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nanoréseau en transmission.

Toward accurate measurement of Casimir-Polder

potential between metastable argon atoms and

nanofrabricated transmission grating.
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M. Eric Charron, Prof. Dr., Université Paris Saclay . . . . . . . . . . . . . . . . . . . . . . .Rapporteur
M. Carsten Henkel, Prof. Dr., Universität Potsdam . . . . . . . . . . . . . . . . . . . . . . Rapporteur
M. Ernst Rasel, Prof. Dr., Leibniz Universität Hannover . . . . . . . . . . . . . . . . Examinateur
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Introduction

Atom-surface interactions have been studied since the 1950s through numerous ex-

periments and many more theoretical developments, due to their close connection

with fundamental physics. These interactions originate from the fluctuations of the

electromagnetic field between the two bodies. In 1948, Casimir and Polder published

an article in which they used a quantum electrodynamical approach to model the

interaction of a neutral atom with a perfect conductor. Since then, we also refer

to atom-surface interactions as Casimir-Polder interactions, regardless of the atom

and the material.

This thesis describes a cold atom experiment designed to accurately measure

atom-surface interactions. To date, the Casimir-Polder interaction potential has

not been measured with better accuracy than 10%. Achieving an accurate measure-

ment of the atom-surface interactions is of utmost importance since it constitutes a

test for quantum electrodynamics theory.

Chapter 1 provides a brief historical review of the research on atom-surface in-

teractions and also of the experimental techniques that have been used to study

the Casimir-Polder potential. The experiment presented in this thesis is in the vein

of experiments performed in the 2000s with nanostructures and supersonic atomic

beams, but with a slow beam of atoms. Our experimental setup is detailed in chap-

ter 2. A first model based on a semi-classical approach is reviewed in chapter 3. This

model enables us to probe retarded effects for atom-surface distances smaller than

51 nm. It also enables us to see the strong correlations between experimental and

theoretical parameters (e.g. the interaction strength and the nanostructure geom-

etry) which are often considered as known and fixed. However, regarding the slow

atomic velocities involved in the experiment, the eikonal approximation on which the

presented semi-classical model is based doesn’t hold anymore. Thus, this model has

to be either corrected or replaced by a full quantum mechanical model. We decided

to develop a model which is based on the numerical resolution of the time-dependent
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Introduction

Schrödinger equation. This new model is presented in chapter 4. This simulation

gives access to the propagation of a wave function in a nanostructure by taking into

account both atom-surface interactions and absorbing boundary conditions.

This new TDSE simulation leads to promising results for Casimir-Polder metrol-

ogy. However, we must remain critical regarding the validity of our model in the

presented experimental configuration. To this end, in chapter 5 we introduce sta-

tistical tools such as the χ2-test, adapted to our experimental data, to perform

goodness-of-fit tests. Only then, a rigorous Casimir-Polder measurement will open

our results to physical subject of importance.
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Chapter 1

Context

1.1 Brief history

1.1.1 Theory of atom-surface interactions

In the first half of the twentieth century, atom-atom and atom-surface interactions

for neutral atoms were described using London’s approach. London published an

article in 1930, in which he derived the interaction energy between two neutral

atoms. This energy is ∝ −1/l6, with l being the distance between the two atoms.

London’s approach considers that an atom has an instantaneous dipole because of

the motion of the electrons. This instantaneous dipole affects the electron cloud of

the second atom and thus induces a dipole. The interaction between the two atoms

is then described by considering the dipole-dipole interaction.

This approach was also used to describe the interaction of a neutral atom with

a perfect conductor.

Following London’s work, Overbeek applied theory to colloidal systems. Over-

beek emphasized that this approach did not reproduce the results of the experiment

when the distance between the particles was large. Indeed, Overbeek noticed that

for large distances the interaction energy was more of the form ∝ −1/l7.

A full discussion can be found in the article by Casimir and Polder [1]. In this

article, the authors used a quantum electrodynamics approach to first derive the

interaction energy between a neutral atom and a perfect conductor. The expression

of the interaction energy they derived is ∝ −1/l3 for short separation distances

between the atom and the surface l, while ∝ −1/l4 for large separation distances

due to retardation effects. Second, they derived the interaction energy between two

neutral atoms. The expression they derived becomes ∝ −1/l6 for short distances l

between the atoms and ∝ −1/l7 for large l.
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In 1956, Lifshitz published an article [2] in which, using a macroscopic approach,

he derived the interaction energy between two media. The use of a macroscopic

approach is possible until the separation distances are large compared to the inter-

atomic distances. The benefits of the Lifshitz approach are listed below:

1. It enables one to calculate the interaction energy between two bodies for all

kinds of material.

2. It takes into account retardation effect.

3. It is possible to take into account the temperature dependence.

4. By considering rarefied media, it is possible to retrieve both the interaction

energy between a neutral atom and a surface (whatever the material), and

between two neutral atoms.

Important remarks

Atom-atom and Atom-surface interactions in the non retarded limit, which are

VAt−At ∝ −1/l6 and VAt−Surf ∝ −1/l3 respectively, are often called van der Waals

interactions (one also talks about the van der Waals regime).

In the retarded limit, VAt−At ∝ −1/l7 and VAt−Surf ∝ −1/l4, one often talks

about the Casimir regime. Nowadays, the atom-surface interactions tend to be

called Casimir-Polder interactions. This denomination applies regardless of the ma-

terial of the surface, the geometry, the temperature, and the distance between the

atom and the surface. One also talks about the Lifshitz limit, when, for distances

larger than the Wien wavelength (wavelength at which the thermal spectrum ex-

hibits a maximum), the potential depends linearly on the temperature.

Review Articles and books

In this thesis, different phenomena of atom-surface interactions, such as repulsive

interactions and temperature dependence, are not discussed. The interested reader

is referred to the following review article [3], and for a more recent review article, see

[4]. The book [5] that focuses on Casimir interactions has two chapters dedicated to

Casimir-Polder interactions. S.Y. Bumahn’s books [6][7] present in depth theoretical

calculations of atom-surface interactions.
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1.1.2 Experiments

We will not give an exhaustive review of all the experiments which treats about

atom-surface interactions (see [5]). Here, we just briefly present mains experimental

techniques, used to measure atom-surface interactions. There are four main experi-

mental techniques.

1 - Atomic beam deflection:

A well-known experiment, which was also the first to probe the need to use the

Casimir-Polder potential instead of the non-retarded regime ∝ −1/l3, is the experi-

ment from E.A. Hinds’ group [8]. In this experiment they used a supersonic beam of

Sodium atoms. The beam was passing through a cavity made of gold plates. They

measured the flux of atoms at the exit as a function of the cavity size (and thus the

atom-surface distance). The flux loss was due to the sodium atoms sticking to the

gold plates.

2 - Bose Einstein Condensate oscillation:

Some experiments used Bose Einstein condensate to explore the atom-surface

interactions (between the atoms of the BEC and a surface). The principle relies on

the modification of the trap potential when the BEC is brought close to the surface.

This modification then influences the oscillation of the center of mass of the BEC.

See, for example, the experiment by E. Cornell’s group [9]. In this paper, the au-

thors measured the Casimir-Polder interactions for separation distance between the

center of the BEC and the surface l ∈ [6, 12] µm.

3 - Spectroscopy:

Spectroscopy measurements are based on the energy shifts of atom energy levels

resulting from the atom-surface potential. There are three often used spectroscopic

methods :

- Selective reflection spectroscopy.

- Evanescent wave spectroscopy.

- Transmission spectroscopy of atomic vapor in thin cells.

Most of the time, it is performed on the vapor of Alkali atoms. Because the measure-

ment is based on the displacement of the energy difference between two atomic levels,

it is possible to study the atom-surface interactions for atoms in an excited state

other than metastable (which is not very different from the behavior of a ground
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state). For a review of atom-surface interactions that details the three spectroscopic

techniques mentioned above, see [3].

4- Matter wave interferometry:

There have been two main approaches exploiting matter wave interference. Both

approaches so far have used a material transmission grating, with a period of the

order of 100 nm.

- Mach-Zender atom interferometer.

On this kind of experiments, the Mach-Zender interferometer is made out of three

gratings, either optical [10], or material nanogratings [11]. In both experiments,

they added a material transmission nanograting on one arm of the Mach-Zender

interferometer. They measured the shift in the position of the diffraction pattern

when the additional grating was moved in and out of the interferometer.

- Diffraction from material transmission nanogratings.

Instead of making use of Mach-Zender atom interferometers, some groups mea-

sured atom-surface interactions by placing a single nanograting in supersonic beams

of atoms. They measured the interactions by modeling the diffraction envelope. The

model was based on Fresnel diffraction, with the addition of a phase shift induced by

the atom-surface interactions. The first measurement of atom-surface interactions

using this technique was done in J.P. Toennies group [12] for helium and Krypton

supersonic beams. In the same group, they also measured the atom-surface interac-

tions for metastable1 He∗ and Ne∗ [13]. It has been done in A.D. Cronin’s group for

Na atoms [14].

Another experimental technique to measure the Casimir-Polder potential is to ob-

serve the reflection of cold [15] or ultracold [16] atoms by a potential, which is

the sum of the Casimir-Polder potential (attractive unknown) and an evanescent

electromagnetic wave (repulsive known).

1.1.3 Main limitations in experiments

One of the main limitation that occurs in all experimental techniques is related to

atomic species. When atoms stick to the surface, the atom-surface interactions are

1Metastable : long lifetime excited state.
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modified, as experimentally studied in E. Cornell’s group [17]. Thus, it is interesting

to perform experiments using rare gas atoms.

The geometry of the object used as the surface also has a strong influence on

the dependence of the atom-surface interaction potential with the distance. Fur-

thermore, the atom-surface distance is also a challenging parameter to control.

Regarding some of the limitations, one notices that the experiments from J.P.

Toennies group using He and Kr [12] and also He∗ and Ne∗ atoms [13] with a

nanograting, are promising for precise measurements. In these experiments, there

are two main difficulties. First, they used a thermal beam of atoms, so modifica-

tions of the diffraction envelope due to atom-surface interactions are small and thus

difficult to measure. Second, the geometry and properties of the nanograting (slit

size, shape, etc.) constitute the main source of systematic uncertainty.

Finally, whatever the experimental techniques used, the atom-surface interac-

tions have not yet been carefully measured with a better accuracy than 10%.

1.2 The Villetaneuse experiment

The experiment presented in this thesis relies on atom interference method. Actu-

ally, it consists of the diffraction of atoms by a material nanograting.

The Villetaneuse experiment has been designed to address the drawbacks of

atom diffraction experiments, such as [13]. In the present experiment, we also use

rare gas (metastable argon atoms), but in a slow beam. Thus, the interaction

time between the metastable argon atoms and the surfaces of the nanograting is

increased. Moreover, the nanograting we use was designed and manufactured by the

Optic and Atomic Interferometry (OAI) team members. Therefore, the geometry of

the nanograting is known with better accuracy than in previous experiments. The

experiment is presented and described in the following chapter.
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Chapter 2

Experimental Setup

2.1 Introduction

The atomic diffraction experiment is analogous to diffraction experiments in classical

optics. As illustrated figure 2.1, the experiment starts with a cold source of atoms,

the atoms freely propagate from the source to the grating, pass through the grating,

and are finally detected 30 cm after the grating.

The diffraction pattern is obtained after the detection of thousands of atoms.

The observed diffraction pattern differs from the usual diffraction pattern in optics.

Indeed, here we look at the diffraction of matter-wave by a material nanograting.

When the atoms propagate through the grating, the atoms interact with the internal

surfaces of the grating. Hence, the diffraction pattern carries information on atom-

surface interactions.

Figure 2.1: Matter-wave diffraction experiment principle. The diffraction experi-
ment start with a cold atomic source (1), atoms pass then through the grating (2),
and are detected 30 cm away (3).

13
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The atomic diffraction experiment is performed with argon atoms in a metastable

state, i.e with a long excited state lifetime, denoted by Ar∗. There are two main

reasons we work with Ar∗, on the first hand, argon atoms in metastable state have

enough internal energy to perform single atom detection using a MCP-DLD detector

(see section 2.1.5). On the second hand, argon atoms belong to the rare gas family,

thus when hitting the nanograting surface, it doesn’t stick to it. Therefore the

nanograting geometry is preserved along the experiments.

The whole experiment does not simply boil down to the diffraction chamber. We

need to start the experiment by exciting the argon atoms from their fundamental

level to the metastable level, then we need to cool them, before trapping them. The

atomic trap which is simply a collection of Ar∗ will be the source of atoms for the

diffraction experiment. The whole scheme of the experiment, from the argon gas

bottle to the detection of the diffraction pattern is represented in figure 2.2.

The different numbers in figure 2.2 correspond to the following steps in the

experiment :

1. Argon atoms exit the bottle of gas. Using a nozzle and a skimmer, we obtain

a supersonic beam of fundamental Ar atoms (v ≈ 560 m/s).

2. Ar atoms are excited by counter-propagating electrons. It leads to a mixture

of Ar atoms in the fundamental state and in the states (3p54s; 3P2) and (3p54s;
3P0).

3. Ar atoms freely propagate over ≈ 30 cm. The metastable flux can be measured

with a Faraday cup.

4. Atoms enter the Zeeman slower, where only the 3P2 state Ar atoms will be

slowed.

5. 3P2 Ar atoms are then trapped in a magneto-optical trap (This will be the

source for the diffraction experiment).

6. Finally, the 3P2 Ar atoms are pushed with a laser beam, in the direction of

the diffraction chamber. They pass through the nanograting and are detected

on the MCP-DLD detector.

A detailed description of the different steps presented above can be found in [18].

14
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Figure 2.2: Experimental scheme
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2.1.1 Argon levels

Some of the argon levels are represented figure 2.3. In the experiment, we take

advantage of the closed transition at 811.531 nm (at rest in air) between states 3P2

and 3D3.

Figure 2.3: Argon levels, the red arrow represent the cycling transition we use in
the experiment.

In the metastable state 3P2 (3p54s1), Ar atoms have about 11.55 eV of internal

energy. Thus, it is possible to perform single atom detection with a MCP-DLD (see

section 2.1.5).
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2.1.2 Zeeman Slower

After being excited in the 3P2 state, the atoms enter the Zeeman slower at thermal

velocities of about 560 m/s. There, (figure 2.4) an atom absorbs counter-propagating

photons from the resonant laser beam. Since the momentum exchange due to spon-

taneous emission averages to zero, the atom loses momentum in its propagation

direction.

Figure 2.4: illustration of the Zeeman
slower

The presence of the magnetic field splits

degenerate levels, the σ+-polarised laser

populates and slow the atoms via momen-

tum transfer on the transition (3P2, mi =

+2) → (3D3, mf = +3). The change of

magnetic field intensity along the propaga-

tion direction changes the energy difference

between the two levels via Zeeman effect.

This compensates the Doppler shift, so the

atomic transition is resonant with the laser

while atoms slow down. At the exit of the Zeeman slower (about 1 m long), atoms

have velocities of a few tens of m/s (about 50 m/s). To get more details on our

Zeeman slower, see [19].

2.1.3 Magneto-Optical trap

At the exit of the Zeeman slower, the Ar∗ atoms have sufficiently low velocities to

be trapped in a 3D magneto-optical trap (MOT), which then is the source of cold

Ar∗ for the diffraction experiment.

B

Figure 2.5: illustration of the MOT

As illustrated in figure 2.5, the counter-

propagating laser beams, red-detuned with

respect to the atomic transition, exert scat-

tering forces on the atoms. As the atoms go

away from the center of the trap, a non-

homogeneous magnetic field generated by

coils in anti-Helmholtz configuration splits

the degenerate levels by Zeeman effect. The

laser beams being circularly polarized, it

creates an imbalance between the scattering

forces. Transitions with ∆mj=+1 (respect. -1) will absorb σ+-polarized (respect.
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σ−-polarized) light. Note that in figure 2.5, only two over all possible transitions

have been represented. The temperature of the MOT in our experiment is about

150 µK. It has been estimated by fitting the density distribution. To get more

details about our MOT, see [18].

2.1.4 Slow Ar∗ beam

The magneto-optical trap constitutes the source of cold atoms for the diffraction

experiment. The principle of the diffraction experiment is illustrated in figure 2.6.

Figure 2.6: Ar∗ are pushed with a laser during tp. After freely propagating over 50
cm, atoms pass through the nanograting. Finally, atoms are detected 30 cm away
from the nanograting with a MCP-DLD

To produce the slow beam of Ar∗ atoms, we start by turning off all laser beams

of the MOT, while at the same time, the pushing laser beam is turned on during

tp (note that the magnetic field of the MOT is always on, but we recently added

a switch to turn it off in future experiments). After the atoms have been pushed,

the MOT laser beams are turned on, and the MOT is loading until another cycle is

started.

To give orders of magnitude, the MOT laser beams are turned off for 5 ms, at

the same time the pushing laser is turned on for 0.4 ms. At the end of the 5 ms,

the atoms are far from the trap, so we can turn on the MOT again. Then the MOT

is loading for 65 ms. Therefore, a full cycle is about 70 ms. One has to find an

optimum between the loading duration of the MOT and the total cycle duration to

have the maximum atomic flux.

To change the final velocity of the atoms, it is possible to either push more or

less longer the atoms by adjusting tp, or to adjust the detuning of the pushing laser

beam. In the experimental results presented in section 2.4, we only changed the

detuning of the pushing laser beam, thus for both velocity ranges, we have the same
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pushing time tp.

The spontaneous emission that occurs during the pushing process implies that

the beam of Ar∗ is divergent. Its divergence depends on the interaction time, but

also on the detuning of the pushing laser, and on the magnetic field of the MOT

(which is always on). This has been characterized in [20], where the authors showed

that the divergence of the Ar∗ beam is well described by a random walk.

Due to the divergence of the Ar∗ beam, and the opening surface of the nanograt-

ing (1x1 mm2), we have to select the beam with a metallic plate, see figure 2.6, to

increase the visibility of the interfringes. This increases the transverse coherence of

the beam.

The nanograting is placed on a hexapod from SmarAct company in order to

position it in the atomic beam. This enables us to move and rotate the nanograt-

ing in all directions. Thus, the nanograting angle with respect to the direction of

propagation of the atoms can be precisely adjusted. Using the hexapod, the min-

imum translation increment possible is 1 nm and the minimum rotation increment

is 1 µrad.

