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Abstract

Understanding microstructure evolution under thermo-mechanical loading is a critical
industrial challenge, in link to materials design and optimisation, alleviation of structures,
and prediction of the life in use of components. Microstructure evolution is also rooted
in deep physical questions related to the interface atomic structures and its consequence
upon their properties, or the mutual interactions between interfaces and other crystalline
defects such as impurities and dislocations. The ultimate challenge in the field, is to
formulate a model for microstructure evolution with real predictive capabilities. To this
goal, the present PhD work associates atomistic simulations to mesoscopic phase field
simulations focusing on Ni as a well known and model system for FCC metals.
First, great care has been paid to build and relax grain boundaries as inputs for Molecular
Dynamics simulations. We then systematically investigated the migration of a single GB in
a bi-crystal. To assess the generality of the migration results observed we considered a large
panel of different GBs, including low and high misorientation angles around [001], and GB
characters including tilt, twist and mixed GB. In contrast to most previous studies, we
systematically explored the driving force (P)-temperature (T) parametric space, in order
to clearly identify the type of migration that the GB follows from so-called thermally
activated, athermal or antithermal behaviours. Most GBs experience a transition from an
exponential to linear regime as function of P. These results, in agreement with existing
literature when available, allowed us to formulate a unique mesoscopic migration law that
reproduces MD results over the entire range of configurations, and can be passed onto
larger scale simulations.
Next, we employed the phase field model of Admal et al.(Admal et al., 2018) which derives
from the so-called KWC model. This model that describes GB as geometrically necessary
dislocation distributions, and connects with classical crystal plasticity, is promising model,
among a few other, for including the mutual interactions between GB migration and
crystal dislocations in a polycrystal. After a sensitivity study, we showed that this model
naturally captures key features of GB migration as observed in MD, such as the GB energy
value, shear coupling coefficient and the existence of non-linear and linear regimes observed
for the GB mobility. Finally, to connect quantitatively the two scales, we derived a closed
form analytical solution for the 1D KWC formalism, building upon the work of Lobkovsky
(Lobkovsky and Warren, 2001). This work paves the way for a realistic description of the
microstructure evolution in a polycrystal, thanks to atomistically informed PF.
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Résumé en français

Comprendre l’évolution de la microstructure sous chargement thermo-mécanique est un
défi industriel critique, en lien avec la conception et l’optimisation des matériaux, l’allègement
des structures, et la prédiction de la durée de vie en service des composants. L’évolution
de la microstructure est également ancrée dans des questions physiques profondes liées
aux structures atomiques des interfaces et à leurs conséquences sur leurs propriétés, ou
aux interactions mutuelles entre les interfaces et d’autres défauts cristallins tels que les
impuretés et les dislocations. Le défi principal dans ce domaine est de formuler un modèle
d’évolution de la microstructure avec de réelles capacités de prédiction. Dans ce but, le
présent travail de thèse associe des simulations atomistiques à des simulations de champs
de phase mésoscopiques en se concentrant sur le Ni, un système bien connu et modèle
pour les métaux CFC.
Tout d’abord, un grand soin a été apporté à la construction et à la relaxation des joints
de grains (JdG) comme données d’entrée pour les simulations de dynamique molécu-
laire. Nous avons ensuite étudié systématiquement la migration d’un seul JdG dans un
bi-cristal. Pour évaluer la généralité des résultats de migration observés, nous avons con-
sidéré un large panel de différents JdG, y compris des angles de désorientation faibles et
élevés autour de [001], et des caractères de JdG, comprennant des joints de flexion, de
torsion et des JdG mixtes. Contrairement à la plupart des études précédentes, nous avons
systématiquement exploré l’espace paramétrique force motrice (P)-température (T), afin
d’identifier clairement le type de migration que suit le JdG parmi les comportements dits
thermiquement activés, athermiques ou antithermiques. La plupart des JdGs connaissent
une transition d’un régime exponentiel à un régime linéaire en fonction de P. Ces résul-
tats, en accord avec la littérature existante lorsqu’elle est disponible, nous ont permis de
formuler une loi de migration mésoscopique unique qui reproduit les résultats DM (Dy-
namique moléculaire) sur toute la gamme de configurations, et qui peut être transmise à
des simulations à plus grande échelle.
Ensuite, nous avons utilisé le modèle de champ de phase d’Admal et al.(Admal et al.,
2018) qui dérive du modèle dit KWC. Ce modèle qui décrit les JdGs comme des distribu-
tions de dislocations géométriquement nécessaires, et se connecte à la plasticité cristalline
classique, est un modèle prometteur, parmi quelques autres, pour inclure les interactions
mutuelles entre la migration des JdGs et les dislocations cristallines dans un polycristal.
Après une étude de sensibilité, nous avons montré que ce modèle capture naturellement
les caractéristiques clés de la migration des JdGs telles qu’observées en DM, telles que
la valeur de l’énergie des JdGs, le coefficient de couplage en cisaillement et l’existence de
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régimes non linéaires et linéaires observés pour la mobilité des JdGs. Enfin, pour relier
quantitativement les deux échelles, nous avons dérivé une solution analytique pour le for-
malisme 1D KWC, en nous appuyant sur (Lobkovsky and Warren, 2001). Ce travail ouvre
la voie à une description réaliste de l’évolution de la microstructure dans un polycristal,
grâce à une PF paramétré de manière atomistique.
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General introduction

Crystalline materials -such as metals- are found in polycrystalline form characterised by
an agglomerate of differently oriented grains. Mechanical properties of crystalline ma-
terials are controlled by their crystalline nature, but mostly by the evolution of lattice
defects such as internal surfaces -grain boundaries (GB)- separating two differently ori-
ented grains. For industrial applications, mechanical properties and durability of these
polycrystalline materials need to be optimised to meet the application requirements. One
common way to improve materials properties is by applying one or a sequence of vari-
ous thermo-mechanical treatments. The materials microstructure evolves greatly during
these treatments and in a rather very complex manner. Microstructural changes typically
involves many elementary mechanisms operating simultaneously such as grain boundary
migration (normal motion) accompanied or not by grain boundary rotation and shear cou-
pling (transversal motion). GB migration may be triggered by various driving forces and
GB motion may be impeded by other GB motion, existing dislocations in microstructures
or impurities... Figure 1 a) to c) provides an example of such microstructural evolution

Figure 1: The EBSD polycrystal of pure aluminium subjected to thermo-mechanical treat-
ment a) annealed for 2h30 at 400ı with a strain rate of 3% b) annealed for 2h30 at 400ı
with a strain rate of 3% and re-heated at 400ı for 2h30 c) superposition of a) and b). Note
that the colour code indicate the RD orientation (according to the colour code triangle)
with respect to the crystal frame (Beucia et al., 2019).

observed experimentally at LSPM. It consists of the in-situ evolution of the polycrystalline
microstructure within a SEM of pure polycrystalline aluminium annealed at 400ı for 2h30
and then deformed in traction at 3%. The EBSD maps show a complex -non-linear and
anisotropic- rearrangement of grains through grain boundary migration in connection with
the rotation of grains (associated with grain colour changes) but also in correlation to the
dislocations within grains.
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General introduction

The mesoscopic picture shown above needs to be understood in terms of microscopic
mechanisms that control microstructure evolution. The microscopic mechanisms strongly
depend on the atomic structure of a grain boundary and the structure-property relation-
ship is far from being understood despite an abundant literature on the subject (Sut-
ton, 1996; Priester, 2012; Homer et al., 2014b; Homer, 2015; O’Brien and Foiles, 2016).
However, a clear understanding of structure-property relationship can only be achieved
through atomisitic simulations since conventional methods (experimental methods) can-
not track the GB atomic structure during microstructure changes (Sutton, 1996). Besides,
the knowledge of the atomic structure must be acquired for the large variety of GB that
may exist in a microstructure, as we discuss next.

One major challenge at atomic level is how to define unambiguously a grain boundary.
From a purely geometrical point, a grain boundary can be described using five macroscopic
degrees of freedom (dof), related to rotations and GB plane. However, at the atomic level,
another degree of complexity may be found as there exist numerous grain boundaries of
the same macroscopic degrees of freedom but with different microscopic dof among the
four additional dof (Sutton, 1996; Priester, 2012). In the literature, there exist studies that
attempted to characterise a grain boundary atomic structure based on atomic arrange-
ment. For instance, for a cubic crystallographic structure, few 3D structures -or structural
units- suffice to describe arrangement of atoms within a grain boundary (Sutton, 1996;
Han et al., 2017b; Banadaki and Patala, 2017). However, this structural unit model is
purely geometrical and since structural units may be distorted, it is not clear that this
model can describe physical properties of a grain boundary. A competing or alternative
approach is to model grain boundary using dislocations in a continuous distribution or
as an array of discrete segments (Bollman, 1972; Vattré and Demkowicz, 2013; Anderson
et al., 2017).
In general, the atomic structure of grain boundaries controls their response to impacting
factors (temperature, driving force, interaction with impurities etc..) that influence their
motion and, overall, the -normal- migration of grain boundaries controls the rate of evo-
lution of a microstructure. The velocity (v) of a moving grain boundary reads v D MP ,
where M is mobility and P is driving force. Depending on a grain boundary, the ex-
tent of migration and the dependence on temperature and applied driving force can vary
dramatically. For a pure material, different mechanical driving forces for grain boundary
migration have been identified and they range from a) GB curvature (related as the second
derivative of grain boundary energy), b) differences in elastic strain density between two
abutting grains and c) differences in stored energy associated to dislocation microstruc-
tures on both sides of the interface (Priester, 2012; Zhang et al., 2004b). The mobility
function (M ) defined above may exhibit a complex dependence on both temperature and
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motive force and GB type (Olmsted et al., 2009b,c; Priester, 2012; Mishin et al., 2010;
Homer et al., 2015; Deng and Schuh, 2011b), and the origins of these differences are poorly
known. v is typically considered independent of the nature of the driving force, but may
not be uniquely defined (Deng and Schuh, 2011b; Ngenzi et al., 2021) or an intrinsic
property to a given GB. Temperature largely affects mobility (Homer et al., 2013, 2014b;
Mishin et al., 2010; Rajabzadeh et al., 2013; O’Brien and Foiles, 2016). Systematic molecu-
lar dynamics studies of grain boundary migration have reported that various temperature
behaviours can be observed ranging from thermally activated, viscous to antithermal be-
haviours (Olmsted et al., 2009b,c; Homer et al., 2014b; O’Brien and Foiles, 2016; OMAR,
2019). Again atomistic data could help but analysing the GB structure during migration
proved to be even more difficult than when immobile. Nonetheless, some elementary mech-
anisms at the origin of grain boundary motion have been identified and can depend on
atomic structure of a grain boundary, temperature and magnitude of applied motive force
(Deng and Schuh, 2011a,b; Rajabzadeh et al., 2013; Ngenzi et al., 2021). For example,
grain boundary motion can operate through uncorrelated atomic shuffling events motion
in which atoms initially in grain one move to match the crystallographic orientation of
atoms in grain two. This mechanism may or may not be thermally activated depending
on the grain boundary structure (Sutton, 1996). In addition, in some other grain bound-
aries, the atomic shuffling may be correlated and is associated with the nucleation and
propagation of a pair of disconnections (defects that exhibit both a dislocation and a step
like character) on the surface of a grain boundary (Rajabzadeh et al., 2013).

Although, atomisitic simulations have revealed the rich physics behind grain boundary
migration, up to date, there is no predictive model for grain boundary migration. There
are few successful attempts (Sutton, 1996; Rajabzadeh et al., 2013; Race et al., 2014)
to develop such models. For instance, in (Sutton, 1996) for thermally activated grain
boundaries that move by nucleation and propagation of step was devised for pure twist
grain boundaries and in (Rajabzadeh et al., 2013) for predicting the Gibbs free energy
for motion and it was developed for grain boundaries that move through nucleation and
propagation of disconnections. However, all these models were developed for some specific
grain boundaries, generalization may not be possible and may not be straightforward to
implement. Having in a place a robust and generic mesoscale model that can work for
several grain boundaries (regardless of the character of a grain boundary) to predict grain
boundary evolution can permit to reduce both the time and cost associated with atomistic
simulations.

In contrast to atomistic methods, continuum scale methods offer a way to investigate
microstructure evolution at the larger length scale of a polycrystal (Warren et al., 2003).
In this context of Phase field approaches (Warren et al., 2003) formulated based on a set
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of field variables that are assumed to be continuous across the interface regions (Elder
et al., 2002; Warren et al., 2003; Elder and Grant, 2004; Ask et al., 2018)), Kobayashi
Warren and Carter (Warren et al., 2003) (KWC) have derived a model that takes into
account the energy, evolution and crystal rotation of diffuse grain boundaries. However,
this model lacks connection with dislocation activity within grains. In the literature, there
exist more recent models, for instance, in Ask et al. (Ask et al., 2018) and in Admal et al.
(Admal et al., 2018) phase field models both derived by extending the KWC phase field
model to incorporate the evolution of dislocation density (For example see figure 2 for
results from Admal and Marian’s phase field model ). However, the main challenge at this

Figure 2: A) A continuous domain with a symmetric tilt grain boundary inserted in the
center. When a sufficiently enough driving force is applied a grain boundary moves to the
right. The colour level shows the extent of plastic deformation induced by grain boundary
motion. B) shows the associated evolution of the dislocation density (components G31
and G32 C) shows the orientation of abutting grain at before and after migration (Admal
et al., 2018).

scale is to capture grain boundary evolution with crystal plasticity simultaneously while
still including the rich physics observed from atomisitic simulations. Indeed, to devise a
model that preserves the physics observed in atomistic simulations would require bridging
atomistic and continuum scale approaches. In the literature, there exist some attempts
to connect both scales for different phenomena (Denoual et al., 2010; Reina et al., 2014;
Bragard et al., 2002). Despite these progresses, today, there is no physically based model
for predicting microstructure evolution at polycrystalline length scale in FCC materials.
In this work, we attempt to fill this gap by associating Molecular Dynamics (MD)
simulations with a unified Admal and Marian’s Phase Field (PF) framework
(Admal et al., 2018) to predict crystal plasticity and microstructure evolution
in FCC materials.
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This manuscript work is divided into two main parts.

