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Suites spectrales rassemblées, Bocksteins et appli-
cations à THH

Soit ku le spectre de la K-théorie complexe connective, localisée en un premier
p, et soit ℓ la summand d’Adams connective. La suite spectrale de Bockstein
associée à la multiplication par v1 ∈ ℓ∗, et qui calcule les groupes d’homologie de
Hochschild topologique THH∗(ℓ), est connue. Le but de cette thèse est, dans un
premier temps, d’étendre ces résultats à la suite spectrale de Bockstein associée
à la multiplication par u ∈ ku∗, qui calcule THH∗(ku) ; dans un second temps,
d’étudier la composée

Σ∞
+K(Z, 3)→ Σ∞

+ BGL1(ku)→ K(ku)→ THH(ku)

capturant une partie des unités de la K-théorie algébrique de ku via la trace de
Bökstedt dans THH.

Nous développons d’abord des outils généraux, qui relient une suite spectrale
à ce que nous appellerons des suites spectrales rassemblées et tronquées. Nous
étudions ensuite comment les extensions dans une suite spectrale de Bockstein
sont parfois déterminées par la suite spectrale elle-même. Ce résultats généraux
nous permettent de calculer la suite spectrale de Bockstein de THH∗(ku) à partir
de celle de THH∗(ℓ). Nous ferons ensuite un deuxième calcul de THH∗(ku) en
utilisant THH logarithmique. Enfin nous donnons une présentation de ku∗K(Z, 3)
et nous calculons la partie sans torsion de l’application ku∗K(Z, 3)→ THH∗(ku).

Mots clefs : topologie algébrique, homotopie stable, K-théorie algébrique,
suites spectrales, homologie de Hochschild topologique, K-théorie complexe

Gathered spectral sequences, Bocksteins and appli-
cations to THH

Let ku be the connective complex K-theory spectrum, localized at a prime p,
and let ℓ be its connective Adams summand. The Bockstein spectral sequence,
related to the multiplication by v1 ∈ ℓ∗, that compute the topological Hochschild
homology groups THH∗(ℓ), is known. The purpose of this thesis is, first, to extend
these results to the Bockstein spectral sequence, related to the multiplication by
u ∈ ku∗, that compute THH∗(ku); and second, to study the composition

Σ∞
+K(Z, 3)→ Σ∞

+ BGL1(ku)→ K(ku)→ THH(ku)

that captures part of the units in the algebraic K-theory of ku via the Bökstedt
trace map into THH.

We first develop general tools, that relate a spectral sequence to what we call
gathered and truncated spectral sequences. We then study how the extensions
in a Bockstein spectral sequence can sometimes be recovered from the spectral
sequence itself. We use these general results to compute the Bockstein spectral
sequence for THH∗(ku) from the one for THH∗(ℓ). We give a second computation
of THH∗(ku) using logarithmic THH. We then give a presentation of ku∗K(Z, 3)
and compute the non-torsion part of the map ku∗K(Z, 3)→ THH∗(ku).

Keywords: algebraic topology, stable homotopy, algebraic K-theory, spectral
sequences, topological Hochschild homology, complex K-theory
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Introduction

Introduction

The algebraic K-theory groups of a ring are difficult to compute, and thus are
often studied through so-called trace maps. The first of this kind, the Dennis
trace map K → HH, maps algebraic K-theory to Hochschild homology. It
was conjectured by Goodwillie that the Dennis trace map factors through a
version of Hochschild homology where the ground ring is not the integers Z, but
the sphere spectrum S; this hypothetical object was then named topological
Hochschild homology. Such a construction was eventually carried out by Bökstedt
in unpublished work [13], where the first definition of THH and of the trace map
K → THH appear.

However, Bökstedt lacked a sufficiently structured category of spectra to
mimic the definition of Hochschild homology over the sphere spectrum; it was only
after the description of the category of S-modules or the category of symmetric
spectra that such a definition could be made. Topological Hochschild homology
then offers a trace map from the K-theory not only of a ring, but of any E1 ring
spectrum. Furthermore, THH can be seen to be equipped with an action of the
circle S1, and the study of the homotopy fixed points for this action led to the
definition of topological cyclic homology and the cyclotomic trace K → TC that
factorizes the Bökstedt trace map.

Many methods used to compute topological Hochschilds homology are based
on varying the coefficients; when A is commutative and B is a symmetric
(A,A)-bimodule, a first important property to manipulate the coefficients is the
equation

THH(A;B) ∼= B ∧A THH(A) (0.0.1)

This allows us to identify the E1 terms in the Bockstein spectral sequence
obtained by some multiplication by q ∈ B map in THH(A;B) with the homotopy
of the spectrum THH(A;B/q). This also identify the modulo p homotopy of
THH(A;B) with THH(A;V (0)∧B) where V (0) is the modulo p Moore spectrum;
likewise, for the Smith-Toda complex V (1), the V (1) homology of THH(A;B)
will be the homotopy of THH(A;V (1) ∧B). This produces spectral sequences
whose first page might be computable by virtue of having a hopefully simpler
coefficients ring.

Another kind of manipulation on the coefficients will come from the equation

THH(A;B) ≃ B ∧Ae A

∼= (B ∧A B) ∧LAe B
(0.0.2)

which will produce a Brun spectral sequence computing the homotopy of
THH(A;B) from that of THH(B;Hπ∗(B ∧A B)), which once again is hope-
fully easier. This method was studied with the level of generality we will need
by Höning in [23].

Examples of computations related to our present work are those of McClure
and Staffeldt in [28]. For a prime p ≥ 3, they computed V (0)∗ THH(ℓ), the
modulo p homotopy of the topological Hochschild homology of the Adams
summand ℓ of ku, the connective cover of topological complex K-theory. They
also obtained the formula

THH(L) ≃ L ∨ (ΣL)Q (0.0.3)

6



Introduction

for the periodic Adams summand L.
The computation of V (0)∗ THH(ℓ) was extended to p = 2 by Angelveit and

Rognes in [3]; a similar result for ku was computed by Ausoni in [5], and an
analogous periodic formula

THH(KU) ≃ KU ∨ (ΣKU)Q (0.0.4)

was given.
McClure and Staffeldt’s work was aiming at computing THH∗(ℓ) via an

Adams spectral sequence; that computation never appeared. However, THH∗(ℓ)
was computed by Angelveit, Hill and Lawson in [2], using what they called
dueling Bockstein spectral sequences: multiple spectral sequences having the
same target must somehow agree, and the resulting constraints lead to the result.
This idea and their results are the basis of much of the present work.

Another point of interest is the study of the algebraic K-theory spectrum
K(ku) through THH(ku) and trace method. It is conjectured (see [7]) that
K(ku) is an elliptic cohomology theory of chromatic filtration 2 – a theory with
meaningful geometrical content that is suitable to study v2-periodic phenomenons,
as topological K-theory is suitable to study v1-periodicity.

One way to constuct classes in K-theory is to use the so-called unit map
Σ∞

+ BGL1(R)→ K(R). When R is a classical commutative ring, the unit map
has a right inverse K(R)→ Σ∞

+ BGL1(R) called the determinant map. For ku,
GL1(ku) is the product of infinite loop spaces K(Z, 2) × Z/2 × BSU⊗. Thus,
there is a map

Σ∞
+K(Z, 3)→ K(ku) (0.0.5)

that captures part of the units. The π3 of this map is computed in [6], and a
corollary of this computation is that there is no determinant map K(ku) →
Σ∞

+ BGL1(ku).
When computing topological Hochschild homology, it is possible and often

necessary to combine multiple steps of computation to arrive to a result. We will
compute the homotopy of THH(ku); equation (0.0.1) tautologically identify that
with computing the ku homology in the category of ku-modules of THH(ku).
This is still interesting; p-localized ku has coefficients ring Z(p)[u], which give
two possibilities for non-trivial Bockstein spectral sequences: multiplying by p
or by u. Thus, to compute the ku-homology of a spectrum X (e.g. to compute
THH(ku)), we can take two different approaches that start with Fp-homology,
that we give in the following diagram of spectral sequences:

(V (0) ∧ ku)∗X ⊗ P (p) ku∗X

H∗(X;Fp)⊗ P (p)⊗ P (u) H∗(X;Z(p))⊗ P (u)

(0.0.6)

We will show how that square of Bockstein spectral sequences contains informa-
tion relative to the additive extension problems that might arise in computing
ku∗X.

The existence of the Adams summand ℓ in relation to ku also offers another
piece of the computation; ℓ has coefficients ring Z(p)[v1] where the map ℓ→ ku
send v1 to up−1. This equation makes the v1-Bockstein spectral sequence

H∗(X;Z(p))⊗ P (v1)⇒ ℓ∗X (0.0.7)
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not map into the u-Bockstein spectral sequence computing ku∗X, but more
nicely into another v1-Bockstein spectral sequence

(ku/v1)∗X ⊗ P (v1)⇒ ku∗X (0.0.8)

Moreover, the element (ku/v1)∗X can be computed from a truncated u-Bockstein
spectral sequence:

H∗(X;Z(p))⊗ Pp−1(u)⇒ (ku/v1)∗X (0.0.9)

These three spectral sequences fit in a diagram

H∗(X;Z(p)) H∗(X;Z(p))⊗ P (u) ku∗X

H∗(X;Z(p))⊗ Pp−1(u)⊗ P (v1) (ku/v1)∗X ⊗ P (v1)
(0.0.10)

where any information on one of the path, top or bottom, can be translated into
information on the other.

Both diagram (0.0.6) and (0.0.10) present situations that are not specific
to ku. A similar square diagram can be written for ℓ or any integral Morava
K-theory. We will also develop the theory translating between the two path
in the triangular diagram for any spectral sequence coming from a tower of
spectra, not just for the Bockstein spectral sequences obtained from an element
in a ring and its powers. Thus, our results could be used to compute spectral
sequences in any case where it would make sense to gather steps in the filtration
(potentially in order to compare more easily with another spectral sequence,
as in our computation). For example, the Lubin-Tate spectrum En share with
some homotopy fixed point spectra the same relationship as kup has with ℓ. The
Adams summand ℓ is obtained as the homotopy fixed point of a Cp−1-action
on kup, and a similar result can be stated for the En at other chromatic levels,
see the results of [19], recounted as theorem 5.4.4 of [32]. Computations with
similar steps could then be carried out, starting with the Morava K-theory K(n)
(that can be seen to be computable for any n in some cases, e.g. [31]) and their
connective covers k(n).

This thesis is organized in two parts; the first one – chapters 1 to 3 – contains
general results on spectral sequence; the second one – chapters 4 to 7 – deals
with the topological Hochschild homology of ku and the trace map from K(Z, 3).

Chapter 1 results are on a generalized version of the situation of diagram
(0.0.10). We provide a dictionnnary between the differentials of a spectral
sequence coming from a tower of spectra, truncated versions of that spectral
sequence and gathered versions. A tower of spectra is a functor from the poset of
the integers to a category of spectra; when considered together with the cofibers
of the maps constituting the tower, it provides an unrolled exact couple by taking
homotopy, and thus a spectral sequence. For ku, the tower we will use is the
Whitehead tower, that can be obtained by repeating the multiplication by u
map

· · · → Σ4ku ∧X → Σ2ku ∧X → ku ∧X. (0.0.11)

The tower – and the exact couple and spectral sequence – can be truncated
by setting all the morphisms outside some bounds to be the identity. In the
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diagram (0.0.10), this is how we get the spectral sequence

H∗(X;Z(p))⊗ Pp−1(u)⇒ (ku/v1)∗X. (0.0.12)

The tower can also be gathered along an increasing map Z → Z – in diagram
(0.0.10), the map x 7→ |v1|x gives the spectral sequence

(ku/v1)∗X ⊗ P (v1)⇒ ku∗X. (0.0.13)

We will state general results, which for our example will specialize the following:
differentials in the u-Bockstein spectral sequence

H∗(X;Z(p))⊗ P (u)⇒ ku∗X (0.0.14)

that are smaller than |v1| result in differential in (0.0.12) (theorem 1.2.11); that
the differentials longer than |v1|, on the other hand, are related to differentials
in (0.0.13) (theorem 1.2.21). We also provide results going the other way, from
either the truncated or gathered spectral sequences to the base spectral sequence
(theorem 1.2.11 and theorem 1.2.28), as well as results for null differentials that
are sufficient to manage computations (theorem 1.2.35).

Chapter 2 explains how the additive extensions in a Bockstein spectral
sequence can sometimes be recovered from the differentials in a generalized
diagram (0.0.6) (theorem 2.4.1). We will not work with ku but with any
homology theory whose coefficients are polynomial in two elements q and v,
analogous to p and u. We will provide two sets of hypotheses on the four
Bockstein spectral sequences of diagram (0.0.6) under which this is possible. The
stronger set of hypotheses constrain H∗(X;Fp) to be of rank at most 1 in each
degree, and constrain the length of the u-towers in the E∞-page of the spectral
sequence on the right side of diagram (0.0.6) so that the extensions that can
occur are unique. The weaker set of hypotheses relax the rank 1 hypothesis to
only the infinite cycle in the bottom and left side spectral sequences, and relax
the previous unicity property; in order to still be able to recover the extensions
from the differentials, we will have to remark that some divisibilities by p, and
thus additive extensions, are visible through a pattern in the differentials. Then
it will be necessary to constrain the length of the u-towers in the E∞-page to
ensure that all the possible divisibilities are visible through this pattern.

Chapter 3 provide a proof of folklore result – an isomorphism between the
Atiyah-Hirzebruch spectral sequence obtained from a skeletal filtration and the
spectral sequences obtained from the Whitehead tower or the Postnikov tower
(theorem 3.2.5).

Chapter 4 introduce topological Hochschild homology and the results we will
need for our following computation of THH∗(ku).

Chapter 5 compute THH∗(ku) as a ku-module from THH∗(ℓ) and using the
results from chapter 1 and 2 to compute the Bockstein spectral sequence

THH∗(ku;HZ(p))⊗ P (u)⇒ THH∗(ku). (0.0.15)

We will first see how THH∗(ku;HZ) is generated as an abelian group by 1, the
suspension σu of u, the generators µn of THH∗(Z) and their products (propo-
sition 5.2.31). We then compute THH∗(ku) (theorem 5.7.14): the generators
that lifts in THH∗(ku) are 1 and σu for the non-torsion part, σu becoming
divisible by increasingly bigger integers as it is multiplied by u; the torsion must
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be analyzed one prime p at a time. It can be separated into increasingly large
submodules T k

n for any n ≥ 1 and 1 ≤ k ≤ p− 1, generated by the classes

σuµkpn , σuµkpn+p, σuµkpn+2p, . . . σuµkpn−p (0.0.16)

such that for any k and k′, T k
n and T k′

n are isomorphic when forgetting the
degree, and T •

n contains p− 1 copies of T •
n−1 as submodules, as well as one more

copy as a quotient. This is of course very similar to the result on THH∗(ℓ), but
it must be noted that

THH∗(ku) ̸= THH∗(ℓ)⊗P (v1) P (u). (0.0.17)

Chapter 6 provide another computation of THH∗(ku) the using logarithmic
topological Hochschild homology THH∗(ku, ⟨u⟩). That computation still requires
the knowledge of THH∗(ℓ) and of some fact on the suspension map ku →
THH(ku). Logarithmic topological Hochschild homology comes with a short
exact sequence

0→ THH∗(ℓ)→ THH∗(ℓ, ⟨v1⟩)→ THH∗−1(HZ(p))→ 0 (0.0.18)

as well as one for ku, and a weak equivalence

THH(ku, ⟨u⟩) ≃ ku ∧ℓ THH(ℓ, ⟨v1⟩) (0.0.19)

which state that ku is formally log-THH-étale. The sequence (0.0.18) allows us
to compute THH∗(ℓ, ⟨v1⟩) (theorem 6.2.4), and from equation (0.0.19), we can
deduce THH∗(ku, ⟨u⟩) (theorem 6.2.6) as well as THH∗(ku).

Chapter 7 introduces the Bökstedt trace map into THH, and provides a
computation of the non-torsion part of ku∗K(Z, 3) (proposition 7.2.51), a com-
putation of the torsion part up to the additive extensions in the u-Bockstein
spectral sequence (theorem 7.2.50), and a computation of the non-torsion part
of the map ku∗K(Z, 3) → THH∗(ku) induced by the trace (theorem 7.3.34).
The non-torsion part of ku∗K(Z, 3) is similar to that of THH∗(ku), with a class
σβ(0) mapping to σu, but differs in that when mutiplied by u, σβ(0) become as
divisible by integers as σu after one more mutiplication. Thus, the non-torsion
part of ku∗K(Z, 3) injects into THH∗(ku).

Finally, appendix A contains a computer program that was used to generated
pictures of some submodules of THH∗(ku).
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Notations and conventions

We will use the following notations to describe various algebras:

• P (x) is a polynomial algebra over a generator x

• Pn(x) is a truncated polynomial algebra at height n, that is the quotient
of P (x) by the relation xn = 0

• Γ(x) is a divided power algebra, which is generated additively by the
divided power of x, denoted γix for any i ≥ 0, and with the multiplicative
relations:

γix · γjx =

(
i+ j

i

)
γi+jx.

• E(x) is what we will call an exterior algebra, which will always mean P2(x);
however, this is not what is usually called an exterior algebra when not in
odd characteristic, since in that case the relation we have is 2x2 = 0.

The base ring for these algebras will be determined in most case by the context
in which they appear. When computing homology with coefficient in Fp or
modulo p homotopy, the base ring will be Fp. When computing homology
with coefficients in Z, Z(p) or Zp (the integers, the p-localized integers or the
p-completed integers), it will be Z, Z(p) or Zp. When computing THH, it will
be the base ring for the coefficient spectrum. If we need to specify the base ring,
we will note it in a subscript: PQ(x), EQ(x), etc.

When writing spectral sequences, we will use tensor products ⊗ of these
algebras. One of these tensor product will be written ⊗̄, it will separate the
algebras generated by classes whose bidegree lies on the x-axis – on the left of ⊗̄
– and those generated by classes whose bidegree lies on the y-axis – on the right
of ⊗̄.
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Computational tools for
diagrams of spectral sequences
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Chapter 1

Spectral sequences from
towers of spectra

Our vocabulary concerning spectral sequences will follow Boardman’s in [12]. We
will work in a stable homotopy category, that is to say the homotopy category of
a category of spectra. The underlying category of spectra could be Boardman’s
spectra (see [1] or [36]), or S-module from [20]. What we really use is that we
have a triangulated category, with a functor to the graded group that produces
long exact sequences from the triangles, with some unicity on the maps between
two triangles (arising from the unicity up to homotopy of the maps between
cofiber sequences).

We study spectral sequences arising from a tower of spectra indexed by Z:

... Yn+1 Yn Yn−1 ... (1.0.1)

Let Y∞ be the limit of the tower and Y−∞ be the colimit. For any a and b
integers or ±∞ with a ≤ b, let Y b

a be the cofiber of the map Yb → Ya. For each
n ∈ Z, the cofiber sequence:

Yn+1 Yn Y n+1
n (1.0.2)

gives a long exact sequence in homotopy. Pasting each of these sequences defines
an unrolled exact couple, and a spectral sequence.

To ensure (weak) convergence of the spectral sequence, we quotient the tower
of spectra by the limit. To this end, we need to discuss the maps between these
cofibers.

1.1 The octahedral axiom and consequences

The octahedral axiom is assumed true in any triangulated category. Here we
will use it in the homotopy category of spectra, which is triangulated by virtue
of being the homotopy category of a stable model category.

Axiom 1.1.1 (Octahedral). Let A→ B → C, A→ D → E and B → D → F

13



1.1 The octahedral axiom and consequences

be triangles such that the diagram

A B

A D

id
(1.1.2)

commutes. Then there are six triangles and a commutative diagram:

A B C

A D E

∗ F F

id

id

(1.1.3)

where ∗ is the zero-object of the category.

Remark that in the specific case of the stable homotopy category, the maps
C → E and E → F are unique, and thus are unique up to homotopy in the
category of spectra.

Our first lemma is a reformulation of this axiom with our notations:

Lemma 1.1.4. Let a ≤ b ≤ c be integers or ±∞. There is a morphism of
cofiber sequences, and commutative diagram:

Yc Yb Y c
b

Yc Ya Y c
a

id
(1.1.5)

Then there is a cofiber sequence:

Y c
b Y c

a Y b
a (1.1.6)

and a weak equivalence f : Y b
a → Y b

a making the following diagram commute.

Yb Ya Y b
a

Y c
b Y c

a Y b
a

f
(1.1.7)

We can conclude the following, which ensure that our spectral sequences can
converge to their colimit
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1.1 The octahedral axiom and consequences

Proposition 1.1.8. For any a ≤ b integers, the cofiber of Y∞
b → Y∞

a is Y b
a .

Then the towers of spectra

... Y∞
n+1 Y∞

n Y∞
n−1 ... (1.1.9)

... Yn+1 Yn Yn−1 ... (1.1.10)

induce isomorphic spectral sequences, beginning from the E1 pages.

Proof. This is lemma 1.1.4: we have a morphism of exact couple induced by the
diagrams

Yn+1 Yn Y n+1
n

Y∞
n+1 Y∞

n Y n+1
n

≃
(1.1.11)

that is an isomorphism on the E1 pages. The induced morphisms on the derived
exact couples are then automatically isomorphisms on the following pages, and
thus we have two isomorphic spectral sequences.

This corollary will be used with towers of spectra such that for some m ∈ Z
and for all k ≥ m, all the Yk+1 → Yk are isomorphism – that is, Ym is the limit
of the tower; and thus ∞ will be replaced by m. In fact, we will mostly deal
with towers quotiented by their limits, and we will need another version of the
octahedral axiom.

In the following, whenever i ≤ j ≤ k are integers or ±∞, the map Y k
j → Y k

i is
the map coming from the morphism between the cofiber sequences Yk → Yj → Y k

j

and Yk → Yi → Y k
i , and the map Y k

i → Y j
i is from the cofiber sequence

Y k
j → Y k

i → Y j
i of lemma 1.1.4. Both are unique up to homotopy.

Lemma 1.1.12. Let a ≤ b ≤ c ≤ d be integers or ±∞. There are commutative
diagrams, both of six cofiber sequences:

Y d
c Y d

b Y c
b

Y d
c Y d

a Y c
a

∗ Y b
a Y b

a

id

≃

Y d
c Y d

a Y c
a

Y d
b Y d

a Y b
a

Y c
b ∗ ΣY c

b

id

(1.1.13)

Proof. The left one is direct from the octahedral axiom. The right one must be
shifted one time in the horizontal direction using Σ to have the same form as
the octahedral axiom. The maps can be seen to be the canonical one since they
are unique up to homotopy.
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1.2 Truncated and gathered spectral sequences

We won’t say anything on the convergence of such general spectral sequences,
other than the quotient by the limit which is necessary for weak convergence.
We will use the techniques we develop hereafter with spectral sequences that
are otherwise know to converge, e.g. Bockstein spectral sequence or Atiyah-
Hirzebruch spectral sequences.

1.2 Truncated and gathered spectral sequences

For any spectrum Γ, write Γ∗ = π∗(Γ) its homotopy groups. The tower

... Y∞
n+1 Y∞

n Y∞
n−1 ... (1.2.1)

gives a spectral sequence of the form

(B) : E1 =
⊕
n∈Z

(Y n+1
n )∗ ⇒ (Y∞

−∞)∗. (1.2.2)

For any integers a ≤ b, we can truncate the tower at a and b, and thus the
spectral sequence (B). Let X be the tower such that:

Xn =


Y∞
b if n ≥ b
Y∞
a if n ≤ a
Y∞
n otherwise

(1.2.3)

with identities when necessary and maps induced by the original tower. This
defines a truncated spectral sequence:

(T b
a ) : E

1 =
⊕

a≤n<b

(Y n+1
n )∗ ⇒ (Y b

a )∗. (1.2.4)

Remark that the tower quotiented by the limit has components:

X ′
n =


Y b
b ≃ ∗ if n ≥ b
Y b
a if n ≤ a
Y b
n otherwise.

(1.2.5)

For any strictly increasing map ϕ : Z → Z, consider the tower whose n-th
level is Y∞

ϕ(n) and maps the composition of the maps in the original tower. This
defines a gathered spectral sequence:

(ϕB) : E1 =
⊕
n∈Z

(Y
ϕ(n+1)
ϕ(n) )∗ ⇒ (Y∞

−∞)∗. (1.2.6)

We have choosen the term gathered by analogy with bookbinding – we are,
after all, talking about the pages of a spectral sequence. Our sequence (B) is
the book. If we let ϕ = id, then (ϕB) is a folio. If ϕ is the multiplication by
2, (ϕB) is an uncut quarto: the pages are gathered together two-by-two; the
first differential d1 of (ϕB) contains information about the d2 and d3 of (B), the
second about d4 and d5, etc. If ϕ is multiplication by 8, (ϕB) is an uncut octavo;
its d1 contains information about d4, d5, d6 and d7 of (B). We will provide the
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1.2 Truncated and gathered spectral sequences
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(Y 1
0 )∗

(Y 2
1 )∗

(Y 3
2 )∗

(Y 4
3 )∗

(Y 5
4 )∗

(Y 6
5 )∗

(Y 7
6 )∗

d1

d2

d4

Figure 1.1: Example of the spectral sequence (B).

necessary paper knife to recover (B) from (ϕB), but we will also say how to glue
back the pages of (B) into (ϕB). It is left to the reader to choose a suitable name
in latin when ϕ is a more complex function.

If one wants to compute (Y∞
−∞)∗, this gives two ways to do it: computing (B),

or computing each (Y
ϕ(n+1)
ϕ(n) )∗ by means of (T ϕ(n+1)

ϕ(n) ) and thereafter computing
(ϕB). These two computations are not independent. Let us represent our spectral
sequences graphically with the following grading: the n in (Yn)∗ (the filtration
degree) is the y-coordinate, and the x-coordinate is such that ∗ = x+ y. With
such bidegree, the differentials will have |dr| = (−r− 1, r) when we let the exact
couple given by the tower of spectra be the E1 page. We will draw first quadrant
spectral sequences, but our results apply to whole plane spectral sequences.

For each of figs. 1.1 to 1.5, a • represent a copy of a field F on the E1-page,
and the •n in fig. 1.5 represent n copies of F. On the fig. 1.1 we have figured 3
non-zero differentials of different size. We will choose our function ϕ : Z → Z
such that ϕ(0) = 0, ϕ(1) = 3 and ϕ(2) = 7. Our first result is that the d1 and d2
figured will respectively be seen in (T 4

0 ) and (T 7
4 ), as seen in fig. 1.2 and fig. 1.3.

Conversely, having such differentials in (T 4
0 ) or (T 7

4 ) will ensure a differential in
(B). This discussion is theorem 1.2.11.

However, the differentials d4 is too long and is “jumping” from the area
covered by (T 3

0 ) to that covered by (T 7
3 ), and thus is not visible in either of the

truncated spectral sequences. When computing (Y 3
0 )∗ with (T 3

0 ), in the end all
the remaining classes are gathered on the y = 0 line (see fig. 1.4) to compute
this line in the E1-page of (ϕB).

The d4 differential will be visible in (ϕB), as we will prove in theorem 1.2.21;
in the fig. 1.5, we see that it gives a d1 between the class in (Y 3

0 )∗ represented
by its source, and the class in (Y 7

3 )∗ represented by its target. It is to be noted
that differentials in (B) between the zone covered by (T 3

0 ) and (T 7
3 ) all give d1

in (ϕB) regardless of their original length. Generally, differentials between the
zone of (T ϕ(n+1)

ϕ(n) ) and (T ϕ(n+m+1)
ϕ(n+m) ) will be dm in (ϕB). Some regularity in the

length of the differentials in (ϕB) can be recovered when ϕ is linear; this is not
the case in our example, but it will be later when comparing Bockstein spectral
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1.2 Truncated and gathered spectral sequences
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(Y 1
0 )∗

(Y 2
1 )∗

(Y 3
2 )∗ d1

Figure 1.2: The spectral sequence (T 3
0 ) corresponding to the (B) of fig. 1.1.
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(Y 4
3 )∗

(Y 5
4 )∗

(Y 6
5 )∗

(Y 7
6 )∗

d2

Figure 1.3: The spectral sequence (T 7
3 ) corresponding to the (B) of fig. 1.1.
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Figure 1.4: The E∞ page of (T 3
0 ), isomorphic to (Y 3

0 )∗. The lines fix the degree.
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1.2 Truncated and gathered spectral sequences

x

y

•2 •3 •3 •2 •2 •3 •3 •3 •3 •3 •3 •3

•3 •4 •4 •4 •4 •4 •4 •3 •3 •4 •4

•

• •2

d1 = d̃4

(Y 3
0 )∗

(Y 7
3 )∗

Figure 1.5: The spectral sequence (ϕB) corresponding to the (B) of fig. 1.1.

sequences obtained by filtering with multiplication by an element and by some
power of the same element.

Finally, theorem 1.2.28 deals with the case of transferring a differential of
(ϕB) into (B), and theorem 1.2.35 deals with the null differentials in (B) and
(ϕB).

Consider an unrolled exact couple:

... An+1 An ...

E1
n

i i i

jk
(1.2.7)

For r ≥ 0, let Zr
n and Br

n be the groups of r-cycles and of r-boundaries in E1
n,

that is:
Zr
n = k−1(Im(ir−1 : An+r → An+1))

Br
n = j(Ker(ir−1 : An → An−r+1)).

(1.2.8)

We let Er be the quotient Zr/Br for r ≥ 1, and the differential dr will be a map
Er

n → Er
n+r. We will write ϕZr

n and ϕBr
n for the r-cycles and r-boundaries in

the spectral sequence (ϕB) to distinguish them from those in (B).

Definition 1.2.9. For x ∈ Er
n and y ∈ Er

n+r, we write dr(x) = y when for some
x̄ ∈ Zr

n representing x in the quotient and some ȳ ∈ Zr
n+r representing y, k(x̄)

can be lifted r − 1 times through i, and the image of the (r − 1)-th lift by j is ȳ.

Let us also remark that stating y ̸= 0 is stating that r is maximal for such
lift of k(x̄).
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1.2 Truncated and gathered spectral sequences

We can visualize this in the exact couple diagram:

An+r+1 An+r ... An+1 An

E1
n+r E1

n

α ... ir−1(α)

ȳ x̄

i i

j

i i

jk k

(1.2.10)

We now describe how the differential in the spectral sequences (B), (ϕB) and
(T ϕ(n+1)

ϕ(n) ) are interlinked.

First, we see how a differential in (B) short enough to fit in (T ϕ(n+1)
ϕ(n) ) will

occur.

Theorem 1.2.11. Let n, r and N be integers such that ϕ(N) ≤ n ≤ n+ r <
ϕ(N + 1), and let x ∈ Zr

n and y ∈ Zr
n+r in (B).

Then there is an equivalence between these propositions:

• dr(x) = y in (B).

• dr(x) = y in (T ϕ(N+1)
ϕ(N) ).

where x and y stand for the quotients in the respective Er-pages of the two
spectral sequences.

Proof. This is seen directly in the differential diagram after definition 1.2.9.
Remark that the cycles are not the same generally between (B) and (T ϕ(N+1)

ϕ(N) ),
but here we have r < ϕ(N + 1) − ϕ(N) so that the r-cycles are indeed the
same.

We then need a technical lemma to describe the longer differentials.

Lemma 1.2.12. For integers a ≤ b ≤ c, if the commutative diagram

(Y b+1
b )∗ (Y c

b )∗ (Y c
a )∗

(Y∞
b+1)∗−1 (Y∞

c )∗−1 (Y∞
c )∗−1

f e

p

ic−b−1

id

(1.2.13)

can be populated with classes

x

ic−b−1(β) β β

(1.2.14)
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1.2 Truncated and gathered spectral sequences

then there exists lifts

x x̃− i(u) x̂

ic−b−1(β) β β

(1.2.15)

Proof. The diagram of the statement is commutative because of lemma 1.1.12,
which can also be used to check that the following diagram is commutative and
has rows and column exact:

(Y∞
b )∗ (Y∞

b )∗

(Y c
b+1)∗ (Y c

b )∗ (Y b+1
b )∗ (Y c

b+1)∗−1

(Y c
b+1)∗ (Y∞

c )∗−1 (Y∞
b+1)∗−1 (Y c

b+1)∗−1

(Y∞
b )∗−1 (Y∞

b )∗−1

id

i

id

p

e f

g

id

δ ic−b−1

ic−b i

id

(1.2.16)

Here we can see that x ∈ (Y b+1
b )∗ can be lifted through p to (Y c

b )∗: indeed,
f(x) = ic−b−1(β) so g(x) = 0, and then there exists x̃ ∈ (Y c

b )∗ such that
p(x̃) = x.

