvalue of problem (3.4.3).

Proposition 3.5.8. The first eigenfunctions uλ1 associated to λ ∈ (λD1 ,∞) are
positive or negative in Ω.

Proof. Let uλ1 ∈ W 1,p
0 (Ω)\{0} be an eigenfunction associated to λ ∈ (λD1 ,∞),

then∫
Ω

|∇uλ1 |p dx+
∫
Ω

|∇uλ1 |2 dx = λ

∫
Ω

|uλ1 |2 dx, which means uλ1 achieves the infi-

mum in the definition of λD1 . On the other hand we have ∥∇|uλ1 |∥1,p = ∥∇uλ1∥1,p
and ∥∇|uλ1 |∥1,2 = ∥∇uλ1∥1,2, since |∇|uλ1 || = |∇uλ1 | almost everywhere. It follows
that |uλ1 | achieves also the infimum in the definition of λD1 , and therefore by the
Harnack inequality [see, [32]], we have |uλ1(x)| > 0 ∀x ∈ Ω and consequently uλ1
is either positive or negative in Ω.

A similar result of Theorem 3.6.1 was proved in [56] in the case of the p-
Laplacian.
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3.6 Properties of eigenfunctions and the opera-
tor −∆p −∆

3.6.1 Boundedness of the eigenfunctions

We shall prove boundedness of eigenfunctions and use this fact to obtain C1,α

smoothness of all eigenfunctions of the quasi-linear problem (3.4.3). The latter
result is due to [56, Theorem 4.4], which originates from [12] and [92].

Theorem 3.6.1. Let (u, λ) ∈ W 1,p
0 (Ω) × R⋆

+ be an eigensolution of the weak
formulation (3.4.4). Then u ∈ L∞(Ω).

Proof. By Morrey’s embedding theorem it suffices to consider the case p ≤ N.

Let us assume first that u > 0. For M ≥ 0 define wM(x) = min{u(x),M}.
Letting

g(x) =

{
x if x ≤M

M if x > M
(3.6.1)

we have g ∈ C(R) piecewise smooth function with g(0) = 0. Since u ∈ W 1,p
0 (Ω)

and g′ ∈ L∞(Ω), then g◦u ∈ W 1,p
0 (Ω) and wM ∈ W 1,p

0 (Ω)∩L∞(Ω) (see, Theorem
B.3 in [56]). For k > 0, define φ = wkp+1

M then ∇φ = (kp + 1)∇wMwkpM and
φ ∈ W 1,p

0 (Ω) ∩ L∞(Ω).

Using φ as a test function in (3.4.4), one obtains

(kp+1)

[∫
Ω

|∇u|p−2∇u · ∇wMwkpM dx+

∫
Ω

∇u · ∇wMwkpM dx

]
= λ

∫
Ω

u wkp+1
M dx.

On the other hand using the fact that wkp+1
M ≤ ukp+1, it follows that

(kp+1)

[∫
Ω

|∇u|p−2∇u · ∇wMwkpM dx+

∫
Ω

∇u · ∇wMwkpM dx

]
≤ λ

∫
Ω

|u|(k+1)p dx.

We have ∇(wk+1
M ) = (k + 1)∇wMwkM ⇒ |∇wk+1

M |p = (k + 1)pwkpM |∇wM |p. Since
the integrals on the left are zero on {x : u(x) > M} we can take u = wM in the
previous inequality, and it follows that

(kp+ 1)

[∫
Ω

|∇wM |pwkpM dx+

∫
Ω

|∇wM |2wkpM dx

]
≤ λ

∫
Ω

|u|(k+1)p dx.

Replacing |∇wM |pwkpM by 1
(k+1)p

|∇wk+1
M |p, we have

kp+ 1

(k + 1)p

∫
Ω

|∇wk+1
M |p dx+ (kp+ 1)

∫
Ω

|∇wM |2wkpM dx ≤ λ

∫
Ω

|u|(k+1)p dx,
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which implies that

kp+ 1

(k + 1)p

∫
Ω

|∇wk+1
M |p dx ≤ λ

∫
Ω

|u|(k+1)p dx

and then ∫
Ω

|∇wk+1
M |p dx ≤

(
λ
(k + 1)p

kp+ 1

)∫
Ω

|u|(k+1)p dx. (3.6.2)

By Sobolev’s embedding theorem, there is a constant c1 > 0 such that

∥wk+1
M ∥p⋆ ≤ c1∥wk+1

M ∥1,p. (3.6.3)

where p⋆ is the Sobolev critical exponent. Consequently, we have

∥wM∥(k+1)p⋆ ≤ ∥wk+1
M ∥

1
k+1

p⋆ , (3.6.4)

and therefore

∥wM∥(k+1)p⋆ ≤
(
c1∥wk+1

M ∥1,p
) 1

k+1 = c
1

k+1

1 ∥wk+1
M ∥

1
k+1

1,p . (3.6.5)

But by (3.6.2),

∥wk+1
M ∥1,p ≤

(
λ
(k + 1)p

kp+ 1

) 1
p

∥u∥k+1
(k+1)p (3.6.6)

and we note that we can find a constant c2 > 0 such that(
λ (k+1)p

kp+1

) 1
p
√
k+1 ≤ c2, independently of k and consequently

∥wM∥(k+1)p⋆ ≤ c
1

k+1

1 c
1√
k+1

2 ∥u∥(k+1)p. (3.6.7)

Letting M → ∞, Fatou’s lemma implies

∥u∥(k+1)p⋆ ≤ c
1

k+1

1 c
1√
k+1

2 ∥u∥(k+1)p. (3.6.8)

Choosing k1, such that (k1 + 1)p = p⋆, then ∥u∥(k1+1)p⋆ ≤ c
1

k1+1

1 c
1√

k1+1

2 ∥u∥p⋆ .
Next we choose k2 such that (k2 + 1)p = (k1 + 1)p⋆, then taking k2 = k in
inequality (3.6.8), it follows that

∥u∥(k2+1)p⋆ ≤ c
1

k2+1

1 c
1√

k2+1

2 ∥u∥(k1+1)p⋆ . (3.6.9)

By induction we obtain

∥u∥(kn+1)p⋆ ≤ c
1

kn+1

1 c
1√

kn+1

2 ∥u∥(kn−1+1)p⋆ , (3.6.10)
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where the sequence {kn} is chosen such that (kn + 1)p = (kn−1 + 1)p⋆, k0 = 0.

One gets kn + 1 = (p
⋆

p
)n. As p

p⋆
< 1, there is C > 0 (which depends on c1 and

c2) such that for any n = 1, 2, . . .

∥u∥rn ≤ C∥u∥p⋆ (3.6.11)

with rn = (kn+1)p⋆ → ∞ as n→ ∞. We note that (3.6.11) follows by iterating
the previous inequality (3.6.10). We will indirectly show that u ∈ L∞(Ω).

Suppose u ̸∈ L∞(Ω), then there exists ε > 0 and a set A of positive measure in
Ω such that |u(x)| > C∥u∥p⋆ + ε = K, for all x ∈ A. We then have,

lim
n→∞

inf ∥u∥rn ≥ lim
n→∞

inf

(∫
A

Krn

)1/rn

= lim
n→∞

infK|A|1/rn = K > C∥u∥p⋆ ,

(3.6.12)
which contradicts (3.6.11). If u changes sign, we consider u = u+ − u− where

u+ = max{u, 0} and u− = max{−u, 0}. (3.6.13)

We have u+, u− ∈ W 1,p
0 (Ω). For each M > 0 define wM = min{u+(x),M} and

take again φ = wkp+1
M as a test function in (3.4.4). Proceeding the same way as

above we conclude that u+ ∈ L∞(Ω). Similarly we have u− ∈ L∞(Ω). Therefore
u = u+ − u− is in L∞(Ω).

3.6.2 Simplicity of the eigenvalues

We prove an auxiliary result which will imply uniqueness of the first eigenfunc-
tion. Let

I(u, v) = ⟨−∆pu,
up − vp

up−1
⟩+ ⟨−∆u,

u2 − v2

u
⟩

+ ⟨−∆pv,
vp − up

vp−1
⟩+ ⟨−∆v,

v2 − u2

v
⟩,

for all (u, v) ∈ DI , where

DI = {(u1, u2) ∈ W 1,p
0 (Ω)×W 1,p

0 (Ω) : ui > 0 in Ω and ui ∈ L∞(Ω) for i = 1, 2} if p > 2,

and

DI = {(u1, u2) ∈ W 1,2
0 (Ω)×W 1,2

0 (Ω) : ui > 0 in Ω and ui ∈ L∞(Ω) for i = 1, 2} if 1 < p < 2.

Proposition 3.6.2. For all (u, v) ∈ DI , we have I(u, v) ≥ 0. Furthermore
I(u, v) = 0 if and only if there exists α ∈ R⋆

+ such that u = αv.
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Proof. We first show that I(u, v) ≥ 0. We recall that (if 2 < p <∞)

⟨−∆pu,w⟩ =
∫
Ω

|∇u|p−2∇u · ∇w dx for all w ∈ W 1,p
0 (Ω)

⟨−∆u,w⟩ =
∫
Ω

∇u · ∇w dx for all w ∈ W 1,p
0 (Ω).

and (if 1 < p < 2)

⟨−∆pu,w⟩ =
∫
Ω

|∇u|p−2∇u · ∇w dx for all w ∈ W 1,2
0 (Ω)

⟨−∆u,w⟩ =
∫
Ω

∇u · ∇w dx for all w ∈ W 1,2
0 (Ω).

Let us consider β = up−vp
up−1 , η = vp−up

vp−1 , ξ = u2−v2
u

and ζ = v2−u2
v

as test functions
in (3.4.4) for any p > 1. Straightforward computations give,

∇
(
up − vp

up−1

)
=
{
1 + (p− 1)

(v
u

)p}
∇u− p

(v
u

)p−1

∇v

∇
(
vp − up

vp−1

)
=
{
1 + (p− 1)

(u
v

)p}
∇v − p

(u
v

)p−1

∇u

∇
(
u2 − v2

u

)
=

{
1 +

(v
u

)2}
∇u− 2

(v
u

)
∇v

∇
(
v2 − u2

v

)
=

{
1 +

(u
v

)2}
∇v − 2

(u
v

)
∇u.

Therefore

⟨−∆pu,
up − vp

up−1
⟩ =

∫
Ω

{
−p
(v
u

)p−1

|∇u|p−2∇u · ∇v +
(
1 + (p− 1)

(v
u

)p)
|∇u|p

}
dx

=

∫
Ω

{
p
(v
u

)p−1

|∇u|p−2 (|∇u||∇v| − ∇u · ∇v) +
(
1 + (p− 1)

(v
u

)p)
|∇u|p

}
dx

−
∫
Ω

p
(v
u

)p−1

|∇u|p−1|∇v| dx

and

⟨−∆u,
u2 − v2

u
⟩ =

∫
Ω

{
2
(v
u

)
(|∇u||∇v| − ∇u · ∇v) +

(
1 +

(v
u

)2)
|∇u|2 − 2

(v
u

)
|∇u||∇v|

}
dx.
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By symmetry we have

⟨−∆pv,
vp − up

vp−1
⟩ =

∫
Ω

{
−p
(u
v

)p−1

|∇v|p−2∇v · ∇u+
(
1 + (p− 1)

(u
v

)p)
|∇v|p

}
dx

=

∫
Ω

{
p
(u
v

)p−1

|∇v|p−2 (|∇v||∇u| − ∇v · ∇u) +
(
1 + (p− 1)

(u
v

)p)
|∇v|p

}
dx

−
∫
Ω

p
(u
v

)p−1

|∇v|p−1|∇u| dx

and

⟨−∆v,
v2 − u2

v
⟩ =

∫
Ω

{
2
(u
v

)
(|∇v||∇u| − ∇v · ∇u) +

(
1 +

(u
v

)2)
|∇v|2 − 2

(u
v

)
|∇v||∇u|

}
dx.

Thus

I(u, v) =

∫
Ω

{
p
(v
u

)p−1

|∇u|p−2 (|∇u||∇v| − ∇u · ∇v) +
(
1 + (p− 1)

(v
u

)p)
|∇u|p

}
dx

− p
(v
u

)p−1

|∇u|p−1|∇v| dx

+

∫
Ω

{
p
(u
v

)p−1

|∇v|p−2 (|∇v||∇u| − ∇v · ∇u) +
(
1 + (p− 1)

(u
v

)p)
|∇v|p

}
dx

− p
(u
v

)p−1

|∇v|p−1|∇u| dx

+

∫
Ω

{
2
(v
u

)
(|∇u||∇v| − ∇u · ∇v) +

(
1 +

(v
u

)2)
|∇u|2 − 2

(v
u

)
|∇u||∇v|

}
dx

+

∫
Ω

{
2
(u
v

)
(|∇v||∇u| − ∇v · ∇u) +

(
1 +

(u
v

)2)
|∇v|2 − 2

(u
v

)
|∇v||∇u|

}
dx.

So
I(u, v) =

∫
Ω

F (
v

u
,∇v,∇u) dx+

∫
Ω

G(
v

u
, |∇v|, |∇u|) dx,

where

F (t, S, R) = p
{
tp−1|R|p−2 (|R||S| −R · S) + t1−p|S|p−2 (|R||S| −R · S)

}
+ 2 {t (|R||S| −R · S)}+ 2

{
t−1 (|R||S| −R · S)

}
and

G(t, s, r) = (1 + (p− 1)tp) rp +
(
1 + (p− 1)t−p

)
sp + (1 + t2)r2

+ (1 + t−2)s2 − ptp−1rp−1s− pt1−psp−1r − 2trs− 2t−1rs,

for all t = v
u
> 0, R = ∇u, S = ∇v ∈ RN and r = |∇u|, s = |∇v| ∈ R+. We

clearly have that F is non-negative. Now let us show that G is non-negative.
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Indeed, we observe that

G(t, s, 0) =
(
1 + (p− 1)t−p

)
sp + (1 + t−2)s2 ≥ 0

and G(t, s, 0) = 0 ⇒ s = 0. If r ̸= 0, by setting z = s
tr

we obtain

G(t, s, r) = tprp(zp − pz + (p− 1)) + rp((p− 1)zp − pzp−1 + 1)

+ t2r2(z2 − 2z + 1) + r2(z2 − 2z + 1),

and G can be written as

G(t, s, r) = rp(tpf(z) + g(z)) + r2(t2h(z) + k(z)),

with f(z) = zp−pz+(p−1), g(z) = (p−1)zp−pzp−1+1, h(z) = k(z) = z2−2z+1

∀p > 1. We can see that f, g, h and k are non-negative. Hence G is non-negative
and thus I(u, v) ≥ 0 for all (u, v) ∈ DI . In addition since f, g, h and k vanish
if and only if z = 1, then G(t, s, r) = 0 if and only if s = tr. Consequently, if
I(u, v) = 0 then we have

∇u · ∇v = |∇u||∇v| and u|∇v| = v|∇u|

almost everywhere in Ω. This is equivalent to (u∇v − v∇u)2 = 0, which implies
that u = αv with α ∈ R⋆

+.

Theorem 3.6.3. The first eigenvalues λ of equation (3.4.3) are simple, i.e. if
u and v are two positive first eigenfunctions associated to λ, then u = v.

Proof. By proposition 3.6.2, we have u = αv. Inserting this into the equation
(3.4.3) implies that α = 1.

3.6.3 Invertibility of the operator −∆p −∆

To simplify some notations, here we set X = W 1,p
0 (Ω) and its dual X⋆ =

W−1,p′(Ω), where 1
p
+ 1

p′
= 1.

For the proof of the following lemma, we refer to [65].

Lemma 3.6.4. Let p > 2. Then there exist two positive constants c1, c2 such
that, for all x1, x2 ∈ Rn, we have :

(i) (x2 − x1) · (|x2|p−2x2 − |x1|p−2x1) ≥ c1|x2 − x1|p

(ii) ||x2|p−2x2 − |x1|p−2x1| ≤ c2(|x2|+ |x1|)p−2|x2 − x1|

Proposition 3.6.5. For p > 2, the operator −∆p −∆ is a global homeomor-
phism.
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The proof is based on the previous Lemma 3.6.4.

Proof. Define the nonlinear operator A : X → X⋆ by

⟨Au, v⟩ =
∫
Ω

∇u · ∇v dx+
∫
Ω

|∇u|p−2∇u · ∇v dx for all u, v ∈ X.

To show that −∆p −∆ is a homeomorphism, it is enough to show that A is a
continuous strongly monotone operator, [see Theorem 2.1.21].

For p > 2, for all u, v ∈ X, by (i), we get

⟨Au− Av, u− v⟩ =

∫
Ω

|∇(u− v)|2dx+
∫
Ω

(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇(u− v) dx

≥
∫
Ω

|∇(u− v)|2dx+ c1

∫
Ω

|∇(u− v)|pdx

≥ c1∥u− v∥p1,p

Thus A is a strongly monotone operator.
We claim that A is a continuous operator from X to X⋆. Indeed, assume that
un → u in X. We have to show that ∥Aun − Au∥X⋆ → 0 as n → ∞. Indeed,
using (ii) and Hölder’s inequality and the Sobolev embedding theorem, one has

|⟨Aun − Au,w⟩| ≤
∫
Ω

∣∣|∇un|p−2∇un − |∇u|p−2∇u
∣∣ |∇w| dx+ ∫

Ω

|∇(un − u)||∇w| dx

≤ c2

∫
Ω

(|∇un|+ |∇u|)p−2 |∇(un − u)||∇w| dx+
∫
Ω

|∇(un − u)||∇w| dx

≤ c2

(∫
Ω

(|∇un|+ |∇u|)p dx
)p−2/p(∫

Ω

|∇(un − u)|pdx
)1/p(∫

Ω

|∇w|pdx
)1/p

+ c3∥un − u∥1,2∥w∥1,2
≤ c4(∥un∥1,p + ∥u∥1,p)p−2∥un − u∥1,p∥w∥1,p + c5∥un − u∥1,p∥w∥1,p.

Thus ∥Aun − Au∥X⋆ → 0, as n→ +∞, and hence A is a homeomorphism.

3.7 Bifurcation of eigenvalues

In the next subsection we show that for equation (3.4.3) there is a branch of
first eigenvalues bifurcating from (λD1 , 0) ∈ R+ ×W 1,p

0 (Ω).

3.7.1 Bifurcation from zero : the case p > 2

By proposition 3.6.5, equation (3.4.3) is equivalent to

u = λ(−∆p −∆)−1u for u ∈ W−1,p′(Ω). (3.7.1)
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We set
Sλ(u) = u− λ(−∆p −∆)−1u, (3.7.2)

u ∈ L2(Ω) ⊂ W−1,p′(Ω) and λ > 0. By Σ = {(λ, u) ∈ R+ × W 1,p
0 (Ω)/ u ̸=

0 , Sλ(u) = 0}, we denote the set of nontrivial solutions of (4.1). A bifurcation
point for (4.1) is a number λ⋆ ∈ R+ such that (λ⋆, 0) belongs to the closure of Σ.
This is equivalent to say that, in any neighbourhood of (λ⋆, 0) in R+×W 1,p

0 (Ω),
there exists a nontrivial solution of Sλ(u) = 0.
Our goal is to apply the Krasnoselski bifurcation Theorem 3.1.7. We state our
bifurcation result.

Theorem 3.7.1. Let p > 2. Then every eigenvalue λDk with odd multiplicity
is a bifurcation point in R+ ×W 1,p

0 (Ω) of Sλ(u) = 0, in the sense that in any
neighbourhood of (λDk , 0) in R+ ×W 1,p

0 (Ω) there exists a nontrivial solution of
Sλ(u) = 0.

Proof. We write the equation Sλ(u) = 0 as

u = λAu+ Tλ(u),

where Au = (−∆)−1u and Tλ(u) = [(−∆p − ∆)−1 − (−∆)−1](λu), where we
consider

(−∆p −∆)−1 : L2(Ω) ⊂ W−1,p′(Ω) → W 1,p
0 (Ω) ⊂⊂ L2(Ω)

and (−∆)−1 : L2(Ω) ⊂ W−1,2(Ω) → W 1,2
0 (Ω) ⊂⊂ L2(Ω).

For p > 2, the mapping

(−∆p −∆)−1 − (−∆)−1 : L2(Ω) ⊂ W−1,p′(Ω) → W 1,p
0 (Ω) ⊂⊂ L2(Ω)

is compact thanks to Rellich-Kondrachov theorem. We clearly haveA ∈ L(L2(Ω))

and Tλ(0) = 0. Now we have to show that

(1) Tλ ∈ C1.

(2) T ′
λ(0) = 0.

In order to show (1) and (2), it suffices to show that

(a) −∆p−∆ : W 1,p
0 (Ω) → W−1,p′(Ω) is continuously differentiable in a neigh-

borhood u ∈ W 1,p
0 (Ω).

(b) (−∆p −∆)−1 is a continuous inverse operator.
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According to Proposition 3.6.5, −∆p −∆ is a homeomorphism, hence (−∆p −
∆)−1 is continuous and this shows (b). We also recall that in section 3.6.2, we
have shown that λD1 is simple.

Let us show (a). We claim that −∆p : W 1,p
0 (Ω) → W−1,p′(Ω) is Gâteaux

differentiable. Indeed, for φ ∈ W 1,p
0 (Ω) we have

⟨−∆p(u+ δv), φ⟩ − ⟨−∆pu, φ⟩ = ⟨|∇(u+ δv)|p−2∇(u+ δv),∇φ⟩ − ⟨|∇u|p−2∇u,∇φ⟩

= ⟨
(
|∇(u+ δv)|2

) p−2
2 ∇(u+ δv),∇φ⟩ − ⟨|∇u|p−2∇u,∇φ⟩

= ⟨
(
|∇u|2 + 2δ⟨∇u,∇v⟩+ δ2|∇v|2

) p−2
2 ∇(u+ δv),∇φ⟩

− ⟨|∇u|p−2∇u,∇φ⟩
= ⟨[|∇u|p−2 + (p− 2)|∇u|2(

p−2
2

−1)δ⟨∇u,∇v⟩
+ O(δ2)]∇(u+ δv),∇φ⟩ − ⟨|∇u|p−2∇u,∇φ⟩
= ⟨[|∇u|p−2 + (p− 2)|∇u|p−4δ⟨∇u,∇v⟩+O(δ2)]∇(u+ δv),∇φ⟩
− ⟨|∇u|p−2∇u,∇φ⟩
= (p− 2)δ|∇u|p−4⟨∇u,∇v⟩⟨∇u,∇φ⟩+ δ⟨|∇u|p−2∇v,∇φ⟩+O(δ2)

= δ[(p− 2)|∇u|p−4⟨∇u,∇v⟩⟨∇u,∇φ⟩+ ⟨|∇u|p−2∇v,∇φ⟩+O(δ)].

Define

⟨B(u)v, φ⟩ = (p− 2)|∇u|p−4⟨∇u,∇v⟩⟨∇u,∇φ⟩+ ⟨|∇u|p−2∇v,∇φ⟩

and let (un)n≥0 ⊂ W 1,p
0 (Ω). Assume that un → u, as n → ∞ in W 1,p

0 (Ω). We
have

⟨B(un)v −B(u)v, φ⟩ = (p− 2)
[
|∇un|p−4⟨∇un,∇v⟩⟨∇un,∇φ⟩ − |∇u|p−4⟨∇u,∇v⟩⟨∇u,∇φ⟩

]
+ ⟨|∇un|p−2∇v,∇φ⟩ − ⟨|∇u|p−2∇v,∇φ⟩.

Therefore,

|⟨B(un)v −B(u)v, φ⟩| ≤ (p− 2)
∣∣|∇un|p−4⟨∇un,∇v⟩⟨∇un,∇φ⟩ − |∇u|p−4⟨∇u,∇v⟩⟨∇u,∇φ⟩

∣∣
+

∣∣|∇un|p−2 − |∇u|p−2
∣∣ |⟨∇v,∇φ⟩|.

By assumption, we can assume that, up to subsequences,

(∗) ∇un → ∇u in (Lp(Ω))N as n→ ∞ and

(∗∗) ∇un(x) → ∇u(x) almost everywhere as n→ ∞.

Then |∇un|p−4⟨∇un,∇v⟩⟨∇un,∇φ⟩ → |∇u|p−4⟨∇u,∇v⟩⟨∇u,∇φ⟩ as n → ∞
and consequently ⟨B(un)v, φ⟩ → ⟨B(u)v, φ⟩as n → ∞. Thus, we find that
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−∆p − ∆ ∈ C1 and thanks to the Inverse function theorem (−∆p − ∆)−1 is
differentiable in a neighborhood of u ∈ W 1,p

0 (Ω). Therefore according to the
Krasnoselski bifurcation Theorem, we obtain that λDk is a bifurcation point at
zero.

3.7.2 Bifurcation from infinity : the case 1 < p < 2

We recall the nonlinear eigenvalue problem we are studying,{
−∆pu−∆u = λu in Ω,

u = 0 on ∂Ω.
(3.7.3)

Under a solution of (3.7.3) (for 1 < p < 2), we understand a pair (λ, u) ∈
R+
⋆ ×W 1,2

0 (Ω) satisfying the integral equality,∫
Ω

|∇u|p−2∇u · ∇φ dx+

∫
Ω

∇u · ∇φ dx = λ

∫
Ω

uφ dx for every φ ∈ W 1,2
0 (Ω).

(3.7.4)
We now state the main theorem concerning the bifurcation from infinity.

Theorem 3.7.2. The pair (λD1 ,∞) is a bifurcation point from infinity for the
problem (3.7.3).

For u ∈ W 1,2
0 (Ω), u ̸= 0, we set v = u/∥u∥2−

1
2
p

1,2 . We have ∥v∥1,2 = 1

∥u∥
1− 1

2 p

1,2

and

|∇v|p−2∇v =
1

∥u∥(2−
1
2
p)(p−1)

1,2

|∇u|p−2∇u.

Introducing this change of variable in (3.7.4), we find that,

∥u∥(2−
1
2
p)(p−2)

1,2

∫
Ω

|∇v|p−2∇v·∇φ dx+
∫
Ω

∇v·∇φ dx = λ

∫
Ω

vφ dx for every φ ∈ W 1,2
0 (Ω).

(3.7.5)
But, on the other hand, we have

∥v∥p−4
1,2 =

1

∥u∥(1−
1
2
p)(p−4)

1,2

=
1

∥u∥(2−
1
2
p)(p−2)

1,2

.

Consequently it follows that equation (3.7.5) is equivalent to

∥v∥4−p1,2

∫
Ω

|∇v|p−2∇v·∇φ dx+
∫
Ω

∇v·∇φ dx = λ

∫
Ω

vφ dx for every φ ∈ W 1,2
0 (Ω).

(3.7.6)
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This leads to the following nonlinear eigenvalue problem (for 1 < p < 2){
−∥v∥4−p1,2 ∆pv −∆v = λv in Ω,

v = 0 on ∂Ω.
(3.7.7)

The proof of Theorem 3.7.2 follows immediately from the following remark, and
the proof that (λD1 , 0) is a bifurcation of (3.7.7).

Remark 3.7.3. With this transformation, we have that the pair (λD1 ,∞) is
a bifurcation point for the problem (3.7.3) if and only if the pair (λD1 , 0) is a
bifurcation point for the problem (3.7.7).

Let us consider a small ball Br(0) := { w ∈ W 1,2
0 (Ω)/ ∥w∥1,2 < r }, and

consider the operator

T := −∥ · ∥4−p1,2 ∆p −∆ : W 1,2
0 (Ω) → W−1,2(Ω).

Proposition 3.7.4. Let 1 < p < 2. There exists r > 0 such that the mapping
T : Br(0) ⊂ W 1,2

0 (Ω) → W−1,2(Ω) is invertible, with a continuous inverse.

Proof. In order to prove that the operator T is invertible with a continuous
inverse, we again rely on Theorem 2.1.21. We show that there exists δ > 0 such
that

⟨T (u)− T (v), u− v⟩ ≥ δ∥u− v∥21,2, for u, v ∈ Br(0) ⊂ W 1,2
0 (Ω)

with r > 0 sufficiently small.
Indeed, using that −∆p is strongly monotone on W 1,p

0 (Ω) on the one hand and
the Hölder inequality on the other hand, we have

⟨T (u)− T (v), u− v⟩ = ∥∇u−∇v∥22 +
(
∥u∥4−p1,2 (−∆pu)− ∥v∥4−p1,2 (−∆pv), u− v

)
= ∥u− v∥21,2 + ∥u∥4−p1,2 ((−∆pu)− (−∆pv), u− v)

+
(
∥u∥4−p1,2 − ∥v∥4−p1,2

)
(−∆pv, u− v)

≥ ∥u− v∥21,2 −
∣∣∥u∥4−p1,2 − ∥v∥4−p1,2

∣∣ ∥∇v∥p−1
p ∥∇(u− v)∥p

≥ ∥u− v∥21,2 −
∣∣∥u∥4−p1,2 − ∥v∥4−p1,2

∣∣C∥v∥p−1
1,2 ∥u− v∥1,2.(3.7.8)
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Now, we obtain by the Mean Value Theorem that there exists θ ∈ [0, 1] such
that∣∣∥u∥4−p1,2 − ∥v∥4−p1,2

∣∣ =

∣∣∣∣ ddt (∥u+ t(v − u)∥21,2
)2− 1

2
p |t=θ(v − u)

∣∣∣∣
=

∣∣∣∣(2− 1

2
p)
(
∥u+ θ(v − u)∥21,2

)1− 1
2
p
2 (u+ θ(v − u), v − u)1,2

∣∣∣∣
≤ (4− p)∥u+ θ(v − u)∥2−p1,2 ∥u+ θ(v − u)∥1,2∥u− v∥1,2
= (4− p)∥u+ θ(v − u)∥3−p1,2 ∥u− v∥1,2
≤ (4− p) ((1− θ)∥u∥1,2 + θ∥v∥1,2)3−p ∥u− v∥1,2
≤ (4− p)r3−p∥u− v∥1,2.

Hence, continuing with the estimate of equation (3.7.8), we get

⟨T (u)− T (v), u− v⟩ ≥ ∥u− v∥21,2(1− (4− p)r3−pCrp−1) = ∥u− v∥21,2(1−C ′r2),

and thus the claim, for r > 0 small enough.
Hence, the operator T is strongly monotone on Br(0) and it is continuous, and
hence the claim follows.

Clearly the mappings

Tτ = −∆− τ∥ · ∥γ1,2∆p : Br(0) ⊂ W 1,2
0 (Ω) → W−1,2(Ω), 0 ≤ τ ≤ 1

are also local homeomorphisms for 1 < p < 2 with γ = 4 − p > 0. Consider
now the homotopy maps

H(τ, y) := (−τ∥ · ∥γ1,2∆p −∆)−1(y), y ∈ Tτ (Br(0)) ⊂ W−1,2(Ω).

Then we can find a ρ > 0 such that the ball

Bρ(0) ⊂
⋂

0≤τ≤1

Tτ (Br(0))

and
H(τ, ·) : Bρ(0) ∩ L2(Ω) 7→ W 1,2

0 (Ω) ⊂⊂ L2(Ω)

are compact mappings. Set now

S̃λ(u) = u− λ(−∥u∥γ1,2∆p −∆)−1u.

Notice that S̃λ is a compact perturbation of the identity in L2(Ω). We have 0 /∈
H([0, 1]×∂Br(0)). So it makes sense to consider the Leray-Schauder topological
degree of H(τ, ·) on Br(0). And by the property of the invariance by homotopy,
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one has
deg(H(0, ·), Br(0), 0) = deg(H(1, ·), Br(0), 0). (3.7.9)

Theorem 3.7.5. The pair (λD1 , 0) is a bifurcation point in R+ × L2(Ω) of
S̃λ(u) = 0, for 1 < p < 2.

Proof. Suppose by contradiction that (λD1 , 0) is not a bifurcation for S̃λ. Then,
there exist δ0 > 0 such that for all r ∈ (0, δ0) and ε ∈ (0, δ0),

S̃λ(u) ̸= 0 ∀ |λD1 − λ| ≤ ε, ∀ u ∈ L2(Ω), ∥u∥2 = r. (3.7.10)

Taking into account that (3.7.10) holds, it follows that it make sense to consider
the Leray-Schauder topological degree deg(S̃λ, Br(0), 0) of S̃λ on Br(0).

We observe that(
I − (λD1 − ε)H(τ, ·)

)
|∂Br(0) ̸= 0 for τ ∈ [0, 1]. (3.7.11)

Proving (3.7.11) garantee the well posedness of deg(I−(λD1 ±ε)H(τ, ·), Br(0), 0)

for any τ ∈ [0, 1]. Indeed, by contradiction suppose that there exists v ∈
∂Br(0) ⊂ L2(Ω) such that
v − (λD1 − ε)H(τ, v) = 0, for some τ ∈ [0, 1].

One concludes that then v ∈ W 1,2
0 (Ω), and then that

−∆v − τ∥v∥γ1,2∆pv = (λD1 − ε)v.

However, we get the contradiction,

(λD1 − ε)∥v∥22 = ∥∇v∥22 + τ∥v∥γ1,2∥∇v∥pp ≥ ∥∇v∥22 ≥ λD1 ∥v∥22.

By the contradiction assumption, we have

deg(I− (λD1 + ε)H(1, ·), Br(0), 0) = deg(I− (λD1 − ε)H(1, ·), Br(0), 0). (3.7.12)

By homotopy using (3.7.9), we have

deg(I − (λD1 − ε)H(1, ·), Br(0), 0) = deg(I − (λD1 − ε)H(0, ·), Br(0), 0)

= deg(I − (λD1 − ε)(−∆)−1, Br(0), 0) = 1

(3.7.13)

Now, using (3.7.13) and (3.7.12), we find that

deg(I − (λD1 + ε)H(1, ·), Br(0), 0) = deg(I − (λD1 − ε)H(0, ·), Br(0), 0) = 1

(3.7.14)
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Furthermore, since λD1 is a simple eigenvalue of −∆, it is well-known [see [6]]
that

deg(I − (λD1 + ε)(−∆)−1, Br(0), 0) = deg(I − (λD1 + ε)H(0, ·), Br(0), 0) = −1

(3.7.15)
In order to get contradiction (to relation (3.7.14)), it is enough to show that,

deg(I− (λD1 + ε)H(1, ·), Br(0), 0) = deg(I− (λD1 + ε)H(0, ·), Br(0), 0), (3.7.16)

r > 0 sufficiently small. We have to show that(
I − (λD1 + ε)H(τ, ·)

)
|∂Br(0) ̸= 0 for τ ∈ [0, 1].