� The first and principal part of this work is concerned with atomistic simulations
of Œ001� symmetric Coincidence Site Lattice (CSL) grain boundaries in Nickel as
representative of other FCC materials. For this, large scale MD simulation will be
concerned with a comprehensive set of CSL grain boundaries including low (� � 15ı/
and high (� � 15ı/ misorientation angles of different characters (tilt, mixed, twist).
Since atomic structure of a grain boundary controls many aspects of a grain bound-
ary, great care has be paid to building, relaxation and characterisation of atomic
structure of a GB, using in-house tools. Consequently, a well established semi-
empirical Embedded Atom multi-body (EAM) inter-atomic potential (Foiles and
Hoyt, 2006) developed for mechanical application will be used to describe atomic
interaction. We will see, that the GB energy obtained here is in nice agreement with
existing studies, when possible, which validates our methodology and tools.

� In the second step of this first part, we will do a systematic study of the parametric
space of GB migration in terms of temperature and applied driving force. To move a
grain boundary, we will apply a synthetic driving force of Janssens (Janssens et al.,
2006). We will apply a driving force of magnitude sufficient enough to move a grain
boundary and the temperature will be varied. This systematic study will allow to
unveil clear migration behaviours and common mobility trends for a priori different
grain boundaries. Contrary to previous similar investigations, we will see that the
trends observed in study are clear. As for the mobility of dislocations in bcc metals,
many GB exhibit first a thermally activated regime at low temperature, low driv-
ing force, that changes into a linear behaviour for large stresses, high temperatures
(Tang et al., 1998; Rodney and Proville, 2009; Naamane et al., 2010; Gilbert et al.,
2011; Queyreau et al., 2011). A systematic exploration of this space will allow to
devise phenomenological mobility function that can be straightforwardly imported
in the phase field model.

� In the second part of this work, we have conducted phase field simulations on STGB
grain boundary investigated in the first part using the model of Admal & Marian
(Admal et al., 2018). The central idea of this model, is to make use of the kinematic
equivalency of GB in terms of dislocations distributions, whose field are solved
through classical crystal plasticity. Then, we propose a sensitivity test of the model’s
parameters. We will see that the values obtained are close to the values (˛; �; s; e)
suggested in (Warren et al., 2003). This will be followed by a comparison of grain
boundary energy predicted by this model and atomisitic method. We will see that
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the prediction of this model compares favourably with atomistics. In the next step,
we will do dynamic simulations to investigate ability of this phase field model to
recover on it own some of the trends observed from atomistic simulations, such as
GB energies, shear coupling factor and GB migration trends. Therefore, we will see
that describing a grain boundary as dislocation arrays (or GND distribution) is very
effective and promissive, at least for the STGB considered here. In the final step
we will propose a method to parameterise this phase field model using atomistic
information.
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Atomic scale investigation of grain
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Chapter 1

Defects in crystalline materials

1.1 Introduction

Most applications of FCC metals use these materials in their polycrystalline form. A wide
array of mechanical properties of such materials are influenced not only by the distribution
of grain sizes (Petch, 1953; Hall, 1951) and their orientations (Sutton, 1996) but also by
the density and nature of lattice defects (Sutton, 1996; Priester, 2012; Gottstein et al.,
1998; Hull and Bacon, 2001), such as vacancies, dislocations and grain boundaries.
Defects are very common in polycrystalline materials. They exist in different dimensions,
therefore, dimensionality provides a more convenient scheme to classify them. The aim
of this chapter is to give fundamental details of polycrystalline defects. The defects are
classified based on their dimensionality, since lower dimension defects may act as building
blocks of higher dimension defects or interact with each other. in this chapter, we will
focus on single element systems for the sake of simplicity.

1.1.1 Point defects

Zero dimension defects are very common, thanks to their low formation energy. Punctual
defects may form spontaneously thanks to thermal vibration or by a plastic deformation of
a crystal. Two types of punctual defects are typically considered, in the form of vacancies
and (self) interstitial atoms. In the GB context; vacancies may considerably alter the GB
structure (see later) and impurities may impede GB motion (Zener effect).

1.1.2 Dislocation

Dislocations are one dimensional defects that accommodate distortion in a crystal. They
are metastable defects associated to large amount of (mostly elastic) strain energy and
are thus initially present in crystals. Dislocation is one of the important crystallographic
defects and they control most of the plastic behaviour of crystalline materials (Hull and
Bacon, 2001; Hirth and Lothe, 1992; Fang, 2018; Kelly and Knowles, 2020). Dislocations
may also be used to describe the structure of grain boundaries (see later). Therefore, an
elementary understanding of dislocation is required before introducing grain boundaries.
For this, it is important to start by showing how it is created in a perfect crystal.
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Kinematically speaking, a dislocation is introduced in a crystal by making a cut in a
perfect crystal. Next, one side is shifted relative to the other by a translation vector �!b
which is not equal to the lattice vector (Bulatov and Cai, 2006). This translation vector is
known as Burgers vector. Inside the crystal, at the edge of the cut surface, remains a line
of atoms with a higher distortion which fades away by going further from this line. This
line separates the sheared and unsheared regions. The region in immediate surrounding
of this line, where linear elasticity does not apply, is known as dislocation core (Hull and
Bacon, 2001).

Figure 3: An edge dislocation in a face centred cubic crystal (Hull and Bacon, 2001).

Figure 3 shows an FCC crystal made of (110) planes which have a two fold stacking
sequence ABAB.... The crystal contains a dislocation created by inserting two extra (110)
half planes. Note that the (110) planes are perpendicular to the Burgers vector. The angle
(�) between the Burgers vector and the dislocation line can take any value. This angle
defines the character of a resulting dislocation, which controls some of its properties. When
� =�

2
, a dislocation has a pure edge character (Taylor, 1934) (see figure 4(a)). For example,

dislocation shown in figure 3. When �=0, a dislocation has a pure screw character (see
figure 4(b)). A general dislocation is called mixed dislocation. Figure 4(c) shows a mixed
dislocation in which at point E, it is a pure edge as the dislocation line is perpendicular
to
�!
b . At point S, it is a pure screw because the dislocation line is parallel to

�!
b and the

remainder of dislocation is regarded to have mixed characters.
�!
b can be resolved into
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the edge
�!
b 1 =

�!
b sin.�/ and screw

�!
b 2 =

�!
b cos(�/ contribution. Figure 4(d) illustrates

geometrically the orientation of these two components relative to the dislocation line xy.
Since a dislocation represents a line of misfit in crystal, it moves when enough driving force

Figure 4: Illustration of classical dislocations (a) edge dislocation (b) screw dislocation
(c) mixed dislocation (Hull and Bacon, 2001) and (d) resolving burger vector into its
components (Hull and Bacon, 2001).

(called Peach-Koehler Force) is applied. The main type of motion is (conservative) gliding
in which the atoms above and below glide plane are displaced with respect to each other
by a translation vector �!b (figure 5). Consequently, crystal deformation is a progressive
displacement of dislocations through a crystal. The kinetics of dislocation motion may
depend upon dislocations character (Gilman, 1994; Hull and Bacon, 2001; Rodney, 2004;
Wang and Fang, 2000).

Figure 5: Movement of an edge dislocation by gliding. (a)-(b) A shift of atom 1 relative
to atoms 2 and 3 moves extra half-plane from x to y (c)-(d) the process repeats as the
dislocation continues to glide.Note that the arrows indicate the applied shear stress.

Dislocations glide usually on specific crystallographic planes, as a consequence of dis-
locations core structure. The mean rate plastic deformation P due to dislocation motion
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during a time interval ıt is given by equation 1.1 where �m is density of mobile disloca-
tions, v is average velocity of dislocations and b the Burgers displacement (Orowan, 1934;
Johnston and Gilman, 1959).

P D �mbv (1.1)

In the FCC structure, dislocations may dissociate into partial (Shockley) dislocations
separated by a stacking fault ribbon. These partials may be found in some GB structures.
The Thompson’s tetrahedron allows to decompose perfect dislocations into possible partial
dislocations. This tetrahedron comes from the fact that the four different sets of f111g
planes lie parallel to the four faces of a regular tetrahedron. In addition, the edge of
tetrahedron lie parallel to the h110i slip directions (Zhu et al., 2011) (see figure 6 for more
details). In figure 6, A, B, C and D denote the corners of tetrahedron and ˛, ˇ,  , ı

Figure 6: Thompson’s tetrahedron a) representation of Thompson’s tetrahedron in FCC
unit cell b) Two dimensional representation of Thompson’s tetrahedron showing all pos-
sible slip planes and the Burgers vectors of possible dislocations.

denote the mid points of the opposite faces. The edges (AB, BC, CD,...) of tetrahedron
define in magnitude and direction the Burgers vectors of perfect dislocations. The lines
from the corners to the center (A , B˛,...) define the Burgers vectors of Shockley partial
dislocations.

1.2 Grain boundary

In the section, we will present the most relevant background regarding Grain Boundaries,
2D defects that are at the heart of the present work. In the past, intense experimental
and numerical efforts have been directed towards a clear description of grain boundaries
(Kronberg and Wilson, 1949; Read and Shockley, 1950; Weins, 1972; Sutton and Balluffi,
1987; Yip and Wolf, 1992; Aust et al., 1993; Sutton, 1996; Gleiter, 1996; Priester, 2012).
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Hence, there exits several ways to describe a grain boundary (Priester, 2012). Description
of grain boundaries allows to define, categorise and model grains boundaries. Among all
other descriptions, the following sections focus first on geometrical descriptions of grain
boundary, description of grain boundary as an array of dislocation and description of
grain boundary as a periodic sequence of structural units .

1.2.1 Geometrical description of grain boundary

Geometrical description of grain boundary has been proposed several decades ago (Kro-
nberg and Wilson, 1949) and it has become a cornerstone of research on grain boundary.
From a purely geometrical argument and as lattices are discrete in nature, adjoining two
rotated crystals will lead to sites of (exact or close to) atomic coincidence separated by
non-coinciding regions (shown in pale green colour in figure 7b). An increase in the num-
ber of coincidence sites implies a good fit between adjacent grains. Describing a grain
boundary as an array of coincidence sites makes a grain boundary structure easy to visu-
alise even on a two dimensional diagram, called the dichromatic pattern.

Figure 7: (a) EBSD maps and discrete Inverse Pole Figure (IPF) of 4N pure aluminum
nicrostructure containing several grain boundaries (Beucia et al., 2019) b) Macroscopic
degrees of freedom of a grain boundary.

A grain boundary exhibits nine geometrical degrees of freedom (dof) (five macroscopic
and four microscopic) (Randle, 1996; Sutton, 1996; Priester, 2012). Macroscopic degrees
of freedom describe the overall orientation change between two grains at grain boundary
(Sutton, 1996; Priester, 2012) as figure 7 b) shows. More precisely, the crystallographic
orientation change between perfectly orientated lattice and new misorientated lattice is
described by a misorientation axis (�!T ) which corresponds to two degrees of freedom and
a misorientation angle (�) between two adjacent and differently orientated grains, asso-
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ciated to one degree of freedom. The crystallographic orientation of the grain boundary
surface, known as grain boundary plane (�!n ), itself corresponds to two degrees of free-
dom.
The remaining four microscopic parameters describe a localised translational and ex-
pansion dof between two grains at grain boundary. Geometrical descriptions of a grain
boundary are widely used in structural research of grain boundary in an attempts to un-
derstand the structure-property relationship of GB. Figure 8 gathers some classifications
of grain boundary that we will use in this study.

Figure 8: Classification of grain boundaries that are discussed in this work.

1.2.1.1 Coincidence Site Lattice (CSL) grain boundaries

Some grain boundaries correspond to an exact coincidence site lattice (Grimmer, 1976;
Randle, 1996; Sutton, 1996; Priester, 2012) as demonstrated in figure 9. From the the-
oretical work of Ranganathan, equation 1.2 can be derived for CSL GB (Ranganathan,
1966; LORD, 2006; Talaei et al., 2019b), where grain 1 can be related to grain 2 by a
rotation of � about rotation axis �!T .a; b; c/.

tan
�
�

2

�
D
Y�

X
(1.2)

Where X and Y are prime numbers and � D
p
a2 C b2 C c2. The inverse of the number

of coinciding sites is noted †. According to Ranganathan (Ranganathan, 1966),

† D
1

m

�
X2
C �2Y 2

�
; (1.3)
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Figure 9: A†5 CSL grain boundary of � D 36:9 degrees and rotation axis Œ0; 0; 1� (OMAR,
2019).

where

m D

8<:1; if X2 C �2Y 2 is odd

2; 4 depending on whether 2 or 4 is the even factor of X2 C �2Y 2

The definition of † can also be given in terms of volume of coincidence site lattice unit
cell (VCSL) and unit cell of an FCC crystal (VUC ) (Priester, 2012)

† D
VCSL

VUC
(1.4)

For example, †5 CSL grain boundary is produced by a rotation of 36:9ı about [001]. †5
means that one in 5 atoms is a coincidence as figure 9 shows.