In the central square of the diagram, we have chosen two elements in (Y∞
c )∗−1,

β and e(x̃), whose images by ic−b−1 are equal. By pushing β−e(x̃) in the bottom
square, we can see that it is in the image of e, and thus so is β. Write x̃′ such
that e(x̃′) = β, and x′ the image of x̃′ in (Y b+1

b )∗ by p.
Now in the central square, ic−b−1(e(x̃ − x̃′)) = 0, so that there exists u ∈

(Y c
b+1)∗ with δ(u) = e(x̃− x̃′). But the map δ factors through (Y c

b )∗ as e ◦ i, and
i(u) ∈ (Y c

b )∗ has image 0 in (Y b+1
b )∗ by p since u ∈ (Y c

b+1)∗.
Consider the element x̃− i(u) ∈ (Y c

b )∗:

e(x̃− i(u)) = e(x̃)− δ(u)
= e(x̃)− e(x̃− x̃′)
= e(x̃′)

= β

(1.2.17)

p(x̃− i(u)) = p(x̃)

= x.
(1.2.18)

It remains to push x̃− i(u) ∈ (Y c
b )∗ into (Y c

a )∗, and we have:

x x̃− i(u) x̂

ic−b−1(β) β β

(1.2.19)
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1.2 Truncated and gathered spectral sequences

We now describe how a longer differential in (B) occurs in the gathered
spectral sequence (ϕB). We need the following definition:

Definition 1.2.20. An infinite cycle x ∈ (Y n+1
n )∗ in the spectral sequence (B)

is said to represent an element x̂ of the target group (Y∞
−∞)∗ of (B) when:

• x is not a boundary, i.e. is not the target of a differential.

• x lifts through the map (Y∞
n )∗ → (Y n+1

n )∗ to an element x̃ ∈ (Y∞
n )∗ whose

image in (Y∞
−∞)∗ is x̂.

Theorem 1.2.21. Let n, m, N and M be integers such that

ϕ(N) ≤ n < ϕ(N + 1) ≤ ϕ(M) ≤ m < ϕ(M + 1) (1.2.22)

and let x ∈ Zm−n
n and y ∈ Zm−n

m be classes in (B) such that dm−n(x) = y ̸= 0.
Then:

• x is an infinite cycle in (T ϕ(N+1)
ϕ(N) ), thus represent a class x̂ ∈ (Y

ϕ(N+1)
ϕ(N) )∗.

• y is an infinite cycle in (T ϕ(M+1)
ϕ(M) ), thus represent a class ŷ ∈ (Y

ϕ(M+1)
ϕ(M) )∗−1.

• There is a differential dM−N (x̂) = ŷ in (ϕB).

Proof. We see that x and y are infinite cycles in the truncated spectral sequences
using definition 1.2.9.

The canonical maps assemble into a commutative diagram (it can be checked
that each square is commutative using lemma 1.1.12):

(Y n+1
n )∗ (Y

ϕ(N+1)
n )∗ (Y

ϕ(N+1)
ϕ(N) )∗

(Y∞
n+1)∗−1 (Y∞

ϕ(N+1))∗−1 (Y∞
ϕ(N+1))∗−1

(Y∞
m )∗−1 (Y∞

m )∗−1 (Y∞
ϕ(M))∗−1

(Y m+1
m )∗−1 (Y

ϕ(M+1)
m )∗−1 (Y

ϕ(M+1)
ϕ(M) )∗−1

f e

p

id

id

(1.2.23)

Remark that x ∈ (Y n+1
n )∗ and y ∈ (Y m+1

m )∗−1.
Having a differential dm−n(x) = y is having a class α ∈ (Y∞

m )∗−1 with

(Y m+1
m )∗−1 (Y∞

m )∗−1 (Y∞
n+1)∗−1 (Y n+1

n )∗

y α im−n−1(α) x.

(1.2.24)

This is the left column of our diagram.
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1.2 Truncated and gathered spectral sequences

Having y represent a class ŷ ∈ (Y
ϕ(M+1)
ϕ(M) )∗ in (T ϕ(M+1)

ϕ(M) ) is having an element

ỹ ∈ (Y
ϕ(M+1)
m )∗ such that

(Y m+1
m )∗−1 (Y

ϕ(M+1)
m )∗−1 (Y

ϕ(M+1)
ϕ(M) )∗−1

y ỹ ŷ.

(1.2.25)

We choose ŷ and ỹ by pushing α in the bottom right square.
We now have populated our commutative diagram with the elements

x

im−n−1(α) im−ϕ(N+1)(α) im−ϕ(N+1)(α)

α α im−ϕ(M)(α)

y ỹ ŷ

(1.2.26)

We use lemma 1.2.12 with a = ϕ(N), b = n and c = ϕ(N + 1), and with
β = im−ϕ(N+1)(α), that is on our first two rows. We thus get lifts:

x x̃− i(u) x̂

im−n−1(α) im−ϕ(N+1)(α) im−ϕ(N+1)(α)

α α im−ϕ(M)(α)

y ỹ ŷ

(1.2.27)

The right column states that dM−N (x̂) = ŷ in (ϕB).

The next result describes how differentials in (ϕB) have counterparts in (B).

Theorem 1.2.28. Let N < M be integers and let x ∈ ϕZM−N
N and y ∈ ϕZM−N

M

be classes in (ϕB) such that dM−N (x) = y ̸= 0. For some unique ϕ(N) ≤ n <
ϕ(N + 1) and ϕ(M) ≤ m < ϕ(M + 1), x and y are represented by x̌ ∈ (Y n+1

n )∗
and y̌ ∈ (Y m+1

m )∗−1 in the spectral sequence (T ϕ(N+1)
ϕ(N) ) and (T ϕ(M+1)

ϕ(M) ). Let x̌
and y̌ be fixed.

Then there is a unique integer n′ such that ϕ(N) ≤ n ≤ n′ < ϕ(N + 1), and
there is an element x′ ∈ (Y

ϕ(N+1)
ϕ(N) )∗ which is represented by x̌′ ∈ (Y n′+1

n′ )∗ in

the spectral sequence (T ϕ(N+1)
ϕ(N) ), that supports a differential dM−N (x′) = y in
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1.2 Truncated and gathered spectral sequences

(ϕB), and such that there is a differential dm−n′
(x̌′) = y̌ ̸= 0 in (B). Moreover,

n′ does not depend on the choice of the representative x̌ and y̌.

Proof. We work again in diagram (1.2.23). Remark that x ∈ (Y
ϕ(N+1)
ϕ(N) )∗ and

that y ∈ (Y
ϕ(M+1)
ϕ(M) )∗−1.

First fix let’s write im−ϕ(N+1)(α) for the image of x in (Y∞
ϕ(N+1))∗−1, with

m maximal for such lift α in (Y∞
m )∗−1. Necessarily, ϕ(M) ≤ m < ϕ(M + 1). By

definition, the image of im−ϕ(M)(α) in (Y
ϕ(M+1)
ϕ(M) )∗−1 is y up to a boundary of

ϕBM−N
M ; without loss of generality, we can suppose that it is y.
We can then push α to get ỹ ∈ (Y

ϕ(M+1)
m )∗−1 and y̌ ∈ (Y m+1

m )∗−1. By
definition, n is such that x can be lifted to (Y

ϕ(N+1)
n )∗ but not to (Y

ϕ(N+1)
n+1 )∗.

Denote x̃ such a lift and x̌ its non-zero image in (Y n+1
n )∗.

Our diagram is populated as such:

x̌ x̃ x

im−n−1(α) im−ϕ(N+1)(α) im−ϕ(N+1)(α)

α α im−ϕ(M)(α)

y̌ ỹ y

(1.2.29)

It is however possible that im−n−1(α) is null.
Let n′ be the biggest integer such that im−n′

(α) = 0 ∈ (Y∞
n )∗−1. Since

im−n−1(α) = f(x̌), im−n(α) = 0 so n ≤ n′. We now work in diagram (1.2.23)
with n replaced by n′: im−n′−1(α) can be lifted to (Y n′+1

n′ )∗ since im−n′
(α) = 0.

Denote x̌′ such a lift. Again using lemma 1.2.12 on our first two rows we can
construct classes x̃′ ∈ (Y

ϕ(N+1)
n′ )∗ and x′ ∈ (Y

ϕ(N+1)
ϕ(N) )∗ to complete the diagram

and get the result.

Remark that with this level of generality, the statement made cannot be
ameliorated regarding the fact that we may have to change x̌ into x̌′ to get the
differential in (B). In fact, let us consider the tower of spectra such that:

Yn =


∗ if n ≥ 3

HZ if n = 2

∗ if n = 1

ΣHZ if n ≤ 0

(1.2.30)

and the integer function ϕ such that:

ϕ(n) =

{
n if n ≤ 0

n+ 1 if n ≥ 1.
(1.2.31)
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1.2 Truncated and gathered spectral sequences

We will figure the interesting part the tower of spectra for each spectral
sequence with the cofibers below. Remark that with (T 2

0 ) we quotient the tower
by the limit which is Y2, and that we put between braces the name of a generator
for the homotopy.

(B) :

Y3 Y2 Y1 Y0

Y 3
2 Y 2

1 Y 1
0

∗ HZ ∗ ΣHZ

HZ{ȳ} ΣHZ{x̂′} ΣHZ{x̂− x̂′}

(1.2.32)

In (B) there is a differential d(x̂′) = ȳ.

(T 2
0 ) :

Y 2
2 Y 2

1 Y 2
0

Y 2
1 Y 1

0

∗ ΣHZ{x̄′} ΣHZ{x̄′} ∨ ΣHZ{x̄− x̄′}

ΣHZ{x̂′} ΣHZ{x̂− x̂′}

(1.2.33)

In (T 2
0 ) there is no non-zero differential.

(ϕB) :

Y3 Y2 Y0

Y 3
2 Y 2

0

∗ HZ ΣHZ

HZ{ȳ} ΣHZ{x̄′} ∨ ΣHZ{x̄− x̄′}

(1.2.34)

In (ϕB) there are differentials d(x̄′) = ȳ, and d(x̄ − x̄′) = 0. But now, with
slightly different notation from theorem 1.2.28, we have a class x̄ = (x̄− x̄′) + x̄′
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1.2 Truncated and gathered spectral sequences

such that d(x̄) = ȳ in (ϕB), and that class is represented by x̂− x̂′ at the end of
(T 2

0 ) since x̂′ is of lower filtration. But in (B), d(x̂− x̂′) = 0, the differential is
really supported by x̂′. Thus, we cannot get a better result. However, this will
not be an issue in the practical application following, since we will be able to
prove a better result on the Bockstein spectral sequences we will compute.

Statements can also be made regarding null differentials.

Theorem 1.2.35. (a) Let x ∈ (Y
ϕ(N+1)
ϕ(N) )∗ be an M −N -cycle in (ϕB), that is

di(x) = 0 for i ∈ {1, . . . , M − N}. Then any x̂ ∈ (Y n+1
n )∗ representing

x in (T ϕ(N+1)
ϕ(N) )∗ is such that dm−n(x̂) = 0 in (B) for any m such that

n < m ≤ ϕ(M + 1).

(b) Let x̂ ∈ (Y n+1
n )∗ be an m − n-cycle in (B). Then there exists a class

x ∈ (Y
ϕ(N+1)
ϕ(N) )∗ represented by x̂ in (T ϕ(N+1)

ϕ(N) )∗ such that x is an M −N-
cycle in (ϕB) for any M such that ϕ(N + 1) < ϕ(M + 1) ≤ m.

Proof. First point is direct in diagram (1.2.23).
Second point is using lemma 1.2.12 to get a class represented by x̂ whose

image in (Y∞
ϕ(N+1))∗−1 can be lifted as much as the image of x̂ in (Y∞

n+1)∗−1.
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Chapter 2

Recovering the extensions
from the Bockstein spectral
sequences

Let k be a ring spectrum such that k∗ = Z[v] is a polynomial ring on some
generator v of positive even degree, and Z is a discrete valuation ring concentrated
in degree zero, with a maximum ideal (q) and a quotient field denoted by F. LetX
be a bounded below spectrum. In this chapter, we will discuss the circumstances
under which it is possible to compute the extensions, thus computing k∗X as
a k∗-module, from the four Bockstein spectral sequences associated to q and v
that we can construct for k.

Generally, a Bockstein spectral is determined from a ring spectrum k, an
element v of k∗ and any spectrum X. The usual point of view on the Bockstein
is that of a single column spectral sequence, obtained by considering the exact
sequence in homotopy associated to the cofiber sequence of the multiplication
by v map:

k∗X k∗X

k/v∗X

v

(2.0.1)

That exact couple has only the homology degree, and thus cannot be unrolled –
or is already unrolled.

We will use another point of view which will allow us to present our results
more naturally. We need to consider only ring spectra k and v ∈ k∗ such that k is
bounded below and v is of non-negative degree. Hereafter, v can be substituted
with q. We will consider the spectral sequence arising from the tower of spectra

. . . Σ2|v|k ∧X Σ|v|k ∧X k ∧X k ∧X . . .v v v id id

(2.0.2)
The transition from the multiplication by v map and the identity will be on the
piece of the tower indexed by 0, and the v map will decrease this index by 1.
When taking homotopy groups, the colimit of the tower is k∗X and the limit is
null since k is bounded below; in the case of multiplication by q, it is null since
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2

Z is a discrete valuation ring. Thus, we get a spectral sequence of the type:

E1
s,t = k/vsX ⊗ P (v)t ⇒ ks+tX (2.0.3)

with differentials of degrees |dr| = (−r − 1, r). We see this point of view as
more convenient than the classical one, because the E∞-page will have all the
named classes needed to represent the target group, provided we can compute
the extensions.

When k∗ ∼= P (v)⊗A where A is a ring concentrated in degrees d such that
−|v| < d < |v|, then the multiplication by v maps will weak equivalences between
Σ|v|k and k≥|v| and the tower will be a gathered (see chapter 1) Whitehead tower
(see chapter 3). This is true for k∗, since k∗ ∼= P (v)⊗Z and Z is concentrated
in degree 0.
Z is the homotopy ring of a ring spectrum k/v which is the cofiber of the

multiplication by v map in k. Similarly, the cofiber k/q of the multiplication by
q map has homotopy group the ring F[v]. We can go further and quotient k/v
and k/q by respectively q and v to get the Eilenberg-MacLane spectrum HF,
and we have four Bockstein spectral sequences of the form:

k/q∗X ⊗ P (q) k∗X

H∗(X;F)⊗ P (q)⊗ P (v) k/v∗X ⊗ P (v)

(q.2)

(q.1)

(v.1) (v.2) (2.0.4)

The names chosen reflect on which element the Bockstein spectral sequence is
computed and its rank in the computation. As in (2.0.3), the elements will have
bidegrees (0, 0) for q, (0, |v|) for v and (|x|, 0) for any x in the specified homology
group. Examples of such spectra are ku, ℓ and the others integral Morava
K-theories with coefficients Zp[vn] for some n ≥ 2. Our main example will be
ku, the p-localized connective complex K-theory, with coefficients ku∗ ∼= Z(p)[u]
where u is in degree 2. The application we have in mind is the computation of
THH∗(ku) done in chapter 5. The four Bockstein spectral sequences for ku will
be:

(V (0) ∧ ku)∗X ⊗ P (p) ku∗X

H∗(X;Fp)⊗ P (p)⊗ P (u) H∗(X;Z(p))⊗ P (u)

(2.0.5)

We will give two sets of hypothesis under which the spectral sequences
determine the k∗-module structure of the target group. The second set will be
a simplified version of the first, less general but easier check. It is in fact this
simplified hypothesis that we will use to compute THH∗(ku) as a ku∗-module.
We will first provide an example of how the differentials can determine the
extensions, and then an example where the spectral sequences will be shown
not to determine the target module, which will provide some motivation for the
hypothesis.

The following hypotheses and formulas are exact, but in applications, the
differentials in the spectral sequences will often only be determined up to units;
in what follows, it would mean that the π(qk0ai) might only be determined up to
a unit, or equivalently, that the formulas obtained for the extensions might only
be determined up a to a unit.
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2.2 Examples of computations

2.1 A note on extensions

We will begin by reviewing what are extension problems in spectral sequences.
Strong convergence in the sense of [12] is relative to an abelian group G, called
the target group, and a filtration · · · ⊂ Fs+1 ⊂ Fs ⊂ . . . of G, and implies that
all the pieces E∞

s of the E∞-page fit in short exact sequences

0→ Fs+1 → Fs → E∞
s → 0. (2.1.1)

For our Bockstein spectral sequences (v.1) and (v.2), G is respectively k/q∗X
and k∗X and Fs for s ≥ 0 is the image of the multiplication by vs map in G.
For (q.1) and (q.2), G is respectively k/v∗X and k∗X and Fs for s ≥ 0 is the
image of the multiplication by qs map in G. If one of the Fr is known, and
the E∞-page of the spectral sequence is known, then the Fs for s ≤ r can be
determined inductively from the short exact sequences by solving the extension
problems, that is, knowing the two groups on both sides of the short exact
sequence, what group can sit in the middle? Each Fs is said to be an extension
of E∞

s by Fs+1. Since we are interested not only in the group structure but in
an R-modules (with R being here k/v∗, k/q∗ or F), such extensions are classified
by the extensions groups (see for example theorem 3.4.3 of [37])

Ext1R(E
∞
s ;Fs+1). (2.1.2)

In the case of (v.1) or (q.1), R is F and each E∞
s is a free F-module, thus the

Ext1F are trivial and Fs is simply the sum Fs+1 ⊕ E∞
s over F. The structure

of the exact couple defining our Bockstein spectral sequence ensure that the
multiplication by respectively v or q on the E∞-page is the same as in the target
group, thus for (v.1) and (q.1) there is an isomorphism between the E∞-page
and the target group respectively as k/q∗-modules or k/v∗-modules.

There will, however, be extension problems in (v.2) and (q.2). We will make
our statement about (v.2). In that case, R is k/v∗, and each E∞

s is not free
but a sum of some R and R/(qk) for various k ≥ 1. Then the Ext1R will be
a product of Fs+1/q

kFs+1 for each element R/(qk) of the initial sum. This
can be computed using proposition 3.3.4 of [37] and using the straightforward
resolution of R/(qk) with the map qk : R→ R. Thus when an element x ∈ E∞

s

has qkx = 0, it is possible that a lift x′ ∈ Fs of x is such that qkx′ is not zero,
but is an element y ∈ Fs+1 determined up to qkFs+1 by an element in the Ext1R
group. Determining all these elements y is what we call solving the extension
problems. When it is the case, we will say that qkx makes an extension with y,
or sometimes just that there is an extension between x and y. Moreover, as in
the case of (v.1), the multiplication by v is determined by the Bockstein spectral
sequence, so solving the extension problems is the only things to do to determine
the target group as a k∗-module from the E∞-page. Finally, everything we just
said about (v.2) can also be stated about (q.2) by replacing every v’s with q’s
and vice versa.

2.2 Examples of computations

We will now present a basic example of extension and of the kind of reasoning we
will use later to compute them. Assume given a spectrum X such that k/v∗X
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2.2 Examples of computations

a · · · · ·

b · · · · · ·

Figure 2.1: First example: the E∞ page of (v.2).

a · · · · ·

b · · · · · ·

a · · · · ·

b · · · · · ·

Figure 2.2: First example: two possibilities for k∗X.

is generated over k/v∗ by two classes a and b such that qa = 0, qb = 0 and
|a| = |v|+ |b|. Assume also that the spectral sequence (v.2) collapses at its first
page, so that E∞ ∼= E1 ∼= F{a, b}⊗P (v) as seen in fig. 2.1, where multiplication
by v is horizontal and multiplication by q is vertical. From this description, we
know that k∗X is generated by two classes a and b that are lifts of the classes of
the same name in E∞, and we know that qb = 0 since b is alone in its degree.
However, we do not know what qa is: it is possible that qa = 0 as it is in E∞,
or that qa = vb up to a unit, since vb is in higher filtration that a. These two
possibilities, depicted in fig. 2.2, are not presenting isomorphic k∗-modules, and
we cannot distinguish between them using (v.2) alone; here we need to know
(v.1), whose E∞-page is isomorphic to k/q∗X, and can be seen in fig. 2.3. If
qa = 0, then vkb is not divisible by q for any k, but if qa = vb, then vkb is
divisible by q for any k ≥ 1. In the second case, vkb = 0 in k/q∗X for k ≥ 1,
and the classes with these names in (v.1) will be in the image of the differential;
in the first case, they will not be in the image of the differential.

We will now work out a second example. Here, we began with a module
that we know is determined from the spectral sequences. We have computed
the spectral sequences from the module, but we will present the computation
beginning with the spectral sequences and deriving the module, as if we were
doing a real computation. We let X be a suitable space for what follows.

Let H∗(X;F) be the free F-module on sixteen generators

a, b, c, d, α, β, γ, δ, a′, b′, c′, d′, α′, β′, γ′, δ′ (2.2.1)

a · · · · ·

b · · · · · ·

a · · · · ·

b

Figure 2.3: First example: two possibilities for k/q∗X.
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2.2 Examples of computations

ab c d α βγδa′b′ c′ d′ α′ β′γ′δ′

Figure 2.4: Second example: the F-module H∗(X;F).

a · · · · ·
a′ · · · · ·

b · · · · · ·
b′ · · · · · ·

c · · · · · ·
c′ · · · · · ·

d · · ·
d′ · · ·

Figure 2.5: Second example: the k/q∗-module k/q∗X.

with b in lowest degree and

|a| = |b|+ 3|v|
|c| = |b|+ |v|
|d| = |b|+ 2|v|
|α| = |b|+ 6|v|+ 1

|β| = |b|+ 9|v|+ 1

|γ| = |b|+ 8|v|+ 1

|δ| = |b|+ 7|v|+ 1

|x′| = |x|+ 1 for any x.

(2.2.2)

We place them in fig. 2.4 by order of degrees, to scale with |v| = 2.
We now describe the spectral sequence (v.1) that compute k/q∗X:

d4(α) = v4d d4(α′) = v4d′

d6(β) = v6a d6(β′) = v6a′

d7(δ) = v7b d7(δ′) = v7b′

d8(γ) = v8c d8(γ′) = v8c′

(2.2.3)

so that k/q∗X, which is isomorphic to the E∞ page of (v.1), is given by fig. 2.5.
On the other side, we have the spectral sequence (q.1):

d1(x′) = qx for x equal to b, c, d, α, δ and γ.

d2(x′) = q2x for x equal to a and β.
(2.2.4)

whose E∞-page, isomorphic to k/v∗X, is given by fig. 2.6.
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2.2 Examples of computations

ab c d α βγδ

· ·

Figure 2.6: Second example: the k/v∗-module k/vxX.

a · · · · ·

· · ·

b · · · · · · · ·

c · · · · · ·

d · · · ·

Figure 2.7: Second example: the E∞-page of (v.2).

Following that spectral sequence is (v.2), whose target is k∗X. However, this
time the E∞-page need not be isomorphic to k∗X; there may be extensions. We
begin with the differentials in (v.2):

d3(α) = v3qa

d5(δ) = v5d

d6(β) = v6a

d7(γ) = v7c

d9(qβ) = v9b.

(2.2.5)

The E∞-page is given in fig. 2.7. We now have to lift the remaining class in
k∗X. We do so by using definition 1.2.9. The differential d5(δ) = v5d implies
that we can lift d ∈ E∞ into d ∈ k∗X such that v5d = 0. Similarly, we get a
c ∈ k∗X such that v7c = 0. The differentials supported by β and qβ imply that
we can lift a and b into a b ∈ k∗X, with v6a = 0 and v9b = 0, but because of the
linearity of the connecting map k/v∗X → k∗−1X, we can also take our lifts such
that qv5a = v8b. Later, we will write π(a) = b when that kind of case occurs.
This is the only relationship given by a multiplication by q that we now for sure
on our lifts at the moment; it is possible, for example, that qd is not zero but
is vc. The last differential allow us to lift qa ∈ E∞ into q0a ∈ k∗X such that
v3q0a = 0. Here, we have chosen the notation q0a to emphasize the fact that we
do not know if, with the lifts chosen, qa is equal to q0a; q0 is not an element in
any ring, and q0a is not a product but a name for a lift in k∗X of qa ∈ k/v∗X.
In fact, here, because of the relationship qv5a = v8b, q0 cannot be equal to qa in
k∗X. We write all the known properties of our lifts in fig. 2.8, where the dotted
lines indicate that we do not know the corresponding multiplication by q.

We solve the extensions problems by going from the lowest degree generator
to the highest. The class b must have qb = 0 since there is no element divisible
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2.2 Examples of computations

a · · · · ·

q0a · ·

b · · · · · · · ·

c · · · · · ·

d · · · ·

Figure 2.8: Second example: the known relationships between the lifts.

by v in its degree. Next, qc could be zero or vb up to a unit; but if it were vb,
then vb would be divisible by q, and thus project to zero in k/q∗X; from our
previous description of k/q∗X, this is not the case, so qc = 0. Similarly, if qd
were not zero, one of the classes v2b or vc would project to zero in k/q∗X, but
this is impossible. So, qd = 0. Lastly, since neither vd, v2c or v3b project to zero
modulo q, it must be that qq0a = 0.

It remains to compute qa. Since q0a is a lift of qa ∈ E∞, it must appear in
the formula. From the already known relation qv5a = v8b, v3b must also appear
in the formula. Thus, we have:

qa = q0a+ v3b+ t (2.2.6)

where t is such that v5t = 0. Here, t can be any linear combination ηvd+ νv2c.
We use k/q∗X again: we know that for some y, v4d + v5y is zero modulo q.
Adding y is necessary because we only that d ∈ k∗X project to what we called
d ∈ k/q∗X up to some element divisible by v. For this to be possible, it must be
that η is not zero. This implies that v7b+ νv6c is divisible by q, but v6b+ νv5x
is not. But no combination of v6b and v5c has this property in k/q∗X, excepted
if ν = 0. So we have determined that

qa = q0a+ v3b+ ηvd. (2.2.7)

The formula still has an undetermined unit η; later, by inspecting carefully the
differentials, we will be able to determine η. Our result is presented in fig. 2.9

Finally, we review an example where the spectral sequences do not determine
the module. After this following example, we will provide hypotheses under
which it is always possible to recover the module: the hypothesis that is not
verified in what follows is hypothesis 2.3.30 (Qi) for ai = a. We will present
two non-isomorphic k∗-modules with the same four Bockstein spectral sequences.
We can see that in both case, there is a relationship qd

d≃ v2c since there is a
differential d1(d′) = qd in (q.1) and a differential d2(d′) = v2c in (v.1), but that

|d| < |vo1(a)q0a|. (2.2.8)

The module M1 of fig. 2.10 has a presentation with five generators a, q0a, b,
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2.2 Examples of computations

a · · · · ·

q0a · ·

b · · · · · · · ·

c · · · · · ·

d · · · ·

Figure 2.9: Second example: the k∗-module k∗X.

a · · · · ·

q0a · ·

b · · · · · · ·

c · · · ·

d · ·

Figure 2.10: Third example: the k∗-moduleM1 = k∗X1.

a · · · · ·

q0a · ·

b · · · · · · ·

c · · · ·

d · ·

Figure 2.11: Third example: the k∗-moduleM2 = k∗X2.
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2.2 Examples of computations

c and d over k∗ and the relations:

qa = q0a+ v2b v6a = 0

qq0a = 0 v3q0a = 0

qb = 0 v8b = 0

qc = 0 v5c = 0

qd = v2c v3d = 0.

(2.2.9)

The moduleM2 of fig. 2.11 has a presentation with the same five generators,
but with relations:

qa = q0a+ vc+ v2b v6a = 0

qq0a = 0 v3q0a = 0

qb = 0 v8b = 0

qc = 0 v5c = 0

qd = v2c v3d = 0.

(2.2.10)

These two modules are not isomorphic, since M1 has an element (namely b)
in degree |b| and an element (namely a) in degree |a| such that

v3(qa− v2b) = 0 (2.2.11)

but no elements of M2 in these degrees verify this equation. However, if we
realizeM1 andM2 as some homologies k∗X1 and k∗X2, then the four Bockstein
spectral sequences associated to these spectra are isomorphic. Indeed, forX = X1

or X = X2, the module k/v∗X will be the one of fig. 2.12, with generators b, a,
c, δ, γ and α over k/v∗ and relations

q2a = 0, qb = 0, qc = 0, qδ = 0, q2γ = 0, qα = 0. (2.2.12)

b c a

·

d δ γ

·

β α

·

Figure 2.12: Third example: the k/v∗-module k/v∗X.

The non-zero differentials in the (v.2) spectral sequence are given by:

d3(δ) = v3qa

d3(γ) = v3d

d5(qγ) = v5c

d6(α) = v6a

d8(qα) = v8b

(2.2.13)
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2.2 Examples of computations

a · · · · ·

qa · ·

b · · · · · · ·

c · · · ·

d · ·

Figure 2.13: Third example: the E∞-page of (v.2).

a · · · · ·

b · · · ·

c ·

d · ·

b′ · · · · · · ·

c′ · · · ·

a′ · ·

Figure 2.14: Third example: the k/q∗-module k/q∗X.

thus the E∞-page of (v.2) is given by fig. 2.13, and the difference between k∗X1

and k∗X2 is only produced by the extensions for the multiplication by q.
The module H∗(X;F) has generators b, c, a, d, δ, γ, α and b′, c′ a′, d′, δ′, γ′,

α′ over F, and the (q.1) spectral sequence has differentials given by d1(x′) = qx
for any x excepted a, γ and α, which have d2(x′) = q2x.

On the other side of the four spectral sequences, we have k/q∗X as seen on
fig. 2.14 generated by b, b′, c, c′, a, a′, and d over k/q∗, and with relations:

v5b = 0, v8b′ = 0, v2c = 0, v5c′ = 0

v6a = 0, v3a′ = 0, v4d = 0.
(2.2.14)

The non-zero differentials in the spectral sequence (q.2) are given by:

d1(b′) = qb

d1(c′) = qc

d2(v5b′) = q2v3a

d2(v2c′) = q2d

d3(a′) = q3a

(2.2.15)
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2.3 Statements of the hypotheses and a lemma

a · · · · ·

qa · · · · ·

b · · · ·

c ·

d · ·

qd · ·

Figure 2.15: Third example: the E∞-page of (q.2).

thus the E∞-page of (q.2) is given by fig. 2.15 and the difference between k∗X1

and k∗X2 is only produced by the extensions for the multiplication by v.
With the same notation as before, the (v.1) spectral has non-zero differentials

given in both cases by:

d2(d′) = v2c

d3(δ′) = v3a′

d3(γ) = v3dd5(δ) = v5b

d5(γ′) = v5c′

d6(α) = v6a

d8(α′) = v8b′.

(2.2.16)

2.3 Statements of the hypotheses and a lemma

We will recover k∗X when X is a bounded below spectrum from the computation
of the spectral sequences (q.1) followed by (v.2). However the spectral sequence
(v.1) will also be used. Our first hypothesis will be used in lemma 2.3.18 and
will provide some structure to the generators of k∗X that we will choose.

Recall that an infinite cycle in a spectral sequence is an element (in any page)
whose differential in any subsequent page is zero. Thus, an infinite cycle can
be projected in every page of the spectral sequence, is also an element of the
E∞-page and can be lifted in the target group, but might be zero if it is the
target of a differential.