Note : When one wants to spatially select the beam, one has to be careful on

the choice of material. Here, Ar∗ have about 11.5 eV of internal energy, which is

sufficient to pull out electrons from materials (∝ 5 eV to pull out electrons from

metals). Indeed, we observed a lot of electronic noise on the detector while using

a piezo slit, and the same when using slits made in too thin objects. The problem

seems to be solved by making use of a thick grounded metallic plate.

2.1.5 Detection

2.1.5.1 MCP-DLD detector

Ar∗ atoms are detected with a microchannel plate (MCP) coupled to a delay line

detector (DLD), which is referred to as MCP-DLD in the following.

The principle of this MCP-DLD is illustrated in figure 2.7. When an Ar∗ atom

hits the MCP, it has enough internal energy to tear out an electron. This electron

is accelerated by an electric field. The accelerated electron can trigger an electronic

avalanche which reaches the copper lines, and induces a current impulse that can

be detected on both sides of the lines. Resolving the arrival time of the current

impulses on both sides of the copper line, and, knowing the length of the copper
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line, the position where the electronic avalanche hits the line is determined. This

detector is able to detect the arriving positions of a single atom.

Figure 2.7: MCP-DLD detector principle

The announced characteristics of the detector by RoentDek Handels GmbH com-

pany are the following :

- Diameter : 80 mm

- Spatial resolution : 150 µm

- Temporal resolution : 2 ns

2.1.5.2 Distortion test pattern

The MCP-DLD is capable of detecting a single atom in position, but is the position

the detector pretends to have detected an atom the real position at which the atom

arrived?

Our measurement method of the atom surface interactions relies on the ability

of the detector to detect the spatial distribution of atoms. Thus, we need to char-

acterize if there is any spatial distortion. To do so, we manufactured a test pattern,

illustrated figure 2.8a. We place this pattern in front of the detector.
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(a) Distortion test pattern (b) Detected pattern on the detector

Figure 2.8: Spatial distortion characterization

The holes in the manufactured pattern let the atoms pass, so we just need to see

if the detected atoms reproduce the test pattern, see figure 2.8b.

The first thing one can do is illustrated in figure 2.9a. The black curve corre-

sponds to the 1D projection of one single line of holes of the detected atoms on the

horizontal axis (see figure 2.8b). The red curve in figure 2.9a is the symmetric of the

black curve with respect to the vertical axis. The test pattern is periodic, hence if

there are no distortions one should see the red peaks overlap the black ones. Here,

the peaks do not overlap, so there are spatial distortions.

(a) Before spatial distortion correction (b) After spatial distortion correction

Figure 2.9: Distortion test

To correct the spatial distortion, we superimpose the theoretical shape of the test

pattern (red curve) to the detected pattern (black curve), see figure 2.10a. Then we

look at the position difference between the middle of a black peak and the position

it should be. One can then construct the correction function figure 2.10b.

When this correction is applied to the detected pattern, we can perform the

same analysis as before. In figure 2.9b, the black curve corresponds to the spatially

corrected atom pattern, the red curve is the symmetric with respect to the vertical

axis. There the red peaks overlap the black ones therefore the spatial distortion has

been successfully corrected.
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(a) Principle of the correction (b) Correction function

Figure 2.10: Principle of the correction

2.1.6 Velocity measurement

In the atomic diffraction experiment, the atom-surface interaction potential will

modify the diffraction envelope but not the interfringe. The interfringe on the

detector is given by : i = (λdBDgd)/pg, where λdB is the de Broglie wavelength, Dgd

the grating to detector distance, pg the period of the nanograting.

As in optics, from the interfringe we have two possibilities, either getting λdB

knowing Dgd, or getting Dgd knowing λdB. In the experiment, it is difficult to have

an accurate measure of the distance from the grating to the detector. This is due

to different reasons such as the different accesses in the vacuum chamber, but we

also do not want to put a ruler in contact with neither the nanograting nor the

microchannel plate. As a consequence, we have a large uncertainty of a few percent

onDgd, and hence on the propagation velocities of the atoms. We decided to measure

atoms propagation velocities by mean of a deflection method succinctly presented

hereafter, and thus to get Dgd knowing λdB. Interested readers will find a detailed

description of the deflection method in [21].

2.1.6.1 Principle

The principle of the deflection method is illustrated in figure 2.11. In this method,

one makes use of the time detection resolution of the detector. It is performed after

the atoms stop interacting with the pushing laser beam (and are far from the influ-

ence of B⃗MOT ), thus the atoms are freely propagating.
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Ar*

Ar*

Figure 2.11: Light chopper using two resonant lasers orthogonal to the propagation
axis. The measurement is performed in two steps, first with the laser L1 inset a),
and second with the laser L2 located DL1−L2 further, inset b).

The measurement is performed in two steps. First, a laser perpendicular to the

atoms propagation axis is turned on at a time tL1, thus, slower atoms with time

of flight larger than tcut,1 are not detected. Second, we do the same with another

laser located further on the atoms propagation axis, one has to turn on this second

laser at a time tL2 such that we do not detect atoms with time of flight larger than

tcut,2=tcut,1. Therefore, the propagation velocity of the atoms that reach the detector

at tcut,2=tcut,1 is given by v = DL1−L2/(tL2 − tL1).

It is possible to measure the distance between the laser 1 and 2 outside of the

experimental chamber. We measured the separation distance DL1−L2 = 266.5 ±
1.3 mm. The determination of tcut,1 and tcut,2, depend on the slope of the induced

discontinuity in the time of flights, and so on the atomic flux. Thus for the velocity

ranges in the experimental data presented in section 2.4, the accuracy on the time

sequence is about 8 ‰ for atomic propagation velocity v ≈ 19 m/s, and 1 ‰ for

v ≈ 26 m/s.
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2.1.6.2 Velocity variation due to free fall

The velocity measurement techniques described in the previous section give us an

accurate measure of the longitudinal velocity vz. Although, while atoms freely prop-

agate after the pushing time, they experience free fall. Thus, atom propagation ve-

locity v⃗ = vy.e⃗y+vz.e⃗z is not constant. In the following, we give orders of magnitude

of the velocity variation ∆v due to the free fall and show that it is indeed negligible

under our experimental conditions.

Figure 2.12: Velocity distribu-
tion after the pushing process

After a free propagation during t, the velocity

variation due to the free fall is given by

∆v

∥v⃗(0)∥
=

∥v⃗(t)∥ − ∥v⃗(0)∥
∥v⃗(0)∥

=

√
v20z + (v0y − gt)2

v20z + v20y
− 1.

(2.1)

Let v0z = 20.0 m/s, be the longitudinal ve-

locity measured with high accuracy. This corre-

sponds to the atoms selected by their time of flight,

t = 40 ms. To get the velocity variation of equation (2.1), we need to estimate v0y.

During the pushing process, the atoms experience a random walk. So, the velocity

distribution along the y-axis, at the end of the interaction with light, follows a Gaus-

sian distribution with standard deviation σv0y = vrecoil
√
Nabs/

√
3, see [20]. Knowing

that the recoil velocity is vrecoil ≈ 1.23 cm/s, the number of photons absorbed to

reach v0z is about Nabs ≈ 1600. Therefore, σv0y ≈ 0.29 m/s. Since the velocity

distribution along the y-axis follows a Gaussian distribution, 99.7% of the initial

transverse velocity v0y, will be in [−3σv0y ; 3σv0y ]=[−0.9; 0.9] m/s. Finally, we can

estimate the velocity variation due to free fall, for atoms freely propagating during

t = 40 ms : ∆v/∥v⃗(0)∥ ∈ [1; 0.1]‰.

Actually, all pushed atoms will not pass through the nanograting (1 mm height)

nor the laser beams for the velocity measurement ( ≈ 1 mm Ø). This means that the

nanograting, or the lasers, select the velocity distribution along the y-axis. Thus, the

velocity variation due to the free fall for atoms of interest (those that pass through

the nanograting) is smaller than the variation we estimated before.

To continue to give orders of magnitude, we take the idealized case illustrated

in figure 2.13, where the source is aligned with the nanograting. Here, we take

ymax = +360 µm = −ymin, and hmax = 0.5 mm = −hmin. If the nanograting is
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located 50 cm after the source, then |v0y| ≤ 0.16 m/s, and so ∆v/∥v⃗(0)∥ ≤ 0.05 ‰.

This is negligible compared to the accuracy we have on the velocity measurement

of the longitudinal velocity vz.

Figure 2.13: Velocity distribu-
tion and selection, implied by
the nanograting height

Hence, under our experimental conditions, it

is reasonable for atoms selected by their TOF,

to neglect the velocity variation due to the free

fall. Therefore, we consider that atoms (selected

with respect to their TOF) propagate freely with

a constant velocity given by v = DL1−L2/(tL2 −
tL1).

2.2 Optical setup

In order to manipulate the atoms (to cool them trap them and push them), we

use the laser system illustrated in figure 2.14. The different optical elements are

represented figure 2.15. The optical setup has been redesigned compared to the one

presented in [21] after we finished the acquisition of the two experimental results

presented in section 2.4. The main goal was to gain stability. The first amplifier

used, TA 100 (from Toptica Photonics), introduced instabilities such as mode jumps

when used at too high current intensities. We observed the same phenomenon after

replacing it by a new tapered amplifier BoosTa pro also from Toptica Photonics.

To gain stability, we decided to use two amplifiers, each working at lower current

intensities.

2.2.1 Brief overview of the optical system

Only one wavelength is needed in the laser system. The master laser is a Narrow-

Diode (at 811.5 nm) from Radiant Dyes Laser company. This diode can be scanned

in our optical system over 6 GHz without mode hops when properly adjusted. The

laser beam is then injected in a tapered amplifier TA 100. At the exit of the TA 100

we use a fiber coupler 80/20. At exit 20, 20% of the total exiting power is used to

inject the second amplifier. The exit with 80% of the total exiting power is used for

the Zeeman slower, and for the saturated absorption spectroscopy to lock the laser.

Also one can see from figure 2.14 that the laser beam is shifted in frequency of -160

MHz by double pass in a 80 MHz AOM before going to the saturated absorption

setup. Hence, the master diode is locked at λ0 + 160 MHz.
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The second amplifier (BoosTa) is used for the magneto-optical trap laser beams,

and the pushing beam. The laser beams of the MOT have to be red-detuned,

so we have to shift the laser frequency a few MHz with respect to the transition

wavelength. Small frequency shifts are obtained by double-pass AOMs. The master

diode is locked at λ0 + 160 MHz, thus using a double-pass (80±∆)MHz AOM, we

have λ0 + 160 MHz−2(80±∆) MHz =λ0 ± 2∆, where ∆ ∈ [0, 15] MHz.

2.2.2 The different wavelength and laser intensities

The different laser intensities and wavelength on the optical system at the locations

identified by numbers from 1 to 5 on figure 2.14, are the following :

1. λ0 + 160 MHz, laser beam intensity: I1 = 51 mW.

2. λ0, laser beam intensity: I2 = 22 mW.

3. λ0 − 340 MHz, laser beam intensity: I3 = 27 mW.

4. λ0 − 2∆MOT MHz, laser beam intensity: I4 = 51 mW.

5. λ0 ± 2∆Push MHz, laser beam intensity: I5 = 7 mW.
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Figure 2.14: Optical setup
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Figure 2.15: Optical components
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2.3 Nanograting

The nanogratings previously used in the OIA group have been manufactured by UV-

lithography. It was lent by professor Alexander D. Cronin (University of Arizona).

The problems of those UV made gratings were their geometry characterizations.

Moreover, such kind of nanogratings are no longer produced. Thus, it has been

decided in the OIA group to develop their own transmission nanogratings. It was

the subject of Hanane Bricha Tazi’s PhD thesis [22]. The manufacturing process has

changed, and now the nanogratings are made by electronic beam lithography instead

of UV-litography. This enables a better control of the geometric properties. Also,

rather than measuring atom-surface interactions from available nanogratings, the

nanogratings made in the OIA group are developped in order to study atom-surface

interactions.

The first nanograting produced in the group was made in October 2019. Unfor-

tunately it has some defects such has holes, i.e that several bars of the nanograting

were damaged. So, more atoms passing through the nanograting were contribut-

ing to the zeroth order of interference. Another nanograting has been produced by

Nathalie Fabre in June 2020 at the IEMN (Lille). This nanograting does not have

any holes or other observed defects on scanning electronic microscope images. This

is the nanograting presented hereafter and from which we obtain the diffraction

patterns presented section 2.4.

2.3.1 Scanning electron microscope images of the nanograt-
ing

The nanograting is in fact a collection of nanogratings over a surface of 1x1 mm2.

As observed in figure 2.16, there is a collection of squares of size 30x30 µm2, each

of the squares is made of twenty lines, each line contains 150 slits. These slits are

the actual diffracting elements for matter waves. In total, over the whole surface of

the nanograting, there are 1 323 000 slits.
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Figure 2.16: view face of the nanograting, SEM images

2.3.2 Geometrical characterisation

From the SEM images, we now characterize the geometrical properties of the nanograt-

ing. The scale given on the different SEM images is mostly indicative, and we cannot

use it to perform a measurement of the slit size. Moreover, the choice of the posi-

tioning of the cursors on the SEM software is arbitrary. Thus it is not really precise

since one can be influenced by the relative intensity on the images.

The image figure 2.17, corresponds to a cleaved nanograting, during the manu-

facturing process (i.e., the slits are not opened, z will correspond to the propagation

axis).
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Figure 2.17: SEM image of a cleaved nanograting during the manufacturing process.
The slits are not opened, the propagation axis correspond to the z-axis.

We see from the cleaved grating that the slits do not have a straight shape over all

depth of the slits (z-axis).However, it is not trapezoidal as in UV-made nanogratings.

The estimated geometry in depth of the slits is illustrated in figure 2.18b, in total,

the depth is 100 nm (announced by the manufacturer of the membrane on which we

perform e-beam lithography).

(a) Slit shape by UV-
lithography

(b) Slit shape by electron-
lithography

Figure 2.18: Nanograting in the propagation direction

When plotting the intensity profile from SEM images such as in figure 2.16, one

does not find a square function. This is due to the electron beam of the SEM which

has a Gaussian intensity profile, see figure 2.19.

Figure 2.19: illustration of SEM
imaging of the nanograting

The intensity profile obtain from SEM im-

ages is the result of the convolution product

between a Gaussian (electron beam) and a

square function (the grating). We plotted in

figure 2.20 the intensity profile from the pro-

jection on the horizontal axis between the two
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blue lines represented in the inset. This is in order not to be affected by the stadium

shape of the slits, as one can see from the most zoomed image figure 2.16.

Figure 2.20: Projected profile from SEM images (Black dots) and the fit (Blue curve)

In figure 2.20, the blue curve is the result from the convolution product of a

Gaussian function with a square function. The fit returns the best parameters in

pixels. In the manufacturing process of the nanograting, the only fixed parameter

is the period, which is 200.0 nm for this nanograting. From this and the period in

pixels obtained from the fit, we get the conversion factor from pixel to nanometer.

To estimate the size of the slits, we divided the image from the SEM in slice on

the height. Then we find the slit size from the fit in each of the slices projections

illustrated figure 2.21a. The result is given figure 2.21b, we see the influence of the

stadium shape.

Moreover, the slit size comes from a fit over multiple slits, thus it is an averaged

size. On a picture, all slits don’t have the same size, indeed the slit sizes vary

between [aslit−3 nm; aslit+3 nm], where aslit is the averaged slit size obtained from

the fit.

Due to the stadium shape, the slit size vary over its height, with aslit ∈ [92.1; 102.7]

nm, see figure 2.21b.
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(a) Illustration of the slices to get
slits size dependence on the sta-
dium shape (b) Slit size distribution in the slices

Figure 2.21: study of the slit size dependence on the stadium shape

2.4 Experimental Results

So far we have presented all elements of the experimental setup. Here we present

two experimental results obtained for two different velocity ranges. In both cases

the velocity has been measured by the technique presented in section 2.1.6.1. In

order to increase the signal, the selection in TOF is 1 ms centered around the

TOF at which the velocity has been measured. The pushing time was the same for

both experiments. The opening of the nanograting along the diffraction axis was

Lg = 306± 3 µm (following figure 2.6 notation).

2.4.1 Faster beam vprop = 26.2 m/s

In the experimental data presented figure 2.22, the propagation velocities of the

TOF selected atoms are v ∈ [25.5; 26.9]m/s. For a total number of 150 128 detected

events, the total recording time is about 13 hours.
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Figure 2.22: Experimental result for atoms propagating at v ∈ [25.5; 26.9]m/s

2.4.2 Slower beam vprop = 19.1 m/s

The experimental data figure 2.23 correspond to propagation velocities v ∈ [18.7; 19.5]m/s.

The total number of detected events is 99 451, for a total recording time of about

40 hours.

Figure 2.23: Experimental result for atoms propagating at v ∈ [18.7; 19.5]m/s
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2.5 Experimental setup summary

1. We have a velocity-tunable pulsed beam of Ar∗ atoms. The velocity is mea-

sured with an accuracy better than the percent.

2. The geometry of the nanograting has been characterized from SEM images. It

has a period pg = 200.0 nm, a total depth of 100 nm (80 nm straight + 20 nm

rounded), a slit size of aslit = 102.7 nm. Moreover, the slits have a stadium

shape, and we characterized aslit ∈ [92.1; 102.7] nm

3. The position of the nanograting can be precisely adjusted in all directions

using a hexapod from SmarAct company.

4. The atomic beam is selected using a thick metallic slit. The opening length

of the grating in the direction orthogonal to the atomic beam propagation is:

Lg = 306± 3 µm

5. The grating-detector distance is obtained from the interfringe and de Broglie

wavelength of the velocity selected atoms. The distance from the grating to

the detector is: Dgd =307.0 mm

6. Spatial distortions of the detector have been observed and corrected.

7. The detector has a spatial resolution of 150 µm and a time resolution of 2 ns.

This detector enables us to detect single atoms arriving position.
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Semi-Classical model

In the previous chapter, we reviewed the experimental setup and finished the chapter

showing two experimental interference patterns.