1.2.1.2 Rotational symmetry in CSL grain boundaries

Since CSL grains boundaries have several rotational symmetries, both numerical and
theoretical analysis limit themselves to fundamental zone (FZ) that captures all natural
crystallographic symmetries of the underlying CSL structure. This is why we now present
the fundamental zones of GB.
In Patala and Schuh (Patala and Schuh, 2013), it has been shown that the CSL boundary-
plane spaces possess several point group symmetries. Later, the work of Homer et al.(Homer
et al., 2015) has shown that these symmetries may help in understanding the CSL
structure-property relationship and provide a relevant way to visualize GB character
space (see later). For example, grain boundary symmetries are used for the graphical
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Figure 10: a) Grain boundary distribution overlaid with the bicrystal symmetries of the
misorientation angles 5ı, 15ı, 25ı and 35ı with misorientation axis Œ001� (Rohrer et al.,
2004) b) Identification of pure grain boundary character (pure twist, tilt character A and
B) in a triangular fundamental zone.

representations of the possible grain boundary plane orientation.
For any grain boundary type (†), there is an infinite number of possible boundary planes
of normal �!n i oriented differently in space. Consequently, grain boundary analysis now
limits to the analysis of the Fundamental Zone (FZ) for a given GB family. FZ is ob-
tained from a stereographic projection of possible boundary plane for a given † with
�!n i along the z direction. Here we give an example in figure 10a) of grain boundaries of
misorientation angle 5ı, 15ı, 25ı and 35ı with a corresponding misorientation axis Œ001�.
They show the spatial distribution of all possible boundary planes. The dashed red lines
which are mirror planes capture the symmetry of boundary plane distribution. Here we
can easily notice the natural rotation of the symmetries by increasing the misorientation
angle. Consequently, one can readily see that only one triangular region in any images is
self sufficient to describe the entire boundary plane distribution. Triangular zone captures
all natural crystallographic symmetries of the underlying CSL structure.
Figure 10 b) shows a triangular fundamental zone in which pure grain boundary charac-
ters can easily be identified. For more details on the subject see (Patala and Schuh, 2013;
Homer et al., 2015).

1.2.1.3 Displacement shift complete (DSC) lattice

From figure 9, one can notice that there exist very small vectors which conserve the CSL
if the location of the coincidence sites are allowed to change.
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Figure 11: A DSC lattice in †5.36:9ı/ with a misorientation axis Œ001� in which the
coincidence lattice sites are shown in blue colour encircled by red. The blue atoms belong
to grain one and red to grain two. The smaller atoms belong to a lower layer whereas
bigger atoms belong to a top layer of the stacking.

Examples of such vectors are shown in figure 11. These vectors are called Displacement
shift complete (DSC) and are shown in black, red and blue in figure 11 in which green
square box show a unit of this lattice. In other words, it means that, the coincidence
site lattice will shift as a whole, if either grain one or grain two is translated by one of
these vectors. Figure 11 shows the DSC lattice of †5 grain boundary in which blue atoms
encircled by red colour are in perfect coincidence sites, the blue atoms belong to grain
one and the red atoms to the grain two. Note that smaller and bigger circles correspond
to lower and upper layer of the stacking respectively.

Obvisouly, a blue atom encircled by red can be translated to occupy the place of an
other blue atom encircled by red without affecting the CSL lattice, the same goes for blue
to blue, red to red, red to blue, blue atom encircled by red to blue, blue atom encircled
by red to red and vice versa. All translation vectors of the CSL and crystal lattice are as
well DSC vectors. Therefore, DSC vectors form a DSC lattice. DSC lattice is defined as
the largest lattice containing two crystals. The definitions of CSL and DSC lattices are,
of course, purely geometrical and based on a non relaxed atomic geometry. However, in
reality, small adjustments of atomic positions at grain boundary and close to it are to be
expected. Extension of coincidence concept to include in near-coincidence has thus been
proposed to continue transitioning toward more realistic grain boundary picture.
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1.2.1.4 Bollmann approach: O and O2-lattices

If any factor causes a CSL grain boundary to deviate from its coincidence sites, a grain
boundary reacts with a tendency to preserve its structure. This is achieved either by a
crystal lattice translation or a DSC lattice translation. Consequently, translation linear
defects are produced which maintain the structure of a grain boundary. These linear de-
fects are called structural or intrinsic dislocations (Bollmann, 1972). Therefore, by taking
advantage of these dislocations, any grain boundary structure can be described in terms
of these dislocations.

O-lattice

Despite the success of CSL theory in explaining some of the spacial orientation relationship
between two adjacent grains, it is not applicable to some grains boundaries because CSL
model requires a very exact coincidence which is not achievable for some rotation angles.
Bollmann extends the coincidence concept with the introduction of a more generalised
coincidence model called O-lattice. The O-lattice describes a grain boundary geometry
and provides a description of a GB in terms of structural dislocations (Bollmann, 1972;
Priester, 2012).
The O-lattice is viewed as the collection of points in zone of good fit surrounded by zones
of bad fit between two abutting grains. Unlike the CSL model, the coincidence points
may have internal coordinates in the unit cell of both grains. Hence, the O-lattice is
continuous for all grain boundary misorientations and each point O is regarded as the
origin of the transformation that relates grain one to grain two. Considering a O-lattice
point x, marked by vector �!x o in a grain boundary plan, which remains invariant during
transformation, the O-lattice is described by Bollmann’s equation

�!
Bm D

�
I �R�1

��!x O (1.5)

in which I, R are identity and rotation matrix respectively and �!Bm is a translational
vector also known as the Burgers vector of structural dislocations. Despite encouraging
results obtained for different metals (Bollmann, 1972), this model does not explain angular
deviation from the closest coincidence around a misorientation axis �!T .a; b; c/ observed
in high angle grain boundaries. Consequently, Bollmann introduced later an other lattice
powerful enough to take into account this angular deviation.

O2-lattice

Still following Bollmann’s considerations (Bollmann, 1972), high angle grain boundaries
may undergo an angular deviation (��) from the closest coincidence in particular situ-
ations. The O2-lattice, mathematically, defines a set of all invariant points between two
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DSC translation lattices of the bi-crystals rotated by �� around �!T . This deviation is
accommodated by secondary structural dislocations whose Burgers vectors belong to as-
sociated DSC lattice (Bollmann, 1972; Priester, 2012). Considering that the O2-lattice is
described in a similar way as O-lattice, the fundamental equation of O2-lattice is similar
to equation 1.5.

�!
BDSC D

�
I �D�1

��!x O2 (1.6)

Interestingly, the deviation matrix D is unique which makes O2 - lattice unique for a given
�� .

1.2.2 Discrete and continuous approach to describe a grain
boundary as an array of dislocations

There exist two approaches to describe a grain boundary as an array of dislocations.
The first approach is the discrete approach and the second approach is the continuous
approach which describes the grain boundary as a continuous distribution of disloca-
tions using a dislocation tensor (Hull and Bacon, 2001; Priester, 2012). However, discrete
dislocations-based models are necessary limited to low angle grain boundaries, for which
individual dislocation may be distinguished (Li, 1972). For large misorientation angles, it
is commonly considered that the dislocation cores would overlap to form a now extended
2D defect. In the following sections, we will focus on the fundamental aspects of both
approaches.

1.2.2.1 The discrete approach of Read and Shockley

The first quantitative study of that model was conducted by Read and Shockley (Read
and Shockley, 1950) for grain boundaries with small misorientation angles. In this model,
a low angle grain boundary is described as a periodic sequence of dislocations (Read
and Shockley, 1950). For example, figure 12 illustrates a periodic arrangement of edge
dislocations in a low angle grain boundary. This model was the first to link the grain
boundary misorientation angle � and spacing d between two dislocations with a Burgers
vector b.

d D
b

�
(1.7)

The key result of the classical work of Read and Shockley is a formula for the de-
pendence of grain boundary energy per unit area, � , on misorientation angle � between
neighboring grains. By considering that dislocations forming a grain boundary are linearly
arranged and equidistant and using energy of a single dislocation and summing over the
number of dislocations in a grain boundary (two sets of dislocations that come from the
two neighboring grains), the energy of symmetric low angle grain boundary is given by
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Figure 12: a) A periodic array of dislocations in a symmetric low angle tilt grain boundary.
Examining the brown atoms reveals that they are displaced by a vector

�!
b , the resulting

strain maps are shown here b) hydrostatic strain "�=�b2�
.1�2�/

.1��/

y

x2Cy2
c) pure shear strain

"s D
b

4�.1��/

x.x2�y2/

.x2Cy2/2
and rotation "R D b

�
x

.x2Cy2/
with the scale bar showing the percent

strain .10�2/ (Hanus et al., 2018)

equation 1.8.
� D 0� .A � ln�/ (1.8)

Where 0 D �

4�
.1 � �/ and A D b

2�ro
with � the shear modulus, � the Poisson coefficient

and r0 the dislocation core radius. This equation was validated by experimental and
numerical data (Gjostein and Rhines, 1959; Wagner and Chalmers, 1960). It is worthy
emphasising that the Read and Shockley model is applied only when the dislocations in the
boundary are uniformly spaced as figure 12 a) shows. However, this is only possible in some
particular cases where dislocation spacing is an integer multiple of the lattice parameter.
Later, this energetic model (equation 1.8) was extended to high angle symmetric tilt grain
boundaries (� � 15ı) by Wolf (Wolf, 1989a). The range of validity of this energetic model
comes from the assumption that � is small enough, such that sin� � 0. Without such
assumption the equation 1.8 becomes

� D 0sin� ŒA � ln. sin� /� (1.9)

1.2.2.2 The discrete approach of Bollmann

Another generalisation of the Read and Shockley to any grain boundary was proposed by
Bollmann (Bollman, 1972). Based on the previously explained formulations on O and O2
lattice, X

nibmi D
�
I �R�1

��!
k (1.10)
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With I, R are identity and rotation matrices that transform one grain into an other,
�!
k is

a vector in grain boundary plane, ni is the number of geometrically necessary dislocations
and bmi is their Burgers vectors (Bollman, 1972; Priester, 2012). The equation 1.10 relates
projection of the transformation matrix to go from one grain into the other through a
discrete Burgers vector. Bollmann extended the idea of coincidence of lattice points to
coincidence of any point within the cells of two misoriented grains by considering Burgers
vector B D

P
nibmi . The Bollmann approach considers the misfit zone to be made of

primary and secondary dislocations. The primary dislocation are necessary dislocations.
These dislocations have a Burgers vectors (bm) of perfect dislocations, in addition, they
form a network with the same periodicity. The spacing d of these dislocations is calculated
following.

d D
bm

2sin
�
��
2

� (1.11)

From equation 1.11, one can see that for a very low angle, 2sin
�
��
2

�
� � which is identical

to Read and Shockley model (equation 1.7). The secondary dislocations are also necessary
dislocation with smaller Burgers vectors which are partials of the nearest coincidence site
lattice. They are also known as the displacement shift complete dislocations. Their role
is to ensure a good registry between two crystals at the boundary.

1.2.2.3 The continuous approach: Frank-Bilby

This approach, which results from the work of Frank and Bilby is widely used to deter-
mine the dislocation content of grain boundaries (Frank, 1950b,a). Frank (Frank, 1950a)
described the density of dislocations which form a grain boundary between grain I and
II. Later in 1955, Bilby (Bilby, 1955) came with a systematic way of dealing with the
distribution of dislocations in surface delimiting two grains with a discontinuity of the
distortion Œˇ� field between them.

"ijkn1ˇ
I
sj � "ijkn1ˇ

II
sj D ˛ks (1.12)

With ˛ks: dislocation density tensor, k: Burgers vectors, s: dislocation line, n : normal to
grain boundary plane in direction from grain I to grain II and "ijk the permutation tensor.
The reformulation of equation 1.12 in matrix form leads to what is known as Frank-Bilby
equation 1.13.

�!
B D .X�1I �X

�1
II /:
�!
X (1.13)

With XI and XII are transformations that generate the crystal I and II respectively
and �!X is a vector in grain boundary plane. This equation is based on the Frank circuit
construction (figure 13). In figure 13, a vector XI =XII is drawn in crystal I. Next, it is
surrounded by a closed circuit in which the origin of vector is considered both the origin
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Figure 13: The Frank circuit used to define the closure failure (Priester, 2012).

and the end point. The same circuit is drawn around a grain boundary. It starts at the
extremity of XII passes through the point O and ends at the extremity of XI . The latter
circuit displays a closure failure �!B relative to the former circuit. The equation 1.13 relates
the net Burgers Vectors �!B in grain boundary and the lattice deformation XI and XII .
This deformation converts the reference crystal, from which the bicrystal is created, into
real crystals I and II. To note that the reference crystal used could be one of I or II.
The transformation of Crystal I into Crystal II is achieved by use of a rotation matrix R.
For example, a reference vector XI in crystal I is transformed into vector XII following
equation which reads:

�!
X I D R

�1�!X II (1.14)

The two crystal lattices are obtain by rotation of both crystal with equal but opposite
angle �

2
on rotation axis �. In this case �!B is given by Frank’s equation 1.15.