Hypothesis 2.3.1 (R1). In any degree ∗, the codimension over F of the subspace
of the infinite cycles ⋂

r≥1

Zr
0 ⊂ E1

0 = H∗(X;F) (2.3.2)

is at most 1 in both the spectral sequences (v.1) and (q.1).
Moreover, for any degree ∗, there exists x ∈ k/v∗X such that every non-zero

differential going out of the bidegree (∗, 0) in (v.2) is of the form

dn(qhx+ y) = vna (2.3.3)

for some n, h and y such that dn(y) = 0.
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2.3 Statements of the hypotheses and a lemma

We will use the first part of the hypothesis in lemma 2.3.18 the following
way: there are two connecting homomorphism

H∗(X;F) k/q∗−|v|−1

k/v∗−1

(2.3.4)

and if we have two elements α ∈ k/v∗−1 and β ∈ k/q∗−|v|−1 that we know
can both be lifted to H∗(X;F), then their lifts are not infinite cycles in one of
the spectral sequences (v.1) or (q.1). Since from two hyperplanes, it is always
possible to choose a third space that is in direct sum with both hyperplanes, we
can choose a common lift for α and β up to a unit.

The name (R1) stands for rank 1, and is coming from the simplified version
of this hypothesis:

Hypothesis 2.3.5 (sR1). H∗(X;F) is of dimension at most 1 over F in any
degree ∗.

(sR1) is directly implying the first part of (R1), and the second part follow
from the fact that under (sR1), k/v∗X is generated over Z by at most one
element in each degree.

To complete the structure of the lift of the E∞-page that we will use in k∗X,
we add the following:

Hypothesis 2.3.6 (D). Assume (R1). We can choose a family (ai)i∈I of non-
divisible by q elements of k/v∗X, such that the k/v∗ = Z-sub-modules of k/v∗X
generated by the ai decompose k/v∗X as a direct sum of summands of the type
Z or Z/(qm) for any m, and is such that the element x of hypothesis (R1) is in
the family and carry differentials in (v.2) of the form

dn(qhx) = vnqkai (2.3.7)

for any n and h such that dn(qhx) is not zero.

Putting it differently, we have a family of elements of k/v∗X, that decompose
it in a similar manner to the decomposition of finitely generated modules over
an integral domain, such that any differential of (v.2) is between two elements of
the family. The integer n associated to k and ai will be denoted by ok(ai), it is
the v-torsion order of qkai in the E∞-page of (v.2). When qkai doesn’t receive
any differential, we will put ok(ai) = +∞ so that 1 ≤ ok(ai) ≤ +∞ for any k
and i.

That hypothesis is not a consequence of (R1), as we will argue in section 2.5.
However, (D) is a consequence of (sR1), since when there is a differential
dn(qhx) = vny, then y has a well-defined degree.

We need to state a consequence of these hypotheses to state the rest of our
hypothesis. We will make the following distinction:

Notation 2.3.8. When we lift a class qka ∈ k/v∗X that survive to the E∞-page
of (v.2), we will use the notation qk0a for the class obtained in k∗X. The spectral
sequence (v.2) is a Bockstein spectral sequence associated to the multiplication
by v, and thus, the classes lifted from the E∞-page into k∗X will have the same
properties for the multiplication by v in the E∞-page and in k∗X, but might not
have the same properties for the multiplication by q.
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2.3 Statements of the hypotheses and a lemma

The notation q will be used only for the multiplication by q in the spectral
sequence or for the multiplication by q in k∗X, which is still unknown at this
stage: if we have two lifts qk0a and qk+1

0 a of qka and qk+1a, it is possible that
q · qk0a ̸= qk+1

0 a. The notation is analogous to our use of v0 instead of p when
computing over ℓ or ku.

Proposition 2.3.9. Under (D), there are lifts qk0ai ∈ k∗X of all the qkai ∈
k/v∗X that are infinite cycles in (v.2) such that:

(a) When qkai is of v-torsion in the E∞-page of (v.2), then vok(ai)qk0ai = 0,
otherwise qk0ai is not of v-torsion either.

(b) when there are differentials

d(qhx) = vok(ai)qkai and d(qh+1x) = voℓ(aj)qℓaj (2.3.10)

in (v.2), then
q · (vok(ai)−1qk0ai) = voℓ(aj)−1qℓ0aj (2.3.11)

in k∗X. Note that it might be that ai = aj and ℓ = k + 1.

(c) when
d(qhx) = vok(ai)qkai and qh+1x = 0 (2.3.12)

in (v.2), then
q · (vok(ai)−1qk0ai) = 0 (2.3.13)

in k∗X.

The qk0ai generate k∗X as a k∗-module.

Proof. We work in the exact couple diagram of definition 1.2.9 for our spectral
sequence. If there is a non-zero differential d(qhx) = vok(ai)qkai, then:

k∗X k∗X ... k∗X k∗X

k/v∗X k/v∗X

qk0ai ... vok(ai)−1qk0ai 0

qkai qhx

v v

j

v v

j∂ ∂

(2.3.14)
Here vok(ai)−1qk0ai is obtained by setting vok(ai)−1qk0ai = ∂(qhx); the differential
ensure that it is divisible by vok(ai)−1, and that j(qk0ai) = qkai, so qk0ai is a lift
of qkai.

To get the second and third points of our claim, we use the fact that the
connecting map ∂ is a map of k∗-module, and thus:

∂(qh+1x) = q · ∂(qhx) = q · vok(ai)−1qk0ai (2.3.15)

which might be the lift of another element in case (b), or zero in case (c).
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2.3 Statements of the hypotheses and a lemma

The case of the non-torsion classes remains. If qkai ∈ k/v∗X is an infinite
cycle, then ∂(qkai) = 0 so that it lifts through j to qk0ai ∈ k∗X. Furthermore, if
qkai is not of v-torsion in the E∞-page, then qk0ai cannot be of v-torsion in k∗X,
otherwise qkai would be a boundary in some page of the spectral sequence.

We will write π(qk0ai) = qℓ0aj when we are in the situation of (b), and
π(qk0ai) = 0 in the situation of (c), and note that when we will talk about degrees
later we will use the convention that |0| = −∞. Note that the qk0ai are not a
minimal set of generators of k∗X: if there is no extension to construct the target
group from the E∞-page, there should be a relation

q · qk0ai = qk+1
0 ai. (2.3.16)

This is possible only if π(qk0ai) = 0 – if it is not the case, the relation of (b) is
an obstruction. In general, there should be relations of the type

q · qk0ai = qk+1
0 ai + v•π(qk0ai)+??? (2.3.17)

where • is determined by homogeneity the unknown part of the formula will be
determined by the rest of the hypotheses.

We now state the following result related to the divisibility by q in k∗X; this
result is central to the rest of the analysis.

Lemma 2.3.18 (divisibility by q). We assume (R1). Suppose given an element
b of k∗X not divisible by v such that vmb is not divisible by q but vm+1b is, that
there is an element a of k∗X not divisible by v such that qvna = vm+1b. Then
the modulo q reduction of vmb is non-zero, but that of vm+1b is zero, and there
is a differential d(x) = vm+1b in (v.1). Moreover,

(a) if n = 0, then there is a differential d(x) = qk+1a′ in (q.1) for some a′ ∈
H∗(X;F) which is the reduction of a′ ∈ k/v∗X such that qka′ = a, and the
relationship qvna = vm+1b in k∗X results from an extension in (v.2).

(b) if n > 0, then x ∈ H∗(X;F) lifts to x′ ∈ k/v∗X, which support a differential
in (v.2) that can be written either d(−x′) = vnqa when n < m+ 1, d(x′) =
vm+1b when m+ 1 < n or d(x′) = vm+1(b− qa) when n = m+ 1.

Proof. We work in the following commutative diagram of cofiber sequences
obtained from multiplication by v and q

Σ−2HF Σ|v|−1k/q Σ−1k/q Σ−1HF

Σ−1k/v Σ|v|k k k/v

Σ−1k/v Σ|v|k k k/v

Σ−1HF Σ|v|k/q k/q HF

(2.3.19)
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2.3 Statements of the hypotheses and a lemma

that we smash with X take homotopy groups to obtain long exact sequences.
On one hand, when n = 0, we write the relationship qa = vm+1b in k∗X in

the central square. Using exactness, there exist x and y in H∗+1(X;F) such that

y

a qka′ ̸= 0

vmb vm+1b = qa 0

x vmb 0

(2.3.20)

Since from two hyperplanes, we can always choose a third subspace of dimension
1 that is in direct sum with both hyperplanes, under the first part of (R1), we
can choose x and y to be equal up to a unit, and its image through the vertical
map yield the claimed differential in (q.1).

On the other hand, when n > 1, we can start similarly from the central
square with a supplemental lift

vn−1a vna

vmb vm+1b = qvna

x vmb ̸= 0 0

(2.3.21)

and so starting to push from the top left corner we get

vn−1a vna

qvn−1a vm+1b = qvna

0

(2.3.22)

and subtracting the bottom part of the two diagrams

x′ vmb− qvn−1a 0

x vmb 0

(2.3.23)

which gives the claimed differentials depending on the highest filtration degree
in vmb− qvn−1a.

The cases that will be particularly of interest to us will be (a) (n = 0) and
(b) with n < m+ 1, since we are interested in the extensions, and in that case
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2.3 Statements of the hypotheses and a lemma

the class multiplied by q must be in lower filtration than the class receiving
the multiplication. Thus, when a class becomes divisible by q because of an
extension, it is always possible to determine from the spectral sequence the name
of a class that will represent the quotient with this lemma, that is, to determines
a from b.

To keep track of the possible extensions that would make a class ai divisible
by q, we introduce the following relation on the first page of the spectral
sequence (v.2): when in the (a) case of lemma 2.3.18, precisely when there
are differentials d(x) = vm+1ai in (v.1) and d(x) = qk+1aj in (q.1), we will

write qk+1aj
d≃ vm+1ai; when in the (b) case of lemma 2.3.18, that is there are

differentials d(x) = vm+1ai in (v.1) and d(−x) = vnqkaj in (v.2) with n < m+1,

we will write vnqkaj
d≃ vm+1ai. That relation

d≃ lift as an equality in k∗X if we
allow the classes on the left and right side to be replaced by classes represented
by the same name in (v.2), that is we can add some vωc with ω > n on the left
side and some vω

′
c′ with ω′ > m+1 on the left side. We will be more interested

in the converse: when the spectral sequences do not witness a relation
d≃, then

no such equality can hold in k∗X. We also remark that under (R1) and (D),

when y
d≃ vm+1ai then the name y is unique, since (D) results in unicity on the

lift x′ in the (b) case of lemma 2.3.18.
We will now state our last two hypotheses: (Ti) is related to the length of

the tower for the multiplication by v for some ai, and (Qi) will prevent some

divisibility by q to occur using
d≃ statements. These hypotheses depend on i

and are not stated for all ai. For the ai such that (Ti) and (Qi) hold, we will be
able to compute the extensions. It might be the case that our target module
can be split into M1 ⊕M2, where the hypothesis holds on M1 but not on M2;
for THH∗(ku) the splitting is between the torsion and the non-torsion, and we
will recover the extensions on the torsion using the techniques of this chapter,
but the extensions on the non-torsion will be computed by other means.

Hypothesis 2.3.24 (Ti). For each k, when π(qk0ai) = qh0aj, with i ̸= j and aj
might be taken to be 0, the followings are true:

(a) If ℓ is such that
|aℓ| < |aj |

|aℓ| ≡ |ai| (mod |v|)

|vo0(aℓ)aℓ| > |ai|

(2.3.25)

then
|vo0(aℓ)aℓ| ≥ |vok(ai)qk0ai|. (2.3.26)

(b) If ℓ1 and ℓ2 are both such that (for ℓ = ℓ1 or ℓ = ℓ2)

|aj | ≤ |aℓ| < |ai|
|aℓ| ≡ |ai| (mod |v|)

|vok+1(ai)qk+1
0 ai| < |vo0(aℓ)aℓ| < |vok(ai)qk0ai|

(2.3.27)

then
|aℓ1 | < |aℓ2 | ⇒ |vo0(aℓ2

)aℓ2 | < |vo0(aℓ1
)aℓ1 |. (2.3.28)
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2.3 Statements of the hypotheses and a lemma

When aj = 0, we recall that we use the convention |0| = −∞. If qk0ai is not of
v-torsion, we will let |vok(ai)qk0ai| be +∞ and for the purpose of (2.3.28), we
will assume that the relation +∞ < +∞ is false.

This hypothesis state nothing when π(qk0ai) = qk+1
0 ai.

a3 · · · · · · · · · ·

a5 · · · · · ·
a4 · · · ·

qh0a2 · · · · · · · ·

qk0a1 · · · · ·
qk+1
0 a1 · ·

Figure 2.16: Structure of k∗X under (T1).

We illustrate hypothesis (Ti) with fig. 2.16, where multiplication by q is
denoted by going up and multiplication by v by going right (thus the horizontal
axis denote the degree). In that example we have π(qk0a1) = qh0a2, so the only
multiplication by q denoted is the one we already know about, that is the one
at the end of the v-tower of qk0a1 according to proposition 2.3.9. All the other
formulas for multiplying by q are unknown, so we depict nothing. The part (a)
of hypothesis (T1) state that since a3 is of degree lower than a2, its v-tower must
finish after those of qh0a2 and qk0a1. Remark that if a2 = 0, then that first part
is not constraining anything. The part (b) of the hypothesis state the v-tower of
a4 and a5 must end in the reverse order compared to the degrees of a4 and a5.

Under (Ti), we can thus order the aℓ of part (b) of the hypothesis by the
degree at which their v-tower ends. We will use the following notation:

Notation 2.3.29. Let qk0ai bet such that π(qk0ai) = qh0aj with i ̸= j (but aj
might be 0), and let bk,i1 , . . . bk,in be the classes aℓ verifying (2.3.27), ordered by
increasing degree of vo0(aℓ)aℓ.

It is possible, when |bk,iℓ | = |b
k,i
ℓ+1|, that |vo0(b

k,i
k )bk,iℓ | = |v

o0(b
k,i
ℓ+1)bk,iℓ+1|, and in

that case the ordering between the two classes can be chosen either ways. We
are in the situation of fig. 2.17

bk,in · · · · · · · · ·

bk,i2
· · · · · ·
bk,i1

· · · ·

qk0ai · · · · · ·
qk+1
0 ai · ·

. . .

Figure 2.17: Ordering above qk0ai under (Ti).

Remark that (2.3.28) when qk0ai is not of v-torsion implies that there can be
at most one other aℓ with |aℓ| ≡ |ai| (mod |v|). This is a drastic condition on
the periodic classes, but it is necessary for our purpose.
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2.4 Computing the module k∗X under the hypothesis

Hypothesis 2.3.30 (Qi). Let qk0ai be such that π(qk0ai) = qh0aj with i ̸= j (aj
might be 0).

If it exists, let ℓ1 be such that there is a relation vok+1(ai)qk+1ai
d≃ v•bk,iℓ1

,

and then inductively let ℓj+1 be such that there is a vo0(b
k,i
ℓj

)
bk,iℓj

d≃ v•bk,iℓj+1
. We

thus have an eventually empty subsequence 1 ≤ ℓ1 < · · · < ℓj < · · · ≤ n. The
hypothesis state the following:

For all 1 ≤ ℓ ≤ n there is no relation y
d≃ v•bk,iℓ with

|y| < |vok+1(ai)qk+1
0 ai|. (2.3.31)

For any j and ℓ such that ℓj < ℓ ≤ n, there is no relation y
d≃ v•bk,iℓ with

|qk0ai| < |y| < |v
o0(b

k,i
ℓj

)
bk,iℓj
|. (2.3.32)

This will ensure that the bk,iℓ that will appear in the formula for q · qk0ai are
correctly detected by the differentials, by not being divisible by q before they
can be detected.

The simplified version of hypothesis (Ti) and (Qi) will be that there are no
classes bk,iℓ :

Hypothesis 2.3.33 (sTi). For each k, when π(qk0ai) = qh0aj , with i ≠ j and aj
might be taken to be 0, and for each ℓ ̸= j such that

|aℓ| ≡ |ai| (mod |v|)

|vo0(aℓ)aℓ| > |ai|.
(2.3.34)

then
|aℓ| < |aj |

|vo0(aℓ)aℓ| ≥ |vok(ai)qk0ai|.
(2.3.35)

That simplified hypothesis (sTi) can then be seen to imply both (Ti) and
(Qi). Lastly, for J a subset of the indices of the family (ai), we will write (TJ)
for the hypothesis (Ti) holds for all i ∈ J and similarly (QJ) and (sTJ).

2.4 Computing the module k∗X under the hypoth-
esis

In this section, we will see how we can recover k∗X as a k∗-module from the
spectral sequences when under the hypothesis (R1), (D), (TI) and (QI), which
are stated only using the spectral sequences. The same results can be obtained
using the simplified hypothesis (sR1) and (sTI), since they imply the previous
one.

Theorem 2.4.1. Let I be the set of indices appearing in the lifts of proposi-
tion 2.3.9.

Under the hypothesis (R1), (D), (TI) and (QI), we can choose the lifts qk0ai
of proposition 2.3.9 such that k∗X is presented as a k∗-module by the qk0ai and
the relations:
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2.4 Computing the module k∗X under the hypothesis

• vok(ai)qk0ai = 0.

• q · qk0ai = qk+1
0 ai whenever π(qk0ai) = qk+1

0 ai.

• otherwise

q · qk0ai = v•π(qk0ai) +

n∑
ℓ=1

βk,i
ℓ v•bk,iℓ (2.4.2)

where the • are simply determined to make the formula homogeneous in
degree, the bk,iℓ are those of 2.3.29 and the βk,i

ℓ are in F with the ℓ1, ℓ2, . . .
such that βk,i

ℓj
̸= 0 are determined by the existence of a relation

vok+1(ai)qk+1ai
d≃ v•bk,iℓ1

(2.4.3)

and then inductively by the existence of

v
o0(b

k,i
ℓj

)
bk,iℓj

d≃ v•bk,iℓj+1
. (2.4.4)

Proof. We will prove the formulas by considering the lifts qk0ai and ordering
them by increasing |ai| and increasing k. Fix some i ∈ I. Let us denote by J
the set of indices j such that |aj | < |ai|. Assume that our results is established
for all qh0aj with j ∈ J and any h, and for all qh0ai such that h < k. If there is
some i′ ̸= i such that |ai′ | = |ai|, can consider them in either order.

First consider the case where π(qk0ai) = qk+1
0 ai. The convergence of the

spectral sequence (v.2) implies that

q · qk0ai = qk+1
0 ai +

∑
j∈J

αjv
•qhjaj (2.4.5)

with the • determined only by homogeneity. Thus, by proposition 2.3.9,

vok(ai)−1 ·
∑
j∈J

αjv
•qhjaj = 0 (2.4.6)

and we can simply change our lift qk+1
0 ai to be

qk+1
0 a′i = qk+1

0 ai +
∑
j∈J

αjv
•qhjaj (2.4.7)

to get the formula claimed. The lift qk+1
0 ai and qk+1

0 a′i of qk+1ai have the exact
same property with regard to proposition 2.3.9, so we can continue our induction.

The second case is where our hypothesis are really used. Assume now that
π(qk0ai) = qt0aℓ for some ℓ ≠ i or that π(qk0ai) = 0. We can write a similar
formula:

q · qk0ai = qk+1
0 ai + v•π(qk0ai) +

∑
j∈J\{ℓ}

αjv
•qhjaj (2.4.8)

and the sum is still null before the end of the v-tower of qk0ai

vok(ai)−1 ·
∑

j∈J\{ℓ}

αjv
•qhjaj = 0. (2.4.9)
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2.4 Computing the module k∗X under the hypothesis

We can eliminate all the j with hj > 1 of the formula by changing our lift qk0ai
into

qk0a
′
i = qk0ai −

∑
j∈J\{ℓ}, hj>1

αjv
•qhj−1aj (2.4.10)

which once again have the same property from proposition 2.3.9. More generally
we can eliminate the aj that becomes divisible by q in a degree less than |qk0ai|
by also subtracting them. We can eliminate the aj whose v-tower ends before
the degree |vok+1(ai)qk+1

0 ai| by adding them to qk+1
0 ai, which also conserves all

the relevant properties. Thus, from the hypothesis (Ti), we can assume without
loss of generality that only the bk,iℓ relative to qk0ai appear in the sum. We then
have:

q · qk0ai = qk+1
0 ai + v•π(qk0ai) +

n∑
ℓ=1

βk,i
ℓ v•bk,iℓ (2.4.11)

and we only need to determine which βk,i
ℓ are zero or a unit.

The formula implies that

q · vok+1(ai)qk0ai = v•π(qk0ai) +

n∑
ℓ=1

βk,i
ℓ v•bk,iℓ . (2.4.12)

From our previous construction and hypothesis (Qi), the sum on the right-hand
side of the equation becomes divisible by q in the degree of the equation, and
by lemma lemma 2.3.18 this will be visible in the differentials. However, we
now need to prove some reciprocal to that lemma. In a first time, assume that
ok+1(ai) ≥ 0. We work again in the diagram (2.3.19) of the proof of lemma 2.3.18.
Let the ℓj be defined as in the statement of our result. The element

vok+1(ai)−1qk+1
0 ai = q · vok+1(ai)−1qk0ai − v•π(qk0ai)−

n∑
ℓ=1

βk,i
ℓ v•bk,iℓ (2.4.13)

of k∗X has a null multiplication by v, and the relation vok+1(ai)qk+1ai
d≃ v•bk,iℓ1

implies that its image in k/q∗X is represented by bk,iℓ1
. Since by (Qi), b

k,i
ℓ cannot

be divisible by q up to that degree, ℓ1 must be the first index of the sum with a
non-zero βk,i

ℓ . We determine the rest of the formula with the same argument

applied to the relations vo0(b
k,i
ℓj

)
bk,iℓj

d≃ v•bk,iℓj+1
.

In a second time, assume that ok+1(ai) = 0, that is to say qk+1
0 ai = 0. The

element

v•π(qk0ai) +

n∑
ℓ=1

βk,i
ℓ v•bk,iℓ (2.4.14)

in degree ∗ = |qk0ai| − |v| of k∗X cannot be divisible by q because of (Qi), but
its multiplication by v is divisible by q, the dividend being qk0ai. Thus again the

element of lowest filtration of the sum must appear in a
d≃ relation, and it must

be bk,iℓ1
.

Remark that if we otherwise know that k∗X is split as M1 ⊕ M2 as a
k∗-module, and that onlyM1 verify the hypothesis, the formulas given will be
internal toM1, which is then entirely determined as a k∗-module.
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2.5 The hypothesis (D) is not a consequence of (R1)

2.5 The hypothesis (D) is not a consequence of
(R1)

In this section we will see why, as stated earlier, the hypothesis (D) is not a
consequence of (R1), and how this hypothesis can otherwise be reasoned about
in terms of linear algebra on matrices. We begin by providing a k/v∗-module
that verify (R1) but not (D). Our example has four generators over k/v∗, named
a, b, x and y, and has relations:

q2a = 0

q2b = 0

qx = 0

qy = 0.

(2.5.1)

Assume that the (v.2) spectral sequence from this module has non-zero differen-
tials given by:

d1(x) = vqa

d2(y) = v2(a− qb).
(2.5.2)

This verifies (R1), but we cannot change the generator x and y other than
up to a unit since they are alone in their respective degree, and we cannot
change the generators a and b to make the formulas respect (D). We can take a
supplementary subspace (generated by x and y) of the infinite cycles (generated
by a and b) and write the differentials asq 1

0 q

 (2.5.3)

in the basis (a, b) for the rows and (x, y) for the columns. This matrix cannot
be diagonalized by using only operations on the rows (this represents changing
the chosen generators a and b for the infinite cycles), and the operations on the
columns of the form Cj ← Cj +αCi for some i < j (this represents the fact that
after each differential we have quotiented the cycles by some boundaries). Thus,
(D) cannot hold in that case.
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Chapter 3

Isomorphisms between
Whitehead, Postnikov and
Atiyah-Hirzebruch spectral
sequences

In this chapter, we give explicit isomorphisms between the spectral sequences
coming from a Whitehead tower, a Postnikov tower and the Atiyah-Hirzebruch
spectral sequence constructed from a skeletal filtration. These results are well
known, and a proof for the cohomological case can be found in [25] and the
appendix of [21]; however the author is not aware of them having a proof written
down in the homological case.

We will work in the category of S-modules; all the proof in this chapter shall
work in the homotopy category of any reasonable category of spectra. Let X
and Y be spectra: Y will be our homology theory, and we want to compute
Y∗X. First we will compare the spectral sequence coming from the Whitehead
tower of Y to that coming from the Postnikov tower of Y . Then, X will need to
have a CW structure (e.g. X is a CW-complex, a CW-R-module, . . . ); we will
compare the Whitehead spectral sequences to the Atiyah-Hirzebruch spectral
sequence defined by the CW structure on X.

3.1 Whitehead and Postnikov spectral sequences

A Whitehead tower for Y will be a tower of spectra Y≥n for n ∈ Z with cofibers:

. . . Y≥n+1 Y≥n Y≥n−1 . . .

Σn+1HYn+1 ΣnHYn Σn−1HYn−1

(3.1.1)

such that each Y≥n is (n− 1)-connected, Y is the colimit of the Y≥n, each map
Y≥n → Y≥n−1 is an isomorphism on homotopy group in degrees greater or equal
to n, and HYn is the Eilenberg-MacLane spectra associated to the group πn(Y ).
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3.2 Whitehead and Atiyah-Hirzebruch spectral sequences

A Postnikov tower for Y will be a tower of spectra Y<n for n ∈ Z with
cofibers:

. . . Y<n+1 Y<n Y<n−1 . . .

Σn+2HYn+1 Σn+1HYn ΣnHYn−1

(3.1.2)

such that each Y<n is n-truncated, Y is the limit of the Y<n, each map Y<n+1 →
Y<n is an isomorphism on homotopy group in degrees lesser than n, and HYn is
the Eilenberg-MacLane spectra associated to the group πn(Y ).

By smashing with X for the Whitehead tower, and desuspending one time
the Postnikov tower then smashing with X, we get two spectral sequences with

E1
p,q = πp+q(X ∧ ΣqHYq) = Hp(X;Yq). (3.1.3)

However, one would be computing its colimit and the other its limit. We already
have the tool to compare them in the form of proposition 1.1.8. We just need to
ensure that in our category of spectra, we can construct the Whitehead tower
and the Postnikov tower of Y such that there are cofiber sequences:

Y → Y<n → ΣY≥n (3.1.4)

for each n. The Whitehead tower is then the quotient of the Postnikov tower by
its colimit.

Proposition 3.1.5. With the hypothesis above, the first, non-derived exact
couples defined by the Whitehead tower and the Postnikov tower are isomorphic.

3.2 Whitehead and Atiyah-Hirzebruch spectral
sequences

To define the Atiyah-Hirzebruch spectral sequence, we need X to have a CW
structure, which for us will imply that is there is a tower with cofibers:

. . . X(p−1) X(p) X(p+1) . . .

∨
Sp−1

∨
Sp

∨
Sp+1

(3.2.1)

such that X(p) ≃ ∗ whenever p < 0, the cofibers are wedges of spheres of
dimension p. Let (A1, D1) then be the exact couple obtained by smashing with
Y and taking the homotopy:

A1
p,q = πp+q(X

(p) ∧ Y )

D1
p,q = πp+q(

∨
Sp ∧ Y ).

(3.2.2)

We need also that in the derived exact couple (A2, D2) the wanted homology
appears:

A2
p,q = Im(πp+q(X

(p−1) ∧ Y )→ πp+q(X
(p) ∧ Y ))

D2
p,q
∼= Hp(X;Yq).

(3.2.3)
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3.2 Whitehead and Atiyah-Hirzebruch spectral sequences

This will be the case for example for a CW-R-module or a CW-complex. This
spectral sequence will converge to π∗(X ∧ Y ) under the right conditions – for X
a CW-R-module, it might be that R is a connective cofibrant commutative S-
algebra, and the spectral sequence will be strongly convergent. We suppose from
this point that our construction gives a strongly convergent Atiyah-Hirzebruch
spectral sequence.

Let us also explicit the exact couple (W 2, E2) for the Whitehead spectral
sequence. What was the first page in the previous section is now the second for
convenience.

W 2
p,q = πp+q(X ∧ Y≥q)

E2
p,q = πp+q(X ∧ ΣqHYq) = Hp(X;Yq).

(3.2.4)

Theorem 3.2.5. The exact couples (A2, D2) and (W 2, E2) are isomorphic, and
thus define isomorphic spectral sequences.

The rest of the chapter will be a proof of this theorem. We will introduce a
third, intermediary exact couple (B1, F 1), where

B1
p,q = πp+q(X

(p) ∧ Y≥q) (3.2.6)

and its derived couple (B2, F 2). We will see how (B1, F 1) is isomorphic to
(A1, D1), thus all their derived couples are also isomorphic, and then how
(B2, F 2) is isomorphic to (W 2, E2), yielding our theorem by composition.

The bidegrees of the maps in the exact couples are as follows:

A1 A1 A2 A2

D1 D2

(1,−1)

(0,0)

(1,−1)

(−1,1)(−1,0) (−1,0)
(3.2.7)

W 2 W 2

E2

(1,−1)

(0,0)(−2,1)
(3.2.8)

We are looking to construct a morphism of exact couples with E2 → D2 of
bidegree (0, 0), so it must be that the map W 2 → A2 have bidegree (1,−1).
Remark also that the differentials dr in both sequences have bidegrees (−r, r−1).

We will need the following lemma:

Lemma 3.2.9. • The map π∗(X
(p) ∧ Y≥q) → π∗(X

(p) ∧ Y≥q−1) is an iso-
morphism when ∗ ≥ p+ q and is injective when ∗ = p+ q − 1.

• The map π∗(X
(p) ∧ Y≥q) → π∗(X

(p+1) ∧ Y≥q) is an isomorphism when
∗ ≤ p+ q − 1 and is surjective when ∗ = p+ q.

• The map π∗(X(p)∧Y≥q)→ π∗(X
(p)∧Y ) is an isomorphism when ∗ ≥ p+q

and is injective when ∗ = p+ q − 1.

• The map π∗(X(p)∧Y≥q)→ π∗(X∧Y≥q) is an isomorphism when ∗ ≤ p+q−1
and is surjective when ∗ = p+ q.
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3.2 Whitehead and Atiyah-Hirzebruch spectral sequences

Proof. The third and fourth claims follow easily from respectively the first and
second one.

To prove the first claim, let us consider the Atiyah-Hirzebruch spectral
sequences computing π∗(X(p) ∧ Y≥q) and π∗(X

(p) ∧ Y≥q−1) – the Whitehead-
Postnikov spectral sequences would also work here. It follows from the hypothesis
on X that the homology groups H∗(X

(p);Yq) are concentrated in degrees between
0 and p. The E2 pages are then as follows:

q − 1

q

p

∗ = p+ q
◦

•

•

•

•

◦

•

•

•

•

◦

•

•

•

•

◦

•

•

•

•

◦

•

•

•

•

◦

•

•

•

•

◦

•

•

•

•

Each • is a group that is in both spectral sequences. Each ◦ is a group that
is only in the spectral sequence computing π∗(X(p) ∧ Y≥q−1). The differentials
having source or target above or on the line ∗ = p+ q can be seen to be the same
in both sequences. Thus, the E∞ pages are isomorphic in this zone, and the part
about isomorphism in our claim follows. On the line below, ∗ = p+ q − 1, the
differentials are again the same, but there can be a non-zero group in bidegree
(p, q − 1), and we can only get an injection. Remark that no result of this sort
can be stated for all the lines ∗ < p+ q − 1, since in that zone there might be
differentials with source one the horizontal q − 1 line.

To get the second claim, we proceed similarly with the spectral sequences
computing π∗(X(p) ∧ Y≥q) and π∗(X(p+1) ∧ Y≥q). The E2 pages are as follows:

q

p p+ 1

∗ = p+ q

◦• • • • • • •

◦• • • • • • •

◦• • • • • • •

◦• • • • • • •
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3.2 Whitehead and Atiyah-Hirzebruch spectral sequences

We get isomorphisms for ∗ ≤ p + q − 1, a surjection for ∗ = p + q since there
can be differentials of source in bidegree (p+ 1, q), and nothing can be said of
∗ > p+ q.