Suppose by contradiction that there is rn → 0, τn ∈ [0, 1] and un ∈ ∂Brn(0)

such that
un − (λD1 + ε)H(τn, un) = 0

or equivalently
−τn∥un∥γ1,2∆pun −∆un = (λD1 + ε)un. (3.7.17)

Dividing the equation (3.7.17) by ∥un∥1,2, we obtain

−τn∥un∥γ+p−1
1,2 ∆p

(
un

∥un∥1,2

)
−∆

(
un

∥un∥1,2

)
= (λD1 + ε)

un
∥un∥1,2

,

and by setting vn = un
∥un∥1,2 , it follows that

−τn∥un∥γ+p−1
1,2 ∆pvn −∆vn = (λD1 + ε)vn. (3.7.18)

But since ∥vn∥1,2 = 1, we have vn ⇀ v in W 1,2
0 (Ω) and vn → v in L2(Ω).

Furthermore, the first term in the left hand side of equation (3.7.18) tends to
zero in W−1,p′(Ω) as rn → 0 and hence in W−1,2(Ω). Equation (3.7.17) then
implies that vn → v strongly in W 1,2

0 (Ω) since −∆ : W 1,2
0 (Ω) → W−1,2(Ω) is a

homeomorphism and thus v with ∥v∥1,2 = 1 solves −∆v = (λD1 + ε)v, which is
impossible because λD1 +ε is not the first eigenvalue of −∆ on W 1,2

0 (Ω) for ε > 0.

Therefore, by homotopy it follows that

deg(I − (λD1 + ε)H(1, ·), Br(0), 0) = deg(I − (λD1 + ε)H(0, ·), Br(0), 0).

Now, thanks to (3.7.15), we find that

deg(I − (λD1 + ε)H(1, ·), Br(0), 0) = −1,
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which contradicts equation (3.7.14).

Theorem 3.7.6. The pair (λDk , 0) (k > 1) is a bifurcation point of S̃λ(u) = 0,
for 1 < p < 2 if λDk is of odd multiplicity.

Proof. Suppose by contradiction that (λDk , 0) is not a bifurcation for S̃λ. Then,
there exist δ0 > 0 such that for all r ∈ (0, δ0) and ε ∈ (0, δ0),

S̃λ(u) ̸= 0 ∀ |λDk − λ| ≤ ε, ∀ u ∈ L2(Ω), ∥u∥2 = r. (3.7.19)

Taking into account that (3.7.19) holds, it follows that it make sense to consider
the Leray-Schauder topological degree deg(S̃λ, Br(0), 0) of S̃λ on Br(0).

We show that (
I − (λDk − ε)H(τ, ·)

)
|∂Br(0) ̸= 0 for τ ∈ [0, 1]. (3.7.20)

Proving (3.7.20) garantee the well posedness of deg(I−(λDk ±ε)H(τ, ·), Br(0), 0)

for any τ ∈ [0, 1]. Indeed, consider the projections P− and P+ onto the spaces
span{e1, . . . , ek−1} and span{ek, ek+1, . . . }, respectively, where e1 . . . , ek, ek+1, . . .

denote the eigenfunctions associated to the Dirichlet problem (3.4.1).
Suppose by contradiction that relation (3.7.20) does not hold. Then there exists
v ∈ ∂Br(0) ⊂ L2(Ω) such that v− (λDk − ε)H(τ, v) = 0, for some τ ∈ [0, 1]. This
is equivalent of having

−∆v − (λDk − ε)v = τ∥v∥γ1,2∆pv. (3.7.21)

Replacing v by P+v+P−v, and multiplying equation (3.7.21) by P+v−P−v

in the both sides, we obtain

⟨[−∆−(λDk −ε)](P+v+P−v), P+v−P−v⟩ = τ∥P+v+P−v∥γ1,2⟨∆p[P
+v+P−v], P+v−P−v⟩

⇕

−
[
∥∇P−v∥22 − (λDk − ε)∥P−v∥22

]
+ ∥∇P+v∥22 − (λDk − ε)∥P+v∥22 = τ∥P+v + P−v∥γ1,2

× ⟨∆p[P
+v + P−v], P+v − P−v⟩.

But

⟨∆p[P
+v+P−v], P+v−P−v⟩ = −

∫
Ω

|∇(P+v+P−v)|p−2∇(P+v+P−v)·∇(P+v−P−v) dx,

and using the Hölder inequality, the embedding W 1,2
0 (Ω) ⊂ W 1,p

0 (Ω) and the
fact that P+v and P−v don’t vanish simultaneously, there is some positive con-
stant C ′ > 0 such that
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∥P+v−P−v∥1,2 ≤ C ′(∥P+v∥21,2+∥P−v∥21,2) = C ′∥P+v−P−v∥21,2, since (P+v, P−v)1,2 =

0, we have∣∣⟨∆p[P
+v + P−v], P+v − P−v⟩

∣∣ ≤ ∥P+v + P−v∥p−1
1,p ∥P+v − P−v∥1,p

≤ C ′∥P+v + P−v∥p−1
1,2 ∥P+v − P−v∥21,2

≤ C ′∥P+v + P−v∥p+1
1,2 , since ∥P+v − P−v∥21,2 = ∥P+v + P−v∥21,2.

On the other hand, thanks to the Poincaré inequality as well as the variational
characterization of eigenvalues we find

−
[
∥∇P−v∥22 − (λDk − ε)∥P−v∥22

]
≥ 0

and
∥∇P+v∥22 − (λDk − ε)∥P+v∥22 ≥ 0,

we can bound from below these two inequalities together by ∥∇P+v∥22+∥∇P−v∥22.
Finally, we have

∥v∥21,2 = ∥∇P+v∥22 + ∥∇P−v∥22 ≤ τC ′∥P+v + P−v∥γ+p+1
1,2 , with γ = 4− p,

⇕

∥v∥21,2 ≤ C ′′∥v∥γ+p+1
1,2 ⇔ 1 ≤ C ′′r3 → 0,

for r taken small enough. This shows that (3.7.20) holds.
By the contradiction assumption, we have

deg(I− (λDk + ε)H(1, ·), Br(0), 0) = deg(I− (λDk − ε)H(1, ·), Br(0), 0). (3.7.22)

By homotopy using (3.7.20), we have

deg(I − (λDk − ε)H(1, ·), Br(0), 0) = deg(I − (λDk − ε)H(0, ·), Br(0), 0) (3.7.23)

= deg(I − (λDk − ε)(−∆)−1, Br(0), 0) = (−1)β,

where β is the sum of algebraic multiplicities of the eigenvalues λDk −ε < λ. Sim-
ilarly, if β′ denotes the sum of the algebraic multiplicities of the characteristic
values of (−∆)−1 such that λ > λDk + ε, then

deg(I − (λDk + ε)H(1, ·), Br(0), 0) = (−1)β
′

(3.7.24)
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But since [λDk − ε, λDk + ε] contains only the eigenvalue λDk , it follows that β′ =

β +α, where α denotes the algebraic multiplicity of λDk . Consequently, we have

deg(I − (λDk + ε)H(1, ·), Br(0), 0) = (−1)β+α

= (−1)α deg(I − (λDk + ε)H(1, ·), Br(0), 0)

= − deg(I − (λDk + ε)H(1, ·), Br(0), 0),

since λDk is with odd multiplicity. This contradicts (3.7.22).

3.8 Multiple solutions

In this section we prove multiciplity results by distinguishing again the two
cases 1 < p < 2 and p > 2. Let Γ be the class of all the symmetric subsets
A ⊆ X\{0} which are closed in X\{0}.

Theorem 3.8.1. Let 1 < p < 2 or 2 < p <∞, and suppose that λ ∈ (λDk , λ
D
k+1)

for any k ∈ N∗. Then equation (3.4.3) has at least k pairs of nontrivial solutions.

Proof. Case 1: 1 < p < 2.
In this case we will avail of [6, Proposition 10.8]. We consider the energy
functional Iλ : W 1,2

0 (Ω)\{0} → R associated to the problem (3.4.3) defined by

Iλ(u) =
2

p

∫
Ω

|∇u|p dx+
∫
Ω

|∇u|2 dx− λ

∫
Ω

u2 dx.

The functional Iλ is not bounded from below on W 1,2
0 (Ω), so we consider again

the natural constraint set, the Nehari manifold on which we minimize the func-
tional Iλ. The Nehari manifold is given by

Nλ := {u ∈ W 1,2
0 (Ω)\{0} : ⟨I ′λ(u), u⟩ = 0}.

On Nλ, we have Iλ(u) = (2
p
− 1)

∫
Ω

|∇u|p dx > 0. We clearly have that, Iλ is

even and bounded from below on Nλ.

Now, let us show that every (PS) sequence for Iλ has a converging subsequence
on Nλ. Let (un)n be a (PS) sequence, i.e, |Iλ(un)| ≤ C, for all n, for some C > 0

and I ′λ(un) → 0 in W−1,2(Ω) as n→ +∞.

We first show that the sequence (un)n is bounded on Nλ. Suppose by con-

tradiction that this is not true, so
∫
Ω

|∇un|2 dx → +∞ as n → +∞. Since

Iλ(un) = (2
p
− 1)

∫
Ω

|∇un|p dx we have
∫

Ω

|∇un|p dx ≤ c. On Nλ, we have

0 <

∫
Ω

|∇un|p dx = λ

∫
Ω

u2n dx−
∫
Ω

|∇un|2 dx, (3.8.1)
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and hence
∫
Ω

u2n dx→ +∞. Let vn = un
∥un∥2 then

∫
Ω

|∇vn|2 dx ≤ λ and hence vn

is bounded in W 1,2
0 (Ω). Therefore there exists v0 ∈ W 1,2

0 (Ω) such that vn ⇀ v0

in W 1,2
0 (Ω) and vn → v0 in L2(Ω). Dividing (3.8.1) by ∥un∥p2, we have

λ

∫
Ω

u2n dx−
∫
Ω

|∇un|2 dx

∥un∥p2
=

∫
Ω

|∇vn|p dx→ 0,

since λ
∫
Ω

u2n dx −
∫
Ω

|∇un|2 dx = (
2

p
− 1)−1Iλ(un), |Iλ(un)| ≤ C and ∥un∥p2 →

+∞. Now, since vn ⇀ v0 in W 1,2
0 (Ω) ⊂ W 1,p

0 (Ω), we infer that∫
Ω

|∇v0|p dx ≤ lim inf
n→+∞

∫
Ω

|∇vn|p dx = 0,

and consequently v0 = 0. So vn → 0 in L2(Ω) and this is a contradiction since
∥vn∥2 = 1. So (un)n is bounded on Nλ.
Next, we show that un converges strongly to u in W 1,2

0 (Ω).

To do this, we will use the following vectors inequality for 1 < p < 2

(|x2|p−2x2 − |x1|p−2x1) · (x2 − x1) ≥ C ′(|x2|+ |x1|)p−2|x2 − x1|2,

for all x1, x2 ∈ RN and for some C ′ > 0, [see [65]].

We have
∫
Ω

u2n dx →
∫
Ω

u2 dx and since I ′λ(un) → 0 in W−1,2(Ω), un ⇀ u in

W 1,2
0 (Ω), we also have I ′λ(un)(un − u) → 0 and I ′λ(u)(un − u) → 0 as n→ +∞.

On the other hand, one has

⟨I ′λ(un)− I ′λ(u), un − u⟩ = 2

[∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx

]
+ 2

∫
Ω

|∇(un − u)|2 dx− 2λ

∫
Ω

|un − u|2 dx

≥ C ′
∫
Ω

(|∇un|+ |∇u|)p−2 |∇(un − u)|2 dx

+ 2

∫
Ω

|∇(un − u)|2 dx− 2λ

∫
Ω

|un − u|2 dx

≥ 2

∫
Ω

|∇(un − u)|2 dx− 2λ

∫
Ω

|un − u|2 dx

≥ ∥un − u∥21,2 − λ

∫
Ω

|un − u|2 dx.

Therefore ∥un − u∥1,2 → 0 as n → +∞ and un converges strongly to u in
W 1,2

0 (Ω).
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Let Σ′ = {A ⊂ Nλ : A closed and − A = A} and Γj = {A ∈ Σ′ : γ(A) ≥ j},
where γ(A) denotes the Krasnoselski’s genus. We show that Γj ̸= ∅.
Set Ej = span{ei, i = 1, . . . , j}, where ei are the eigenfunctions associated
to the problem (3.4.1). Let λ ∈ (λDj , λ

D
j+1), and consider v ∈ Sj := {v ∈

Ej :
∫
Ω
|v|2 dx = 1}. Then set

ρ(v) =

[ ∫
Ω
|∇v|p dx

λ
∫
Ω
v2 dx−

∫
Ω
|∇v|2 dx

] 1
2−p

.

Then λ
∫
Ω
v2 dx−

∫
Ω
|∇v|2 dx ≥ λ

∫
Ω
v2 dx−

j∑
i=1

∫
Ω
λi|ei|2 dx ≥ (λ−λj)

∫
Ω
|v|2 dx >

0. Hence, ρ(v)v ∈ Nλ, and then ρ(Sj) ∈ Σ′, and γ(ρ(Sj)) = γ(Sj) = j for
1 ≤ j ≤ k, for any k ∈ N∗.
It is then standard (see [6, Proposition 10.8]) to conclude that

σλ,j = inf
γ(A)≥j

sup
u∈A

Iλ(u), 1 ≤ j ≤ k, for any k ∈ N∗

yields k pairs of nontrivial critical points for Iλ, which gives rise to k nontrivial
solutions of problem (3.4.3).

Case 2: p > 2.
In this case, we will rely on Theorem 3.3.8.

Let us consider the C1 energy functional Iλ : W 1,p
0 (Ω) → R defined as

Iλ(u) =
2

p

∫
Ω

|∇u|p dx+
∫
Ω

|∇u|2 dx− λ

∫
Ω

|u|2 dx.

We want to show that

−∞ < σj = inf
{A∈Σ′,γ(A)≥j}

sup
u∈A

Iλ(u) (3.8.2)

is a critical point for Iλ, where Σ′ = {A ⊆ Sj}, where Sj = {v ∈ Ej :
∫
Ω
|v|2 dx =

1}.
We clearly have that Iλ(u) is an even functional for all u ∈ W 1,p

0 (Ω), and also
Iλ(u) is bounded from below on W 1,p

0 (Ω) since Iλ(u) ≥ C∥u∥p1,p − C ′∥u∥21,p.

We show that Iλ(u) satisfies the (PS) condition. Let {un} be a Palais-Smale
sequence, i.e., |Iλ(un)| ≤ M for all n, M > 0 and I ′λ(un) → 0 in W−1,p′(Ω) as
n→ ∞. We first show that {un} is bounded in W 1,p

0 (Ω). We have

M ≥ |C∥un∥p1,p − C ′∥un∥21,p| ≥
(
C∥un∥p−2

1,p − C ′) ∥un∥21,p,
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and so {un} is bounded in W 1,p
0 (Ω). Therefore, u ∈ W 1,p

0 (Ω) exists such that,
up to subsequences that we will denote by (un)n we have un ⇀ u in W 1,p

0 (Ω)

and un → u in L2(Ω).

We will use the following inequality for v1, v2 ∈ RN : there exists R > 0 such
that

|v1 − v2|p ≤ R
(
|v1|p−2v1 − |v2|p−2v2

)
(v1 − v2),

for p > 2 [see [65]]. Then we obtain

⟨I ′λ(un)− I ′λ(u), un − u⟩ = 2

∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
· ∇(un − u) dx+ 2

∫
Ω

|∇un −∇u|2 dx

− 2λ

∫
Ω

|un − u|2 dx

≥ 2

R

∫
Ω

|∇un −∇u|p dx+ 2

∫
Ω

|∇un −∇u|2 dx− 2λ

∫
Ω

|un − u|2 dx

≥ 2

R
∥un − u∥p1,p − 2λ

∫
Ω

|un − u|2 dx.

Therefore ∥un − u∥1,p → 0 as n→ +∞, and so un converges to u in W 1,p
0 (Ω).

Next, we show that there exists setsAj of genus j = 1, . . . , k such that sup
u∈Aj

Iλ(u) <

0.

Consider Ej = span{ei, i = 1, . . . , j} and Sj = {v ∈ Ej :
∫
Ω
|v|2 dx = 1}.

For any s ∈ (0, 1), we define the set Aj(s) := s(Sj ∩ Ej) and so γ(Aj(s)) = j

for j = 1, . . . , k. We have, for any s ∈ (0, 1)

sup
u∈Aj

Iλ(u) = sup
v∈Sj∩Ej

Iλ(sv)

≤ sup
v∈Sj∩Ej

{
sp

p

∫
Ω

|∇v|pdx+ s2

2

∫
Ω

|∇v|2dx− λs2

2

∫
Ω

|v|2dx
}

≤ sup
v∈Sj∩Ej

{
sp

p

∫
Ω

|∇v|pdx+ s2

2
(λj − λ)

}
< 0

for s > 0 sufficiently small, since
∫
Ω

|∇v|p dx ≤ cj, where cj denotes some

positive constant.
Finally, we conclude that σλ,j (j = 1, . . . , k) are critical values thanks to Clark’s
Theorem.
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4. Part B: Control theory
For more details about what we recall in this chapter we refer to [62].

Pseudo-differential operators, oscillatory integrals,
parametrices

4.1 Pseudo-differential operators with large pa-
rameter

We shall use the notations a ≲ b for a ≤ Cb and a ≳ b for a ≥ Cb, with a
constant C > 0 that may change from one line to another. We also write a ≍ b

to denote a ≲ b ≲ a. For functions norms we also use the notation ∥ · ∥ for
functions defined in the interior of the domain and | · | for functions defined on
the boundaries.

To motivate the form of the pseudo-differential operators, which we will present
below, we first formulate differential operators by the means of the Fourier
transformation. Suppose that q(x, ξ, τ) is a polynomial in (ξ, τ) of order less
than or equal to m, with x, ξ ∈ Rd, and τ ≥ 1. We write it in the form

q(x, ξ, τ) =
∑

|α|+k≤m

aα(x)ξ
ατ k,

and we set q(x,D, τ)u =
∑

|α|+k≤m

aα(x)τ
kDαu. For u in the Schawrtz space

S (Rd), we denote by û the Fourier transform, that is

û(ξ) =

∫
Rd

e−ix·ξu(x)dx.

Observing that

Dαu =
1

(2π)d

∫
Rd

eix·ξξαû(ξ) dξ for u ∈ S (Rd), we write

q(x,D, τ)u =
1

(2π)d

∑
|α|+k≤m

τ k
∫
Rd

eix·ξaα(x)ξ
αû(ξ)dξ, that is

q(x,D, τ)u =
1

(2π)d

∫
Rd

eix·ξq(x, ξ, τ)û(ξ)dξ.
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We also note that
|q(x, ξ, τ)| ≲ (τ + |ξ|)m (4.1.1)

and for all α, β ∈ Nd,

|∂αx∂
β
ξ q(x, ξ, τ)| ≤ Cαβ(τ + |ξ|)m−|β|, (4.1.2)

for |β| ≤ m and ∂αx∂
β
ξ q(x, ξ, τ) = 0 for |β| > m. We wish to generalize such

differential operators Q(x,D, τ) that involves a large parameter such as τ, to
the case of more general functions q(x, ξ, τ).

Semi-classical calculus acting on Rd

Here, we recall some notions on semi-classical pseudo-differential operators with
large parameter τ ≥ 1.We denote by Smτ the space of smooth functions a(x, ξ, τ)
defined on Rd×Rd, with τ ≥ 1 as a large parameter, that satisfies the following
: for all multi-indices α, β ∈ Nd and m ∈ R, there exists Cα,β > 0 such that

|∂αx∂
β
ξ a(x, ξ, τ)| ≤ Cα,βλ

m−|β|
τ , where λ2τ = τ 2 + |ξ|2,

for all (x, ξ, τ) ∈ Rd × Rd × [1,∞). For a ∈ Smτ , the define pseudo-differential
operator of order m, denoted by A = Op(a) is

a(x,D, τ)u(x) = Au(x) :=
1

(2π)d

∫
Rd

eix·ξa(x, ξ, τ)û(ξ)dξ (4.1.3)

for u ∈ S (Rd
+).

We say that a is the symbol of A. We denote Ψm
τ the set of pseudo-differential

operators of order m. We shall denote by Dm
τ the space of semi-classical differen-

tial operators, i.e, the case when the symbol a(x, ξ, τ) is a polynomial function
of order m in (ξ, τ).

We have the following properties for symbols.

Proposition 4.1.1. i. If a ∈ Smτ , then ∂αx∂
β
ξ a ∈ S

m−|β|
τ .

ii. If a ∈ Smτ , and b ∈ Sm
′

τ then ab ∈ Sm+m′
τ .

iii. If m ≤ m′, then Smτ ⊂ Sm
′

τ .

Proof. Let α, β, α′, β′ ∈ Nd.
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i. We have∣∣∣∂α′

x ∂
β′

ξ

(
∂αx∂

β
ξ a(x, ξ, τ)

)∣∣∣ = ∣∣∣∂α′

x ∂
β′

ξ ∂
α
x∂

β
ξ a(x, ξ, τ)

∣∣∣
=
∣∣∣∂α′+α
x ∂β

′+β
ξ a(x, ξ, τ)

∣∣∣ ≤ Cα′′,β′′λm−(|β|+|β′|)
τ

≤ Cα′+α,β′+βλ
(m−|β|)−|β′|
τ .

Hence ∂αx∂
β
ξ a ∈ Sm−|β|.

ii. For all multi-indices δ, γ there exists Cδ,γ, C ′
δ,γ > 0 such that∣∣∂δx∂γξ a(x, ξ, τ)∣∣ ≤ Cδ,γλ
m−|γ|
τ ,∣∣∂δx∂γξ b(x, ξ, τ)∣∣ ≤ C ′

δ,γλ
m′−|γ|
τ .

In addition, using Leibniz formula, we have∣∣∣∂αx∂βξ (a(x, ξ, τ)b(x, ξ, τ))∣∣∣ ≤∑
γ≤β

(
β

γ

) ∣∣∣∂αx (∂β−γξ a(x, ξ, τ)∂γξ b(x, ξ, τ)
)∣∣∣

≤
∑
γ≤β

(
β

γ

)∑
δ≤α

(
α

δ

) ∣∣∣∂α−δx ∂β−γξ a(x, ξ, τ)
∣∣∣ ∣∣∂δx∂γξ b(x, ξ, τ)∣∣

≤
∑
γ≤β

∑
δ≤α

(
β

γ

)(
α

δ

)
Cα−δ,β−γλ

m−|β−γ|
τ C ′

δ,γλ
m′−|γ|
τ

≤
∑
γ≤β

∑
δ≤α

(
β

γ

)(
α

δ

)
C ′
δ,γCα−δ,β−γλ

m+m′−|β|
τ , since |β| ≤ |β − γ|+ |γ|,

≤ Cλm+m′−|β|
τ ,

with C =
∑
γ≤β

∑
δ≤α

(
β
γ

)(
α
δ

)
C ′
δ,γCα−δ,β−γ. Thus ab ∈ Sm+m′

τ .

Let m ≤ m′. We have λmτ ≤ λm
′

τ and λ
m−|β|
τ ≤ λ

m′−|β|
τ . So, if a ∈ Smτ , it

follows that for all α, β ∈ Nd, there exists Cα,β > 0 such that
∣∣∣∂αx∂βξ a(x, ξ, τ)∣∣∣ ≤

Cα,βλ
m−|β| ≤ Cα,βλ

m′−|β|
τ . Thus a ∈ Smτ .

Remark 4.1.2. Formally we can define

Au(x) =
1

(2π)d

∫
Rd

∫
Rd

ei(x−y)·ξa(x, ξ, τ)u(y, xd)dy dξ.

Such a double integral may not have a meaning in the classical sense, e.g.
Lebesgue integration. Yet it has a very precise definition and meaning in the
sense of so-called oscillatory integrals.

Remark 4.1.3. The pseudo-differential operators defined above apply to func-
tions defined in the whole Rd, through the use of the Fourier transformation.
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Below, we shall introduce tangential pseudo-differential operators that can act
on functions defined on a half-space.

Proposition 4.1.4. Let a ∈ Smτ . We have Op(a) : S (Rd) → S (Rd) continu-
ously.

Proof. For all 1 ≤ ℓ ≤ d, we have

Dxℓ(Op(a)u)(x) =
1

(2π)d

∫
Rd

eix·ξ( ξℓa(x, ξ, τ) +Dxℓa(x, ξ, τ)︸ ︷︷ ︸
∈Sm+1

τ

)û(ξ)dξ,

and by induction we find that for α multi-index,

Dα
x (Op(a)u)(x) =

1

(2π)d

∫
Rd

eix·ξ b(x, ξ, τ)︸ ︷︷ ︸
∈Sm+|α|

τ

û(ξ) dξ.

We also have

xℓ(Op(a)u)(x) = (2π)−d
∫
Rd

(
Dξℓe

ix·ξ) a(x, ξ, τ)û(ξ) dξ
= −(2π)−d

∫
Rd

eix·ξ (Dξℓa(x, ξ, τ)û(ξ) + a(x, ξ, τ)Dξℓû(ξ)) dξ,

and by induction,

xα(Op(a)u)(x) = (−1)|α|(2π)−d
∫
Rd

eix·ξ
∑
β≤α

(
α

β

)
Dβ
ξℓ
a(x, ξ, τ)︸ ︷︷ ︸
∈Sm−|β|

τ

Dα−β
ξℓ

û(ξ) dξ.

Combining the two formulae, for all multi-indices α et β, we obtain the existence
of semi-norms pj ∈ Sm(Rd × Rd) and qj, q′j in S (Rd) such that

|xαDα
x (Op(a)u)(x)| ≤ Cα,β(τ)

∑
j

pj(a)qj(û) ≤ Cα,β(τ)
∑
j

pj(a)q
′
j(û),

by Proposition 4.1.1 and this shows the continuity result.

The action of pseudo-differential operators can extended to temperate dis-
tributions.

4.2 Oscillatory integrals

Oscillatory integral are useful for the definition of the Schwartz kernel of pseudo-
differential operators (and many other operators) and also for the understanding
of the pseudo-differential calculus. For a review of Schwartz kernel we refer
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to [62]. We shall give a precise meaning to integrals of the form

1

(2π)d

∫
Rd×Rd

ei(x−y)·ξa(x, ξ, τ)u(y) dydξ, u ∈ S (Rd), x ∈ Rd,

for a ∈ S+∞
τ (Rd × Rd) and view the Schwartz kernel of Op(a),

Kτ (x, y) =
1

(2π)d

∫
Rd

ei(x−y)·ξa(x, ξ, τ)u(y) dξ,

as a distribution. Actually these two integrals are perfectly well defined if

|a(x, ξ, τ)| ≲ ⟨ξ⟩m,

withm < −d where ⟨·⟩ = (1+|·|2)1/2. This holds in particular if a ∈ Smτ (Rd×Rd)

and m < −d. Yet, for m ≥ −d, the meaning of the two integrals may not be
clear according to the classical integration theories. This type of integral is
called oscillatory because of the phase term ei(x−y)·ξ.

We shall in fact introduce more general phase functions, to be denoted by Φ

here, and give a precise meaning to the following type of integral∫
Rd

eiΦ(x,ξ)a(x, ξ, τ)dξ,

in the sense of distributions for a ∈ Smτ (Rp × Rd) possibly with p ̸= d.

For a proof of the following theorem we refer to [3].

Theorem 4.2.1. Let p, d ∈ N and let Φ : Rp × Rd → C be C ∞ and such that

(1) ImΦ ≥ 0,

(2) Φ is homogeneous of degree 1 in ξ, for |ξ| ≥ 1,

(3) for all α, β, there exists Cα,β > 0 such that

|ξ||β||∂αx∂
β
ξ Φ(x, ξ)| ≤ Cα,β|ξ|, x ∈ Rp, ξ ∈ Rd.

(4) there exists C > 0 such that

|dxΦ|2 + |ξ|2|dξΦ|2 ≥ C|ξ|2, x ∈ Rp, ξ ∈ Rd.

Then, the functional

IΦ(a, u, τ) =

∫
Rp×Rd

eiΦ(x,ξ)a(x, ξ, τ)u(x)dξdx,
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that is well defined for u ∈ S (Rp) and a ∈ S−d−ε
τ (Rp × Rd), ε > 0, can be

extended in a unique manner by continuity to all a ∈ Smτ (Rp × Rd), for all
m ∈ R. Moreover as a distribution in S ′(Rp), the map u 7→ IΦ(a, u, τ), is of
order less or equal k for all k > m+ d.

Note that

Φ : Rd × Rd × Rd → R
(x, y, ξ) 7→ (x− y) · ξ

satisfies the assumption made on the phase function in Theorem 4.2.1. Thus
for a ∈ Smτ (Rd × Rd) the map

w 7→ (2π)−d
∫
Rd×Rd×Rd

ei(x−y)·ξa(x, ξ, τ)w(x, y) dξdydx

is a distribution in S (Rd × Rd) in the x, y variables of order less or equal k
for all k > m+ d. This allows one to write the Schwartz kernel of the operator
Op(a) as

Kτ (x, y) =
1

(2π)d

∫
Rd

ei(x−y)·ξa(x, ξ, τ)u(y) dξ,

and with the kernel theorem (see [62, Theorem 8.45]) we have for u, v ∈ S (Rd),

⟨Op(a)u(x), v(y)⟩S ′(Rd),S (Rd) = ⟨Kτ , u⊗ v⟩S ′(R2d),S (R2d)

= (2π)−d
∫
Rd×Rd×Rd

ei(x−y)·ξa(x, ξ, τ) v(x)u(y) dξdxdy.

We recall that the kernel theorem states that Op(a)u(x) = ⟨Kτ (x, ·), u(·)⟩S ′(Rd),S (Rd) ∈
S ′(Rd) for u ∈ S (Rd). Actually, in the present case we have Op(a)u(x) ∈
S (Rd) by Proposition 4.1.4. Observe that Theorem 4.2.1 gives a precise mean-
ing to the formula

Op(a)u(x) = ⟨Kτ (x, ·), u(·)⟩S ′(Rd),S (Rd)

= (2π)−d
∫
Rd×Rd

ei(x−y)·ξa(x, ξ, τ)u(y) dξ dy,

for any given value x by considering the phase Φx(y, ξ) = (x − y) · ξ with the
variable x as a parameter.

Remark 4.2.2. Let a ∈ Sm(Rp × Rd) and χ ∈ C ∞
c (R) be such that χ(0) = 1.

By [62, Proposition 2.58] one has that χ(ελτ ) converges to a in Sm
′

τ (Rp × Rd)
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for m < m′ and we conclude by Theorem 4.2.1 that we have

IΦ(a, u, τ) =

∫
Rp×Rd

eiΦ(x,ξ)a(x, ξ, τ)u(x)dξdx

= lim
ε→0

∫
Rp×Rd

eiΦ(x,ξ)χ(ελτ )a(x, ξ, τ)u(x)dξdx

for u ∈ S (Rd), i.e,∫
Rd

eiΦ(x,ξ)a(x, ξ, τ)dξ = lim
ε→0

∫
Rd

eiΦ(x,ξ)χ(ελτ )a(x, ξ, τ)dξ,

in the sense of distributions.

We say that the oscillatory integral is regularized in this limiting process.

Remark 4.2.3. Regularization allows one to generalize to oscillatory integrals
the usual calculus rules for absolutely convergent integrals: integration by parts,
homogeneous change of variables, the Fubini theorem, limits and differentiations
under the sum sign.

Tangential semi-classical calculus

Here, we consider pseudo-differential operators that only act in the tangential
direction x′ with xd as a parameter. We shall denote by SmT,τ , the set of smooth
functions b(x, ξ′, τ) defined for τ ≥ 1 as a large parameter, satisfying the fol-
lowing: for all multi-indices α ∈ Nd, β ∈ Nd−1 and m ∈ R, there exists Cα,β > 0

such that

|∂αx∂
β
ξ′b(x, ξ

′, τ)| ≤ Cα,βλ
m−|β|
T,τ , where λ2T,τ = τ 2 + |ξ′|2, (4.2.1)

for all (x, ξ′, τ) ∈ Rd × Rd−1 × [1,∞). For b ∈ SmT,τ , we define a tangential
pseudo-differential operator B = OpT(b) of order m by

b(x,D′, τ)u(x) = Bu(x) :=
1

(2π)d−1

∫
Rd−1

eix
′·ξ′b(x, ξ′, τ)û(ξ′, xd)dξ

′ (4.2.2)

=
1

(2π)d−1

∫
Rd−1

∫
Rd−1

ei(x
′−y′)·ξ′b(x, ξ′, τ)u(y′, xd)dy

′dξ′

for u ∈ S (Rd
+). We define Ψm

T,τ as the set of tangential pseudo-differential
operators of order m, and Dm

T,τ the set of tangential differential operators of
order m. We also set

ΛmT,τ = OpT(λ
m
T,τ ).
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Additional classes of symbols.

Here, we shall often write ϱ = (x, ξ, τ), ϱ′ = (x, ξ′, τ) and X = Rd or Rd

+.

Definition 4.2.4. Let a(ϱ) ∈ C ∞(X × Rd), with τ as a large parameter in
[1,+∞), and m ∈ N, r ∈ R. We say that a ∈ Sm,rτ (X × Rd) if

a(ϱ) =
m∑
j=0

aj(ϱ
′)ξjd, aj ∈ Sm−j+r

T,τ (X × Rd−1),

for x ∈ X, ξ ∈ Rd, τ ∈ [1,+∞), and ξd ∈ R.

We also simply write a ∈ Sm,rτ . If U is a conic open set of X×Rd× [1,+∞)

we say that a ∈ Sm,rτ microlocally for ϱ′ ∈ U if each aj is in Sm−j+r
T,τ microlocally

in U , j = 0, . . . ,m.

Note that we have

Sm,rτ ⊂ Sm+m′,r−m′

τ , m,m′ ∈ N, r ∈ R.