�!
B D 2sin(

�

2
/.
�!
X ^ �/ (1.15)

The Frank-Bilby equation can be used to determine the primary and secondary disloca-
tions (Balluffi and Olson, 1985) described in earlier section. It is achieved by carrying
out a Frank’s circuit construction. However, from equation 1.13, there is no unique solu-
tion as B is only obtained from XI or XII and �!X and not the dislocation line which is
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unspecified. In addition, the choice of reference lattice is not unique as well.

1.2.3 Description of grain boundary as a periodic sequence of
structural units

This model considers how atoms are arranged at grain boundary. Grain boundaries can
be described as a sequence of a finite number of building blocks called structural units
(Balluffi and Bristowe, 1984; Han et al., 2017a). Figure 14 gives an example of a sequence
of structural units in †11f332g grain boundary in Nickel. It is an intermediate (mixture
of singular and special related GB) grain boundary made of two structural units D of
grain boundary †3.111/ and E of grain boundary †9.221/. The structural units were
confirmed both by numerical simulation and by High-Resolution Transmission Electron
Microscopy (HRTEM) (Duparc et al., 2000). A structural unit is typically defined as a

Figure 14: Structural unit arrangement in in pure Nickel grain boundary †11f332g a)
from HRTEM b) from molecular dynamics simulations (Duparc et al., 2000).

small group of atoms arranged in a characteristic configuration like polyhedron (Banadaki
and Patala, 2017). This model was first proposed by Bishop and Chalmers (Bishop and
Chalmers, 1968) and extended in 1983 by Vitek and Sutton to a variety of symmetric tilt
grain boundaries (Sutton and Vitek, 1983a,b).
The description of grain boundary structure relies upon a reference grain boundary. The
reference grain boundaries also known as favoured grain boundaries are made of only one
type of structural units that are indivisible. In general, there exists a limited number of
such structural units (Ashby et al., 1978; Priester, 2012). There are seven structural units,
shown in figure 15, that may constitute grain boundary structural unit.
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Figure 15: The seven energetically stable polyhedra that may constitute grain boundary
structural units (Priester, 2012).
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Figure 16: The diagram representing a grain boundary with a misorientation angle (�) in
terms of structure units (Priester, 2012).

In general, grain boundaries composed of regular arrays of a single type of structural unit
possess often a relatively low energy (Priester, 2012). The intermediate grain boundaries
which are between favoured grain boundaries are composed of a mixture of at least two
structural units. In general, low index (delimiting) grain boundaries are made of a periodic
sequence of two structural units and the rest are called general grain boundaries and they
have higher energy compared to other GB. For example, figure 16 illustrates description
of grain boundaries in terms of structural units A and B along a misorientation angle
� . It shows these three classes described above (favoured, delimiting and general grain
boundary). Table 1.1 gives example of some grain boundaries described in terms of their
misorientation angle � , grain boundary plane, structural units along with their respective
energies in Nickel materials. This model exhibits some limitations. first, it might be ex-

Table 1.1: Example of grain boundaries described in terms of structural units, of symmet-
rical and asymmetrical h110i tilt grain boundaries with their respective energies in nickel
(Duparc et al., 2000; Priester, 2012)

pected that the structure of any Œ100� STGB is a combination of A and B structural units
as previously shown. However, there is a large misorientation deviation from structural
units in delimiting or general grain boundaries which implies a distortion of some of the
building structural units. To illustrate this point, figure 17b shows †5.36:87ı) described
as jAB :ABj in terms of alternating structural units A and B. The left figure 17a shows
the favoured grain boundary made of A structural units and to its right, figure 17c is
another favoured grain boundary of structural unit B. Comparing 17b from 17a and 17c
the structure of individual A and B units from jAB:ABj GB is, on average, compressed
by 7:4% (Han et al., 2017b).
The structural unit model is unable to quantify the distortion in structural units and it
fails to establish a straightforward relationship between energy and grain boundary struc-
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Figure 17: Distortion in structural unit of jAB :ABj of †5 36:87ıŒ100� compared from
favoured grain boundary AA and BB (Han et al., 2017a).

ture. Secondly, it does not predict the structural units of a grain boundary with a mixed
character (tilt/twist). To consider structural unit distortion, a new model was recently
proposed by Banadaki and Patala (Banadaki and Patala, 2017). This new model com-
pletes the previous structural unit model by providing a detailed atomic description of a
grain boundary across its five macroscopic degrees of freedom. Consequently, it quantifies
any distortion associated with three dimension polyhedral structural units and captures
the structure of many variety of grain boundaries including mixed grain boundaries.

1.3 Thermodynamic and kinetic properties

1.3.1 Energy of grain boundaries

The existence of a grain boundary is associated with an increase in energy and volume
of the system (Merkle et al., 1998; Shen et al., 2008; Shvindlerman et al., 2006; Uesugi
and Higashi, 2011; Wolf, 1989b). It is very important to quantify this energy as it permits
to discuss the relative stability of grain boundary structure. In addition, this interfacial
energy () acts also one of the driving forces for grain boundary migration.
The excess energy () and excess volume (#) of a system are generally determined using
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equations

 D
Egb �Epc

A.T;P /

# D
Vgb � Vpc

A.T;P /

(1.16)

Where Egb, Epc are the total energy of the relaxed bi-crystal containing a grain boundary
and of a perfect crystal containing equal number of atoms respectively. In a similar way,
Vgb, Vpc are total volume of bi-crystal with a grain boundary and the total energy of
a perfect crystal respectively. A is the cross-section area of a grain boundary at a given
temperature T and pressure P .
The calculation of energy and volume using equation 1.16 takes into account the size of
simulation box, type of inter-atomic potential, the approach to finding the ground state
of a grain boundary. However, in all calculations, the contribution of entropy is generally
not taken into account. This is due to the fact that entropy is challenging to quantify.
Grain boundary energy is often calculated at 0K. In literature, grain boundary energy and
volume has been reported to be proportional regardless of the type of potential used in cal-
culations and their value strongly depends on grain boundary plane (Bean and McKenna,
2016; Wolf, 1989b; Olmsted et al., 2009b).
From data points reported in literature, even if very rough trends may be seen, grain
boundary energy varies from one misorientation angle to another, from one rotation axis
to an other and from one FCC material to another as figure 18 shows. Atomistic results

Figure 18: Grain boundary energy (�), from molecular dynamics, plotted function of
misorientation angle (�) for Œ100� and Œ110� symmetric tilt grain boundaries in (a) Alu-
minium (Tschopp et al., 2015), (b) Copper (Tschopp et al., 2015) and (c) symmetric of
different character in Nickel (Olmsted et al., 2009b).

using equation 1.16 is in a good agreement with experimental data as figure 19 a) shows,
however, there is a certain lack of results concerning mixed GB and more general mis-
orientation. This demonstrates once again the need of a model that takes into account
macroscopic degrees of freedom of a grain boundary to predict its energy. The Read and
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Shockley model is a model which takes into account the misorientation angle � . Of course,
it is only accurate for low angle symmetric tilt grain boundaries in which a grain bound-
ary is described as periodic arrays of edge dislocations (Read and Shockley, 1950). The
relationship between grain boundary energy � and misorientation angle � reads,

� D

8<:max ��0 .1 � log( �
�0
//; if � < �0

max � > �0

Where max D �b�0
4�.1��/

and �0 D 15ı, � is shear modulus, � is the Poisson coefficient and
r0 the dislocation core radius. This model offers a simpler way of calculating energy if
spacing d of dislocations in a grain boundary and core radius ro of dislocation are known.
The number of dislocations n present in a grain boundary is given by n D 1

d
D

�
b
and the

energy of a grain boundary reads
� D nEsd (1.17)

Where Esd D �b2

4�.1��/
ln
�
d
ro

�
is energy of a single dislocation. Figure 19 b) compares Molec-

Figure 19: a) Comparison of calculated by molecular dynamics (Chandra and Dang, 1999;
Uesugi and Higashi, 2011) and experimental (Otsuki and Mizuno, 1986) Energy of sym-
metric tilt grain boundaries with misorientation axis Œ110� in pure aluminium b) compar-
ison of energies from Read-Shockley model and simulation of CSL symmetric tilt grain
boundaries along[110] axis in pure Nickel (Sangid et al., 2010)

ular dynamics results from Sangid et al (Sangid et al., 2010) and from Read-Shockley
model for low angle symmetric grain boundaries along Œ110� axis in pure Nickel. The
model of Read and Shockley does not consider all macroscopic degrees of freedom of a
grain boundary.
The most recent model of Bulatov et al.(Bulatov et al., 2014) associates all five macro-
scopic degrees of freedom with grain boundary energy. This model is the first attempt
of this kind. It is based on interpolation which is done in two consecutive steps. The
first step is to quantify and fit the grain boundary energy variation within a sampled
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low dimensional subsets of the five macroscopic space. The second step is to use the fit-

Figure 20: Fitted energy of symmetric (a) and asymmetric tilt grain boundaries against
rotation angle � and asymmetric angle � for Nickel (b) tilt grain boundaries in Ni, Al,
Au, Cu (Bulatov et al., 2014).

ted lower dimensional subsets as scaffolding to build a five dimensional energy functions.
Here, the scaffolding is selected based on energy criterion. Only subsets of a five space
where energy is locally minimal with respect to the variation in direction orthogonal to
the subsets are selected. The interpolated five dimensional energy function is simplified
in a sense that it requires only two element specific parameters and all others are similar
for all metals. Due to availability of atomistic data, this function has been successfully
tested on four FCC metals ( Ni, Al, Au and Cu) as figure 20 show. However, there is still
much to understand regarding the evolution of grain boundary energy, up to date, there
is no predictive model that takes into account all macroscopic and microscopic degree of
freedom of a grain boundary.

1.3.2 Grain boundary migration

Grain boundary motion is viewed in the following as the growth of grain I at the expense
of grain II and vice versa. In other words, the GB migration transforms the shrinking
grain into the growing grain by rotational transformation. The motive force (F) for grain
boundary migration is the minimisation of free energy G of the system (Dimitrov, 1975),
which might result from lattice defects and asymmetry between the grains abutting a
grain boundary.

F D �gradG (1.18)
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Lowering energy in the system by migration of grain boundary is achieved through reduc-
tion of a) grain boundary area (Cahn and Hoffman, 1974; Dimitrov, 1975; Gottstein and
Shvindlerman, 2009a), b) difference in elastic strain energy (Dimitrov, 1975; Gottstein
and Shvindlerman, 2009a; Mendelev et al., 2013), c) magnetic energy (Dimitrov, 1975;
Gottstein and Shvindlerman, 2009a; Molodov et al., 1997, 1998b; Sheikh-Ali et al., 2003a,b)
d) elastic distortion or change in energy accross the grain boundary due to thermal fluctu-
ations (Bai et al., 2015; Gottstein and Shvindlerman, 2009a) e) migration by absorption
of dislocations, point defects at the GB surface (Dimitrov, 1975) and f) electric energy
(Dimitrov, 1975). In some special cases such as symmetric systems in which no energy
gradient between adjacent grains is possible, grain boundary migration can be induced
by applying external mechanical force (Janssens et al., 2006). In general, describing grain
boundary evolution both quantitatively and qualitatively is of considerable practical in-
terest. It allows determining the evolution of microstructure during thermo-mechanical
processing and assessing its effect.

1.3.2.1 Driving force for grain boundary migration

The driving force for grain boundary migration is referred to such factor that triggers a
grain boundary motion to decrease energy of system. For example, the force due to the
curvature of grain boundary also known as capillary force. This driving force is stored
in a grain boundary as the energy per unit area (Sutton, 1996; Priester, 2012). During a
grain boundary migration, a grain boundary moves towards its local center of curvature
to reduce the GB energy. This force F was reported by Cahn and Hoffman (Cahn and
Hoffman, 1974; Hoffman and Cahn, 1972) to be a function of grain boundary energy  ,
the curvature k and inclination angles �1 and �2 along the directions corresponding to
the curvature.

F D . C  00/k (1.19)

Where  is the surface free energy,  00 is the second derivative with respect to the orien-
tation of the surface normal and k is the he curvature (Du et al., 2007). This formula has
been employed for various grain boundaries geometry such as a) hyperbola-like shapes
(Masteller and Bauer, 1979; Sun and Bauer, 1970), quarter- and half-loops (Furtkamp
et al., 1998) and even cylindrical shapes (Zhang et al., 2006a).

Difference in elastic energy

The gradient in elastic energy can be introduced in a bicrystal by exerting a strain � on
a bicrystal. It produces an elastic strain energy E1 in grain one and E2 in grain two. The
driving force for migration is the difference (�E) in elastic deformation density (Zhang
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et al., 2004b).

�E D E2 �E1

E D
1

2
Cijkl�ij �kl

(1.20)

Where Cijkl is the stiffness tensor, �ij and �kl are strains. It is important to note that
�E across a grain boundary is produced whenever the orientation of the grains differs in
a such way that the strain applied to both grains produces different strains in each grain.
In a strained bi-crystal of asymmetric tilt grain boundary, the driving force E2 for the
upper grain rotated around h001i by an angle � with respect to the lower grain and E1
for lower grain respectively are determined from equation 1.21.