We will construct a third exact couple that we will use to compare the two
already defined. For any integers p and q, let Fp,q be the fiber of the map
X(p) ∧ Y≥q → X(p+1) ∧ Y≥q−1. The groups for our exact couples will be:

B1
p,q = πp+q(X

(p) ∧ Y≥q)

F 1
p,q = πp+q(Fp,q).

(3.2.10)

The maps will not be the one induced by the long exact sequence in homotopy of
the fiber sequence. We will define them in the commutative diagram of fig. 3.1,
with rows exact – the first two rows are to be ignored for the moment; the maps
for the exact couple are going from the bottom left (sixth row) to the middle
right (third row), and the bend arrow is simply the composition of the maps in
the commutative square it crosses. The decorations of the arrows (isomorphisms
and injections) are coming from lemma 3.2.9, except for the middle injection
which come from half a five lemma.

The decorations are enough to check that we have indeed defined a long exact
sequence, and thus an exact couple. The bidegrees in the exact couple and in
the first derived exact couple are as follows:

B1 B1 B2 B2

F 1 F 2

(1,−1)

(−1,0)

(1,−1)

(−2,1)(0,0) (0,0)
(3.2.11)

Proposition 3.2.12. The exact couples (A1, D1) and (B1, F 1) are isomorphic.

Proof. This can be seen in fig. 3.1, this time paying attention to the whole
diagram. Once again, the isomorphisms come from lemma 3.2.9, except for the
middle one which is the five lemma.

The second part of our proof is to use the map X(p) → X to compare the
first derived exact couple (B2, F 2) with the Whitehead exact couple (W 2, E2).

Proposition 3.2.13. For all p and q, there are isomorphisms B2
p+1,q−1

∼=W 2
p,q

that commutes with the exact couples maps:

W 2
p,q W 2

p+1,q−1

B2
p+1,q−1 B2

p+2,q−2

≃ ⟲ ≃ (3.2.14)

Proof. There is a commutative diagram:

πp+q(X ∧ Y≥q)

πp+q(X
(p) ∧ Y≥q) πp+q(X

(p+1) ∧ Y≥q)

πp+q(X
(p+1) ∧ Y≥q−1)

≃

(3.2.15)
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3.2 Whitehead and Atiyah-Hirzebruch spectral sequences

so that there are two isomorphisms:

W 2
p,q = πp+q(X ∧ Y≥q)

Im(πp+q(X
(p) ∧ Y≥q)→ πp+q(X

(p+1) ∧ Y≥q))

B2
p+1,q−1 = Im(πp+q(X

(p) ∧ Y≥q)→ πp+q(X
(p+1) ∧ Y≥q−1))

≃

≃

(3.2.16)

which we compose to get the isomorphism claimed. The compatibility with the
exact couples maps come from the commutative diagram:

πp+q(X ∧ Y≥q) πp+q(X ∧ Y≥q−1)

πp+q(X
(p+1) ∧ Y≥q) πp+q(X

(p+2) ∧ Y≥q−1)

πp+q(X
(p+1) ∧ Y≥q−1) πp+q(X

(p+2) ∧ Y≥q−2)

(3.2.17)

of which we considered restriction to images to get our isomorphisms.

From the bidegree of our maps, we need to construct an isomorphism F 2 → E2

of bidegree (1, 0) to complete our isomorphism between the exact couples.

Proposition 3.2.18. For all p and q, there are isomorphisms F 2
p,q
∼= E2

p+1,q

that, together with the isomorphisms of the previous proposition, assemble into
an isomorphism of exact couples between (B2, F 2) and (W 2, E2).

Proof. Let us first remark that simply having maps F 2
p,q → E2

p+1,q, which
together with the previous isomorphisms define a morphism of exact couple,
would be sufficient for these maps to be isomorphism by the five lemma. The
commutative diagram of fig. 3.2 allow us to construct such a map; it has rows
exact, and the arrows are decorated according to lemma 3.2.9 and the five lemma.

We will define an application f from Ker(d1 : F 1
p,q → F 1

p−1,q) to E2
p+1,q

first. Let x ∈ Ker(F 1
p,q → F 1

p−1,q) (start chasing in F 1
p,q near the middle of

the diagram), and let its image in πp+q(X
(p) ∧ Y≥q) be denoted by y. By

pushing y into the bottom portion of the diagram, we see that y can be lifted
to πp+q(X

(p) ∧ Y≥q+1), which imply that x can be lifted to x′ ∈ πp+q(Fp,q+1);
such lift is unique, and its image x′′ ∈ E2

p+1q,q allow us to define f(x) = x′′.
Next we have to prove that Im(d1 : F 1

p+1,q → F 1
p,q) ⊂ Ker f in order for our

application f to be well-defined on the homology, that is on F 2
p,q. Let a ∈ F 1

p+1,q

– we begin our chase on the bottom left – and let b ∈ πp+q+1(X
(p+1) ∧ Y≥q) be

its image; b can be pushed all the way up to πp+q+1(X ∧ Y≥q), and following
the other path using the big curved arrow, we see that its image must be 0 in
πp+q+1(X ∧ Y≥q). In order to do so, it is useful to remark that the two path
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taken, when the isomorphism are inverted, lie in a commutative square:

πp+q+1(X
(p+1) ∧ Y≥q) πp+q+1(X

(p+2) ∧ Y≥q)

πp+q+1(X
(p+1) ∧ Y≥q) πp+q+1(X

(p+2) ∧ Y≥q−1)

id (3.2.19)

Then we see that f(d1(a)) = 0, since to compute f we need the lift of d1(a) to
πp+q(Fp,q+1), and b gives us such a lift whose image in E2

p+1,q must be zero.
Thus, we have constructed an application as claimed.

To check commutativity, we work in the same diagram. We need to check
that the following is commutative:

B2
p+2,q−1 F 2

p,q B2
p,q

W 2
p+1,q E2

p+1,q W 2
p−1,q+1

≃ f ≃ (3.2.20)

F 2
p,q is a quotient of a subgroup of F 1

p,q; B2
p+2,q−1 = Im(πp+q+1(X

(p+1)∧Y≥q)→
πp+q+1(X

(p+2) ∧ Y≥q−1) (below F 1
p,q in the diagram) and the isomorphism with

W 2
p+1,q is constructed using the injection and the big curved arrow; similarly,

B2
p,q = Im(πp+q(X

(p−1)∧Y≥q+1)→ πp+q(X
(p)∧Y≥q) and the isomorphism with

W 2
p−1,q+1 is constructed using the injection and isomorphism in the column on

the right of F 1
p,q. This part of the diagram is sufficient to check that we indeed

have commutativity as claimed.
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Part II

Topological Hochschild
Homology of ku and the

Bökstedt trace map
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Chapter 4

Topological Hochschild
homology

In this chapter, we will define topological Hochschild homology and some of the
tools, mostly spectral sequences, that we will later use in our computation.

The spectral sequence that appears with the first definition of Topological
Hochschild homology by Bökstedt in [13] is of the following type:

HH∗(H∗(R;Fp))⇒ H∗(THH(R);Fp) (4.0.1)

where R is a ring spectrum and HH∗ is the Hochschild homology. Both the
source and the target of the spectral sequence can be seen to have the structure
of a comodule over the dual Steenrod algebra and the structure of a commutative
H∗(R;Fp)-algebra, and the spectral sequence is compatible with these structures
(see for example [3]), and this was used to compute THH∗(Zp) and THH∗(Fp)
in [13].

The existence of an algebra structure on THH(R) allows the construction of
various Bockstein spectral sequences associated to the multiplication by some
element of the algebra; as we studied in chapter 2, the exact couple of a Bockstein
spectral sequence is obtained from the cofiber sequence of the multiplication by
the chosen element. The Bökstedt spectral sequence can also be extended to
compute other homology theories in situation where a Künneth formula holds; in
[28], this is used to compute the first periodic Morava K-theory K(1)∗ THH(ℓ).
That computation is extended to ku in [5] and this result is the basis to the
computation of V (0)∗ THH(ku) via the Bockstein spectral sequence for the
multiplication by u.

Although multiple Bockstein spectral sequences can be constructed from an
algebra, they must all compute the same thing. That fact yields a computation
of THH∗(ℓ) in [2] by making the Bockstein spectral sequences for multiplication
by p and u compete. We will extend their result to THH∗(ku) and study some
part of the computation with greater generality.

The spectral sequence of Brun compute THH of a ring A with coefficients
in an A-algebra B from THH of B with coefficients in a generalized Tor group
in the sense of [20]. In [14], that spectral sequence is introduced to compute
THH∗(Z/pn). Modern categories of spectra allow us to express this spectral
sequence as an Atiyah-Hirzebruch spectral sequence, as done in [23] to compute
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4.1 Simplicial spectra and their realization

V (1)∗ THH(ku) and V (0)∗ THH(K(Fq);Zp). Switching the ring with the coeffi-
cients often yield a smaller object to compute; moreover, this can be repeated
multiple times, and when the Tor groups is simple enough, the Brun spectral
sequence will also be a Bockstein spectral sequence. Part of our computation of
THH∗(ku) will use these facts.

Other techniques to compute THH include the use of results relating THH
of a Thom spectrum T (f) with a product of Thom spectra constructed from
a map f classifying a spherical fibration. This can be seen in [9] or [10] to be
able to compute THH(HZ), THH(HFp) or THH(MU) since these spectra can
be described as Thom spectra.

We work in the categoryMR of R-modules of [20], from which most of our
definitions will come.

4.1 Simplicial spectra and their realization

Let ∆ be the simplex category, whose object are the ordered sets of integers
[n] = {0, . . . , n} and morphisms are the order preserving maps.

Definition 4.1.1. A simplicial R-module is a functor F : ∆op →MR.
For such a functor, its geometric realization, denoted |F |, is the coend∫ ∆

F ∧ (∆•)+ (4.1.2)

that is the coend of the functor ∆op×∆→MR that sends (n,m) to F (n)∧(∆m)+,
where ∆• is the topological simplex, viewed as a functor ∆→ Top.

Similarly, a simplicial based space is a functor F : ∆op → Top∗, and its
geometric realization |F | is the coend of the functor F ∧ (∆•)+.

The geometric realization, as a coend, is in fact a coequalizer, and thus will
commute with colimits. Other useful properties of the geometric realization are:

Proposition 4.1.3 (X.1.3 of [20]). • For a simplicial based space X•, there
is a natural isomorphism

Σ∞|X•| ∼= |Σ∞X•|. (4.1.4)

• For a simplicial based space X• and a simplicial spectrum Y•, a simplicial R-
module Y•∧X• can be obtained by composing the diagonal ∆op → ∆op×∆op

with the functor ∆op ×∆op →MR sending (n, m) to Yn ∧Xm, and there
is a natural isomorphism

|Y• ∧X•| ∼= |Y•| ∧ |X•|. (4.1.5)

• For two simplicial spectra Y• and Z•, again using the diagonal structure,
there is a natural isomorphism

|Y• ∧ Z•| ∼= |Y•| ∧ |Z•|. (4.1.6)

A useful example of simplicial R-module is given by the bar construction:
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Definition 4.1.7 (IV.7.2 of [20]). For an S-algebra R, a right R-module M and
a left R-module N , the bar construction of (M,R,N) is the simplicial S-module
B•(M,R,N) whose n-th simplicial level is

Bn(M,R,N) =M ∧R∧n ∧N (4.1.8)

whose i-th face map is multiplication on the i-th ∧, and whose i-th degeneracy
map is given by adding an R between the i-th R and the (i+1)-th R via the unit
S → R.

Denote by B(M,R,N) the realization |B•(M,R,N)|.

Proposition 4.1.9 (IV.7.5 of [20]). For M a cell R-module and N any R-module,
there is a natural weak equivalence

B(M,R,N) ≃M ∧R N. (4.1.10)

If R is commutative, A is an R-algebra and M and N are right and left
A-modules, one can also form the bar construction BR

• (M,A,N) by replacing
all the smash products by smash products over R. In that case:

Proposition 4.1.11 (X.1.2 and XII.1.2 of [20]). There is a natural weak equiv-
alence BR(A,A,N) ≃ N .

The next section will also define topological Hochschild homology as a
simplicial spectrum.

4.2 Simplicial definition of THH and consequences

Let R be a cofibrant commutative S-algebra; A be a cofibrant R-algebra; M be
an (A,A)-bimodule. Let

ϕ : A ∧R A→ A and η : R→ A (4.2.1)

be the multiplication and unit of A. Let

ξℓ : A ∧R M →M and ξr :M ∧R A→M (4.2.2)

be the left and right action of A on M . Let

τ :M ∧R A∧n ∧R A→ A ∧R M ∧R A∧n (4.2.3)

be the map cyclically permuting the factors. Here and after all the smash
products are over R.

Definition 4.2.4 (IX.2.1 of [20]). The topological Hochschild homology of A
with coefficients in M is the realization, denoted THHR(A;M), of the simplicial
R-module THHR(A;M)• whose n-th simplicial level is given by

THHR(A;M)n =M ∧R A∧n (4.2.5)

with i-th face map given by ξr ∧ idn−1 if i = 0, id ∧ idi−1 ∧ ϕ ∧ idn−i−1 if
0 < i < n, (ξℓ ∧ idn−1) ◦ τ if i = n; and with i-th degeneracy map given by
id ∧ idi ∧ η ∧ idn−1.
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4.2 Simplicial definition of THH and consequences

This construction is also called the cyclic bar construction; we will use it
again in chapter 7 and write it as Bcy(A;M).

When working over R = S, we will drop the S from the notation. When
M = A, we will write THHR(A) = THHR(A;A). When A is commutative,
topological Hochschild homology has the following structure:

Proposition 4.2.6 (IX.2.2 of [20]). Let A be a commutative R-algebra. Then
THHR(A) is naturally a commutative A-algebra with unit map the inclusion of
the 0-th simplicial level A→ THHR(A); THHR(A;M) is a THHR(A)-module.

From the cited properties of the geometric realization with respect to the
smash product, and by seeing M as a constant simplicial spectrum, one can see
that:

Proposition 4.2.7. When A is commutative and M is a symmetric (A,A)-
bimodule, there is a natural isomorphism of simplicial R-modules

M ∧A THHR(A)• ∼= THHR(A;M)• (4.2.8)

and thus a natural isomorphism of R-modules

M ∧A THHR(A) ∼= THHR(A;M). (4.2.9)

We will use this mostly with the fact that for the Smith-Toda complex V (0)
(the modulo p sphere), we have V (0) ∧HZ ∼= V (0) ∧HZp

∼= HFp, so

V (0) ∧ THH(A;HZ) ∼= V (0) ∧ THH(A;HZp) ∼= THH(A;HFp). (4.2.10)

The simplicial construction of THH can also be linked with the bar con-
struction. For an R-algebra A, let Ae = A ∧R Aop be the enveloping algebra
of A, where Aop is the R-algebra obtained by composing the multiplication
A ∧R A→ A of A with the map permuting the two factors A ∧A→ A ∧A.

Proposition 4.2.11 (IX.2.4 and IX.2.5 of [20]). There is a natural isomorphism

THHR(A;M) ∼=M ∧Ae BR(A,A,A) (4.2.12)

that gives a natural weak equivalence

THHR(A;M) ≃M ∧Ae A (4.2.13)

when M is a cell Ae-module.

Proof. On the n-th simplicial level, by seeingM as a constant simplicial spectrum,
here are natural isomorphism

M ∧R A∧n ∼=M ∧Ae (Ae ∧R A∧n) ∼=M ∧Ae (A ∧R A∧n ∧R A) (4.2.14)

and the simplicial maps can be seen to be that of BR
• (A,A,A) on the right. The

properties of the geometric realization yield the result.
The weak equivalence comes from proposition III.3.8 of [20] and the weak

equivalence BR(A,A,A) ≃ A.

Thus, we could have defined THHR(A;M) as the derived smash product
M ∧LAe A, which is the second definition proposed in [20].
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4.3 Spectral sequences computing THH

4.3 Spectral sequences computing THH

The original result of Brun was the following:

Theorem 4.3.1 (Brun). When R → A is a ring homomorphism between
(discrete) commutative rings, there is a multiplicative spectral sequence:

E2
n,m = THHn(HA;H TorRm(A,A))⇒ THH(HR;HA). (4.3.2)

That result was generalized by Höning in [23]

Theorem 4.3.3 (1.1 of [23]). Let A be a cofibrant commutative S-algebra and B
be a connective cofibrant commutative A-algebra. Let E be an S-ring spectrum.
Then there is a multiplicative spectral sequence of the form

E2
n,m = THHn(B;HES

m(B ∧A B))⇒ ES
n+m(THH(A;B)). (4.3.4)

The lemma below is in important step to the previous theorem.

Lemma 4.3.5 (4.8 of [23]). Let S → A → B be cofibration of commutative
S-algebras. Then we have an isomorphism of Ae-ring spectra

THH(A;B) ∼= (B ∧A B) ∧LAe B. (4.3.6)

The theorem then comes from constructing a multiplicative Atiyah-Hirzebruch
spectral sequence with the skeletal filtration on a CW model of B, and rewriting
the E2 page using the lemma again with the arising Eilenberg-MacLane spectra.
The Atiyah-Hirzebruch spectral sequence is the following:

Theorem 4.3.7 (IV.3.7 of [20]). Let R be a connective cofibrant commutative
S-algebra. Let M be a connective R-module and let G be an arbitrary R-module.
Then, we have a strongly convergent spectral sequence of the form

(HG∗)
R
∗M ⇒ GR

∗M. (4.3.8)

These spectral sequences enjoys multiplicative property:

Lemma 4.3.9 (3.17 of [23]). Let R be a connective cofibrant commutative
S-algebra. Let M , N and L be connective R-modules and let G be a cell R-
module. Let ME

∗
∗,∗, NE

∗
∗,∗ and LE

∗
∗,∗ be the Atiyah-Hirzebruch spectral sequences

computing the G homology of M , N and L. Then maps G ∧LR G → G and
M ∧LR N → L in the derived category of R-module induce a pairing of spectral
sequences

ME
∗
∗,∗ ⊗ NE

∗
∗,∗ → LE

∗
∗,∗ (4.3.10)

that converge to the products

π∗(G ∧LR M)⊗ π∗(G ∧LR N)→ π∗(G ∧LR L). (4.3.11)

There is also another spectral sequence we will use to compute topological
Hochschild homology:
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4.4 Smashing localizations and THH

Proposition 4.3.12 (Lemma 2.2 and corollary 2.3 of [2]). Suppose R → Q
is a map of S-algebras and M is a (Q,R)-bimodule, given an (R,R)-bimodule
structure by pullback. Then there is a weak equivalence

THH(R;M) ≃M ∧LQ∧Rop Q (4.3.13)

and thus a Künneth spectral sequence

TorQ∗R
op

∗,∗ (M∗, Q∗)⇒ THH∗(R;M). (4.3.14)

The last spectral sequence we will use in our computation is the Bockstein
spectral sequence, studied already in chapter 2. We will now specify our definition
in the context if topological Hochschild homology.

Assume that A and M are R-algebra, that A is commutative, that M is
a connective, symmetric (A,A)-bimodule and that there is a map of (A,A)-
bimodule m : ΣnM → M for some n ≥ 0, which factorizes through a weak
equivalence ΣnM ≃ M≥n with the nth Whitehead section. Let M/m be the
cofiber

ΣnM M M/m.m (4.3.15)

We can define an exact couple from the tower of spectra with cofibers

. . . Σ2nM ΣnM M

Σ2nM/m ΣnM/m M/m

m m m

(4.3.16)

after smashing it with ∧A THH(A). We prove in chapter 3 that these king of
Whitehead spectral sequence is in fact an Atiyah-Hirzebruch spectral sequence,
thus we can use theorem 4.3.7 and lemma 4.3.9 to get:

Proposition 4.3.17 (Bockstein spectral sequence). Under the hypotheses of
the paragraph above, when THH(A;M/m) is connective, we have a strongly
convergent spectral sequence

THH∗(A;M/m) ⊗̄P (m)⇒ THH∗(A;M). (4.3.18)

Here, the map m need not be a multiplication; the P (m) represent the
different copies of THH∗(A;M/m) of the first page of the spectral sequence.
Moreover, if M is and A-algebra, and M/m can also be realized as an A-algebra,
then that spectral sequence is a spectral sequence of algebras.

4.4 Smashing localizations and THH

Let R be a cofibrant commutative S-algebra; A be a cofibrant R-algebra and M
be an (A,A)-bimodule. Let E be a cell R-module. We will study the Bousfield
localization at E, whose definition and useful properties can be found in chapter
VIII of [20]. We suppose that the Bousfield localization at E of R-module is
smashing, that is the localization of any R-module X, denoted XE , can be
realized as RE ∧RX where RE is the Bousfield localization of R at E. Precisely,
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4.4 Smashing localizations and THH

we can construct RE to be an R-algebra and the localization map λ : R→ RE

to be an algebra map. Then the localization map of A

λ : A R ∧R A RE ∧R A≃ λ∧id (4.4.1)

can be seen to be an R-algebra map, where the multiplication on RE ∧R A is

RE ∧R A ∧R RE ∧R A RE ∧R RE ∧R A ∧R A RE ∧R Aid∧τ∧id µ∧µ (4.4.2)

where τ switch the two factors and µ are the multiplications. Similarly, BE can
be given both an (A,A)-bimodule such that λ is an (A,A)-bimodule map, and
an (AE , AE)-bimodule structure.

Proposition 4.4.3. If the condition above are meet, then there is an isomorphism

THHR(A;B)E ∼= THHR(A;BE) (4.4.4)

and a weak equivalences

THHR(A;BE) ≃ THHR(AE ;BE). (4.4.5)

Proof. THHR(A;B)E can be seen to be the realization of the simplicial object
RE∧RTHHR(A;B)•, which is also THHR(A;BE)•. This yields the isomorphism.

The map λ : RE → RE ∧R RE as defined above is an E-equivalence between
E-local R-modules, and thus a weak equivalence. Define a simplicial map

THHR(A;BE)• → THHR(AE ;BE)• (4.4.6)

such that on the n-th simplicial level we have:

BE ∧R A∧n = RE ∧R B ∧R A∧n

RE ∧R R∧n ∧R B ∧R A∧n

RE ∧R R∧n
E ∧R B ∧R A∧n

RE ∧R B ∧R (RE ∧R A)∧n = BE ∧R A∧n
E .

≃

id∧λn∧id

τ

(4.4.7)

Each of these maps is a weak equivalence, so by taking a suitable cellular
replacement and by theorem X.1.2 of [20], we get a weak equivalence between
the realizations.
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Chapter 5

Topological Hochschild
homology of ku

In this chapter, we will compute THH∗(ku). The spectral sequences used in this
computation are summed up in table 5.1 on the next page.

We first give a computation of THH∗(ku;HZ) using the Brun spectral
sequence and some knowledge of the modulo 2 homotopy of that spectrum
in section 5.2. Then the Bockstein spectral sequence (ℓ), computing THH∗(ℓ),
is known from [2]. We review this result in section 5.3. In order to lift this
computation to the Bockstein spectral sequence (u), computing THH∗(ku), one
must find another way to compare the sequences than the map induced by the
inclusion ℓ→ ku, since σv1 ∈ THH2p−1(ℓ;HZp) should be compared to up−2σu
which is not a class in THH2p−1(ku;Zp). A solution is to consider the cofiber of
the multiplication by v1:

Σ2p−1ku ku ku/v1.
v1 (5.0.1)

We will have to work p-locally for an odd prime p, and we will see that
up−2σu is indeed a class of THH2p−1(ku; ku/v1), that we compute in section 5.5
using a comparison between the Brun spectral sequences (ℓZ) and (uTB) and
the truncated Bockstein spectral sequence (uT ) – which has fewer classes and is
easier to track.

The techniques we developed in chapter 1 can then be used to determine
the u-Bockstein spectral sequence for ku, which is done in section 5.6. We can
compare the v1-Bockstein spectral sequences (ℓ) and (v1), and the Bockstein
spectral sequence (u) can be recovered from the truncated Bockstein spectral
sequence (uT ) and the reindexed Bockstein spectral sequence (v1).

Lastly, the extensions can be computed with the results of chapter 2 from the
structure of the Bockstein spectral sequence (u), thus determining THH∗(ku) as
ku∗-module.

Our q-cofibrant commutative S-algebra model for the connective complex
K-theory spectrum ku will be the one of theorem VII.4.3 of [20]; notwithstanding,
the E∞ structure on ku can be seen to be unique (see [8]). In section 5.2 we
will use this integral model for ku, but beginning with section 5.3 ku will denote
p-localized connective complex K-theory and ℓ its Adams summand, unless
otherwise stated. We obtain an S-algebra structure on the localization using
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5

Table 5.1: Table of the spectral sequences used.

Name Type E1
n,m Target

(ℓZ) Brun
THHn(HZ(p);H(HZ(p) ∧ℓ HZ(p))m)

THH∗(ℓ;HZ(p))∼= THHn(HZ(p)) ⊗̄E(σv1)m

(ℓ) Bockstein THHn(ℓ;HZ(p)) ⊗̄P (v1)m THH∗(ℓ)

(uV ) Bockstein
V (0)n THH(ku;HZ(p)) ⊗̄P (u)m

V (0)∗ THH(ku)
∼= (E(σu, λ1)⊗ P (µ1))n ⊗̄P (u)m

(uV T )
Truncated V (0)n THH(ku;HZ(p)) ⊗̄Pp−1(u)m

V (0)∗ THH(ku; ku/v1)
Bockstein ∼= (E(σu, λ1)⊗ P (µ1))n ⊗̄Pp−1(u)m

(uT )
Truncated THHn(ku;HZ(p)) ⊗̄Pp−1(u)m

THH∗(ku; ku/v1)
Bockstein ∼= (THH∗(HZ(p))⊗ E(σu))n ⊗̄Pp−1(u)m

(uTB) Brun

THHn(ku/v1;H(ku/v1 ∧ku ku/v1)m)

THH∗(ku; ku/v1)∼= (THH∗(HZ(p))⊗ E(σu)⊗ Γ(φu))n

⊗̄(E(σv1)⊗ Pp−1(u))m

(L) Bockstein THHn(ℓ;HZ(p)) ⊗̄P (v1, v−1
1 )m THH∗(ℓ;L)

(v1) Bockstein THHn(ku; ku/v1) ⊗̄P (v1)m THH∗(ku)

(u) Bockstein THHn(ku;HZ(p)) ⊗̄P (u)m THH∗(ku)

|µkp| = (2kp− 1, 0), k ≥ 1 the generators of THH∗(HZ(p))

|σv1| = (0, 2p− 1)

|v1| = (0, 2(p− 1))

|σu| = (3, 0)

|λ1| = (2p− 1, 0)

|µ1| = (2p, 0)

|u| = (0, 2)

|φu| = (2p, 0)

On the left side of the ⊗̄, the generators have bidegrees lying on the horizontal
axis; on the right, on the vertical axis.
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5.1 The periodic case

the result on Bousfield localization stated in proposition VIII.1.8 of [20]. Our
S-algebra model for the quotient of ku by v1 will be

ku/v1 = ku ∧ℓ HZ(p) (5.0.2)

which is also a q-cofibrant commutative S-algebra by remark VII.6.8 of [20].

5.1 The periodic case

The spectra ku and ℓ are the connective cover of the spectra KU and L, the
(periodic) p-completed complex K-theory spectrum and its (periodic) Adams
summand. Since we already defined the connective version, we will consider
KU and L to be the spectra obtained by inverting the Bott element or v1 and
then p-completing. Inverting these elements is a smashing localization as stated
in before theorem VIII.4.3 of [20]. This can also be seen to be the localization
of ku and ℓ at the Johnson-Wilson spectrum E(1). In either case, they have
the structure of S-algebras. Moreover, what we proved earlier about smashing
localization and THH applies.

The homotopy type of p-completed topological Hochschild homology of L
was computed in [28] (theorem 8.1):

THH(L)p ≃ (L ∨ ΣLQ)p (5.1.1)

where the subscript p denotes p-completion and the subscript Q denotes ratio-
nalization. The argument was extended in [5] (proposition 7.13) to a compatible
splitting with KU :

THH(KU)p ≃ (KU ∨ ΣKUQ)p. (5.1.2)

This periodic result allow us to prove the following important lemma on the
structure of the connective case:

Lemma 5.1.3. In THH∗(ku)(p) and for any p prime, the p-torsion elements
and the u-torsion elements are the same. Here, the subscript (p) denotes p-
localization.

Proof. We will work with the following commutative diagram where the maps
are formally inverting the elements given:

THH∗(ku)(p) THH∗(ku)(p)[u
−1]

THH∗(ku)(p)[p
−1] THH∗(ku)(p)[p

−1, u−1]

a

b c

d

(5.1.4)

The kernel of a is the u-torsion elements, the kernel of b is the p-torsion elements.
To prove our claim, we only have to prove that c and d are monomorphisms.

In each degree, THH∗(ku)(p) will be a p-local finitely generated abelian group;
this can be seen from the E1-page of the Bockstein spectral sequence (u). Thus,
from the structure theorem of finitely generated abelian groups, we can see that
to check if a map is a monomorphism, it is sufficient to check if the induced map
on p-completion is a monomorphism.
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5.2 Topological Hochschild homology of ku with coefficients in HZ

THH∗(ku)(p)[p
−1] is the rationalization THH∗(ku)Q, which can be computed

using the Künneth spectral sequence:

TorE∗A
e

(E∗A,E∗M)⇒ E∗ THHR(A;M). (5.1.5)

Here, E = HQ, A =M = ku and R is the sphere spectrum, and we have:

TorkuQ∗⊗kuQ∗(kuQ∗, kuQ∗)⇒ THH∗(ku)Q. (5.1.6)

kuQ∗ has a resolution as a kuQ∗ ⊗ kuQ∗-module given by

0← kuQ∗ ← kuQ∗ ⊗ kuQ∗{1} ← kuQ∗ ⊗ kuQ∗{σu} ← 0 (5.1.7)

with d(σu) = 1⊗ u− u⊗ 1, thus the spectral sequence collapses at the E2-page
with

THH∗(ku)Q ∼= kuQ∗ ⊗ E(σu) (5.1.8)

and |σu| = 3. This is sufficient to see that the map d from the initial diagram is
a monomorphism, and that

THH∗(ku)(p)[p
−1, u−1] ∼= KUQ∗ ⊗ E(σu). (5.1.9)

On the other side, inverting u is a smashing localization (see lemma V.1.15
of [20]), so that our proposition 4.4.3 yields a weak equivalence

THH∗(ku)(p)[u
−1] ≃ THH∗(KU)(p). (5.1.10)

The previous result on p-completed THH(KU) and equation (5.1.9) allow us to
conclude that c is also a monomorphism.

5.2 Topological Hochschild homology of ku with
coefficients in HZ

In this section, we compute THH∗(ku;HZ) using the Brun spectral sequence:

E2
p,q = THHp(HZ;Hπq(HZ ∧ku HZ))⇒ THHp+q(ku;HZ) (uZ)

whose differentials are of the form:

drp,q : Er
p,q → Er

p−r,q+r−1. (5.2.1)

The Künneth spectral sequence can be used to compute the coefficients.

Proposition 5.2.2.
π∗(HZ ∧ku HZ) ∼= E(σu) (5.2.3)

an exterior algebra over Z on the generator σu of degree 3.

Proof. Z has a resolution as a free ku∗-module given by E(σu), with σu of
bidegree (1, 2) and d(σu) = u, so that Torku∗

∗,∗ (Z,Z) ∼= E(σu). Then the Künneth
spectral sequence

E2
p,q = Torku∗

p,q (Z,Z)⇒ πp+q(HZ ∧ku HZ) (5.2.4)

collapses for bidegree reasons with no extensions possible.

68



5.2 Topological Hochschild homology of ku with coefficients in HZ

The E2 page of our Brun spectral sequence will then be two copies of
THH∗(HZ;HZ) = THH∗(HZ), which was computed by Bökstedt in [13]:

THHk(HZ) =


Z if k = 0

0 if k ≥ 2 is even
Z/n if k = 2n− 1 ≥ 2.