In this chapter, we will present a wise semi-classical model used in similar exper-

imental situations, which has already been presented inter alia in [12]. This model

will be compared to the experimental results. To do so, we present a user friendly

form of the atom-surface potential which enables us to take into account retarded

effects. Finally, we will see that regarding the experimental data, and the charac-

terized geometry of the nanograting, we have to introduce retarded effects in order

to retrieve the Lifshitz atom-surface interaction coefficient.

3.1 The model

To give an overview of the model, the wave function diffracted by the nanograting on

the detector is given by Fraunhofer’s far-field diffraction formula. The atom-surface

interactions are taken into account by introducing an additional phase. This means

that we add an additional phase to the wave at each point of the aperture (i.e, the

exit of the slit) figure 3.1. The additional phase is given by the action variation along

the classical trajectories for atoms propagating in the slit. This justifies calling this

model semi-classical.

First of all, without considering the atom-surface potential, we can justify the use

of Fraunhofer’s diffraction formula regarding the geometries and velocities involved

in our experiment. In our experiment, the distance from the grating to the detector

is Dgd = 307.0 mm, the average slit size of the grating is aslit = 102.7 nm, and
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Figure 3.1: Schematic representation of the semi-classical model, for an atom prop-
agating along the z-axis with velocity vz = 26.2 m/s

λdB = 0.38 nm at 26.2 m/s (λdB = 0.52 nm at 19.1 m/s), the Fresnel number

F =
a2slit

λdBDgd

, (3.1)

is F ≈ 9.0 × 10−5 at 26.2 m/s (F ≈ 6.6 × 10−5 at 19.1 m/s). Hence, for both

velocity ranges, we have F ≪ 10−3, which validates the use of Fraunhofer’s far-field

diffraction formula.

Before defining the additional phase due to the atom-surface potential, we have

to introduce the notion of “effective slit”.

3.1.1 Effective slit : weff

If we look at the classical trajectories, as illustrated in the slit figure 3.1, we can

see that if an atom enters the slit too close to a wall, it will hit the wall, loose

its metastability, and therefore, won’t be detected. This phenomenon is taken into

account through the effective slit weff , which has already been introduced in [12],

and is shown in pale red in figure 3.1. It appears that the slit aperture becomes

smaller due to the atom-surface interactions. As can be seen from equation (3.1),

this helps to ensure that we can apply the Fraunhofer diffraction formula, since it is

equivalent to reducing aslit. The effective slit is:

- weff = 70.3 nm, at 19.1 m/s.

- weff = 74.3 nm, at 26.2 m/s.
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3.1.2 Additional phase : ϕAS

The atom-surface interactions are taken into account via an additional phase ϕAS.

This phase corresponds to the classical action (S =
∫
L dt) variation of the atom

along a classical trajectory.

From the remaining trajectories (trajectories that lead to exit the slit) plotted

in figure 3.1, we see that these trajectories are nearly parallel to the z-axis. Indeed,

at 26 m/s the difference between the trajectories and the parallel is about 1% only

for trajectories at 0.1 nm from effective zones (red pale in figure 3.1).This is due to

the high kinetic energy of the atoms compared to the potential energy inside the

effective slit weff .

Therefore, we assume, as it has been done in ref [23], [12], that the classical

trajectories are rectilinear, parallel to the z-axis, so the action variation is given by

the difference of classical actions along a straight line. Hence, the additional phase

is

ϕAS(x
′) =

1

ℏ

∫ t2

t1

dt (
1

2
mv2 − VAS)−

1

ℏ

∫ t2

t1

dt
1

2
mv2

≈ − 1

ℏv

∫
ldepth

dz VAS(x
′, z).

(3.2)

Where v is the propagation velocity of the atom, VAS the atom-surface interaction

potential, and x′ a given position inside the slit.

Since we integrate over a straight line, this approximation is often used in po-

tential scattering and is called eikonal approximation. This is a reference to the

eikonal equation in optics, which links wave optics to geometrical optics, where light

propagates along straight rays [24], [25].

3.1.3 Diffraction Pattern

The diffracted pattern is given by Fraunhofer’s diffraction formula, the plane wave

emitted by each point x’ has an additional phase ϕAS due to the atom-surface inter-

actions. Finally, the square modulus of the diffracted wave function on the detector

is given by

|ψ(θ)|2 =

∣∣∣∣∣∑
slits

∫
weff

dx′ e−ikx′sin(θ)+iϕAS(x
′)e

(
− x′2

2σ2
coh

)∣∣∣∣∣
2

, (3.3)
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where θ is the diffraction angle. The factor exp
(
− x2

2σ2
coh

)
is a Gaussian weight

to take into account the coherence of the extended source with σcoh = Lc/2 and

Lc = λdBLg/asrc, the transverse coherence length given by the van Cittert-Zernike

theorem [26] where asrc is the size of the source. The wave function equation (3.3)

should not be regarded as the diffracted wave function for a single atom, due to

the Gaussian factor. It is an effective wave function which takes into account the

spatial extension of the source. Taking the different experimental parameter (see

section 2.5), Lc = 560 ± 45 nm at 19.1 m/s (380 ± 30 nm at 26.2 m/s). We

only consider spatial coherence, since regarding the time of flight selection in the

experimental data section 2.4, we can consider the source as quasi-monochromatic.

Thus, the diffracted pattern should have exhibited interferences with good vis-

ibility since pg = 200.0 nm. The visibility loss in the measured diffracted patterns

comes from both the open length Lg = 306 µm (see figure 2.6) of the nanograting,

and the spatial extension of the source. So we have to take into account the implied

angular beam distribution that fits a Gaussian function with standard deviation

σbeam = 0.230 mrad. This is done by taking the convolution product between the

angular beam distribution and the diffracted wave function, see figure 4.15.

This approach using an effective wave function is not the most refined and will

be reconsidered in chapter 4.

3.1.4 Atom-Surface interactions

The calculation of the Casimir-Polder potential is based on a relatively heavy nu-

merical calculation, and for convenience, we look for a user-friendly form of the

atom-surface potential. Hence, we have to make approximations in accordance with

our experimental setup, those approximations are listed hereafter.

1 - The surfaces of walls in a slit are considered as infinite walls.

This assumption is based on the dimension of the slits of the nanograting, which

guarantees that the atoms are close to the walls. It is less and less correct as either

we increase the atom-surface distance, or we reduce the depth of the slit for a given

depth, see figure 3.2.
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Figure 3.2: a) the atom is sufficiently close to the wall to consider the latter as
infinite. b) the atom is too far from the wall which can not be considered as infinite
anymore.

2 - Inside the slit, the interaction potential between an atom and the two walls is

considered as the sum of interaction potential between an atom and two single walls.

This is justified by neglecting multiple images. As illustrated figure 3.3, the

atom (considered as a dipole) interacts with its image I1. This image dipole I1 has

an image dipole I2 in the opposite wall. This second image dipole also interacts with

the atom. Since the distance between the second image I2 and the atom is much

larger than between I1 and the atom, its influence will be neglected.

Figure 3.3: Multiple images. The atom induces its image dipole I1. The image
dipole I1 generates its image in the opposite wall I2, which also interacts with the
atom.

3 - Surface roughness is not taken into account.

By means of the effective slit, we do not keep atoms which propagate too close

to the surface, then atoms which exit the slit should have propagated at distances of

about 10 nm from the surface, so we should not be sensitive to the surface roughness.

4 - No temperature related effects.

We worked at room temperature T ≲ 300 K, therefore, the thermal energy

kBT ≈ 0.03 eV (kB is the Boltzmann constant) is too small compared to the energy

associated with the atomic transitions (≈ 1.53 eV at 811.531 nm) involved in the
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atom-surface interactions, see [3]. So temperature will be considered as null.

5 - Internal surfaces are considered flat.

This last approximation refers to two different geometrical properties of the slits.

First, the slit stadium shape figure 2.21, i.e. the shape of the slit in height. Second,

the shape of the slit along the propagation axis as illustrated figure 2.18b.

- The stadium form is simplified by considering that 11/15th of the final result

corresponds to the diffraction by a 102.7 nm slit and 4/15th by a 97.5 nm slit, see

figure 3.4. This means that the potential at both extremities of the slit is assumed

to be the same as in the case of an infinite surface.

Figure 3.4: Approximation to take into account the stadium shape of the slits.

-The shape of the slit along the propagation axis which is 80 nm straight and

20 nm rounded is approximated as 95 nm straight. This can be justified by looking

at the phase ϕAS along a trajectory in both cases figure 3.5. This approximation is

only useful from a numerical point of view, since we have more than 104 simulations

to run, it is faster when considering a straight slit.
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Figure 3.5: Comparison of the phase for a straight slit (orange), and
straight+rounded slit (black), for v=26.2 m/s and C3=1.25 a.u. The pale red zone
represent the effective slit as in figure 3.1.

The potential in the rounded part is calculated using the same potential form as

in the case of an infinite wall −C3/l
3, where the atom-surface distance l is changed

at position z according to the radius of curvature of the bar.

Therefore in the slit, atoms will interact along the whole depth of the slit, which

is considered to be 95 nm, with potential of the form −C3/l
3 in the non retarded

regime and −C4/l
4 in the retarded regime, where l is the atom-surface distance and

C3, C4 are atom-surface interaction coefficients.

3.1.4.1 Atom-Surface interactions : retarded effect

Still looking for a user-friendly form of the atom surface interaction potential, in

order to take into account retarded effects, we will write the potential as

V (l) = −C3

l3
.F (l), (3.4)

where the function F should vary from F (l → 0) = 1 to F (l → ∞) ∝ 1
l
, in order

to retrieve the two asymptotic behaviors. To write the potential as equation (3.4),

we used the potential derived using linear response theory by Wylie and Sipe in

[27] [28], which writes in the case of a perfect conductor, and an atom in its ground

state:

V (l) = − 1

48π2l3

∑
n

∣∣d0n∣∣2 [ln + (2− l2n)f(ln) + 2ln g(ln)
]

(3.5)
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where ln = 2ω0n

c0
l, n refers to the possible excited states connected with electric dipole

transition to the initial state.

|d0n|2 = |d0nx |2 +
∣∣d0ny ∣∣2 + |d0nz |2, with d0nα = ⟨0 |Dα|n⟩, D⃗ being the electric dipole

operator of the atom.

f(t) = Ci(t) sin(t)− [Si(t)− π/2] cos(t)

g(t) = −Ci(t) cos(t)− [Si(t)− π/2] sin(t), Si and Ci being the sine and cos integral

respectively.

Equation (3.5) is simply the dipolar part of the atom-surface interaction, for an

atom considered as a point dipole (no charge distribution) over a short interface

(this is ensured by the effective slit). In their articles Wylie and Sipe also mention

that they do not take temperature dependence in account, and that they omit the

transverse part of the microscopic polarization field.

3.1.4.2 Ar∗ : Approximations to get a potential of the form −C3

l3
F (l)

For Ar∗ atoms, the main transition involved in the atom surface interaction is the

transition 3P2 → 3D3 at 811.531 nm (in air). Actually, there is not only one tran-

sition involved in the interaction, the seven first transitions (by importance) have

transition ∈ [696.543, 912.297]nm (in air). Actually, seventeen transitions refer-

enced from the 3P2 state of argon are in the NIST database [29]. Since the main

transitions are centered around 811.531 nm, we will make the rather strong assump-

tion that all transitions involved in the bracket of equation (3.5) will have the same

frequency dependence, thus ln = 2(2π)
λopt

l. Therefore, under this assumption one can

take the bracket out of the sum, and recalling that in the case of the perfect con-

ductor C3 =
1

48πϵ0

∑
n |d0n|

2
[3], one writes the atom surface interaction potential in

the case of the perfect conductor as

V perfect
WS (l) = −C

perfect
3

l3
.
1

π

[
ξoptl + (2− (ξoptl)

2)f(ξoptl) + 2(ξoptl) g(ξoptl)
]
, (3.6)

where ξopt =
2(2π)
λopt

, λopt=811.531 nm. Thus, we define

F (l) =
1

π

[
ξoptl + (2− (ξoptl)

2)f(ξoptl) + 2(ξoptl) g(ξoptl)
]
. (3.7)

The function equation (3.7) is plotted figure 3.6, the blue dashed lines indicate the

effective atom-surface distance in the slit. We see from this plot that when consider-

ing retardation effects, the atom-surface interaction is reduced by ≈ 15% in average.
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Figure 3.6: Function which takes into account the retardation effects

To verify the assumptions we made so far we can plot the potential (3.6) and

the asymptotic behaviors, see figure 3.7

Figure 3.7: Perfect conductor - Log log plot of the absolute value of the potentials
with respect to the distance to the surface, the non-retarded regime (black dashed),
the retarded regime (blue dashed), the red line corresponds to the potential equa-
tion (3.6)

We see from figure 3.7 that in the case of a perfect conducting surface, by making

use of the potential (3.6) we retrieve the asymptotic behaviors for the non retarded

and retarded regimes.

In our experiment, the nanograting is made of silicon nitride, which is a dielec-

tric. We still assume that we can use the potential equation (3.6), but we replace

Cperfect
3 by CSi3N4

3 , the result and the asymptotic behavior of atom-surface interac-

tions in the case of a dielectric surface are plotted figure 3.8.
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Figure 3.8: Dielectric (Si3N4) - Log log plot of the absolute value of the potentials
with respect to the distance to the surface, the non-retarded regime (black dashed),
the retarded regime (blue dashed), the red line corresponds to the potential equa-
tion (3.6)replacing Cperfect

3 by CSi3N4
3 .

We see in figure 3.8 that there is a worse agreement in the retarded regime

between the potential we derived and the retarded asymptotic behavior. This could

be due to the optical index of silicon nitride in the UV. However, since we have atom

surface distances lower than 51 nm, the discrepancy between the potential (3.6) and

the retarded regime will be negligible.

In the following, we will refer to the potential equation (3.6) as Wylie and Sipe

potential since it derives from the Wylie and Sipe expression (3.5).

Note : All atom surface interaction coefficients, i.e C3 and C4, are given with their

derivation for both the perfect conductor and dielectric (Si3N4) cases in appendix

A.

3.2 Comparison to Experimental results

In the following we do not explicitly measure atom surface interactions as a goal,

but we probe the need to take into account retardation effects to describe our exper-

imental data, where the atom surface distances are ≤ 51 nm. To do so, we compare

two models of the atom-surface interaction potential with respect to the data at 26

m/s (see figure 2.22). In the first model, we will take the non-retarded atom-surface

interaction potential.

Vnon ret(l) = −C3

l3
, (3.8)
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while in the second model we do take into account retardation effect by using the

potential,

VWS(l) = −C3

l3
.F (l), (3.9)

where F is given by equation (3.7).

Actually, the potentials we use in the simulations take into account the two walls

of the slit, see page 40, item 2.

3.2.1 χ2-Neymann

To compare both models of the atom-surface interaction potentials (non-retarded

and retarded), we make use of the Neymann’s χ2

χ2 =
∑
θ

(Iexpθ − I theoθ )2

σ2
θ

, (3.10)

where σθ is the signal noise standard deviation, taken as the square root of the

number of detected events at angle θ. Iexpθ and I theoθ are the experimental and

theoretical number of detected events at angle θ.

The parameters can be classified into two categories. The first category corre-

sponds to the two theoretical parameters, the atom surface interaction coefficient

C3 and the maximum phase shift ϕmax. ϕ is the additional phase shift that carries

the atom-surface interactions, see equation (3.2). The maximum phase shift is con-

sidered as a parameter, it is equivalent to varying the effective slit size weff (and

thus the minimum atom-surface distance lmin), see figure 3.5.

The second category corresponds to the experimental parameters, e.g. the ve-

locity distribution, the geometry of the nanograting, the angular beam distribution,

etc. The experimental parameters are considered as fixed and have been constrained

by means of external techniques.

For both theoretical models, we look for the parameters (C3 and ϕmax) which

minimize the χ2 (3.10). We first let the parameters vary over a wide range of values.

The result is plotted in figure 3.9. Surfaces correspond to χ2
min+40σ, where σ = 6.2

is the standard deviation for a χ2-distribution with two parameters [30]. This is not

entirely appropriate here, as we shall see in chapter 5.

We observe multiple local χ2 minima for different maximum phase shifts. These

local minima lead to a minimum atom-surface distance of lmin ≈ 17.5, 13.1, 11.0, 10.1 nm,

respectively. The global minimum corresponds to ϕmax = 10.5 rad (⇔ lmin =
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13.1 nm). This is in agreement with the expected minimum atom-surface distance

from classical trajectories figure 3.1.

Vnon ret

VWS

Figure 3.9: χ2
min + 40σ surfaces for both models, non retarded (blue) and retarded

(red). The dashed line shows the theoretical expected value for CSi3N4
3

The dashed black lines in figure 3.9 and figure 3.10, indicate the expected C3

value for 3P2 Ar∗ interacting with a Si3N4 surface one gets from Lifshitz’s formula,

see appendix A.

Figure 3.10 is an enlargement of figure 3.9, the surfaces corresponds to χ2
min+nσ,

n = 1, 3, 6, 9. We see that there are more than 30σ between the expected C3 (dashed

black) and the best fit (blue surfaces) when neglecting retarded effects.

Moreover, we retrieve a 15% difference between the retarded and non-retarded

models as expected from figure 3.6.

Vnon ret

VWS

Figure 3.10: χ2
min + nσ (n = 1, 3, 6, 9) surfaces for both model. The black dashed

line represent the expected value for Ar∗ atom in front of Si3N4. The gray area
represent the 10% uncertainty on the expected value.
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Both models have similar values of χ2
min, so neither case indicates a better model.

We do not give the value of χ2
min since here it would be a mistake to interpret it in

terms of goodness-of-fit test or as qualifying how close the models are to the data,

as will be discussed in chapter 5.

The best fit obtained when taking retarded effect into account is plotted fig-

ure 3.11.

Figure 3.11: data at 26m/s (black), with the best fit using the Wylie and Sipe
potential (red).

This result supports what was already mentioned by E. A. Hinds and V. San-

doghdar in [31], where the authors indicated that the non retarded potential in the

case of a two level atom near a metallic surface, “is correct at distances less than

0.12λ”. Actually, in our case, 51 nm corresponds to 0.06λ, but we work with a

multilevel atom in front of a dielectric. To conclude, one should keep in mind that

One has to take into account retarded effects when atom-surface (or dipole-

dipole) distance is a non-negligible fraction of the predominantly contributing optical

wavelength.