E1 D
.C11 � C12/.C11 C 2C12/

C11
�2

E2 D
.C11 � C12/.C11 C 2C12/Œ8.C11 � C12 C Ca/ � Ca.1 � cos(4�//�

2Œ4C11.C11 � C12 C Ca/ � .C11 C C12/Ca.1 � cos(4�//�
�2

Ca D 2C44 � C11 C C12

(1.21)

The difference in elastic deformation density �E reads

�E D
.C11 � C12/.C11 C 2C12/

2Casin2.2�/
C11Œ4C11.C11 � C12 C Ca/ � .C11 C C12/Ca.1 � cos(4�//�

�2 (1.22)

� is the only parameter controlling the magnitude of driving force. Thus, there is a linear
correlation between the driving force and �2 as figure 21 shows. Although this force has

Figure 21: Elastic driving force for grain boundary migration as function of �2 (OMAR,
2019; Zhang et al., 2004b).

formed the basis of the early investigations of gain boundary migration (Mendelev et al.,
2013; Yan and Zhang, 2010; Zhang et al., 2006a; Zhang and Srolovitz, 2006; Zhang et al.,
2007) in atomistic simulations, it has limitations. It requires the strain produced in both
grains to differ. This dependence on asymmetric nature of the grain boundary limits the
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number of grain boundaries that can be studied this way.

Energy due to stored dislocations

A grain boundary constitutes obstacle to the motion of dislocations since the direction of
the sliding from one grain to another grain is not always preserved following its passage
through the interface. The resulting accumulation of dislocations at grain boundary pro-
duces an elastic force due to elastic field of dislocations which can move a grain boundary.
A rough estimate of the driving force (F) is proportional to the density of dislocations
(�%). With � the shear modulus and b is Burger’s vector (Priester, 2012).

F / �b�% (1.23)

Note that some dislocations may also react with GB leading to the formation of defects
at the GB surface that may promote or impede the migration of GB.

Synthetic driving force

In contrast to previous case, this is often used in atomistics, and can maybe be related to
the more general generalised motive forces in theories. For symmetric grain boundaries,
instead of providing a disparate driving force, a virtual force based on atomic orientation
is used (Janssens et al., 2006; Olmsted et al., 2009c). It is an artificial force in a sense
that it does not rely on or be directly associated with any physical source of driving force.
This driving force centres on an idea that an atom being in an environment of a certain
crystal orientation exhibits an anisotropic excess energy resulting from a localised bond
distortion. By providing extra energy to atoms with a chosen local crystallographic orien-
tation, a bulk driving force is imposed that moves a grain boundary to minimise energy
of the system by consuming higher energy grain. This type of driving force is preferable
over the conventional driving forces. Therefore virtual driving forces are very common
in molecular dynamics simulations because they do not depend on anisotropic nature of
a material or a grain boundary. More details information on synthetic driving force are
given in section 2.5.5 of this textbook.

1.3.2.2 Mobility of grain boundary

In both experimental and computational studies, the main grain boundary property mea-
sured during migration is mobility m. Mobility describes the ratio of steady state velocity
v over the applied driving force F .

v D mF (1.24)
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Mobility should be expected to be function of the degrees of freedom of a grain bound-
ary (Janssens et al., 2006; Priester, 2012; Winning et al., 2002; Zhang et al., 2005), grain
boundary composition (Molodov et al., 1998a), temperature (Homer et al., 2014a; Hum-
berson, 2016; OMAR, 2019) and the magnitude of applied driving force (Priester, 2012;
Zhang et al., 2004a; Deng and Schuh, 2011b; Homer et al., 2013) but not the nature of
driving force (Lobkovsky et al., 2004; Mendelev et al., 2013; Gottstein and Shvindlerman,
2009b). It is not certain that the mobility is an intrinsic properties of GB, as GB struc-
ture or defect present at the GB suraface may affect mobility. The most recent calculation
of mobility on a large set of grain boundaries is a work of Homer et al. (Homer et al.,
2014b) who determined grain boundary mobility for a set of 388 grain boundaries and
the work of El Omari and Queyreau (OMAR, 2019) on grain boundaries of type †7 with
misorientation axis h111i. Since mobility depends on various aspects of GB, and exper-
iments provide only an average measure of m at the macro-scale, atomistic simulations
have been particularly useful to investigate it in correlation with elementary mechanism
of grain boundary migration. We will focus on these simulation results here. For example,
results from grain boundaries investigated by Homer et al. (Homer et al., 2014b) which
are shown in figure 22.

Dependence of mobility on temperature

One can readily notice from figure 22 that the dependence of mobility on temperature
varies from one grain boundary to another. If grain boundaries are categorised following
the dependence of their respective mobility on temperature, one can notice that there are
3 main groups which are:

1. Athermal grain boundaries: these are grain boundaries with mobility that does not
depend on temperature change (O’Brien and Foiles, 2016; Homer et al., 2015).
Derivative of the mobility as function of temperature reads,

dm

dT
D 0 (1.25)

2. Antithermally activated grain boundaries: There are grain boundaries that are asso-
ciated with mobility that decreases with temperature increasing (thermal damping)
(Deng and Deng, 2017; Homer et al., 2015). The mobility is inversely proportional
to temperature as equation 1.26 shows in which n is a constant.

m.T / /
1

T n
(1.26)

3. Thermally activated grain boundaries : these are grain boundaries with mobility
that increases with temperature. Their mobility dependence on temperature follows
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Figure 22: Temperature dependence of mobility of different grain boundaries investigated
in the work of Homer (Homer et al., 2014b) a) Thermally activated b) thermally activated
with two different activation energies c) thermally activated with roughening d) thermally
activated with dynamic roughening e) antithermally activated f) antithermal g) antither-
mal h) athermal i) antithermally activated at lower temperature and thermally activated
at higher temperature j) thermally activated at lower temperature and athermal at higher
temperature k) athermally activated at lower temperature and antithermally activated at
higher temperature I) immobile at lower temperature and antithermal at higher temper-
ature m)immobile at lower temperature and athermal at higher temperature n)immobile
o) temperature dependence is not clearly defined. The solid lines in (a), (b), (c), (d), (i)
and (j) are thermally activated mobility fit. The two solid lines in (b) shows two different
activation energies. The dashed line in (e) is the fit and the dotted line in (h), (j), (k) and
(m) are fits as well.
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Arrhenius type equation (Sutton, 1996; Priester, 2012; Race et al., 2014) which
reads.

m.T / / e
� �G
kBT (1.27)

Where kB stands for Boltzmann’s constant and �G the Gibbs free energy associated
to the migration process (Gottstein et al., 1998; Sutton, 1996).

However, some grain boundaries from figure 22 do not show mobility with a clearly de-
fined temperature dependence. Until now, the reason behind different temperature de-
pendence remains mostly not understood. Some recent experimental (Cantwell et al.,
2015; Gottstein and Shvindlerman, 2009b) and computational (Homer et al., 2014b, 2015;
O’Brien and Foiles, 2016) studies have associated mobility with atomic structure of GB.
For example, some studies have related athermal motion to low energy faceted grain
boundaries (Babcock and Balluffi, 1989; Gottstein and Shvindlerman, 2009b; Hirth et al.,
2006; Jung et al., 2013; O’Brien and Foiles, 2016). For some other grain boundaries, the
temperature dependence may not be unique. For instance, the work of Deng et al. (Deng
and Deng, 2017; Homer et al., 2015) has demonstrated that †5.210/ exhibits a thermally
activated motion at lower temperature while it responds differently at higher tempera-
tures. This kind of work demonstrates once again the complex dependence of mobility
on temperature and the importance of taking into account atomic structure of a grain
boundary to describe mobility.

Dependence of mobility on misorientation angle �

It is important to understand the dependence of mobility on misorientation angle between
grains as this can allow to develop generic models for predicting mobility functions that
take into account macroscopic degrees of freedom of a grain boundary. In the past, some
attempts have been made to correlate mobility to the disorientation angle. For example,
an atomistic study of Olmsted et al. (Olmsted et al., 2009c) on a set of 388 nickel grain
boundaries and the work of El Omari and Queyreau (OMAR, 2019) all using a synthetic
driving force molecular dynamics method. The results from both studies are shown in
figure 23. Both studies have concluded that there is no simple function that can capture
the correlation between mobility and misorientation angle � .

1.3.2.3 Dependence of grain boundary mobility on driving force

Another key parameter in the mobility function is the nature and amplitude of driving
forces (Bainbridge et al., 1954). In some case, the linear correlation between velocity and
driving is not met. Atomistic studies of Deng et al. (Deng and Schuh, 2011b) utilising
an adapted interface random walk method, and numerical study of Constantini et al.
(Costantini and Marchesoni, 1999) and Lacasta et al (Lacasta et al., 2005) have reported
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Figure 23: a) Mobility against the misorientation angle � for EAM Ni of 388 grain bound-
aries obtained at 1400 K by applying a driving force of 0.025 eV (Olmsted et al., 2009c).
Note that the solid line is the mobility resolution limit of the MD simulation used in study
of Olmsted et al. which is obtained by excluding unresolvable mobilities and incoherent
†3 twin boundaries. See (Olmsted et al., 2009c) for more details on the procedure of how
to obtain this resolution. (b) Mobility versus misorientation angle � for EAM Ni symmet-
ric †7 tilt grain boundaries with misorientation axis Œ001� obtained by applying a driving
force of 0.025 eV at different temperatures (OMAR, 2019).

Figure 24: A map of modes of migration of symmetric †5.310/ tilt grain boundary. The
dashed lines separate diffusional (first linear regime), transition, and ballistic (second
linear) regimes of grain boundary motion. To convert the driving force from eV to Pascal,
consider that 1eV � 1:47 � 1010Pa: (Deng and Schuh, 2011b).
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that the lack of linear dependence of velocity on driving force can originate from the mag-
nitude of the applied motive force. Those studies have shown that the linear dependence
exists in two situations. The first linear regime which is denoted difusional regime in the
study of Deng et al. (Deng and Schuh, 2011b) is when the driving force is sufficiently
small (P < kBT ). In this situation, atoms only oscillate around their equilibrium posi-
tions with occasional jump of the energy barrier back and forth in a random manner.
The second linear regime denoted ballisitic regime in the study of Deng et al.(Deng and
Schuh, 2011b) is when driving force is larger enough (P > kBT ). A large number of
atoms acquires enough mechanical energy to escape energy barrier. Elsewhere there is no
linear dependence of velocity on driving force and in the study of Deng et al. (Deng and
Schuh, 2011b), this regime is denoted transition regime. Figure 24 shows a temperature
(T) -driving force (P) map for symmetric tilt grain boundary †5.310/. It is a map built
using the local slope value of ln(v) vs ln(P ) at various temperatures and driving forces.
It shows three regimes explained above, in addition, it shows that transition from one
regime to another depends on temperature and applied driving force.

1.3.3 Migration laws to predict grain boundary velocity

The mobility of GB during their migration has certainly attracted a lot attention from
experimental and simulation investigations. From equation 1.24, mobility describes the
ratio of the steady state velocity (v) over the applied driving force (P ). Based on ex-
perimental studies (Gottstein and Shvindlerman, 2009b), mobility (m) in the exponential
regime follows an Arrhenius type relation which reads

m D mof .T; P / (1.28)

Where mo is a constant which was reported by some studies (Race et al., 2014; Zhou
and Mohles, 2011; Priester, 2012; Sutton, 1996) to depend on the distance moved by a
grain boundary, attempt frequency and driving force. On the other hand, the function
f .T; P / D e

� �G
kBT , in which kB stands for Boltzmann’s constant and �G for Gibbs free

energy, describes all types of work (e.g. mechanical) driving a grain boundary motion
(Gottstein et al., 1998; Sutton, 1996; Rajabzadeh et al., 2013). The Gibbs free energy
reads

�G.P; T / D �H � T�S (1.29)

in which �H and �S are the enthalpy and entropy of activation of grain boundary mi-
gration, respectively. The function f .T; P / depends on the type of grain boundary, tem-
perature, magnitude of applied driving force and size of the simulation box (Rajabzadeh
et al., 2013) (through the elastic interactions between defects, see later). Unfortunately,
until now, there are no generic models to predict mo and �G in a large T �P parametric
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space. This urges a necessity of models that can work for several grain boundaries rather
than for some specific grain boundaries. For example, in the past a model for predicting
mo for thermally activated grain boundaries that move by nucleation and propagation of
step was devised for pure twist †5, †13 and †17 (Sutton, 1996). It reads

mo D
n2�2N�o

kBT
(1.30)

Where n is average number of atoms transferred in a shuffle, N is total number of Kinks
on a step per unit boundary area, � is atomic volume and �o is Debye frequency. In
addition to being specific for some particular grain boundaries, it is also difficult to im-
plement. On the other hand, quantifying the entropy term in equation 1.29 at operational
temperature required for hot working a metal is challenging. For instance, the available
method which is the Nudge Elastic Band (NEB) method (Henkelman et al., 2000) is only
used to provide a direct link to quantifying the activation energy �G associated with
grain boundary migration at only 0K. This makes it less relevant, since the hot work of
metal uses often temperature higher than 0:4Tm (Tm is melting temperature). The En-
tropy term is however commonly considered to be small. Most recently, a new model to
predict �G was developed for grain boundaries whose motion is mediated by nucleation
and propagation of a pair of disconnections (Rajabzadeh et al., 2013). In this model, �G
is estimated using the elasticity theory in which the excess energy �G.w/ associated with
the existence of a pair of disconnections and their propagation under applied mechanical
work is estimated as:

�G.w/ D 2�form.rc/C �inter.w; rc/C �mech.w/: (1.31)

Where w is the distance between two disconnections, rc is the core radius. Moreover,
�form.rc/, �inter.w; rc/ and �mech stand for energy required for formation of a pair of
disconnections, energy from elastic interaction between disconnections and their image
and the work of internal force, respectively. Since migration of some grain boundaries can
involve the formation of configurations (known as metastable configuration) different from
the ground state configurations, it is a challenge to quantify energy associated with the
formation of a pair of disconnections. Consequently this model works perfectly by fitting
to data points from NEB (Nudge Elastic Band) calculations.