The principal symbol of a denoted by σ(a) is

σ(a)(ϱ) =
m∑
j=0

σ(aj)(ϱ
′)ξjd,

which is a representative of the class of a in Sm,rτ /Sm,r−1
τ . Note that Sm,rτ ̸⊂ Sm+r

τ .

Indeed, consider a(x, ξ, τ) = λT,τξd for λT,τ ≥ 1. We have a ∈ S1,1
τ ⊂ S2,0

τ and
yet a ̸∈ S2

τ . In fact observe that differentiating with respect to ξ′ yields

|∂αξ′a(x, ξ, τ)| ≤ Cαλ
1−|α|
T,τ |ξd|.

An estimate of the form of (4.2.1) is however not achieved for |α| ≥ 2.

We recall that a ∼
∑
j∈N

am−j ∈ Smτ,ph if am−j ∈ Sm−j
τ is homogeneous of degree

m − j with respect to (ξ, τ) for j ∈ N. Additionally we give the definition of
tangential polyhomogeneous symbols that are characterized by an asymptotic
expansion where each term is positively homogeneous with respect to (ξ′, τ).

Definition 4.2.5. We shall say that a ∈ SmT,τ,ph(X × Rd−1) or simply SmT,τ,ph if
there exists aj ∈ SmT,τ , homogeneous of degree m− j in (ξ′, τ) for |(ξ′, τ)| ≥ r0,

with r0 ≥ 0, such that

a ∼
∑
j≥0

aj, in the sense that a−
N∑
j=0

aj ∈ Sm−N−1
T,τ .
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A representative of the principal symbol is then given by the first term in
the expansion. We denote it by σ(a). We have

Smτ,ph ⊂ Smτ , SmT,τ,ph ⊂ SmT,τ .

Thus, for m ∈ N and r ∈ R, we say that a(ϱ) ∈ Sm,rτ,ph(X × Rd) or simply Sm,rτ,ph,

if

a(ϱ) =
m∑
j=0

aj(ϱ
′)ξjd, with aj ∈ Sm−j+r

τ,ph .

A representative of the principal symbol is given by
m∑
j=0

σ(aj)(ϱ
′)ξjd and is ho-

mogeneous of degree m in (ξ, τ).

We recall that the Poisson bracket of two smooth functions is given by

{f, g} =
d∑
j=1

(
∂ξjf∂xjg − ∂xjf∂ξjg

)
.

The canonical inner product in Cm is denoted by (z, z′)Cm =
m−1∑
k=0

zkz̄′k, for

z = (z0, · · · , zm−1) ∈ Cm, z′ = (z′0, · · · , z′m−1) ∈ Cm. The associated norm will

be denoted |z|2Cm =
m−1∑
k=0

|zk|2.

Sobolev norms with parameter

We introduce the following norms, for m ∈ N and m′ ∈ R,

∥u∥m,m′,τ ≍
m∑
j=0

∥Λm+m′−j
T,τ Dj

xd
u∥+;

∥u∥m,τ = ∥u∥m,0,τ ≍
m∑
j=0

∥Λm−j
T,τ D

j
xd
u∥+,

for u ∈ S (Rd
+), where ∥ · ∥+ = ∥ · ∥L2(Rd

+). We also denote (u, v)+ = (u, v)L2(Rd
+)

and (u|xd=0+
, v|xd=0+

)∂ = (u|xd=0+
, v|xd=0+

)L2(Rd−1). We have

∥u∥m,τ ≍
∑
|α|≤m

τm−|α|∥Dαu∥+,
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and in the case m′ ∈ N we have

∥u∥m,m′,τ ≍
∑
αd≤m

|α|≤m+m′

τm+m′−|α|∥Dαu∥+,

with α = (α′, αd) ∈ Nd.

Remark 4.2.6. We have that for some C > 0,

∥u∥m,s,τ ≤ Cτ−ℓ∥u∥m,s+ℓ,τ , u ∈ S (Rd
+),

for m ∈ N, s ∈ R and ℓ ≥ 0. This implies that ∥u∥m,s,τ ≪ ∥u∥m,s+ℓ,τ for τ
sufficiently large.

The following argument will be used on numerous occasions: for m ∈ N,
m′, ℓ ∈ R, with ℓ ≥ 0,

∥u∥m,m′,τ ≪ ∥u∥m,m′+ℓ,τ ,

if τ is chosen sufficiently large.
For a sufficiently smooth function u defined in Rd

+ we set, for m ∈ N,

tr(u) = (u|xd=0+ , Ddu|xd=0+ , . . . , D
m
d u|xd=0+)

on {xd = 0} and we define the following norm for m ∈ N and m′ ∈ R,

| tr(u)|2m,m′,τ =
m∑
j=0

|Λm+m′−j
T,τ Dj

xd
u|xd=0+ |2∂, u ∈ S (Rd

+),

where | · |∂ = | · |L2(Rd−1).

Proposition 4.2.7. (trace inequality)
Let s > 0. There exists C > 0 such that |u|xd=0+|s,τ ≤ C∥u∥s+1/2,τ , u ∈ S (Rd

+).

Corollary 4.2.8. (trace inequality)
Let m ∈ N and s ∈ R. For some C > 0, we have

| tr(u)|m,s,τ ≤ C∥u∥m+1,s−1/2,τ , u ∈ S (Rd
+).

From pseudo-differential symbol calculus we obtain the following inequalities.

Proposition 4.2.9. If a ∈ Sm,rτ , with m ∈ N and r ∈ R, then for m′ ∈ N and
r ∈ R there exists C > 0 such that

∥Op(a)u∥m′,r′,τ ≤ C∥u∥m+m′,r+r′,τ , u ∈ S (Rd
+).

A consequence of this result is the following corollary.
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Corollary 4.2.10. Let m,m′ ∈ N and r ∈ R. There exists C > 0 such that

∥u∥m,r,τ ≤ ∥u∥m+m′,r−m′,τ , u ∈ S (Rd
+).

Proof. Set u = Λm
′

T,τv with v = Λ−m′

T,τ u. Since we have λm′

T,τ ∈ Sm
′

T,τ = S0,m′
τ ⊂

Sm
′,0

τ , it follows that

∥u∥m,r,τ = ∥Λm′

T,τv∥m,r,τ ≤ C∥v∥m+m′,r,τ = C∥Λ−m′

T,τ u∥m+m′,r,τ = C∥u∥m+m′,r−m′,τ ,

thanks to Proposition (4.2.9).

4.2.1 Differential quadratic forms

Quadratic forms in a half space

Definition 4.2.11 (interior differential quadratic form). Let u ∈ S (Rd
+). We

say that

Q(u) =
N∑
s=1

(Asu,Bsu)+, As = Op(as), Bs = Op(bs), (4.2.3)

is an interior differential quadratic form of type (m, r) with smooth coefficients,
if for each s = 1, . . . N , we have as(ϱ) ∈ Sm,r

′
τ and bs(ϱ) ∈ Sm,r

′′
τ , with r′ + r′′ =

2r, ϱ = (x, ξ, τ).
The principal symbol of the quadratic form Q is defined as the class of

q(ϱ) =
N∑
s=1

as(ϱ)bs(ϱ) (4.2.4)

in S2m,2r
τ /S2m,2r−1

τ .

A result we shall use is the following microlocal Gårding inequality.

Proposition 4.2.12 (microlocal Gårding inequality). Let K be a compact set of
Rd

+ and let U be a conic open set of Rd
+×Rd−1×R+ contained in K×Rd−1×R+.

Let also χ ∈ S0
T,τ be homogeneous of degree 0, be such that supp(χ) ⊂ U . Let

Q be an interior differential quadratic form of type (m, r) with homogeneous
principal symbol q ∈ S2m,2r

τ satisfying, for some C0 > 0 and r0 > 0,

Re q(ϱ) ≥ C0λ
2m
τ λ2rT,τ , for τ ≥ r0, ϱ = (ϱ′, ξd), ϱ

′ = (x, ξ′, τ) ∈ U , ξd ∈ R.

For 0 < C1 < C0 and N ∈ N there exist τ∗, C > 0, and CN > 0 such that

ReQ(OpT(χ)u) ≥ C1∥OpT(χ)u∥
2
m,r,τ − C| tr(OpT(χ)u)|

2
m−1,r+1/2,τ − CN∥u∥2m,−N,τ ,
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for u ∈ S (Rd
+) and τ ≥ τ∗.

We refer to [11, Proposition 3.5] and [63, Theorem 6.17] for a proof. A local
version of the result is the following one that follows from Proposition 4.2.12.

Proposition 4.2.13 (Gårding inequality). Let U0 be a bounded open subset
of Rd

+ and let Q be an interior differential quadratic form of type (m, r) with
homogeneous principal symbol q ∈ S2m,2r

τ satisfying, for some C0 > 0 and r0 > 0,

Re q(ϱ) ≥ C0λ
2m
τ λ2rT,τ , for τ ≥ r0, ϱ = (ϱ′, ξd), ϱ

′ = (x, ξ′, τ) ∈ U0×Rd−1×R+, ξd ∈ R.

For 0 < C1 < C0 there exist τ∗, C > 0such that

ReQ(u) ≥ C1∥u∥2m,r,τ − C| tr(u)|2m−1,r+1/2,τ ,

for u ∈ S (Rd
+) and τ ≥ τ∗.

Boundary differential quadratic forms

Definition 4.2.14. Let u ∈ S (Rd
+). We say that

Q(u) =
N∑
s=1

(Asu,Bsu)∂, As = as(x,D, τ), Bs = bs(x,D, τ), (4.2.5)

is a boundary differential quadratic form of type (m−1, r) with C ∞ coefficients,
if for each s = 1, . . . N , we have as(ϱ) ∈ Sm−1,r′

τ (Rd
+×Rd), bs(ϱ) ∈ Sm−1,r′′

τ (Rd
+×

Rd) with r′ + r′′ = 2r, ϱ = (ϱ′, ξd) with ϱ′ = (x, ξ′, τ). The symbol of the
boundary differential quadratic form Q is defined by

B(ϱ′, ξd, ξ̃d) =
N∑
s=1

as(ϱ′, ξd)bs(ϱ
′, ξ̃d).

For z = (z0, . . . , zm−1) ∈ Cm and a(ϱ) ∈ Sm−1,r̃
τ , of the form a(ϱ′, ξd) =∑m−1

j=0 aj(ϱ
′)ξjd with aj(ϱ′) ∈ Sm−1+r̃−j

T,τ we set

Σa(ϱ
′, z) =

ℓ−1∑
j=0

aj(ϱ
′)zj. (4.2.6)

From the boundary differential quadratic form Q we introduce the following
bilinear symbol ΣQ : Cm × Cm → C

ΣQ(ϱ
′, z, z′) =

N∑
s=1

Σas(ϱ
′, z)Σbs(ϱ

′, z′), z, z′ ∈ Cm. (4.2.7)
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Definition 4.2.15. Let Q be a boundary differential quadratic form of type
(m− 1, r) with homogeneous principal symbol and associated with the bilinear
symbol ΣQ(ϱ

′, z, z′). We say that Q is positive definite in W if there exist C > 0

and R > 0 such that

ReΣQ(ϱ
′′, xd = 0+, z, z) ≥ C

m−1∑
j=0

λ
2(m−1−j+r)
T,τ |zj|2,

for ϱ′′ = (x′, ξ′, τ) ∈ W , and z = (z0, . . . , zm−1) ∈ Cm.

Proposition 4.2.16. Let Q be a boundary differential quadratic form of type
(m− 1, r), positive definite in W , an open conic set in Rd−1 ×Rd−1 ×R+, with
bilinear symbol ΣQ(ϱ

′, z, z′). Let χ ∈ S0
T,τ be homogeneous of degree 0, with

supp(χ|xd=0+) ⊂ W and let N ∈ N. Then there exist τ∗ ≥ 1, C > 0, CN > 0

such that

ReQ(OpT(χ)u) ≥ C| tr(OpT(χ)u)|
2
m−1,r,τ − CN | tr(u)|2m−1,r−N,τ ,

for u ∈ S (Rd
+) and τ ≥ τ∗.

Parametrices

Elliptic operators can be inverted up to some regularizing operator.

Proposition 4.2.17. Let m ∈ R and let p ∈ Smτ be elliptic, i.e, for some C > 0

and R > 0,

|p(x, ξ, τ)| ≥ Cλmτ , x ∈ Rd, ξ ∈ Rd, τ ∈ [τ0,+∞), λτ ≥ R.

For any N ∈ N there exist qN ∈ S−m
τ and rN , r′N ∈ S−N

τ such that

qN ◦ p = 1 + rN , p ◦ qN = 1 + r′N .

Moreover qN is unique in S−m
τ /S−m−N

τ . There exist also p ∈ S−m
τ and r∞, r′∞ ∈

S−∞
τ such that

q ◦ p = 1 + r∞, p ◦ q = 1 + r′∞,

with q unique in S−m
τ /S−∞

τ .

This proposition is a particular case of the microlocal version [62, Proposition
2.34] whose proof can be found in [62].
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4.3 Standard pseudo-differential operators

We refer to as standard pseudo-differential operators, the operators that do not
depend on a large parameter.

Definition 4.3.1. (standard symbols) Let d ∈ N and let a(x, ξ) ∈ C ∞(Rd×Rd)

with m ∈ R, be such that for all multi-indices α, β we have

|∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ⟨ξ⟩m−|β|, x ∈ Rd, ξ ∈ Rd, (4.3.1)

where ⟨ξ⟩ = (1 + |ξ|2)1/2. We then write a ∈ Sm(Rd × Rd).

We also define S−∞(Rd × Rd) = ∩r∈RSr(Rd × Rd) and S+∞(Rd × Rd) =

∪r∈RSr(Rd×Rd). We shall often simply write Sm (respectively S−∞, S+∞) when
no confusion is possible. For a ∈ Sm we call principal symbol, σ(a) the equiv-
alence class of a in Sm/Sm−1. With this symbol classes we can define standard
pseudo-differential operators.

Definition 4.3.2. (standard pseudo-differentiel operators) If a ∈ Sm(Rd×Rd),
we set

a(x,D)u(x) = Op(a)u(x) :=
1

(2π)d

∫
Rd

eix·ξa(x, ξ)û(ξ)dξ

=
1

(2π)d

∫
Rd×Rd

ei(x−y)·ξa(x, ξ)u(y)dydξ

for u ∈ S (Rd).

We denote by Ψm the set of these pseudo-differential operators.

Remark 4.3.3. Note that a(x, ξ, 1) ∈ Sm if a(x, ξ, τ) ∈ Smτ . So we can recover
standard pseudo-differential operators by setting τ to be a fix value (e.g τ = 1)
in the case of the pseudo-differential operators with large parameter τ.

Definition 4.3.4. (Tangential symbols and operators) We say that a(x, ξ′) ∈
SmT (Rd × Rd−1) if we have

|∂αx∂
β
ξ′a(x, ξ

′)| ≤ Cαβ⟨ξ′⟩m−|β|, x ∈ Rd, ξ′ ∈ Rd−1,

where ⟨ξ′⟩ = (1 + |ξ′|2)1/2.

We denote by Ψm
T the set of associated operators, that is

a(x,D′)u(x) = OpT(a)u(x) :=
1

(2π)d−1

∫
Rd−1

eix
′·ξ′a(x, ξ′)û(ξ′, xd)dξ

′

=
1

(2π)d−1

∫
Rd−1×Rd−1

ei(x
′−y′)·ξ′a(x, ξ′)u(y′, xd)dy

′dξ′.
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4.4 Fredholm properties for fourth order elliptic
operators

It is well-known that elliptic problems are well-posed only if the boundary con-
ditions are chosen appropriately. By well-posedness one usually means that
the solution exists and is unique in some space, and it depends continuously
on data and parameters, or more generally that the associated operator is at
least Fredholm. The property which the boundary conditions should satisfy to
have a well-posed problem in some Sobolev spaces for a elliptic boundary value
problem is called the Lopatinskĭı-Šapiro condition.
In this section we will point out the relation between the operators which are
Fredholm type and that satisfy the Lopatinskĭı-Šapiro condition.

On a smooth compact Riemmannian manifold (M, g), with boundary, we con-
sider P = ∆2

g, where ∆g denotes the Laplace-Beltrami operator. We denote
by p(x, ω) its principal symbol for (x, ω) ∈ T ∗M. One defines the following
polynomial in z,

p̃(x, ω′, z) = p(x, ω′ − znx),

for x ∈ ∂M, ω′ ∈ T ∗
x∂M, z ∈ R and where nx denotes the outward pointing

conormal vector at x, unitary in the sense of the metric g.We denote by ρj(x, ω′),

1 ≤ j ≤ 4 the complex roots of p̃. One sets

p̃+(x, ω′, z) =
∏

Im ρj(x,ω′)≥0

(z − ρj(x, ω
′)).

Given boundary operators B1, B2 in a neighborhood of ∂M, with principal
symbols bj(x, ω), j = 1, 2 one also sets b̃j(x, ω′, z) = bj(x, ω

′ − znx). We note
that the boundary operators B1 and B2 are of order k1 and k2 respectively.

Definition 4.4.1. (Lopatinskĭı-Šapiro condition) Let (x, ω′) ∈ T ∗∂M with
ω′ ̸= 0. One says that the Lopatinskĭı-Šapiro condition condition holds for
(P,B1, B2) at (x, ω′) if for any polynomial function f(z) with complex coef-
ficients, there exists c1, c2 ∈ C and a polynomial function g(z) with complex
coefficients such that, for all z ∈ C,

f(z) =
∑

1≤j≤2

cj b̃j(x, ω
′, z) + g(z)p̃+(x, ω′, z).

We say that the Lopatinskĭı-Šapiro condition holds for (P,B1, B2) at x ∈ ∂M
if it holds at (x, ω′) for all ω′ ∈ T ∗

x∂M with ω′ ̸= 0.

Observe that the Lopatinskĭı-Šapiro condition is written here without any
use of local coordinates. It is then a geometrical condition.
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The general boundary operators B1 and B2 are then given by

Bℓ(x,D) =
∑

0≤j≤min(3,kℓ)

Bkℓ−j
ℓ (x,D′)(i∂ν)

j, ℓ = 1, 2,

with Bkℓ−j
ℓ (x,D′) differential operators acting in the tangential variables. We

denote by b1(x, ω) and b2(x, ω) the principal symbols of B1 and B2 respectively.
For (x, ω′) ∈ T ∗∂Ω, we set

b̃ℓ(x, ω
′, z) =

∑
0≤j≤min(3,kℓ)

bkℓ−jℓ (x, ω′)zj, ℓ = 1, 2.

For m ∈ N, we study the Fredholm property of the operator

L : Hm+4(M) → Hm(M)⊕H(m+7/2)(∂M)

u 7→ (Pu,B1u|∂M, B2u|∂M),
(4.4.1)

where H(m+7/2)(∂M) = Hm+7/2−k1(∂M) ⊕ Hm+7/2−k2(∂M). We state the fol-
lowing useful theorem. To prove it, one can adapt the proof of Theorem 15.1
in [63].

Theorem 4.4.2. The operator L is Fredholm if and only if (P,B1, B2) fulfills
the Lopatinskĭı-Šapiro condition on ∂M.

In order to show Theorem 4.4.2 one needs to establish the following result.
We note that by Theorem 2.1.23 this implies that the Lopatinskĭı-Šapiro con-
dition is sufficient for the Fredholm property of L to hold.

Proposition 4.4.3. Let m ∈ N. Assume that (P,B1, B2) fulfills theLopatinskĭı-
Šapiro condition on ∂M. There exists a bounded linear operator

M : Hm(M)⊕H(m+7/2)(∂M) → Hm+4(M)

such that

ML = IdHm+4(M) +Ks and LM = IdHm(M)⊕H(m+7/2)(∂M) +Kr,

where both operators

Ks : Hm+4(M) → Hm+5(M)

Kr : Hm(M)⊕H(m+7/2)(∂M) → Hm+1(M)⊕H(m+9/2)(∂M)
(4.4.2)

are bounded.

By the Rellich- Kondrachov theorem (see [62, Theorem 30.7]) Ks is compact
from Hm+4(M) into itself and Kr from Hm(M)⊕H(m+7/2)(∂M) into itself.
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Proposition 4.4.3 is contained in Theorem 20.1.7 of [44] and its proof is per-
formed based on the analysis of the fourth order operator in a half-space. For
instance the case of the Laplacian we refer to Proposition 15.2 in [63]. Theo-
rem 4.4.2 states in particular that L is not Fredholm if the Lopatinskĭı-Šapiro
condition does not hold.
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Stabilization of the damped plate
equation under general boundary
conditions
Here, we present the results obtained in [83] concerning the Part B.

4.5 Setting of the problem and some notations

Let Ω be a bounded connected open subset in Rd, or a smooth bounded con-
nected d-dimensional manifold, with smooth boundary ∂Ω, where we consider
a damped plate equation

∂2t y +∆2y + α(x)∂ty = 0 (t, x) ∈ R+ × Ω,

B1y|R+×∂Ω = B2y|R+×∂Ω = 0,

y|t=0 = y0, ∂ty|t=0 = y1,

(4.5.1)

where α ≥ 0 and where B1 and B2 denote two boundary differential operators.
The damping property is provided by +α(x)∂t thus referred as the damping
term. As introduced below ∆2 is the bi-Laplace operator, that is, the square
of the Laplace operator. Here, it is associated with a smooth metric g to
be introduced below; it is thus rather the bi-Laplace-Beltrami operator. This
equation appears in models for the description of mechanical vibrations of thin
domains. The two boundary operators are of kj, j = 1, 2 respectively, yet at
most of order 3 in the direction normal to the boundary. They are chosen such
that the two following properties are fulfilled:

(1) the Lopatinskĭı-Šapiro boundary condition holds (this condition is fully
described in what follows);

(2) along with the homogeneous boundary conditions given above the bi-
Laplace operator is self-adjoint and nonnegative. This guarantees the
preservation of the energy of the solution in the case of a damping free
equation, that is, if α = 0.

We are concerned with the decay of the energy of the solution in the case α is
not identically zero. We shall prove that the damping term yields a stabilization
property: the energy decays to zero as time t→ ∞ and we shall prove that the
decay rate is at least logarithmic.

Among the existing results available in the literature for plate type equa-
tions, many of them concern the “hinged” boundary conditions, that is, u|∂Ω = 0
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and ∆u|∂Ω = 0. We first mention these result. An important result obtained
in [46] on the controllability of the plate equation on a rectangle domain with an
arbitrarily small control domain. The method relies on the generalization of In-
gham type inequalities in [48]. An exponential stabilization result, in the same
geometry, can be found in [88], using similar techniques. In [88] the localized
damping term involves the time derivative ∂ty as in (4.5.1). Interior nonlin-
ear feedbacks can be used for exponential stabilization [90]. There, feedbacks
are localized in a neighborhood of part of the boundary that fulfills multiplier-
type conditions. A general analysis of nonlinear damping that includes the
plate equation is provided in [2] under multiplier-type conditions. For “hinged”
boundary conditions also, with a boundary damping term, we cite [94] where, on
a square domain, a necessary and sufficient condition is provided for exponential
stabilization.

Note that under “hinged” boundary conditions the bi-Laplace operator is
precisely the square of the Dirichlet-Laplace operator. This makes its mathe-
matical analysis much easier, in particular where using spectral properties, and
this explains why this type of boundary conditions appears very frequently in
the mathematical literature.

A more challenging type of boundary condition is the so-called “clamped”
boundary conditions, that is, u|∂Ω = 0 and ∂νu|∂Ω = 0, for which few results are
available. We cite [1], where a general analysis of nonlinearly damped systems
that includes the plate equation under multiplier-type conditions is provided. In
[77], the analysis of discretized general nonlinearly damped system is also carried
out, with the plate equation as an application. In [91], a nonlinear damping
involving the p-Laplacian is used also under multiplier-type conditions. In [30],
an exponential decay is obtained in the case of “clamped” boundary conditions,
yet with a damping term of the Kelvin-Voigt type, that is of the form ∂t∆y, that
acts over the whole domain. In the case of the “clamped” boundary conditions,
the logarithmic-type stabilization result we obtain here was proven in [82]. The
present result thus stands as a generalization of the stabilisation result of [82]
if considering a whole class of boundary condition instead of specializing to
a certain type. It contains in particular also the case of “hinged” boundary
conditions.

4.5.1 Method

Following the works of [59, 60, 82] we obtain a logarithmic decay rate for the
energy of the solution to (4.5.1) which is obtained by means of a resolvent
estimate for the generator of the semigroup associated with the damped plate
equation (4.5.1). This estimate follows from a Carleman inequality derived for
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the operator Pσ = ∆2 − σ4 where σ is a spectral parameter for the generator of
the semigroup.
Our first goal is thus the derivation of the Carleman inequality for the operator
Pσ near the boundary under the boundary conditions given by B1 and B2.

Then, from the Carleman estimate one deduces an observation inequality
for the operator Pσ in the case of the prescribed boundary conditions. The
resolvent estimate then follows from this observation inequality.

4.5.2 Geometrical setting

On Ω we consider a Riemannian metric gx = (gij(x)), with associated cometric
(gij(x)) = (gx)

−1. It stands as a bilinear form that act on vector fields,

gx(ux, vx) = gij(x)u
i
xv

j
x, ux = uix∂xi , vx = vix∂xi .

For x ∈ ∂Ω we denote by νx the unit outward pointing normal vector at x,
unitary in the sense of the metric g, that is

gx(νx, νx) = 1 and gx(νx, ux) = 1 ∀ux ∈ Tx∂Ω.

We denote by ∂ν the associated derivative at the boundary, that is, ∂νf(x) =
νx(f). We also denote by nx the unit outward pointing conormal vector at x,
that is, nx = ν♭x, that is, (nx)i = gijν

j
x.

Near a boundary point we shall often use normal geodesic coordinates where
Ω is locally given by {xd > 0} and the metric g takes the form

g = dxd ⊗ dxd +
∑

1≤i,j≤d−1

gijdx
i ⊗ dxj.

Then, the vector field νx is locally given by (0, . . . , 0,−1). The same for the one
form nx.

Normal geodesic coordinates allow us to locally formulate boundary prob-
lems in a half-space geometry. We write

Rd
+ := {x ∈ Rd, xd > 0} where x = (x′, xd) with x′ ∈ Rd−1, xd ∈ R.

We shall naturally denote its closure by Rd
+, that is, Rd

+ = {x ∈ Rd;xd ≥ 0}.
The Laplace-Beltrami operator is given by

(∆gf)(x) = (det gx)
−1/2

∑
1≤i,j≤d

∂xi
(
(det gx)

1/2gij(x)∂xjf
)
(x). (4.5.2)
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in local coordinates. Its principal part is given by
∑

1≤i,j≤d
gij(x)∂xi∂xj and its

principal symbol by
∑

1≤i,j≤d
gij(x)ξiξj.

The bi-Laplace operator is P = ∆2
g. In what follows we shall write ∆, ∆2 in

place of ∆g, ∆2
g.

For an open set U of Rd we set U+ = U ∩ Rd
+ and

C
∞
c (U+) = {u = v|Rd

+
; v ∈ C ∞

c (Rd) and supp(v) ⊂ U}. (4.5.3)

We set S (Rd
+) = {u|Rd

+
; u ∈ S (Rd)} with S (Rd) the usual Schwartz space

in Rd:

u ∈ S (Rd) ⇔ u ∈ C ∞(Rd) and ∀α, β ∈ Nd sup
x∈Rd

|xαDβ
xu(x)| <∞.

4.5.3 Observations concerning the need for boundary con-
ditions

On (0,+∞) we consider the first-order differential operator L = Ds − λρ, with
ρ ∈ C and λ > 0. The parameter λ is intended to become large.
Let u ∈ S (Rd

+). One aims to achieve the following estimate

∥u∥L2(R+) ≲ ∥Lu∥L2(R+). (4.5.4)

First, we assume that Im ρ < 0 and we compute

Re(Lu, iu)L2(R+) = Re(Dsu, iu)L2(R+) − λ Im ρ∥u∥2L2(R+)

= Re(Dsu, iu)L2(R+) + λ| Im ρ|∥u∥2L2(R+)

=
1

2
|u(0)|2 + λ| Im ρ|∥u∥2L2(R+),

(4.5.5)

since

(Dsu, iu)L2(R+) =

∫
R+

Dsu (iu) ds = −i
∫
R+

Dsu u ds = −
∫
R+

∂su u ds

= −1

2

∫
R+

∂s|u|2 ds.

Using the Cauchy-Schwartz inequality and the Young inequality we obtain for
any ε > 0

|u(0)|2+λ∥u∥2L2(R+) ≲ ∥Lu∥L2(R+)∥u∥L2(R+) ≲ (λε)−1∥Lu∥2L2(R+)+(λε)∥u∥2L2(R+).
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With ε > 0 chosen sufficiently small one concludes that

λ1/2|u(0)|+ λ∥u∥L2(R+) ≲ ∥Lu∥L2(R+). (4.5.6)

In this first case, we obtain (4.5.4) but, better yet, we estimate also the trace
of u at s = 0+.

Second, assume that Im ρ > 0. Consider the cut-off χ ∈ C ∞
c (R) with χ(s) = 1

for |s| ≤ 1 and χ(s) = 0 for s ≥ 2. We set u(s) = χ(s)eiλρs and we observe that
Lu(s) = −iχ′(s)eiλρs. On the one has

∥u∥2L2(R+) =

∫ 2

0

χ2(s)e−2λ Im ρsds

≥
∫ 1

0

e−2λ Im ρsds =
1

2λ Im ρ

(
1− e−2λ Im ρ

)
.

On the other hand, one has

∥Lu∥2L2(R+) =

∫ 2

0

(χ′(s))2e−2λ Im ρsds

≲
∫ 2

1

e−2λ Im ρsds =
1

2λ Im ρ

(
e−2λ Im ρ − e−4λ Im ρ

)
=

1

2λ Im ρ

(
1− e−2λ Im ρ

)
e−2λ Im ρ.

This ruins any hope of having an estimate of the form (4.5.4). Yet, by comput-
ing Re(Lu,−iu)L2(R+) and arguing as above for (4.5.4)-(4.5.6), one obtains the
following estimate

λ∥u∥L2(R+) ≲ ∥Lu∥L2(R+) + λ1/2|u(0)|. (4.5.7)

Consider now the Laplace-Beltrami operator −∆g in the normal geodesic co-
ordinates, that is −∆g = D2

d + R(x,Dx′), where R(x,Dx′) is a second-order
differential operator. To simplify, we assume that R(x,Dx′) is a constant coef-
ficient operator. Then, up to a Fourier transformation in the x′ variables, one
obtains for the principal part the operator

P̂ = D2
d +R(ξ′) = D2

d + |ξ′|2R̃(ξ′),

where R̃(ξ′) = R(ξ′/|ξ′|), which we write

P̂ = L+L− L± = Dd ± |ξ′|R̃(ξ′)1/2.

With λ = |ξ′| > 0 and xd = s, and the two cases considered above, one finds that
for the factor L− and estimate as in (4.5.6) can be obtained. For the operator
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L+, one can only obtain an estimation as in (4.5.7). Combined together one
obtains an estimate either of the form

λ2∥u∥L2(R+) + λ1/2|Ddu(0)| ≲ ∥P̂ u∥L2(R+) + λ3/2|u(0)|,

or the form

λ2∥u∥L2(R+) + λ3/2|u(0)| ≲ ∥P̂ u∥L2(R+) + λ1/2|Ddu(0)|.

This simple example shows that if an elliptic operator can be written as a
product of several factors of the form Dd − λρ with Im ρ < 0 yield an estimate
without requiring any boundary term while factors of the form Dd − λρ with
Im ρ > 0 require a boundary term. The number of factors of the second kind
yield the number of required boundary conditions.
In that framework, if given some boundary operators, the Lopatinskĭı-Šapiro
condition states their compatibility with the different factors Dd − λρ with
Im ρ > 0.

4.5.4 Symbols and operators with an additional large pa-
rameter

We shall often use operators with a symbol that depends on an additional large
parameter σ, say a(x, ξ, τ, σ). They will satisfy estimate of the form

|∂αx∂
β
ξ a(x, ξ, τ, σ)| ≤ Cα,β(τ

2 + |ξ|2 + σ2)(m−|β|)/2.

We observe that if τ ≳ σ one has

λ2τ ≤ τ 2 + |ξ|2 + σ2 ≲ λ2τ .

Thus, as far as pseudo-differential calculus is concerned it is as if a ∈ Smτ and
this property will be exploited in what follows.

Similarly if a = a(x, ξ′, τ, σ) fulfills a tangential-type estimate of the form

|∂αx∂
β
ξ′a(x, ξ

′, τ, σ)| ≤ Cα,β(τ
2 + |ξ′|2 + σ2)(m−|β|)/2,

if one has τ ≳ σ one will be able to apply techniques adapted to symbols in SmT,τ
and associated operators, like for instance the results on differential quadratic
forms listed in Section 4.2.1.



99

4.5.5 Outline

In Section 4.6, the Lopatinskĭı-Šapiro boundary condition are properly defined
for an elliptic operator, we give examples focusing on the Laplace and bi-Laplace
operator and we give a formulation in local normal geodesic coordinated that
we shall mostly use throughout the manuscript. For the bi-Laplace operator
we provide a series of examples of boundary operators for which the Lopatin-
skĭı-Šapiro boundary conditions holds and moreover the resulting operator is
symmetric. We also show that the algebraic conditions that characterize the
Lopatinskĭı-Šapiro condition are robust under perturbation. This last aspect is
key in the understanding of how the Lopatinskĭı-Šapiro condition get preserved
under conjugation and the introduction of a spectral parameter. This is done
in Section 4.7, where an analysis of the configuration of the roots of the conju-
gated bi-Laplace operator is performed. In Section 4.7.5 the Lopatinskĭı-Šapiro
condition for the conjugated operator is exploited to obtain a symbol positivity
for a quadratic form to prepare for the derivation of a Carleman estimate.

In Section 4.8 we derive a estimation of the boundary traces. This is precisely
where the Lopatinskĭı-Šapiro condition is used. The result is first obtained
microlocally and we then apply a patching procedure.