Influence of the fixed parameters :

If we now allow the geometry of the nanograting to vary. We can enlarge the

diffraction pattern either by reducing the slit size or increasing the atom-surface
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interactions. The same reasoning holds for the depth of the slit. Therefore, it

is of critical importance to have a precise characterization of the geometry of the

nanograting. By making use of the semi-classical model, we found that
∆aslit = ±1 nm ⇒ ∆C3 = ±0.07 a.u

∆ldepth = ±10 nm ⇒ ∆C3 = ±0.16 a.u
(3.11)

3.2.2 Discussion of the expected C3 value

The main problem when calculating the atom-surface interaction coefficient when

we use the Lifshitz formula, is that we need the optical properties of the material

for ω = 0 → ∞.

There are not many optical measurements for wavelengths smaller than 190 nm

for Si3N4. The only measurements that exist dates from 1973. Another major

problem comes from the change in optical properties of amorphous Si3N4 depending

on the manufacturing process. For example, to manufacture Si3N4 membrane, there

are two main techniques. The low pressure chemical vapor deposition (LPCVD)

(used for the membrane for our nanogratings), and plasma enhanced chemical vapor

deposition (PECVD). The pressure and flow used will influence the optical properties

of the final product. For more information, see [32]. The optical properties also

depend on the geometry of the sample used, e.g. its width.

For the optical data from [33], the Si3N4 membrane was obtain from process

close to the one used for our membrane.

In light of what we just said, the safest thing to do for future experiments is to

characterize the optical properties of the nanograting we used or a sample obtained

from the same fabrication process. It would also be of great interest to get the

optical properties for wavelengths smaller than 190 nm, since it has not been done

from a long time and that the Ar∗ atoms have transitions in the UV.

3.2.3 Limitations of the semi-classical model

In the previous section we compared the semi-classical model to the data at 26.2m/s,

but not with the data at 19.1 m/s. Indeed, at 19.1 m/s, the eikonal approximation

(section 3.1.2) no longer holds. Thus it is not possible to reproduce enough the

data at 19.1 m/s with the semi-classical model presented so far. What should be

done is to calculate the action variation along a classical trajectory which can not
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be considered as a straight line anymore, or develop a model based on another

approach.

We were considering either improving the semi-classical model or developing a

model based on numerical resolution of the time-dependent Schrödinger equation.

One main reason to develop a full QM model is that the semi-classical model can not

take into account purely quantum effects such as quantum reflection, i.e reflection

of matter wave on an attractive potential. Since we are interested in decreasing the

atom propagation velocity, and that transverse atom velocity (atom velocity in the

direction of the walls) is low, quantum reflection might occur. Therefore we decided

to develop a model based on the time dependent Schrödinger equation, the next

chapter is dedicated to this model.

50



Semi-Classical model

3.3 Semi-classical model summary

1. The diffraction pattern is obtained by propagating the wave function at the

exit of the slit using the far field Fraunhofer’s diffraction equation.

2. Atom-surface interactions are taken into account by adding a phase to the

wave function at the exit of the slit.

3. Ar∗ which hit the surface loose their metastability, thus they won’t be detected,

this is taken into account by considering a reduced effective slit.

4. The additional phase due to atom-surface interactions in the eikonal approx-

imation is equal to the classical action variation along a straight line parallel

to the propagation axis.

5. In the slit, atom-surface interaction potential is assumed to be of the same

form as in the case of one atom in front of an infinite surface.

6. We use a potential form derived from the analytic expression given by Wylie

and Sipe, this enables us to easily consider retarded effect.

7. Comparing the semi-classical model to the experimental data at 26.2 m/s

proves the need to take into account retarded effect even if in the experiment

atom-surface distances are ≲ 51 nm.

8. Eikonal approximation does not hold while considering the experimental data

at 19.1 m/s.
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Chapter 4

1D time-dependent Schrödinger
equation model

In this chapter, we present a new approach to model our experiment. This new ap-

proach is based on the time-dependent Schrödinger equation. It has been developed

in collaboration with Dr. Naceur Gaaloul and Pr. Eric Charron.

2D simulations are computationally expensive due to the spatial resolution re-

quirement to accurately represent the atom surface interaction potentials. We there-

fore provide a 1D model in which we look at the evolution of the transverse wave

function of an atom in its reference frame. Using this 1D model, we test the sim-

ulation parameters (i.e. space and time resolution) required such that the result

converges.

The results of the 1D simulations are discussed and superimposed on the ex-

perimental results. We then review some theoretical predictions made with the

simulation, to guide future experimental developments. Systematic uncertainties

related to the geometry of the nanograting are discussed with the help of the sim-

ulation. Finally, we recall the main limitations of our 1D approach, as well as the

difficulties associated with a 2D simulation.

4.1 Numerical method : Split Operator

To numerically solve the time-dependent Schrodinger equation, we use the Split

Operator Method. The SPO has been proposed by Feit et al. in 1982 [34]. It is a

spectral method which relies on the decomposition of the evolution operator U(t′, t).

This operator, when applied to the quantum state at time t, returns the quantum
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state at time t′,

Û(t+ dt, t) = e−
i
ℏ Ĥdt,

ψ(x, t+ dt) = Û(t+ dt, t)ψ(x, t),

(4.1)

where Ĥ = T̂ + V̂ is the time independent Hamiltonian operator, T̂ the kinetic

operator and V̂ the potential operator. The evolution operator is then decomposed

as follows:

Û(t+ dt, t) = e−
i
ℏ

T̂
2
dte−

i
ℏ V̂ dte−

i
ℏ

T̂
2
dt +O(dt3). (4.2)

The potential and the kinetic operators are diagonal in the position and momen-

tum space respectively. Thus, applying the potential operator simply corresponds

to multiplying the wave function by exp
(
− i

ℏ V̂ dt
)
, while applying the kinetic op-

erator corresponds to multiplying the Fourier transform of the wave function by

exp
(
− i

ℏ
T̂
2
dt
)
.

Therefore, making use of Fourier transform, it is easy to apply the approximate

evolution operator equation (4.2). Note that since the SPO method relies on the

use of Fourier transform, it is categorized as a spectral method.

In numerical method, one can use the Fast Fourier Transform (FFT) algorithm

to get the Fourier transform. For a review of three different numerical methods for

the time-dependent Schrödinger equation, including the SPO, see [35].

The scheme of the SPO method to propagate the wave function from time t to

t + dt is illustrated figure 4.1, so we simply have to repeat this sequence until the

wave function has been propagated to the final desired time. Using this method, it

is also possible to use a time-dependent potential.

Figure 4.1: Illustration of the implementation of the split operator method

4.1.1 Space and time grids

In the case of a 1D problem, the space grid is defined by the number of grid points

and the desired length to be represented. This also defines the spatial resolution of

the grid,

dx =
L

ngpx
, (4.3)
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with L the total length of the grid and ngpx the number of grid points. Since the

SPO method relies on FFTs, the spatial resolution defines the maximum energy

Egrid that can be represented in the numerical simulation. The maximum energy is

given in [36] and writes

Egrid =
p2grid
2m

=
h2

8mdx2
. (4.4)

In the simulation, the spatial resolution will have to be chosen such that the

total energy (kinetic+potential) of the physical problem is smaller than Egrid.

For the time resolution dt, following [36], one should choose dt such that ϵ =

h/(2dt) is larger than the maximum energy change which is induced by the time-

dependent process. Actually, one often chooses dt as one thousandth of the total

time of propagation. This is not a general rule, and one should always verify that

the simulation converges. For example, for both the spatial and time resolutions,

we should verify that the result is unchanged while reducing the spatial and time

resolutions by two, 
dx→ dx

2

dt→ dt
2

(4.5)

The convergence test (4.5) has to be performed until the result does not change

anymore, this gives us the spatial and temporal resolutions we need to simulate our

problem. We apply this to our simulation in section 4.2.3.5.

4.2 1D approach

Here, we present the 1D approach which is illustrated in figure 4.2. The wave

function associated to an atom arriving on the nanograting is considered as a plane

wave, as justified in section 4.2.1. Because the problem of the diffraction by a N slit

grating can be reduced to the diffraction by one slit (see section 4.2.2 & appendix

B), we only need to simulate the propagation inside one slit. We make two main

assumptions, first, the atom-surface interaction potential is non-null only inside the

slit. Second we assume that the wave function arriving on the slit takes the form of

the slit.

When an atom hits the surface it looses its metastability, and so it is not detected,

this is taken into account by absorbing the wave function at the surfaces. The 1D

simulation starts by considering a rectangular wave function (same size as the slit),
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then this wave function evolves during t = ldepth/v ( with v the atomic propagation

velocity and ldepth the depth of the nanograting) in the atom-surface potential and is

absorbed at the surfaces of the bars of the nanograting. The wave function outgoing

the slit is (freely) propagated analytically to the detector.

The novelty of the simulation presented here is to take into account both the

atom-surface interaction potential and absorbing boundary conditions inside the slit.

Figure 4.2: Representation of the 1D simulation principle.

4.2.1 Source model

To model the source we will use the same approach as proposed in [37]. The ther-

mal cloud is considered as a collection of non-interacting Gaussian wave packets as

illustrated in figure 4.3. The velocity distribution of an atom in the thermal cloud

follows a Maxwell-Boltzmann distribution.

Figure 4.3: The source of atoms is represented by a collection of Gaussian wave
packets, these wave packets freely propagate to the nanograting.
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The momentum distribution for an atom in the source is given by

|ψ(p)|2 ∝ e
− p2

2σ2
p , (4.6)

where σp =
√
kBTm, and p = ℏk. The wave function associated to an atom in the

source (t = 0) is

Ψ(x, 0) =
1√
2π

∫
dke

− p2

4σ2
p eik.x. (4.7)

Thus, the initial wave function associated to an atom of the source is given by :

Ψ(x, 0) ∝ e
− 2π

λ2
T

.x2

= e
− x2

4.σ2
0 , (4.8)

where λT =
√

2πℏ2
mkBT

and σ0 =
λT

2
√
2π
.

We can verify that this is compatible with Heisenberg relation : σ0 σp =
ℏ
2
.

The MOT has a temperature T ≈ 150 µK, so λT ≈ 223 nm. For an atom

propagation velocitity of about v ≈ 19 m/s in the direction of the nanograting,

the atom freely propagates from the source to the nanograting during t ≈ 26 ms.

The standard deviation time evolution, associated to the Gaussian wave function’s

spreading is

σ(t) = σ0

√
1 +

ℏ2
4m2σ4

0

t2, (4.9)

where σ0 = σ(t = 0) is the standard deviation of the initial Gaussian wave function

[38].

Hence, when an atom reaches the nanograting, it is represented by a Gaussian

wave function |Ψ(x, t)|2 ∝ e
− x2

2σ(t)2 , with a standard deviation σ(t ≈ 26 ms) ≈
465 µm. The open length of the grating is Lg ≈ 306 µm, thus the wave func-

tion of an atom covers almost uniformly the entire grating, which justifies that we

consider a plane wave as the wave function of an atom incoming on the nanograting.

As in the semi-classical model, the loss of visibility is only due to the angular

beam divergence.

4.2.2 Analytical propagation to the detector

The wave function outgoing the slit at time te is freely propagated to the detector

in the momentum space. In position space, the wave function is then given by the
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inverse Fourier transform. So, the wave function reaching the detector at td is given

by

ψ(x, td) =
1√
2π

∫ +∞

−∞
dk exp

(
−iℏk

2

2m
(td − te)

)
ψ̃(k, te) e

−ikx. (4.10)

In the stationary phase approximation te ≪ td, see [39], equation (4.10) can be

written

ψ(x, td) ≈
√

m

ℏ(td − te)
ψ̃

(
− mx

ℏ(td − te)
, te

)
exp

(
i

mx2

2ℏ(td − te)

)
e−iπ

4 (4.11)

This approximation leads to better results for longer propagation time, since the

longer the propagation time, the faster the phase oscillates.

The wave function might theoretically tunnel from one slit to another, however,

given the thickness of the bars of the nanograting, we neglect any tunneling effect.

Thus, we have the same wave function ψ1 slit that exits each slit of the grating, but

located at different positions in space. Therefore, one can show (see Appendix B)

that in the stationary phase approximation, the wave function diffracted by N slits

is given by the wave function diffracted by a single slit multiplied by an analytic

function as in classical optics. Therefore, we only need to simulate the propagation

of the wave function in a single slit.

In the most general case where the grating can be turned by an angle αg with

respect to the x-axis (see figure 4.2), the square modulus of the wave function

diffracted by N slits on the detector is given by

|ψ(x, td)|2 ≈ |ψ1 slit(x, td)|2
sin2

(
mpg cos(αg)

2ℏ(td−te)
Nx+ mpg sin(αg)

4ℏ(td−te)2v
Nx2

)
sin2

(
mpg cos(αg)

2ℏ(td−te)
x+ mpg sin(αg)

4ℏ(td−te)2v
x2
) , (4.12)

with pg the nanograting period. The complete derivation is given in Appendix B.

We have taken into account the possibility to add an angle because we observed, in

the experiment, an influence of the orientation of the nanograting on the symmetry

of the diffracted pattern.

For the specific case where the plane of the grating is orthogonal to the propa-

gation axis (αg = 0°), equation (4.12) reduces to

|ψ(x, td)|2 ≈ |ψ1 slit(x, td)|2
sin2

(
mpg

2ℏ(td−te)
Nx
)

sin2
(

mpg
2ℏ(td−te)

x
) . (4.13)
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4.2.3 Propagation in the grating

In this simulation approach, we do not have to artificially introduce the effective

slit used in section 3.1.1. However, we still need to take into account the loss of

Ar∗ which hit the surfaces and will not be detected. This is done by absorbing the

wave function if it reaches distances lower than a given rmin from the surfaces. The

absorption of the wave function is described in section 4.2.3.3. We first need to

define the minimum distance at which the wave function has to be absorbed.

4.2.3.1 Minimum atom-surface distance : rmin

It is important to define the minimum atom-surface distance because it will also

affect the size of the slit. A first approach is to consider the Ar∗ atom regarding its

electronic configuration (see section 2.1.1) as a sphere of radius rAr∗ , where rAr∗ is

given by the Bohr model using Slater’s rule.

In Bohr’s model, the energy associated to an atomic level n is given by

En = −13.6 eV

(
Z∗

n∗

)2

, (4.14)

while the radius of the atom is given by

Rn = a0
(n∗)2

Z∗ , (4.15)

where a0 is Bohr radius, n is the principal quantum number, n∗ the effective quantum

number and Z∗ = Z − σ is the effective nuclear charge (σ : screening ). For Ar∗ in

the electronic configuration of interest, Slater’s rules give : n∗ = 3.7 and Z∗ = 2.05

(σ = 7σ3s3p + 8σ2s2p + 2σ1s).

The numerical application leads to E4 ≈ 11.59 eV, which is close to the measured

[29] energy of the 3P2 energy level of Ar∗, E4 ≈ 11.55 eV. This validates that we

can consider Ar∗ as a sphere, with radius given by equation (4.15), rAr∗ ≈ 0.35 nm.

Therefore, in the model, we assume that the wave function has to be absorbed

at a distance rmin = 0.35 nm from the surfaces. The underlying hypotheses being

that at distances lower than rmin = rAr∗ an overlap occurs between the electron of

Ar∗ atoms and the electrons of the surfaces.

4.2.3.2 Atom-surface potential

To model the atom-surface interactions, we used the Wylie and Sipe potential de-

rived in equation (3.9). We modify it by adding a repulsive part, thus we write it

VLJ in reference to the Lennard-Jones potential,
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VLJ(l) = VWS(l) +
C6

l6
, (4.16)

where l is the distance between the atom and the surface, VWS the attractive Wylie

and Sipe potential, and C6 is not the van der Waals coefficient, but a coefficient to

get the minimum of the potential equation (4.16) at distances l = rmin from the

surfaces. C6 is given by

C6 =
C3

2
r3min. (4.17)

The atom-surface interaction potential equation (4.16) is plotted in figure 4.4.

Figure 4.4: Atom-surface interaction potential, the Si3N4 surface is represented by
the red area, located at 51.35 nm for aslit = 102.7 nm.

Actually, we do not directly use the potential of equation (4.16) in the simula-

tion. We will modify a part of the potential only for atom-surface distances lower

than rmin, this is just a numerical trick to get better absorption results (see next

section 4.2.3.3). The modification function is given by equation (4.18) and is plotted

in figure 4.5a. The modified atom-surface interaction potential we will use in the

simulation is plotted figure 4.5b.

fmodif (x) =

U0 cos

(
π
2

|x|−(aslit
2

−rmin)
lab+rmin

)2

if aslit
2

− rmin ≤ |x| ≤ aslit
2

+ lab

0 otherwise

(4.18)

with U0 = VLJ(
aslit
2

− rmin), the value of the minimum of the atom-surface potential.

lab is the distance over which the modification function goes from its minimum U0

to 0.
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(a) Atom-surface potential (black - solid),
and the modification function (blue - dashed)

(b) The modified atom-surface interaction
potential. The surface is represented in red.

Figure 4.5: Modification of the atom-surface interaction potential (aslit = 102.7 nm).

Finally, the wave function evolves in the potential equation (4.16), and is ab-

sorbed in the region represented in blue in figure 4.6. The wave function evolves

in the modified part of the potential only on 0.1 nm (see next section 4.2.3.3) on

each side, which is negligible with respect to the size of the slit aslit = 102.7 nm.

Moreover, we did not modify rmin nor aslit, to see the impact of the modification

of the repulsive part of the potential, but we should look at the proportion of the

wave function that is impacted by this modification. This is discussed later in sec-

tion 4.2.3.6.

Figure 4.6: Modified atom-surface potential (black - solid), the red area represent
the surface while the blue area represent the absorption region. aslit = 102.7 nm, so
the surface is located at 51.35 nm.
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4.2.3.3 Absorption of the wave function

There are different ways of absorbing wave functions in simulations. The most

common way is to make use of complex potentials [40] (which is a generalization of

pure negative imaginary potentials). But, the main problem of this method is that,

it is difficult to parameterize the complex potential to get the desired absorption

length and amplitude. The absorption is improved for longer complex potentials,

but here we are interested in absorbing the wave function over the shortest distance.