1.3.3.1 Shear coupled grain boundary migration

The motion of some GBs is coupled with a tangential translation of grain two with re-
spect to grain one (Sutton, 1996; Priester, 2012). Regardless the misorientation angles � ,
this migration mechanism occurs in most tilt grain boundaries. The figure 25 shows the
principle of shear coupled grain boundary migration which was confirmed by theoretical,
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Figure 25: Migration of grain boundary by a distance h from the initial position (right
figure) when a shear illustrated by blue arrow is applied. The grain 2 (Gr2) translates by
a distance (shear displacement) d while being consumed (Gautier et al., 2021).

experimental and computational studies (Cahn et al., 2006; Caillard et al., 2009; Homer
et al., 2013; Molodov et al., 2007; Mompiou et al., 2009; Thomas et al., 2017). It is the one
of the most investigated grain boundary migration mechanism. The tangential velocity vt
is often related to the normal velocity as in equation 1.24 and reads;

vt D ˇv (1.32)

where ˇ is shear coupling factor and ˇ D d
h

(Gautier et al., 2021; Cahn and Taylor,
2004; Cahn et al., 2006; Rajabzadeh et al., 2013). The study of Cahn et al. (Cahn et al.,
2006) has reported ˇ to increase with the grain boundary misorientation and it might
even go up beyond 50% for symmetric tilt grain boundaries in range 30ı to 40ı (Gorkaya
et al., 2009; Ivanov and Mishin, 2008). Figure 26 shows an example of shear coupled grain
boundary migration mechanism in †5.210/Œ001� symmetric tilt grain boundary obtained
by atomistic simulations using EAM potential at 400K and 0.025 MPa (OMAR, 2019).

1.3.3.2 Elementary mechanisms of grain boundary migration

Migration usually occurs through localised processes at the grain boundary surface rather
that a continuous global process. Identifying elementary mechanisms of migration is key in
understanding migration and possibly obtaining general trends in migration or justifying
migration function. To identify mechanism of grain boundary motion requires following
each atom during grain boundary migration. This is the first advantages of molecular
dynamic simulations (Kim et al., 2011; Lee and Choi, 2004; Olmsted et al., 2009b,c;
Ratanaphan et al., 2015; Restrepo et al., 2014). An other advantage of molecular dynamics
simulations over experimental is that spacial and temporal coordinates of each displacing
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Figure 26: Shear coupled grain boundary migration in †5.210/Œ001�. The black atoms
belongs to the defect and the green atoms are in perfect FCC lattice position. he blue
atoms are used as reference (OMAR, 2019).

atom are stored at every time step for analysis after simulation. Therefore, molecular
dynamic simulations allow to classify different mechanisms of grain boundary migration.

Migration by atomic shuffling

In this type of migration, the motion of a grain boundary occurs by the stochastic re-
arrangement of atoms in the grain boundary (Sutton, 1996). The motive for shuffling is
the minimisation of energy of the system which is achieved by rotating one grain to pro-
duce similar orientation for both grains (Sutton, 1996; Priester, 2012). In singular grain
boundaries, shuffling mechanism occurs by lateral displacement of pure steps accompa-
nied by rotation of columns of atoms (Sutton, 1996). This mechanisms can be thermally
or athermally activated.
This migration mechanism was confirmed by a number of numerical studies. For example,
this migration mechanism was reported by Jhan and Bristowe (Jhan and Bristowe, 1990)
from atomistic simulation of flat †5, †13, †17 and †29 pure twist in pure gold (Au) with
misorientation axis Œ001� using an embedded atom potential for gold (Foiles et al., 1986).
For †5, migration occurred by a shuffle of a group of 4 atoms within the coincidence
site lattice unit cell (CSL) as figure 27 shows. The same mechanism was reported in pure
twist copper by Schönfelder (Schönfelder et al., 2005) and latter by Yan and Zhang (Yan
and Zhang, 2010; Zhang et al., 2006b) in different Œ100� twist boundaries in pure Nickel.
The way atoms shuffle and the number of atoms involved depend on the type and atomic
structure of a grain boundary.
For example, from an atomisistic study using EAM potential and difference in elastic en-
ergy as driving force, Yan and Zhang have reported the shuffle to involve a group of four
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Figure 27: Shuffling of a group of four atoms in CSL unit cell of †5Œ001� pure twist as
function of time a) 3ps b) 4ps, c) 5ps and d)7ps. The vertical and horizontal directions
are parallel to CSL unit vectors and empty circles represent atoms in grain 1 and filled
circle representing atoms in second grain (Jhan and Bristowe, 1990)

atoms in†5Œ001�.36:87ı/ twist grain boundary in Ni where in pure Twist†13Œ001�.22:63ı/
a string-like motion of groups of atoms propagates along the screw dislocation network.
Similar migration mechanism was observed from atomistic simulation of †5Œ100� asym-
metric tilt grain boundaries in pure Nickel by Zhang and Srolovitz (Zhang and Srolovitz,
2006) using EAM potential and difference in stored elastic energy as motive force for grain
boundary migration.

Migration by nucleation and propagation of disconnections

Disconnections are linear defects with both dislocation and step natures (Sutton, 1996).
Disconnections can be formed from the decomposition of lattice (regular) dislocations into
the grain boundary, but can also spontaneously form as pair or islands at the surface of
the grain boundary. Similarly to dislocations they are as well characterised by a Burger
vector

�!
b , and step height h (Han et al., 2018; Wei et al., 2019). Under different competing

driving forces sufficient enough to overcome energy barrier for grain boundary migration;
a pair of disconnections of opposite sign nucleate. They propagate along a grain boundary
and once span the simulation box, a grain boundary makes a step forward. A lot can be
understood from the dichromatic pattern of a grain boundary regarding the details of
a disconnection to nucleate. According to Bollmann (Bollmann, 1967), the vector

�!
b dsc

connecting the lattice points of the Displacement shift complete (DSC) lattice is equal to
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Figure 28: a)The dichromatic patterns of a .210/ grain boundary of type †5. Green and
brown atoms belong to the grain one and grain two of the bicrystal.

�!
b 110 and h110 are

Burgers vector and step of a disconnection of type h110i. b) The Burgers circuit built at
the disconnection nucleation site in the same grain boundary. The blue and red atoms
belong to different lattice planes in the y direction. h and

�!
b stands for step and Burgers

vector a disconnection (Deng and Deng, 2017) as in the previous case.

the closure failure vector which is Burgers vectors always obtained from Burgers circuit
around a defect (Read, 1953). The

�!
b dsc vector can be obtained from the dichromatic

complex. Then, the height h of a disconnection is given by

h D
�!
b dsc:

�!n (1.33)

Where �!n is the normal of a grain boundary plane (Hirth et al., 2007). Figure 28 illustrates
the structure of a disconnection in a bicrystal using a dichromatic pattern. It shows the
height of a disconnection to form and its Burgers vector obtained from Burgers circuit
around a disconnection. The grain boundary migration mechanism by nucleation and
propagation of disconnections can occur in thermally activated (Combe et al., 2019) as
well as in athermally activated grain boundary migration (Babcock and Balluffi, 1989;
Gottstein and Shvindlerman, 2009b; Hirth et al., 2006; Jung et al., 2013; O’Brien and
Foiles, 2016).

Migration by dislocation gliding

In this type of grain boundary migration, all structural units are simultaneously trans-
lated. A simultaneous translation of structural units is due to an array of grain boundary
dislocations that simultaneously glide. Hence, the grain boundary moves as a whole and
its surface remains flat during migration. This mechanism is often observed in low angle
grain boundaries. This is due to the fact that these grain boundaries are often made of a
periodic arrangement of dislocations with distant dislocation cores. It is thermally acti-
vated but in some special cases it is anti-thermally activated in which a grain boundary
moves without an associated friction with the lattice (Homer et al., 2014b; OMAR, 2019).
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Migration by faceting

It is a mechanism observed often in mixed grain boundaries. Mixed grain boundaries
migrate by producing facets connected by other lower dimensional defects, for instance,
dislocations or disconnections. Migration is produced by advancement of either those lower
dimensional defects or facets. Figure 29 shows as an example, the screenshot of migration

Figure 29: Migration of †7.471/Œ111� mixed grain boundary by faceting (OMAR, 2019).

of †7.471/Œ111� mixed grain boundary at different time steps.

1.3.4 Interaction of grain boundary with dislocation

In real polycrystalline materials, other defects are already present on both side of a mi-
grating grain boundary and in particular dislocation. Dislocation can experience different
interactions with grain boundary, from the distance attraction or repulsion, impeding,
complete or partial absorption, partial or complete direct transmission. In turn, dislo-
cation presence may improve or impede GB motion. The resulting overall properties of
a polycrystalline strongly depends on the nature of such interaction (De Koning et al.,
2003; Kacher et al., 2014; Wang and Misra, 2011; De Koning et al., 2003). In general,
the mechanisms of interaction depends on local atomic structure of a grain boundary
(Tucker and McDowell, 2011; Tucker et al., 2010; De Koning et al., 2003), orientation and
direction of incident dislocations (Gu et al., 2014; Zhu and Gao, 2012; De Koning et al.,
2003). The following section focuses on fundamental aspects of different types of grain
boundary-dislocation interaction.

1.3.4.1 Dislocation pile ups at a grain boundary

During plastic deformation of polycrystalline materials, dislocations move inside grains
until they reach grain boundaries. First, there is a remote interaction between the stress
fields from the dislocation and the grain boundary (the one from the grain boundary
usually being short range), then at close range, it is generally not easy for a dislocation
to enter a grain boundary as a core reaction is required and thus activation energy.
Grain boundaries impede propagation of dislocations to different degrees depending on
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the density of dislocations (Shen et al., 1988). Thus, dislocations form a pile up behind
a grain boundary with length L as shown in figure 30. Dislocations continue to pile up

Figure 30: Dislocation pile up behind a grain boundary (Voyiadjis and Yaghoobi, 2019)

until a stress concentration (Tpileup) due to dislocations reaches a certain critical value
(Voyiadjis and Yaghoobi, 2019).

Tpileup D nTs (1.34)

With n the number of dislocations and Ts slip stress. This induced stress can be related
to the length of pile-up by equation 1.35.

Tpileup D
L

A
T 2
s (1.35)

where A D �b

2�
for screw dislocations and A D �b

2�
.1 � �/ for edge dislocations in which

�, � are shear modulus and � the Poisson constant. When critical stress is reached at
grain boundary, it can nucleate plastic deformation in adjacent grains or even nucleate a
crack at the boundary. Dislocation pile-ups are more pronounced in processing methods
aiming at improving mechanical properties of a metal by reducing the size of grains. In
this processing methods, dislocation pile ups and interaction among themselves at grain
boundary improve mechanical properties (Cottrell and Bilby, 1949; Eshelby et al., 1951)
by what is known as Hall-Petch effect (Hall, 1951). This effect is mathematically expressed
as

�y D �o C
ky
p
d

(1.36)

Where �y and �o are resultant yield stress and initial yield stress of crystals respectively,
d is grain size and ky a constant that expresses the resistance of a grain boundary of
being crossed by a dislocation. The latter depends upon material, texture, temperature,
potentially extent of deformation of a material.
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1.3.4.2 Combination between lattice and grain boundary dislocation

Contrary to the previous case, a reaction between lattice dislocation with Burgers vector
bm and grain boundary’s intrinsic dislocation with Burgers vector bi occurs to produce a
dislocation be which integrates within a grain boundary.

bm C bi D be (1.37)

Assuming that the Burgers vector of boundary and lattice dislocations are very close,
This reaction is energetically favourable. In this particularly reaction, a sessile intrinsic
dislocation reacts with a glissile dislocation from lattice to produce a glissile extrinsic
dislocation as figure 31 b) shows.

Figure 31: Types of interaction between intrinsic dislocation bi and lattice dislocation
bm to produce an extrinsic dislocation be a) before reaction b) combination process c)
decomposition (Priester, 2012).

1.3.4.3 Decomposition of a lattice dislocation at grain boundary

Once a lattice dislocation of Burgers vector bm impinges a grain boundary, it produces a
stress imbalance in grain boundary structure. The decomposition of lattice dislocation bi
into two (bc and bg) or more dislocations occurs within a grain boundary to accommodate
this induced stress. The Burgers vectors (bc and bg) of resulting dislocations are that of
DSC lattice (Dingley and Pond, 1979). This dislocation reaction is shown in figure 31 c).