To obtain the Carleman estimate for the bi-Laplace operator with spectral
parameter ∆2 − σ4 in Section 4.9 we first derive microlocal estimates for the
operators ∆ ± σ2. Imposing σ to be non-zero, in the sense that σ ≳ τ , the
previous estimates exhibits losses in different microlocal regions. Thus concate-
nating the two estimates one derives an estimate for ∆2−σ4 where losses do not
accumulates. A local Carleman estimate with only a loss of a half-derivative is
obtained. This is done in Section 4.10. With the traces estimation obtained in
Section 4.8 one obtains the local Carleman estimate of Theorem 1.8.1.

For the application to stabilization we have in mind, in Section 4.11 we use
a global weight function and derive a global version of the Carleman estimate
for ∆2 − σ4 on the whole Ω. This leads to an observability inequality.

In Section 4.12 we recall aspects of strong and weak solutions to the damped
plate equation, in particular through a semigroup formulation. With the observ-
ability inequality obtained in Section 4.11 we derive in Section 4.13 a resolvent
estimate for the generator of the plate semigroup that in turn implies the sta-
bilization result of Theorem 1.8.2.



100

4.6 Lopatinskĭı-Šapiro boundary conditions for
an elliptic operator

Let P be an elliptic differential operator of order 2k on Ω, (k ≥ 1), with principal
symbol p(x, ω) for (x, ω) ∈ T ∗Ω. One defines the following polynomial in z,

p̃(x, ω′, z) = p(x, ω′ − znx),

for x ∈ ∂Ω, ω′ ∈ T ∗
x∂Ω, z ∈ R and where nx denotes the outward unit pointing

conormal vector at x (see Section 4.5.2). Here x and ω′ are considered to act
as parameters. We denote by ρj(x, ω′), 1 ≤ j ≤ 2k the complex roots of p̃. One
sets

p̃+(x, ω′, z) =
∏

Im ρj(x,ω′)≥0

(z − ρj(x, ω
′)).

Given boundary operators B1, · · · , Bk in a neighborhood of ∂Ω, with principal
symbols bj(x, ω), j = 1, · · · , k, one also sets b̃j(x, ω′, z) = bj(x, ω

′ − znx).

Definition 4.6.1 (Lopatinskĭı-Šapiro boundary condition). Let (x, ω′) ∈ T ∗∂Ω

with ω′ ̸= 0.One says that the Lopatinskĭı-Šapiro condition holds for (P,B1, · · · , Bk)

at (x, ω′) if for any polynomial function f(z) with complex coefficients, there
exists c1, · · · , ck ∈ C and a polynomial function g(z) with complex coefficients
such that, for all z ∈ C,

f(z) =
∑

1≤j≤k

cj b̃j(x, ω
′, z) + g(z)p̃+(x, ω′, z).

We say that the Lopatinskĭı-Šapiro condition holds for (P,B1, · · · , Bk) at x ∈
∂Ω if it holds at (x, ω′) for all ω′ ∈ T ∗

x∂Ω with ω′ ̸= 0.

4.6.1 Some examples

For instance the Lopatinskĭı-Šapiro condition holds in the following cases

• P = −∆ on Ω, with the Dirichlet boundary condition, Bu|∂Ω = u|∂Ω.

• P = ∆2 on Ω, along with the so-called clamped boundary conditions,
i.e, B1u|∂Ω = u|∂Ω and B2u|∂Ω = ∂νu|∂Ω, where ν is the normal outward
pointing unit vector to ∂Ω; see Section 4.5.2.

• P = ∆2 on Ω, along with the so-called hinged boundary conditions, i.e,
B1u|∂Ω = u|∂Ω and B2u|∂Ω = ∆u|∂Ω.
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4.6.2 Case of the bi-Laplace operator

With P = ∆2 on Ω, along with the general boundary operators B1 and B2

of orders k1 and k2 respectively, we give a matrix criterion of the Lopatinskĭı-
Šapiro condition. The general boundary operators B1 and B2 are then given
by

Bℓ(x,D) =
∑

0≤j≤min(3,kℓ)

Bkℓ−j
ℓ (x,D′)(i∂ν)

j, ℓ = 1, 2,

with Bkℓ−j
ℓ (x,D′) differential operators acting in the tangential variables. We

denote by b1(x, ω) and b2(x, ω) the principal symbols of B1 and B2 respectively.
For (x, ω′) ∈ T ∗∂Ω, we set

b̃ℓ(x, ω
′, z) =

∑
0≤j≤min(3,kℓ)

bkℓ−jℓ (x, ω′)zj, ℓ = 1, 2.

We recall that the principal symbol of P is given by p(x, ω) = |ω|4g. One thus
has

p̃(x, ω′, z) = p(x, ω′ − znx) =
(
z2 + |ω′|2g

)2
.

Therefore p̃(x, ω′, z) = (z−i|ω′|g)2(z+i|ω′|g)2. According to the above definition
we set p̃+(x, ω′, z) = (z − i|ω′|g)2. Thus, the Lopatinskĭı-Šapiro condition holds
at (x, ω′) with ω′ ̸= 0 if and only if for any function f(z) the complex number
i|ω′|g is a root of the polynomial function z 7→ f(z)−c1b̃1(x, ω′, z)−c2b̃2(x, ω′, z)

and its derivative for some c1, c2 ∈ C. This leads to the following determinant
condition.

Lemma 4.6.2. Let P = ∆2 on Ω, B1 and B2 be two boundary operators. If
x ∈ ∂Ω, ω′ ∈ T ∗

x∂Ω, with ω′ ̸= 0, the Lopatinskĭı-Šapiro condition holds at
(x, ω′) if and only if

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) ̸= 0. (4.6.1)

Remark 4.6.3. With the determinant condition and homogeneity, we note that
if the Lopatinskĭı-Šapiro condition holds for (P,B1, B2) at (x, ω′) it also holds
in a conic neighborhood of (x, ω′) by continuity. If it holds at x ∈ Ω, it also
holds in a neighborhood of x.

4.6.3 Formulation in normal geodesic coordinates

Near a boundary point x ∈ ∂Ω, we shall use normal geodesic coordinates. These
coordinates are recalled at the beginning of Section 4.5.2. Then the principal
symbols of ∆ and ∆2 are given by ξ2d + r(x, ξ′) and (ξ2d + r(x, ξ′))2 respectively,
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where r(x, ξ′) is the principal symbol of a tangential differential elliptic operator
R(x,D′) of order 2, with

r(x, ξ′) =
∑

1≤i,j≤d−1

gij(x)ξ′iξ
′
j and r(x, ξ′) ≥ C|ξ′|2.

Here gij is the inverse of the metric gij. Below, we shall often write |ξ′|2x = r(x, ξ′)

and we shall also write |ξ|2x = ξ2d + r(x, ξ′), for ξ = (ξ′, ξd).

If b1(x, ξ) and b2(x, ξ) are the principal symbols of the boundary operators B1

and B2 in the normal geodesic coordinates then the Lopatinskĭı-Šapiro condition
for (P,B1, B2) with P = ∆2 at (x, ξ′) reads

det

(
b1 b2

∂ξdb1 ∂ξdb2

)
(x, ξ′, ξd = i|ξ′|x) ̸= 0,

if |ξ′|x ̸= 0 according to Lemma 4.6.2. If the Lopatinskĭı-Šapiro condition holds
at some x0, because of homogeneity, there exists C0 > 0 such that∣∣∣∣∣det

(
b1 b2

∂ξdb1 ∂ξdb2

)∣∣∣∣∣ (x0, ξ′, i|ξ′|x) ≥ C0|ξ′|k1+k2−1
x , ξ′ ∈ Rd−1. (4.6.2)

4.6.4 Stability of the Lopatinskĭı-Šapiro condition under
perturbation

To prepare for the study of how the Lopatinskĭı-Šapiro condition behaves under
conjugation with Carleman exponential weight and the addition of a spectral
parameter, we introduce some perturbations in the formulation of the Lopatin-
skĭı-Šapiro condition for (P,B1, B2) as written in (4.6.2).

Lemma 4.6.4. Let V 0 be a compact set of ∂Ω be such that the Lopatinskĭı-
Šapiro condition holds for (P,B1, B2) at every point x of V 0. There exist C1 > 0

and ε > 0 such that∣∣∣∣∣det
(

b1 b2

∂ξdb1 ∂ξdb2

)∣∣∣∣∣ (x, ξ′ + ζ ′, ξd = i|ξ′|x + δ) ≥ C1|ξ′|k1+k2−1
x , (4.6.3)

for x ∈ V 0, ξ′ ∈ Rd−1, ζ ′ ∈ Cd−1, and δ ∈ C, if |ζ ′|+ |δ| ≤ ε|ξ′|x. Moreover one
has∣∣∣∣∣det

(
b1(x, ξ

′ + ζ ′, ξd = i|ξ′|x + δ) b2(x, ξ
′ + ζ ′, ξd = i|ξ′|x + δ)

b1(x, ξ
′ + ζ ′, ξd = i|ξ′|x + δ̃) b2(x, ξ

′ + ζ ′, ξd = i|ξ′|x + δ̃)

)∣∣∣∣∣ ≥ C1|δ−δ̃| |ξ′|k1+k2−1
x ,

(4.6.4)
for x ∈ V 0, ξ′ ∈ Rd−1, ζ ′ ∈ Cd−1, and δ, δ̃ ∈ C, if |ζ ′|+ |δ|+ |δ̃| ≤ ε|ξ′|x.
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Proof. From (4.6.2), since V 0 is compact having the Lopatinskĭı-Šapiro condi-
tion holding at every point x of V 0 means there exists C0 > 0 such that∣∣∣∣∣det

(
b1 b2

∂ξdb1 ∂ξdb2

)∣∣∣∣∣ (x, ξ′, i|ξ′|x) ≥ C0|ξ′|k1+k2−1
x , x ∈ V 0, ξ′ ∈ Rd−1.

(4.6.5)
The first part is a consequence of the mean value theorem, homogeneity and
(4.6.5) with say C1 = C0/2.

For the second part it is sufficient to assume that δ ̸= δ̃ since the result is
obvious otherwise. For j = 1, 2 one writes the Taylor formula

bj(x, ξ
′ + ζ ′, i|ξ′|x + δ̃) = bj(x, ξ

′ + ζ ′, i|ξ′|x + δ) + (δ̃ − δ)∂ξdbj(x, ξ
′ + ζ ′, i|ξ′|x + δ)

+ (δ̃ − δ)2
∫ 1

0

(1− s)∂2ξdbj(x, ξ
′ + ζ ′, i|ξ′|x + δs) ds,

with δs = (1− s)δ + sδ̃, yielding

1

δ̃ − δ
det

(
b1(x, ξ

′ + ζ ′, i|ξ′|x + δ) b2(x, ξ
′ + ζ ′, i|ξ′|x + δ)

b1(x, ξ
′ + ζ ′, i|ξ′|x + δ̃) b2(x, ξ

′ + ζ ′, i|ξ′|x + δ̃)

)

= det

(
b1 b2

∂ξdb1 ∂ξdb2

)
(x, ξ′ + ζ ′, i|ξ′|x + δ)

+ (δ̃ − δ)

∫ 1

0

(1− s) det

(
b1(x, ξ

′ + ζ ′, i|ξ′|x + δ) b2(x, ξ
′ + ζ ′, i|ξ′|x + δ)

∂2ξdb1(x, ξ
′ + ζ ′, i|ξ′|x + δs) ∂2ξdb2(x, ξ

′ + ζ ′, i|ξ′|x + δs)

)
ds.

With homogeneity, if |ζ ′|+ |δ|+ |δ̃| ≲ |ξ′|x one finds∣∣∣∣∣det
(

b1(x, ξ
′ + ζ ′, i|ξ′|x + δ) b2(x, ξ

′ + ζ ′, i|ξ′|x + δ)

∂2ξdb1(x, ξ
′ + ζ ′, i|ξ′|x + δs) ∂2ξdb2(x, ξ

′ + ζ ′, i|ξ′|x + δs)

)∣∣∣∣∣ ≲ |ξ′|k1+k2−2
x ,

Thus with |δ − δ̃| ≤ ε|ξ′|x, for ε > 0 chosen sufficiently small, using the first
part of the lemma one obtains the second result.

4.6.5 Examples of boundary operators yielding symmetry

We give some examples of pairs of boundary operators B1, B2 that fulfill (1) the
Lopatinskĭı-Šapiro condition and (2) yield symmetry for the bi-Lalace operator
P = ∆2, that is,

(Pu, v)L2(Ω) = (u, Pv)L2(Ω)

for u, v ∈ H4(Ω) such that Bju|∂Ω = Bjv|∂Ω = 0, j = 1, 2.
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We first recall that following Green formula

(∆u, v)L2(Ω) = (u,∆v)L2(Ω) + (∂nu|∂Ω, v|∂Ω)L2(∂Ω) − (u|∂Ω, ∂nv|∂Ω)L2(∂Ω), (4.6.6)

which applied twice gives (Pu, v)L2(Ω) = (u, Pv)L2(Ω) + T (u, v) with

T (u, v) = (∂n∆u|∂Ω, v|∂Ω)L2(∂Ω) − (∆u|∂Ω, ∂nv|∂Ω)L2(∂Ω)

+ (∂nu|∂Ω,∆v|∂Ω)L2(∂Ω) − (u|∂Ω, ∂n∆v|∂Ω)L2(∂Ω). (4.6.7)

Using normal geodesic coordinates in a neighborhood of the whole boundary
∂Ω allows one to write ∆ = ∂2n +∆′ where ∆′ is the resulting Laplace operator
on the boundary, that is, associated with the trace of the metric on ∂Ω. Since
∆′ is selfadjoint on ∂Ω this allows one to write formula (4.6.7) in the alternative
forms

T (u, v) = (∂3nu|∂Ω, v|∂Ω)L2(∂Ω) − ((∂2n + 2∆′)u|∂Ω, ∂nv|∂Ω)L2(∂Ω)

+ (∂nu|∂Ω, (∂
2
n + 2∆′)v|∂Ω)L2(∂Ω) − (u|∂Ω, ∂

3
nv|∂Ω)L2(∂Ω), (4.6.8)

or

T (u, v) = ((∂3n + 2∆′∂n)u|∂Ω, v|∂Ω)L2(∂Ω) − (∂2nu|∂Ω, ∂nv|∂Ω)L2(∂Ω)

+ (∂nu|∂Ω, ∂
2
nv|∂Ω)L2(∂Ω) − (u|∂Ω, (∂

3
n + 2∆′∂n)v|∂Ω)L2(∂Ω). (4.6.9)

We start our list of examples with the most basics ones.

Example 4.6.5 (Hinged boundary conditions). This type of conditions refers
to B1u|∂Ω = u|∂Ω and B2u|∂Ω = ∆u|∂Ω. With (4.6.7) one finds T (u, v) = 0 in
the case of homogeneous conditions, hence symmetry.

Note that the hinged boundary conditions are equivalent to having B1u|∂Ω =

u|∂Ω andB2u|∂Ω = ∂2nu|∂Ω. With the notation of Section 4.6 this gives b̃1(x, ω′, z) =

1 and b̃2(x, ω′, z) = (−iz)2 = −z2. It follows that

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
1 |ω′|2g
0 −2i|ω′|g

)
= −2i|ω′|g ̸= 0,

if ω′ ̸= 0 and thus the Lopatinskĭı-Šapiro condition holds by Lemma 4.6.2.
With the hinged boundary conditions observe that the bi-Laplace operator is

precisely the square of the Dirichlet-Laplace operator. This makes its analysis
quite simple and this explains why this type of boundary condition is often
chosen in the mathematical literature. Observe that symmetry is then obvious
without invoking the above formulae.
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Example 4.6.6 (Clamped boundary conditions). This type of conditions refers
to B1u|∂Ω = u|∂Ω and B2u|∂Ω = ∂nu|∂Ω. With (4.6.8) one finds T (u, v) = 0 in
the case of homogeneous conditions, hence symmetry. With the notation of
Section 4.6 this gives b̃1(x, ω′, z) = 1 and b̃2(x, ω′, z) = −iz. It follows that

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
1 |ω′|g
0 −i

)
= −i ̸= 0.

Thus the Lopatinskĭı-Šapiro condition holds by Lemma 4.6.2.
Note that with the clamped boundary conditions the bi-Laplace operator

cannot be seen as the square of the Laplace operator with some well chosen
boundary condition as opposed to the case of the hinged boundary conditions
displayed above.

Examples 4.6.7 (More examples).

i. Take B1u|∂Ω = ∂nu|∂Ω and B2u|∂Ω = ∂n∆u|∂Ω. With these boundary
conditions the bi-Laplace operator is precisely the square of the Neumann-
Laplace operator. The symmetry property is immediate and so is the
Lopatinskĭı-Šapiro condition.

ii. Take B1u|∂Ω = (∂2n + 2∆′)u|∂Ω and B2u|∂Ω = ∂3nu|∂Ω. With (4.6.8) one
finds T (u, v) = 0 in the case of homogeneous conditions, hence symmetry.

We have b̃1(x, ω′, z) = −z2 − 2|ω′|2g and b̃2(x, ω′, z) = iz3 and

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
−|ω′|2g |ω′|3g
−2i|ω′|g −3i|ω′|2g

)
= 5i|ω′|4g ̸= 0,

if ω′ ̸= 0 and thus the Lopatinskĭı-Šapiro condition holds by Lemma 4.6.2.

iii. Take B1u|∂Ω = ∂nu|∂Ω and B2u|∂Ω = (∂3n + A′)u|∂Ω, with A′ a symmetric
differential operator of order less than or equal to three on ∂Ω, with
homogeneous principal symbol a′(x, ω′) such that a′(x, ω′) ̸= 2|ω′|3g for
ω′ ̸= 0, that is, a′(x, ω′) ̸= 2 for |ω′|g = 1.

With (4.6.8) one finds

T (u, v) = (−A′u|∂Ω, v|∂Ω)L2(∂Ω) + (u|∂Ω, A
′v|∂Ω)L2(∂Ω) = 0,

in the case of homogeneous conditions, hence symmetry for P .
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We have b̃1(x, ω′, z) = −iz and b̃2(x, ω
′, z) = iz3 + a′(x, ω′) with a′ the

principal symbol of A′.

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
|ω′|g |ω′|3g + a′(x, ω′)

−i −3i|ω′|2g

)
= i
(
a′(x, ω′)−2|ω′|3g

)
̸= 0,

if ω′ ̸= 0 since a′(x, ω′) ̸= 2|ω′|3g by assumption implying that the Lopatin-
skĭı-Šapiro condition holds by Lemma 4.6.2.

iv. Take B1u|∂Ω = u|∂Ω and B2u|∂Ω = (∂2n + A′∂n)u|∂Ω with A′ a symmetric
differential operator of order less than or equal to one on ∂Ω, with homo-
geneous principal symbol a′(x, ω′) such that a′(x, ω′) ̸= −2|ω′|g for ω′ ̸= 0,
that is, a′(x, ω′) ̸= −2 for |ω′|g = 1. This is a refinement of the case of
hinged boundary conditions given in Example 4.6.5 above.

With (4.6.8) one finds

T (u, v) = (A′∂nu|∂Ω, ∂nv|∂Ω)L2(∂Ω) + (∂nu|∂Ω,−A′∂nv|∂Ω)L2(∂Ω) = 0,

in the case of homogeneous conditions, hence symmetry for P .

We have b̃1(x, ω′, z) = 1 and b̃2(x, ω
′, z) = −z2 − iza′(x, ω′) with a′ the

principal symbol of A′.

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
1 |ω′|2g + |ω′|ga′(x, ω′)

0 −2i|ω′|g − ia′(x, ω′)

)
= −i

(
a′(x, ω′)+2|ω′|g

)
̸= 0,

if ω′ ̸= 0 since a′(x, ω′) ̸= −2|ω′|g by assumption implying that the
Lopatinskĭı-Šapiro condition holds by Lemma 4.6.2.

v. Take B1u|∂Ω = (∂2n +A′∂n)u|∂Ω and B2u|∂Ω = (∂3n + 2∂n∆
′)u|∂Ω, with A′ a

symmetric differential operator of order less than or equal to one on ∂Ω,
with homogeneous principal symbol a′(x, ω′) such that 2a′(x, ω′) ̸= −3|ω′|g
for ω′ ̸= 0, that is, a′(x, ω′) ̸= −3/2 for |ω′|g = 1. With (4.6.9) one finds

T (u, v) = (A′∂nu|∂Ω, ∂nv|∂Ω)L2(∂Ω) + (∂nu|∂Ω,−A′∂nv|∂Ω)L2(∂Ω) = 0,

in the case of homogeneous conditions, hence symmetry for P .

We have b̃1(x, ω′, z) = −z2 − iza′(x, ω′) and b̃2(x, ω
′, z) = iz3 + 2iz|ω′|2g

and

det

(
b̃1 b̃2

∂z b̃1 ∂z b̃2

)
(x, ω′, z = i|ω′|g) = det

(
|ω′|2g + |ω′|ga′(x, ω′) −|ω′|3g
−2i|ω′|g − ia′(x, ω′) −i|ω′|2g

)
= −i|ω′|3g

(
2a′(x, ω′) + 3|ω′|g

)
̸= 0,
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if ω′ ̸= 0 since 2a′(x, ω′) + 3|ω′|g ̸= 0 by assumption implying that the
Lopatinskĭı-Šapiro condition holds by Lemma 4.6.2.

4.7 Lopatinskĭı-Šapiro condition for the conju-
gated bi-Laplacian with spectral parameter

Set Pσ = ∆2 − σ4 with σ ∈ [0,+∞) and denote by Pσ,φ = eτφPσe
−τφ the

conjugate operator of Pσ with τ ≥ 0 a large parameter and φ ∈ C ∞(Rd,R). We
shall refer to φ as the weight function. The principal symbol of Pσ in normal
geodesic coordinates is given by

pσ(x, ξ) = (ξ2d + r(x, ξ′))2 − σ4.

Observe that eτφDje
−τφ = Dj+iτ∂jφ ∈ D1

τ . So, after conjugation, the principal
symbol becomes

pσ,φ(x, ξ, τ) = pσ(x, ξ + iτdxφ)

=
(
(ξd + iτ∂dφ)

2 + r(x, ξ′ + iτdx′φ)
)2 − σ4

=
(
(ξd + iτ∂dφ)

2 + r(x, ξ′ + iτdx′φ)− σ2
) (

(ξd + iτ∂dφ)
2 + r(x, ξ′ + iτdx′φ) + σ2

)
We write pσ,φ(x, ξ, τ) = q1σ,φ(x, ξ, τ)q

2
σ,φ(x, ξ, τ) with

qjσ,φ(x, ξ, τ) = (ξd + iτ∂dφ)
2 + r(x, ξ′ + iτdx′φ) + (−1)jσ2, j = 1, 2.

We consider two boundary operators B1 and B2 of order k1 and k2 with
bj(x, ξ) for principal symbol, j = 1, 2. The associated conjugated operators

Bj,φ = eτφBje
−τφ,

have respective principal symbols

bj,φ(x, ξ, τ) = bj(x, ξ + iτdφ), j = 1, 2.

We assume that the Lopatinskĭı-Šapiro condition holds for (P0, B1, B2) as in
Definition 4.6.1 for any point (x, ω′) ∈ T ∗

x∂Ω. We wish to know if the Lopatin-
skĭı-Šapiro condition can hold for (Pσ, B1, B2, φ), as given by the following def-
inition (in local coordinates for simplicity).

Definition 4.7.1. Let (x, ξ′, τ, σ) ∈ ∂Ω × Rd−1 × [0,+∞) × [0,+∞) with
(ξ′, τ, σ) ̸= 0. One says that the Lopatinskĭı-Šapiro condition holds for (Pσ, B1, B2, φ)

at (x, ξ′, τ, σ) if for any polynomial function f(ξd) with complex coefficients there
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exist c1, c2 ∈ C and a polynomial function ℓ(ξd) with complex coefficients such
that, for all ξd ∈ C

f(ξd) = c1b1,φ(x, ξ
′, ξd, τ) + c2b2,φ(x, ξ

′, ξd, τ) + ℓ(ξd)p
+
σ,φ(x, ξ

′, ξd, τ),

with
p+σ,φ(x, ξ

′, ξd, τ) =
∏

Im ρj(ξ′,τ,σ)≥0

(ξd − ρj(ξ
′, τ, σ)),

where ρj(x, ξ′, τ, σ), j = 1, · · · , 4, denote the complex roots of pσ,φ(x, ξ′, ξd, τ)
viewed as a polynomial in ξd.

In what follows, we shall assume that ∂dφ > 0. Locally, one has ∂dφ ≥ C1 >

0, for some C1 > 0.

4.7.1 Discussion on the Lopatinskĭı-Šapiro condition ac-
cording to the position of the roots

With the assumption that ∂dφ > 0, for any point (x, ξ′, τ, σ) at most two roots
lie in the upper complex closed half-plane (this is explained below). We then
enumerate the following cases.

• Case 1 : No root lying in the upper complex closed half-plane, then
p+σ,φ(x, ξ

′, ξd, τ) = 1 and the Lopatinskĭı-Šapiro condition of Definition 4.7.1
holds trivially at (x, ξ′, τ, σ).

• Case 2 : One root lying in the upper complex closed half-plane. Let
us denote by ρ+ that root, then p+σ,φ(x, ξ

′, ξd, τ) = ξd − ρ+. With Defi-
nition 4.7.1, for any choice of f , the polynomial function ξd 7→ f(ξd) −
c1b1,φ(x, ξ

′, ξd, τ)−c2b2,φ(x, ξ′, ξd, τ) admits ρ+ as a root for c1, c2 ∈ C well
chosen. Hence, the Lopatinskĭı-Šapiro condition holds at (x, ξ′, τ, σ) if and
only if

b1,φ(x, ξ
′, ξd = ρ+, τ) ̸= 0 or b2,φ(x, ξ

′, ξd = ρ+, τ) ̸= 0.

Note that it then suffices to have

det

(
b1,φ b2,φ

∂ξdb1,φ ∂ξdb2,φ

)
(x, ξ′, ξd = ρ+, τ) ̸= 0.

• Case 3 : Two different roots lying in the upper complex closed half-plane.
Let denote by ρ+1 and ρ+2 these roots. One has p+σ,φ(x, ξ′, ξd, τ) = (ξd −
ρ+1 )ξd − ρ+2 ). The Lopatinskĭı-Šapiro condition holds at (x, ξ′, τ, σ) if and
only if the complex numbers ρ+1 and ρ+2 are the roots of the polynomial
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function ξd 7→ f(ξd) − c1b1,φ(x, ξ
′, ξd, τ) − c2b2,φ(x, ξ

′, ξd, τ), for c1, c2 well
chosen. This readsf(ρ+1 ) = c1b1,φ(x, ξ

′, ξd = ρ+1 , τ) + c2b2,φ(x, ξ
′, ξd = ρ+1 , τ),

f(ρ+2 ) = c1b1,φ(x, ξ
′, ξd = ρ+2 , τ) + c2b2,φ(x, ξ

′, ξd = ρ+2 , τ).

Being able to solve this system in c1 and c2 for any f is equivalent to
having

det

(
b1,φ(x, ξ

′, ξd = ρ+1 , τ) b2,φ(x, ξ
′, ξd = ρ+1 , τ)

b1,φ(x, ξ
′, ξd = ρ+2 , τ) b2,φ(x, ξ

′, ξd = ρ+2 , τ)

)
̸= 0. (4.7.1)

• Case 4 : A double root lying in the upper complex closed half-plane. De-
note by ρ+ this root; one has p+σ,φ(x, ξ′, ξd, τ) = (ξd − ρ+)2. The Lopatin-
skĭı-Šapiro condition holds at (x, ξ′, τ, σ) if and only if for any choice of
f , the complex number ρ+ is a double root of the polynomial function
ξd 7→ f(ξd)− c1b1,φ(x, ξ

′, ξ, τ)− c2b2,φ(x, ξ
′, ξ, τ) for some c1, c2 ∈ C. Thus

having the Lopatinskĭı-Šapiro condition is equivalent of having the follow-
ing determinant condition,

det

(
b1,φ(x, ξ

′, ξd = ρ+, τ) b2,φ(x, ξ
′, ξd = ρ+, τ)

∂ξdb1,φ(x, ξ
′, ξd = ρ+, τ) ∂ξdb2,φ(x, ξ

′, ξd = ρ+, τ)

)
̸= 0. (4.7.2)

Observe that case 4 can only occur if σ = 0 (then one has (ξ′, τ) ̸= (0, 0)).
If σ > 0 then only cases 1, 2, and 3 are possible. This is precisely stated in
Lemma 4.7.7. This will be an important point in what follows.

We now state the following important proposition.

Proposition 4.7.2. Let x0 ∈ ∂Ω. Assume that the Lopatinskĭı-Šapiro condition
holds for (P0, B1, B2) at x0 and thus in a compact neighborhood V 0 of x0 (by
Remark 4.6.3). Assume also that ∂dφ ≥ C1 > 0 in V 0. There exist µ0 > 0

and µ1 > 0 such that if (x, ξ′, τ, σ) ∈ V 0 × Rd−1 × [0,+∞) × [0,+∞) with
(ξ′, τ, σ) ̸= (0, 0, 0),

|dx′φ(x)| ≤ µ0∂dφ(x) and σ ≤ µ1τ∂dφ(x),

then the Lopatinskĭı-Šapiro condition holds for (Pσ, B1, B2, φ) at (x, ξ′, τ, σ).

The proof of Proposition 4.7.2 is given below. We first need to analyze
the configuration of the roots of the symbol pσ,φ starting with each factor qjσ,φ,
j = 1, 2.
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4.7.2 Root configuration for each factor

We consider either factors ξd 7→ qjσ,φ(x, ξ
′, ξd, τ). We recall that

qjσ,φ(x, ξ, τ) = (ξd + iτ∂dφ)
2 + r(x, ξ′ + iτdx′φ) + (−1)jσ2, j = 1, 2.

First, we consider the case r(x, ξ′ + iτdx′φ) + (−1)jσ2 ∈ R−, that is, equal
to −β2 with β ∈ R . Then, the roots of ξd 7→ qjσ,φ(x, ξ

′, ξd, τ) are given by

−iτ∂dφ+ β and − iτ∂dφ− β.

Both lie in the lower complex open half-plane.
Second, we consider the case r(x, ξ′ + iτdx′φ) + (−1)jσ2 ∈ C \ R−. There

exists a unique αj ∈ C such that Reαj > 0 and

α2
j = r(x, ξ′ + iτdx′φ) + (−1)jσ2

= r(x, ξ′)− τ 2r(x, dx′φ) + (−1)jσ2 + i2τ r̃(x, ξ′, dx′φ)
2, (4.7.3)

where r̃(x, ., .) denotes the symmetric bilinear form associated with the quadratic
form r(x, .). Then, the two roots of ξd 7→ qjσ,φ(x, ξ

′, ξd, τ) are given by

πj,1 = −iτ∂dφ− iαj and πj,2 = −iτ∂dφ+ iαj. (4.7.4)

One has Imπj,1 < 0 since ∂dφ ≥ C1 > 0. With Im πj,2 = −τ∂dφ+Reαj one sees
that the sign of Im πj,2 may change. The following lemma gives an algebraic
characterization of the sign of Im πj,2.

Lemma 4.7.3. Assume that ∂dφ > 0. Having Im πj,2 < 0 is equivalent to
having

(∂dφ)
2r(x, ξ′) + r̃(x, ξ′, dx′φ)

2 < τ 2(∂dφ)
2|dxφ|2x + (−1)j+1σ2(∂dφ)

2.

Proof. From 4.7.4 one has Im πj,2 < 0 if and only if Reαj < τ∂dφ = |τ∂dφ|,
that is, if and only if

4(τ∂dφ)
2Reα2

j − 4(τ∂dφ)
4 + (Imα2

j )
2 < 0,

by Lemma 4.7.4 below. With (4.7.3) this gives the result.

Lemma 4.7.4. Let z ∈ C such that m = z2. For x0 ∈ R such that x0 ̸= 0, we
have

|Re z| ⪋ |x0| ⇐⇒ 4x20Rem− 4x40 + (Imm)2 ⪋ 0.
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Proof. Let z = x+ iy ∈ C. On the one hand we have z2 = x2 − y2 + 2ixy = m

and Rem = x2 − y2, Imm = 2xy. On the other hand we have

4x20Rem− 4x40 + (Imm)2 = 4x20(x
2 − y2)− 4x40 + 4x2y2

= 4(x20 + y2)(x2 − x20),

thus with the same sign as (x2 − x20). Since |Re z| ⪋ |x0| ⇔ x2 − x20 ⪋ 0 the
conclusion follows.

With the following two lemmata we now connect the sign of Im πj,2 with the
low frequency regime |ξ′| ≲ τ .

Lemma 4.7.5. Assume there exists K0 > 0 such that |dx′φ| ≤ K0|∂dφ|. Then,
there exists CK0 > 0 such that Im πj,2 < 0 if CK0|ξ′|+ σ ≤ τ∂dφ, j = 0, 1.

Proof. With Lemma 4.7.3 having Im πj,2 < 0 reads

(∂dφ)
2r(x, ξ′) + r̃(x, ξ′, dx′φ)

2 < τ 2(∂dφ)
2|dxφ|2x + (−1)j+1σ2(∂dφ)

2. (4.7.5)

On the one hand, since |dx′φ| ≤ K0|∂dφ| one has

(∂dφ)
2r(x, ξ′) + r̃(x, ξ′, dx′φ)

2 ≤ K(∂dφ)
2|ξ′|2,

for some K > 0 that depends on K0, using that |ξ′|x ≂ |ξ′|. On the other hand
one has

τ 2(∂dφ)
2|dxφ|2x + (−1)j+1σ2(∂dφ)

2 ≥ τ 2(∂dφ)
4 − σ2(∂dφ)

2.

Thus (4.7.5) holds if one has

τ 2(∂dφ)
4 − σ2(∂dφ)

2 ≥ K(∂dφ)
2|ξ′|2,

that is, τ 2(∂dφ)2 ≥ K|ξ′|2 + σ2.

Lemma 4.7.6. Let W be a bounded open set of Rd and x0 ∈ W . Assume that
∂dφ > 0 in W and let κ0 > 0. Then, there exists C > 0 such that

|ξ′| ≤ Cτ if Imπj,2(x, ξ
′, τ, σ) < 0 and κ0σ ≤ τ, x ∈ W.