Another problem of this method is related to the use of a potential. It means that

there is a dependence with the energy of the particle, thus, during the propagation

(i.e the time evolution), the absorption does not occur at the same distance to the

surface, if we take a constant complex potential. So, the complex absorbing potential

has to be modified during the propagation.

An easier way to absorb the wave function is to make use of mask functions.

These functions are equal to one in the zone of interest and zero where we want the

wave function to be absorbed. Then, we multiply the wave function at each time

step of the simulation by the mask function. Actually, one cannot use a function

which directly goes from one to zero. Even with the mask function technique, the

absorption length is non null (which is also referred to as absorbing zone or area).

However it is much easier to parameterize than any complex potential. Using the

mask function technique it is also possible to absorb the wave function over very

short distances and at constant positions. The mask function we used is

Mask(x) =


1 if |x| < (xabs − d)

cosα
(

π
4

(
1 + |x|−xabs

d

))
if (xabs − d) ≤ |x| ≤ (xabs + d)

0 otherwise

(4.19)

where xabs is the position at which the wave function is absorbed (xabs =
aslit
2

−rmin).

The total absorption length is equal to 2d. α is a parameter to change the slope,

often taken to be equal to 2. In our case, we take α = 12 since it leads to better

absorption results. The function (4.19) is plotted in figure 4.7 for d = 0.2 nm and

α = 12.

We then multiply the wave function by the mask function at the end of each

time step, that is, at the end of the propagation scheme of figure 4.1 to perform the

absorption. We also use the function (4.19) as the initial wave function since we

assume in our model that the wave function takes the form of the slit.
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(a) Full plot of the mask function (aslit =
102.7 nm).

(b) Zoom on the edge of the mask function,
i.e the absorption area (aslit = 102.7 nm).

Figure 4.7: Mask function used to absorb the wave function.

Note that whatever absorption technique one uses, it will always introduce re-

flections. These reflections are purely numerical. Therefore, one has to reduce the

amplitude of the reflections so that it is negligible with respect to the amplitude of

the wave function. To do so, one can change the parameters α, d in equation (4.19)

or change the time step dt. This will be discussed in section 4.2.3.5, since it is closely

related to the simulation convergence test.

The shape of the wave function in the absorbing areas is affected by the shape

of the mask function, see figure 4.7b. The impact of the absorbing length on the

wave function is discussed in section 4.2.3.6.

4.2.3.4 Wave function at the exit of the slit

We now have the initial wave function which is given by equation (4.19) (with a

normalization coefficient), we have the atom-surface interaction potential, and the

absorption function.

We let the initial wave function evolve in the atom-surface interaction potential

for te = v/ldepth (where v is the atom propagation velocity and ldepth = 95 nm the

depth of the nanograting).

The square modulus of the wave function at the end of the slit (t = te) is plotted

figure 4.8a. A zoom in the absorption region is plotted figure 4.8b, where we see

that the wave function is absorbed at rmin = 0.35 nm of the wall, over an absorption

length of about ∼ 0.2 nm (the effective absorption length is smaller than the length

over which the mask function goes from one to zero).

We can also plot the real (figure 4.9a) and imaginary part (figure 4.9b) of the

62



1D time-dependent Schrödinger equation model

(a) Square modulus of the wave function at
the exit of the slit. aslit = 102.7 nm

(b) Zoom on the absorption region. aslit =
102.7 nm, so the surface is located at
51.35 nm

Figure 4.8: Square modulus of the wave function at the exit of the slit.

wave function at the end of the propagation for aslit = 102.7 nm.

(a) Real part of the wave function at the exit
of the slit. The red pale zones indicate the
Si3N4 bars of the slit.

(b) Imaginary part of the wave function at
the exit of the slit. The red pale zones indi-
cate the Si3N4 bars of the slit.

Figure 4.9: Real and imaginary part of the wave function at the exit of the slit.

Moreover, it is possible to access the wave function at any desired time step,

thus we can reconstruct the dynamics of the wave function inside the slit (see fig-

ure 4.10). From this plot, we see that, as the atom propagates through the slit, the

probability of finding it near a surface decreases. An analogy can be made with the

semi-classical view we used in figure 3.1. The atom is attracted to surfaces, if the

atom hits a surface it falls back to the ground state and is therefore not detected.

This explains why the norm of |ψ(x)|2 decreases and why |ψ(x)|2 seems to become

thinner as the atom evolves in the slit.

As we can see from the equation (4.11) (stationary phase approximation), the

wave function on the detector is related to the Fourier transform of the wave func-
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tion at the exit of the slit. Therefore, the thinning of the wave function implied by

the atom-surface interactions contributes to enlarge the diffracted pattern. More-

over, the same argument illustrates the importance to access the shape of the wave

function at the exit of the slit.

Figure 4.10: Evolution of the square modulus of the wave function in the slit (aslit =
102.7 nm).

4.2.3.5 Convergence of the simulation

In section 4.1 we mentioned the need to verify the convergence of the simulation.

To do so, we said that we need to see if the result does not change while reducing

the space grid resolution dx → dx/2 and reducing the time step dt → dt/2. Here

the subtlety comes from the mask function we use to absorb the wave function.

Absorption is improved when the time step dt is reduced. Thus, in the absorption

region the wave function is always different. Therefore one always have a different

result while reducing the time step and might think that the simulation does not

converge.

A way to understand the improvement of the absorption while reducing dt, is
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that with a small time step, the wave function does not change a lot and so there

are no abrupt changes involved by applying the mask function. Any abrupt change

in the mask function will induce mechanically numerical reflections or instabilities.

This is why we used a function that does not go directly from 1 to 0.

Therefore, to test the convergence of the simulation, we need to define two differ-

ent time steps, dt the time step of propagation and ∆t the time step of absorption.

This means that we do not necessarily absorb the wave function at the end of the

propagation over dt. To test the convergence, we check if the square modulus of the

wave function at the exit of the slit changes significantly while changing dt → dt/2

for the same ∆t . The result is given in table 4.1. In the last column, R gives the

variation between the integral of the square modulus of the wave function for the

two different time steps dt. The column entitled “Evaluated” is a visual evaluation.

A Bad result is illustrated figure 4.11, where there are reflections in the absorption

region. A Good result is illustrated figure 4.12. If visually the result is considered

as Bad, then the variation difference (R) is not estimated, as we do not keep this

result.
v (m/s) ∆t (.10−9 ms) dt (.10−9 ms) Evaluated R=1- int1int2

19.5 0.5 0.5 Good
0.25 Bad

0.25 0.25 Good 3, 6.10−7

0.125 Good
0.1 0.1 Good 3, 9.10−7

0.05 Good

Table 4.1: Table with the different parameters to evaluate the convergence of the
simulation

We performed the same convergence test for the different velocity ranges of

interest [18.7, 19.5] m/s, [25.5, 26.9] m/s, also for the different slit size we used

(102.7 nm and 97.5 nm) and for a range of C3 atom-surface interaction coefficient

∈ [1.05, 1.40] a.u.

The results of all the tests show that taking ∆t = dt = 0.25 ps and a number

of grid points such that the spatial resolution dx = 2.5 pm leads to a converged

simulation for all the parameter range needed. With those time step and spatial

resolution, the maximum difference variation (R) observed was ≤ 2.5 x 10−6 for the

different parameters conditions of interest in our problems.

65



1D time-dependent Schrödinger equation model

Figure 4.11: Bad result : in the zoom inset (c) the absorption of the wave function
introduce some reflections. In inset (b) the amplitude of the variations is δ ∼ 5.7
x10−5. The surface is located at 51.35 nm for aslit = 102.7 nm.

Figure 4.12: Good result : in the zoom inset (c) the absorption of the wave function
occur without spurious reflections. In inset (b) the amplitude of the variations is
δ ∼ 2.7 x10−5. The surface is located at 51.35 nm for aslit = 102.7 nm.
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4.2.3.6 Influence of the absorption function

The shape of the mask function and its absorbing length influences the shape of the

wave function where it should be absorbed. Here, we try to quantify the impact of

the absorbing length, and of the modified potential on the wave function at the exit

of the slit. To do so, we look at the ratio of the integral of the square modulus of

the wave function in the absorbing zone, with the integral of the square modulus of

the total wave function, see figure 4.13. We do it first for the initial wave function,

since it is at the beginning that the amplitude of the wave function is maximum in

the absorbing zones, see figure 4.13a.

2×
∫ +∞

xabs−d

|ψ(x, t = 0)|2dx
/∫ +∞

−∞
|ψ(x, t = 0)|2dx ≈ 0.12 %. (4.20)

At the exit of the slit (at time te), due to the loss of atoms close to the surface,

the amplitude of the wave function decreases close to the walls, thus

2×
∫ +∞

xabs−d

|ψ(x, t = te)|2dx
/∫ +∞

−∞
|ψ(x, t = te)|2dx ≈ 4.5× 10−4 %. (4.21)

This justifies that the absorbing length is sufficiently small to have a negligible

influence on the wave function at the exit of the slit. Moreover, this also justifies

that the modification of the repulsive part of the potential has a negligible impact

on the wave function.

(a) Influence of the absorbing zone on the
initial wave function.

(b) Influence of the absorbing zone on the
wave function at the exit of the slit.

Figure 4.13: Dashed red lines represent the part of the square modulus of the wave
function which is located on the absorbing zone. Solid blue lines represent the square
modulus of the wave function, the pale red zone represents the Si3N4 surfaces. Here,
aslit = 102.7 nm.
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4.3 Simulation result

We use the stationary phase approximation (see section 4.2.2) to propagate the wave

function outgoing from the slit (figure 4.8a) up to the detector. The square modulus

of the wave function on the detector is plotted figure 4.14, the envelope represents

the diffraction by one slit. Instead of using equation (4.13), we use a Dirac comb

with a period equal to the interfringe i = (λdBDgd)/pg (where Dgd is the distance

from the grating to the detector, pg the period of the grating) to avoid undesirable

grid resolution effects. This is justified because we use a final grid with much fewer

grid points than in the propagation simulation. This is also justified by the large

number of slits of the nanograting.

Figure 4.14: Simulation result of the square modulus of the wave function on the
detector, for the diffraction by one slit (blue - dashed) and by N>>1 slits (black -
solid).

The black curve in figure 4.14, represents the square modulus of the wave function

of a single atom diffracted by the nanograting on the detector.

Now, we need to consider the velocity distribution, the slit size distribution,

and the angular beam distribution that we have in the experimental results. The

diffracted wave function depends on the atom propagation velocity since it defines

the de Broglie wavelength and the interaction time in the slit. The velocity distri-

bution cannot be reduced to only consider the wave function diffracted for a mean

velocity. The same is true for the slit size distribution due to the stadium shape

(see figure 2.21b), the wave function diffracted by different slit sizes is not equal to
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the wave function diffracted by an average slit. The stadium shape is taken into

account considering that 11/15th of the slit has a size aslit = 102.7 nm, while 4/15th

a size aslit = 97.5 nm.

To consider the angular beam distribution, we should perform the simulation

for the different incidence angles. This is not straightforward to simulate in the 1D

approach. However, regarding the source size (≈ 250 µm), the nanograting open

length (Lg = 306 µm), and the distance from the source to the grating (Dsg ≈
503 mm), the incidence angle are ≲ 0.035°. We experimentally observed influence

of the orientation of the nanograting with respect to the propagation axis for angles

≳ 0.2°, thus we consider in a first approximation that the wave function at the end

of the slit does not depend on the incidence angle.

4.3.1 Angular beam distribution

As discussed in section 4.2.1, the atoms in the source can be regarded as an ensemble

of independent Gaussian wave functions. These wave functions spread during free

propagation (∼ 26 ms) from the source to the nanograting, so that they cover

uniformly all the slits of the nanograting. So, on the detector the square modulus

of the wave function of an atom is given by |ψgrating|2 illustrated in figure 4.14.

Since the source has spatial extension and that we push the atoms, all atoms do

not arrive with the same incidence angle on the nanograting. In first approximation,

two different atoms (with different incidence angles) will be represented by the same

|ψgrating|2 on the detector but centered around different positions. This is illustrated

in figure 4.15. Hence the angular beam distribution which is both due to the spatial

extension of the source and the pushing process will smear the final detected pattern.

This loss of visibility in an extended incoherent source in classical optics is referred

to as spatial coherence [41].

Finally, to take into account the spatial coherence of our source of atoms, we

take the convolution product between |ψgrating|2 and the angular beam distribution,

as in section 3.1.3. In the experiment, the angular beam distribution fits in first

approximation a Gaussian function with standard deviation σbeam = 0.23 mrad at

26 m/s (σbeam = 0.25 mrad at 19 m/s).
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Figure 4.15: Visibility loss due to the spatial extension of the source and the pushing
process.

4.3.2 Velocity distribution

Previously, we took into account the spatial coherence of the source, and now we

focus on the temporal coherence of the source. Our experimental setup allows us to

post-select atoms with respect to their time of flight, and since we selected a very

short time-of-flight range (see figure 4.16), we consider that the velocity distribution

is uniform for both experimental data sets (section 2.4). For larger time of flight one

should take into account the Jacobian determinant to get the velocity distribution

from the time-of-flight distribution.

Figure 4.16: TOF distribution, the two dashed blue lines represent the TOF post-
selection.

To take into account the velocity distribution, we want to perform a continuous

sum of periodic functions (the wave functions diffracted by N slits) but on a discrete

number of velocities (we want the simulation time to remain reasonable). It is

therefore necessary to find the best way to avoid any beat-notes phenomena. To do

so, we consider a problem close to the one we are interested in, but for which we

have an analytical solution. We look for the best way to numerically compute the

following integral,

I(x) =
1

ωmax − ωmin

∫ ωmax

ωmin

cos2(ωx)dω, (4.22)
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the analytical result is given by

I(x) =
1

2
+

sin(2ωmax x)− sin(2ωmin x)

4(ωmax − ωmin) x
. (4.23)

Now let consider the arithmetic average

Isum(x) =
1

N

N∑
n=1

cos2(ωn x), (4.24)

where ωn = ωmin + (n− 1)ωmax−ωmin

N−1
, and where we will set N = 11.

Finally, let us consider the numerical integration method, using the following

function of the Scipy package for Python [42] scipy.integrate.simpson

Isimps(x) =
1

ωmax − ωmin

integrate.simpson(cos2(ωl x), ωl) (4.25)

where ωl is the lth element of a list of length N = 11, and integrate.simpson is

the numerical integration method. Now we want to see what is the most accurate

method between (4.24) and (4.25) to get the closest result to equation (4.23). To

do so, we plot the difference (I(x) − Isum(x))/I(x) and (I(x) − Isimps(x))/I(x) in

figure 4.17.

Figure 4.17: Difference between an analytic solution and two approximation method;
in red with a simple discrete sum, and in blue with a numerical integration algorithm.

In figure 4.17 we used 
ωmax = π m pg

h Dgd
vmax ≈ 4.0 mm−1

ωmin = π m pg
h Dgd

vmin ≈ 3.8 mm−1,

(4.26)
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for vmax = 19.5 m/s and vmin = 18.7 m/s, to have a test model as close to our

problem of interest as possible.

From this we see that it is important to use the appropriate numerical method

to compute the continuous sum on a discrete sample. Furthermore, we see that

for 11 velocities, the discrepancy between the analytical result and the numerical

integration method is ≤ 1.5 ‰ ∀ x ∈ [−30, 30] mm, while the discrepancy is up to

0.2 % when taking the arithmetic average.

Hence, to get the final result, we perform the simulation for 11 different velocities

in the velocity range of interest and take into account the velocity distribution by

mean of the numerical integration method with Simpson’s rule.

Note : the numerical integration method with Simpson’s rule [30], requires an

even number of intervals (in our case 11-1=10).

4.3.3 Slit size distribution

We take into account the stadium shape of the slit (see figure 2.21) in two steps.

First, we normalize the wave function at the end of the slit by the same reference

for both slit sizes. This means that we will have fewer atoms that are outgoing from

the smaller slit,
ψ(x, te; aslit = 102.7) → ψ(x, te; aslit = 102.7)/

√
Nref

ψ(x, te; aslit = 97.5) → ψ(x, te; aslit = 97.5)/
√
Nref ,

(4.27)

where Nref is the reference norm. We choose

Nref =

∫
dx |ψ(x, t = 0; aslit = 102.7)|2 . (4.28)

Second, we will consider that diffraction by the slit of size aslit = 102.7 nm

will contribute to 11/15th of the final detected pattern, while the diffraction by a

slit of size aslit = 97.5 nm contribute to 4/15th. These slit sizes come from the

experimentally measured slit size distribution, see figure 2.21b.

4.3.4 Final result

Finally taking into account all what we mentioned before, considering an atom-

surface interaction coefficient C3 = 1.25 a.u we obtain the result plotted figure 4.18,

for atom propagation velocity v ∈ [18.7, 19.5] m/s. It is important to remind
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the reader that except the chosen value of rmin there are no free parameters in

this simulation approach. In future simulations, rmin should be changed accord-

ing to the complete QED calculation of the Casimir-Polder potential. The angular

beam distribution at 19m/s fits a Gaussian distribution with standard deviation

σbeam = 0.25 mrad. The angular beam distribution is different from that at 26 m/s

even if the open surface of the nanograting is unchanged (Lg = 306 µm). This is

because in the experimental apparatus, we only have a slit in front of the nanograt-

ing. Thus, for different propagation velocity, the source size can be slightly different

(at the end of the pushing process).

Figure 4.18: Simulation result for C3 = 1.25 a.u (red), experimental data for v ∈
[18.7, 19.5] m/s (black).

In figure 4.18, we plot both the data and the simulation result. What we see is

that the physical phenomenon seems to be well taken into account. Nevertheless,

this should not be considered as a measurement, because, we need to first test the

model we presented in this chapter by doing a goodness-of-fit test before pretending

to perform a measure of the atom-surface interaction potential. This is the topic of

chapter 5.

Simulation can also be used for the experimental data set at 26 m/s. Here, we

consider C3 = 1.25 a.u. σbeam = 0.23 mrad. The propagation velocity of the atoms
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v ∈ [25.5, 26.9] m/s. The result is plotted figure 4.19.

Figure 4.19: Simulation result for C3 = 1.25 a.u (red), experimental data for v ∈
[25.5, 26.9] m/s (black).