(5.2.5)

Let µn be a generator of the Z/n in degree 2n− 1.
The spectral sequence then begin with:

E2
p,q = THHp(HZ)⊗ E(σu)q. (5.2.6)

For bidegree reason, the only possible non-zero differentials are the d4 between
µn+2 and σuµn.

p

q

1

σu

µ2

σuµ2

µ3

σuµ3

µ4

σuµ4

µ5

σuµ5

µ6

σuµ6

d4

Figure 5.1: E4 page of the Brun spectral sequence for THH∗(ku,HZ).

Proposition 5.2.7. Let n ≥ 2. When n is odd, d4(µn+2) = 0. When n is even,
d4(µn+2) can only be 0 or n

2σuµn up to a unit.

Proof. µn+2 must be sent to an element of order dividing n+ 2 in the copy of
Z/n generated by σuµn. But two consecutive odd integers are coprime, so that
d4(µn+2) = 0 when n is odd. The greatest common divisor of two consecutive
even integers is 2, so that d4(µn+2) = 0 or d4(µn+2) =

n
2σuµn when n is even.

We will see that that even differentials are indeed all non-zero by computing
the modulo 2 homotopy of THH∗(ku;HZ). Let V (0) be the Moore spectrum
for multiplication by 2. There is a Brun spectral sequence:

E2
p,q = THHp(HZ;H(V (0)q(HZ∧kuHZ)))⇒ V (0)p+q(THH(ku;HZ)). (5.2.8)

The Künneth spectral sequence, as in the integral case, can be used to
compute:

V (0)∗(HZ ∧ku HZ) = E(σu) (5.2.9)

an exterior algebra over F2 on one generator σu of degree 3. We need to know
THH∗(HZ;F2) ∼= V (0)∗ THH(HZ):

Proposition 5.2.10.

V (0)∗ THH(HZ) ∼= E(λ1)⊗ P (µ1) (5.2.11)

over F2, where |λ1| = 3 and |µ1| = 4.
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5.2 Topological Hochschild homology of ku with coefficients in HZ

Proof. We can use the same method as theorem 5.7 of [5] for p=2. V (0) ∧
THH(HZ) is an HF2-module, thus the Hurewicz homomorphism

V (0)∗ THH(HZ)→ H∗(V (0) ∧ THH(HZ);F2) (5.2.12)

is an injection with image the A∗-comodule primitives, A∗ being the dual
Steenrod algebra. From theorem 5.12 of [3],

H∗(THH(HZ);F2) ∼= H∗(HZ;F2)⊗ E(σξ̄21)⊗ P (σξ̄2) (5.2.13)

and then

H∗(V (0) ∧ THH(HZ);F2) ∼= A∗ ⊗ E(σξ̄21)⊗ P (σξ̄2). (5.2.14)

The primitives classes can be seen to be generated by σξ̄21 and σξ̄2 − ξ1σξ̄21 ,
and we denote their preimages respectively λ1 and µ1.

We also evaluate V (0)∗ THH(ku;HZ) non-multiplicatively using the spectral
sequence from proposition 4.3.12:

TorH∗(ku;F2)
∗,∗ (F2,F2)⇒ THH∗(ku;HF2). (5.2.15)

We know H∗(ku;F2), see for example proposition 5.3 of [3]:

H∗(ku;F2) ∼= P (ξ̄21 , ξ̄
2
2 , ξ̄k, k ≥ 3) (5.2.16)

thus
TorH∗(ku;F2)

∗,∗ (F2,F2) ∼= E(σξ̄21 , σξ̄
2
2 , σξ̄k, k ≥ 3) (5.2.17)

with bidegrees |σξ̄21 | = (1, 2), |σξ̄22 | = (1, 6) and |σξ̄k| = (1, 2k − 1). The
spectral sequence collapses for bidegree reasons, and we now know the order of
V (0)∗ THH(ku;HZ) in each degree. In particular, V (0)3 THH(ku;HZ) ∼= F2.

Proposition 5.2.18. In the Brun spectral sequence

E(σu, λ1)⊗ P (µ1)⇒ V (0)∗ THH(ku;HZ) (5.2.19)

the differentials are given by

d4(µk
1) = σuµk−1

1 for k ≥ 1 odd

d4(µk
1) = 0 for k ≥ 0 even

d4(λ1) = 0

(5.2.20)

up to multiplication by units.

Proof. λ1 of bidegree (3, 0) is an infinite cycle. It also cannot be in the image
of a differential. The other generator σu of bidegree (0, 3) must then vanish for
V (0)3 THH(ku;HZ) to be of dimension 1 over F2. Since it is also an infinite
cycle, it must be the target of a differential, which can only be d4(µ1) = σu up
to a unit. The rest of the result is obtained multiplicatively.

This is sufficient to compute the integral case.
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5.2 Topological Hochschild homology of ku with coefficients in HZ

Proposition 5.2.21. In the Brun spectral sequence

THH∗(HZ)⊗ E(σu)⇒ THH∗(ku;HZ) (5.2.22)

the differentials are zero except for

d4(µn+2) =
n

2
σuµn (5.2.23)

up to a unit when n ≥ 2 is even. There is one non-trivial extension given by

2µ2 = σu. (5.2.24)

Proof. By inspecting the long exact sequence in homotopy given by the cofiber
sequence

THH(HZ) THH(HZ) V (0) ∧ THH(HZ)×2 (5.2.25)

we can choose generator such that

f : THH∗(HZ) V (0)∗ THH(HZ)

µ2k λ1µ
k−1
1

σu σu

(5.2.26)

and
g : V (0)∗ THH(HZ) THH∗−1(HZ)

µk
1 kµ2k

σuµk
1 kσuµ2k.

(5.2.27)

This also yield morphisms between the integral and mod 2 Brun spectral se-
quences. Depending on the parity of k, we use one of these maps to conclude. If
k is even, then

f(d4(µ2k)) = d4(λ1µ
k−1
1 ) = σuλ1µ

k−2
1 (5.2.28)

so that
d4(µ2k) = σuµ2k−2 (5.2.29)

up to a unit, and k − 1 is a unit. When k is odd,

d4(µ2k) = g(d4(µk
1)) = g(σuµk−1

1 ) = (k − 1)σuµ2k−2. (5.2.30)

These are the formulas we claimed.
Since σu is a boundary in the mod 2 spectral sequence, between the E∞

pages we have f(σu) = 0. Moreover, since σu is in the lowest filtration possible,
this cannot be because of a shift of filtration, so that σu must be divisible by 2
in THH3(ku;HZ). The only possibility is the extension claimed. There can be
no other extensions for degree reasons.

The result of this section can now be stated from the previous description of
the spectral sequence.
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5.3 Topological Hochschild homology of ℓ

Proposition 5.2.31.

THH∗(ku;HZ) ∼=Z{1, µ2} ⊕
⊕

n≥3 odd

Z⧸n{µn, σuµn}⊕

⊕
n≥4 even

Z⧸(n/2){2µn, σuµn}
(5.2.32)

where |µn| = 2n− 1 and the name of the generators have been chosen to reflect
the multiplicative relations between them, with σu = 2µ2.

5.3 Topological Hochschild homology of ℓ

In this section, we will review the results of [2] on THH∗(ℓ). The results, relative
to any prime p, will be stated about the following spectral sequences:

THH∗(HZ(p);H(HZ(p) ∧ℓ HZ(p))∗) ∼= THH∗(HZ(p)) ⊗̄E(σv1)

⇒ THH∗(ℓ;HZ(p)) (ℓZ)

THH∗(ℓ;HZ(p)) ⊗̄P (v1)⇒ THH∗(ℓ). (ℓ)

The spectral sequence (ℓZ) is a Brun spectral sequence; (ℓ) is a Bockstein
spectral sequence. We chose to name the written pages as the E1 pages, so that
the differentials have bidegrees |dr| = (−r − 1, r). We have the bidegrees

|µkp| = (2kp− 1, 0), k ≥ 1 the generators of THH∗(HZ(p))

|σv1| = (0, 2p− 1)

|v1| = (0, 2(p− 1)).

(5.3.1)

When we will deem it necessary, for formulas in some discrete R-algebra A,
we will use x · y for the R-action of x ∈ R on y ∈ A, and xy for the product
of x, y ∈ A. From [2], proposition 3.4, which compute THH∗(ℓ;HZ(p)) we can
deduce:

Proposition 5.3.2. All the differentials in (ℓZ) are given by the formulas:

d2p−1(µ(k+1)p) = pν(k) · σv1µkp (5.3.3)

up to a unit where k ≥ 1 and ν is the p-adic valuation.
There is an extension given by pµp = σv1.

(ℓ) is also computed in [2]. We will use the following notations:

THH∗(ℓ;HZ(p)) ∼= Z(p){1, µp} ⊕
⊕
k≥2

Z⧸pν(k){v0µkp, σv1µkp}. (5.3.4)

Here from the Brun spectral sequence (ℓZ) we have σv1 = p · µp and v0µkp is a
class represented by p ·µkp. As in [2], we differentiate between the multiplication
by p in the previous spectral sequence (ℓZ), denoted by v0, and multiplication by
p in the current spectral sequence (ℓ), denoted by p. This is the same distinction
we made in chapter 2 between q and q0: p denote the multiplication by p ∈ Z in
a Z-module, and v0 will be used to name classes that are lifts of classes in the
image of the multiplication by p.
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5.4 Review of the modulo p results

Theorem 5.3.5 (Theorem 6.4 of [2]). The differentials in (ℓ) are given by the
formula:

dp
n+1+···+p(pn · v0µ(k+1)pn+1) = kvp

n+1+···+p
1 σv1µkpn+1 , k ≥ 0, n ≥ 0 (5.3.6)

up to a unit and linearity with respect to multiplication by v1.

There are extensions at the end of this spectral sequence. We now state the
result with our notations:

Theorem 5.3.7 (different results in sections 6.2 and 6.3 of [2]). THH∗(ℓ) is a
quotient of the Z(p)-module

P (v1)⊗
(
Z(p){1, σv1, vn0 µpn+1 , n ≥ 0}

⊕ P (v0)⊗ Z(p){σv1µapn , n ≥ 2, a ≥ 1, a not divisible by p}
)

(5.3.8)

by the relations:

• p · µp = σv1.

• p · vn0 µpn+1 = vp
n

1 vn−1
0 µpn for any n ≥ 1.

• vp
n−h−1+pn−h−2+···+p

1 · vh0σv1µapn = 0 for any h, a and n, a not divisible
by p.

• vn−1
0 σv1µapn = 0 for any a and n, a not divisible by p.

• p · σv1µ(bp+p−1)pn = v0σv1µ(bp+p−1)pn + vp
n+pn−1+···+p

1 v
ν(b)
0 σv1µbpn+1 for

any b ≥ 1 not divisible by p and any n.

• p · vh0σv1µapn = vh+1
0 σv1µapn for any a, n and h ≥ 1 or h = 0 not in the

previous case.

5.4 Review of the modulo p results

From here, and for the next sections of this chapter related to THH(ku), p is an
odd prime. Remark that for p = 2, ku = ℓ so that the results of the previous
section about THH(ℓ) are results about THH(ku). The following Bockstein
spectral sequence relative to the modulo p reduction of THH∗(ku) are known.

V (0)∗ THH(ku;HZ(p)) ⊗̄P (u) ∼= E(σu, λ1)⊗ P (µ1) ⊗̄P (u)
⇒ V (0)∗ THH(ku) (uV )

V (0)∗ THH(ku;HZ(p)) ⊗̄Pp−1(u) ∼= E(σu, λ1)⊗ P (µ1) ⊗̄Pp−1(u)

⇒ V (0)∗ THH(ku; ku/v1). (uV T )

Once again, these are the E1 pages, with |dr| = (−r − 1, r), and:

|σu| = (3, 0)

|λ1| = (2p− 1, 0)

|µ1| = (2p, 0)

|u| = (0, 2).

(5.4.1)
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5.5 Computation of THH∗(ku; ku/v1)

From theorem 1.2.11, we know that (uV ) determine (uV T ) entirely: the
differentials in (uV T ) are those of (uV ) that are small enough to fit.

The spectral sequence (uV ) is known from [5]. We will now describe it.
For n ∈ Z, let a(n) and b(n) be the integers

a(n) =


0 if n ≤ −1
pn+1 − pn + pn−1 − ...+ p2 − p if n ≥ 1 is odd
pn+1 − pn + pn−1 − ...+ p3 − p2 + p− 2 if n ≥ 0 is even.

(5.4.2)

b(n) =


0 if n ≤ 1

pn−1 − pn−2 + ...+ p2 − p if n ≥ 3 is odd
pn−1 − pn−2 + ...+ p− 1 if n ≥ 2 is even.

(5.4.3)

Proposition 5.4.4. In (uV ), the differentials are determined by multiplicativity
by the equations:

da(n)(µpn

1 ) =

{
ua(n)σuµ

b(n)
1 n even

ua(n)λ1µ
b(n)
1 n odd.

(5.4.5)

For n ≥ 1, a(n) ≥ p − 1 so that (uV T ) only see the first differentials with
n = 0:

Proposition 5.4.6. All the differentials in (uV T ) are given by the formulas:

dp−2(λϵ1µ
k
1) = kup−2λϵ1µ

k−1
1 (5.4.7)

where ϵ ∈ {0, 1} and k ≥ 1.

5.5 Computation of THH∗(ku; ku/v1)

We will now compute THH∗(ku; ku/v1) using both a Brun spectral sequence and
a Bockstein spectral sequence. We first state results that allow us to compute
the first page of the Brun spectral sequences.

Lemma 5.5.1. (a) (ku/v1 ∧ku ku/v1)∗ ∼= Pp−1(u) ⊗ E(σv1) over Z(p) with
|u| = 2 and |σv1| = 2p− 1.

(b) V (0)∗(ku/v1 ∧ku ku/v1) ∼= Pp−1(u) ⊗ E(σv1) over Fp with |u| = 2 and
|σv1| = 2p− 1.

(c) THH∗(ku/v1;HZ(p)) ∼= THH∗(HZ(p))⊗E(σu)⊗Γ(φu) over Z(p) with |σu| =
3 and |φu| = 2p.

(d) THH∗(ku/v1;HFp) ∼= V (0)∗ THH(HZ(p)) ⊗ E(σu) ⊗ Γ(φu) over Fp with
|σu| = 3 and |φu| = 2p.

Proof. The Künneth spectral sequence computing (ku/v1 ∧ku ku/v1)∗ has E2

page TorP (u)
∗,∗ (Pp−1(u), Pp−1(u)) = Pp−1(u)⊗E(σv1) with |u| = (0, 2) and |σv1| =

(1, 2p− 2). For degree reasons, the spectral sequence collapse with no possible
extensions, yielding the result. The V (0) result follows from the absence of
p-torsion.
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5.5 Computation of THH∗(ku; ku/v1)

We use the Brun spectral sequence to compute THH∗(ku/v1;HZ(p)) and
THH∗(ku/v1;HFp):

THH∗(HZ(p);H(HZ(p) ∧ku/v1
HZ(p))∗)⇒ THH∗(ku/v1;HZ(p)) (5.5.2)

THH∗(HFp;H(HFp ∧ku/v1
HFp)∗)⇒ THH∗(ku/v1;HFp). (5.5.3)

The Künneth spectral sequence computing (HZ(p)∧ku/v1
HZ(p))∗ has E2 page

Tor
Pp−1(u)
∗,∗ (Z(p),Z(p)) ∼= E(σu)⊗Γ(φu) with |σu| = (1, 2) and |φu| = (2, 2p− 2).

The indecomposables are σu and the divided power γpiφu. For degree reasons,
they cannot support non-zero differentials, so the spectral sequence collapse with
no possible extensions, and we have (HZ(p) ∧ku/v1

HZ(p))∗ ∼= E(σu)⊗Γ(φu). A
similar argument yields (HFp ∧ku/v1

HFp)∗ ∼= E(σu)⊗ Γ(φu), this time over Fp.
Getting back to the Brun spectral sequences, when looking at the degrees

modulo 2p, we see that the indecomposables also cannot support non-zero
differentials in both the integral and V (0) case, so that the two spectral sequences
collapse. The modulo p E∞ page has exactly the right rank over Fp to fit into a
long exact sequence of the multiplication by p for the integral E∞ page. Having
an extension in the integral spectral sequence would then mean that there is a
non-zero differential in the modulo p one. We conclude that there is no extension
in the integral spectral sequence, and there can also be none in the modulo p
one.

Thus, we can write the following two spectral sequences computing THH of
ku with coefficients in ku/v1:

THH∗(ku;HZ(p)) ⊗̄Pp−1(u) ∼= THH∗(HZ(p))⊗ E(σu) ⊗̄Pp−1(u)

⇒ THH∗(ku; ku/v1) (uT )

THH∗(ku/v1;H(ku/v1 ∧ku ku/v1)∗)
∼= THH∗(HZ(p))⊗ E(σu)⊗ Γ(φu) ⊗̄E(σv1)⊗ Pp−1(u)

⇒ THH∗(ku; ku/v1). (uTB)

(5.5.4)

Here (uT ) is a truncated Bockstein spectral sequence, and (uTB) is a Brun
spectral sequence, and

|σu| = (3, 0)

|φu| = (2p, 0)

|µkp| = (2kp− 1, 0), k ≥ 1 the generators of THH∗(HZ(p))

|u| = (0, 2)

|σv1| = (0, 2p− 1).

(5.5.5)

For the following lemma, we will briefly use the non-truncated u-Bockstein
spectral sequence (u) computing THH∗(ku) that we will study in the next section.
It links the class σv1 of THH∗(ℓ) to a class of THH∗(ku). Another incomplete
point of view on this result can be found in section 5.8.

Lemma 5.5.6. The map THH∗(ℓ)→ THH∗(ku) sends σv1 to a non-zero class
represented up to a unit by up−2σu in the Bockstein spectral sequence computing
THH∗(ku).
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5.5 Computation of THH∗(ku; ku/v1)

Proof. Since L is the (smashing) localization of ℓ at the Johnson-Wilson spectrum
E(1), we can conclude from proposition 4.4.3 that there is a weak equivalence

THH(L) ≃ THH(ℓ;L). (5.5.7)

Similarly, there is a weak equivalence

THH(KU) ≃ THH(ku;KU). (5.5.8)

THH(ℓ;L) can be computed using a periodic Bockstein spectral sequence

THH∗(ℓ;HZ(p)) ⊗̄P (v1, v−1
1 )⇒ THH∗(ℓ;L) (L)

which is entirely determined by the map (ℓ) → (L). In particular, we can see
that σv1 is a generator over Q and PQ(v1, v

−1
1 ) of the summand ΣLQ in the

splitting
THH(L)p ≃ (L ∨ ΣLQ)p. (5.5.9)

Since the splitting on THH(L) and THH(KU) are compatible, it must be
that σv1 ∈ THH2p−1(ℓ) is sent to a non-zero class in THH2p−1(ku). There is
also a relation pµp = σv1, so that the only possibility is that the image of σv1 in
THH2p−1(ku) is represented by up−2σ to get both the extension with pµp and
the splitting of THH(KU).

Since ℓ/v1 is just HZ(p), we have a morphism between the Brun spectral
sequences (ℓZ)→ (uTB) induced by i : ℓ→ ku. This allows us to prove:

Proposition 5.5.10. In (uTB), there are differentials

d2p−4(γkφu) = up−2σuγk−1φu (5.5.11)

up to a unit for all k ≥ 1.

Proof. In the following commutative diagram:

THH(ℓ) THH(ku)

THH(ℓ;HZ(p)) THH(ku; ku/v1)

i

f f

i

(5.5.12)

we have up to units, using lemma 5.5.6

f(i(σv1)) = f(up−2σu) = up−2f(σu) = i(f(σv1)) = i(σv1). (5.5.13)

In order for this to be possible, there must be an extension u · up−3σu = σv1
in (uTB), and it must be that up−2σu is either a boundary or not an infinite cycle.
Since it is an infinite cycle for degree reasons, it is a boundary. The only class in
degree 2p is φu, so up to a unit there is a differential d2p−4(φu) = up−2σu in
(uTB).

In the divided power algebra Γ(φu), φuγk−1φu = k γkφu. We can then
prove our formula by induction on k, using the facts that

k d(γkφu) = d(φu)γk−1φu+ φud(γk−1φu) (5.5.14)

and that Z(p) is an integral domain.
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5.5 Computation of THH∗(ku; ku/v1)

We can now get a description of all the differentials in the truncated Bockstein
spectral sequence (uT ):

Proposition 5.5.15. In the spectral sequence (uT ), the differentials are given
by the formula:

d2p−4(µ(k+1)p) = pν(k)up−2σuµkp, k ≥ 1 (5.5.16)

up to a unit, where ν is the p-adic valuation.

Proof. The differentials given are the only possible in (uT ) for degree reasons;
we only need to prove that they are indeed non-zero. We now know enough
about (uTB) to do so.

By looking at the degrees modulo 2p, we can list the classes in E1
2kp−1 of

(uTB):

µkp, γk−1φuσv1, γk−1φuu
p−2σu, γiφuµ(k−i)p, 1 ≤ i < k. (5.5.17)

We know the following differentials in (uTB):

d2p−4(γiφu) = up−2σuγi−1φu (5.5.18)

for i ≥ 1 from proposition 5.5.10;

d2p−1(µ(i+1)p) = pν(i)σv1µip (5.5.19)

from the map (ℓZ)→ (uTB) and proposition 5.3.2;
To complete the multiplicative description, we also note that d(σv1) = 0 and

that all the degreewise possible value for d2p−4(µ(k−i)p) results in a non-zero
d2p−4(γiφuµ(k−i)p).

From this description, after d2p−1 the only generator left in E2p
2kp−1 is pµkp,

so that THH2kp−1(ku; ku/v1) is isomorphic to Z/pν(k)Z. This proves our claim
about (uT ).

We will now describe THH∗(ku; ku/v1), and as in [2], we will use v0 to denote
multiplication by p in the spectral sequence (uT ), as opposed to p denoting the
multiplication in the target group.

Proposition 5.5.20. THH∗(ku; ku/v1) is generated as a Z(p)[u]/(u
p−1)-module

by
1, σu, µp

v0µkp, uµkp, k ≥ 2

σuµkp, k ≥ 1

(5.5.21)

with the relations:

up−2 · σu = p · µp

u · v0µkp = p · uµkp, k ≥ 2

pν(k)+1 · uµkp = 0, k ≥ 2

up−3 · uµkp = 0, k ≥ 2

pν(k)+1 · σuµkp = 0, k ≥ 2

pν(k) · v0µkp = 0, k ≥ 2

pν(k)up−2 · σuµkp = 0, k ≥ 2.

(5.5.22)
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5.6 Computation of the Bockstein spectral sequence for THH∗(ku)

Proof. Except for the extension p · µp = up−2σu this is the E∞ page of (uT ).
This extension is present in (ℓZ), and since the map i : THH∗(ℓ;HZ(p)) →
THH∗(ku; ku/v1) is such that i(σv1) = up−2σu, and on the E∞ pages is such that
i(µp) = µp, it must be that up−2σu is also divisible by p in THH2p−1(ku; ku/v1).
The only possible extension is with µp, so we get our formula up to a unit.

Without the module structure, writing all the classes, this is:

Z(p){1, u, . . . , up−2, σu, uσu, . . . , up−2σu, µp}

⊕
⊕
k≥1

Z⧸pν(k)+1{uµkp, u
2µkp, . . . , u

p−2µkp}

⊕
⊕
k≥1

Z⧸pν(k)+1{σuµkp, uµkp, . . . , u
p−3µkp}

⊕
⊕
k≥2

Z⧸pν(k){v0µkp, u
p−2σuµkp}

(5.5.23)

with relations up−2σu = p · µp and u · v0µkp = p · uµkp.

5.6 Computation of the Bockstein spectral se-
quence for THH∗(ku)

We know enough of these first three spectral sequences to compute the fourth:

THH∗(ℓ;HZ(p)) ⊗̄P (v1) ⇒ THH∗(ℓ) (ℓ)

THH∗(ku;HZ(p)) ⊗̄Pp−1(u) ⇒ THH∗(ku; ku/v1) (uT )

THH(ku; ku/v1) ⊗̄P (v1) ⇒ THH∗(ku) (v1)

THH∗(ku;HZ(p)) ⊗̄P (u) ⇒ THH∗(ku). (u)

From the map THH(ℓ;HZ(p))→ THH(k; ku/v1) comes a morphism of spec-
tral sequences (ℓ) → (v1), which determines some differentials in (v1). These
differentials, the one computed in the previous section in (uT ) and the lem-
mas relating a spectral sequence and its truncations yield a description of the
differentials in (u).

Theorem 5.6.1. The differentials in (u) are given by the formula:

dp
n+1−2(pnµ(k+1)pn+1) = kup

n+1−2σuµkpn+1 , k ≥ 0, n ≥ 0 (5.6.2)

up to a unit and linearity with respect to multiplication by u.

Proof. Here we make good use of our results on truncated spectral sequences.
First, the differentials in (uT ) from proposition 5.5.15 are lifted to (u) using

theorem 1.2.11, that is in (u) there are differentials:

d2p−4(µ(k+1)p) = pν(k)up−2σuµkp, k ≥ 1 (5.6.3)

repeated for each power of u. These are the only differentials dr with 2 ≤
r ≤ 2p − 4 in (u) since these are the only differentials in (uT ), again using
theorem 1.2.11.
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5.6 Computation of the Bockstein spectral sequence for THH∗(ku)

We will now use theorem 1.2.21 and theorem 1.2.28. With regard to theo-
rem 1.2.28, it is important to see that in our current computation, a statement
stronger than the general case can be made. The general case would say that a
differential d(x) = y in (v1) would result in the existence of an element x′ such
that d(x′) = y in (v1), and such that this differential can be lifted to one in (u);
but in (v1), each generator is alone in its bidegree, so that necessarily x = x′.
So each differential d(x) = y in (v1) can really be lifted to a differential d(x) = y
in (u).

Using theorem 1.2.21, the differentials of formula (5.6.3) results in (v1) in

d1(uiµ(k+1)p) = pν(k)v1u
i−1σuµkp, k ≥ 1, 1 ≤ i ≤ p− 2 (5.6.4)

repeated for each power of v1. These are the only differentials d2p−2 in (v1)
since having more differentials would result in more differentials dr in (u) with
2 ≤ r ≤ 2p− 4. This gives the E2 page of (v1):

(v1) : E2 ∼=Z(p){1, u, . . . , up−2, σu, uσu, . . . , up−3σu, µp} ⊗ P (v1)

⊕
⊕
k≥2

Z⧸pν(k){v0µkp} ⊗ Pp−1(u)⊗ P (v1)

⊕
⊕
k≥1

Z⧸pν(k)+1{σuµkp, u σuµkp, . . . , u
p−3σuµkp}

⊕
⊕
k≥1

Z⧸pν(k){u
p−2σuµkp, v1σuµkp, u v1σuµkp, . . . }.

(5.6.5)

We have written all the generators v0µkp with v0 because we will now account
for the differentials in (ℓ) of theorem 5.3.5:

dp
n+···+p(pn−1 · v0µkpn) = (k − 1)vp

n+···+p
1 σv1µ(k−1)pn , k ≥ 1, n ≥ 1. (5.6.6)

That formula is also true in (v1), and from theorem 1.2.28 we deduce the formula
in (u) that was claimed (which also encompass the formula (5.6.3)).

It remains to prove that the classes σuµkp, k ≥ 1 are infinite cycles in (u).
The classes up−2σuµkp2 , k ≥ 1 are in the image of (ℓ)→ (v1) and so are infinite
cycles in (v1), thus also in (u) by theorem 1.2.35. Since in (u) the only up−2-
torsion is in even degree, it must be that σuµkp2 are infinite cycles in (u). The
remaining classes to check are the σuµkp with p not dividing k. Once again we
now that these classes support no differentials of height up to up−2, and are of
up−2-torsion after dp−2 by formula (5.6.3). If some σuµkp supports a non-zero
differential the target must be pν(k−i)uip+1µ(k−i)p, 1 ≤ i ≤ k − 1 for degree
reasons, and that target must be of up−2-torsion, that is to say some

pν(k−i)uip+2µ(k−i)p,

pν(k−i)uip+3µ(k−i)p,

...

pν(k−i)uip+p−1µ(k−i)p

(5.6.7)

is already the target of a differential. But the only possible differentials still not
accounted for are the one targeting pν(k−i)uip+1µ(k−i)p, 1 ≤ i ≤ k− 1, and these
are of height uh with h reducing to 1 modulo p.
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5.6 Computation of the Bockstein spectral sequence for THH∗(ku)

We can change our generators so that the differentials are not given up to a
unit but exactly.

Proposition 5.6.8. We can change the generators µN and σuµN ′ of THH∗(ku;HZ(p))
with a multiplication by a unit so that the differentials in (u) are given by the
formula:

dp
n+1−2(pnµ(k+1)pn+1) = pν(k)up

n+1−2σuµkpn+1 , k ≥ 0, n ≥ 0 (5.6.9)

Proof. Note that we have chosen pν(k) instead of k, but these are the same up
to a unit. We could have written the same statement with k.

The differentials are making the µN and σuµN ′ interact, and once we have
chosen a specific unit for one of them, we have to use the same unit for all the
piµN or pjσuµN ′ . Consider the graph G whose vertices are the µN and σuµN ′

and with an edge for each differential

d(piµN ) = pju•σuµN ′ (5.6.10)

for any i and j, up to a unit, in the spectral sequence. The graph G is bipartite,
since the differentials are always from a µN to a σuµN ′ . If we prove that G is a
forest (as in a collection of trees), then we have proven our statement. Indeed,
this is sufficient to choose a coherent set of µN and σuµN ′ , by choosing an
arbitrary root for all the trees in the forest, and then changing each generation
by a unit to verify the given formula.

We will reason on the p-adic valuation of N and N ′, denoted ν(N) and ν(N ′).
There is an edge in G between µN and σuµN ′ if and only if N = (k + 1)pn+1

and N ′ = kpn+1 for some k ≥ 0 and n ≥ 0. In that case, ν(N) ≥ ν(N ′) if and
only if n+ 1 = ν(N ′), so that for N ′ fixed, there is only one edge from σuµN ′

to some µN that satisfy ν(N) ≥ ν(N ′). Moreover, ν(N ′) ≥ ν(N) if and only
if n+ 1 = ν(N), so that for N fixed, there is only one edge from µN to some
σuµN ′ that satisfy ν(N ′) ≥ ν(N). Thus, if there is a cycle in G, then it must be
confined to vertices whose p-adic valuation are all equal. But any vertex can
only have at most one edge going to another vertex of the same p-adic valuation,
so that such cycles are impossible.

We can also state a result about the integral, non-local Bockstein spectral
sequence

THH∗(ku;HZ)⇒ THH∗(ku). (5.6.11)

We will use the following notations for the non-local classes:

THH∗(ku;HZ) ∼= Z{1, µ2} ⊕
⊕
k≥3

Z⧸f(k){2
ϵ(k)µk, σuµk} (5.6.12)

where

f(k) =

{
k when k is odd
k/2 when k is even

(5.6.13)

ϵ(k) =

{
0 when k is odd
1 when k is even

(5.6.14)

and 2µ2 = σu.
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In this section only – we later go back to p-local computation – let us write
µ(p) for the p-local generators. We can choose to lift them to the non-local case
such that when k and p are coprime,

µ
(p)
kpn = kµkpn . (5.6.15)

The p-local differentials can be rewritten as

dp
n+1−2(pnµ

(p)
kpm) = (kpm−n−1 − 1)up

n+1−2σuµ
(p)
kpm−pn+1 (5.6.16)

in the integral Bockstein spectral sequence, when k and p are coprime and
0 ≤ n < m.

Thus, we can conclude from all the maps THH∗(ku;HZ)→ THH∗(ku;HZ(p)):

Proposition 5.6.17. In the Bockstein spectral sequence computing not localized
THH∗(ku), the differentials are given by:

dp
n+1−2(pnkµkpm) = (kpm−n−1 − 1)up

n+1−2σuµkpm−pn+1 (5.6.18)

where p is any prime, k ≥ 1, k and p coprime, m ≥ 1, and 0 ≤ n < m. The
formula is valid up to multiplication by a unit of Z/kpm−pn+1

2 .