Proof. With Lemma 4.7.3 having Im πj,2 < 0 reads

(∂dφ)
2r(x, ξ′) + r̃(x, ξ′, dx′φ)

2 < τ 2(∂dφ)
2|dxφ|2x + (−1)j+1σ2(∂dφ)

2.
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In particular, this implies

r(x, ξ′) < τ 2|dxφ|2x + (−1)j+1σ2 ≤ (sup
W

|dxφ|2x + 1/κ20)τ
2.

The result follows since |ξ′| ≍ r(x, ξ′).

As mentioned in Section 4.7.1, we have the following result.

Lemma 4.7.7. Assume that σ > 0. Then, π1,2 ̸= π2,2. Moreover, the roots π1,2
and π2,2 cannot be both real.

Proof. With the forms of the roots given in (4.7.4) if π1,2 = π2,2 then α1 = α2,
thus α2

1 = α2
2 implying σ2 = 0.

Assume now that π1,2 ∈ R and π2,2 ∈ R, that is, Im π1,2 = Imπ2,2 = 0. This
reads Reαj = τ∂dφ, giving |Reαj| = |∂dφ|, for j = 1 and 2. With Lemma 4.7.4
one has

4(τ∂dφ)
2Reα2

j − 4(τ∂dφ)
4 + (Imα2

j )
2 = 0, j = 1, 2.

Observing that Imα2
1 = Imα2

2 one thus obtains Reα2
1 = Reα2

2, and the conclu-
sion follows as for the first part.

4.7.3 Proof of Proposition 4.7.2

Here, according to the statement of Proposition 4.7.2 we consider

|dx′φ| ≤ µ0∂dφ and σ ≤ µ1τ∂dφ.

First, we choose 0 < µ0 ≤ 1 and 0 < µ1 ≤ 1/2. Below both may be chosen
much smaller. According to Lemma 4.7.5, with K0 = 1 therein, for some C2 =

2CK0 > 0 if one has C2|ξ′| ≤ τ∂dφ then all four roots of ξd 7→ pσ,φ(x, ξ
′, ξd, τ) lie

in the lower complex open half-plane. If so, we face Case 1 as in the discussion
of Section 4.7.1 and the Lopatinskĭı-Šapiro condition holds. To carry on with
the proof of Proposition 4.7.2 we now only have to consider having

τ∂dφ ≤ C2|ξ′|. (4.7.6)

Our proof of Proposition 4.7.2 relies on the following lemma.

Lemma 4.7.8. There exists C3 > 0 such that, for j = 1 or 2, for 0 < µ0 ≤ 1,
0 < µ1 ≤ 1/2, and for all (x, ξ′, τ, σ) ∈ V 0×Rd−1× [0,+∞)× [0,+∞), one has

|dx′φ| ≤ µ0∂dφ, σ ≤ µ1τ∂dφ and Im πj,2 ≥ 0 =⇒
∣∣αj−|ξ′|x

∣∣+τ |dx′φ| ≤ |ξ′|xC3(µ0+µ
2
1).
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Proof. With (4.7.6) one has

τ |dx′φ| ≤ µ0τ∂dφ ≲ µ0|ξ′|x. (4.7.7)

With the first-order Taylor formula one has

α2
j = r(x, ξ′ + iτdx′φ) + (−1)jσ2

= r(x, ξ′) +

∫ 1

0

dξ′r(x, ξ
′ + iτs dx′φ)(iτdx′φ)ds+ (−1)jσ2.

With (4.7.7) and homogeneity one has∣∣dξ′r(x, ξ′ + iτs dx′φ)(iτdx′φ)
∣∣ ≲ µ0|ξ′|2x.

One also has σ ≤ µ1τ∂dφ ≲ µ1|ξ′|x. Since r(x, ξ′) = |ξ′|2x, this yields α2
j =

|ξ′|2x
(
1 + O(µ0 + µ2

1)
)

and hence αj = |ξ′|x
(
1 + O(µ0 + µ2

1)
)
. This and (4.7.7)

gives the result.

Before proceeding, we make the following computation. For j = 1, 2 and
ℓ = 1, 2 we write

bℓ,φ(x, ξ
′, ξd = πj,2, τ) = bℓ(x, ξ

′ + iτdx′φ, πj,2 + iτ∂dφ) = bℓ(x, ξ
′ + iτdx′φ, iαj)

= bℓ(x, ξ
′ + iτdx′φ, i|ξ′|x + i(αj − |ξ′|x)). (4.7.8)

We use Lemma 4.6.4 and the value of ε > 0 given therein. We choose 0 < µ0 ≤ 1

and 0 < µ1 ≤ 1/2 such that

C3(µ0 + µ2
1) ≤ ε, (4.7.9)

with C3 > 0 as given by Lemma 4.7.8.
We now consider the root configurations that remain to consider according

to the discussion in Section 4.7.1.
Case 2.
In this case, one root of pσ,φ lies in the upper complex closed half-plane. We
denote this root by ρ+. According to the discussion in Section 4.7.1 it suffices
to prove that

det

(
b1,φ b2,φ

∂ξdb1,φ ∂ξdb2,φ

)
(x, ξ′, ξd = ρ+, τ) ̸= 0. (4.7.10)

In fact, one has ρ+ = πj,2 with j = 1 or 2. We use the first part of Lemma 4.6.4
with ζ ′ = iτdx′φ and δ = i(αj−|ξ|x). With (4.7.8) and (4.7.9) with Lemma 4.7.8
and the first part of Lemma 4.6.4 one obtains (4.7.10).



114

Case 3.
In this case Imπ1,2 > 0 and Imπ2,2 > 0. According to the discussion in Sec-
tion 4.7.1 it suffices to prove that

det

(
b1,φ(x, ξ

′, ξd = π1,2, τ) b2,φ(x, ξ
′, ξd = π1,2, τ)

b1,φ(x, ξ
′, ξd = π2,2, τ) b2,φ(x, ξ

′, ξd = π2,2, τ)

)
̸= 0. (4.7.11)

We use the second part of Lemma 4.6.4 with ζ ′ = iτdx′φ, δ = i(α1 − |ξ|x), and
δ̃ = i(α2 − |ξ|x). With (4.7.8) and (4.7.9) with Lemma 4.7.8 and the second
part of Lemma 4.6.4 one obtains (4.7.11).
Case 4.
In this case (that only occurs if σ = 0) the Lopatinskĭı-Šapiro condition holds
also if one has (4.7.10). The proof is thus the same as for Case 2. This concludes
the proof of Proposition 4.7.2.

4.7.4 Local stability of the algebraic conditions associated
with the Lopatinskĭı-Šapiro condition

In Section 4.6 we saw that the Lopatinskĭı-Šapiro condition for (Pσ, B1, B2) in
Definition 4.6.1 exhibits some stability property. This was used in the state-
ment of Proposition 4.7.2 that states how the Lopatinskĭı-Šapiro condition for
(Pσ, B1, B2) can imply the Lopatinskĭı-Šapiro condition of Definition 4.7.1 for
(Pσ, B1, B2, φ), that is, the version of this condition for the conjugated opera-
tors.

A natural question would then be: does the Lopatinskĭı-Šapiro condition for
the conjugated operators enjoy the same stability property? The answer is yes.
Yet, this is not needed in what follows. In fact, below one exploits the algebraic
conditions listed in Section 4.7.1 once the Lopatinskĭı-Šapiro condition is know
to hold at a point ϱ0′ = (x0, ξ0′, τ 0, σ0) in tangential phase space. One thus
rather needs to know that these algebraic conditions are stable. Here also the
answer is positive and is the subject of the present section.

As in Definition 4.7.1 for ϱ′ = (x, ξ′, τ, σ) one denotes by ρj(ϱ′) the roots of
pσ,φ(x, ξ

′, ξd, τ) viewed as a polynomial in ξd.
Let ϱ0′ = (x0, ξ0′, τ 0, σ0) ∈ ∂Ω× Rd−1 × [0,+∞)× [0,+∞). One sets

J+ =
{
j ∈ {1, 2, 3, 4}; Im ρj(ϱ

0′) ≥ 0}, J− =
{
j ∈ {1, 2, 3, 4}; Im ρj(ϱ

0′) < 0}

and, for ϱ′ = (x, ξ′, τ, σ),

κ+ϱ0′(ϱ
′) =

∏
j∈J+

(
ξd − ρj(ϱ

′)
)
, κ−ϱ0′(ϱ

′) =
∏
j∈J−

(
ξd − ρj(ϱ

′)
)
.
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Naturally, one has κ+ϱ0′(ϱ
0′, ξd) = p+σ,φ(x

0, ξ0′, ξd, τ
0) and κ−ϱ0′(ϱ

0′, ξd) = p−σ,φ(x
0, ξ0′, ξd, τ

0).
Moreover, there exists a conic neighborhood U0 of ϱ0′ where both κ+ϱ0′(ϱ

′) and
κ−ϱ0′(ϱ

′) are smooth with respect to ϱ′. One has

pσ,φ = p+σ,φp
−
σ,φ = κ+ϱ0′κ

−
ϱ0′ .

Note however that for ϱ′ = (x, ξ′, τ, σ) ∈ U0 it may very well happen that
p+σ,φ(x, ξ

′, ξd, τ) ̸= κ+ϱ0′(ϱ
′, ξd) and p−σ,φ(x, ξ′, ξd, τ) ̸= κ−ϱ0′(ϱ

′, ξd).
The following proposition can be found in [11, proposition 1.8].

Proposition 4.7.9. Let the Lopatinskĭı-Šapiro condition hold at ϱ0′ = (x0, ξ0′, τ 0, σ0) ∈
∂Ω× Rd−1 × [0,+∞)× [0,+∞) for (Pσ, B1, B2, φ). Then,

i. The polynomial ξd 7→ p+σ,φ(x
0, ξ0′, ξd, τ

0) is of degree less than or equal to
two.

ii. There exists a conic neighborhood U of ϱ0′ such that {b1φ(ϱ′, ξd), b2φ(ϱ′, ξd)}
is complete modulo κ+ϱ0′(ϱ

′, ξd) at every point ϱ′ = (x, ξ′, τ, σ) ∈ U , namely
for any polynomial function f(ξd) with complex coefficients there exist
c1, c2 ∈ C and a polynomial function ℓ(ξd) with complex coefficients such
that, for all ξd ∈ C

f(ξd) = c1b1,φ(x, ξ
′, ξd, τ) + c2b2,φ(x, ξ

′, ξd, τ) + ℓ(ξd)κ
+
ϱ0′(ϱ

′, ξd). (4.7.12)

We emphasize again that the second property in Proposition 4.7.9 looks very
much like the statement of Lopatinskĭı-Šapiro condition for (Pσ, B1, B2, φ) at ϱ′

in Definition 4.7.1. Yet, it differs by having p+σ,φ(x, ξ′, ξd, τ) that only depends
on the root configuration at ϱ′ replaced by κ+ϱ0′(ϱ

′, ξd) whose structure is based
on the root configuration at ϱ0′.

Let m+ be the common degree of p+σ,φ(ϱ0′, ξd) and κ+ϱ0′(ϱ
′, ξd) and m− be the

common degree of p−σ,φ(ϱ0′, ξd) and κ−ϱ0′(ϱ
′, ξd) for ϱ′ ∈ U . One has m++m− = 4

and thus m− ≥ 2 for ϱ′ ∈ U since m+ ≤ 2.
Invoking the Euclidean division of polynomials, one sees that it is sufficient

to consider polynomials f of degree less than or equal to m+−1 ≤ 1 in (4.7.12).
Since the degree of bj,φ(ϱ′, ξd) can be as high as 3 > m+ − 1 it however makes
sense to consider f of degree less than or equal to m = 3. Then, the second
property in Proposition 4.7.9 is equivalent to having

{b1,φ(x, ξ′, ξd, τ), b2,φ(x, ξ′, ξd, τ)} ∪
⋃

0≤ℓ≤3−m+

{κ+ϱ0′(ϱ
′, ξd)ξ

ℓ
d}

be a complete in the set of polynomials of degree less than or equal to m = 3.
Note that this family is made of m′ = 6−m+ = 2 +m− polynomials.
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We now express an inequality that follows from Proposition 4.7.9 that will
be key in the boundary estimation given in Proposition 4.8.1 below.

4.7.5 Symbol positivity at the boundary

The symbols bj,φ, j = 1, 2, are polynomial in ξd of degree kj ≤ 3 and we may
thus write them in the form

bj,φ(ϱ
′, ξd) =

kj∑
ℓ=0

bℓj,φ(ϱ
′)ξℓd,

with bℓj,φ homogeneous of degree kj − ℓ.
The polynomial ξd 7→ κ+ϱ0′(ϱ

′, ξd) is of degree m+ ≤ 2 for ϱ′ ∈ U with U

given by Proposition 4.7.9. Similarly, we write

κ+ϱ0′(ϱ
′, ξd) =

m+∑
ℓ=0

κ+,ℓϱ0′ (ϱ
′)ξℓd,

with κ+,ℓϱ0′ homogeneous of degree m+ − ℓ. We introduce

ej,ϱ0′(ϱ
′, ξd) =

bj,φ(ϱ′, ξd) if j = 1, 2,

κ+ϱ0′(ϱ
′, ξd)ξ

j−3
d if j = 3, . . . ,m′.

As explained above, all these polynomials are of degree less than or equal to
three. If we now write

ej,ϱ0′(ϱ
′, ξd) =

3∑
ℓ=0

eℓj,ϱ0′(ϱ
′)ξℓd,

for j = 1, 2 one has eℓj,ϱ0′(ϱ
′) = bℓj,φ(ϱ

′), with ℓ = 0, . . . , kj and eℓj,ϱ0′(ϱ
′) = 0 for

ℓ > kj, and

for j = 3, . . . ,m′, eℓj,ϱ0′(ϱ
′) =


0 if ℓ < j − 3,

κ+,ℓ+3−j
ϱ0′ (ϱ′) if ℓ = j − 3, . . . ,m+ + j − 3 ≤ m+ +m′ − 3 = 3,

0 if ℓ > m+ + j − 3.

In particular eℓj,ϱ0′(ϱ
′) is homogeneous of degree m+ + j − ℓ− 3. We thus have

the following result.

Lemma 4.7.10. Set the m′ × (m + 1) matrix M(ϱ′) = (Mj,ℓ(ϱ
′)) 1≤j≤m′

0≤ℓ≤m

with

Mj,ℓ(ϱ
′) = eℓj,ϱ0′(ϱ

′). Then, the second point in Proposition 4.7.9 states that
M(ϱ′) is of rank m+ 1 = 4 for ϱ′ ∈ U .
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Recall that m′ = m− + 2 ≥ 4.

We now set

Σej,ϱ0′
(ϱ′, z) =

3∑
ℓ=0

eℓj,ϱ0′(ϱ
′)zℓ =

3∑
ℓ=0

Mj,ℓ(ϱ
′)zℓ, z = (z0, . . . , z3). (4.7.13)

in agreement with the notation introduced in (4.2.6) in Section 4.2.1. One has
the following positivity result.

Lemma 4.7.11. Let the Lopatinskĭı-Šapiro condition hold at ϱ0′ = (x0, ξ0′, τ 0, σ0) ∈
∂Ω × Rd−1 × [0,+∞) × [0,+∞) for (Pσ, B1, B2, φ) and let U be as given by
Proposition 4.7.9. Then, if ϱ′ ∈ U there exists C > 0 such that

m′∑
j=1

∣∣Σej,ϱ0′
(ϱ′, z)

∣∣2 ≥ C|z|2C4 , z = (z0, . . . , z3) ∈ C4.

Proof. In C4 define the bilinear form ΣB(z, z
′) =

∑m′

j=1Σej,ϱ0′
(ϱ′, z)Σej,ϱ0′

(ϱ′, z′).
With (4.7.13) one has

ΣB(z, z
′) =

(
M(ϱ′)z,M(ϱ′)z′

)
Cm′ =

(
tM(ϱ′)M(ϱ′)z, z′

)
C4 .

As rank tM(ϱ′)M(ϱ′) = rankM(ϱ′) = 4 by Lemma 4.7.10 one obtains the result.

4.8 Estimate for the boundary norm under Lopatin-
skĭı-Šapiro condition

Near x0 ∈ ∂Ω we consider two boundary operators B1 and B2. As in Section 4.7
the associated conjugated operators are denoted by Bj,φ, j = 1, 2 with respective
principal symbols bj,φ(x, ξ, τ).

The main result of this section is the following proposition for the fourth-
order conjugated operator Pσ,φ. It is key in the final result of the present article.
It states that all traces are controlled by norms of B1,φv|xd=0+ and B2,φv|xd=0+

if the Lopatinskĭı-Šapiro condition holds for (P,B1, B2, φ).

Proposition 4.8.1. Let κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally given by {xd > 0}.
Assume that (Pσ, B1, P2, φ) satisfies the Lopatinskĭı-Šapiro condition of Defini-
tion 4.7.1 at ϱ′ = (x0, ξ′, τ, σ) for all (ξ′, τ, σ) ∈ Rd−1 × [0,+∞)× [0,+∞) such
that τ ≥ κ0σ.
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Then, there exist W 0 a neighborhood of x0, C > 0, τ0 > 0 such that

| tr(v)|3,1/2,τ ≤ C
(
∥Pσ,φv∥+ +

2∑
j=1

|Bj,φv|xd=0+ |7/2−kj ,τ + ∥v∥4,−1,τ

)
,

for σ ≥ 0, τ ≥ max(τ0, κ0σ) and v ∈ C
∞
c (W 0

+).

The notation of the function space C
∞
c (W 0

+) is introduced in (4.5.3).
For the proof of Proposition 4.8.1 we start with a microlocal version of the

result.

4.8.1 A microlocal estimate

Proposition 4.8.2. Let κ1 > κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally given
by {xd > 0} and let W be a bounded open neighborhood of x0 in Rd. Let
(ξ0′, τ 0, σ0) ∈ Rd−1 × [0,+∞)× [0,+∞) nonvanishing with τ 0 ≥ κ1σ

0 and such
that (Pσ, B1, P2, φ) satisfies the Lopatinskĭı-Šapiro condition of Definition 4.7.1
at ϱ0′ = (x0, ξ0′, τ 0, σ0).

Then, there exists U a conic neighborhood of ϱ0′ in W × Rd−1 × [0,+∞)×
[0,+∞) where τ ≥ κ0σ such that if χ ∈ S0

T,τ , homogeneous of degree 0 in
(ξ′, τ, σ) with supp(χ) ⊂ U , there exist C > 0 and τ0 > 0 such that

| tr(OpT(χ)v)|3,1/2,τ ≤ C
( 2∑
j=1

|Bj,φv|xd=0+ |7/2−kj ,τ + ∥Pσ,φv∥+ + ∥v∥4,−1,τ + | tr(v)|3,−1/2,τ

)
,

for σ ≥ 0, τ ≥ max(τ0, κ0σ) and v ∈ C
∞
c (W+).

Proof. We choose a conic neighborhood U0 of ϱ0′ according to Proposition 4.7.9
and such that U0 ⊂ W × Rd−1 × [0,+∞) × [0,+∞) . Assume moreover that
τ ≥ κ0σ in U0.

In Section 4.7.5 we introduced the symbols ej,ϱ0′(ϱ′, ξd), j = 1, . . . ,m′ =

m− + 2 = 6−m+. Set SU0
= {ϱ′ = (x, ξ′, τ, σ) ∈ U0; |(ξ′, τ, σ)| = 1}.

Consequence of the Lopatinskĭı-Šapiro condition holding at ϱ0′ for all ϱ′ ∈
SU0

, by Lemma 4.7.11 there exists C > 0 such that

m′∑
j=1

∣∣Σej,ϱ0′
(ϱ′, z)

∣∣2 ≥ C|z|2C4 , z = (z0, . . . , z3) ∈ C4.

Since SU0
is compact (recall that W is bounded), there exists C0 > 0 such that

m′∑
j=1

∣∣Σej,ϱ0′
(ϱ′, z)

∣∣2 ≥ C0|z|2C4 , z = (z0, . . . , z3) ∈ C4, ϱ′ ∈ SU0
.
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Introducing the mapNtϱ
′ = (x, tξ′, tτ, tσ), for ϱ′ = (x, ξ′, τ, σ) with t = |(ξ′, τ, σ)|−1

one has

m′∑
j=1

∣∣Σej,ϱ0′
(Ntϱ

′, z)
∣∣2 ≥ C0|z|2C4 , z = (z0, . . . , z3) ∈ C4, ϱ′ ∈ U0, (4.8.1)

since Ntϱ
′ ∈ SU0

. Now, for j = 1, 2 one has

Σej,ϱ0′
(ϱ′, z) =

kj∑
ℓ=0

eℓj,ϱ0′(ϱ
′)zℓ,

with eℓj,ϱ0′(ϱ
′) homogeneous of degree kj − ℓ, and for 3 ≤ j ≤ m′ one has

Σej,ϱ0′
(ϱ′, z) =

3∑
ℓ=0

eℓj,ϱ0′(ϱ
′)zℓ,

with eℓj,ϱ0′(ϱ
′) homogeneous of degree m+ + j − ℓ − 3. We define z′ ∈ C4 by

z′ℓ = tℓ−7/2zℓ, ℓ = 0, . . . , 3. One has

Σej,ϱ0′
(Ntϱ

′, z′) = tkj−7/2Σej,ϱ0′
(ϱ′, z), j = 1, 2,

and

Σej,ϱ0′
(Ntϱ

′, z′) = tm
++j−13/2Σej,ϱ0′

(ϱ′, z), j = 3, . . . ,m′.

Thus from (4.8.1) we deduce

2∑
j=1

λ
2(7/2−kj)
T,τ

∣∣Σej,ϱ0′
(ϱ′, z)

∣∣2 + m′∑
j=3

λ
2(13/2−m+−j)
T,τ

∣∣Σej,ϱ0′
(ϱ′, z)

∣∣2 ≥ C0

3∑
ℓ=0

λ
2(7/2−ℓ)
T,τ |zℓ|2,

(4.8.2)

for z = (z0, . . . , z3) ∈ C4, and ϱ′ ∈ U0, since t ≍ λ−1
T,τ as τ ≳ σ in U0.

We now choose U a conic open neighborhood of ϱ0′, such that U ⊂ U0.
Let χ ∈ S0

T,τ be as in the statement and let χ̃ ∈ S0
T,τ be homogeneous of degree

0, with supp(χ̃) ⊂ U0 and χ̃ ≡ 1 in a neighborhood of U , and thus in a
neighborhood of supp(χ).

For j = 3, . . . ,m′ one has ej,ϱ0′(ϱ′, ξd) = κ+ϱ0′(ϱ
′, ξd)ξ

j−3
d ∈ Sm

++j−3,0
τ . Set

Ej = Op(χ̃ej,ϱ0′). The introduction of χ̃ is made such that χ̃ej,ϱ0′ is defined on
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the whole tangential phase-space. Observe that

B(w) =
2∑
j=1

|Bj,φw|xd=0+|27/2−kj ,τ +
m′∑
j=3

|Ejw|xd=0+|213/2−m+−j,τ

=
2∑
j=1

|Λ7/2−kj
T,τ Bj,φw|xd=0+|

2

∂
+

m′∑
j=3

|Λ13/2−m+−j
T,τ Ejw|xd=0+ |

2

∂

is a boundary quadratic form of type (3, 1/2) as in Definition 4.2.14. From
Proposition 4.2.16 and (4.8.2) we have

| tr(u)|23,1/2,τ ≲
2∑
j=1

|Bj,φu|xd=0+ |27/2−kj ,τ +
m′∑
j=3

|Eju|xd=0+|213/2−m+−j,τ + | tr(v)|23,−N,τ .

(4.8.3)

for u = OpT(χ)v and τ ≥ κ0σ chosen sufficiently large.

In U0 one can write

pσ,φ = p+σ,φp
−
σ,φ = κ+ϱ0′κ

−
ϱ0′ ,

with κ+ϱ0′ of degree m+ and κ−ϱ0′ of degree m−. In fact we set

κ̃+ϱ0′(ϱ
′) =

∏
j∈J+

(
ξd − χ̃ρj(ϱ

′)
)
, κ̃−ϱ0′(ϱ

′) =
∏
j∈J−

(
ξd − χ̃ρj(ϱ

′)
)
,

with the notation of Section 4.7.4, thus making the two symbols defined on the
whole tangential phase-space. In U , one has also

pσ,φ = κ̃+ϱ0′κ̃
−
ϱ0′ .

The factor κ̃−ϱ0′ is associated with roots with negative imaginary part. With
Lemma 6.1.1 given in Appendix 6.1 one has the following microlocal elliptic
estimate

∥OpT(χ)w∥m−,τ + | tr(OpT(χ)w)|m−−1,1/2,τ ≲ ∥OpT(κ̃
−
ϱ0′)OpT(χ)w∥+ + ∥w∥m−,−N,τ ,

for w ∈ S (Rd
+) and τ ≥ κ0τ chosen sufficiently large. We apply this inequality

to w = OpT(κ̃
+
ϱ0′)v. Since

OpT(κ̃
−
ϱ0′)OpT(χ)OpT(κ̃

+
ϱ0′) = OpT(χ)Pσ,φ mod Ψ4,−1

τ ,
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one obtains

| tr(OpT(χ)OpT(κ̃
+
ϱ0′)v)|m−−1,1/2,τ

≲ ∥Pσ,φv∥+ + ∥v∥4,−1,τ .

With [OpT(χ),OpT(κ̃
+
ϱ0′)] ∈ Ψm+,−1

τ one then has

| tr(OpT(κ̃
+
ϱ0′)u)|m−−1,1/2,τ

≲ ∥Pσ,φv∥+ + ∥v∥4,−1,τ + | tr(v)|3,−1/2,τ ,

with u = OpT(χ)v as above, using that m+ +m− = 4. Note that

| tr(OpT(κ̃
+
ϱ0′)u)|m−−1,1/2,τ

≍
m−−1∑
j=0

|Dj
dOpT(κ̃

+
ϱ0′)u|xd=0+|

m−−j−1/2,τ

≳
m′∑
j=3

|Eju|xd=0+ |5/2+m−−j,τ − | tr(v)|xd=0+ |3,−1/2,τ
,

using that ξjdκ̃
+
ϱ0′ = χ̃ej+3,ϱ0′ in a conic neighborhood of supp(χ) and using that

m− = m′ − 2. We thus obtain

m′∑
j=3

|Eju|xd=0+|13/2−m+−j,τ ≲ ∥Pσ,φv∥+ + ∥v∥4,−1,τ + | tr(v)|3,−1/2,τ ,

since 13/2−m+ = 5/2 +m−. With (4.8.3) then one finds

| tr(u)|3,1/2,τ ≲
2∑
j=1

|Bj,φu|xd=0+ |27/2−kj ,τ + ∥Pσ,φv∥+ + ∥v∥4,−1,τ + | tr(v)|3,−1/2,τ .

In addition, observing that

|Bj,φu|xd=0+ |7/2−kj ,τ ≲ |Bj,φv|xd=0+|7/2−kj ,τ + | tr(v)|3,−1/2,τ ,

the result of Proposition 4.8.2 follows.

4.8.2 Proof of Proposition 4.8.1

As mentioned above the proof relies on a patching procedure of microlocal
estimates given by Proposition 4.8.2.

Let 0 < κ′0 < κ0. We set

Γd−1
+,κ0

= {(ξ′, τ, σ) ∈ Rd−1 × [0,+∞)× [0,+∞); τ ≥ κ0σ, },



122

and

Sd−1
+,κ0

= {(ξ′, τ, σ) ∈ Γd−1
+,κ0

; |(ξ′, τ, σ)| = 1}.

Consider (ξ0′, τ 0, σ0) ∈ Sd−1
+,κ0 . Since the Lopatinskĭı-Šapiro condition holds

at ϱ0′ = (x0, ξ0′, τ 0, σ0), we can invoke Proposition 4.8.2:

(1) There exists a conic open neighborhood Uϱ0′ of ϱ0′ inW×Rd−1×[0,+∞)×
[0,+∞) where τ ≥ κ′0σ;

(2) For any χϱ0′ ∈ S0
T,τ homogeneous of degree 0 supported in Uϱ0′ the estimate

of Proposition 4.8.2 applies to OpT(χϱ0′)v for τ ≥ max(τϱ0′ , κ0σ).

Without any loss of generality we may choose Uϱ0′ of the form Uϱ0′ = Oϱ0′×Γϱ0′ ,
with Oϱ0′ ⊂ W an open neighborhood of x0 and Γϱ0′ a conic open neighborhood
of (ξ0′, τ 0, σ0) in Rd−1 × [0,+∞)× [0,+∞) where τ ≥ κ′0σ.

Since {x0} × Sd−1
+,κ0 is compact we can extract a finite covering of it by open

sets of the form of Uϱ0′ . We denote by Ũi, i ∈ I with |I| < ∞, such a finite
covering. This is also a finite covering of {x0} × Γd−1

+,κ0 .
Each Ũi has the form Ũi = Oi × Γi, with Oi an open neighborhood of x0

and Γi a conic open set in Rd−1 × [0,+∞)× [0,+∞) where τ ≥ κ′0σ.
We set O = ∩i∈IOi and Ui = O × Γi, i ∈ I.
Let W 0 be an open neighborhood of x0 such that W 0 ⋐ O. The open sets

Ui give also an open covering of W 0 × Sd−1
+,κ0 and W 0 × Γd−1

+,κ0 . With this second
covering we associate a partition of unity χi, i ∈ I, of W 0 × Sd−1

+,κ0 , where each
χi is chosen smooth and homogeneous of degree one for |(ξ′, τ, σ)| ≥ 1, that is:∑
i∈I

χi(ϱ
′) = 1 for ϱ′ = (x, ξ′, τ, σ) in a neighborhood of W 0 × Γd−1

+,κ0
, and |(ξ′, τ, σ)| ≥ 1.

Let u ∈ C
∞
c (W+

0 ). Since each χi is in S0
T,τ and supported in Ui, Proposi-

tion 4.8.2 applies:

| tr(OpT(χi)v)|3,1/2,τ ≤ Ci

( 2∑
j=1

|Bj,φv|xd=0+ |7/2−kj ,τ + ∥Pσ,φv∥+ + ∥v∥4,−1,τ + | tr(v)|3,−1/2,τ

)
,

(4.8.4)

for some Ci > 0, for σ ≥ 0, τ ≥ max(τi, κ0σ) for some τi > 0.
We set χ̃ = 1−

∑
i∈I
χi. One has χ̃ ∈ S−∞

T,τ microlocally in a neighborhood of

W 0 × Γd−1
+,κ0 . Thus, considering the definition of Γd−1

+,κ0 , if one imposes τ ≥ κ0σ,
as we do, then χ̃ ∈ S−∞

T,τ locally in a neighborhood of W 0.
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For any N ∈ N using that supp(v) ⊂ W 0 one has

| tr(v)|3,1/2,τ ≤
∑
i∈I

| tr(OpT(χi)v)|3,1/2,τ + | tr(OpT(χ̃)v)|3,1/2,τ

≲
∑
i∈I

| tr(OpT(χi)v)|3,1/2,τ + | tr(v)|3,−N,τ

≲
∑
i∈I

| tr(OpT(χi)v)|3,1/2,τ + ∥v∥4,−N,τ .

Summing estimates (4.8.4) together for i ∈ I we thus obtain

| tr(v)|3,1/2,τ ≲
2∑
j=1

|Bj,φv|xd=0+|7/2−kj ,τ + ∥Pσ,φv∥+ + ∥v∥4,−1,τ + | tr(v)|3,−1/2,τ ,

for τ ≥ max(maxi τi, κ0σ). Therefore, by choosing τ ≥ κ0σ sufficiently large
one obtains the result of Proposition 4.8.1.

4.9 Microlocal estimate for each second-order fac-
tors composing Pσ,φ

We recall that Pσ = ∆2 − σ4 = (−∆ − σ2)(−∆ + σ2) with σ ≥ 0. Set Qj
σ =

−∆+ (−1)jσ2; then Pσ = Q1
σQ

2
σ. We also set Q = −∆, that is, Q = Q1

0 = Q2
0.

The principal symbols of Qj
σ and Q are given by

qjσ(x, ξ) = ξ2d + r(x, ξ′) + (−1)jσ2 and q(x, ξ) = ξ2d + r(x, ξ′), (4.9.1)

respectively. The conjugated operator Pσ,φ = eτφPσe
−τ reads

Pσ,φ = Q1
σ,φQ

2
σ,φ, with Qj

σ,φ = eτφQj
σe

−τφ.

We set

Qj
s =

Qj
σ,φ + (Qj

σ,φ)
∗

2
and Qa =

Qj
σ,φ − (Qj

σ,φ)
∗

2i
,

both formally selfadjoint and such that Qj
σ,φ = Qj

s + iQa. Note that Qa is
independent of σ. Their respective principal symbols are

qjs(x, ξ, τ, σ) = ξ2d − (τ∂dφ)
2 + r(x, ξ′) + (−1)jσ2 − τ 2r(x, dx′φ),

qa(x, ξ, τ) = 2τξd∂dφ+ 2τ r̃(x, ξ′, dx′φ).
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Note that Qj
s and Qa take the forms

Qj
s = D2

d + T js , Qa = τ(∂dφDd +Dd∂dφ) + Ta, (4.9.2)

where T js , Ta ∈ D2
T,τ are such that (T js )

∗ = T js and T ∗
a = Ta. Naturally, the

principal symbol of Qj
σ,φ is

qjσ,φ(x, ξ, τ) = qjs(x, ξ, τ, σ) + iqa(x, ξ, τ).

The principal symbol of Qj
σ,φ = eτφQj

σe
−τφ is

qjσ,φ(x, ξ, τ, σ) = (ξd + iτ∂dφ)
2 + r(x, ξ′) + (−1)jσ2 − τ 2r(x, dx′φ) + 2iτ r̃(x, ξ′, dx′φ).

As in Section 4.7.2 we let αj ∈ C be such that

αj(x, ξ
′, τ, σ)2 = r(x, ξ′ + iτdx′φ) + (−1)jσ2

= r(x, ξ′)− τ 2r(x, dx′φ) + 2iτ r̃(x, ξ′, dx′φ) + (−1)jσ2,

and Reαj ≥ 0. Note that uniqueness in the choice of αj holds except if r(x, ξ′+
iτdx′φ) + (−1)jσ2 ∈ R−; this lack of uniqueness in that case is however not an
issue in what follows. One has

qjσ,φ(x, ξ
′, ξd, τ) = (ξd + iτ∂dφ)

2 + αj(x, ξ
′, τ, σ)2

=
(
ξd + iτ∂dφ+ iαj(x, ξ

′, τ, σ)
)(
ξd + iτ∂dφ− iαj(x, ξ

′, τ, σ)
)
.