4.3.5 Outlook using the 1D-TDSE model

The model presented in this chapter allows us to obtain results close to the experi-

mental results at 19 and 26 m/s. We can therefore use this model to make theoretical

predictions. The experiment was designed to reach low propagation velocities. Thus,

it is interesting to see what happens if we reduce the velocity. One may ask whether

there is a velocity below which no more atoms exit the nanograting. Before trying

to give an answer to this question, we focus on a case that is experimentally feasible.

Hereafter, we look at the predicted diffraction pattern we obtain when we con-

sider the nanograting we have, but for atoms propagating at v = 10.0 m/s. We do

not take into account any velocity distribution, however we still take into account

the angular beam distribution. We assume that the angular beam distribution fol-

lows a Gaussian distribution with standard deviation σbeam = 0.25 mrad. The result

is plotted figure 4.20.

We see that by reducing the velocity, the envelope of the diffracted pattern is

enlarged. This is mainly due to the thinning of the wave function at the exit of the
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Figure 4.20: Simulation result for C3 = 1.25 a.u, pg = 200.0 nm, aslit = 102.7 nm,
σbeam = 0.25 mrad and v = 10.0 m/s.

slit. Moreover, visibility is improved because reducing the atom propagation velocity

increases the de Broglie wavelength and therefore the interfringes (see section 4.3.1).

The main limitation to overcome in the experiment is to increase the atomic flux.

For lower velocities, in the simulations we still have a wave function coming out

of the slit, but it is very narrow, because only the atoms passing through the middle

of the slit will come out. The diffraction pattern on the detector becomes wider

while we reduce the velocity. The widening of the diffraction pattern is not trivial

and is related to the Fourier transform of the wave function at the slit exit (and so

depends on the shape of |ψexit|2).

The nanogratings are manufactured in the OIA team, thus it would be possible

to get other geometries. In the following, we look at a diffraction pattern for atoms

propagating at 19.1 m/s, but for a nanograting with slit size aslit = 50.0 nm, period

pg = 100.0 nm and depth ldepth = 95.0 nm. The angular beam distribution is also

considered as a Gaussian distribution with standard deviation σbeam = 0.25 mrad.

The result is plotted in figure 4.21.

We see that the diffraction envelope is larger because atoms propagate at dis-

tances lower than 25 nm from a surface, so the interactions are strong enough to get

a narrow wave function at the exit. The visibility is also improved as the interfringe
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is enlarged due to the smaller period of the nanograting.

The benefits of such a nanograting geometry are related to the possibility to

explore the atom-surface interactions for very short separation distances.

Figure 4.21: Simulation result for C3 = 1.25 a.u, pg = 100.0 nm, aslit = 50.0 nm,
σbeam = 0.25 mrad and v = 19.1 m/s.

4.3.6 Interdependence of the parameters

We mentioned in chapter 3 that some parameters modify the diffraction pattern in

the same manner. For example, reducing C3 and reducing aslit, can possibly lead to

a very similar diffraction pattern as if we take a larger C3 and larger aslit.

To illustrate this, let consider the following case :

ldepth = 95.0 nm, nanograting depth

v = 19.0 m/s, atom propagation velocity

σbeam = 0.230 mrad, angular beam distribution

Dgd = 307.0 mm, distance from the nanograting to the detector

aslit = 100.0 nm, size of the slit of the nanograting

C3 = 1.250 a.u, atom-surface interaction coefficient

(4.29)

The corresponding simulation result is labeled ψ1. Now we look for the atom-surface

interaction coefficient C3 which give the closest result while taking aslit = 99.0 nm.

We obtain the result labeled ψ2 for C3 = 1.196 a.u. The two results are plotted

figure 4.22. The difference ||ψ1(x)|2−|ψ2(x)|2| ≤ 2.8×10−3 ∀ x ∈ [−30.0, 30.0] mm.
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This means that for 100000 total number of atoms detected, the difference would

be less than 3 atoms in a single bin (wherever the bin). The same analysis can be

done with the depth of the nanograting. This gives us the systematic uncertainties

related to the nanograting geometry,
∆aslit = ±1 nm ⇒ ∆C3 = ±0.06 a.u

∆ldepth = ±5 nm ⇒ ∆C3 = ±0.06 a.u
(4.30)

These systematic uncertainties are consistent with what has been estimated with

the semi-classical model in section 3.2.1.

Figure 4.22: Black : simulation result for C3 = 1.25 a.u, aslit = 100.0 nm. Red :
simulation result for C3 = 1.196 a.u, aslit = 99.0 nm

4.4 Main limitations of the 1D TDSE approach

If the simulation, as plotted in figure 4.18, seems to give correct results, before we

perform goodness-of-fit tests it is important to keep in mind the main assumptions

we made in this 1D TDSE approach. Those are listed below.

1. When we take into account the angular beam distribution, we do not take into

account the influence of the incidence angle on the wave function at the exit of

the slit. The wave function at the exit of the slit should depend on the incidence
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angle since the atom will not experience the same potential depending on the angle.

Thus it would be better to get the wave function depending on the incidence angle,

and then to take into account the angular beam distribution the same way as we

did for the velocity distribution but by taking a Gaussian instead of a uniform

distribution. Unfortunately, it is not straightforward to add an angle dependence in

the 1D approach.

2. We used the same Wylie and Sipe potential as in section 3.1.4. As we already

mentioned also in this section, this atom-surface interaction potential is derived

assuming sufficient atom-surface distance to consider the atom as a dipole. Also for

the repulsive part we added, it could be of another dependence (different power law)

with respect to the atom-surface distance, see [43].

3. We used Bohr model to define a minimum atom-surface distance rmin. This

model might be reasonable for Ar∗ atoms freely propagating from the source to the

nanograting. However, inside the nanograting slits, this minimum distance rmin

could be larger, e.g., with respect to the nature of atom-surface interactions, the

excited electron level should be shifted by the Stark effect. Thus even considering a

spherical atom, its radius would be larger in the slit.

4.5 Difficulties related to a 2D simulation

The problem we are interested in is illustrated with the different scales involved

figure 4.23.

Figure 4.23: Schematic representation of the problem

There are two different ways to look at the considered problem in order to sim-

ulate it on a 2D grid (x,z):

1. the 2D grid represents the laboratory reference frame.
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2. the 2D grid represents the atom reference frame.

In both cases, due to the energy involved by the atom-surface interaction potential,

we need a spatial resolution of 2.5 pm (see section 4.2.3.5). We need this resolution

in both x and z directions to take into account the atom-surface potential at the

entrance and exit of the nanograting.

In approach n°1, if we take Lz ≈ 80 cm and Lx ≈ 3 cm, then ngpz ≈ 238 and

ngpx ≈ 233 (where ngpx and ngpz are the number of grid points for x and z axis

respectively). Thus, we would need to perform the simulation on a 2D grid with

≈ 271 grid points. This is impossible.

In approach n°2, we need a 2D grid which contains most of an atom wave func-

tion. The detected pattern is about 3 cm large, which means that the wave function

associated to an atom should be about the same order of magnitude. Thus, we

would need a 2D square grid with Lz = Lx ≈ 3 cm, so the 2D grid should be made

out of ≈ 266 grid points. One could also try to simulate the problem only around the

nanograting since everywhere else it is only free propagation. In this case, the wave

function is represented by a Gaussian function with standard deviation σ ≈ 0.465

mm as we justify in section 4.2.1. Taking a square grid with Lz = Lx = 6σ ≈ 2.8 mm

(in order to contain 99.7% of the wave function), one would still need a 2D grid made

out of ≈ 260 grid points. Therefore, this approach is also not feasible.

One could think to use a non-linear grid or an adaptive grid. These numerical

methods are quite difficult to implement. Since we were trying to develop a new

approach to model our data, we decided to develop a simple 1D model to see the

needed numerical resources (resolution, number of grid points, etc.) to properly

simulate the atom-surface interactions in our experiment.
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4.6 1D TDSE model summary

1. We developed a 1D simulation approach based on the numerical resolution of

the time-dependent Schrödinger equation.

2. Regarding the experimental conditions, we assumed that atoms reaching the

nanograting are represented by plane waves. Also, the propagation from the

nanograting to the detector is analytical by making use of the stationary phase

approximation.

3. We only have to simulate the evolution of the wave function inside a single

slit. The initial wave function takes the form of the slit, it is then propagated

by letting it evolve in the atom-surface potential during t = v/ldepth.

4. Simulation convergence tests led us to use a spatial resolution dx = 2.5 pm

and a time resolution dt = 0.25 ps.

5. The loss of metastable atoms is considered by absorbing the wave function

when it reaches the surfaces.

6. We defined a minimum atom-surface distance at which the wave function has

to be absorbed based on Bohr’s model.

7. We took into account the angular beam distribution. And also, we took into

account the velocity distribution by means of a numerical integration algo-

rithm.
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Chapter 5

Statistical data analysis

In the previous chapter, we presented a new model which seems to represent well

the experimental results. However, a qualitative approach is not sufficient to judge

the accuracy of the 1D-TDSE model. In this chapter, we will see different statistical

tools to test the agreement or not between the 1D-TDSE model and the experimental

results. The results presented in this chapter are also due to fruitful discussions with

Dr. Benôıt Darquié.

We did not realize this procedure in chapter 3, because, on the one hand, the

model did not allow it (not close enough to the experimental data) and on the other

hand, the objective was not to make a measurement of the atom-surface interactions.

The objective was to compare two models of the atom-surface interaction.

Here, the goal is to measure the atom-surface interactions potential with the

1D-TDSE model. But the model must be tested before claiming to make a mea-

surement. To do so, we will start by introducing the appropriate statistical tools for

a multinomial histogram (which correspond to the experimental data set we have).

We also review goodness-of-fit test, and apply it to the 1D-TDSE model. We show

that the model is rejected by the experimental data presented in section 2.4. Such

result is explained thereupon. Suggestions for corrections to the model are given at

the end of this chapter.

5.1 Data binning

First of all, we need to start by defining the data binning. The detector determines

the arrival position of the electron avalanche on a continuous copper wire. Thus, if

the numerical precision is infinite, the set of position is continuous.

Huge number of digits in the calculated position is meaningless, several factors
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(such as the size of the holes of the MCP) limit the position resolution of the detector.

Thus, we can bin the data, see figure 5.1.

Figure 5.1: data binning illustration

This means that the position set is di-

cretized in Nx intervals called bins. So

we construct a histogram that gives us the

number of atoms detected per bin.

Then we can choose the data binning.

For a large number of bins Nx we have bet-

ter spatial resolution but fewer atoms per

bin, conversely for a small number of bins

we have more atoms per bin but we loose

spatial resolution. Therefore, the choice of the binning is a balance between large

atom numbers and enough binning.

5.2 Statistical tools

5.2.1 The likelihood

One of the statistical tools we will use to compare our model to the data is the

so-called “likelihood”. We define the likelihood following the approach given in [44].

Consider the experimental data set at 19 m/s figure 2.23. We are interested in

the probability that our theory is correct regarding this experimental data set. We

write this probability (following the notation in [44]): P (theory|data). This is a

conditional probability which, by making use of Bayes’ theorem, can be expressed

as

P (theory|data) ∝ P (data|theory) P (theory), (5.1)

P (theory) : probability that the theory is true.

P (data|theory) : The likelihood. Probability of observing the obtained data under

the considered theory.

Since we don’t know P (theory), it is impossible to access the probability that

the theory is correct regarding the data. In section 5.3, we see how we can test a

theory using computational techniques.

First, let define the notations, following those used in [45]. Let n⃗ = (n1, n2, ..., nNx),

represent the observed data and let ni give the number of measured atoms in the ith

bin. Nx is the total number of bins, and Nexp is the total number of atoms in the
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experimental data set: Nexp =
∑

i ni.

Let y⃗(θ⃗) = (y1(θ⃗), y2(θ⃗)..., yNx(θ⃗)) , where yi(θ⃗) represent the predicted number

of atoms in the ith bin, and θ⃗ the set of parameters in the model. We write the

underlying theoretical probability density function p(θ⃗).

We need to define the null hypothesis H0 : n⃗ is a random sample of our the-

oretical model. We then use the following notation for the likelihood : L(H0) =

P (data|theory).
Actually, looking for the best fit, means to look for the parameters θ⃗ which max-

imize the likelihood L(H0). In other words, we are looking for the set of parameters

that maximizes the probability of obtaining the observed data from the theoretical

model considered.

To see how we should proceed to find the best fit parameters, let consider the

following problem illustrated figure 5.2.

Figure 5.2: Illustration of an experimental data set with normally distributed data
points

We consider that the experimental data are Gaussian distributed and that all

bins are independent. Thus, following [46], the likelihood writes :

L(H0) =
∏
i

1√
2πσi

exp

−

(
ni − yi(θ⃗)

)2
2σ2

i

 . (5.2)

σi is the standard deviation in the ith bin.

To find the maximum likelihood, one can make use of the likelihood ratio λ,

which corresponds to the ratio between the likelihoods of two different hypothesis

(two different models),

λ =
L(H0)

L(H1)
, (5.3)
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For the hypothesis H1, one can use the saturated model. The saturated model is

a model set to be equal to the observed data in each bin : yi = ni ∀ i. Thus, L(H1)

does not depend on θ⃗.

So, for Gaussian distributed data, the likelihood ratio writes

λ =
∏
i

exp

−

(
ni − yi(θ⃗)

)2
2σ2

i

 , (5.4)

and by defining

χ2 = −2 ln(λ), (5.5)

one gets the usual

χ2 =
∑
i

(
ni − yi(θ⃗)

)2
σ2
i

. (5.6)

The saturated model does not depend on the the model parameters, thus finding

the parameter set θ⃗ which minimize χ2 equation (5.6), one gets the maximum for

L(H0), since χ
2 = −2 ln(L(H0)) + 2 ln(L(H1)).

About the standard deviation σi in equation (5.6), there are three typical cases.

First, one can assume that data points follow a normal distribution with the same

standard deviation in each bin, then σi = σ and so minimizing equation (5.6) is the

same as mininmizing R2 =
∑

i

(
ni − yi(θ⃗)

)2
, which is called the least square.

Second, one can set σi =
√
ni, and get the Neyman χ2 we used in chapter 3,

χ2
Ney =

∑
i

(
ni − yi(θ⃗)

)2
ni

. (5.7)

Third, one can set σi =

√
yi(θ⃗), this lead to the Pearson χ2

χ2
Pear =

∑
i

(
ni − yi(θ⃗)

)2
yi(θ⃗)

. (5.8)

Those estimators are widely used because they can also be used for goodness-

of-fit tests. As indicated in [45], the χ2 as defined in equation (5.5), thanks to the

likelihood ratio test theorem, will follow asymptotically a χ2-distribution.

However, one should be careful while interpreting the value of the χ2 in terms of

goodness of fit. As it is underlined in [46], the χ2 defined equation (5.5) will follow
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a χ2-distribution only if the number of detected atoms in each bin is large. More-

over, the Neyman χ2
Ney is the slowest (compared to χ2

Pear) to reach its asymptotic

behavior.

In conclusion, with this simple example, we have recalled where the usual χ2 test

comes from. Furthermore, we see that using one of the three forms mentioned above

(R2, χ2
Ney, χ

2
Pear), we assume that the experimental data are normally distributed.

This might be the case if a large number of atoms is detected in a bin thanks to the

central limit theorem. However, in our case, only few atoms per bin are present in

the tails of the diffracted patterns. Therefore, to use one of the χ2 forms (5.7) or

(5.8) is not appropriate.

5.2.2 Multinomial histogram

It is important to understand how our experimental data are distributed, since it

also defines the likelihood L(H0).

The theoretical probability to detect an atom in the ith bin is pi(θ⃗). Thus, after

Nexp trials, the expected number of atoms in the ith bin is given by yi(θ⃗) = Nexp pi(θ⃗),

and the variance is given by Nexp pi(θ⃗)(1− pi(θ⃗)).

In the case where we would have only one bin, we recognize the binomial dis-

tribution. Here since we have more than one bin it is a multinomial distribution.

Indeed, “An example of the multinomial distribution is a histogram containing N

events distributed in k bins, with ri events in the ith bin” [47].

The likelihood for a multinomial histogram is given in [45],

L(H0) = Nexp! N
Nexp
exp

∏
i

(
yi(θ⃗)

)ni

ni!
. (5.9)

Using the likelihood ratio and the saturated model, the authors of [45] con-

structed the χ2 for a multinomial histogram,

χ2
m = 2

∑
i

ni ln

(
ni

yi(θ⃗)

)
. (5.10)

Since the χ2
m equation (5.10) is constructed by making use of the likelihood

ratio, it also follows asymptotically (for a large number of events in each bin) a

χ2-distribution.

As a consequence, we have the appropriate estimator regarding our experimental

data. The parameters θ⃗ that minimize χ2
m equation (5.10) correspond to the best-fit
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parameters. Although, we cannot interpret its value in terms of goodness of fit,

because we cannot use its asymptotic behavior.

5.3 Goodness-of-fit test

In the previous section, we defined the likelihood, and we have seen that minimizing

χ2, we get the best fit parameters, which maximize L(H0). In other words, we get

the parameters which maximize the probability that the observed data are a random

sample of our theoretical model.

However, so far we did not test the null hypothesis. To test an hypothesis, one

needs to test it with respect to an alternative hypothesis H1. When the alternative

hypothesis is not specified, we talk about a goodness-of-fit test [46]. Because the χ2

and χ2
m in the previous section have been defined from the likelihood ratio of two

hypothesis, where we used the saturated model as H1 (the unspecified alternative

hypothesis), χ2 and χ2
m can be used for goodness-of-fit test.

To explain how we can perform a goodness-of-fit test, we use χ2 equation (5.6)

for reasoning, but it applies in the same way to χ2
m equation (5.10). We can interpret

χ2 as a distance between the model and the experimental data. The parameter set

that minimizes this distance leads to the best fit, then we label the best fit parameter

set θ⃗fit, and the associated χ2 value χ2
exp,min.