5.7 Computing the extensions and a presentation
of THH∗(ku)

We first compute the extensions in the torsion-free part of the spectral sequence,
from the knowledge that the p-torsion and the u-torsion must be the same in
THH∗(ku).

Proposition 5.7.1. The torsion-free part of THH∗(ku) is a quotient of

P (u)⊗ Z(p){1, σu, µp, v0µp2 , v20µp3 , . . . } (5.7.2)

with relations
p · µp = up−2σu (5.7.3)

p · vn0 µpn+1 = up
n+1−pn

vn−1
0 µpn , n ≥ 1. (5.7.4)

Proof. From the differentials of theorem 5.6.1, the generators written are the
only one not of u-torsion. We already know from lemma 5.1.3 that they must
not be of p-torsion. We can give a second proof of this fact using the spectral
sequences, by studying the connecting map of multiplication by p:

δ : V (0)∗ THH(ku)→ THH∗−1(ku) (5.7.5)

which is a map of ku∗-modules.
Let n ≥ 0. In order for p · vn0 µpn+1 to be zero, vn0 µpn+1 needs to be in the

image of δ, and since it is not divisible by u, it needs to be the image by δ of an
element not divisible by u. Be there is no such element in V (0)2pn+1 THH(ku): in
the E1 page of the Bockstein spectral sequence computing V (0)∗ THH(ku), the
only suitable element is µpn

1 , but it is not an infinite cycle (see proposition 5.4.4).
So p · vn0 µpn+1 is not zero.
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We now have to prove that the extensions given are present. The u-tower
over 1 is in even degree, so no extension are possible with the rest of the classes.
We prove the rest of our formula by induction on n. Let us first observe that
each extension must be with an element not already divisible by p; otherwise
if p · vn0 µpn+1 = p · ukx for some k ≥ 1 and x, then vn0 µpn+1 − ukx would be a
non-divisible by u class in degree 2pn+1 − 1 whose product with p is zero, which
we already deemed impossible. Then up−2σu is the only choice (up to a unit)
for p · µp. Let n ≥ 1. If our formula holds up to rank n − 1, then p · vn0 µpn+1

could degreewise be:
up

n+1−2σu

up
n+1−pµp

up
n+1−p2

v0µp2

...

up
n+1−pn

vn−1
0 µpn

(5.7.6)

but the only one not already divisible by p is up
n+1−pn

vn−1
0 µpn .

Using the results of chapter 2, we can recover the torsion extensions.

Proposition 5.7.7. The torsion ku∗-sub-module of THH∗(ku) is presented by
the classes

vh0σuµapn (5.7.8)

in degree 2apn + 2 where h, a and n are integers such that h ≥ 0, n ≥ 1, a ≥ 1
and p does not divide a, together with the relations:

1) up
n−h−2 · vh0σuµapn = 0 for any h, a and n.

2) vn0 σuµapn = 0 for any a and n.

3) p · σuµ(bp+p−1)pn = v0σuµ(bp+p−1)pn + up
n+1−pn

v
ν(b)
0 σuµbpn+1

for any b ≥ 1 not divisible by p and any n.

4) p · vh0σuµapn = vh+1
0 σuµapn

for any a, n and h ≥ 1 or h = 0 not in the case of 3).

Proof. Here we will use the results of chapter 2 applied to the torsion ele-
ments of THH∗(ku). Hypothesis (sR1), which is in our case a statement about
V (0)∗ THH(ku;HZ(p)) is easy to check from the modulo p results of section 5.4.
Our lifts qk0ai of the E∞-page will be the v

ν(k)
0 σuµkpn+1 obtained from the

differentials of proposition 5.6.8:

dp
n+1−2(pnµ(k+1)pn+1) = pν(k)kup

n+1−2σuµkpn+1 , k ≥ 0, n ≥ 0. (5.7.9)

These differentials gives us the relations at the end of the u-towers

p · up
n−3σuµ(bp+p−1)pn = up

n+1−3v
ν(b)
0 σuµbpn+1

p · up
n−3σuµ(bp+j)pn = 0 whenever 0 < j < p− 1

p · up
n−h−3vh0σuµapn = 0 whenever h ≥ 1.

(5.7.10)
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5.7 Computing the extensions and a presentation of THH∗(ku)

In the language of chapter 2, this is

π(σuµ(bp+p−1)pn) = v
ν(b)
0 σuµbpn+1

π(σuµ(bp+j)pn) = 0 whenever 0 < j < p− 1

π(vh0σuµapn) = 0 whenever h ≥ 1.

(5.7.11)

Let n ≥ 1, a ≥ 1 not divisible by p and h ≥ 0. We will check (sTi) for all
classes vh0σuµapn , that is to say proving that the only other class that can appear
in p · vh0σuµapn is π(vh0σuµapn), thus proving the formula. Hypothesis (sTi) is
proved by examining, for m ≥ 1, b ≥ 1 not divisible by p and k ≥ 0, the classes
vk0σuµbpm that can appear in the inequality

|vk0σuµbpm | ≤ |vh0σuµapn | < |up
m−k−2vk0σuµbpm | ≤ |up

n−h−2vh0σuµapn |.
(5.7.12)

This equation (5.7.12) is indeed equivalent to

i)
∑
i≥0

bip
m+i + 1 ≤

∑
i≥0

aip
n+i + 1

ii)
∑
i≥0

aip
n+i + 1 <

∑
i≥0

bip
m+i +

m−k−1∑
i=0

(p− 1)pi

iii)
∑
i≥0

bip
m+i +

m−k−1∑
i=0

(p− 1)pi ≤
∑
i≥0

aip
n+i +

n−h−1∑
i=0

(p− 1)pi.

(5.7.13)

Here we have written a =
∑

i≥0 aip
i and b =

∑
i≥1 bip

i in base p.
If m < n, i) and ii) cannot hold together. If m = n, but then for i) and ii) to

hold together, we must also have a = b. Then any k such that h ≤ k is suitable.
If m > n, then to have i) and ii), bpm must be a truncation of apn, and

m− k− 1 ≥ n. Then for iii) to hold, we must have h = 0 and iii) is an equality,
that is to say the firsts digits a0, . . . , aω of a are p− 1, and then we can have
n ≤ m−k− 1 ≤ n+ω, with k = 0 except if m−k− 1 = n+ω and aω+1 = 0. In
that case, k must be the number of digits of a equal to zero after the position ω.
For n = m− 1, we get the class vk0σuµbpm = π(vh0σuµapn), and for m− 1 > n we
get classes such that |vk0σuµbpm | < |π(vh0σuµapn)| (remark that all these classes
will be connected by a tower of extensions, one for every p− 1 digits at the end
of a). Thus, (sTi) holds for all torsion classes.

From the two previous results, we can give a presentation of THH∗(ku) as a
ku∗-module.

Theorem 5.7.14. THH∗(ku) is a quotient of the Z(p)[u]-module

P (u)⊗
(
Z(p){1, σu, vn0 µpn+1 , n ≥ 0}

⊕ P (v0)⊗ Z(p){σuµapn , n ≥ 1, a ≥ 1, a not divisible by p}
)

(5.7.15)

by the relations:

• p · µp = up−2σu.
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σuµ3 σuµ9
◦ •

◦ •
◦ ••

σuµ12 σuµ15

Figure 5.2: T1 and T2 for p = 3.

• p · vn0 µpn+1 = up
n+1−pn

vn−1
0 µpn for any n ≥ 1.

• up
n−h−2 · vh0σuµapn = 0 for any h, a and n, a not divisible by p.

• vn0 σuµapn = 0 for any a and n, a not divisible by p.

• p·σuµ(bp+p−1)pn = v0σuµ(bp+p−1)pn+up
n+1−pn

v
ν(b)
0 σuµbpn+1 for any b ≥ 1

not divisible by p and any n.

• p · vh0σuµapn = vh+1
0 σuµapn for any a, n and h ≥ 1 or h = 0 not in the

previous case.

For the non-torsion part, we can state an integral, non-local version of this
result; at each power up

n−2 for n ≥ 1, σu becomes divisible by p one more time.
In what follows, ku is not localized at a prime.

Proposition 5.7.16. The non-torsion part THH∗(ku) includes a tower Z[u]
generated by σu where for each n ≥ 1, un−2σu is divisible by the least common
multiple of the integers 1, 2, . . . , n. That is, the non-torsion part is

Z[u]{1} ⊕ Q (5.7.17)

where Q is the sub-Z-module of Q[u]{σu} generated by the

un−1σβ(0)

lcm(1, 2, . . . , n)
(5.7.18)

for n ≥ 1.

However, we are not able to provide such an integral description for the
torsion part.

As studied in [2] for THH∗(ℓ), the torsion modules of THH∗(ku) are divided
into periodic submodules Tn for n ≥ 1. Each Tn correspond to the submodules
of the torsion elements of degrees between |σuµpn | = 2pn +2 and |σuµ2pn | − 1 =
2(2pn) + 1. Each of these appears p− 1 times, by replacing the leftmost class
with σuµkpn for 1 ≤ k ≤ p− 1, and p copies (as submodules or quotients) of Tn
are present in Tn+1, so Tn appears an infinite numbers of times. In the following
figures, the generators are named and placed on the bottom horizontal line; the
rest of the non-zero class are indicated by a ◦ when they come from THH∗(ℓ), a
• otherwise; going straight up indicate a multiplication by p, and going upward
and right is a multiplication by u; when two lines go up from a single class, it
means the multiplication by p is the sum of the two elements reached. None of
the named classes come from THH∗(ℓ).

The code used to generate these pictures can be found in appendix A. We
can see that THH∗(ku) is not THH∗(ℓ) étale, by which we mean that

THH∗(ku) ̸= ku∗ ⊗ℓ∗ THH∗(ℓ). (5.7.19)
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σuµ27
◦ •

◦ •
◦ •

◦ •
◦ •

◦ •
◦ •

◦ •
◦ •

◦ •
◦ •

◦ •

• ◦
• ◦

• ◦
••

σuµ30 σuµ33 σuµ36
◦ •

◦ •
◦ ••

σuµ39 σuµ42 σuµ45
◦ •

◦ •
◦ ••

σuµ48 σuµ51

Figure 5.3: T3 for p = 3.

σuµ5
• •

Figure 5.4: T1 for p = 5.

σuµ25
• •

◦ •
• •

◦ •
• •

◦ •
• •

◦ •
• •

◦ •
• •

• •
•

σuµ30
• •

σuµ35
• •

σuµ40
• •

σuµ45
• •

Figure 5.5: T2 for p = 5.
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5.8 A remark on bisimplicial spectra and the suspension map

Further discussions of these kinds of properties can be found in chapter 6. The
extensions of scalars, however, does yield an injection, and in fact a short exact
sequence

0 ku∗ ⊗ℓ∗ THH∗(ℓ) THH∗(ku) C 0 (5.7.20)

where the cokernel C can be presented as the quotient of the Z(p)[u]-module

Pp−2(u)⊗ Z(p){1, σu, σuµapn , n ≥ 1, a ≥ 1, a not divisible by p} (5.7.21)

by the relation pnσuµapn = 0 for any a and n, a not divisible by p.

5.8 A remark on bisimplicial spectra and the sus-
pension map

This section will offer a more general but incomplete point of view on lemma 5.5.6.
Topological Hochschild homology can be seen to have other structures in

addition to the algebra structure. By viewing the simplicial construction of THH
as a tensor product S1 ⊗A with a simplicial model of S1, THH can be equipped
with a Hopf algebra structure and an S1 action; an account of such results can be
found in [3]. Here we are interested in the suspension map σ : ΣA→ THH(A),
which is constructed after remark 3.11 of [3] by splitting S1

+ as S1 ∨ S0, and
composing S1 ∧A→ S1

+ ∧A→ S1 ⊗A.
We will study the map σ simplicially, in order to show that it enjoys some

compatibility with the Brun spectral sequence, but we will not get a result good
enough to used as our lemma 5.5.6. To do so, we need to introduce bisimplicial
S-modules.

Definition 5.8.1. A bisimplicial S-module is a functor

F : ∆op ×∆op →MS (5.8.2)

or, equivalently, a simplicial object in the category of simplicial S-modules.
Its geometric realization |F | is the coend of the functor F ∧ (∆•)+ ∧ (∆•)+ :
∆op ×∆op ×∆×∆→MS where ∆• is the topological simplex functor.

Since we have two simplicial directions, we can also realize F into a simplicial
S-module in two different ways, that we will denote |F |1 and |F |2 for respectively
realize following the first and second variable. These simplicial S-modules can
then be realized a second time. As a consequence of the Fubini theorem for
coend (see for example [24]), the following result holds:

Proposition 5.8.3. There are natural isomorphism of S-modules

|F | ∼= ||F |1| ∼= ||F |2|. (5.8.4)

Let S1
• be the simplicial set that is the quotient of the 1-simplex ∆1 =

Hom(−, [1]) by its boundary ∂∆1, i.e. the coequalizer of

∗ ∆1 (5.8.5)
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5.8 A remark on bisimplicial spectra and the suspension map

where the maps are the inclusion of the two 0-cells of ∆1. One can think of that
coequalizer as having n-th simplicial level:

{f ∈ Hom([n], [1]) s.t. 0 is in the image of f}. (5.8.6)

Be wary though that this notation is not to be used with the simplicial maps,
since the property “0 being in the image of f ” is not stable by precomposing
with a face map. It is only useful to have a representing set of our quotient and
to count the number of cells. Here, our S1

• has only two non-degenerate cells,
one in dimension 0 and one in dimension 1. Hereafter, we consider that model
to be a discrete based simplicial space, the base point being the zero map.

Let A and B be commutative S-algebras, with an algebra map η : A→ B.
By considering A to be a constant simplicial S-module, we have a simplicial
model for the suspension:

ΣA• = S1
• ∧A. (5.8.7)

Since S1
• is discrete, each simplicial level is a wedge of copies of A, one for each

cell in S1
• that is not the base point. Thus:

ΣA0
∼= ∗

ΣA1
∼= A

ΣA2
∼= A ∨A.

(5.8.8)

We can also write explicitly the simplicial model for S1
+ ∧A coming from the

same simplicial S1, which have

(S1
+ ∧A)0 ∼= A

(S1
+ ∧A)1 ∼= A ∨A

(S1
+ ∧A)2 ∼= A ∨A ∨A.

(5.8.9)

However, we cannot control the map ΣA→ S1
+ ∧A simplicially. This is the

first issue to get a usable result mimicking lemma 5.5.6.
We will need a simplicial version of lemma 4.3.5, that can be proved similarly

to proposition 4.2.11.

Lemma 5.8.10. Let A and B be commutative S-algebras with a map of algebra
A→ B. There is a natural isomorphism of S-modules

THH(A;B) ∼= B ∧Be B(B,A,B). (5.8.11)

Let us define the three following bisimplicial spectra:

SAp,q = (S1
+ ∧A)p

Pp,q = B ∧A∧p ∧B
Tp,q = B ∧B∧q ∧B ∧Be B ∧A∧p ∧B.

(5.8.12)

SA is constantly (S1
+ ∧ A)• in the direction q. P is constantly B•(B,A,B) in

the direction q. T has a B•(B,B,B) on the left of ∧Be and a B•(B,A,B) on
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5.8 A remark on bisimplicial spectra and the suspension map

the right. Thus, |SA|1 is the constant simplicial spectrum S1
+ ∧ A, |P |1 is the

constant simplicial spectrum B(B,A,B) ≃ B ∧A B, and

|T |1 ≃ B ∧B∧q ∧B ∧Be B ∧A B
≃ B∧q ∧B ∧A B

|T |2 ≃ B ∧Be B ∧A∧p ∧B
≃ B ∧A∧p

|T | ≃ THH(A;B)

≃ THH(B;B ∧A B).

(5.8.13)

We have a map η : P → T which is the inclusion using the units of the
component on the right of the ∧Be . After realizing with | − |1, this can be seen
to be the inclusion

B ∧A B → B ∧B∧q ∧B ∧Be B ∧A B (5.8.14)

of the 0-cells into the simplicial construction of THH(B;B ∧A B). This is also
the edge homomorphism of the Brun spectral sequence computing THH(A;B),
since the Brun spectral sequence is constructed from a CW-structure on B,
and in the construction in the proof of theorem III.2.10 (approximation by cell
modules) of [20] can begin with a map that represents our 0-cells correctly.

The map σ : ΣA→ THH(A;B) is constructed from the map ω : S1
+ ∧A→

THH(A;B), that can be seen simplicially to be defined as

SA0,q = A→ B ∧B∧q ∧B ∧Be B ∧B = T0,q (5.8.15)

from the unit A → B into the penultimate B on the right, and on the second
non-degenerate cell – the A on the right of A ∨A – to be

SA1,q = A ∨A→ B ∧B∧q ∧B ∧Be B ∧A ∧B = T1,q (5.8.16)

the identity idA into the only A on the right. The rest of the cells in S1
+ are

degenerate, so we have defined a bisimplicial map. That map can be seen to
factorize through P , so that we have a commutative diagram of bisimplicial
spectra maps

SA T

P

(5.8.17)

that after realization gives

S1
+ ∧A THH(A;B)

B ∧A B

ω

η (5.8.18)

that gives after precomposing with the map ΣA→ S1
+ ∧A

ΣA THH(A;B)

B ∧A B

σ

η (5.8.19)

89



5.8 A remark on bisimplicial spectra and the suspension map

If we were working with spaces, we could give an explicit point-set model
of the realization of the bar construction (see e.g. (7.7) of [38]), and we could
identify the image of the map ΣA→ B(B,A,B) with the suspension in the bar
resolution, so that we could also name that map σ and the classes we named
σa in the Tor computing π∗(B ∧A B) are indeed σ(a). Thus, given that the
map σ into THH is a derivation, we would automatically have the equation
σv1 = (p− 1)up−2σu in THH∗(ku) and THH∗(ku; ku/v1). But we don’t have
such a fine control on the realization of simplicial spectra.
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Chapter 6

Logarithmic topological
Hochschild homology

It is known – e.g. from V (1) computations in [5] – that there is no weak equivalence
between THH(ku) and ku ∧ℓ THH(ℓ). However, such weak equivalence is true
for the so called logarithmic topological Hochschild homology. This, along with
knowledge of THH∗(ℓ) and a little input on its image in THH∗(ku), is sufficient
to compute the latter.

There exist various constructions of logarithmic topological Hochschild ho-
mology. In [22], Hesselholt and Madsen construct it for discrete valuation rings.
Here we will deal with the construction of Rognes, Sagave and Schlichtkrull in
[33] and [34]. Another account of the logarithmic sequence for ku by Blumberg
and Mandell can be found in [11].

6.1 Logarithmic topological Hochschild homology
of ku

Logarithmic THH is constructed in [34] for symmetric spectra enticed with a
“log ring structure”. We will only state what we need about this. Let E be
a non-zero, d-periodic, positive fibrant commutative symmetric ring spectrum.
Here d-periodic means that d is the smallest positive integer such that π∗(E)
has a unit x of degree d. Let e be the connective cover of E, also assumed to be
positive fibrant. Then there is a log ring structure denoted by (e, ⟨x⟩) on e. The
following is theorem 4.4 of [34]:

Theorem 6.1.1. There is a natural homotopy cofiber sequence

THH(e) THH(e, ⟨x⟩) ΣTHH(e<d)
ρ ∂ (6.1.2)

of THH(e)-module with circle action, where ρ is a map of commutative symmetric
ring spectra and e<d is the (d− 1)-st Postnikov section of e.

Here THH(e, ⟨x⟩) is logarithmic THH for the log ring structure coming from
the unit x.

From that we can write diagram (8.1) of [34]:

91



6.2 Deriving THH(ku) from THH(ℓ) and logarithmic THH

Corollary 6.1.3. There is a map of homotopy cofiber sequences:

THH(ℓ) THH(ℓ, ⟨v1⟩) ΣTHH(HZ(p))

THH(ku) THH(ku, ⟨u⟩) ΣTHH(HZ(p))

ρ

f

∂

f ′
id

ρ′
∂′

(6.1.4)

The last thing we need from [34] is theorem 6.3:

Theorem 6.1.5. The map of pre-log ring spectra (ℓ, ⟨v1⟩)→ (ku, ⟨u⟩) is formally
log-THH-étale, i.e. there is a weak equivalence of ku-modules:

THH(ku, ⟨u⟩) ≃ ku ∧ℓ THH(ℓ, ⟨v1⟩). (6.1.6)

The Künneth spectral sequence can then be used to conclude that additively,

THH∗(ku, ⟨u⟩) ∼= Pp−1(u)⊗ THH∗(ℓ, ⟨v1⟩) (6.1.7)

with the relation up−1 = v1. Remark that the inclusion of THH∗(ℓ, ⟨v1⟩) in
THH∗(ku, ⟨u⟩) is the map induced by f ′.

6.2 Deriving THH(ku) from THH(ℓ) and logarith-
mic THH

We need to know that in the image of the map THH∗(ℓ) → THH∗(ku), the
classes σv1 and σv1µkp2 , k ≥ 1 are divisible by u; this is true from our previous
computation of THH∗(ku), but it can be established only from the fact that
σv1 = up−2σu in THH∗(ku) (lemma 5.5.6), and the multiplicative properties
of the map THH∗(ℓ) → THH∗(ku). The previous results and the description
of THH∗(ℓ) of [2] are enough to compute THH∗(ℓ, ⟨v1⟩), THH∗(ku, ⟨u⟩) and
THH∗(ku).

We work in the homotopy long exact sequences resulting from corollary 6.1.3.
If we denote g : THH∗(HZ(p))→ THH∗(ℓ) the map induced in the long exact
sequence, then g(1) = 0 since Im ρ = Ker g and ρ is a ring morphism, thus
injective on THH0(ℓ). Moreover, g(µkp) = 0 since |µkp| = 2kp− 1 and there is
no p-torsion in odd degree in THH∗(ℓ). Thus g = 0, and f ◦ g : THH∗(HZ(p))→
THH∗(ku) must also be 0. The long exact sequence splits into short exact
sequence:

0 THH∗(ℓ) THH∗(ℓ, ⟨v1⟩) THH∗−1(HZ(p)) 0

0 THH∗(ku) THH∗(ku, ⟨u⟩) THH∗−1(HZ(p)) 0

ρ

f

∂

f ′
id

ρ′
∂′

(6.2.1)
Equation (6.1.7) ensures that f ′ is an injection, and then f must also be

an injection. The maps are of THH(ℓ) or THH(ku)-modules, so of ℓ or ku-
modules depending on the line. Let x ∈ THH∗(ℓ) be any of the classes σv1α,
with α ∈ {1, µkp2 , k ≥ 1}. We know that f(x) is divisible by u, and thus
ρ′(f(x)) = f ′(ρ(x)) is divisible by u. But then from the eq. (6.1.7), ρ(x) must
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be divisible by v1. Let y ∈ THH∗−2(p−1)(ℓ, ⟨v1⟩) be such that v1y = ρ(x): y
cannot be in the image of ρ since x is not divisible by v1 in THH∗(ℓ). Then
∂(y) ̸= 0 and must be a multiple of the class named α in THH∗−2p+1(HZ(p)).
The coefficient must be a unit, since otherwise y would be divisible by p, and
thus ρ(x) too, but then this would mean that ∂(p−1ρ(x)) ̸= 0 which is impossible
for degree reasons.

The remaining elements in THH∗(HZ(p)) that we need to account for are
the µkp with k not divisible by p. These can be lifted to classes we name
dµkp ∈ THH2kp(ℓ, ⟨v1⟩). If v1dµkp ̸= 0 then it must be equal for degree reason
to an element divisible by v1 coming from THH2kp+2(p−1)(ℓ); if v1dµkp = v1β
we can rename dµkp to be dµkp − β. We still have ∂(dµkp) = µkp, but now
v1dµkp = 0.

Thus, we have proved:

Proposition 6.2.2. THH∗(ℓ, ⟨v1⟩) is equal to

THH∗(ℓ)⊕ Z(p){d, dµkp, k ≥ 1} (6.2.3)

quotiented by the relations v1d = σv1, v1dµkp = σv1µkp with the convention
σv1µkp = 0 ∈ THH∗(ℓ) when k is not divisible by p, and pν(k)+1dµkp = 0.

We now describe explicitly the structure of THH∗(ℓ; ⟨v1⟩) and THH∗(ku, ⟨u⟩).

Theorem 6.2.4. THH∗(ℓ, ⟨v1⟩) is a quotient of the Z(p)[v1]-module

P (v1)⊗
(
Z(p){1, d, vn0 µpn+1 , n ≥ 0}

⊕ P (v0)⊗ Z(p){dµapn , n ≥ 2, a ≥ 1, a not divisible by p}
)

(6.2.5)

by the relations:

• p · µp = v1d.

• p · vn0 µpn+1 = vp
n

1 vn−1
0 µpn for any n ≥ 1.

• vp
n−h−1+pn−h−2+···+p+1

1 · vh0dµapn = 0 for any h, a and n, a not divisible
by p.

• vn0 dµapn = 0 for any a and n, a not divisible by p.

• p · dµ(bp+p−1)pn = v0dµ(bp+p−1)pn + vp
n+pn−1+···+p

1 v
ν(b)
0 dµbpn+1 for any

b ≥ 1 not divisible by p and any n.

• p · vh0dµapn = vh+1
0 dµapn for any a, n and h ≥ 1 or h = 0 not in the

previous case.

Theorem 6.2.6. THH∗(ku, ⟨u⟩) is a quotient of the Z(p)[u]-module

P (u)⊗
(
Z(p){1, d, vn0 µpn+1 , n ≥ 0}

⊕ P (v0)⊗ Z(p){dµapn , n ≥ 1, a ≥ 1, a not divisible by p}
)

(6.2.7)

by the relations:
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• p · µp = up−1d.

• p · vn0 µpn+1 = up
n+1−pn

vn−1
0 µpn for any n ≥ 1.

• up
n−h−1 · vh0dµapn = 0 for any h, a and n, a not divisible by p.

• vn0 dµapn = 0 for any a and n, a not divisible by p.

• p · dµ(bp+p−1)pn = v0dµ(bp+p−1)pn + up
n+1−pn

v
ν(b)
0 dµbpn+1 for any b ≥ 1

not divisible by p and any n.

• p · vh0dµapn = vh+1
0 dµapn for any a, n and h ≥ 1 or h = 0 not in the

previous case.

From these descriptions of THH∗(ℓ, ⟨v1⟩), THH∗(ku, ⟨u⟩), and of the maps
f ′, ∂ and ∂′, it is easy to derive a description of THH∗(ku) similar to that of
theorem 5.7.14 with ρ′ sending σu to ud.

We are also able to provide a logarithmic counterpart of the integral result of
proposition 5.7.16. In what follows, ku is not localized at a prime. Once again,
we cannot state anything of the sort for the torsion.

Proposition 6.2.8. The non-torsion part THH∗(ku, ⟨u⟩) includes a tower Z[u]
generated by d where for each n ≥ 1, un−1d is divisible by least common multiple
of the integers 1, 2, . . . , n. All the elements can be written as such a quotient.

We can revisit the figures of chapter 5 for logarithmic topological Hochschild
homology. THH∗(ℓ, ⟨v1⟩) and THH∗(ku, ⟨u⟩) are divided into submodules T ′

n for
n ≥ 1 that are obtained from the Tn of THH∗(ℓ) and THH∗(ku) by adding the
extension u · d = σu.

dµ3
•

Figure 6.1: T ′
1 for p = 3.

dµ9

◦

• ◦
• ◦

• ◦
••

• •
dµ12 dµ15

Figure 6.2: T ′
2 for p = 3.
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•
dµ27

◦

◦

◦ •
◦ •

◦ •
◦ •

◦ •
◦ •

◦ •
◦ •

◦ •
◦ •

◦ •
◦ •

• ◦
• ◦

• ◦
••

• •
dµ30 dµ33

•
dµ36

◦
◦ •

◦ •
◦ ••

•
dµ39

•
dµ42

•
dµ45

◦
◦ •

◦ •
◦ ••

•
dµ48

•
dµ51

Figure 6.3: T ′
3 for p = 3.
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Chapter 7

The K(Z, 3) units and the
trace map

In this chapter, we study the trace in topological Hochschild homology of the
map Σ∞

+K(Z, 3)→ K(ku) induced by the map Σ∞
+K(Z, 2) = Σ∞

+ CP∞ → ku.
This map capture part of the units of the ring spectrum ku. The units

GL1(R) of a ring spectrum R can be defined as the homotopy pullback of the
square

GL1(R) Ω∞R

π0(R)
× π0(R)

(7.0.1)

The units of ku can thus be seen to be

GL1(ku) ∼= Z/2×BU⊗. (7.0.2)

The natural inclusion BU(1)→ BU⊗ and the fact that U(1) = K(Z, 1) define
our map K(Z, 2)→ GL1(ku). Furthermore, as seen in [26] (lemma V.3.1), the
inclusion induces a splitting

BU⊗ ∼= BU(1)×BSU⊗ (7.0.3)

The other ingredients in our discussion are the natural map from the ring
units into algebraic K-theory and the Bökstedt trace map from algebraic K-
theory to topological Hochschild homology. Both these maps are studied in e.g.
[35] or [4].

Following [4] proposition 2.5, the composition of the unit map and the trace
map

Σ∞
+ BGL1(R)→ K(R)→ THH(R) (7.0.4)

is equivalent to the composition

Σ∞
+ BGL1(R)→ Σ∞

+ B
cyGL1(R) ≃ BcyΣ∞

+GL1(R)→ BcyR. (7.0.5)

The first part is the map coming from the bar construction

Σ∞
+ BGL1(R) ∼= Σ∞

+ B
cy(GL1(R); ∗)→ Σ∞

+ B
cyGL1(R). (7.0.6)
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The second part comes from the counit of the adjunction

Σ∞
+ ⊣ GL1 (7.0.7)

which gives a map

Σ∞
+ B

cyGL1(R) ≃ BcyΣ∞
+GL1(R)→ BcyR = THH(R). (7.0.8)

Thus, we have a composition

Σ∞
+K(Z, 3)→ Σ∞

+ BGL1(ku) ≃ BcyΣ∞
+GL1(ku)→ THH(ku) (7.0.9)

that will factor through ku ∧K(Z, 3)+ by extension of the scalars. The map

f : ku ∧K(Z, 3)+ → THH(ku) (7.0.10)

is what we will partially compute. Our model from that map will be induced by
the cyclic bar construction and the identification

ku ∧K(Z, 3)+ ≃ ku ∧Σ∞
+ K(Z,2)e Σ

∞
+K(Z, 2)e ∧B(S,Σ∞

+K(Z, 2), S)

≃ ku ∧Σ∞
+ K(Z,2)e B(Σ∞

+K(Z, 2),Σ∞
+K(Z, 2),Σ∞

+K(Z, 2))

≃ Bcy(Σ∞
+K(Z, 2); ku)→ Bcyku

(7.0.11)
obtained by proposition 4.2.11, the commutativity of Σ∞

+K(Z, 2) and proposition
II.1.2 of [20] applied to the simplicial constructions.

We can sumarize all the maps we have mentioned in the diagram of fig. 7.1
where ϕ1 is the extension of scalars, f is the map we will compute, ϕ2 is the
inclusion of the units in K-theory and ϕ3 is the Bökstedt trace map. Triangle (1)
commute by functoriality, square (2) by naturality and square (3) by functoriality
in the composition

S → Σ∞
+K(Z, 2)→ Σ∞

+GL1(ku)→ ku. (7.0.12)

The area (4) is the equivalence of proposition 2.5 of [4].
We will first compute the Bockstein spectral sequences

H∗(K(Z, 3);Fp)⊗ P (p)⇒ H∗(K(Z, 3);Z(p)) (7.0.13)

and
H∗(K(Z, 3);Z(p))⊗ P (u)⇒ ku∗K(Z, 3). (7.0.14)

Then, the identification ku ∧K(Z, 3)+ ≃ THH(Σ∞
+K(Z, 2); ku) will allow

us to partially compute the map f .