We recall from (4.7.4) that we write qjσ,φ(x, ξ′, ξd, τ) = (ξd− πj,1)(ξd− πj,2) with

πj,1 = −iτ∂dφ− iαj(x, ξ
′, τ, σ) and πj,2 = −iτ∂dφ+ iαj(x, ξ

′, τ, σ).

The roots πj,k, k = 1, 2 are functions of x, ξ′, τ and σ.

We denote by B a boundary operator of order k that takes the form

B(x,D) = Bk(x,D′) +Bk−1(x,D′)Dd,

with Bk(x,D′) and Bk−1(x,D′) tangential differential operators of order k and
k − 1 respectively. The boundary operator B(x,D) has b(x, ξ) = bk(x, ξ′) +

bk−1(x, ξ′)ξd for principal symbol. The conjugate boundary operator Bφ =

eτφBe−τφ is then given by

Bφ(x,D, τ) = Bk
φ(x,D

′, τ) +Bk−1
φ (x,D′, τ)(Dd + iτ∂dφ)

= B̂k
φ(x,D

′, τ) +Bk−1
φ (x,D′, τ)Dd,
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with B̂k
φ(x,D

′, τ) = Bk
φ(x,D

′, τ) + iτBk−1
φ (x,D′, τ)∂dφ. The principal symbol

of Bφ(x,D, τ) is

bφ(x, ξ, τ) = b̂kφ(x, ξ
′, τ) + bk−1

φ (x, ξ′, τ)ξd,

where bk−1
φ (x, ξ′, τ) is homogeneous of degree k − 1 in λT,τ and b̂kφ(x, ξ

′, τ) =

bkφ(x, ξ
′, τ) + τbk−1

φ (x, ξ′, τ)∂dφ is homogeneous of degree k in λT,τ .

4.9.1 Sub-ellipticity

Set

qs(x, ξ, τ) = ξ2d + r(x, ξ′)− (τ∂dφ)
2 − r(x, τdx′φ) = |ξ|2x − |τdφ|2x,

where |ξ|2x = ξ2d + r(x, ξ′). One has qjs = qs + (−1)jσ2. Observe that {qjs, qa} =

{qs, qa}.

Definition 4.9.1 (Sub-ellipticity). Let W be a bounded open subset of Rd and
φ ∈ C ∞(W ) such that |dxφ| > 0. Let j = 1 or 2. We say that the couple (Qj

σ, φ)

satisfies the sub-ellipticity condition in W if there exist C > 0 and τ0 > 0 such
that for σ > 0

∀ (x, ξ) ∈ W × Rd, τ ≥ τ0σ, q
j
σ,φ(x, ξ, τ) = 0 ⇒ {qjs, qa}(x, ξ, τ) = {qs, qa}(x, ξ, τ) ≥ C > 0.

Remark 4.9.2. Note that with homogeneity the sub-ellipticity property also
reads

∀ (x, ξ) ∈ W × Rd, τ ≥ τ0σ, q
j
σ,φ(x, ξ, τ) = 0 ⇒ {qjs, qa}(x, ξ, τ) ≥ Cλ3τ .

Proposition 4.9.3. Let W be a bounded open subset of Rd and ψ ∈ C ∞(Rd)

such that ψ ≥ 0 and |dxψ| ≥ C > 0 on W. Let τ0 > 0. Then, there exists
γ0 ≥ 1 such that (Qj

σ, φ) satisfies the sub-ellipticity condition on W for τ ≥ τ0σ

for φ = eγψ, with γ ≥ γ0, for both j = 1 and 2.

Proof. We note that |dxφ(x)| ≠ 0.
The proof is slightly different whether one considers the symbol q1σ,φ or the

symbol q2σ,φ.

Case 1: proof for q1
σ,φ. Assume that q1σ,φ = 0. Thus |ξ|2x − |τdφ|2x − σ2 = 0

implying |ξ| ∼ σ + γτφ. On the one hand by Lemma 3.55 in [62], one has

{qs, qa}(x, ξ, τ) = τ(γ2φ)(γφ)2
(
(Hqψ(x, β))

2 + 4τ 2q(x, dψ(x))2
)

+ (γφ)3
1

2i
{qψ, qψ}(x, β, τ), (4.9.3)
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with β = ξ/(γφ), and where Hq denotes the Hamiltonian vector field associated
with the symbol q as defined in (4.9.1). Here, qψ denotes the principal symbol
of eτψQe−τψ, that is,

qψ(x, ξ, τ) = q(x, ξ + iτdxψ(x)) = (ξd + iτ∂dψ(x))
2 + r(x, ξ′ + iτdx′ψ(x)).

On the other hand, one has (Hqψ(x, β))
2 + 4τ 2q(x, dψ(x))2 ≳ τ 2 and since

1
2i
{qψ, qψ}(x, β, τ) is homogeneous of degree 3 in (β, τ), we obtain

{qs, qa} ≥ Cγ(γτφ)3 − C ′(γτφ+ |β|γφ)3 = Cγτ̃ 3 − C ′′(τ̃ + |ξ|)3, with τ̃ = γτφ.

Yet one has |ξ| ∼ σ + τ̃ implying

{qs, qa} ≥ Cγτ̃ 3 − C ′′′(τ̃ + |ξ|)3 ≥ Cγτ̃ 3 − C(4)(τ̃ + σ)3.

Since ψ ≥ 0 and γ ≥ 1 one has φ ≥ 1 implying τ0σ ≤ τ ≲ τ̃ and thus

{qs, qa}(x, ξ, τ) ≥ τ̃ 3(Cγ − C(5)).

It follows that for γ chosen sufficiently large one finds {qs, qa}(x, ξ, τ) ≥ C > 0.

Case 2: proof for q2
σ,φ. Assume that q2σ,φ = 0. Then |ξ|2x + σ2 = |τdφ|2x

implying |ξ|+ σ ∼ τ |dφ| ∼ τ̃ . The same computation as in Case 1 gives

{qs, qa}(x, ξ, τ) ≥ Cγτ̃ 3 − C ′(τ̃ + |ξ|)3

Here |ξ|+ τ̃ ≲ τ̃ yielding

{qs, qa}(x, ξ, τ) ≥ (Cγ − C ′′)τ̃ 3.

The remaining part of the proof is the same.

Lemma 4.9.4. Let j = 1 or 2. Let (Qj
σ, φ) have the sub-ellipticity property of

Definition 4.9.1 in W . For µ > 0 one sets t(ϱ) = µ((qjs)
2+ q2a)(ϱ)+ τ{qjs, qa}(ϱ)

with ϱ = (x, ξ, τ, σ) ∈ W ×Rd× [0,∞)× [0,∞). Let τ0 > 0. Then, for µ chosen
sufficiently large and τ ≥ τ0σ one has t(ϱ) ≥ Cλ4τ for some C > 0.

The proof of Lemma 4.9.4 uses the following lemma.

Lemma 4.9.5. Consider two continuous functions, f and g, defined in a com-
pact set L , and assume that f ≥ 0 and moreover

f(y) = 0 ⇒ g(y) > 0 for all y ∈ L .

Setting hµ = µf + g, we have hµ ≥ C > 0 for µ > 0 chosen sufficiently large.
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Proof of Lemma 4.9.4. Consider the compact set

L = {(x, ξ, τ, σ); x ∈ W, |ξ|2 + τ 2 + σ2 = 1, τ ≥ τ0σ}.

Applying the result of Lemma 4.9.5 to t(ϱ) on L with f = (qjs)
2 + q2a and

g = τ{qjs, qa} we find for t(ϱ) ≥ C on L for some C > 0 for µ chosen sufficiently
large. Since t(ϱ) is homogeneous of degree 4 in the variables (ξ, τ, σ) it follows
that t(ϱ) ≥ C(σ2 + τ 2 + |ξ|2)4 ≳ λ4τ .

4.9.2 Lopatinskĭı-Šapiro condition for the second-order fac-
tors

Above, in Section 4.7, the Lopatinskĭı-Šapiro condition is addressed for the
fourth-order operator Pσ,φ. Here, we consider the two second-order factors Qj

σ,φ.
With the roots πj,1 and πj,2 defined in (4.7.4) one sets

qj,+σ,φ(x, ξ
′, ξd, τ) =

∏
Imπj,k≥0

k=1,2

(
ξd − πj,k(x, ξ

′, τ, σ)
)
.

Definition 4.9.6. Let j = 1, 2. Let x ∈ ∂Ω, with Ω locally given by {xd > 0}.
Let (ξ′, τ, σ) ∈ Rd−1 × [0,+∞) × [0,+∞) with (ξ′, τ, σ) ̸= 0. One says that
the Lopatinskĭı-Šapiro condition holds for (Qj

σ, B, φ) at ϱ′ = (x, ξ′, τ, σ) if for
any polynomial function f(ξd) with complex coefficients there exist c ∈ C and
a polynomial function ℓ(ξd) with complex coefficients such that, for all ξd ∈ C

f(ξd) = cbφ(x, ξ
′, ξd, τ) + ℓ(ξd)q

j,+
σ,φ(x, ξ

′, ξd, τ). (4.9.4)

Remark 4.9.7. With the Euclidean division of polynomials, we see that it
suffices to consider the polynomial function f(ξd) to be of degree less than that
of qj,+σ,φ(x, ξ′, ξd, τ) in (4.9.4). Thus, in any case, the degree of f(ξd) can be chosen
less than or equal to one.

Lemma 4.9.8. Let j = 1 or 2. Let x ∈ ∂Ω and (ξ′, τ, σ) ∈ Rd−1 × [0,+∞) ×
[0,+∞) with (ξ′, τ, σ) ̸= 0. The Lopatinskĭı-Šapiro condition holds for (Qj

σ, B, φ)

at (x, ξ′, τ, σ) if and only if

i. either qj,+σ,φ(x, ξ′, ξd, τ) = 1;

ii. or qj,+σ,φ(x, ξ′, ξd, τ) = ξd − π and bφ(x, ξ′, π, τ) ̸= 0.

Proof. If qj,+σ,φ(x, ξ′, ξd, τ) = (ξd− πj,1)(ξd− πj,2), that is, both roots πj,1 and πj,2
are in the upper complex half-plane, then condition (4.9.4) cannot hold, since
by Remark 4.9.7 it means that the vector space of polynomials of degree less
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than or equal to one would be generated by the single polynomial bφ(x, ξ′, ξd, τ).
Suppose that qj,+σ,φ(x, ξ′, ξd, τ) = ξd − π that is one the root πj,1 and πj,2 has a
nonnegative imaginary part and the other root has a negative imaginary part.
Then, the Lopatinskĭı-Šapiro condition holds at (x, ξ′, σ, τ) if for any f(ξd), the
polynomial function ξd 7→ f(ξd) − cbφ(x, ξ

′, ξd, τ) admits π as a root for some
c ∈ C. A necessary and sufficient condition is then bφ(x, ξ′, ξd = π, τ) ̸= 0.
Finally if qj,+σ,φ(x, ξ′, ξd, τ) = 1, that is, both roots πj,1 and πj,2 lie in the lower
complex half-plane, then condition (4.9.4) trivially holds.

4.9.3 Microlocal estimates for a second-order factor

Here, for j = 1 or 2, we establish estimates for the operator Qj
σ in a microlocal

neighborhood of point at the boundary where (Qj
σ, B, φ) satisfies the Lopatin-

skĭı-Šapiro condition (after conjugaison) of Definition 4.9.6.
The quality of the estimation depends on the position of the roots. We shall

assume that ∂dφ > 0. Thus, from the form of the roots πj,1 and πj,2 given in
(4.7.4), the root πj,1 always lies in the lower complex half-plane. The sign of
Im πj,2 may however vary. Three cases can thus occur:

i. The root πj,2 at the considered point lies in the upper complex half-plane.

ii. The root πj,2 at the considered point is real.

iii. The root πj,2 at the considered point lies in the lower complex half-plane.

Proposition 4.9.9. Let j = 1 or 2 and κ1 > κ0 > 0. Let x0 ∈ ∂Ω, with Ω

locally given by {xd > 0} and let W be a bounded open neighborhood of x0 in
Rd. Let φ be such that ∂dφ ≥ C > 0 in W and such that (Qj

σ, φ) satisfies
the sub-ellipticity condition in W . Let ϱ0′ = (x0, ξ0′, τ 0, σ0) with (ξ0′, τ 0, σ0) ∈
Rd−1× [0,+∞)× [0,+∞) nonvanishing with τ 0 ≥ κ1σ

0 and such that (Qj
σ, B, φ)

satisfies the Lopatinskĭı-Šapiro condition of Definition 4.9.6 at ϱ0′.

i. Assume that Im πj,2(ϱ
0′) > 0. Then, there exists U a conic neighborhood

of ϱ0′ in W×Rd−1×[0,+∞)×[0,+∞) where τ ≥ κ0σ such that if χ ∈ S0
T,τ ,

homogeneous of degree 0 in (ξ′, τ, σ) with supp(χ) ⊂ U , there exist C > 0

and τ0 > 0 such that

∥OpT(χ)v∥2,τ + | tr(OpT(χ)v)|1,1/2,τ ≤ C
(
∥Qj

σ,φv∥+ + |Bφv|xd=0+|3/2−k,τ + ∥v∥2,−1,τ

)
,

(4.9.5)

for σ ≥ 0, τ ≥ max(τ0, κ0σ) and v ∈ C
∞
c (W+).

ii. Assume that Im πj,2(ϱ
0′) = 0. Then, there exists U a conic neighborhood

of ϱ0′ in W×Rd−1×[0,+∞)×[0,+∞) where τ ≥ κ0σ such that if χ ∈ S0
T,τ ,
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homogeneous of degree 0 in (ξ′, τ, σ) with supp(χ) ⊂ U , there exist C > 0

and τ0 > 0 such that

τ−1/2∥OpT(χ)v∥2,τ + | tr(OpT(χ)v)|1,1/2,τ ≤ C
(
∥Qj

σ,φv∥+ + |Bφv|xd=0+|3/2−k,τ + ∥v∥2,−1,τ

)
,

(4.9.6)

for σ ≥ 0, τ ≥ max(τ0, κ0σ) and v ∈ C
∞
c (W+).

iii. Assume that Im πj,2(ϱ
0′) < 0. Then, there exists U a conic neighborhood

of ϱ0′ in W×Rd−1×[0,+∞)×[0,+∞) where τ ≥ κ0σ such that if χ ∈ S0
T,τ ,

homogeneous of degree 0 in (ξ′, τ, σ) with supp(χ) ⊂ U , there exist C > 0

and τ0 > 0 such that

∥OpT(χ)v∥2,τ + | tr(OpT(χ)v)|1,1/2,τ ≤ C
(
∥Qj

σ,φv∥+ + ∥v∥2,−1,τ

)
, (4.9.7)

for σ ≥ 0, τ ≥ max(τ0, κ0σ) and v ∈ C
∞
c (W+).

The notation of the function space C
∞
c (W+) is introduced in (4.5.3).

4.9.3.1 Case (i): one root lying in the upper complex half-plane.

One has Im πj,2(ϱ
0′) > 0 and Imπj,1(ϱ

0′) < 0.
Since the Lopatinskĭı-Šapiro condition holds for (Qj

σ, B, φ) at ϱ0′, by Lemma
4.9.8 one has

bφ(x
0, ξ0′, ξd = πj,2(ϱ

0′), τ 0) = b
(
x0, ξ0′ + iτ 0dx′φ(x

0), iαj(ϱ
0′)
)
̸= 0.

As the roots πj,1 and πj,2 are locally smooth with respect to ϱ′ = (x, ξ′, τ, σ) and
homogeneous of degree one in (ξ′, τ, σ), there exists U a conic neighborhood of
ϱ0′ in W ×Rd−1 × [0,+∞)× [0,+∞) and C1 > 0, C2 > 0 such that SU = {ϱ′ ∈
U ; |ξ′|2 + τ 2 + σ2 = 1} is compact and

τ ≥ κ0σ, Imπj,2(ϱ
′) ≥ C2λT,τ , and Im πj,1(ϱ

′) ≤ −C1λT,τ ,

and
bφ(x, ξ

′, ξd = πj,2(ϱ
′), τ) ̸= 0, (4.9.8)

if ϱ′ = (x, ξ′, τ, σ) ∈ U .
We let χ ∈ S0

T,τ and χ̃ ∈ S0
T,τ be homogeneous of degree zero in the variable

(ξ′, τ, σ) and be such that supp(χ̃) ⊂ U and χ̃ ≡ 1 on a neighborhood of
supp(χ). From the smoothness and the homogeneity of the roots, one has
χ̃πj,k ∈ S1

T,τ , k = 1, 2. We set

L2 = Dd −OpT(χ̃πj,2) and L1 = Dd −OpT(χ̃πj,1).
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The proof of Estimate (4.9.6) is based on three lemmata that we now list.
Their proofs are given at the end of this section.

The following lemma provides an estimate for L2 and boundary traces.

Lemma 4.9.10. There exist C > 0 and τ0 > 0 such that for any N ∈ N, there
exists CN > 0 such that∣∣ tr (OpT(χ)w

)∣∣
1,1/2,τ

≤ C
(∣∣BφOpT(χ)w|xd=0+

∣∣
3/2−k,τ+

∣∣L2OpT(χ)w|xd=0+
∣∣
1/2,τ

)
+CN | tr(w)|1,−N,τ ,

for τ ≥ max(τ0, κ0σ) and w ∈ S (Rd
+).

The proof of Lemma 4.9.10 relies on the Lopatinskĭı-Šapiro condition.
The following lemma gives an estimate for L1.

Lemma 4.9.11. Let χ ∈ S0
T,τ , homogeneous of degree 0, be such that supp(χ) ⊂

U and s ∈ R. There exist C > 0, τ0 > 0 and N ∈ N such that

∥OpT(χ)w∥1,s,τ + |OpT(χ)w|xd=0+ |s+1/2,τ
≤ C

(
∥L1OpT(χ)w∥0,s,τ + ∥w∥0,−N,τ

)
,

for w ∈ S (Rd
+) and τ ≥ max(τ0, κ0σ).

The proof of Lemma 4.9.11 is based on a multiplier method and relies on
the fact that the root πj,1 that appears in the principal symbol of L1 lies in the
lower complex half-plane.

The following lemma gives an estimate for L2.

Lemma 4.9.12. Let χ ∈ S0
T,τ , homogeneous of degree 0, be such that supp(χ) ⊂

U and s ∈ R. There exist C > 0, τ0 > 0 and N ∈ N such that

∥OpT(χ)w∥1,s,τ ≤ C
(
∥L2OpT(χ)w∥0,s,τ + |OpT(χ)w|xd=0+|s+1/2,τ

+ ∥w∥0,−N,τ
)
,

for w ∈ S (Rd
+) and τ ≥ max(τ0, κ0σ).

Note that this estimate is weaker than that of Lemma 4.9.11

Observing that

L1OpT(χ)L2 = OpT(χ)L1L2 mod Ψ1,0
τ

= OpT(χ)Q
j
σ,φ mod Ψ1,0

τ ,

and applying Lemma 4.9.11 to w = L2v with s = 0, one obtains

∥OpT(χ)L2v∥1,τ + |OpT(χ)L2v|xd=0+|1/2,τ ≲ ∥L1OpT(χ)L2v∥+ + ∥v∥1,−N,τ
≲ ∥Qj

σ,φv∥+ + ∥v∥1,τ ,
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for τ ≥ κ0σ chosen sufficiently large. We set u = OpT(χ)v, and using the trace
inequality

|w|xd=0+ |s,τ ≲ ∥w∥s+1/2,τ , w ∈ S (Rd
+) and s > 0,

we have

∥L2u∥1,τ + |L2u|xd=0+|1/2,τ ≲ ∥OpT(χ)L2v∥1,τ + |OpT(χ)L2v|xd=0+|1/2,τ + ∥v∥1,τ + |v|xd=0+ |1/2,τ
≲ ∥OpT(χ)L2v∥1,τ + |OpT(χ)L2v|xd=0+|1/2,τ + ∥v∥1,τ .

Therefore, we obtain

∥L2u∥1,τ + |L2u|xd=0+|1/2,τ ≲ ∥Qj
σ,φv∥+ + ∥v∥1,τ .

With Lemma 4.9.10, one has the estimate∣∣ tr(u)∣∣
1,1/2,τ

+ ∥L2u∥1,τ ≲ |Bφu|xd=0+|3/2−k,τ + ∥Qj
σ,φv∥+ + ∥v∥2,−1,τ ,

for τ ≥ κ0σ chosen sufficiently large using the following trace inequality

| tr(w)|m,s,τ ≲ ∥w∥m+1,s−1/2,τ , w ∈ S (Rd
+) and m ∈ N, s ∈ R.

With Lemma 4.9.12 for s = 1 one obtains

∥u∥1,1,τ +
∣∣ tr(u)∣∣

1,1/2,τ
+ ∥L2u∥1,τ ≲ |Bφu|xd=0+ |3/2−k,τ + ∥Qj

σ,φv∥+ + ∥v∥2,−1,τ ,

for τ ≥ κ0σ chosen sufficiently large. Finally, we write

∥Ddu∥1,τ ≤ ∥L2u∥1,τ + ∥OpT(χ̃πj,2)u∥1,τ ≲ ∥L2u∥1,τ + ∥u∥1,1,τ ,

yielding

∥u∥2,τ +
∣∣ tr(u)∣∣

1,1/2,τ
≲ |Bφu|xd=0+ |3/2−k,τ + ∥Qj

σ,φv∥+ + ∥v∥2,−1,τ .

As u = OpT(χ)v, with a commutator argument we obtain

|Bφu|xd=0+ |3/2−k,τ ≲ |Bφv|xd=0+ |3/2−k,τ + | tr(v)|1,−1/2,τ

≲ |Bφv|xd=0+ |3/2−k,τ + ∥v∥2,−1,τ .

yielding (4.9.5) and thus concluding the proof of Proposition 4.9.9 in Case (i).

We now provide the proofs the three key lemmata used above.
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Proof of Lemma 4.9.10. Set

T (w) = |Bφw|xd=0+|23/2−k,τ + |L2w|xd=0+|21/2,τ = |Λ3/2−k
T,τ Bφw|xd=0+ |

2

∂
+ |Λ1/2

T,τ L2w|xd=0+|
2

∂
.

This is a boundary differential quadratic form of type (1, 1/2) in the sense of
Definition 4.2.14. The associated bilinear symbol is given by

ΣT (ϱ
′, z, z′) = λ3−2k

T,τ

(
b̂kφ(x, ξ

′, τ)z0 + bk−1
φ (x, ξ′, τ)z1

)(
b̂kφ(x, ξ

′, τ)z̄′0 + bk−1
φ (x, ξ′, τ)z̄′1

)
+ λT,τ

(
z1 − χ̃πj,2(ϱ

′)z0
)(
z̄′1 − χ̃πj,2(ϱ′)z̄

′
0

)
,

with z = (z0, z1) ∈ C2 and z′ = (z′0, z
′
1) ∈ C2, yielding

ΣT (ϱ
′, z, z) = λ3−2k

T,τ

∣∣b̂kφ(x, ξ′, τ)z0 + bk−1
φ (x, ξ′, τ)z1

∣∣2 + λT,τ

∣∣z1 − χ̃πj,2(ϱ
′)z0
∣∣2.

One has ΣT (ϱ
′, z, z) ≥ 0. For z ̸= (0, 0) if ΣT (ϱ

′, z, z) = 0 thenz1 = χ̃πj,2(ϱ
′)z0,

b̂kφ(x, ξ
′, τ)z0 + bk−1

φ (x, ξ′, τ)z1 = 0,

implying that z0 ̸= 0 and

bφ
(
x, ξ′, ξd = χ̃πj,2(ϱ

′), τ
)
= b̂kφ(x, ξ

′, τ) + bk−1
φ (x, ξ′, τ)χ̃πj,2(ϱ

′) = 0.

Let U1 ⊂ U be a conic open set such that supp(χ) ⊂ U1 and χ̃ = 1 in a conic
neighborhood of U1. Then, for ϱ′ ∈ U1 one has

bφ
(
x, ξ′, ξd = χ̃πj,2(ϱ

′), τ
)
= bφ

(
x, ξ′, ξd = πj,2(ϱ

′), τ
)
̸= 0,

by (4.9.8). From the homogeneity of bk−1
φ (x, ξ′, τ) and b̂kφ(x, ξ′, τ) in ϱ′, it follows

that there exists some C > 0 such that

ΣT (ϱ
′, z, z) ≥ C

(
λ3T,τ |z0|2 + λT,τ |z1|2

)
,

if ϱ′ ∈ U1. The result of Lemma 4.9.10 thus follows from Proposition 4.2.16,
having in mind what is exposed in Section 4.5.4 since we have τ ≥ κ0σ here.

Proof of Lemma 4.9.11. We let u = OpT(χ)w. Performing an integration by
parts, one has

2Re
(
L1u, iΛ

2s+1
T,τ u

)
+
= 2Re

((
Dd −OpT(χ̃πj,1)

)
u, iΛ2s+1

T,τ u
)
+

= Re
(
i
(
Λ2s+1

T,τ OpT(χ̃πj,1)−OpT(χ̃πj,1)
∗Λ1

T,τ

)
u, u
)
+

+Re(Λ2s+1
T,τ u|xd=0+ , u|xd=0+)∂.
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Note that Re(Λ2s+1
T,τ u|xd=0+ , u|xd=0+)∂ = |u|xd=0+ |2s+1/2,τ

.

Next, the operator i
(
Λ2s+1

T,τ OpT(χ̃πj,1)−OpT(χ̃πj,1)
∗Λ2s+1

T,τ

)
has the following

real principal symbol

ϑ(ϱ′) = −2 Imπj,1(ϱ
′)λ2s+1

T,τ .

and since Imπj,1(ϱ
′) ≤ −C1λT,τ < 0 in U one obtains ϑ(ϱ′) ≳ λ2s+2

T,τ in U .
Since U is neigborhood of supp(χ), the microlocal Gårding inequality of The-
orem 2.49 in [62] (the proof adapts to the case with parameter σ as explained
in Section 4.5.4 since σ ≲ τ) yields

2Re
(
L1u, iΛ

2s+1
T,τ u

)
+
≥ |u|xd=0+|2s+1/2,τ

+ C∥Λs+1
T,τ u∥

2

+
− CN∥w∥20,−N,τ ,

for τ ≥ κ0σ chosen sufficiently large. With the Young inequality one obtains

|
(
L1u, iΛ

2s+1
T,τ u

)
+
| ≲ 1

ε
∥ΛsT,τL1u∥2+ + ε∥Λs+1

T,τ u∥
2

+
,

which yields for ε chosen sufficiently small,

|u|xd=0+ |s+1/2,τ
+ ∥u∥0,s+1,τ ≲ ∥L1u∥0,s,τ + ∥w∥0,−N,τ . (4.9.9)

Finally, we write

∥Ddu∥0,s,τ ≤ ∥L1u∥0,s,τ + ∥OpT(χ̃πj,1)u∥0,s,τ ≲ ∥L1u∥0,s,τ + ∥u∥0,s+1,τ . (4.9.10)

Putting together (4.9.9) and (4.9.10), the result of Lemma 4.9.11 follows.

Proof of Lemma 4.9.12. We let u = OpT(χ)w. Performing an integration by
parts, one has

2Re
(
L2u,−iΛ2s+1

T,τ u
)
+
= 2Re

((
Dd −OpT(χ̃πj,2)

)
u,−iΛ2s+1

T,τ u
)
+

= Re
(
i
(
OpT(χ̃πj,2)

∗Λ1
T,τ − Λ2s+1

T,τ OpT(χ̃πj,2)
)
u, u
)
+

− Re(Λ2s+1
T,τ u|xd=0+ , u|xd=0+)∂.

Note that Re(Λ2s+1
T,τ u|xd=0+ , u|xd=0+)∂ = |u|xd=0+ |2s+1/2,τ

.

Next, the operator i
(
OpT(χ̃πj,2)

∗Λ2s+1
T,τ −Λ2s+1

T,τ OpT(χ̃πj,2)
)

has the following
real principal symbol

ϑ(ϱ′) = 2 Im πj,2(ϱ
′)λ2s+1

T,τ .
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and since Imπj,2(ϱ
′) ≥ C2λT,τ > 0 in U one obtains ϑ(ϱ′) ≳ λ2s+2

T,τ in U .
Since U is neighborhood of supp(χ), the microlocal Gårding inequality of The-
orem 2.49 in [62] (the proof adapts to the case with parameter σ as explained
in Section 4.5.4 since σ ≲ τ) yields

2Re
(
L2u, iΛ

2s+1
T,τ u

)
+
≥ −|u|xd=0+ |2s+1/2,τ

+ C∥Λs+1
T,τ u∥

2

+
− CN∥w∥20,−N,τ ,

for τ ≥ κ0σ chosen sufficiently large. The end of the proof is then similar to
that of Lemma 4.9.11.

4.9.3.2 Case (ii): one real root.

One has Imπj,2(ϱ
0′) = 0 and Im πj,1(ϱ

0′) < 0.
Since the Lopatinskĭı-Šapiro condition holds for (Qj

σ, B, φ) at ϱ0′, by Lemma
4.9.8 one has

bφ(x
0, ξ0′, ξd = πj,2(ϱ

0′), τ 0) = b
(
x0, ξ0′ + iτ 0dx′φ(x

0), iαj(ϱ
0′)
)
̸= 0.

As the roots πj,1 and πj,2 are locally smooth with respect to ϱ′ = (x, ξ′, τ, σ) and
homogeneous of degree one in (ξ′, τ, σ), there exists U a conic neighborhood of
ϱ0′ in W ×Rd−1 × [0,+∞)× [0,+∞) and C1 > 0, C2 > 0 such that SU = {ϱ′ ∈
U ; |ξ′|2 + τ 2 + σ2 = 1} is compact and

τ ≥ κ0σ, πj,1(ϱ
′) ̸= πj,2(ϱ

′), Im πj,2(ϱ
′) ≥ −C2λT,τ , and Im πj,1(ϱ

′) ≤ −C1λT,τ ,

and
bφ(x, ξ

′, ξd = πj,2(ϱ
′), τ) ̸= 0, (4.9.11)

if ϱ′ = (x, ξ′, τ, σ) ∈ U .

We let χ ∈ S0
T,τ and χ̃ ∈ S0

T,τ be homogeneous of degree zero in the variable
(ξ′, τ, σ) and be such that supp(χ̃) ⊂ U and χ̃ ≡ 1 on supp(χ). From the
smoothness and the homogeneity of the roots, one has χ̃πj,k ∈ S1

T,τ , k = 1, 2.
We set

L2 = Dd −OpT(χ̃πj,2) and L1 = Dd −OpT(χ̃πj,1).

Lemma 4.9.10 and Lemma 4.9.11 also apply in Case (ii) and we shall use
them. In addition to these two lemmata we shall need the following lemma.

Lemma 4.9.13. There exist C > 0, τ0 > 0 such that

τ−1/2∥w∥2,τ ≤ C
(
∥Qj

σ,φw∥+ + | tr(w)|1,1/2,τ
)
,
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for τ ≥ max(τ0, κ0σ) and w ∈ C
∞
c (W+).

Proving Lemma 4.9.13 is fairly classical, based on writing Qj
σ,φ = Qj

s + iQa

and on an expansion of ∥Qj
σ,φw∥

2

+
and some integration by parts. We provide

the details in the proof below as the occurence of the parameter σ is not that
classical. Lemma 4.9.13 expresses the loss of a half-derivative if one root, here
πj,2, is real.

Observing that

L1OpT(χ)L2 = OpT(χ)L1L2 mod Ψ1,0
τ

= OpT(χ)Q
j
σ,φ mod Ψ1,0

τ ,

and applying Lemma 4.9.11 to w = L2v, one obtains

|OpT(χ)L2v|xd=0+|1/2,τ ≲ ∥L1OpT(χ)L2v∥+ + ∥v∥1,−N,τ
≲ ∥Qj

σ,φv∥+ + ∥v∥1,τ ,

for τ ≥ κ0σ chosen sufficiently large. We set u = OpT(χ)v, and using the trace
inequality

|w|xd=0+ |s,τ ≲ ∥w∥s+1/2,τ , w ∈ S (Rd
+) and s > 0,

we have

|L2u|xd=0+|1/2,τ ≲ |OpT(χ)L2v|xd=0+ |1/2,τ + |v|xd=0+|1/2,τ
≲ |OpT(χ)L2v|xd=0+|1/2,τ + ∥v∥1,τ .

Therefore, we obtain

|L2u|xd=0+ |1/2,τ ≲ ∥Qj
σ,φv∥+ + ∥v∥1,τ .

On the one hand, together with Lemma 4.9.10, one has the estimate∣∣ tr(u)∣∣
1,1/2,τ

≲ |Bφu|xd=0+|3/2−k,τ + ∥Qj
σ,φv∥+ + ∥v∥2,−1,τ , (4.9.12)

for τ ≥ κ0σ chosen sufficiently large using the following trace inequality

| tr(w)|m,s,τ ≲ ∥w∥m+1,s−1/2,τ , w ∈ S (Rd
+) and m ∈ N, s ∈ R.

On the other hand, with Lemma 4.9.13 one has

τ−1/2∥u∥2,τ ≲ ∥Qj
σ,φu∥+ + | tr(u)|1,1/2,τ ,
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again for τ ≥ κ0σ chosen sufficiently large and since [Qj
σ,φ,OpT(χ)] ∈ Ψ1,0

τ one
finds

τ−1/2∥u∥2,τ ≲ ∥Qj
σ,φv∥+ + ∥v∥1,τ + | tr(u)|1,1/2,τ , (4.9.13)

Now, with ε > 0 chosen sufficiently small if one computes (4.9.12)+ε× (4.9.13)
one obtains

τ−1/2∥u∥2,τ + | tr(u)|1,1/2,τ ≲ ∥Qj
σ,φv∥+ + |Bφu|xd=0+ |3/2−k,τ + ∥v∥2,−1,τ .