Now, consider that our theoretical probability density function p⃗(θ⃗fit) is the true

physical law followed by the experiment. We can generate a simulated experiment

which follow p⃗(θ⃗fit), with the same total number of recorded atoms as in the real

experimentNexp. We call this simulated experimental result n⃗sim. Then we minimize

χ2 with this simulated experiment, this gives us the best-fit parameters for this

simulated experiment θ⃗sim, and the associated minimum χ2 value χ2
sim,min. Thus we

get a typical value of the minimum distance between our theoretical model and data

obtained considering that the model is true. If we repeat the process for thousands

of simulated experiments, we then get the distribution of the typical distance that

one would observe if the experiment follows our theoretical model.

At the end, we compare the χ2
exp,min, with the distribution of the χ2

sim,min ob-

tained for thousands of simulated experiment, see figure 5.3. If the χ2
exp,min (i.e. the

distance between the model and the real experimental data) is much larger than the

typical χ2
min one would observe if the experiment follows our theoretical model, then

the model is rejected. Otherwise, the model can not be rejected.
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Figure 5.3: Illustration of the χ2 distribution reconstruct by Monte-Carlo simulation
(black, solid). In red (green) is represented a case where the χ2

exp,min indicate to reject
(not reject) the model.

By recording the best-fit parameters for the simulated experiment, we obtain a

distribution, centered around θ⃗fit, and thus if the model is not rejected, one gets the

statistical uncertainty on the parameters, see figure 5.4. A more complete explana-

tion of goodness-of-fit test can be found in [44].

Figure 5.4: Parameter distribution centered around the best fit parameter (green),
in the case where the model is not rejected.

5.3.1 Monte-Carlo Method

“The Monte Carlo method is a numerical technique for calculating probabilities and

related quantities by using sequences of random numbers.” [44].

We will make use of Monte-Carlo method to generate the simulated experiments.

The Monte-Carlo method we used is von Neumann’s acceptance-rejection method.

The principle is illustrated figure 5.5.
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Figure 5.5: Illustration of the acceptance-rejection method

The algorithm is given in [44]. It consists of three steps :

1. Generate a random number irnd, uniformly distributed in [1, Nx]

2. Generate a random number u, uniformly distributed in [0, pmax]

3. if u < pirnd
(θ⃗fit) then irnd is accepted.

One has to repeat those three steps until the number of accepted events is the same

as the total number of atoms in the real experiment. The Monte-Carlo method then

enables us to generate simulated experiments such as the one plotted figure 5.6.
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Figure 5.6: Simulated experiment obtained with the acceptance-rejection method

We now need to minimize χ2
m equation (5.10) for thousands of such simulated

experiments, to obtain the distribution of χ2
m,min. A simulated experiment takes

about 20 to 30 seconds to generate since we have ∼ 100 000 atoms in the real exper-

imental data set. This computation time could be reduced by considering a more

optimised area in which we generate random numbers, see [44]. When one speaks

about Monte-Carlo simulations, one refers to the use of simulated experiments to

give χ2 and parameter distributions.

Comment on the signal binning :

As one can see from the expression of χ2 and χ2
m, their value will depend on the

choice of the binning : Nx. Indeed, one can either increase the spatial resolution

by increasing Nx, but then there are fewer atoms per bin, or reduce the spatial

resolution by reducing Nx and thus increase the number of atoms per bin. As

mentioned in [48] “Our experience is that in most experiments the number of bins

is chosen too high”.

Even if some rules have been proposed, there are no general rules for the choice

of the binning. A usual advice is to use a binning which leads to a spatial resolution

to be 1/10th of a characteristic dimension. In our case, the characteristic dimension

we take is the size of an interfringe. Hence, the resolution of all the experimental

data (and simulated experiments) plotted so far is too high, and the binning has to

be reduced by two, Nx → Nx/2. All the goodness-of-fit test presented have been

performed on the reduced binned data. Moreover we checked if the result of the test
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was not changed by reducing and enlarging the binning.

When one has only one parameter, it is highly recommended to use a binning

independent test such as the Kolmogorov-Smirnov test. In this test, we look for the

smallest distance between the cumulative distribution function (CDF) of the model

and the CDF of the experimental data, see [49]. One can also perform a goodness-

of-fit test using Monte-Carlo, with the same approach as we presented for χ2.

Comment on the choice of the χ2 :

The importance of the choice of the χ2, with respect to the data point distribution,

might not appear clear. One could use the χ2 equation (5.6) even for sample with

low number of atoms, find the best fit parameter by minimizing the χ2, and get the

statistical uncertainty using Monte-Carlo simulations.

The problem comes from outliers. Outliers are data points which for different

reasons (a defect in the detector, a source of local noise , etc.) are far apart from

the rest of the signal. Outliers do not contribute in the same way depending on the

χ2 one uses. An outlier contributes more to the value of the usual χ2 equation (5.6)

than to the value of χ2
m equation (5.10). This could lead to a poor estimation of

the best-fit parameter and to an overestimation of the statistical uncertainty using

Monte-Carlo method.

5.3.2 Results

5.3.2.1 1D time dependent Schrödinger equation model

Now we use everything we have presented to test the 1D-TDSE model. Here we only

consider one parameter, the atom-surface interaction coefficient C3. We still use the

χ2
m rather than the Kolmogorov-Smirnov test (which should be used since we only

have one parameter) in preparation for future tests where we want to consider other

parameters, e.g. the minimum atom-surface distance rmin, the slit size aslit etc.

For the 1D-TDSE, for a single value of C3, we have to remember that we need to

consider two slit sizes, and for each slit size we have to run the simulation for eleven

different propagation velocities. Therefore, to generate the 1D-TDSE results for

hundreds of different values of C3, we have to run the simulation 2200 times. Each

simulation lasts ∼ one minute. This was done on the USPN’s MAGI calculation

cluster, taking ∼ 17 hours to generate the 2200 simulation results.

Finally, for experimental data at 19 m/s, minimizing χ2
m equation (5.10) for

x ∈ [−24, 24] mm, the minimum value is χ2
exp,min = 2197, the associated best fit
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parameter is C3 = 1.17 a.u. For x ∈ [−24, 24] mm, there are 999 bins, with a bin

size of 0.048mm. From this best fit, i.e., the 1D-TDSE model with C3 = 1.17 a.u, we

generate the χ2
m distribution from 10 000 simulated experiments using the Monte-

Carlo method. The χ2
m distribution is given figure 5.7.

Figure 5.7: χ2
m,min distribution obtained from the Monte-Carlo simulations, the red

dashed line represents the value χ2
exp,min obtained for the real observed experimental

data.

Regarding the χ2
exp,min = 2197 obtained for the real observed experimental data,

our 1D-TDSE model is rejected. To reject a model or not, a quantity of interest is

the P-value defined as,

P =

∫ ∞

χ2
exp,min

fχ2(z)dz, (5.11)

where fχ2 is the χ2 distribution, as plotted in figure 5.7. The P-value indicates that

one would obtain a larger χ2 than the one observed for the experimental data in

P × 100 % of the cases. The P-value used to reject a model is partly subjective, one

often use the value P = 0.001, thus if P < 0.001 the model is rejected.

Here, the P-value would be much lower than 0.001. Actually for the 10 000 sim-

ulated experiments, none has a χ2
sim,min value in the vicinity of χ2

exp,min. Therefore,

it is not possible in our case to return any P-value.

The parameter distribution is plotted, figure 5.8a. What we see is that we obtain

a normal distribution centered, as expected, around C3 = 1.17 a.u (this is not a

measure of the C3 value since the model is rejected). Fitting the C3 distribution

with a Gaussian function ∝ exp(−(C3 − C3)
2/(2σ2

C3
)), one measures a standard
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deviation σC3 = 0.010 a.u, which represent a 0.9 % statistical uncertainty.

In figure 5.8b, we performed exactly the same protocol, using the same exper-

imental data, but with a reduced total number of atoms. Hence, the best fit is

obtained for C3 = 1.15 a.u. We also performed the Monte-Carlo method to generate

10 000 simulated experiment. What we observe is, now, the σC3 = 0.019 a.u, which

represent a 1.7 % statistical uncertainty. This is consistent with what is expected

from the central limit theorem, multiplying the total number of atoms by 3.7 the

standard deviation is divided by
√
3.7.

Then, we can estimate that we need a total number of atoms of ∼ 7.2 × 106 to

get a statistical uncertainty of ∼ 0.1 %. This requires ∼ 2880 hours (= 120 days)

of data acquisitions. Therefore, it is necessary to increase the atomic flux in order

to reach very low statistical uncertainty.

For huge total number of atoms detected, it is better to perform multiple short

(few hours) data acquisition. The Ar∗ flux reduce after few hours because the mag-

netic field which focuses the electron to excite the atoms decrease along the day, so

the signal to noise ratio also decrease. There are also other fluctuations for long pe-

riod of data acquisition such as the laser beams intensities and polarizability. These

fluctuations change the MOT size and so alter the angular beam distribution since

we only have one slit to select the beam.

Note that the total number of atoms does not play a role in the goodness-of-fit

test, the model is still rejected with the same distance between the Monte-Carlo χ2

distribution and the χ2
exp,min.

(a) C3 distribution from the MC simulations
for a total number of atoms Nexp = 99708

(b) C3 distribution from the MC simulations
for a total number of atoms Nexp = 26862

Figure 5.8: Parameter distribution for different total number of detected atoms

We performed the goodness-of-fit test for different x intervals to see if the model

leads to better results when we do not go far in the tails of the diffracted pattern. We
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find that the model is still rejected. Only the best-fit parameter C3 is impacted when

changing the interval x. We also compare the 1D-TDSE model to the experimental

data at 26 m/s and the model is also rejected. In the case of the experimental data

at 26 m/s, the χ2
exp,min value is further to the χ2

sim,min distribution than for the data

at 19 m/s. This mean that the discrepancy between the 1D-TDSE model and the

data decreases while decreasing the atom propagation velocity. This is probably

related to the fact that we consider a uniform velocity distribution. For the same

time of flight window (1 ms), we have a larger velocity distribution when the average

velocity is higher.

5.3.2.2 Semi classical vs 1D-TDSE model

So far, we showed that the 1D-TDSE model is rejected for both experimental results

(at 19 and 26 m/s), but what about the Semi-Classical model we used? What we

do here is to construct a test statistic function of the experimental data set,

λSCSch =
L(H0)

L(H1)
, (5.12)

where, on the one hand, the hypothesis H0 is: n⃗ is a random sample of the semi-

classical model. On the other hand, H1 is : n⃗ is a random sample of the 1D-TDSE

model. Making use of the likelihood ratio and the saturated model we can define
(χ2

m)
SC = −2 ln(λSC)

(χ2
m)

Sch = −2 ln(λSch).

(5.13)

λSC (λSch) is the likelihood ratio between the semi-classical (1D-TDSE) model

and the saturated model. Thus, we can rewrite λSCSch = λSC/λSch as

λSCSch = exp

(
1

2

(
(χ2

m)
Sch − (χ2

m)
SC
))

. (5.14)

So, if (χ2
m)

Sch < (χ2
m)

SC then λSCSch < 1, hence the 1D-TDSE model would better

represent the experimental data set. Indeed, this is what we can observe for the

experimental data set at 26 m/s, see table (5.1). There is no need to do this for the

experimental data set at 19 m/s, as the semi-classical model cannot be used, as we

explained section 3.2.3.

Therefore, the semi-classical model is also rejected, since it is less likely to rep-

resent the experimental data than the 1D-TDSE model, which is itself rejected.
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x [mm] (χ2
m,min)

Sch CSch
3 [a.u] (χ2

m,min)
SC CSC

3 [a.u] ((χ2
min)

Sch-(χ2
min)

SC)/2

[-8,8] 1528 1.2705 1590 1.24242 -31

[-10,10] 1786 1.246 1890 1.20202 -52

[-12,12] 2084 1.2215 2438 1.15152 -177

[-15,15] 2438 1.1935 3444 1.09091 -503

[-20,20] 3238 1.155 5677 1.0202 -1220

Table 5.1: Results of the χ2
m minimization for both models with respect to the

experimental data at 26 m/s

Moreover we see that the more we include the tails of the diffraction pattern, the

more the discrepancy between the models increase.

5.3.3 Possible issues

Here we discuss possible issues that have to be investigated to possibly get a better

agreement between the 1D-TDSE model and the experimental data. We can sep-

arate this part in two, on the one hand, we have the theoretical issues and on the

other hand, the experimental ones.

5.3.3.1 Theoretical issues

1- Atom-surface interaction potential

There are several things that can be corrected here. First, we have neglected

the entrance and exit of the slit. Second, we should replace the modified Wylie

and Sipe potential equation (4.16), by the complete numerically calculated Casimir-

Polder potential. The minimum atom-surface distance rmin could also play a role

since it affects the effective size of the slit.

2- Propagation axis

In the simulation, we consider that atoms propagate parallel to the surfaces. As

we already mentioned in section 4.4, we should take into account the influence of

the angular beam distribution on the wave function at the exit of the slit. This work

is ongoing.
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5.3.3.2 Experimental issues

1- Nanograting geometry

The measured nanograting geometry may be inaccurate. Estimated parameters

may be subject to change due to systematic uncertainties in SEM imaging tech-

niques. The geometrical characterization of the nanograting is the main limitation

we have to present. By using the model and the asymmetry of the diffraction pat-

tern when rotating the nanograting, it might be possible to better constrain the

geometry of the nanograting.

2- Metastable Argon atoms

One disadvantage of working with metastable atoms is that they have a lot of

internal energy. Thus, they can pull out electrons from different surfaces, and so the

nanograting surfaces might not be neutral for a short period of time. This would

modify the atom-surface interaction. The nanograting is connected to the ground,

the charges evacuate quickly but possibly not quickly enough compared to the flux

of metastable Argon atoms.

3- Detection

There might be some loss of detection efficiency in the tails of the diffracted

patterns. The angle of atoms arriving on the detector could play a role. If there

is such an effect of the incidence angle of the atoms on the detection efficiency in

the tails, then the effect is smaller than what we are able to detect. The detected

numbers of atoms are of the same order of magnitude in the tails on both sides.

5.3.3.3 Few simple trials

We tried to reduce the discrepancy between the theory and the experimental data,

by implementing easy modifications of the model.

First, we tried to take into account both more propagation velocities (29 instead

of 11), and more slit sizes for the stadium slit shape figure 2.21 (5 instead of 2). We

did not get any significant improvement.

Second , for two slit sizes and eleven velocities, we tried to take into account the
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geometry of the slit along the propagation axis figure 2.18. We can also take into

account the rounded part of the potential in a 1D simulation. This is possible since

we can use time dependent potential as we mentioned section 4.1. The modified

atom-surface interaction potential equation (4.16) for the rounded slit is plotted

figure 5.9. This did not lead to a better agreement between the model and the

experimental data.

Figure 5.9: Modified Atom-surface potential, with rounded geometry at the exit of
the slit.

Finally, we tried to change the main slit size. This means that we run the

simulation considering a straight slit, we took into account eleven velocities and two

slit sizes. But instead of taking 102.7 nm and 97.5 nm, we tried larger and smaller slit

sizes. Reducing the slit size slightly reduced the minimum χ2
m, and thus improved

(a bit) the agreement between the model and the data. Although the model is still

rejected, this indicates two possibilities. Either the slit sizes estimated from SEM

images are larger than in reality and should be reduced. Or either we did not get the

normal incidence in the experiment. This last assumption is not privileged because

the nanograting would have to be rotated by 5.7° (for aslit = 102.7 nm) with respect

to the normal incidence for the apparent size of the slit to be reduced by 0.5 nm.
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5.4 Remark about the detection noise

So far we mentioned possible lack of detection efficiency, but we did not discuss

the counts due to detection noise. There are different sources of noise such as

the electronic chain, temperature fluctuation, or possible ions or electrons present

in the vacuum chamber. We now give orders of magnitude of the detection noise

contribution to the experimental data sets. Let us assume that each count due to

the detection noise is independent.

In an experiment when we do not push the atoms, all the counts on the detector

arise from detection noise. The mean flux of the noise is ∼ 30 Hz, distributed

over the entire surface of the detector. The detector surface is a disk of radius 4 cm

Sdetector = 50.27 cm2, from which we select only the surface covered by the diffraction

pattern, which is assimilated to a rectangle of surface Spattern = 8(cm)× 0.1(cm) =

0.8 cm2. Thus, the flux of counts due to noise in the diffracted pattern area is

∼ 0.48 Hz. Moreover, we select atoms with respect to their arriving time of flight,

and the time selection is a window of length 1 ms over 65 ms. Therefore, the flux of

the noise in the experimental data presented in section 2.4 is ∼ 7.3× 10−3 Hz. For

a 40 hours acquisition (approximately the time needed for the data set at 19 m/s),

the total number of events due to detection noise is ∼ 1063. This estimation is most

probably lower than in reality. Because Ar∗ has enough energy to pull out electrons

from surfaces, there could be more electrons in the vacuum chamber which could

then possibly increase the detection noise.

To get a better estimation of the detection noise, we should run the experiment,

and push the atoms, while obstructing the nanograting.

The reason we did not take the detection noise into account is illustrated fig-

ure 5.10. We see that the best-fit model predicts a higher number of events in the

tails than detected. This is why we are first looking for a lack of detection efficiency.

However, for future analysis, the dark noise will have to be modeled and added to

the theoretical model.
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Figure 5.10: 1D-TDSE best fit (red) and experimental data at 19m/s (black). The
binning has been chosen such that the spatial resolution is dx = 0.048 mm (total of
999 bins).
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5.5 Statistical data analysis summary

1. We recalled the origin of the χ2 minimization to find the maximum likelihood

and thus the best-fit parameters.

2. Our experimental data sets correspond to multinomial histograms.

3. One has to be careful while choosing the appropriate estimators regarding how

its experimental data points are distributed.

4. We give the adapted χ2
m one should use to find the maximum likelihood for a

multinomial histogram.

5. Regarding to the low number of atoms detected in the bins in the tails of the

diffracted patterns, we had to perform Monte-Carlo simulations to reconstruct

the χ2
m distributions.

6. The goodness-of-fit test showed that both the 1D-TDSE (chapter 4) and semi-

classical (chapter 3) model are rejected. But for different reasons, for the 1D-

TDSE model, it seems that we are limited by experimental issues, while for

the semi-classical model, the theoretical approach itself is the limiting factor.