7.1 Hopf rings and the external Bockstein of
H∗(K(Z, 3);Fp)

The groups H∗(K(Z, 3);Z), along with the homology of Eilenberg-MacLane
spaces in general, were computed in the Cartan’s seminar [16] (see also [29]
for an overview). Here we will compute H∗(K(Z, 3);Z(p)) using Hopf rings
techniques. What we will use about Hopf ring comes from part 2, section 7
of [38], along with a computation of H∗(K(Z/p, n);Fp) for all n ≥ 0 in part 2,
section 8 that will be the basis of our own computation. Hopf rings techniques
are also studied and used in [31].
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Σ∞
+ BK(Z, 2) Σ∞

+K(Z, 3)

Σ∞
+ B

cy(K(Z, 2); ∗) Σ∞
+ B

cy(GL1(ku); ∗) Σ∞
+ BGL1(ku)

Bcy(Σ∞
+K(Z, 2);S) Σ∞

+ B
cyGL1(ku) K(ku)

Bcy(Σ∞
+K(Z, 2); ku) BcyΣ∞

+GL1(ku)

ku ∧K(Z, 3)+ Bcyku

=

≃

ϕ1

≃

≃

(1)
(4) ϕ2

(2)

≃

ϕ3

f≃

(3)

Figure 7.1: The map f , the units and the trace.
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7.1.1 Hopf rings
A Hopf ring is a graded ring object in a category of coalgebras. All our examples
will be from the following constructions: let E∗ be a homology satisfying a
Künneth isomorphism, and let G be a group. The homology of the Eilenberg-
MacLane spaces E∗K(G, ∗) has a Hopf ring structure. Here, there are two
graduations. The homology graduation is internal – we forget about it to get
a coalgebra from our graded coalgebra – and the graduation corresponding to
the level of the Eilenberg-MacLane spaces is the one we mentioned previously in
“graded ring object”.

Precisely, for each n ≥ 0, the diagonal map

∆ : K(G,n)→ K(G,n)×K(G,n) (7.1.1)

gives the homology E∗K(G,n) the structure of a (graded) cocommutative coal-
gebra. There is also a first monoid map (the sum in our graded ring)

∗ : K(G,n)×K(G,n)→ K(G,n) (7.1.2)

induced by the group law on G. The product comes from the cup product in
the cohomology theory represented by the K(G, ∗), which gives a map

◦ : K(G,m)×K(G,n)→ K(G,m+ n) (7.1.3)

for each m, n ≥ 0, so that this is indeed a graded product in E∗K(G, ∗). That
map can be constructed to be compatible in some sense with the bar spectral
sequence computing K(G,n+ 1) as the classifying space BK(G,n). This is the
basis of the computation in [31] and [38], and the explicit construction can be
found in section 1 of [31]. We will also simply write ∗, ◦ and ∆ for the products
and coproduct on E∗K(G, ∗).

Both product ∗ and ◦ are maps of coalgebra, with the cocommutative
coalgebra structure on E∗K(G, ∗) ⊗ E∗K(G, ∗) being given by ∆ ⊗ ∆, and
the product being term by term. The distributivity of ◦ over ∗ correspond to a
homotopy commutative diagram of spaces

K(G,m)×K(G,n)×K(G,n) K(G,m)×K(G,n)

K(G,m)×K(G,m)×K(G,n)×K(G,n)

K(G,m)×K(G,n)×K(G,m)×K(G,n)

K(G,m+ n)×K(G,m+ n) K(G,m+ n)

∆×id×id

id×∗

◦id×τ×id

◦×◦

∗

(7.1.4)
which, applying E∗, results in the following distributivity formula:

x ◦ (y ∗ z) =
∑

(−1)|x
′′| |y|(x′ ◦ y) ∗ (x′′ ◦ z) (7.1.5)

where ∆(x) =
∑
x′ ⊗ x′′ and the degrees are the graded ring one, i.e. n and m

in the previous diagram.
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The Bockstein spectral sequences we will study come from the cofiber sequence

HZ(p) HZ(p) HFp
×p (7.1.6)

that induces a homology long exact sequence for our spaces. The homology
Bockstein spectral sequence of an H-space is a spectral sequence of Hopf algebras,
see for example chapter 10 of [27]. In our case, it means that the differentials β
are derivations with respect to both products – ∗ gives an H-space structure to
each K(G, ∗), and ◦ gives an H-space structure to their union – and coderivation
with respect to the coproduct.

7.1.2 Homologies of K(Z, 3)
Our goal is this section is to compute H∗(K(Z, 3);Z(p)) from the Hopf ring
H∗(K(Z/p, ∗);Fp) and from H∗(K(Z, 2);Z(p)). We first review the results of
[38] regarding H∗(K(Z/p, ∗);Fp).

In the bar spectral computing H∗(K(Z/p, n+1);Fp) as H∗(BK(Z/p, n);Fp),
the E2 page is

TorH∗(K(Z/p,n);Fp)
∗,∗ (Fp,Fp). (7.1.7)

That Tor yields a divided power algebra Γ(σx) over the suspension of x from
an exterior algebra E(x); an exterior algebra E(σx) from a polynomial algebra
P (x); an exterior algebra E(σx) and a divided power algebra Γ(ϕx) over the
transpotence of x from a truncated polynomial algebra Pp(x). Remark that
a divided power algebra Γ(x) in characteristic p decomposes as the product⊗

i≥0 Pp(γpix). Moreover, in that case, for bidegree reasons, all the spectral
sequences collapse, so that we can write:

H∗(K(Z/p, 0);Fp) ∼= Pp([1]− [0]) (7.1.8)

H∗(K(Z/p, 1);Fp) ∼= E(e1)⊗ Γ(α1). (7.1.9)

Here, e1 is the suspension of [1]− [0], in degree 1, and α1 its transpotence, in
degree 2. We will write α(i) for the divided power γpiα1, so that

Γ(α1) ∼=
⊗
i≥0

Pp(α(i)). (7.1.10)

Thus, next we have:

H∗(K(Z/p, 2);Fp) ∼= Γ(σe1)⊗
⊗
i≥0

E(σα(i))⊗ Γ(ϕα(i)). (7.1.11)

This is when the Hopf ring structure becomes handy. It can be seen geometrically
that the suspension of a class is in fact its ◦ product with e1. Furthermore,
the classes γpjα(i) can be rewritten modulo decomposables for the ∗ product as
α(j) ◦ α(i+j+1). We denote e1 ◦ e1 by β1 = β(0), in degree 2, and let β(i) = γpiβ1,
so that we can write:

H∗(K(Z/p, 2);Fp) ∼=
⊗
i≥0

E(e1 ◦ α(i))⊗ Pp(β(i))⊗
⊗
i,j≥0

Pp(α(j) ◦ α(i+j+1)).

(7.1.12)
That process continues to compute the Hopf ring H∗(K(Z/p, ∗);Fp) entirely.

100



7.1 Hopf rings and the external Bockstein of H∗(K(Z, 3);Fp)

Theorem 7.1.13 (8.5 of [38]). H∗(K(Z/p, ∗);Fp) is the free Hopf ring on
H∗(K(Z/p, 0);Fp) and the generator e1, α(i) and β(i) for i ≥ 0 with the relation
e1 ◦ e1 = β(0).

In fact, e1 can be seen to be the image of the fundamental class ofH∗(K(Z, 1);Z)
and β(0) is the generator of the divided power algebra H∗(K(Z, 2);Z). We use
the same notation for all these classes and their images into homologies with
various coefficients, and with respect to the maps from K(Z, ∗) into K(Z(p), ∗)
or K(Fp, ∗).

The specialized result for K(Z/p, 3) can be seen in the local version of the
previous theorem, which is 8.11 of [38]:

H∗(K(Z/p, 3);Fp) ∼=
⊗
i≥0

E(e1 ◦ β(i))⊗
⊗
i,j≥0

E(e1 ◦ α(i) ◦ α(i+j+1))⊗ Pp(α(i) ◦ β(j))

⊗
⊗

i,j,k≥0

Pp(α(i) ◦ α(i+j+1) ◦ α(i+j+k+2)).

(7.1.14)

We now turn to the integral Eilenberg-MacLane spaces. With the previous
notations, we have:

H∗(K(Z, 1);Fp) ∼= E(e1) (7.1.15)

H∗(K(Z, 2);Fp) ∼= Γ(β(0)) ∼=
⊗
i≥0

Pp(β(i)) (7.1.16)

as sub-Hopf algebras of H∗(K(Z/p, 1);Fp) and H∗(K(Z/p, 2);Fp) with the re-
duction modulo p maps. This gives next:

H∗(K(Z, 3);Fp) ∼=
⊗
i≥0

E(σβ(i))⊗ Γ(ϕβ(i)). (7.1.17)

That can be rewritten as a sub-Hopf algebra of H∗(K(Z/p, 3);Fp) using claim
8.16 of [38]:

H∗(K(Z, 3);Fp) ∼=
⊗
i≥0

E(e1 ◦ β(i))⊗
⊗
i,j≥0

Pp(α(i) ◦ β(i+j+1)) (7.1.18)

where γpiϕβ(j) = α(i) ◦ β(i+j+1) modulo ∗-decomposables. From the proof of
claim 8.16 we see that this decomposable is zero when i = 0, so that there is an
equality ϕβ(j) = α(0) ◦ β(j+1).

To compute the Bockstein on H∗(K(Z, 3);Fp), we need some input on the
Bockstein on K(Z, 1) and K(Z, 2).

Proposition 7.1.19. In H∗(K(Z/p, 1);Fp) the Bockstein are given by the for-
mula:

β1(γkα(0)) = e1 ∗ γk−1α(0) (7.1.20)

for all k ≥ 1.
In H∗(K(Z, 2);Fp) the classes β(i), i ≥ 0 are all infinite cycles in the Bock-

stein spectral sequence.
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Proof. We have:

H∗(K(Z/p, 1);Z(p)) ∼= E(e1) (7.1.21)

H∗(K(Z, 2);Z(p)) ∼= Γ(β(0)) (7.1.22)

so that the γkα(0) are not in the image of the integral homology and must
support a Bockstein; the formula given is the only possible for degree reasons.
We get the results up to a unit, and we can rename our classes when necessary
to enforce the equality strictly.

Conversely, the β(i) are all in the image of the integral homology so that they
must be infinite cycles.

We will also need the coalgebra structure on H∗(K(Z/p, ∗);Fp).

Proposition 7.1.23. In H∗(K(Z/p, ∗);Fp), the coproduct is generated with the
Hopf ring properties and the formulas:

∆(e1) = e1 ⊗ 1 + 1⊗ e1 (7.1.24)

∆(γnα(0)) =

n∑
k=0

γkα(0) ⊗ γn−kα(0) (7.1.25)

∆(γnβ(0)) =

n∑
k=0

γkβ(0) ⊗ γn−kβ(0). (7.1.26)

The formulas are mentioned in the proof of 8.11 of [38]. This type of formula
for the two transpotences α(0) and β(0) are also valid for all the next transpotences.
The only source for the formula for the coproduct of a transpotence seems to be
Cartan’s seminar sections [17], [18], and [15].

Proposition 7.1.27. For any x ∈ H∗(K(Z/p, ∗ − 1);Fp), the divided powers of
its transpotence ϕx have coproducts

∆(γnϕx) =

n∑
k=0

γkϕx⊗ γn−kϕx. (7.1.28)

Proof. We work from two claims established by Cartan: the transpotences are
primitive classes (see [29] page 201) and the diagonal induces a morphism of
algebras with divided powers (see [29] page 193). We then use the Leibniz
formula for the divided power of a sum ((3) in [18]) and the formula for the
divided power of a product ((4) in [18]).

∆(γnϕx) = γn(∆ϕx)

= γn(ϕx⊗ 1 + 1⊗ ϕx)

=

n∑
k=0

γk(ϕx⊗ 1) · γn−k(1⊗ ϕx)

=

n∑
k=0

γkϕx⊗ 1 · 1⊗ γn−kϕx

=

n∑
k=0

γkϕx⊗ γn−kϕx

(7.1.29)
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We need to establish the following claim, whose proof will also give an
example on how to use the Hopf rings properties to compute the coproducts:

Proposition 7.1.30. In H∗(K(Z, 3);Fp), the coalgebra primitives are generated
additively by the classes σβ(i) and ϕβ(i) for i ≥ 0.

Proof. We use the following properties of Hopf rings: 1 ◦ a = 0 when a is not a
unit, so that:

∆(e1 ◦ β(i)) = (e1 ⊗ 1 + 1⊗ e1) ◦ (
pi∑

k=0

γkβ(0) ⊗ γpi−kβ(0)) (7.1.31)

= (e1 ◦ β(i))⊗ 1 + 1⊗ (e1 ◦ β(i)). (7.1.32)

Moreover,

∆(γnϕβ(i)) =

n∑
k=0

γkϕβ(i) ⊗ γn−kϕβ(i) (7.1.33)

and other products can be seen not to be primitive.

Proposition 7.1.34. The differentials in the Bockstein spectral sequence on
H∗(K(Z, 3);Fp) are given by

β1(γkϕβ(i)) = σβ(i+1)γk−1ϕβ(i) (7.1.35)

and thus, all the p-torsion in H∗(K(Z, 3);Z(p)) is annihilated by p.

Proof. Let i be a non-negative integer. We will work inductively on the divided
power using the coproduct. Proposition 7.1.19 implies that

β1(α(0) ◦ β(i+1)) = e1 ◦ β(i+1) = σβ(i+1). (7.1.36)

Moreover, ϕβ(i) = α(0) ◦ β(i+1), so our claim is established for ϕβ(i). If it is
established for

ϕβ(i), γpϕβ(i), . . . , γpn−1ϕβ(i) (7.1.37)

then it is established for all γkϕβ(i) with 0 ≤ k ≤ pn−1 multiplicatively. Assume
this is the case, and let us prove our claim for γpnϕβ(i).

On one hand:

∆(β1(γpnϕβ(i))) = (1⊗ β1 + β1 ⊗ 1)(∆(γpnϕβ(i)))

= (1⊗ β1 + β1 ⊗ 1)(

pn∑
k=0

γkϕβ(i) ⊗ γpn−kϕβ(i))

= 1⊗ β1(γpnϕβ(i)) + β1(γpnϕβ(i))⊗ 1

+

pn−1∑
k=1

(γkϕβ(i) ⊗ σβ(i+1)γpn−k−1ϕβ(i)

+ σβ(i+1)γk−1ϕβ(i) ⊗ γpn−kϕβ(i)).

(7.1.38)
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On the other hand:

∆(σβ(i+1)γpn−1ϕβ(i)) =

(1⊗ σβ(i+1) + σβ(i+1) ⊗ 1)

pn−1∑
k=0

γkϕβ(i) ⊗ γpn−1−kϕβ(i) (7.1.39)

so that β1(γpnϕβ(i))−σβ(i+1)γpn−1ϕβ(i) is primitive, and is in degree 2pn+i+1 +

2pn − 1. But the non-zero primitives classes of odd degree are in degree 2pk + 1
for some k ≥ 0. This concludes our induction step.

Furthermore, βr(σβ(0)) = 0 for degree reasons. There can be no other
differentials since now everything is either in the image of the Bockstein or
supporting a Bockstein.

This formula for the Bockstein also appears in Cartan’s seminar (see again
[29] page 201). This is sufficient to compute the homology of K(Z, 3) with Z(p)

coefficients.

Proposition 7.1.40.

H∗(K(Z, 3);Z(p)) ∼= Z(p){1, σβ(0)} ⊕ T (7.1.41)

where the torsion submodule T is isomorphic to Im(β1) ⊂ H∗(K(Z, 3);Fp).

We won’t try to give another description of the torsion part, but we will
use the following notation: let δ : HFp → ΣHZ(p) be the connecting map
for the multiplication by p cofiber sequence; we will write δ(x) for the torsion
element of H∗(K(Z, 3);Z(p)) corresponding to β1(x) in the previous isomorphism,
when x ∈ H∗(K(Z, 3);Fp). This way, we know that δ(x) = δ(y) if and only if
β1(x− y) = 0.

7.2 The u-Bockstein spectral sequence computing
ku∗K(Z, 3)

In the section, we compute ku∗K(Z, 3) using the Bockstein spectral sequence of
the multiplication by u:

H∗(K(Z, 3);Z(p)) ⊗̄P (u)⇒ ku∗K(Z, 3). (7.2.1)

To do so, we will use the map δ : HFp → ΣHZ(p) and the Bockstein spectral
sequence reduced modulo p:

H∗(K(Z, 3);Fp) ⊗̄P (u)⇒ (V (0) ∧ ku)∗K(Z, 3). (7.2.2)

Since all the torsion in the image of δ and the non torsion part is easy to study,
the mod p sequence will determine the integral one.

To compute the mod p sequence, we will first compute the Bockstein spectral
sequence associated to the multiplication by v1 in the mod p Adams summand
V (0) ∧ ℓ, which is in fact the connective Morava K-theory k(1) as remarked in
[39] after theorem 1.3. The periodic Morava K-theory K(1)∗K(Z, 3) is computed
in [31], along with all the K(n)∗K(Z,m), which using the coalgebra structure
allows us to recover the connective case.
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7.2.1 First connective Morava K-theory of K(Z, 3)
We begin by citing the periodic result, which is computed in [31] using the bar
spectral sequence:

Theorem 7.2.3 (12.1 of [31]). The first periodic Morava K-theory of K(Z, 3)
is trivial.

K(1)∗K(Z, 3) ∼= K(1)∗. (7.2.4)

We are, however, interested in the v1-Bockstein spectral sequence

H∗(K(Z, 3);Fp) ⊗̄P (v1, v−1
1 )⇒ K(1)∗K(Z, 3) (7.2.5)

since it determines the connective sequence

H∗(K(Z, 3);Fp) ⊗̄P (v1)⇒ k(1)∗K(Z, 3). (7.2.6)

We will compute the connective v1-Bockstein sequence with some input from
the connective bar spectral sequence.

Lemma 7.2.7. There is a bar spectral sequence

E2 ∼= Tork(1)∗K(Z,2)(k(1)∗, k(1)∗)⇒ k(1)∗K(Z, 3) (7.2.8)

and the Tor-groups include classes σβ(i) for any i ≥ 0, such that vp
i

1 σβ(i) = 0

and that map to the classes with the same name in TorH∗(K(Z,2);Fp)(Fp,Fp).

Proof. We begin by stating theorem 5.6 from [31]: K(1)∗K(Z, 2) is generated as
an algebra over K(1)∗ by the elements β(i) with i ≥ 0 and the relations

βp
(i) = vp

i

1 β(i), i ≥ 0. (7.2.9)

Here, the name of the classes are chosen so that they reduce to the class of
the same name in H∗(K(Z, 2);Fp). We see that the periodic v1-Bockstein
spectral sequence computing K(1)∗K(Z, 2) has no non-zero differentials, but
has multiplicative extensions giving the relations. Thus, the connective v1-
Bockstein spectral sequence computing k(1)∗K(Z, 2) also collapses and has the
same extensions, and k(1)∗K(Z, 2) is generated as an algebra over k(1)∗ by the
same classes with the same relations.

The bar spectral sequence exists for any homology theory, since it is con-
structed from the bar filtration of the space K(Z, 3). However, the identification
of the second page with the Tor-groups is only possible when there is a Künneth
isomorphism. Here, k(1)∗ does not generally have a Künneth isomorphism, but
since k(1)∗K(Z, 2) is torsion free over k(1)∗, it has one for products of K(Z, 2),
thus for the bar construction of K(Z, 3), and we have identified the E2-page.

The k(1)∗-algebra k(1)∗K(Z, 2) splits as

k(1)∗K(Z, 2) =
⊗
i≥0

k(1)∗[β(i)]⧸
(βp

(i) − v
pi

1 β(i))
(7.2.10)

where all the tensor products are over k(1)∗. Thus, if we prove that for each
i ≥ 0, the augmented complex

0←k(1)∗ ← k(1)∗[β(i)]⧸
(βp

(i) − v
pi

1 β(i))
⊗ E(σβ(i))⊗ Γ(ϕβ(i))

d(σβ(i)) = β(i)

d(γk+1ϕβ(i)) = (βp−1
(i) − v

pi

1 )σβ(i)γkϕβ(i), k ≥ 0

(7.2.11)
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7.2 The u-Bockstein spectral sequence computing ku∗K(Z, 3)

is exact, then we have constructed a resolution of k(1)∗ as a free k(1)∗K(Z, 2)-
module.

In that complex, in odd degrees, the differentials are given by

d(ησβ(i)γkϕβ(i)) = ηβ(i)γkϕβ(i) (7.2.12)

for any η ∈ k(1)∗K(Z, 2). This is zero if and only if ηβ(i) = 0, that is

η = (βp−1
(i) − v

pi

1 )η′ (7.2.13)

for some η′ ∈ k(1)∗K(Z, 2). In that case,

d(η′γk+1ϕβ(i)) = ησβ(i)γkϕβ(i). (7.2.14)

In even degrees, the differentials are given by

d(ηγk+1ϕβ(i)) = η(βp−1
(i) − v

pi

1 )σβ(i)γkϕβ(i) (7.2.15)

which is zero if and only if η = β(i)η
′ and in that case,

d(η′σβ(i)γk+1ϕβ(i)) = ηγk+1ϕβ(i) (7.2.16)

Then, we have a resolution as claimed. After tensoring with k(1)∗ over
k(1)∗K(Z, 2), the non-zero differentials are the

d(γk+1ϕβ(i)) = −vp
i

1 σβ(i)γkϕβ(i) (7.2.17)

which yields the results, since our resolution of k(1)∗ is compatible with the
resolution Fp and the map k(1)∗ → Fp.

Proposition 7.2.18. In the v1-Bockstein spectral sequence computing K(1)∗K(Z, 3),
the differentials are given by the formula

dp
i

(γkϕβ(i)) = vp
i

1 σβ(i)γk−1ϕβ(i) (7.2.19)

up to a unit, with i, k ≥ 0.
The differentials are given by the same formula in the v1-Bockstein spectral

sequence computing k(1)∗K(Z, 3).

Proof. Our periodic v1-Bockstein spectral sequence is an Atiyah-Hirzebruch
spectral sequence for a space (see chapter 3), and thus a spectral sequence of
algebras from lemma 4.3.9. But, from the naturality of the diagonal map, it
is also a spectral sequence of coalgebras, and thus a spectral sequence of Hopf
algebras.

The connective v1-Bockstein spectral sequence has by definition the same
differentials. However, we can use lemma 7.2.7 to constraint its target: we
know that for any i ≥ 0, if there exists an antecedent of σβ(i) ∈ H∗(K(Z, 3);Fp)

through the map k(1)∗K(Z, 3)→ H∗(K(Z, 3);Fp), then it is of vp
i

1 torsion, so
that if σβ(i) survives to the connective v1-Bockstein spectral sequence, then it
must be of a torsion smaller than vp

i

1 in its E∞-page.
We will work by induction on i. Because of theorem 7.2.3, all the classes

except the units in the periodic sequence must disappear somehow, and the
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differentials claimed are sufficient to do that; if we prove they are present, there
can be no further differentials.

First, σβ(0) cannot be the source of a differential because of its degree, and
thus must receive a differential

d2p−2(x) = v1σβ(0). (7.2.20)

Since σβ(0) is in the lowest degree that can receive a differential, x must be
indecomposable. The only possibility is that x is ϕβ(0) up to a unit, so that

d2p−2(ϕβ(0)) = v1σβ(0) (7.2.21)

To get the result for all the divided power γkϕβ(0), we work with the coproduct in
the same fashion as in the proof of proposition 7.1.34 for the Bockstein. For each
n ≥ 1, d1(γpnϕβ(0))− v1γpn−1ϕβ(0) is primitive and in degree 2pn+1 + 2pn − 1,
thus zero, and the result follows.

Now assume that up to a unit

dp
j

(γkϕβ(j)) = vp
j

1 σβ(j)γk−1ϕβ(j) (7.2.22)

is true for all k ≥ 0 and j such that 0 ≤ j < i. Consider the element σβ(i) in
degree 2pi+1. The differentials are already determined for all element in degrees
between 1 and 2pi+1. If σβ(i) is the source of a differential, its target must be a
coalgebra primitive in even degree, that is one of the ϕβ(j) with j ≤ i− 2. But
these classes are already determined to hold differentials. Thus, σβ(i) survive to
the E2(p−1)pi−1-page, and is the non-unit class of lowest degree in that page, so
that if it is the target of a differential, it must be from an indecomposable and
before the E2(p−1)pi+1-page. The only possibility is that up to a unit,

d2(p−1)pi

(ϕβ(i)) = vp
i

1 σβ(i). (7.2.23)

The rest of the divided power of ϕβ(i) follow as in the i = 0 case.

Since k(1) = V (0) ∧ ℓ, the map ℓ → ku sending v1 to up−1 allow us to
conclude the following:

Corollary 7.2.24. In the u-Bockstein spectral sequence computing (V (0) ∧
ku)∗K(Z, 3), the differentials are given by the formula

d(p−1)pi

(γkϕβ(i)) = u(p−1)pi

σβ(i)γk−1ϕβ(i) (7.2.25)

up to a unit, with i, k ≥ 0.

7.2.2 The connective complex K-theory of K(Z, 3)
To deduce the integral result from the modulo p one, we use the connecting map
δ : V (0) ∧ ku → Σku of the cofiber sequence of the multiplication by p. That
map reduces modulo u to the already similarly denoted δ : HFp → ΣHZ(p), so
that we have a morphism of spectral sequences:

H∗(K(Z, 3);Fp) ⊗̄P (u) (V (0) ∧ ku)∗K(Z, 3)

H∗(K(Z, 3);Z(p)) ⊗̄P (u) ku∗K(Z, 3)

⇒

δ δ

⇒

(7.2.26)
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In the integral spectral sequence, the non-torsion generators 1 and σβ(0)
cannot support differentials for degree reasons, and cannot be the target of
a differential coming from the torsion. Thus, it remains only to compute the
differentials internal to the torsion, which is entirely in the image of δ. The
difficulty will then be to keep track of the different names given to a single element
by writing it as an image δ(x); that is, to keep track of Ker(δ) = Ker(β1).

We will use the following notation to denote all the products of the algebra
generators of H∗(K(Z, 3);Fp), i.e. all the additive generators. For I a finite subset
of the non-negative integers N, denote by σI the product taken in ascending
order: ∏

i∈I

σβ(i) = σI . (7.2.27)

Let J be a finite multiset included in N, that is to say an application

mJ : N→ N (7.2.28)

whose support is finite, i.e. mJ(n) ̸= 0 only for a finite number of n. We call
mJ (j) the multiplicity of j in J , and we write j ∈ J when mJ (j) > 0. Generally,
when taking a set operation on a multiset J , we mean taking the operation on
the underlying set J̄ = {j ∈ J}, so that min J is the smallest integer n such that
mJ (n) > 0. Denote by ϕJ the product (taken in any order since the classes are
of even degrees): ∏

j∈J

γmJ (j)ϕβ(j) = ϕJ . (7.2.29)

When j ∈ N, denote by J [j+] the multiset whose multiplicity function is given
by

mJ[j+] : n 7→

{
mJ(n) if n ̸= j

mJ(n) + 1 if n = j.
(7.2.30)

Similarly, when j ∈ J , denote by J [j−] the multiset whose multiplicity function
is given by

mJ[j−] : n 7→

{
mJ(n) if n ̸= j

mJ(n)− 1 if n = j.
(7.2.31)

We will also write J [j++] and J [j−−] to increment or decrement by 2, and
J [j+1 , j

+
2 , . . . ] instead of J [j+1 ][j+2 ] . . . .

The torsion elements in H∗(K(Z, 3, );Z(p)) are then generated additively by
the δ(σIϕJ). These elements do not form a free family over Fp, and some of
them are even null:

Proposition 7.2.32. In H∗(K(Z, 3);Z(p)),

δ(σIϕJ) = 0⇔ ∀j ∈ J, j + 1 ∈ I. (7.2.33)

Proof. Recall that
δ(σIϕJ) = 0⇔ β1(σIϕJ) = 0 (7.2.34)

and from proposition 7.1.34 that

β1(σIϕJ) =
∑
j∈J

±σIσβ(j+1)ϕJ[j−]. (7.2.35)
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The σIϕJ do form a basis of H∗(K(Z, 3);Fp), and each term of the sum will
vanish if and only if one the exterior classes appears two times in the product,
that is if j + 1 ∈ I.

We will now describe the differentials from the point of view of the targets.

Proposition 7.2.36. In the u-Bockstein spectral sequence computing ku∗K(Z, 3),
if δ(σIϕJ ) ̸= 0 is a (p− 1)pn−1-cycle and receive a differentials d(p−1)pn

(δ(a)) =
u(p−1)pn

δ(σIϕJ) ̸= 0 for some a ∈ H∗(K(Z, 3);Fp), then we are in one of the
following two cases:

• n ∈ I.

• I ≠ ∅, min I > n, min J = n − 1, mJ(n − 1) = 1, ∀j ∈ J, j ̸= n − 1 ⇒
j + 1 ∈ I and the differentials can be realized by

d(p−1)pn

(δ(σI\{i}ϕJ[(i−1)+,(n−1)−,n+)])

= u(p−1)pn

δ(σIϕJ)
(7.2.37)

for any i ∈ I.

Proof. Assume that n /∈ I, we need to prove that it implies that we are in the
case of (7.2.37). Since δ is a morphism of spectral sequences,

d(p−1)pn

(δ(a)) = u(p−1)pn

δ(σIϕJ)

⇔ δ(d(p−1)pn

(a))− u(p−1)pn

δ(σIϕJ) = 0

⇔ β1(d(p−1)pn

(a)− u(p−1)pn

σIϕJ) = 0

(7.2.38)

dp
n

(a) is a sum in which σβ(n) can be factored, so that it can also be factored
in β1(dp

n

(a)). Thus all the terms of

β1(σIϕJ) =
∑
j∈J

j+1/∈I

σIσβ(j+1)ϕJ[j−] (7.2.39)

not having σβ(n) as a factor must be zero, that is:

∀j ∈ J, j ̸= n− 1⇒ j + 1 ∈ I. (7.2.40)

Moreover, since δ(σIϕJ) ̸= 0 we know that β1(σIϕJ) ̸= 0, and then n− 1 ∈ J ,
otherwise all the terms of the sum are zero.

We now consider the different cases in comparing min I, min J and n.

• Assume that min I < n and min I ≤ min J . Then:

∀k < min I, d(p−1)pk

(δ(σI\{min I}ϕJ[min I+])) = 0

d(p−1)pmin I

(δ(σI\{min I}ϕJ[min I+]))

= ±u(p−1)pmin I

δ(σIϕJ)

(7.2.41)

so that the differential d(p−1)pn

(δ(a)) we were considering must be zero.
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• Assume that min J < min I < n. Then min I = min J + 1 since n− 1 ∈ J ,
and

∀k < min J, d(p−1)pk

(δ(σIϕJ)) = 0

d(p−1)pmin J

(δ(σIϕJ))

= ±u(p−1)pmin J

δ(σIσβ(min J)ϕJ[min J−])

̸= 0

(7.2.42)

since n− 1 ∈ J [min J−] and n /∈ I. Thus δ(σIϕJ) is not a pn−1-cycle.

• Assume that min I > n. Then because of (7.2.40), min(J \ {n− 1}) ≥ n
and min J = n− 1. We now refine this disjunction.

• Assume that min I > n and mJ(n− 1) ≥ 2. Then:

∀k < n− 1, d(p−1)pk

(δ(σIϕJ)) = 0

d(p−1)pn−1

(δ(σIϕJ))

= ±u(p−1)pn−1

δ(σIσβ(n−1)ϕJ[(n−1)−])

̸= 0

(7.2.43)

since n − 1 ∈ J [(n − 1)−] and n /∈ I ∪ {n − 1}. Thus δ(σIϕJ) is not a
pn−1-cycle.

• Finally, assume that min I > n and mJ (n− 1) = 1. The previous formula
is also valid, but this time d(p−1)pn−1

(δ(σIϕJ)) = 0.