As u = OpT(χ)v, with a commutator argument we obtain

|Bφu|xd=0+|3/2−k,τ ≲ |Bφv|xd=0+|3/2−k,τ + | tr(v)|1,−1/2,τ

≲ |Bφv|xd=0+|3/2−k,τ + ∥v∥2,−1,τ .

yielding (4.9.6) and thus concluding the proof of Proposition 4.9.9 in Case (ii).

We now provide a proof of Lemma 4.9.13.

Proof of Lemma 4.9.13. We recall that Qj
σ,φ = Qj

s + iQa, yielding

∥Qj
σ,φw∥

2

+
= ∥Qj

sw∥
2

+ + ∥Qaw∥2+ + 2Re(Qj
sw, iQaw)+. (4.9.14)

With the integration by parts formula (f,Ddg)+ = (Ddf, g)+−i(f|xd=0+ , g|xd=0+)∂,
and the forms of Qj

s and Qa given in (4.9.2) one has

(f,Qj
sg)+ = (Qj

sf, g)+ − i(f|xd=0+ , Ddg|xd=0+)∂ − i(Ddf|xd=0+ , g|xd=0+)∂,

and

(f,Qag)+ = (Qaf, g)+ − 2τi(∂dφf|xd=0+ , g|xd=0+)∂,

yiedling

(Qaw,Q
j
sw)+ = (Qj

sQaw,w)+ − i(Qaw|xd=0+ , Ddw|xd=0+)∂ − i(DdQaw|xd=0+ , w|xd=0+)∂

(Qj
sw,Qaw)+ = (QaQ

j
sw,w)+ − 2iτ(∂dφQ

j
sw|xd=0+ , w|xd=0+)∂.

This gives

2Re(Qj
sw, iQaw)+ = i([Qj

s, Qa]w,w)+ + τA(w) (4.9.15)
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with

A(w) = τ−1(Qaw,Ddw)∂ + τ−1
(
(DdQa − 2τ∂dφQ

j
s)w,w

)
∂
. (4.9.16)

We have the following lemma adapted from Lemma 3.25 in [62].

Lemma 4.9.14. The operators Qa ∈ τD1 and DdQa − 2τ∂dφQ
j
s ∈ D3

τ can be
cast in the following forms

Qa = 2τ∂dφDd + 2r̃(x,D′, τdx′φ) mod τD0,

and

DdQa − 2τ∂dφQ
j
s = −2τ∂dφ

(
R(x,D′) + (−1)jσ2 − (τ∂dφ)

2 − r(x, τdx′φ)
)

+ 2r̃(x,D′, τdx′φ)Dd mod τΨ1,0
τ .

With this lemma we find

A(w) = 2(∂dφDdw|xd=0+ , Ddw|xd=0+)∂ + 2(r̃(x,D′, dx′φ)w|xd=0+ , Ddw|xd=0+)∂

+ 2
(
r̃(x,D′, dx′φ)Ddw|xd=0+ , w|xd=0+

)
∂

− 2
(
∂dφ
(
R(x,D′) + (−1)jσ2 − (τ∂dφ)

2 − r(x, τdx′φ)
)
w|xd=0+ , w|xd=0+

)
∂

+ (Op(c0)w|xd=0+ , Ddw|xd=0+)∂ +
((
Op(c̃0)Dd +Op(c1)

)
w|xd=0+ , w|xd=0+

)
∂
,

(4.9.17)

with Op(c0),Op(c̃0) ∈ D0 and Op(c1) ∈ D1
T,τ . Observe that one has

|A(w)| ≲ | tr(w)|21,0,τ . (4.9.18)

From (4.9.14) and (4.9.15) one writes

∥Qj
σ,φw∥

2

+
+ τ | tr(w)|21,0,τ ≳ ∥Qj

sw∥
2

+ + ∥Qaw∥2+ +Re(i[Qj
s, Qa]w,w)+.

(4.9.19)

We now use the following lemma whose proof is given below.

Lemma 4.9.15. There exists C,C ′ > 0, µ > 0 and τ0 > 0 such that

µ
(
∥Qj

sw∥
2

+ + ∥Qaw∥2+
)
+ τ Re(i[Qj

s, Qa]w,w)+ ≥ C∥w∥22,τ − C ′| tr(w)|21,1/2,τ

for τ ≥ max(τ0, κ0σ) and w ∈ C
∞
c (W+)
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Let µ > 0 be as in Lemma 4.9.15 and let τ > 0 be such that µτ−1 ≤ 1.
From (4.9.19) one then writes

∥Qj
σ,φw∥

2

+
+ τ | tr(w)|21,0,τ ≳ τ−1

(
µ
(
∥Qj

sw∥
2

+ + ∥Qaw∥2+
)
+ iτ([Qj

s, Qa]w,w)+

)
,

which with Lemma 4.9.15 yields the result of Lemma 4.9.13 using that τ | tr(w)|1,0,τ ≲
| tr(w)|1,1/2,τ .

Proof of Lemma 4.9.15. One has [Qj
s, Qa] ∈ τD2

τ . Writing

τ Re
(
i[Qj

s, Qa]w,w
)
+
= Re

(
iτ−1[Qj

s, Qa]w, τ
2w
)
+
,

it can be seen as a interior differential quadratic form of type (2, 0) as in Defi-
nition 4.2.11. Therefore

T (w) = µ
(
∥Qj

sw∥
2

+ + ∥Qaw∥2+
)
+ τ Re

(
i[Qj

s, Qa]w,w
)
+

is also an interior differential quadratic form of this type with principal symbol
given by

t(ϱ) = µ|qjσ,φ(ϱ)|2 + τ{qjs, qa}(ϱ), ϱ = (x, ξ, τ, σ).

Let τ0 > 0. By Lemma 4.9.4, the sub-ellipticity property of (Qj
σ, φ) implies

t(ϱ) ≳ λ4τ , ϱ ∈ W × Rd × [0,+∞)× [0,+∞), τ ≥ τ0σ,

for µ > 0 chosen sufficiently large. The Gårding inequality of proposition 4.2.13
yields

T (w) ≥ C∥w∥22,τ − C ′| tr(w)|21,1/2,τ ,

for some C,C ′ > 0 and for τ ≥ κ0σ chosen sufficiently large).

4.9.3.3 Case (iii): both roots lying in the lower complex half-plane.

The result in the present case is a simple consequence of the general result
given in Lemma 6.1.1 whose proof can be found in [11]. In the second order
case however, the proof does not require the same level of technicality.

One has Im πj,1(ϱ
0′) < 0 and Im πj,2(ϱ

0′) < 0. As the roots πj,1 and πj,2

depend continuously on the variable ϱ′ = (x, ξ′, τ, σ), there exists U a conic
open neighborhood of ϱ0′ in W × Rd−1 × [0,+∞) × [0,+∞) and C0 > 0 such
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that

τ ≥ κ0σ, Imπj,1(ϱ
′) ≤ −C0λT,τ , and Im πj,2(ϱ

′) ≤ −C0λT,τ ,

if ϱ′ = (x, ξ′, τ, σ) ∈ U .
Let χ ∈ S0

T,τ be as in the statement of Proposition 4.9.9 and set u = OpT(χ)v.
We recall that Qj

σ,φ = Qj
s + iQa, yielding

∥Qj
σ,φu∥

2

+
= ∥Qj

su∥
2

+ + ∥Qau∥2+ + 2Re(Qj
su, iQau)+.

We set L(u) = ∥Qj
su∥

2
++∥Qau∥2+. This is an interior differential quadratic form

in the sense of Definition 4.2.11. Its principal symbol is given by

ℓ(ϱ) = (qjs)(ϱ)
2 + qa(ϱ)

2, ϱ = (x, ξ, τ, σ).

For ε ∈ (0, 1) we write

∥Qj
σ,φu∥

2

+
≥ εL(u) + 2Re(Qj

su, iQau)+. (4.9.20)

For concision we write ϱ = (ϱ′, ξd) with ϱ′ = (x, ξ′, τ, σ). The set

L = {ϱ = (ϱ′, ξd); ϱ
′ ∈ U , ξd ∈ R, and |ξ|2 + τ 2 + σ2 = 1}

is compact recalling that W is bounded. On L one has |qjσ,φ(ϱ)| ≥ C > 0. By
homogeneity one has

|qjσ,φ(ϱ)| ≳ λ2τ , ϱ′ ∈ U , ξd ∈ R, if τ ≥ τ0σ, (4.9.21)

for some τ0 > 0. Therefore

ℓ(ϱ) ≳ λ4τ , ϱ′ ∈ U , ξd ∈ R, if τ ≥ τ0σ. (4.9.22)

By the Gårding inequality of Proposition 4.2.12 one obtains

ReL(u) ≥ C∥u∥22,τ − C ′| tr(u)|21,1/2 − CN∥v∥22,−N,τ , (4.9.23)

for τ ≥ κ0σ chosen sufficiently large.
From the proof of Lemma 4.9.13 one has

2Re(Qj
su, iQau)+ = i([Qj

s, Qa]u, u)+ + τA(u) (4.9.24)

with the boundary quadratic form A given in (4.9.16)–(4.9.17).
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On the one hand, one has [Qj
s, Qa] ∈ τD2

τ and therefore

|Re([Qj
s, Qa]u, u)+| ≲ τ∥u∥22,−1,τ ≲ τ−1∥u∥22,τ . (4.9.25)

On the other hand, we have the following lemma that provides a microlocal
positivity property for the boundary quadratic form A. A proof is given below.

Lemma 4.9.16. There exist C,CN and τ0 > 0 such that

τ ReA(u) ≥ C| tr(u)|21,1/2,τ − CN | tr(v)|21,−N,τ , for u = OpT(χ)v,

for τ ≥ max(τ0, κ0σ).

With (4.9.24)–(4.9.25), and Lemma 4.9.16 one obtains

2Re(Qj
su, iQau)+ ≥ C| tr(u)|21,1/2,τ − C ′τ−1∥u∥22,τ − CN | tr(v)|21,−N,τ

≥ C| tr(u)|21,1/2,τ − C ′τ−1∥u∥22,τ − C ′
N∥v∥

2
2,−N,τ , (4.9.26)

with a trace inequality, for τ ≥ κ0σ chosen sufficiently large.
With (4.9.20), (4.9.23), and (4.9.26) one obtains

∥Qj
σ,φu∥

2

+
≥ εC∥u∥22,τ − C ′ε| tr(u)|21,1/2 − CNε∥v∥22,−N,τ
+ C| tr(u)|21,1/2,τ − C ′τ−1∥u∥22,τ − C ′

N∥v∥
2
2,−N,τ .

With ε chosen sufficiently small and τ ≥ κ0σ sufficiently large one obtains for
any N ∈ N

∥u∥2,τ + | tr(u)|1,1/2,τ ≲ ∥Qj
σ,φu∥+ + ∥v∥2,−N,τ .

With a commutator argument, as u = OpT(χ)v one finds ∥Qj
σ,φu∥+ ≲ ∥Qj

σ,φv∥++
∥v∥2,−1,τ , yielding estimate (4.9.7) and thus concluding the proof of Proposi-
tion 4.9.9 in Case (iii).

Proof of Lemma 4.9.16. With (4.9.17) one sees that it suffices to consider the
following boundary quadratic form

Ã(w) = 2(∂dφDdw|xd=0+ , Ddw|xd=0+)∂ + 2(r̃(x,D′, dx′φ)w|xd=0+ , Ddw|xd=0+)∂

+ 2
(
r̃(x,D′, dx′φ)Ddw|xd=0+ , w|xd=0+

)
∂

− 2
(
∂dφ
(
R(x,D′) + (−1)jσ2 − (τ∂dφ)

2 − r(x, τdx′φ)
)
w|xd=0+ , w|xd=0+

)
∂
,

in place of A. It is of type (1, 0) in the sense of Definition 4.2.14. Its principal
symbol is given by a0(ϱ′, ξd, ξ′d) = (1, ξd)A(ϱ

′) t(1, ξd) with

A(ϱ′) =

(
−(∂dφ)

(
r(x, ξ′) + (−1)jσ2 − (τ∂dφ)

2 − r(x, τdx′φ)
)
|xd=0+

r̃(x, ξ′, dx′φ)|xd=0+

r̃(x, ξ′, dx′φ)|xd=0+ ∂dφ|xd=0+

)
,
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with ϱ′ = (x, ξ′, τ, σ). The associated bilinear symbol introduced in (4.2.7) is
given by

ΣA(ϱ
′, z, z′) = zA(ϱ′) tz̄′, z = (z0, z1) ∈ C2, z′ = (z′0, z

′
1) ∈ C2.

One computes

detA(ϱ′) = −
(
(∂dφ)

2
(
r(x, ξ′) + (−1)jσ2 − (τ∂dφ)

2 − r(x, τdx′φ)
)
+ r̃(x, ξ′, dx′φ)

2
)
|xd=0+

.

With Lemma 4.7.3 one sees that Imπj,2 < 0 is equivalent to having detA(ϱ′) >

0. We thus have

detA(ϱ′) ≥ C > 0, for ϱ′ = (x, ξ′, τ, σ) ∈ SU ,

with SU = {ϱ′ ∈ U ; ξd ∈ R, |ξ|2 + τ 2 + σ2 = 1} since SU is compact. Since
∂dφ|xd=0+ ≥ C ′ > 0 then one finds that

ReΣA(ϱ
′, z, z) ≥ C(|z0|2 + |z1|2), ϱ′ = (x, ξ′, τ, σ) ∈ U , |(ξ′, τ, σ)| = 1.

By homogeneity one obtains

ReΣA(ϱ
′, z, z) ≥ C(λ2T,τ |z0|2 + |z1|2), ϱ′ = (x, ξ′, τ, σ) ∈ U , |(ξ′, τ, σ)| ≥ 1.

With Proposition 4.2.16, having in mind what is exposed in Section 4.5.4 since
we have τ ≥ κ0σ here, one obtains

Re Ã(u) ≥ C| tr(u)|21,0,τ − CN | tr(v)|21,−N,τ , for u = OpT(χ)v,

for τ ≥ κ0σ chosen sufficiently large.
Here, we have Im πj,2 < 0 and thus |ξ′| ≲ τ by Lemma 4.7.6. Thus one has

τ | tr(u)|21,0,τ ≳ | tr(u)|21,1/2,τ − | tr(v)|21,−N,τ ,

by the microlocal Gårding inequality, for instance invoking Proposition 4.2.16
for a boundary quadratic form of type (1, 1/2). This concludes the proof.
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4.10 Local Carleman estimate for the fourth-order
operator

4.10.1 A first estimate

Proposition 4.10.1. Let κ′0 > κ′1 > κ1 > κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally
given by {xd > 0} and let W be a bounded open neighborhood of x0 in Rd. Let
φ be such that ∂dφ ≥ C > 0 in W and such that (Qj

σ, φ) satisfies the sub-
ellipticity condition in W for both j = 1 and 2. Let ϱ0′ = (x0, ξ0′, τ 0, σ0) with
(ξ0′, τ 0, σ0) ∈ Rd−1 × [0,+∞)× [0,+∞) nonvanishing with κ1σ0 ≤ τ 0 ≤ κ′1σ

0.
Then, there exists U a conic neighborhood of ϱ0′ in W × Rd−1 × [0,+∞)×

[0,+∞) where κ0σ ≤ τ ≤ κ′0σ such that if χ ∈ S0
T,τ , homogeneous of degree 0

in (ξ′, τ, σ) with supp(χ) ⊂ U , there exist C > 0 and τ0 > 0 such that

τ−1/2∥OpT(χ)v∥4,τ ≤ C
(
∥Pσ,φv∥+ + | tr(v)|3,1/2,τ + ∥v∥4,−1,τ

)
, (4.10.1)

for τ ≥ τ0, κ0σ ≤ τ ≤ κ′0σ, and v ∈ C
∞
c (W+).

An important aspect is that here we have σ ≳ τ ; this explains that only one
root of pσ,φ can lie on the real axis and thus only one half derivative is lost in
this estimate. The proof of Proposition 4.10.1 is based on the microlocal results
of Proposition 4.9.9.

Proof. We shall concatenate the estimates of Proposition 4.9.9 for Q1
σ,φ and Q2

σ,φ

with the boundary operator B simply given by the Dirichlet trace operator,
Bu|xd=0+ = u|xd=0+ .

One has b(x, ξ) = 1 and bφ(x, ξ
′, ξd, τ) = 1. Since ∂dφ > 0 then Im πj,1 <

0. Thus, either qj,+σ,φ(x, ξ
′, ξd, τ) = 1 or qj,+σ,φ(x, ξ

′, ξd, τ) = ξd − πj,2. With
Lemma 4.9.8 one sees that the Lopatinskĭı-Šapiro holds for (Q1

σ,φ, B, φ) and
(Q2

σ,φ, B, φ) at ϱ0′.
Proposition 4.9.9 thus applies. Let Uj be the conic neighborhood of ϱ0′

obtained invoking this proposition for Qj
σ,φ, for j = 1 or 2. In Uj one has

τ ≥ κ0σ. We set

U = U1 ∩ U2 ∩ {τ ≤ κ′0σ},

and we consider χ ∈ S0
T,τ , homogeneous of degree 0 in (ξ′, τ, σ) with supp(χ) ⊂

U .
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Since in U one has σ > 0 then π1,2 and π2,2 cannot be both real by
Lemma 4.7.7. Proposition 4.9.9 thus implies that we necessarily have the fol-
lowing two estimates

τ−ℓ1∥OpT(χ)w∥2,τ ≲ ∥Q1
σ,φw∥+ + |w|xd=0+|3/2,τ + ∥w∥2,−1,τ , (4.10.2)

and

τ−ℓ2∥OpT(χ)w∥2,τ ≲ ∥Q2
σ,φw∥+ + |w|3/2,τ + ∥w∥2,−1,τ , (4.10.3)

with either (ℓ1, ℓ2) = (1/2, 0) or (ℓ1, ℓ2) = (0, 1/2), for w ∈ C
∞
c (W+) and

τ ≥ κ0σ chosen sufficiently large.

Let us assume that (ℓ1, ℓ2) = (1/2, 0). The other case can be treated simi-
larly. Writing Pσ,φ = Q2

σ,φQ
1
σ,φ, with (4.10.3) one has

∥OpT(χ)Q
1
σ,φv∥2,τ ≲ ∥Pσ,φv∥+ + |Q1

σ,φv|xd=0+|3/2,τ + ∥v∥4,−1,τ

≲ ∥Pσ,φv∥+ + | tr(v)|2,3/2,τ + ∥v∥4,−1,τ .

Since [OpT(χ), Q
1
σ,φ] ∈ Ψ1,0

τ one finds

∥Q1
σ,φOpT(χ)v∥2,τ ≲ ∥Pσ,φv∥+ + | tr(v)|3,1/2,τ + ∥v∥4,−1,τ . (4.10.4)

For k = 0, 1 or 2, one writes

∥Q1
σ,φOpT(χ)D

k
dΛ

2−k
T,τ v∥++| tr(OpT(χ)D

k
dΛ

2−k
T,τ v)|1,1/2,τ+∥OpT(χ)D

k
dΛ

2−k
T,τ v∥2,−1,τ

≲ ∥Q1
σ,φOpT(χ)v∥2,τ + | tr(v)|3,1/2,τ + ∥v∥4,−1,τ ,

since [Q1
σ,φOpT(χ), D

k
dΛ

2−k
T,τ ] ∈ Ψ4,−1

τ .
Let χ̃ ∈ S0

T,τ be homogeneous of degree zero in the variable (ξ′, τ, σ) and
be such that supp(χ̃) ⊂ U and χ̃ ≡ 1 on a neighborhood of supp(χ). With
(4.10.2), from (4.10.4) one thus obtains

τ−1/2∥OpT(χ̃)OpT(χ)D
k
dΛ

2−k
T,τ v∥2,τ ≲ ∥Pσ,φv∥+ + | tr(v)|3,1/2,τ + ∥v∥4,−1,τ .

Since OpT(χ̃)OpT(χ)D
k
dΛ

2−k
T,τ = Λ2−k

T,τ D
k
dOpT(χ) mod Ψ2,−1

τ one deduces

τ−1/2∥Dk
dOpT(χ)v∥2,2−k,τ ≲ ∥Pσ,φv∥+ + | tr(v)|3,1/2,τ + ∥v∥4,−1,τ .

Using that k = 0, 1 or 2, the result follows.

Consequence of this microlocal result is the following local result by means
of a patching procedure as for the proof of Proposition 4.8.1 in Section 4.8.2.
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Proposition 4.10.2. Let κ′0 > κ0 > 0. Let x0 ∈ ∂Ω, with Ω locally given by
{xd > 0} and let W be a bounded open neighborhood of x0 in Rd. Let φ be
such that ∂dφ ≥ C > 0 in W and such that (Qj

σ, φ) satisfies the sub-ellipticity
condition in W for both j = 1 and 2.

Then, there exists W 0 a neighborhood of x0, C > 0, τ0 > 0 such that

τ−1/2∥v∥4,τ ≤ C
(
∥Pσ,φv∥+ + | tr(v)|3,1/2,τ

)
, (4.10.5)

for τ ≥ τ0, κ0σ ≤ τ ≤ κ′0σ, and v ∈ C
∞
c (W+).

4.10.2 Final estimate

Combining the local results of Section 4.8 for the estimation of the boundary
norm under the Lopatinskĭı-Šapiro condition and the previous local result with-
out any prescribed boundary condition we obtain the Carleman estimate of
Theorem 1.8.1. For a precise statement we write the following theorem.

Theorem 4.10.3 (local Carleman estimate for Pσ). Let κ′0 > κ0 > 0. Let
x0 ∈ ∂Ω, with Ω locally given by {xd > 0} and let W be a bounded open
neighborhood of x0 in Rd. Let φ be such that ∂dφ ≥ C > 0 in W and such that
(Qj

σ, φ) satisfies the sub-ellipticity condition in W for both j = 1 and 2.
Assume that (Pσ, B1, B2, φ) satisfies the Lopatinskĭı-Šapiro condition of Def-

inition 4.7.1 at ϱ′ = (x0, ξ′, τ, σ) for all (ξ′, τ, σ) ∈ Rd−1 × [0,+∞) × [0,+∞)

such that τ ≥ κ0σ.
Then, there exists W 0 a neighborhood of x0, C > 0, τ0 > 0 such that

τ−1/2∥eτφu∥4,τ + | tr(eτφu)|3,1/2,τ ≤ C
(
∥eτφPσu∥+ +

2∑
j=1

|eτφBju|xd=0+|7/2−kj ,τ
)
,

(4.10.6)

for τ ≥ τ0, κ0σ ≤ τ ≤ κ′0σ, and u ∈ C
∞
c (W 0

+).

The notation of the function space C
∞
c (W 0

+) is introduced in (4.5.3).
For the application of this theorem, one has to design a weight function

that yields the two important properties: sub-ellipticity and the Lopatinskĭı-
Šapiro condition. Sub-ellipticity is obtained by means of Proposition 4.9.3; the
Lopatinskĭı-Šapiro condition by means of Proposition 4.7.2.

Proof of Theorem 4.10.3. Let v ∈ C
∞
c (W+). The assumption of the theorem al-

lows one to invoke both Propositions 4.8.1 and 4.10.2. With the first proposition
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one has

| tr(v)|3,1/2,τ ≲ ∥Pσ,φv∥+ +
2∑
j=1

|Bj,φv|xd=0+|7/2−kj ,τ + ∥v∥4,−1,τ , (4.10.7)

for σ ≥ 0, τ ≥ max(τ1, κ0σ) for some τ1 > 0. With the second proposition one
has

τ−1/2∥v∥4,τ ≲ ∥Pσ,φv∥+ + | tr(v)|3,1/2,τ , (4.10.8)

for τ ≥ τ ′1 and κ0σ ≤ τ ≤ κ′0σ for some τ ′1 > 0.

Consider σ > 0 and τ ≥ max(τ1, τ
′
1) such that κ0σ ≤ τ ≤ κ′0σ. Combined

together (4.10.7) and (4.10.8) yield

τ−1/2∥v∥4,τ + | tr(v)|3,1/2,τ ≲ ∥Pσ,φv∥+ +
2∑
j=1

|Bj,φv|xd=0+|7/2−kj ,τ + ∥v∥4,−1,τ .

Since ∥v∥4,−1,τ ≪ τ−1/2∥v∥4,τ for τ large one obtains

τ−1/2∥v∥4,τ + | tr(v)|3,1/2,τ ≲ ∥Pσ,φv∥+ +
2∑
j=1

|Bj,φv|xd=0+ |7/2−kj ,τ .

If we set v = eτφu then the conclusion follows.

4.11 Global Carleman estimate and observability

Using the local Carleman estimate of Theorem 4.10.3 we prove a global version
of this estimate. This allows us to obtain an observability inequality with ob-
servation in some open subset O of Ω. In turn in Section 4.13 we use this latter
inequality to obtain a resolvent estimate for the plate semigroup generator that
allows one to deduce a stabilization result for the damped plate equation.

4.11.1 A global Carleman estimate

Assume that the Lopatinskĭı-Šapiro condition of Definition 4.6.1 holds for (P0, B1, B2)

on ∂Ω.
Let O0,O1,O be open sets such that O0 ⋐ O1 ⋐ O ⋐ Ω. With Proposi-

tion 3.31 and Remark 3.32 in [62] there exists ψ ∈ C ∞(Ω) such that

i. ψ = 0 and ∂νψ < −C0 < 0 on ∂Ω;

ii. ψ > 0 in Ω;
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iii. dψ ̸= 0 in Ω \ O0.

Then, by Proposition 4.9.3, for γ chosen sufficiently large, one finds that φ =

exp(γψ) is such that a

i. φ = 1 and ∂νφ < −C0 < 0 on ∂Ω;

ii. φ > 1 in Ω;

iii. (Qj
σ, φ) satisfies the sub-ellipticity condition in Ω \ O0, for j = 1, 2, for

τ ≥ τ0σ for τ0 chosen sufficiently large.

Then, with Proposition 4.7.2, for κ0 > 0 chosen sufficiently large one finds that
the Lopatinskĭı-Šapiro condition holds for (Pσ, B1, B2, φ) at any (x, ξ′, τ, σ) for
any x ∈ ∂Ω, ξ′ ∈ T ∗

x∂Ω ≃ Rd−1, τ > 0, and σ > 0 such that τ ≥ κ0σ, for κ0
chosen sufficiently large, using that ∂Ω is compact.

Thus for any x ∈ ∂Ω the local estimate of Theorem 4.10.3 applies. A similar
result applies in the neighborhood of any point of Ω \ O0.

With the weight function φ constructed above, following the patching pro-
cedure described in the proof of Theorem 3.34 in [62], one obtains the following
global estimate

τ−1/2∥eτφu∥4,τ + | tr(eτφu)|3,1/2,τ ≲ ∥eτφPσu∥L2(Ω) +
2∑
j=1

|eτφBju|∂Ω|7/2−kj ,τ + τ−1/2∥eτφχ0u∥4,τ ,

(4.11.1)

for τ ≥ τ0, κ0σ ≤ τ ≤ κ′0σ, and u ∈ C ∞(Ω), and where χ0 ∈ C ∞
c (O) such that

χ0 ≡ 1 in a neighborhood of O1. Here, ∥.∥s,τ and |.|s,τ , the Sobolev norms with
the large parameter τ , are understood in Ω and ∂Ω respectively.

Remark 4.11.1. Observe that inequality (4.11.1) also holds for third-order
perturbations of Pσ. Below, we shall use it for a second-order perturbation
Pσ − iσ2α = ∆2 − σ4 − iσ2α.

4.11.2 Observability inequality

By density one finds that inequality 4.11.1 holds for u ∈ H4(Ω).
Let C0 > supΩ φ− 1. Since 1 ≤ φ ≤ supΩ φ one obtains

∥u∥H4(Ω) ≲ eC0τ
(
∥Pσu∥L2(Ω) +

2∑
j=1

|Bju|∂Ω|H7/2−kj (∂Ω)
+ ∥u∥H4(O1)

)
. (4.11.2)

for τ ≥ τ0, κ0σ ≤ τ ≤ κ′0σ.
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With the ellipticity of P0 one has

∥u∥H4(O1)
≲ ∥P0u∥L2(O) + ∥u∥L2(O),

since O1 ⋐ O. This can be proven by the introduction of a parametrics for P0.
One thus obtain

∥u∥H4(O1)
≲ ∥Pσu∥L2(Ω) + (1 + σ4)∥u∥L2(O),

and thus with (4.11.2) one obtains the following observability result.

Theorem 4.11.2 (observability inequality). Let Pσ = ∆2 − σ4 and let B1 and
B2 be two boundary operators of order k1 and k2 as given in Section 4.6.2.
Assume that the Lopatinskĭı-Šapiro condition of Definition 4.6.1 holds. Let O

be an open set of Ω. There exists C > 0 such that

∥u∥H4(Ω) ≤ CeC|σ|1/2(∥Pσu∥L2(Ω) +
2∑
j=1

|Bju|∂Ω|H7/2−kj (∂Ω)
+ ∥u∥L2(O)

)
,

for u ∈ H4(Ω).

Remark 4.11.3. With Remark 4.11.1 the result of Theorem 4.11.2 hold for
Pσ = ∆2 − σ4 replaced by Pσ − iσ2α = ∆2 − σ4 − iσ2α.

4.12 Solutions to the damped plate equations

Here, we review some aspects of the solutions of the damped plate equation :
∂2t y + Py + α(x)∂ty = 0 (t, x) ∈ R+ × Ω,

B1y|R+×∂Ω = B2u|R+×∂Ω = 0,

y|t=0 = y0, ∂ty|t=0 = y1,

(4.12.1)

where P = ∆2 and α ≥ 0, positive on some open subset of Ω. The boundary
operators B1 and B2 of orders kj, j = 1, 2, less than or equal to 3 in the normal
direction are chosen so that

(i) the Lopatinskĭı-Šapiro condition of Definition 4.6.1 is fulfilled for (P,B1, B2)

on ∂Ω;

(ii) the operator P is symmetric under homogeneous boundary conditions,
that is,

(Pu, v)L2(Ω) = (u, Pv)L2(Ω), (4.12.2)
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for u, v ∈ H4(Ω) such that Bju|∂Ω = Bjv|∂Ω = 0 on ∂Ω, j = 1, 2. Examples
of such conditions are given in Section 4.6.5.

With the assumed Lopatinskĭı-Šapiro condition the operator

L : H4(Ω) → L2(Ω)⊕H7/2−k1(∂Ω)⊕H7/2−k2(∂Ω),

u 7→ (Pu,B1u|∂Ω, B2u|∂Ω), (4.12.3)

is Fredholm.

(iii) We shall further assume that the Fredholm index of the operator L is zero.

The previous symmetry property gives (Pu, u)L2(Ω) ∈ R. We further assume
the following nonnegativity property:

(iv) For u ∈ H4(Ω) such that Bju|∂Ω = 0 on ∂Ω, j = 1, 2 one has

(Pu, u)L2(Ω) ≥ 0. (4.12.4)

This last property is very natural to define a nonnegative energy for the plate
equation given in (4.12.1).

We first review some properties of the unbounded operator associated with
the bi-Laplace operator and the two homogeneous boundary conditions based
on the assumptions made here. Second, the well-posedness of the plate equation
is reviewed by means of the a semigroup formulation. This semigroup formalism
is also central in the stabilization result in Sections 4.13.1–4.13.2.

4.12.1 The unbounded operator associated with the bi-
Laplace operator

Associated with P and the boundary operators B1 and B2 is the operator
(P0, D(P0)) on L2(Ω), with domain

D(P0) =
{
u ∈ L2(Ω); Pu ∈ L2(Ω), B1u|∂Ω = B2u|∂Ω = 0

}
,

and given by P0u = Pu ∈ L2(Ω) for u ∈ D(P0). The definition of D(P0) makes
sense since having Pu ∈ L2(Ω) for u ∈ L2(Ω) implies that the traces ∂kνu|∂Ω are
well defined for k = 0, 1, 2, 3.

Since the Lopatinskĭı-Šapiro condition holds on ∂Ω one has D(P0) ⊂ H4(Ω)

(see for instance Theorem 20.1.7 in [44]) and thus one can also write D(P0) as
in (1.8.2). From the assumed nonnegativity in (4.12.4) above one finds that
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P0 + id is injective. Since the operator

L′ : H4(Ω) → L2(Ω)⊕H7/2−k1(∂Ω)⊕H7/2−k2(∂Ω)

u 7→ (Pu+ u,B1u|∂Ω, B2u|∂Ω)

is Fredholm and has the same zero index as L defined in (4.12.3), one finds
that L′ is surjective. Thus Ran(P0 + Id) = L2(Ω). One thus concludes that P0

is maximal monotone. From the assumed symmetry property (4.12.2) and one
finds that P0 is selfadjoint, using that a symmetric maximal monotone operator
is selfadjoint (see for instance Proposition 7.6 in [15]).

The resolvent of P0 + Id being compact on L2(Ω), P0 has a sequence of
eigenvalues with finite multiplicities. With the assumed nonnegativity (4.12.4)
they take the form of a sequence

0 ≤ µ0 ≤ µ1 ≤ · · · ≤ µk ≤ · · ·

that grows to +∞. Associated with this sequence is (φj)j∈N a Hilbert basis of
L2(Ω). Any u ∈ L2(Ω) reads u =

∑
j∈N ujφj, with uj = (u, φj)L2(Ω). We define

the Sobolev-like scale

Hk
B(Ω) = {u ∈ L2(Ω); (µ

k/4
j uj)j ∈ ℓ2(C)} for k ≥ 0. (4.12.5)

One has D(P0) = H4
B(Ω) and L2(Ω) = H0

B(Ω). Each Hk
B(Ω), k ≥ 0, is equipped

with the inner product and norm

(u, v)Hk
B(Ω) =

∑
j∈N

(1 + µj)
k/2ujvj. ∥u∥2Hk

B(Ω) =
∑
j∈N

(1 + µj)
k/2|uj|2,

yielding a Hilbert space structure. The space Hk
B(Ω) is dense in Hk′

B (Ω) if
0 ≤ k′ ≤ k and the injection is compact. Note that one uses (1+µj)k/2 in place
of µk/2j since ker(P0) may not be trivial. Note that if k = 0 one recovers the
standard L2-inner product and norm.