7. Even if both models are rejected we proved that the 1D-TDSE model better

represents the experimental data than the semi-classical one.
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The experiment reviewed in this thesis has been designed in order to perform an

accurate measurement of the Casimir-Polder potential. The experimental technique

is based on the diffraction of a slow atomic beam of Ar∗ using a Si3N4 nanograting.

The main benefits of such choices are the following. First, the atoms do not stick to

the diffracting structure and so do not alter its geometry during the data acquisition.

Second, the use of slow atoms increases the interaction time between the atom

and the surface of the nanograting. Thus, the atom-surface interactions become

predominant in the diffraction pattern.

In chapter 3, we interpreted the experimental data at 26 m/s with a semi-classical

model. This enabled us to show that the experimental setup is already sensitive

enough to discern phenomena such as retardation effects for an atom surface dis-

tance less than 51 nm. However, the semi-classical model was not adapted for the

experimental data at 19 m/s. This led us to develop a new model which relies on the

numerical solution of the 1D time-dependent Schrödinger equation, see chapter 4.

Using statistical tools that are adapted to the distribution of the experimental

data points, see chapter 5, we performed goodness-of-fit tests. This led us to reject

both of the presented models (semi-classic and 1D-TDSE). Although not for the

same reasons. For the semi-classical model, the underlying assumptions are very

strong compared to the experimental data, while the 1D-TDSE model is more sen-

sitive to different experimental parameters. The rejection of the 1D-TDSE model

means that either physical phenomenon are not taken into account or some ex-

perimental parameters were not controlled with sufficient precision. However, we

have shown that the 1D-TDSE model is closer to the experimental data than the

semi-classical one. The major limitations of this TDSE model are related to the 1D

representation, therefore, it is not straightforward to add any angular dependence

in this model.

Among all the strengths of this experiment, there are still some weaknesses that
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need to be addressed. For example, the atomic flux is very low and so makes it

difficult to reach atom propagation velocities lower than 15 m/s. This low flux also

deteriorates the signal-to-noise ratio. The use of argon atoms in a metastable state

increases the electronic noise in the experiment and can possibly charge the surfaces

of the nanograting.

We have observed experimentally that there is a strong influence of the orienta-

tion of the nanograting with respect to the atomic beam propagation axis. When

the orientation angle is changed, the amplitude of the interference orders changes,

and thus the diffraction pattern becomes asymmetric. So far we have not been able

to reproduce such results in the theoretical models. However, this effect could be

used to perform a tomographic study, and so help in characterizing the nanograting

geometry. The orientation angle is a parameter which can be controled with high

precision thanks to the use of the hexapod from SmarAct company.

It is important to keep in mind that the nanograting is the cornerstone of this

experiment. The nanograting we used was developed in the OIA group to perform

Casimir-Polder potential measurements. We characterized the nanograting geom-

etry using SEM images. However, because of the strong interdependence of the

atom-surface interaction and the geometry of the nanograting, it is necessary to

gain in precision for the geometric characterization of the nanograting. We get the

same theoretical diffracted pattern when we use a large C3 and large aslit, or a

small C3 and small aslit. Thus, finding an independent method for geometry char-

acterization, such as using an atomic force microscope (AFM), would be helpful.

Furthermore, it would be of great interest to study the optical properties of the

nanograting, especially for high-energy photons.

Finally, in the near future, the models would have to be modified to account

for the orientation angle dependence. Experimental parameters such as the angular

distribution of the beam or the location of the nanograting in the beam must be

controlled with better accuracy. A tomographic study would enable one to possibly

decorrelate the geometry of the nanograting and the atom-surface interaction in the

diffracted patterns.
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Atom-surface interaction
coefficients

In this appendix, we review the calculation of the atom-surface interaction coef-

ficient. We first remind some properties of generalized susceptibility. Second, we

present how we calculated the atom surface interaction coefficient in the non retarded

regime. Finally we give the coefficient in the retarded regime. Further information

and calculation techniques can be found in [5].

A.1 Generalised susceptibility

Atom-surface interaction rely on the response of both the atom and the surface to

an electromagnetic excitation. In linear response theory, one defines the general

susceptibility which we write α and depend on the frequency of the electromagnetic

excitation.

Here we give some of the properties of generalised susceptibility, one can find

derivation of those properties and more information on linear response theory in

[50].

In general, α is a complex function,

α(ω) = α′(ω) + iα′′(ω). (A.1)

One can find general properties of the susceptibility by making use of the theory of

the complex variable. Let ω = ω′ + iω′′, then one can show that

α(−ω∗) = α(ω)∗, (A.2)

it follows that for ω purely imaginary

α(iω) = α(iω)∗. (A.3)

102



Atom-surface interaction coefficients

We see from equation (A.3), that on the imaginary axis, α is real. In [50] we can find

the following theorem regarding generalized susceptibility : on the upper imaginary

axis the real function α decreases monotonically from a positive value to zero for

ω → i∞.

A.2 Non retarded : C3

We are interested in calculating the Lifshitz atom-surface interaction coefficient

C3 =
ℏ

16π2ϵ0

∫ ∞

0

α(iω)
ϵ(iω)− 1

ϵ(iω) + 1
dω, (A.4)

which was first given in [2], and where α is the atomic dynamic polarizability, and

ϵ the dielectric permittivity of the surface. It is important to keep in mind that,

α(iω) and ϵ(iω) are real for ω → i∞, as we mentioned earlier.

A.2.1 Dynamic polarizability α

The dynamic polarizability is given by

α(ω) =
e2

m

∑
n

fn
ω2
n − ω2 − iωγn

, (A.5)

where γn is the energy level n linewidth, ωn is the pulsation associated with the

transition to the energy level n. fn is the oscillator strength, which can be rewritten

by making use of the Einstein An coefficient for spontaneous emission. More infor-

mation on dynamic polarizability can be found in [51]. The dynamic polarizability

on the positive imaginary axis is

α(iω) = 2πϵ0c
3
0

∑
n

An

ω2
n(ω

2
n + ω2)

. (A.6)

There are seventeen transitions referenced in the NIST database for the Ar∗ in the
3P2 state, see [29]. In the case where the surface is a perfect conductor (ϵ(iω) → ∞),

C3,perfect =
ℏ

16π2ϵ0

∫ ∞

0

α(iω)dω ≈ 2.23 a.u., (A.7)

for Ar∗ atoms.
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A.2.2 Dielectric permittivity of the surface

We write the susceptibility of the surface as

ϵ(ω) = ϵ1(ω) + iϵ2(ω), (A.8)

it is related to the optical refractive index n and absorption coefficient k by

ϵ(ω) = (n(ω) + ik(ω))2, (A.9)

which leads to 
ϵ1(ω) = n(ω)2 − k(ω)2

ϵ2(ω) = 2n(ω)k(ω).

(A.10)

Then, one can make use of the Kramers-Kronig relation,

ϵ1(ω) = 1 +
2

π
P
∫ ∞

0

tϵ2(t)

t2 − ω2
dt, (A.11)

where P means principal part.

In equation (A.4) we are interested on purely imaginary frequencies, and since

the susceptibility is real on the upper imaginary axis we can write

ϵ(iω) = ϵ1(iω) = 1 +
2

π

∫ ∞

0

tϵ2(t)

t2 + ω2
dt. (A.12)

The problem here is that we need an analytical expression for ϵ2 and the optical

properties for all frequencies from 0 to ∞.

Optical properties for Si3N4 : from 290 nm to 30 µm

The optical data come from [33] where they measured the optical properties of

Si3N4 for optical wavelength from 290 nm to 30 µm. We use the Tauc-Lorentz model

proposed in [52] to fit the measured ϵ2,

ϵ2,IR(ω) = Θ(ω − Eg1)
∑
j

A1Ej,1Γ1(ω − Eg1)
2

((ω2 − E2
j,1)

2 + Γ2
1ω

2)ω
(A.13)

where we sum over the resonances. Θ is the Heaviside step function and the IR

index means that we don’t have the response in the UV so far. Data and fit are

plotted in figure A.1.
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Figure A.1: Optical data (black, dotted), and the Tauc-Lorentz fit (red, solid)

Optical properties for Si3N4 : from 50 nm to 250 nm

The optical data come from [53]. We also make use of the Tauc-Lorentz model

but for only one resonance,

ϵ2,UV (ω) = Θ(ω − Eg)
AE0Γ(ω − Eg)

2

((ω2 − E2
0)

2 + Γ2ω2)ω
. (A.14)

Both data and fit are plotted figure A.2.

Figure A.2: Optical data (black, dotted), and the Tauc-Lorentz fit (red, solid)

Now, combining equation (A.13) and (A.14) we have the analytical expression

for ϵ2(ω) = ϵ2,IR(ω) + ϵ2,UV (ω), for a wide range of frequencies. Thus, by making

use of the Kramers-Kronig relation equation (A.12), we finally can calculate the

non-retarded atom-surface interaction coefficient CSi3N4
3 ≈ 1.25 a.u.

The accuracy of the C3 coefficient depends on the optical properties measure-

ments of the Si3N4 see discussion in section 3.2.2.
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A.3 Retarded : C4

The atom-surface interaction coefficient in the retarded regime for a perfect conduc-

tor is given (see [5]) by

Cperfect
4 =

3ℏc0α(0)
2(4π)2ϵ0

≈ 5216.45 a.u. (A.15)

where α(0) = α(iω = 0) is the static polarizability of the atom.

In the case of a dielectric surface, the retarded atom-surface interaction coefficient

is given by

Cdielectric
4 =

3ℏc0α(0)
2(4π)2ϵ0

ϵ(0)− 1

ϵ(0) + 1
≈ 3989.05 a.u. (A.16)

where ϵ(0) = ϵ(iω = 0), computed in section A.2.2 for Si3N4.

A.4 Core effect

It is important to keep in mind that we have a multielectron atom, therefore, we

have to estimate the contribution of the core electrons to the atom-surface interac-

tions. To do so, we do the same calculation as before, but consider the dynamic

polarizability of the first ionic state. In front of a Si3N4 surface, the interaction

coefficient for the first ionic state is C3 ≈ 0.03 a.u. This means that the core effect

increases the atom-surface interaction coefficient by 2.4 %. For the moment it is

negligible compared to the systematic uncertainties we have, but should be taken

into account in the future.
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From 1 to N slit diffraction

In this appendix, we will see that in atom optics, the diffraction pattern from a

grating is obtained from the diffraction by a single slit multiplied by an analytic

function that is the same as in classical optics.

B.1 Calculation

B.1.1 General case

The following calculations are based on those presented in [54] for an arbitrary

grating in classical optics. Here, we will consider the possibility of adding an angle

between the grating plane and the propagation axis. We observe an asymmetry in

the intensity of the interference orders when the nanograting plane is not normal to

the atom propagation axis. The problem is represented in figure B.1.
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Figure B.1: Representation of the diffraction from a nanograting. Black lines sym-
bolise the incident wave packet associated to the Ar∗ atom as plane wave with
velocity v. Pink lines represent the wave function outgoing from each slits.

The parameters of the nanograting are :
N : total number of slits

pg : grating period

Lg : length of the grating (=(N -1)pg)

(B.1)

We now want to express the coordinates of each slit. We first express the x-

coordinate of the two extreme slits :{
n = 0 −→ x0 = −Lg

2
cos(αg)

n = N − 1 −→ xN−1 = +Lg

2
cos(αg)

(B.2)

The x-coordinate of the slit n is given by :

xn = x0 + npg cos(αg) (B.3)

We do the same for the z-coordinate of each slit, the two extremities are given by :{
n = 0 −→ z0 = 0

n = N − 1 −→ zN−1 = −Lg sin(αg)
(B.4)

Thus, the z-coordinate of the nth slit is given by zn = −npg sin(αg). Rather

than using the z-coordinate, we will use the propagation time for the wave function

outgoing from the slit n to reach the plane z = 0 (see figure B.1), this time delay is

given by :
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tn = n
pg
v
sinαg (B.5)

We set the initial time for the free propagation from the grating to the detector

tinitial = 0, so the wave function in the plane z = 0 is given by the sum of the wave

function outgoing from each slit (taking into account the propagation time to reach

the plane z = 0 for all wave functions):

ψ(x, 0) =
∑
n

ψ1 slit(x+ xn, tn) (B.6)

Regarding figure B.1, one can assume that all slits are independent (no tunneling).

Thus, the wave function outgoing from one slit is the same for all slits, but at

coordinates (xn, zn). Therefore, one can write the total wave function in momentum

space as :

ψ̃(k, 0) =
∑
n

ψ̃1 slit(k, 0)e
ikxne−

iℏk2
2m

tn (B.7)

ψ̃(k, 0) = ψ̃1 slit(k, 0)
∑
n

eik(xn− ℏk
2m

tn) (B.8)

replacing xn and tn by the expression given in (B.3) and (B.5) one gets :

ψ̃(k, 0) = ψ̃1 slit(k, 0)e
ikx0

∑
n

exp(in

A︷ ︸︸ ︷
(kpg cos(αg)−

ℏk2

2m

pg
v
sin(αg)))︸ ︷︷ ︸

S

. (B.9)

We will keep A as defined in (B.9) as long as possible in order to ease the calculations.

S is a geometric series :

S =
N−1∑
n=0

(
eiA
)n

=
1− eiAN

1− eiA
=
ei

AN
2 (e−iAN

2 − e+iAN
2 )

ei
A
2 (e−iA

2 − e+iA
2 )

, (B.10)

we get :

S = eiA(
N−1

2 ) sin
(
AN

2

)
sin
(
A
2

) . (B.11)

Hence equation (B.9) can be rewritten :

ψ̃(k, 0) = ψ̃1 slit(k, 0)e
ikx0eiA(

N−1
2 ) sin

(
AN

2

)
sin
(
A
2

) . (B.12)
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We now need to propagate the wave function during a propagation time T , in

order to obtain the wave function on the detector,

ψ̃(k, T ) = ψ̃1 slit(k, 0)e
ikx0eiA(

N−1
2 ) sin

(
AN

2

)
sin
(
A
2

) e−i ℏk
2

2m
T , (B.13)

keeping in mind that A depends on k, see equation (B.9), we have the wave function

at the detector simply by taking the inverse Fourier transform of equation (B.13).

B.1.2 Stationary phase approximation

The distance between the detector and the nanograting is large, so the propagation

time is long, under this condition one can use the stationary phase approximation,

see [39].

In this approximation, the wave function on the detector is given by :

ψ(x, T ) ≈
√

m

ℏT
ψ̃
(
−mx
ℏT

, 0
)
ei

mx2

2ℏT e−iπ
4 , (B.14)

where T is the propagation time between the grating and the detector. In the case

of a single slit, the probability density will be given by

|ψ1 slit(x, T )|2 ≈
m

ℏT

∣∣∣ψ̃1 slit

(
−mx
ℏT

, 0
)∣∣∣2 , (B.15)

In the case of the total wave function outgoing from the grating, one has to use

equation (B.13) in (B.14), and then taking directly the square modulus, one gets:

|ψ(x, T )|2 ≈ m

ℏT

∣∣∣ψ̃1 slit

(
−mx
ℏT

, 0
)∣∣∣2 sin2

(
AN

2

)
sin2

(
A
2

) , (B.16)

with A calculated for k = kstationnary = −mx
ℏT .

Recognizing in (B.16) the diffraction by a single slit given in (B.15), we also

replace A by its expression (see equation (B.9)). Finally, the square modulus of the

wave function on the detector is given by :

|ψ(x, T )|2 ≈ |ψ1 slit(x, T )|2
sin2

(
mpg cos(αg)

2ℏT Nx+ mpg sin(αg)

4ℏT 2v
Nx2

)
sin2

(
mpg cos(αg)

2ℏT x+ mpg sin(αg)

4ℏT 2v
x2
) . (B.17)

In equation (B.17), terms in sin(αg) have negligible effects, no asymmetries in

the interference orders are introduced by the angle αg. The angle αg only manifests

as reducing the grating period by a factor cos(αg).
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Vers une mesure précise du potentiel Casimir-Polder entre des atomes d’argon
métastables et un nanoréseau en transmission.

Depuis les années 1950, les interactions atome-surface, aussi appelées interactions Casimir-
Polder, ont été étudiées au travers de nombreux travaux théoriques. Nombre d’expériences
ont été proposées et réalisées afin de mesurer les interactions atome-surface. Pour autant,
les expériences n’ont pas permis de mesurer le potentiel d’interaction atome-surface avec
une incertitude inférieur à 10%. Dans cette thèse, nous présentons une expérience d’atomes
froids dédié à l’étude des interactions Casimir-Polder. L’expérience repose sur la diffrac-
tion d’atomes d’argon métastables par un nanoréseau matériel en transmission. Au vu
des vitesses de propagation des atomes, nous avons développé une simulation basée sur la
résolution numérique de l’équation de Schrödinger dépendant du temps. Cette simulation
nous permet d’étudier la diffraction d’un paquet d’ondes par une fente matérielle, tout en
prenant en compte à la fois les interactions atome-surface et l’absorption de la fonction
d’onde au contact des surfaces. Les résultats de la simulation sont confrontés aux données
expérimentales à l’aide d’outils statistiques permettant de tester le modèle dans le but
d’effectuer une mesure de précision

Mots-clés : Atomes froids, Casimir-Polder, Atome-surface, Simulation Schrödinger, Jet
lent, Nanoréseau, Ondes de matières.

Toward accurate measurement of Casimir-Polder potential between metastable
argon atoms and nanofrabricated transmission grating.

Since the 1950’s, atom-surface interactions, also called Casimir-Polder interactions, have
been studied through numerous theoretical works. Many experiments have been proposed
and performed to measure the atom-surface interactions. However, the experiments did
not allow to measure the atom-surface interactions potential with a better accuracy than
10%. In this thesis, we present a cold atom experiment dedicated to the study of Casimir-
Polder interactions. The experiment is based on the diffraction of metastable argon atoms
by a transmission material nanograting. Regarding the propagation velocities of the atoms,
we have developed a simulation based on the numerical solution of the time-dependent
Schrödinger equation. This simulation allows us to study the diffraction of a wave packet
by a material slit, while considering both the atom-surface interactions and the absorption
of the wave function at the surfaces. The results of the simulation are compared with the
experimental data using statistical tools to test the model in order to make an accurate
measurement.

Keywords : Cold atoms, Casimir-Polder, Atom-surface, Schrödinger Simulation, Slow
atomic beam, Nanograting, Matter-wave.
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