If I = ∅, then (7.2.40) implies that σIϕJ = ϕβ(n−1), but then β1(ϕβ(n−1)) =

σβ(n) which is not a term in β1(d(p−1)pn

(a)), since those have all at least
two different σ as a factor. Thus, the δ(ϕβ(n−1)) are infinite cycles whose
u-towers cannot be the target of a differential, and hereafter I ̸= ∅.
Now for any i ∈ I, i ̸= 0 since min I > n ≥ 0, and we have:

β1(σI\{i}ϕJ[(i−1)+])

= ±σI\{i}∪{n}ϕJ[(i−1)+, (n−1)−] ± σIϕJ
(7.2.44)

and there is indeed a differential

d(p−1)pn

(δ(σI\{i}ϕJ[(i−1)+, (n−1)−, n+]))

= ±u(p−1)pn

δ(σI\{i}∪{n}ϕJ[(i−1)+, (n−1)−])

= ±u(p−1)pn

δ(σIϕJ)

(7.2.45)

as we claimed.

We can also partially describe the differentials from the point of view of
the sources. When min J < min I, the first potentially non-zero differential
supported by δ(σIϕJ) is d(p−1)pmin J

, and we have the following:
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Proposition 7.2.46. Let I and J be such that δ(σIϕJ) ̸= 0. If min J < min I

and d(p−1)pmin J

(δ(σIϕJ)) = 0, then we are either in the case of (7.2.37) and
δ(σIϕJ ) is the target of a d(p−1)pmin J+1

, or we have σIϕJ = ϕβ(min J), an infinite
cycle whose u-tower is not the target of any differential.

Proof. We have

d(p−1)pmin J

(δ(σIϕJ))

= u(p−1)pmin J

δ(σIσβ(min J)ϕJ[min J−])
(7.2.47)

and β1(σIσβ(min J)ϕJ[min J−]) can be seen to be zero only in the cases we claimed
when β1(σIϕJ) ̸= 0.

The claim about σβ(min J) was already established in the proof of proposi-
tion 7.2.36.

We are now able to describe the E∞ page of our spectral sequence. When
min J < min I or I = ∅, δ(σIϕJ ) ̸= 0 support a non-zero differential d(p−1)pmin J

,
or we are in the case of proposition 7.2.46, and then we have either an infinite
cycle ϕβ(min J) which is not of u-torsion, or we have the differential of (7.2.47).
But we saw in (7.2.45) in the proof of proposition 7.2.36 that the target of this
differential can be rewritten as

δ(σI\{i}∪{min J+1}ϕJ[(i−1)+, (min J)−]) (7.2.48)

for any i ∈ I, which is a class with min(I \ {i} ∪ {min J + 1}) ≤ min(J [(i −
1)+, (min J)−]) so that we won’t need δ(σIϕJ) in our following description of
E∞. Conversely, when I ̸= ∅ and min I ≤ min J , δ(σIϕJ) is the target of the
differential:

d(p−1)pmin I

(δ(σI\{min I}ϕJ[min I+]))

= u(p−1)pmin I

δ(σIϕJ)
(7.2.49)

the u-tower of δ(σIϕJ) is of infinite cycles, and we get an u-torsion class in the
E∞ page. Thus, we have proved:

Theorem 7.2.50. In the E∞ page of the u-Bockstein spectral sequence computing
ku∗K(Z, 3), the non u-torsion part is generated as a P (u)-module by 1 and σβ(0),
which give two copies of Z(p), and by the δ(ϕβ(n)) for all n ≥ 0, which give copies
of Fp. The u-torsion part is generated as a P (u)-module by the δ(σIϕJ) with
I ̸= ∅ and min I ≤ min J , which all give copies of Fp.

There are some relations between the generators given for the torsion: the
torsion submodule is the free Fp-module over the δ(σIϕJ ) with I ≠ ∅ and min I ≤
min J , quotiented by Ker(β1).

Degreewise, there can be extension both in the torsion and non-torsion part.
We will now prove that, as for THH∗(ku), the p-torsion and the u-torsion are
the same because of some of the extensions.

Proposition 7.2.51. In ku∗K(Z, 3), there are relations

p · δ(ϕβ(0)) = up−1σβ(0)

p · δ(ϕβ(i)) = u(p−1)pi

δ(ϕβ(i−1))
(7.2.52)

for any i ≥ 1.
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Proof. Our computation of the connective u-Bockstein spectral sequence also
determines the periodic u-Bockstein spectral sequence computing KU∗K(Z, 3),
whose E∞ page is generated as a P (u, u−1)-module by 1, σβ(0) and the δ(ϕβ(i)).
All our differentials comes from the v1-Bockstein spectral sequence computing
L∗K(Z, 3), so that its E∞ page is generated as a P (v1, v

−1
1 )-module by the same

classes. However, reducing modulo p, we have:

(L ∧ V (0))∗K(Z, 3) ∼= K(1)∗K(Z, 3) ∼= K(1)∗ (7.2.53)

and the only possibility to get that from the E∞ page is having the extensions

pδ(ϕβ(0)) = v1σβ(0)

pδ(ϕβ(i)) = vp
i

1 δ(ϕβ(i−1))
(7.2.54)

so that
L∗K(Z, 3) ≃ L ∨ Σ3LQ. (7.2.55)

These extensions induces the one we claimed over ku.

Here, we see a phenomenon – p-torsion and the u-torsion coincide – that occur
similarly in THH∗(ku). From the E∞ of the u-Bockstein spectral sequence, we
now in both case that the u-torsion is included into the p-torsion. The formula
for the periodic case then implies the converse, because inverting u get rid of
the p-torsion too.

It is once again possible to describe the non-torsion part for integral ku as in
proposition 5.7.16.

Proposition 7.2.56. The non-torsion part ku∗K(Z, 3) includes a tower Z[u]
generated by σβ(0) where for each n ≥ 1, un−1σβ(0) is divisible by least common
multiple of the integers 1, 2, . . . , n. That is, the non-torsion part is

Z[u]{1} ⊕ Q (7.2.57)

where Q is the sub-Z-module of Q[u]{σβ(0)} generated by the

un−1σβ(0)

lcm(1, 2, . . . , n)
(7.2.58)

for n ≥ 1.

7.3 The trace of K(Z, 3) in THH(ku)

We will compute partially the algebra map

f : ku ∧K(Z, 3)+ → THH(ku) (7.3.1)

that factorizes the composition of the inclusion of part of the units in algebraic
K-theory with the Bökstedt trace map

Σ∞
+K(Z, 3) K(ku) THH(ku)

ku ∧K(Z, 3)+

f (7.3.2)
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as we have seen at the beginning of the chapter.
Our map reduces to maps we will also call f

HZ(p) ∧K(Z, 3)+ → THH(ku;HZ(p))

HFp ∧K(Z, 3)+ → THH(ku;HFp)
(7.3.3)

and we will study it from theses and the p and u Bockstein spectral sequences.
The reduced maps are also algebra maps.

Our model for the modulo p map will be induced by

Σ∞
+K(Z, 2)→ ku (7.3.4)

adjunct to the map
K(Z, 2)→ GL1(ku). (7.3.5)

The spectral sequence from proposition 4.3.12 is in this case

TorH∗(K(Z,2);Fp)
∗,∗ (Fp,Fp)⇒ THH∗(Σ

∞
+K(Z, 2);HFp). (7.3.6)

That spectral sequence collapses for degree reasons, and since they have the
same first page, it is formally the same as the bar spectral sequence computing
H∗(K(Z, 3);Fp); we have an isomorphism

THH∗(Σ
∞
+K(Z, 2);Fp) ∼= H∗(K(Z, 3);Fp). (7.3.7)

Let us compare it with the same spectral sequence computing ku:

TorH∗(ku;Fp)
∗,∗ (Fp,Fp)⇒ THH∗(ku;HFp). (7.3.8)

It is known (see for example [5]) that

H∗(ku;Fp) ∼= Pp−1(x)⊗H∗(ℓ;Fp) (7.3.9)

and the homology of ℓ can be written as a sub-Hopf algebra of the dual Steenrod
algebra

H∗(ℓ;Fp) ∼= E(τi, i ≥ 2)⊗ P (ξi, i ≥ 1) (7.3.10)
so that our spectral sequence begin with

TorH∗(ku;Fp)
∗,∗ (Fp,Fp) ∼= E(σx)⊗ E(σξi, i ≥ 1)⊗ Γ(ϕx)⊗ Γ(στi, i ≥ 2) (7.3.11)

with bidegrees
|σx| = (1, 2)

|σξi| = (1, 2pi − 2)

|ϕx| = (2, 2p− 2)

|στi| = (2, 2pi − 1).

(7.3.12)

Proposition 7.3.13.

THH∗(ku;HFp) ∼= E(σx, λ1)⊗ P (µ1) (7.3.14)

with degrees
|σx| = 3

|λ1| = 2p− 1

|µ1| = 2p

(7.3.15)

and in the previous spectral sequence, σx is represented by σx, λ1 by σξ1, µ1 by
ϕx and µpi

1 by στi+1 when i ≥ 1.
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7.3 The trace of K(Z, 3) in THH(ku)

Proof. The claim about THH∗(ku;HFp) ∼= V (0)∗ THH(ku;HZ(p)) is theorem
6.8 of [5]

For degree reasons, σx is indeed σx, λ1 must be σξ1 and µ1 must be ϕx.
Then there must be a multiplicative extension since ϕxp = 0 and µp

1 ̸= 0. The
only suitable class in lower filtration is στ2. Then for the same reasons, for each
i ≥ 1, µpi

1 is represented by στi+1.

This allows us to describe f on the multiplicative generators ofH∗(K(Z, 3);Fp).

Proposition 7.3.16. In THH∗(ku;HFp) we have

f(σβ(0)) = σx

f(σβ(i)) = 0 for any i ≥ 1

f(ϕβ(i)) = 0 for any i ≥ 0

f(γpkϕβ(i)) = 0 or σxλ1µ
pi+k+pk−1−1
1 for any i ≥ 0 and k ≥ 1.

(7.3.17)

Proof. We denoted earlier

TorH∗(ku;Fp)
∗,∗ (Fp,Fp) ∼=

⊗
i≥0

E(σβ(i))⊗ Γ(ϕβ(i)) (7.3.18)

with bidegrees
|σβ(i)| = (1, 2pi)

|ϕβ(i)| = (2, 2pi+1).
(7.3.19)

The elements β(0) ∈ H2(K(Z, 2);Fp) is sent to x ∈ H2(ku;Fp), thus f(σβ(0)) =
σx. For bidegree reasons, whenever j ≥ 1 and i ≥ 0 the images by f of σβ(j) and
ϕβ(i) must be zero. Whenever i ≥ 0 and k ≥ 1 the γpkϕβ(i) are generating trun-
cated polynomial algebras, thus their images can only be zero or a square-zero
class. The only possible square-zero class is

f : γpkϕβ(i) σxλ1µ
pi+k+pk−1−1
1

? (7.3.20)

because of the degree.

Now we are able to describe f on part of the torsion of H∗(K(Z, 3);Z(p)) and
on the class in degree 3.

Proposition 7.3.21. In THH∗(ku;HZ(p)), we have in the torsion

f(δ(σϕ(i))) = 0 (7.3.22)

for any i ≥ 0 and
f(δ(σIϕJ)) = 0 (7.3.23)

for any I and J such that I is neither empty nor {0}.
The non torsion element σβ(0) in degree 3 has image σu by f .
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Proof. We need to describe the exact couple

THH∗(ku;HZ(p)) THH∗(ku;HZ(p))

THH∗(ku;HFp)

m

πδ
(7.3.24)

Here the map δ is reducing the degree by 1. Recall that

THH∗(ku;HZ(p)) ∼= E(σu)⊗ THH∗(HZ(p)) (7.3.25)

since our prime p is odd. The map m is multiplication by p and we can choose
our generator such that:

π(σu) = σx

π(µkp) = λ1µ
k−1
1

δ(µk
1) = ν(k)µkp

(7.3.26)

where ν is the p-adic valuation.
Since there is a commutative diagram

H∗(K(Z, 3);Fp) THH∗(ku;HFp)

H∗−1(K(Z, 3);Z(p)) THH∗−1(ku;HZ(p))

f

δ δ

f

(7.3.27)

we can see that whether equation (7.3.20) is true or not, for all integers i and k,

f(δ(γpkϕβ(i))) = 0. (7.3.28)

We also have
f(δ(σβ(i))) = 0 (7.3.29)

since δ(σβ(i)) = 0, so that we now the map fδ on every multiplicative generators,
and δ have a sufficient multiplicative property to determine f on part the torsion
of H∗(K(Z, 3);HZ(p)). This time, we work in the exact couple

H∗(K(Z, 3);HZ(p)) H∗(K(Z, 3);HZ(p))

H∗(K(Z, 3);HFp)

m

πδ
(7.3.30)

in which we have chosen to represent the torsion by the image of δ. But in our
case, since there is no higher p-Bockstein, the torsion is also isomorphic via π to
the image of β1, and π is an algebra map. Thus, for a and b in H∗(K(Z, 3);Fp),
we have:

π(δ(aβ1(b))) = β1(aβ1(b))

= β1(a)β1(b)

= π(δ(a))π(δ(b))

= π(δ(a)δ(b))

(7.3.31)
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so that when composing with π−1,

δ(aβ1(b)) = δ(a)δ(b). (7.3.32)

When I is neither empty nor {0}, we can choose some element i ≥ 1 in I,
and then

δ(σIϕJ) = ±δ(σI\{i}ϕJβ1(ϕβ(i−1)))

= ±δ(σI\{i}ϕJ)δ(ϕβ(i−1))
(7.3.33)

and thus f(δ(σIϕJ)) = 0.
Finally, the claim about the class of degree 3 is true modulo p, so it must be

true up to the p-torsion, which is null in degree 3.

Because of the extensions in ku∗K(Z, 3), this is enough to determines f
on the non-torsion part. For the torsion, the way it is generated additively
reduces the number of classes whose image by f we cannot say anything about,
because the torsion is generated by the δ(σIϕJ) such that I is not empty and
min I ≤ min J . The following comes from comparing the u-Bockstein spectral
sequences computing ku∗K(Z, 3) and THH∗(ku).

Theorem 7.3.34. In THH∗(ku), in the non-torsion part,

f(σβ(0)) = σu

f(δ(ϕβ(i))) = uvp
i

0 µpi+1

(7.3.35)

for any i ≥ 0.
In the torsion, for any I and J such that I is not neither empty nor {0},

and min I ≤ min J , f(δ(σIϕJ)) is divisible by u.

We still cannot say anything about f(δ(σβ(0)ϕJ)).
We can draw the tower above σu in THH∗(ku) for p = 3, with multiplication

by p going up and multiplication by u going up and right.

σu

•
•

•
•

•
•

•
•

•

µ3

•
•

•
•

•
•

•
•

v0µ9

•
•

Here the class σu in bold and the classes represented by • are in the image
of f , but the rest of the named classes are not.
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7.4 A remark on ku∗ as a ku∗K(Z, 2)-module

In this section we present some difficulties we had at computing a resolution of
ku∗ as a ku∗K(Z, 2)-module. The goal was to compute Torku∗K(Z,2)

∗,∗ (ku∗, ku∗),
as a first step for the bar spectral sequence computing ku∗K(Z, 3). We will first
review some facts about the algebra ku∗K(Z, 2), and then fail at providing a
proper resolution.

7.4.1 The algebra structure on ku∗K(Z, 2)
As a complex-oriented homology theory, the connective complex K-theory ku of
CP∞ ∼= K(Z, 2) has an algebra structure determined by its formal group law.
We recall the following facts, which can be found in [30] or [1]

Lemma 7.4.1 (3.3 of [30]). When E is a complex-oriented homology theory,
with complex orientation given by xE ∈ E2CP∞, then in cohomology:

• E∗CP∞ ∼= E∗[[xE ]] the power series on xE over E∗.

• E∗(CP∞ × CP∞) ∼= E∗CP∞ ⊗E∗ E∗CP∞.

In homology:

• E∗CP∞ is E∗ free on βi ∈ E2iCP∞ for i ≥ 0, dual to xi.

• E∗(CP∞ × CP∞) ∼= E∗CP∞ ⊗E∗ E∗CP∞.

Moreover:

• The diagonal CP∞ → CP∞ ×CP∞ induces a coproduct ψ on E∗CP∞ with
ψ(βn) =

∑n
i=0 βi ⊗ βn−i.

• The H-space product m : CP∞ × CP∞ → CP∞ induces a coproduct m∗

on E∗CP∞ with m∗(xE) =
∑

i,j≥0 aijx
i ⊗ xj and aij ∈ E−2(i+j+1) =

E2(i+j+1).

• F (y, z) = y +F z =
∑

i,j≥0 aijy
izj is a commutative associative formal

group law over E∗, i.e.

F (y, z) = F (z, y) F (y, 0) = y F (y, F (z, w)) = F (F (y, z), w).
(7.4.2)

• In the power series ring E∗CP∞[[s, t]],

β(s)β(t) = β(s+F t) (7.4.3)

where β(r) =
∑

i≥0 βir
i and the product is the H-space product.

• Define [1]F (s) = s and inductively [n]F (s) = [n− 1]F (s) +F s, then

β(s)n = β([n]F (s)). (7.4.4)

The formal group law on KU is known
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Proposition 7.4.5 (example II.2.9 of [1]). The formal group law on KU is the
multiplicative one

F (y, z) = y + z + yz. (7.4.6)

Since the map ku∗CP∞ → KU∗CP∞ is a map of Hopf algebra, the formal
group law is the same on ku. Remark that it is convenient not to write the Bott
element in the formal group law, which should really be written as

F (y, z) = uy + uz + yz (7.4.7)

In what follows, we will not write the Bott element either; every computation we
will do will be homogeneous, so that the suitable power of u should be inserted
when needed.

We know that ku∗K(Z, 2) is a free ku∗-module over the βi ∈ ku2iK(Z, 2). We
want to determine the algebra structure on ku∗K(Z, 2), that is the multiplicative
relations between the βi. This is entirely given by the formal group law. We
know that the following is true in that algebra:

β(s)2 = β([2]F (s))

= β(2s+ s2)

=
∑
j≥0

βj(2s+ s2)j

=
∑
j≥0

βj

j∑
k=0

(
j

k

)
2ksk+2(j−k)

(7.4.8)

so when computing the coefficient of sn of each term, we have the equality
n∑

i=0

βiβn−i =
∑

n
2 ≤j≤n

(
j

2j − n

)
22j−nβj (7.4.9)

for any n ≥ 0. The element β0 is what we usually call 1, so now we see that
these equations determine the βn inductively from β1, since on the left-hand
side the coefficient of βn is 2, and on the right-hand side it is 2n.

Proposition 7.4.10. In ku∗K(Z, 2), the following equivalent formulas are true:

βn =
1

n!

n−1∏
i=0

(β1 − i)

β1βn = nβn + (n+ 1)βn+1

βn+1 =
1

n+ 1
(β1 − n)βn.

(7.4.11)

Proof. Since the equations (7.4.9) determine the βn inductively, we only need to
prove that the formulas we propose make them hold for each n ≥ 0. Let Pn be
the polynomial in β1 we get when inserting our first formula in the left-hand
side of (7.4.9):

Pn(β1) =

n∑
i=0

1

i!(n− i)!

i−1∏
k=0

(β1 − k)
n−i−1∏
k=0

(β1 − k). (7.4.12)
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Let Qn be the one we get from the right-hand side:

Qn(β1) =
∑

n
2 ≤j≤n

(
j

2j − n

)
22j−n 1

j!

j−1∏
k=0

(β1 − k). (7.4.13)

For any positive integer k, we have

Pn(k) =

n∑
i=0

1

i!(n− i)!
k!

(k − i)!
k!

(k − n+ 1)!

=

n∑
i=0

(
k

i

)(
k

n− i

) (7.4.14)

and
Qn(k) =

∑
n
2 ≤j≤n

(
j

2j − n

)
22j−n 1

j!

k!

(k − j)!

=
∑

n
2 ≤j≤n

22j−n

(
j

n− j

)(
k

j

)
.

(7.4.15)

Combinatorially, Pn(k) is the number of ways, in a set E with k elements, to
choose an integers i, and to choose a subset A of E with i elements and a subset
B of E with n− i elements. On the other hand, Qn(k) is the number of ways
to choose an integer j, to choose a subset U of E with j elements, to choose
a subset V of U with n − j elements, and a subset W of U \ V (which has
j − (n − j) = 2j − n elements) of any cardinality. These two processes are
equivalent, and we can go from one to the other by setting

U = A ∪B
V = A ∩B
W ∪ V = A

U \W = B

(7.4.16)

so that for any integers n and k, Pn(k) = Qn(k); then Pn(β1) = Qn(β1), and we
have proved our claim.

From this formula we can deduce one for all the products between the βn’s.
In what follows, we use the usual convention that

(
p
k

)
= 0 when k < 0 or k > p.

Proposition 7.4.17. In ku∗K(Z, 2)

βnβm =

n∑
i=0

(
m+ i

n

)(
n

i

)
βm+i. (7.4.18)

The convention above makes that formula symmetrical, and the first term of the
sum is really βmax(n,m).
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Proof. Let m be a fixed integer. We prove the claim by induction on n. For
n = 1, this is proposition 7.4.10. Assume that the formula for βnβm holds. Then:

βn+1βm

=
1

n+ 1
(β1 − n)βnβm

=
1

n+ 1

n∑
i=0

(
m+ i

n

)(
n

i

)
((m+ i)βm+i + (m+ i+ 1)βm+i+1 − nβm+i)

=
1

n+ 1

n∑
i=0

(
m+ i

n

)(
n

i

)
(m+ i− n)βm+i

+
1

n+ 1

n+1∑
i=1

(
m+ i− 1

n

)(
n

i− 1

)
(m+ i)βm+i

=
1

n+ 1

n+1∑
i=0

((
m+ i

n

)(
n

i

)
(m+ i− n)

+

(
m+ i− 1

n

)(
n

i− 1

)
(m+ i)

)
βm+i

=
1

n+ 1

n+1∑
i=0

(m+ i)!

(m+ i− n− 1)!

(
n− i+ 1

i!(n+ 1− i)!
+

i

i!(n+ 1− i)!

)
βm+i

=

n+1∑
i=0

(m+ i)!

(m+ i− n− 1)!i!(n+ 1− i)!
βm+i

=

n+1∑
i=0

(
m+ i

n+ 1

)(
n+ 1

i

)
βm+i

(7.4.19)
so that our formula holds for βn+1βm. This complete our induction.

7.4.2 A non-resolution of ku∗

Let C be the augmented algebra complex presented as:

0← ku∗ ← ku∗K(Z, 2)⊗ E(σβn, n ≥ 1)⊗ Γ(ϕn, n ≥ 2) (7.4.20)

with bidegrees |σβn| = (1, 2n) and |ϕn| = (2, 2n) and with differentials

d(σβn) = βn

d(ϕn) = (β1 − (n− 1)u)σβn−1 − nσβn.
(7.4.21)

Note that we now write the Bott element. Since in the previous section we saw
that the relations

β1βn = nuβn + (n+ 1)βn+1 (7.4.22)

were enough to determine ku∗K(Z, 2) as an algebra, C is a candidate for a
resolution of ku∗. This is not the case.
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Proposition 7.4.23. In C,

d(β2σβ2 − u2σβ2 − 6uσβ3 − 6σβ4) = 0 (7.4.24)

but that element is not a boundary.

Proof. Proposition 7.4.17 implies that

β2
2 = u2β2 + 6uβ3 + 6β4 (7.4.25)

in ku∗K(Z, 2), so that the differential of the claim is indeed zero. The element
supporting that differentials is in bidegree (1, 8). For it to be a boundary, we
need an element in bidegree (2, 8), that is a linear combination with integral
coefficients of the elements:

uσβ1σβ2

β1σβ1σβ2

σβ1σβ3

u2ϕ2

uβ1ϕ2

β2ϕ2

uϕ3

β1ϕ3

ϕ4.

(7.4.26)

In order for σβ4 to appear in the differential, the coefficient of ϕ4 must not be
zero. But

d(ϕ4) = (β1 − 3u)σβ3 − 4σβ4 (7.4.27)

so that the coefficient of σβ4 is a multiple of 4, and cannot be 6.

This is not the only difficulty, since we can make a similar argument for
the product βnβm, where

(
m+n
n

)
βn+m appears, and d(ϕm+n), whenever m+ n

does not divide
(
m+n
n

)
. It seems to be the case a lot when n and m+ n are not

coprime. Moreover, we can compute:

d((β1 + u)ϕ3 + 3ϕ4)

= (β1 + u)(β1 − 2u)σβ2 − 3(β1 + u)σβ3 + 3(β1 − 3u)σβ3 − 12σβ4

= (uβ1 + 2β2 − 2uβ1 + uβ1 − 2u2)σβ2 − 12uσβ3 − 12σβ4

= 2β2σβ2 − 2u2σβ2 − 12uσβ3 − 12σβ4

(7.4.28)

so that if we add an element ψ to our complex such that

d(ψ) = β2σβ2 − u2σβ2 − 6uσβ3 − 6σβ4 (7.4.29)

we also add the relation

d((β1 + u)ϕ3 + 3ϕ4 − 2ψ) = 0. (7.4.30)

Since this does not solve our problem, and that the divisibility of
(
m+n
n

)
by m+n

is not an easy problem, this cannot be a reasonable way to obtain a resolution.
Remark that everything we said about ku∗K(Z, 2) is also an obstruction

when substituting ku with HZ, that is when putting u = 0 in all the equations.
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Appendix
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Appendix A

Some code to generate
pictures of the torsion module
of THH∗(ku)

The following Haskell code compiles to a program that output to its standard
output a minimal LATEX document containing a tikz picture of the torsion part
of THH∗(ku) of degree d such that |σuµpn | ≤ d < |σuµ2pn |. It needs to be called
from the command line with exactly 5 argument:

$ ./prog p n u1 u2 p2

where p is an odd prime, n ≥ 1 is an integer, (u1, u2) is a couple of (decimal)
numbers which determines the offset of multiplying by u in the plane, and p2
is a decimal number which determines the vertical offset of multiplying by p.
Suggested parameters can be:

$ ./prog 3 3 0.5 0.5 1

Be wary though that tikz is a bad backend to draw big pictures, and that any
attempt to up p or n too much will result in an uncompilable LATEX document –
e.g., p = 5 and n = 3 might fail depending on the sizes chosen.

import System.Environment
import Data.Maybe

-- return the p-adic valuation of x
valuation :: Int -> Int -> Int
valuation p x = val x 0

where
val y v

| y ‘mod‘ p == 0 = val (y ‘div‘ p) (v+1)
| otherwise = v

-- return the smaller (right most) non zero digit of x in base p
premierChiffre :: Int -> Int -> Int
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premierChiffre p x
| x ‘mod‘ p == 0 = premierChiffre p (x ‘div‘ p)
| otherwise = x ‘mod‘ p

-- list of the element u^k v_0^q \sigma u \mu_{p^n+r} in the module
-- corresponding to \sigma u \mu_{p^n}
listeDesNœuds ::Int -> Int -> [(Int, (Int, Int))]
listeDesNœuds p n =

[ (r, (q, k))
| r <- [0, p .. p^n - p]
, q <- [0 .. (valuation p (p^n+r)) - 1]
, k <- [0 .. p^(valuation p (p^n+r) - q) - 3]]

-- tell if an element u^k v_0^q \sigma u \mu_{p^n+r} is a valid
-- element of the module corresponding to \sigma u \mu_{p^n}
nœudExiste :: Int -> Int -> Int -> Int -> Int -> Bool
nœudExiste p n r q k =

r ‘mod‘ p == 0 && 0 <= r && r <= p^n - p &&
0 <= q && q <= valuation p (p^n + r) - 1 &&
0 <= k && k <= p^(valuation p (p^n + r) - q) - 3

-- return a list of the line needed in the drawing from the
-- node r q k, in a Maybe
-- a line is (Bool, (Node1, Node2)) going from Node1 to Node2
-- with Bool being true if the line need to be bended
traitsDuNœud :: Int -> Int -> (Int, (Int, Int))

-> [Maybe (Bool, ((Int, (Int, Int)), (Int, (Int, Int))))]
traitsDuNœud p n (r, (q, k)) =

[traitPossible1, traitPossible2, traitPossible3]
where

maybeFromBool t a = if t then Just a else Nothing
traitPossible1 =

maybeFromBool (nœudExiste p n r q (k + 1))
(False, ((r, (q, k)), (r, (q, k + 1))))

traitPossible2 =
maybeFromBool (nœudExiste p n r (q + 1) k)

(False, ((r, (q, k)), (r, (q + 1, k))))
traitPossible3 =

maybeFromBool (q == 0 && b == p - 1)
(True, ((r, (q, k)), (c - p^n,
(valuation p c - m - 1, k + p^(m + 1) - p^m))))

b = premierChiffre p (p^n + r)
c = p^n + r - (p - 1) * p^m
m = valuation p (p^n + r)
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-- return the list of all the edges to be drawn in the
-- module corresponding to \sigma u \mu_{p^n}
listeDesTraits :: Int -> Int

-> [(Bool, ((Int, (Int, Int)), (Int, (Int, Int))))]
listeDesTraits p n = concat $ map (catMaybes . traitsDuNœud p n)

$ listeDesNœuds p n

-- write a string to be used as a label in the tikz drawing
écrireÉtiquette :: Int -> Int -> (Int, (Int, Int)) -> [Char]
écrireÉtiquette p n (r, (q, k)) =

"u" ++ show k ++ "p" ++ show q ++ "m" ++ show (p^n + r)

-- write a string of latex to be shown at the node
écrireNomLatex :: Int -> Int -> (Int, (Int, Int)) -> [Char]
écrireNomLatex p n (r, (q, k))

| k == 0 && q == 0 = "\\sigma u \\mu_{" ++ show (p^n + r) ++ "}"
| otherwise = "\\bullet"

-- write the line of tikz for a node
écrireNœudTikz :: Int -> Int -> (Float, Float) -> (Float, Float)

-> (Int, (Int, Int)) -> [Char]
écrireNœudTikz p n vecteuru vecteurp no =

"\\node[inner sep=1pt] (" ++ (écrireÉtiquette p n no) ++
") at " ++ (show $ coordonnéesNœud vecteuru vecteurp no) ++
" {$" ++ (écrireNomLatex p n no) ++ "$};"

-- coordinate of the node, p1 should really be 0
coordonnéesNœud :: (Float, Float) -> (Float, Float)

-> (Int, (Int, Int)) -> (Float, Float)
coordonnéesNœud (u1, u2) (p1, p2) (r, (q, k)) =

(p1 * fromIntegral q + u1 * fromIntegral k + u1 * fromIntegral r
, p2 * fromIntegral q + u2 * fromIntegral k)

-- write the line of tikz for an edge
écrireTraitTikz :: Int -> Int

-> (Bool, ((Int, (Int, Int)), (Int, (Int, Int))))
-> [Char]

écrireTraitTikz p n (b, (no1, no2))
| b =

"\\draw (" ++ (écrireÉtiquette p n no1) ++
") to[bend right=8] (" ++ (écrireÉtiquette p n no2) ++ ");"

| otherwise =
"\\draw (" ++ (écrireÉtiquette p n no1) ++
") to (" ++ (écrireÉtiquette p n no2) ++ ");"
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main :: IO ()
main = do

a:b:c:d:e:[] <- getArgs
let p = read a :: Int
let n = read b :: Int
let u1 = read c :: Float
let u2 = read d :: Float
let p2 = read e :: Float
putStrLn "\\documentclass[tikz]{standalone}"
putStrLn "\\usepackage[utf8]{inputenc}"
putStrLn "\\usepackage[T1]{fontenc}"
putStrLn "\\begin{document}"
putStrLn "\\begin{tikzpicture}"
mapM_ (putStrLn . écrireNœudTikz p n (u1,u2) (0,p2))

(listeDesNœuds p n)
mapM_ (putStrLn . écrireTraitTikz p n) (listeDesTraits p n)
putStrLn "\\end{tikzpicture}"
putStrLn "\\end{document}"
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