Using L2(Ω) as a pivot space, for k > 0 we also define the space H−k
B (Ω) as

the dual space of Hk
B(Ω). One finds that any u ∈ H−k

B (Ω) takes the form of the
following limit of L2-functions

u = lim
ℓ→∞

ℓ∑
j=0

ujφj,

for some (uj)j ⊂ C such that
(
(1+µj)

−k/4uj
)
j
∈ ℓ2(C), with the limit occurring

in
(
Hk
B(Ω)

)′ with the natural dual strong topology. Moreover, one has uj =

⟨u, φj⟩H−k
B ,Hk

B
. If u =

∑
j∈N ujφj ∈ H−k

B (Ω) and v =
∑

j∈N vjφj ∈ Hk
B(Ω) one
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finds

⟨u, v⟩H−k
B ,Hk

B
=
∑
j∈N

ujvj.

One can then extend (or restrict) the action of P0 on any space Hk
B(Ω),

k ∈ R. One has P0 : H
k
B(Ω) → Hk−4

B (Ω) continuously with

P0u =
∑
j∈N

µjujφj, with convergence in Hk−4
B (Ω) for u =

∑
j∈N

ujφj ∈ Hk
B(Ω).

(4.12.6)

In particular, for u ∈ H4
B(Ω) = D(P0) and v ∈ H2

B(Ω) one has

(P0u, v)L2(Ω) = ⟨P0u, v̄⟩H−2
B ,H2

B
=
∑
j∈N

µjujvj (4.12.7)

and if u, v ∈ H2
B(Ω) one has

(u, v)H2
B(Ω) = (u, v)L2(Ω) + ⟨P0u, v̄⟩H−2

B ,H2
B
=
∑
j∈N

(1 + µj)ujvj. (4.12.8)

Note that

⟨P0u, v̄⟩H−2
B ,H2

B
= (P

1/2
0 u,P

1/2
0 v)L2(Ω), (4.12.9)

with the operator P
1/2
0 easily defined by means of the Hilbert basis (φj)j∈N. In

fact, H2
B(Ω) is the domain of P1/2

0 viewed as un unbounded operator on L2(Ω).
We make the following observations.

i. If ker(P0) = {0} then

(u, v) 7→ ⟨P0u, ū⟩H−2
B ,H2

B
,

is also an inner-product on H2
B(Ω), that yields an equivalent norm.

ii. If 0 is an eigenvalue, that is, dim ker(P0) = n ≥ 1 then (φ0, . . . , φn−1) is
a orthonormal basis of ker(P0) for the L2-inner product. From a classical
unique continuation property, since α(x) > 0 for x in an open subset of Ω
one sees that

(u, v) 7→ (αu, v)L2(Ω) (4.12.10)
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is also an inner product on the finite dimensional space ker(P0) ⊂ L2(Ω).
We introduce a second basis (φ0, . . . , φn−1) of ker(P0) orthonormal with
respect to this second inner product.

In what follows, we treat the more difficult case where dim ker(P0) = n ≥ 1.

4.12.2 The plate semigroup generator

Set H = H2
B(Ω)⊕ L2(Ω) with natural inner product and norm(
(u0, u1), (v0, v1)

)
H = (u0, v0)H2

B(Ω) + (u1, v1)L2(Ω), (4.12.11)∥∥(u0, u1)∥∥2H = ∥u0∥2H2
B(Ω) + ∥u1∥2L2(Ω). (4.12.12)

Define the unbounded operator

A =

(
0 −1

P0 α(x)

)
, (4.12.13)

on H with domain given by D(A) = D(P0)⊕H2
B(Ω). This domain is dense in

H and A is a closed operator. One has

N = ker(A) =
{
t(u0, 0); u0 ∈ ker(P0)

}
.

The important result of this section is the following proposition.

Proposition 4.12.1. The operator (A,D(A)) generates a bounded semigroup
S(t) = e−tA on H.

The understanding of this generator property relies on the introduction of
a reduced function space associated with ker(P0), following for instance the
analysis of [61]. It will be also important in the derivation of a precise resolvent
estimate in Section 4.13.1. If ker(P0) = {0}, that is, µ0 > 0, this procedure is
not necessary. For v ∈ ker(P0), v ̸= 0, we introduce the linear form

Fv : H → C (4.12.14)

(u0, u1) 7→ (αv, v)−1
L2(Ω)

(
(αu0, v)L2(Ω) + (u1, v)L2(Ω)

)
,

We set

Ḣ =
⋂

v∈ker(P0)
v ̸=0

ker(Fv) =
⋂

0≤j≤n−1

ker(Fφj
), (4.12.15)

with the basis (φ0, . . . , φn−1) of ker(P0) introduced above. If (v, 0) ∈ ker(A),
with 0 ̸= v ∈ ker(P0), note that Fv(v, 0) = 1. We set Θj = t(φj, 0), j =
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0, . . . , n− 1 and

ΠNV =
n−1∑
j=0

Fφj
(V )Θj, for V ∈ H,

and ΠḢ = idH −ΠN . We obtain that ΠN and ΠḢ are continuous projectors
associated with the direct sum

H = Ḣ ⊕ N and Ḣ = ker(ΠN ). (4.12.16)

Note that Ḣ and N are not orthogonal in H. Yet, it is important to note the
following result.

Lemma 4.12.2. We have Ran(A) ⊂ Ḣ.

Proof. Let U = t(u0, u1) = AV with V = t(v0, v1) ∈ D(A). One has u0 =

−v1 ∈ H2
B(Ω) and u1 = P0v

0 + αv1 ∈ L2(Ω). If 0 ̸= φ ∈ ker(P0) one writes

(αφ, φ)L2(Ω)Fφ(U) = (−αv1, φ)L2(Ω) + (P0v
0 + αv1, φ)L2(Ω)

= (P0v
0, φ)L2(Ω) = (v0,P0φ)L2(Ω) = 0.

using that v0, φ ∈ D(P0), that (P0, D(P0)) is selfadjoint, and that φ ∈ ker(P0).
The conclusion follows from the definition of Ḣ in (4.12.15).

The space Ḣ inherits the natural inner product and norm of H given in
(4.12.11). Yet one finds that the inner product

((u0, u1), (v0, v1))Ḣ = ⟨P0u
0, v0⟩H−2

B ,H2
B
+ (u1, v1)L2(Ω), (4.12.17)

and associated norm

∥(u0, u1)∥2Ḣ = ⟨P0u
0, u0⟩H−2

B ,H2
B
+ ∥u1∥2L2(Ω), (4.12.18)

yields an equivalent norm on Ḣ by a Poincaré-like argument.
We introduce the unbounded operator Ȧ on Ḣ given by the domain D(Ȧ) =

D(A) ∩ Ḣ and such that ȦV = AV for V ∈ D(Ȧ). We then have A = Ȧ ◦ ΠḢ.
Observe that D(Ȧ) = ΠḢ

(
D(A)

)
since N = ker(A) ⊂ D(A). Thus, one has

D(A) = D(Ȧ)⊕N . (4.12.19)

As for the decomposition of H given in (4.12.16) note that D(Ȧ) and N are not
orthogonal.
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Lemma 4.12.3. Let z ∈ C be such that Re z < 0. We have

∥(zIdḢ − Ȧ)U∥Ḣ ≥ |Re z| ∥U∥Ḣ, U ∈ D(Ȧ).

The proof of this lemma is quite classical. It is given in Appendix 6.2.
With the previous lemma, with the Hille-Yosida theorem one proves the

following result.

Lemma 4.12.4. The operator (Ȧ,D(Ȧ)) generates a semigroup of contraction
Ṡ(t) = e−tȦ on Ḣ.

If we set

S(t) = Ṡ(t) ◦ ΠḢ +ΠN , (4.12.20)

we find that S(t) is a semigroup on H generated by (A,D(A)), thus proving
Proposition 4.12.1. If Y 0 ∈ D(A), the solution of the semigroup equation
d
dt
Y (t) + AY (t) = 0 reads

Y (t) = S(t)Y 0 = Ṡ(t) ◦ ΠḢY
0 +ΠNY

0. (4.12.21)

We set Ẏ (t) = ΠḢY (t) = Ṡ(t) ◦ ΠḢY
0.

The adjoint of Ȧ has domain D(Ȧ∗) = D(A) and is given by

Ȧ∗ =

(
0 1

−P0 α(x)

)
.

Similarly to Lemma 4.12.3 one has the following result with a similar proof.

Lemma 4.12.5. Let z ∈ C be such that Re z < 0. We have

∥(zIdḢ − Ȧ∗)U∥Ḣ ≥ |Re z| ∥U∥Ḣ, U ∈ D(Ȧ∗) = D(Ȧ).

4.12.3 Strong and weak solutions to the damped plate
equation

For y(t) a solution to the damped plate equation (4.12.1) one has Y (t) =
t(y(t), ∂ty(t)) formally solution to d

dt
Y (t) + AY (t) = 0 and conversely.

The semigroup S(t) generated by A as given by Proposition 4.12.1 allows
one to go beyond this formal observation and one obtains the following well-
posedness result for strong solutions of the damped plate equation.
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Proposition 4.12.6 (strong solutions of the damped plate equation). For
(y0, y1) ∈ H4

B(Ω)×H2
B(Ω) there exists a unique

y ∈ C 0
(
[0,+∞);H4

B(Ω)
)
∩ C 1

(
[0,+∞);H2

B(Ω)
)
∩ C 2

(
[0,+∞);L2(Ω)

)
such that

∂2t y + Py + α∂ty = 0 in L∞([0,+∞);L2(Ω)), y|t=0 = y0, ∂ty|t=0 = y1.

(4.12.22)

Moreover, there exists C > 0 such that

∥y(t)∥H4
B(Ω) + ∥∂ty(t)∥H2

B(Ω) ≤ C
(
∥y0∥H4

B(Ω) + ∥y1∥H2
B(Ω)

)
, t ≥ 0.

(4.12.23)

With Y (t) as above, for such a solution y(t) one has

d

dt
Y (t) + AY (t) = 0, Y (0) = Y 0 = t(y0, y1),

that is,

Y (t) = S(t)Y 0 ∈ C 0
(
[0,+∞);D(A)

)
∩ C 1

(
[0,+∞);H2

B(Ω)⊕ L2(Ω)
)
.

A weak solution to the damped plate equation is simply associated with
an initial data (y0, y1) ∈ H2

B(Ω) × L2(Ω) and given by the first coordinate of
Y (t) = S(t)Y 0. Then one has

Y (t) ∈ C 0
(
[0,+∞);H

)
∩ C 1

(
[0,+∞);L2(Ω)⊕H−2

B (Ω)
)
.

or equivalently

y ∈ C 0
(
[0,+∞);H2

B(Ω)
)
∩ C 1

(
[0,+∞);L2(Ω)

)
∩ C 2

(
[0,+∞);H−2

B (Ω)
)
.

For a strong solution, the natural energy is given by

E(y)(t) = 1

2

(
∥∂ty(t)∥2L2(Ω) + (P0y(t), y(t))L2(Ω)

)
. (4.12.24)

Observe that if y0 ∈ ker(P0) then y(t) = y0 is solution to (4.12.1) with y1 = 0.
This is consistent with the form of the semigroup S(t) given in (4.12.20). Such a
solution is independent of the evolution variable t, and thus, despite damping,
there is no decay. However, note that such a solution is ‘invisible’ for the
energy defined in (4.12.24). In fact, for a strong solution to (4.12.1) as given by
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Proposition 4.12.6 one has

E(y)(t) = 1

2
∥Ẏ (t)∥2Ḣ, (4.12.25)

with Ẏ (t) as defined below (4.12.21) and ∥.∥Ḣ defined in (4.12.18). For a strong
solution, we write

d

dt
E(y)(t) = Re(∂ty(t), ∂

2
t y(t))L2(Ω) +

1

2
⟨P0∂ty(t), y(t)⟩H−2

B ,H2
B
+

1

2
(P0y(t), ∂ty(t))L2(Ω)

= Re(∂ty(t), (∂
2
t + P0)y(t))L2(Ω) = −Re(∂ty(t), α∂ty(t))L2(Ω) ≤ 0

since α ≥ 0. Thus, the energy of a strong solution is nonincreasing. To under-
stand the decay of the energy one has to focus on the properties of the semigroup
Ṡ(t) and its generator (Ȧ,D(Ȧ)) on Ḣ. This is done in Section 4.13.1.

For a weak solution y(t) ∈ C 0
(
[0,+∞);H2

B(Ω)
)
∩ C 1

(
[0,+∞);L2(Ω)

)
the

energy is defined by

E(y)(t) = 1

2

(
∥∂ty(t)∥2L2(Ω) + ⟨P0y(t), y(t)⟩H−2

B ,H2
B

)
that coincides with (4.12.24) for a strong solution. The stabilization result we
are interested in only concerns strong solutions (see Section 4.13.2). Thus, we
shall not mention weak solutions in what follows.

4.13 Resolvent estimates and applications to sta-
bilization

Here we use the observability inequality of Theorem 4.11.2 to obtain a resolvent
estimate for the plate semigroup generator that allows one to deduce a stabiliza-
tion result for the damped plate equation. This a sequence of argument comes
from the seminal works of Lebeau [59] and Lebeau-Robbiano [61].

4.13.1 Resolvent estimate

We prove a resolvent estimate for the unbounded operator (Ȧ,D(Ȧ)) that acts
on Ḣ. First, we establish that {Re z ≤ 0} lies in the resolvent set of Ȧ.

Proposition 4.13.1. The spectrum of (Ȧ,D(Ȧ)) is contained in {z ∈ C; Re(z) >
0}.

The proof of this proposition is rather classical based on a unique continua-
tion argument and a Fredholm index argument for a compact perturbation. It
is given in Appendix 6.3.
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Theorem 4.13.2. Let O be an open subset of Ω such that α ≥ δ > 0 on O.
Then, for σ ∈ R the unbounded operator iσId − Ȧ is invertible on Ḣ and for
there exist C > 0 such that

∥(iσId − Ȧ)−1∥L(Ḣ) ≤ CeC|σ|1/2 , σ ∈ R. (4.13.1)

Proof. By Proposition 4.13.1 iσId− Ȧ is indeed invertible. Observe that it then
suffices to prove the resolvent estimate (4.13.1) for |σ| ≥ σ0 for some σ0 > 0.

Let U = t(u0, u1) ∈ D(Ȧ) and F = t(f 0, f 1) ∈ Ḣ be such that (iσId−Ȧ)U =

F . This reads

f 0 = iσu0 + u1, f 1 = −P0u
0 + (iσ − α)u1.

which gives
(P0 − σ2 − iσα)u0 = f

with f = (iσ − α)f 0 − f 1. Computing the L2-inner product with u0 one finds

((P0 − σ2)u0, u0)L2(Ω) − iσ(αu0, u0)L2(Ω) = (f, u0)L2(Ω).

As α ≥ 0, computing the imaginary part one obtains

σ∥α1/2u0∥2L2(Ω) = − Im(f, u0)L2(Ω).

Since α ≥ δ > 0 in O by assumption and since we consider |σ| ≥ σ0 one has

δσ0∥u0∥2L2(O) ≤ ∥f∥L2(Ω)∥u
0∥L2(Ω).

Applying Theorem 4.11.2 (with Remark 4.11.3) one has

∥u0∥H4(Ω) ≲ eC|σ|1/2(∥f∥L2(Ω) + ∥u0∥L2(O)

)
.

Thus, we obtain

∥u0∥H4(Ω) ≲ eC|σ|1/2(∥f∥L2(Ω) + ∥f∥1/2L2(Ω)∥u
0∥1/2L2(Ω)

)
,

for |σ| ≥ σ0. With Young inequality we write, for ε > 0,

eC|σ|1/2∥f∥1/2L2(Ω)∥u
0∥1/2L2(Ω) ≲ ε−1e2C|σ|1/2∥f∥L2(Ω) + ε∥u0∥L2(Ω).

Thus, with ε chosen sufficiently small one obtains

∥u0∥H4(Ω) ≲ eC|σ|1/2∥f∥L2(Ω).
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Since u1 = f 0 − iσu0 and f = (iσ − α)f 0 − f 1 we finally obtain that

∥u0∥H4(Ω) + ∥u1∥L2(Ω) ≲ eC|σ|1/2(∥f 0∥L2(Ω) + ∥f 1∥L2(Ω)

)
≲ eC|σ|1/2∥F∥Ḣ.

Since u0 ∈ H4(Ω) one has∣∣(P0u
0, u0)L2(Ω)

∣∣ ≤ ∥u0∥H4(Ω)∥u
0∥L2(Ω) ≤ ∥u0∥2H4(Ω)

and thus one finally obtains

∥U∥2Ḣ = (P0u
0, u0)L2(Ω) + ∥u1∥L2(Ω) ≲ eC|σ|1/2∥F∥Ḣ,

which concludes the proof of the resolvent estimate (4.13.1).

4.13.2 Stabilization result

As an application of the resolvent estimate of Theorem 4.13.2, we give a loga-
rithmic stabilization result of the damped plate equation (4.5.1).

For the plate generator (A,D(A)) its iterated domains are inductively given
by

D(An+1) = {U ∈ D(An);AU ∈ D(An)}.

With Proposition 4.12.6, for Y 0 = t(y0, y1) ∈ D(An) then the first component
of Y (t) = S(t)Y 0 is precisely the solution to (4.12.1). One has Y (t) = Ẏ (t) +

ΠNY
0 with Ẏ (t) = Ṡ(t)ΠḢY

0 with the semigroup Ṡ(t) defined in Section 4.12.2.
Moreover, by (4.12.25) the energy of y(t) is given by the square of the Ḣ-norm
of Ẏ (t).

With the resolvent estimate of Theorem 4.13.2, with the result of Theorem
1.5 in [10] one obtains the following bound for the energy of y(t):

E(y)(t) = ∥Ẏ (t)∥2Ḣ ≤ C(
log(2 + t)

)4n∥AnY 0∥Ḣ. (4.13.2)

We have thus obtain the following theorem.

Theorem 4.13.3 (logarithmic stabilisation for the damped plate equation).
Assume that conditions (i) to (iv) of Section 4.12 hold. Let n ∈ N, n ≥ 1. Then,
there exists C > 0 such that for any Y 0 = t(y0, y1) ∈ D(An) the associated
solution y(t) of the damped plate equation (4.5.1) has the logarithmic energy
decay given by (4.13.2).
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Note that for n = 1 using the form of A and (4.12.9) one recovers the
statement of Theorem 1.8.2 .
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5. Perspectives

5.1 Fučik spectrum

As an extension of the results of Part A, we are interested of investigating the
Fučik spectrum of the (p, 2)-Lapalcian. The Fučik spectrum was introduced by
S. Fučik [22] and N. Dancer [27] in the 70’s. For the Laplacian it is defined
as the set Σ ⊂ R × R of the points (α, β) for which there exists a nontrivial
solution of the problem−∆u = αu+ − βu− in Ω

Bu = 0 on ∂Ω
(5.1.1)

where Ω is a bounded domain in RN(N ≥ 2), Bu stands for the considered
boundary conditions and u± = max{±u, 0}.
We aim to investigate the set of pairs (α, β) ∈ R× R such that−∆pu−∆u = αu+ − βu− in Ω

u = 0 on ∂Ω
(5.1.2)

has nontrivial solution, with p ∈ (1,∞) \ {2}. We clearly see that if α = β we
recover the case of equation (3.4.3).
We expect solutions branches of (5.1.2) to bifurcate from the Fučik eigenvalues
of (5.1.1).
Next, our goal is to study the Fučik spectrum of the following problem−∆pu−∆u = αm(x)u+ − βn(x)u− in Ω

u = 0 on ∂Ω
(5.1.3)

where m and n are positive bounded weights for p ∈ (1,∞) \ {2}.

5.2 Controllability and stablization

On a bounded regular open set of Rd if given a positive fourth-order elliptic
operator P (or on a Riemannian manifold (M, g) with P = ∆2

g), one can
consider the following controlled parabolic equation

∂tu+ Pu = 1ωv for t ≥ 0, B1u|[0,∞) = 0, B2u|[0,∞) = 0, u|t=0 = u0 ∈ L2(Ω).

(5.2.1)
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Here, ω is a nonempty open subset of ω, B1 and B2 are boundary operators cho-
sen that satisfies the Lopatinskĭı-Šapiro condition. The function v is the control
and lies in L2((0,∞)× Ω). It only acts on the solution u in ω. The question of
null controllability for this controlled parabolic equation is the following:

For a given initial data u0 ∈ L2(Ω), for a given time T > 0, can one find
v ∈ L2((0, T )× Ω) such u(T ) = 0.

The answer to this question rely on the derivation of a spectral inequality. If
the boundary operators B1 and B2 are well chosen, the bi-Laplace operator ∆2

g

can be selfadjoint on L2(Ω); see Section 4.12.1. Associated with the operator
is then a Hilbert basis (φj)j∈N of L2(ω). In the case of “clamped” boundary
condition the following spectral inequality was proven in [82].

Theorem 5.2.1. (Spectral inequality for the “clamped” bi-Laplace operator).
Let ω be an open subset of Ω. There exists C > 0 such that

∥u∥L2(Ω) ≤ CeCµ
1/4∥u∥L2(ω), µ > 0, u ∈ Span{φj; µj ≤ µ}.

The proof of this theorem is based on a Carleman inequality for the fourth-
order elliptic operator D4

s + ∆2
g, that is, after the addition of a variable s.

Extending this strategy to the type of boundary conditions treated in Part B
was not successful so far because it is not guaranteed that having the Lopatin-
skĭı-Šapiro condition for ∆2

g, B1, and B2 implies that the Lopatinskĭı-Šapiro
condition holds for D4

s + ∆2
g, B1, and B2. Yet, the Lopatinskĭı-Šapiro is at the

heart of the proof of our Carleman estimate. Proving a spectral estimate as in
the above statement for the general boundary conditions considered here is an
open question.
Next, as a follow up of the result in Part B, we aim to address the polyharmonic
case, that is Q = P k, k ∈ N with k boundary operators B1, . . . , Bk. This can
lead to applications similar to the results of Theorem 1.8.2.
For the polyharmonic case, the Lopatinskĭı-Šapiro condition can be formulated
as follows.
Let Q = (−∆g)

k be an elliptic differential operator of order 2k on Ω, (k ≥ 1),
with principal symbol q(x, ω) for (x, ω) ∈ T ∗M. One defines the following poly-
nomial in z,

q̃(x, ω′, z) = q(x, ω′ − znx),

for x ∈ ∂M, ω′ ∈ T ∗
x∂M, z ∈ R and nx denotes the outward pointing conormal

vector at x, unitary in the sense of the metric g. Here x and ω′ act as parameters.
We denote by rj(x, ω′), 1 ≤ j ≤ 2k the complex roots of q̃. One sets

q̃+(x, ω′, z) =
∏

Im rj(x,ω′)≥0

(z − rj(x, ω
′)).
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Given boundary operators B1, . . . , Bk in a neighborhood of ∂M, with principal
symbols bj(x, ω), j = 1, . . . , k, one also sets b̃j(x, ω′, z) = bj(x, ω

′−znx). Accord-
ing to Definition 4.6.1, along with the general boundary operators B1, B2 . . . , Bk

of orders d1, d2, . . . , dℓ respectively for ℓ = 1, . . . , k, we give a matrix cri-
terion of the Lopatinskĭı-Šapiro condition. The general boundary operators
B1, B2 . . . , Bk is then given by

Bℓ(x,D) =
∑

0≤j≤min(2k−1,dℓ)

(−i)jBdℓ−j
ℓ (x,D′)Dj

d, ℓ = 1 . . . , k.

We denote by b1(x, ω), . . . , bk(x, ω) the principal symbols of B1, . . . , Bk respec-
tively. For (x, ω′) ∈ T ∗∂M, we set

bℓ(x, ω
′, z) =

∑
0≤j≤min(2k−1,dℓ)

(−i)jbdℓ−jℓ (x, ω′)zjd, ℓ = 1 . . . , k.

We recall that the principal symbol of Q is given by q(x, ω) = |ω|2kg . We set

q̃(x, ω′, z) = q(x, ω′ − znx) = (|ω′ − znx|2)k = (z2 + |ω′|2)k,

where (nx, ω
′)g = 0. Therefore q̃(x, ω′, z) = (z − i|ω′|)k(z + |ω′|)k and we set

q̃+(x, ω′, z) = (z+ |ω′|)k. Thus the Lopatinskĭı-Šapiro condition holds at (x, ω′)

with ω′ ̸= 0 if and only if for any polynomial function f(z) the complex number
i|ω′|g is a root of the polynomial function z 7→ f(z) − c1b̃1(x, ω

′, z) − · · · −
ckb̃k(x, ω

′, z) and its derivative up to order k − 1 for some c1, . . . , ck ∈ C. This
leads to the following determinant condition

det


b̃1 b̃2 . . . b̃k

∂z b̃1 ∂z b̃2 . . . ∂z b̃k
...

... . . .
...

∂k−1
z b̃1 ∂k−1

z b̃2 . . . ∂k−1
z b̃k

 (x, ω′, z = i|ω′|g) ̸= 0. (5.2.2)
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6. Appendix

6.1 A perfect elliptic estimate

Here we consider a(ϱ′, ξd) polynomial in the ξd variable and such that its root
have negative imaginary parts microlocally.

Lemma 6.1.1. Let κ0 > 0. Let a(ϱ′, ξd) ∈ Sk,0τ , with ϱ′ = (x, ξ′, τ, σ) and with
k ≥ 1, that is, a(ϱ′, ξd) =

∑k
j=0 aj(ϱ

′)ξk−jd , and where the coefficients aj are
homogeneous in (ξ′, τ, σ). Moreover, assume that a0(ϱ′) = 1. Set A = Op(a).

Let U be a conic open subset of W×Rd−1×[0,+∞)×[0,+∞) where τ ≥ κ0σ

and such that all the roots of a(ϱ′, ξd) have a negative imaginary part for ϱ′ ∈ U .
Let χ(ϱ′) ∈ S0

T,τ be homogeneous of degree zero and such that supp(χ) ⊂ U

and N ∈ N. Then there exist C > 0, CN > 0, and τ0 > 0 such that

∥Op(χ)v∥k,τ + | tr(Op(χ)v)|k−1,1/2,τ ≤ C∥AOp(χ)v∥+ + ∥v∥k,−N,τ ,

for w ∈ S (Rd
+) and τ ≥ max(τ0, κ0σ).

Proof. Let W be a conic open set of W × Rd−1 × [0,∞) × [0,∞) such that
W ⊂ U and supp(χ) ⊂ W . We write

a(ϱ′, ξd) = p(ϱ′, ξd) + iq(ϱ′, ξd),

where p and q are both homogeneous with p ∈ Sk,0τ and q ∈ Sk−1,0
τ . We set

P = Op(p) and Q = Op(q) and we introduce the following quadratic form of
type (k, 0)

S(w) = ∥Pw∥2+ + ∥Qw∥2+

with principal symbol s(ϱ′, ξd) = |p(ϱ′, ξd)|2 + |q(ϱ′, ξd)|2 ∈ S2k,0
τ .

The Hermite theorem (see, [11, Proposition 3.13]) implies that a(ϱ′, ξd) and
b(ϱ′, ξd) have distinct real roots for all ϱ′ ∈ U . Hence, on the compact set

C = { ϱ = (x, ξ, τ, σ); ϱ′ = (x, ξ′, τ, σ) ∈ W , ξd ∈ R, |ξ|2 + τ 2 + σ2 = 1 },

we have s ̸= 0 yielding by homogeneity that

s(ϱ′, ξd) ≥ C|(ξ, τ, σ)|2k ≥ C̃|(ξ, τ)|2k, since |(ξ, τ, σ)|2 = |ξ|2+τ 2+σ2 ≳ |ξ|2+τ 2

for τ ≳ σ. Setting w = Op(χ)v, the Gårding inequality ( [11, Proposition 3.5])
gives, for any N ∈ N,

s(w) ≳ ∥w∥k,τ − ∥ tr(w)∥k−1,1/2,τ − ∥v∥k,−N,τ . (6.1.1)
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In addition, by the Generalized Green’s formula (see, [11, Proposition 3.15]),
we have

2Re(Pw, iQw)+ = Ip,q(w) + Bp,q(w) +R(v),

where Ip,q is an interior quadratic form of type (k,−1/2), Bp,q is the boundary
quadratic form of type (k − 1, 1/2) and R(w) is the remainder term which is a
quadratic form that satisfies

|R(w)| ≲ ∥w∥k,−1,τ .

Therefore,

|2Re(Pw, iQw)+ − Bp,q(w)| = |Ip,q(w) +R(w)|
≤ |Ip,q(w)|+ |R(w)|
≲ ∥w∥k,−1/2,τ ,

since |Ip,q(w)| ≤ C∥w∥k,−1/2,τ for w ∈ S (Rd
+) by Lemma 3.3 in [11]. Then we

deduce that
2Re(Pw, iQw)+ ≳ Bp,q(w)− ∥w∥k,−1/2,τ.

Again by the Hermite theorem ( [11, Proposition 3.13]), the bilinear form asso-
ciated to Bp,q denoted ΣBp,q is positive. Then by homogeneity we find that

ΣBa,b
(ϱ′, z, z) ≥ C

k−1∑
n=0

λ
2(k−1−n+1/2)
T,τ,σ |zn|2, ϱ′ ∈ W , z = (z0, · · · , zm−1) ∈ Cm, λT,τ,σ = |(ξ′, τ, σ)|.

Then the Gårding inequality of Lemma 3.9 in [11] gives, for any N ∈ N,

2Re(Pw, iQw)+ ≳ | tr(w)|k−1,1/2,τ − ∥w∥k,−1/2,τ − | tr(v)|k−1,−N,τ . (6.1.2)

But on the other hand, we have

∥Aw∥2+ = ∥Pw + iQw∥2+ = ∥Pw∥2+ + ∥Qw∥2+ + 2Re(Pw, iQw)+ = S(w) + 2Re(Pw, iQw)+.

So, by (6.1.1) and (6.1.2) we find,

∥Aw∥+ ≳ ∥w∥k,τ − | tr(w)|k−1,1/2,τ − ∥w∥k,−N,τ − | tr(v)|k−1,−N,τ , (6.1.3)

for τ chosen sufficiently large.
However, observing that S(w) ≥ 0, we also find that

∥Aw∥+ ≳ | tr(w)|k−1,1/2,τ − ∥w∥k,−1/2,τ − | tr(v)|k−1,−N,τ . (6.1.4)
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By adding estimate (6.1.3) and (6.1.4) side by side, and taking τ to be large
enough, we obtain

∥w∥k,τ + | tr(w)|k−1,1/2,τ ≲ ∥Aw∥+ + ∥v∥k,−N,τ + | tr(v)|k−1,−N,τ ,

which ends the proof.

6.2 Basic resolvent estimation

Here we provide a proof of Lemma 4.12.3
Let U = t(u0, u1) ∈ D(Ȧ). With (4.12.17) We write

((zIdḢ − Ȧ)U,U)Ḣ =

((
zu0 + u1

zu1 − P0u
0 − αu1

)
,

(
u0

u1

))
Ḣ

= z∥U∥2Ḣ + ⟨P0u
1, u0⟩H−2

B ,H2
B
− (P0u

0, u1)L2(Ω) − (αu1, u1)L2(Ω)

= z∥U∥2Ḣ + 2i Im(u1,P0u
0)L2(Ω) − (αu1, u1)L2(Ω).

Computing the real part one obtains

−Re((zIdḢ − Ȧ)U,U)Ḣ = −Re(z)∥U∥2Ḣ + (αu1, u1)L2(Ω). (6.2.1)

As α ≥ 0 and Re z < 0, this gives

|Re((zIdḢ − Ȧ)U,U)Ḣ| ≥ |Re(z)| ∥U∥2Ḣ,

which yields the conclusion of Lemma 4.12.3.

6.3 Basic estimation for the resolvent set

Here we provide a proof of Proposition 4.13.1.
Let z ∈ C. We consider the two cases.

Case 1: Re z < 0. By Lemma 4.12.3 zIdḢ − Ȧ is injective. Moreover, as
its adjoint zIdḢ − Ȧ∗ is injective and satisfies ∥(zIdḢ − Ȧ∗)U∥Ḣ ≳ ∥U∥Ḣ for
U ∈ D(Ȧ) by Lemma 4.12.5 the map zIdḢ− Ȧ is surjective (see for instance [?,
Theorem 2.20]). The estimation of Lemma 4.12.3 then gives the continuity of
the operator (zIdḢ − Ȧ)−1 on Ḣ.
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Case 2: Re z = 0. We start by proving the injectivity of zIdḢ− Ȧ. Let thus
U = t(u0, u1) ∈ D(Ȧ) be such that zU − ȦU = 0. This gives

zu0 + u1 = 0, −P0u
0 + (z − α)u1 = 0. (6.3.1)

First, if z = 0 one has u1 = 0, and then P0u
0 = 0. Thus, u0 ∈ ker(P0) given

U ∈ N = ker(A). From the definition of Ḣ this gives U = 0.
Second, if now z ̸= 0, using (6.2.1) we obtain

0 = Re((zIdḢ − Ȧ)U,U)Ḣ = −(αu1, u1)L2(Ω).

As α ≥ 0, this implies that u0 vanishes a.e on supp(α). Observe that

P0u
0 = zu1 = −z2u0.

The function u0 is thus an eigenfunction for P0 that vanishes on an open set.
With the unique continuation property we obtain that u0 vanishes in Ω and u1

as well.

If we now prove that zIdḢ− Ȧ is surjective, the result then follows from the
closed graph theorem as Ȧ is a closed operator. We write zIdḢ − Ȧ = T + IdḢ

with T = (z − 1)IdḢ − Ȧ. By the first part of the proof, T is invertible with
a bounded inverse. The operator T is unbounded on Ḣ. We denote by T̃ the
restriction of T to D(Ȧ) equipped with the graph-norm associated with Ȧ. The
operator T̃ is bounded. It is also invertible. It is thus a bounded Fredholm
operator of index ind T̃ = 0. Similarly, we denote by ι the injection of D(Ȧ)

into Ḣ and Ã the restriction of Ȧ on D(Ȧ) viewed as a bounded operator. We
have zι − Ã = T̃ + ι. Since ι is a compact operator, we obtain that zι − Ã is
also a bounded Fredholm operator of index 0. Hence, zι− Ã is surjective since
zIdH − Ȧ is injective as proven above. Consequently, zIdH − Ȧ is surjective.
This concludes the proof of Proposition 4.13.1.
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