1.3.4.4 Transmission of a lattice dislocation across a grain boundary

In some cases, the driving force for migration of a lattice dislocation is enough to make
this incident dislocation crosses a grain boundary. This reaction is generalised as

�!
b r D

�!
b 1 �

�!
b 2 (1.38)
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Where
�!
b r ,
�!
b 1,
�!
b 2 are Burgers vectors of a partial dislocation staying in a grain boundary,

incident dislocation and emitted dislocation respectively. The accommodation of resulting
stress in grain boundary is achieved through three different mechanisms depending on slip
planes of either side of a grain boundary.

Figure 32: Total (a) transmission and (b) absorption of incident dislocation.

1. If
�!
b r is a null vector, there is no dislocation left in a grain boundary. The incoming

and emitted dislocation have parallel Burgers vectors. In this case, slip planes of
incident and emitted dislocation have same trace in a grain boundary (see figure 32
(a)).

2. if
�!
b r =

�!
b 1, there is a total absorption of incident dislocations at grain boundary

(see figure 32 (b)). This special case, only happens when the incident dislocation
has a Burgers vector of a DSC lattice (Priester, 2012).

Figure 33: (a) direct and (b) indirect partial transmission of incident dislocation (OMAR,
2019)

3. if
�!
b r is not null, there are two possible cases:
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(a) Direct and partial transmission: This is a transmission mechanisms observed
when the character of incident dislocation is an edge. An incident dislocation
impinges a grain boundary and crosses it immediately by leaving a residual
dislocation in a grain boundary (figure 33(a)). This is due to two slip planes
on either side of a grain boundary which are not parallel.

(b) Indirect and partial transmission: This is a special case where incident dis-
location migrates a long a grain boundary before its emission to adjacent
grain(figure 33(b)).
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Summary

In this chapter, we saw that a polycrystalline microstructure is made of a network of grain
boundaries. Grain boundaries are mostly mobile and their rate of migration controls mi-
crostructure evolution. To successfully improve mechanical properties and durability of
a polycrystalline materials requires a clear a) description of a grain boundary, b) under-
standing of factors that influence grain boundary migration and c) deep understanding
of elementary mechanism of migration. This chapter has presented different descriptions
of grain boundaries and they are based on geometrical order (CSL grain boundaries),
mechanical stress order (Discrete and continuous approach to describe a grain boundary
as an array of dislocations) and atomic order ( structural unit) of a grain boundary. What
is common for all these descriptions is that describing a grain boundary unambiguously
is very challenging and requires a clear understating of its atomic structure that can only
be assessed by atomisitic methods.

In addition, this chapter has demonstrated the importance of atomic structure of a
grain boundary in conditioning both energy and kinetics of a grain boundary. For exam-
ple, grain boundary energy and mobility vary from one misorientation angle to another
and from one rotation axis to an other. In addition, atomic structure controls the response
of a grain boundary to factors (temperature, driving force, interaction with dislocations,
impurities etc...) that impact its motion. For instance, the dependence of grain boundary
mobility on temperature ranges from thermal, athermal to antithermal. In addition, the
dependence of GB on driving force can either be linear or exponential. Indeed, the elemen-
tary mechanism of grain boundary and interaction with other defects vary from one grain
boundary to another. Thus, developing models that capture evolution of a grain boundary
would require a deep understanding of the atomic structure of grain boundaries. Indeed,
in the past some studies have attempted to develop such mobility functions. However,
these models are developed for some specific grain boundaries with specific elementary
mechanism of migration. Consequently, up to date, there is still a lack of a generic model
that can work on several grain boundaries rather than for some specific grain boundaries.

The contents of this chapter will constitute a basis of the first part of this manuscript
whose goal is a) to better understand both static and dynamic properties of grain bound-
aries in FCC polycrystalline materials and b) to develop generic mobility functions that
work for several grain boundaries.
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Chapter 2

Atomistic calculations

2.1 Introduction

Previous chapter showed that the static and dynamic properties of grain boundaries such
as energy, mobility and migration mechanism depend upon their atomic structure. Thus,
understanding and later predicting the GB migration is thus intimately related to GB
atomic structures. Thus, an important challenge is to characterise and track individual
atoms composing GB (Chookajorn et al., 2012; Jin et al., 2014; Petch, 1953). For ex-
perimental studies, tracking atoms in a moving grain boundary is a challenge. Among
experimental techniques, the transmission electron microscopy (TEM) has been partic-
ularly useful for the community, however, it is limited to very special grain boundaries
and in situ, high-resolution transmission electron microscopy (HREM) can not track the
motion of individual atoms in a moving grain boundary (Merkle et al., 2004). Contrarily
to experimental methods, the intrinsic nature of atomistic methods makes them a pow-
erful tools for studying grain boundary evolution. In particular, the Molecular Dynamics
method offer the ability of tracking the motion of individual atoms. There are several
advantages of molecular dynamics for example:

1. Molecular Dynamics offers now the possibility to set up large-scale calculations
that span large section of the five-parameter crystallographic phase-space of grain
boundary geometry (Kim et al., 2011; Lee and Choi, 2004; Olmsted et al., 2009b,c;
Ratanaphan et al., 2015; Restrepo et al., 2014).

2. Molecular dynamics allows to investigate the details of the relevant mechanisms
in a well-controlled manner, which is significantly easier than in experiments with
polycrystals where several mechanisms are operative simultaneously .

3. An other important advantage of molecular dynamics studies over experimental
studies is the ability to provide the most detailed picture of what happens during
migration and reveal more information on elementary mechanisms of migration in
play.

Although, atomistic calculations offer many advantages over experimental studies, their
domain of applicability is somewhat still limited in terms of time scale and length scale,
despite progresses in the field. It is also important to note that atomistic systems are
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mostly good to simple systems, for which relevant semi-empirical interatomic potentials
exist, and may be a far cry from the reallity of metals containing impurities or metallic
alloys. Similarly to all simulation techniques, a trade-off must be found between physical
fidelity and computational cost of the simulations.

In brief, Molecular Dynamics consists of solving equations of motion of Newtonian
mechanics for N particles in the domain which results in a 3N set of equations to solve
simultaneously. The MD community has developed over the years very user-friendly sci-
entific codes, and it is easy to forget the complexity of doing MD simulations. In fact, MD
simulations may be very touchy in the sense that the physical results and their relevant
to the real materials depends upon a number of parameters as for example the size of the
simulation box, the boundary conditions and the simulation environment (temperature,
pressure etc..). We , therefore, start this section by presenting some key details regarding
the practical MD implementation.

2.2 Molecular Dynamics

In the last four decades, many changes have been permitted by the increasing power of
computational resources and reducing their associated cost. For the field of metallurgy,
several computer simulation methods have arisen to allow scientist to investigate some
aspects of grain boundaries that were then impossible to study with traditional research
method (e.g. experimental ones). Multiscale approaches have become a powerfull tool to
understand complex metallurgy and material behaviour. MD lies between at the lowest
lengthscale the density functional theory (DFT), that solve the Shroedinger equation of
a small set of atoms and mesoscale simulations that can be discrete in nature like Kinetic
Monte Carlo (KMC) or continuous like Phase Field (see figure 34).

2.2.1 Classical molecular dynamics

MD relies upon the resolution of Newtonian equations of motion for large ensemble of
classical particles whose interactions are described through a semi-empirical interatomic
potential (Mishin et al., 2010; Satoh, 2010). For example, molecular dynamics can allow
to look at energetics (ground state) of a possible atomic structure of GB, and allows to
track atom displacements related to GB migration to understand grain boundary migra-
tion mechanisms. Molecular Dynamics relies on the formulations of classical mechanics
proposed by Hamilton and Lagrange, that we present in next section.

2.2.1.1 Hamiltonian formulation

In an evolving system, even if the position and the force acting on a particle ’i’ of mass
mi change, the functional form of the Newton’s second law rests invariant (see equation
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Figure 34: A representation of different scales used in simulations in materials sciences.
Features are determined with DFT from the electronic structure, MD simulations are
used to study systems of thousands of atoms. At larger scale, continuum methods, such
as finite element method (FEM) or finite volume method (FVM) are used.

2.9). According to statistical physics, an atomistic classical system can be described by
position .ri/ and velocity ( Pri) (see figure 35). For an isolated system, the total energy Etot
(Kinetic energy plus potential energy) is conserved. This function called the Hamiltonian

Figure 35: Definition of position vector ri that locates particle i in the simulation box

whose value is constant in time denotes H (Haile, 1992).

H .rN ; PN / D constant (2.1)
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Where momentum on particle i is Pi D m Pri . For this particular system, the Hamiltonian
reads.

H .rN ; pN / D
1

2mi

X
i

P 2i C U.ri/ D Etot (2.2)

The general equation of motion is given by the time derivation of equation 2.1 and it
reads

dH

dt
D

X
i

@H

@Pi
: PPi C

X
i

@H

@ri
: Pri D 0 (2.3)

By taking the time derivation of equation 2.2 gives:

dH

dt
D

1

mi

X
i

Pi : PPi C
X
i

@U.ri/

@ri
: Pri D 0 (2.4)

The velocity of each particle can be found by comparing equations 2.3 and 2.4,

@H

@Pi
D
Pi

mi
D Pri (2.5)

The total force acting on a particle reads:

F D �
@.U.ri//

@ri
D �

@H

@ri
(2.6)

2.2.1.2 Lagrangian formulation

In constrast to Hamiltonian formulation, the Lagrangian L is given by the difference
between kinetic and potential energy (Torby, 1984). L reads

L . Pri ; ri/ D K.P.r/i/ � U.ri/ D
m Pr2i
2
� U.ri/ (2.7)

Following a similar demonstration as in the previous subsection, the force for each atoms
reads:

F D �
@.U.ri//

@ri
D
@L

@ri
(2.8)

2.2.1.3 Newtonian formulation

For a particle i translating from one place to another due to the force Fi exerted on it
by an external system. The motion and the applied force are explicitly related through
Newtonian second equation of motion:

�!
F i D miai D mi r̈ i D �

@.U.ri//

@ri
(2.9)

Where ai is acceleration of particle i at time t . The force �!F i expressions can also be
obtained analytically from the gradient of potential energy as defined above, if the latter
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is itself an analytical function (see later). From equations 2.6, 2.8, 2.9, we can readily see
that, for a multi-body system in Cartesian space, the Lagrangian and the Hamiltonian
equations reduce to the familiar Newton equation:

@L

@ri
D �

@H

@ri
D mr̈ i (2.10)

This is equivalent to 3N ODEs (force, velocity and positions) of second order, that are
coupled through the force �!F i , that needs to be solved. Consequently, this becomes in-
creasingly computationally expensive for a bigger system.

2.2.2 Numerical integration of equations of motion

The differential equations with respect to time from previous section are discretised using
various integration schemes. The quality of a Molecular Dynamics simulation strongly
depends on the quality of the integration scheme used therefore they need to be presented
shortly. Here we briefly give some general features of these schemes and how they are
derived. Most of them derive from the Taylor expansions for the positions, the velocity
and acceleration at time .t C�t/ and .t ��t/.

Verlet algorithm

The algorithm proposed by Verlet is one of the first introduced and it is still one of the
most used today (Allen and Tildesley, 2017; Satoh, 2010). By doing Taylor expansion,
one is able to derive the Verlet time integration below from equation 2.9.

ri.t C�t/ D ri.t/C
dri

dt
�t C

d 2ri

dt2
�t2

2
C ::: (2.11)

ri.t ��t/ D ri.t/ �
dri

dt
�t C

d 2ri

dt2
�t2

2
˙ ::: (2.12)

The future position ri.t C �t/ of a particle i is derived from the summation of both
equations (2.11 and 2.12) and rearranging the resultant which finally gives

ri.t C�t/ D 2ri.t/ � ri.t ��t/C ai�t
2 (2.13)

Interestingly, the calculation of the future position of atoms does not require the velocity
of the particle under consideration. In a similar way, velocity of particle i is calculated
from the future and previous positions as equation 2.14 derived from subtracting 2.12
from 2.11 shows:

dri.t/

dt
D
ri.t C�t/ � ri.t ��t/

2�t
(2.14)
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This Verlet algorithm is very advantageous in MD simulations not only due to its sim-
plicity but also on its capability of satisfying the time reversal symmetry contained in
the Newton’s equation of motion (Satoh, 2010) i.e if �t is replaced by ��t , equation
2.13 remains unchanged. The consequence of this symmetry is that if the course of time
is reversed at an instant time t, the trajectory of a particle retraces its steps back. Un-
fortunately, in practice, the rounding errors accumulated during simulation limit the re-
versibility especially when a large number of time integration steps is used. In general, the
most of the calculation time in Molecular Dynamics is consumed in force evaluations. It
means that the cost of calculating new positions is marginal. The precision of calculation
is estimated of about Nt�t4. On the other hand, there exist more sophisticated adapted
Verlet algorithms to integrate the equations of motion. Some examples of these algorithms
are given in the appendix A.1

2.2.3 Boundary Conditions

In molecular dynamics investigations, a material’s property to study often dictates the
choice of boundary conditions (BC) to utilise from a set of several existing and conven-
tional (BC). Although in molecular dynamics simulation, the intention is to simulate a
large system in order to statistically collect trends in properties over a large sample, the
computation cost of atomistic simulations dictates to simulate a smaller system of limited
number of atoms typically few millions of atoms (but systems up to billions of atoms are
now possible). When now considering reducing the size of the considered configuration ,
surface effects are introduced when the size of a simulation box is too small. Once more
a trade-off must be found.

Periodic Boundary conditions are often used in atomistic simulations to suppress
this issue (Allen and Tildesley, 2017; Satoh, 2010). These are boundaries that approxi-
mate a large system while starting from a smaller system such that the initial smaller
system becomes the basic building unit of the new bigger system. For example, if a small
system (illustrated in figure 36 (a) by gray coloured particles) contained in a square box
of width L. The application of Periodic Boundary Conditions (PBC) replicates the initial
small box in both directions. Figure 36 (a) shows all resulting replicas illustrated with
black coloured particles. Applying periodic boundary conditions generates extra 8 units
in a system whereas extra 26 units result if PBC are applyed in all 3D of the system. In
such a configuration, mass, energy and momentum are always conserved since the number
of atoms is the same and atoms undergo identical displacement in all boxes (Haile, 1997).
The conservation of the number of atoms in the system is always maintained because if
an atom leaves the initial box on one side, it is immediately replaced by its image from a
replica at an opposite side (this is illustrated by a black arrow in figure 36 (a)).
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Figure 36: (a) Applying Periodic boundary condition on a square box of width L. The
parent box contains gray particles and it is surrounded by its replicas with black particles.
(b) Calculation of the interactions on the dark gray particle using the cut-off radius
method. By using the minimum image model, only particles in the sphere of the cut-off
radius are taken into account.

For the special case of bicrystals containing a GB, the usage of periodic boundary
conditions virtually increases the size of the simulation box, but it also introduces an
extra grain boundary in a simulation box. This new grain boundary can interact with
an existing grain boundary if they are not distant enough. If there is no massive grain
boundary sliding within the system, this problem is solved by increasing the separation
distance up to a point where interactions are no longer significant albeit, the computing
time increases.
Conversely, this solution does not solve the problem of interaction between an atom and its
image. To address this problem, Metropolis et al.(Metropolis et al., 1953) have introduced
the concept of the minimum image . The minimum image concept consists of counting,
for each particle, only the forces coming from the neighbors located in a fictitious circular
(2D) or spherical (3D) zone centered on this particle and of size identical to the original
simulation box (figure 36 (b) shows). Note that, this cut off radius depends on inter-atomic
potential used and it allows counting interaction of an atom in the fictitious box only once.
Despite that, the utilisation of minimum image concept with periodic boundary conditions
puts on a criterion of the acceptable minimum size of the simulation box (greater than
twice the cut-off radius).

During simulations, grain boundary sliding can become significant. This affects mea-
suring dynamic properties of a grain boundary, therefore, it demands a proper attention.
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Grain boundary sliding is significant in low angle twists and some tilts grain boundaries
due to the low density of CSL lattice (Sutton, 1996). For these grain boundaries, grain
boundary sliding becomes more and more important that even 3D periodic boundary
boundaries might not be the best choice (Lutsko et al., 1988; Duparc and Torrent, 1994).

Figure 37: The simulation box is divided into two external layers of atoms I and II which
are frozen and translated by vectors t1 and t2 (Schönfelder, 2003).

Free Surface (FS) concept in the direction orthogonal to grain boundary plane
are deployed to solve this problem1. The use of free surfaces demands to use a robust
inter-atomic potential that is able to present more realistically the free surfaces. In this
work, we usefree surface in direction perpendicular to normal of grain boundary plane
and Periodic boundary conditions in direction parallel to normal of grain boundary plane
(see later).

1Free surfaces are surfaces that are subject to zero shear stress T .

�!n :T D 0 (2.15)
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2.3 Geometry of simulation Box

Carefully choosing and building initial atomic structure of a grain boundary for atomistic
simulations is very important for several reasons that are discussed in the following. We
will focus on CSL GB to be able to use PBC. Initial atomic structure conditions energy
of a grain boundary and potentially the defects that can form (Sutton, 1996) during mi-
gration when a grain boundary is exposed to an external driving force or temperature.
Since atomistic studies explore a specific grain boundary configuration from an infinite
set of possible configurations (if we consider all 9 degrees of freedom) of a given arbitrary
character (tilt, twist or mixed), it necessitates choosing a configuration with atoms prop-
erly oriented and this orientation has to respect the underlying CSL lattice geometry. In
addition, it requires to properly place the grain boundary in a simulation box in a way
that a grain boundary respects the lattice periodicity of the two abutting grains.
Solving mathematically the problems related to lattice periodicity accross the Periodic
Boundary Conditions amounts to solve coupled Diophantine equations. These are polyno-
mial equations with one or more unknowns whose solutions of interest are sought among
the integers. For a given bicrystal, there are two Diophantine equations (equation 2.16)
for each of two grains to be solved simultaneously in each direction.

hxi C kyi C lzi D 0 for i D 1; 2 (2.16)

Where .hkl/ are Miller indices in an arbitrary lattice system. From a mathematical point
of view, they could be solved using an Euclidean algorithm. In practice the process is
simplified by taking advantage of the underlying CSL lattice as it respects the periodicity
of both grains. This is achieved by properly defining the orientation of atoms and dimen-
sions of the box from the CSL vectors. In fact, the lattice periodicity can exist if and
only if there is at least one coincidence site along the grain boundary. Nevertheless, this
condition has one major consequence of limiting the type of grain boundaries that can
be constructed in practice. The following section presents a commonly used approach to
properly orient two adjacent grains in space. This method allows to generate any rational
CSL grain boundary of arbitrary geometry and of finite dimensions in a bicrystal. In this
approach, the first step consists of approximating a grain boundary from misorientation
angle and axis. The approximation is based on rotating one grain relative to the other
until an exact coincidence is obtained (Ranganathan, 1966).
For example, considering †5 with misorientation axis T .a; b; c/ D Œ001�, the shortest co-
incidence sites are .210/ and .120/. From these Coincidence sites the misorientation angle
� is calculated from equation 1.2 in which X D 2 and Y D 1. It results in � D 53:1301ı

and � D
p
.a2 C b2 C c2/ D

p
.02 C 02 C 12/ D 1. .X2 C �2Y 2/ D .22 C 1 � 12/ D 5 is

odd, hence m in equation 1.3 becomes 1. By replacing, † D X2C�2Y 2

m
D

5
1
D 5.

Once the grain boundary is defined, the second step in this approach is to define a CSL
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basis. It is customary preferred to work with orthogonal basis and to take the misorien-
tation axis as one of the vectors of the CSL basis. By denoting Œa; b; c� as the rotation
axis expressed in an orthogonal basis in a representative grain A. To constitute a CSL
basis, a vector Œx1; y1; z1� is sought such that it satisfies the condition of orthogonality
with misorientation axis.

Œa; b; c�:Œx1; y1; z1� D 0 (2.17)

Equation 2.17 has an infinite number of possible solutions. It is preferable to select a
vector Œx1; y1; z1� with the lowest Miller indices. The third vector Œx2; y2; z2� of the basis
is taken as the cross product of the two previous vectors

Œx2; y2; z2� D Œa; b; c� ^ Œx1; y1; z1� (2.18)

It results in a vector space G1 of CSL vectors in grain one with its basis BCSL1 that reads

BCSL1 D

8̂<̂
:
0B@x1y1
z1

1CA�!X CSL;

0B@x2y2
z2

1CA�!Y CSL;

0B@ab
c

1CA�!ZCSL

9>=>; (2.19)

This BCSL1 basis makes a data base of all possible CSL vectors in grain one. To obtain a
CSL basis BCSL2 in grain two requires the grain boundary plane. Hence, the third step
in this approach is to define a grain boundary plane from a linear combination of CSL
vectors in the BCSL1 basis. The normal of a grain boundary plane follows this generalised
equation

�!n D ˛
�!
X CSL C ˇ

�!
Y CSL C 

�!
ZCSL (2.20)

Where ˛, ˇ and  are integers which allow to build different characters of grain boundary.
For that, there are three possible categories:

1. We have a pure twist grain boundary if and only if ˛ D ˇ D 0 that results in
�!n D 

�!
ZCSL

2. We have pure tilt grain boundary if one of the following conditions satisfies:

(a) ˇ D  D 0 then �!n D ˛�!X CSL

(b)  D 0 then �!n D ˛�!X CSL C ˇ
�!
Y CSL

(c) ˛ D  D 0 then �!n D ˇ�!Y CSL

3. To obtain a mixed character necessitates that at least one component of tilt coexists
with a twist component. Therefore, there exists a mixed grain boundary if one of
the three conditions is fulfilled :
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(a) ˛ ¤ 0,ˇ D 0 and  ¤ 0 this leads to �!n D ˛�!X CSL C 
�!
ZCSL

(b) ˛ D 0, ˇ ¤ 0 and  ¤ 0 this leads to �!n D ˇ�!Y CSL C 
�!
ZCSL

(c) ˛ ¤ 0, ˇ ¤ 0 and  ¤ 0 this leads to �!n D ˛�!X CSL C ˇ
�!
Y CSL C 

�!
ZCSL

With the use of a rotation matrix RG12 that allows to pass from grain one to grain two,
the CSL basis of the first grain and the grain boundary plane allow to calculate the second
CSL basis. The Rodrigues rotation matrix RG12 reads:

RG12 D

264 g C a2.1 � g/ ab.1 � g/ � ch ac.1 � g/C bh

ab.1 � g/C ch g C b2.1 � g/ bc.1 � g/ � ah

ac.1 � g/ � bh bc.1 � g/C ah g C c2.1 � g/

375 (2.21)

Where g D cos(�/ and h D sin(�/. For a grain boundary with �!n D �!Z hkl1 , the CSL basis
of grain one reads:

Bhkl1 D

8̂̂̂<̂
ˆ̂:
�!
X hkl1; for�!X hkl1?

�!
Z hkl1

�!
Y hkl1; for�!Y hkl1?.

�!
Z hkl1;

�!
X hkl1/

�!
Z hkl1 D

�!n

The CSL basis of grain two is calculated from Bhkl1 and rotation matrix RG12 as:

Bhkl2 D

8̂̂̂<̂
ˆ̂:
�!
X hkl2 D R

T
G12:
�!
X hkl1

�!
Y hkl2 D R

T
G12:
�!
Y hkl1

�!
Z hkl2 D R

T
G12:
�!
Z hkl1

(2.22)

Now, the data base of the CSL vectors in both grains allows to properly orient atoms
in both grains in a way that respects the orientation of the simulation box so that the
resulting initial structure of a grain boundary lies between both grains and it respects the
CSL lattice geometry.
The next step consists of defining the size of the simulation box by using the CSL vectors
so that the simulation box dimensions respect the periodicity of both grains. The size of
each grain reads:

Size of grain one D

8̂̂̂<̂
ˆ̂:
Lx1 D nxaojj

�!
X hkl1jj

Ly1 D nyaojj
�!
Y hkl1jj

Lz1 D nzaojj
�!
Z hkl1jj

(2.23)

and the size of grain two is taken identical to the size of grain one. Here ao is a lattice
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parameter of a material and nx, ny , nz 2 NC. This procedure is common in literature
(OMAR, 2019; Talaei et al., 2019a). For our representative †5 of misorientation angle
53:13ı and of rotation axis Œ001�, one of vectors perpendicular to Œ001� is Œ210�, the third
vector Œ120� is a result of cross product of both vectors. The generalised CSL basis is

BCSL†5 D

8̂<̂
:
0B@21
0

1CA�!X CSL;

0B@12
0

1CA�!Y CSL;

0B@00
1

1CA�!ZCSL

9>=>;
The resultant smallest CSL basis for the grain one reads

BCSL1†5 D

2642 1 0

1 2 0

0 0 1

375
By replacing � in equation 2.21 by 53:1301ı and replace RTG12 in equation 2.22 by the
resulting matrix gives the CSL basis in the second grain which is

BCSL2†5 D

2641 2 0

2 1 0

0 0 1

375
For this type of grain boundary and in order to obtain a tilt GB, we can either choose
�!n D

�!
X CSL or �!n D �!Y CSL. The size of the simulation of this grain boundary are:

For grain one D

8̂̂̂<̂
ˆ̂:
Lx1 D nxao

p
22 C 12 C 02

Ly1 D nyao
p
�12 C 22 C 02

Lz1 D nzao
p
02 C 02 C 12

2.4 Describing inter-atomic interaction

The modelling of matter at the atomic scale requires a comprehensive and clear description
of interactions between constituting particles. Although, in principle, such a description
must be based on quantum mechanics, in general, methods used in atomistic simulations
simplify by adapting a classical point of view of representing particles as point masses in-
teracting through forces that only depend on their separating distance. The most familiar
pair interaction is the Lennard-Jones potential (Jones, 1924).

U.r/ D 4�

���
r

�12
�

��
r

�6�
(2.24)
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Where r is the distance between two interacting particles, � is the depth of the potential
well and � is the distance at which the particle-particle potential energy is zero. However,
in a metallic system, the contribution of overlapping electron clouds must be taken into
account. Therefore, a multi-body potential is a more relevant potential for simulating such
system. The potential energy function which describes atomic interactions is generalised
as follows:

U.�!r / D u0.�/C

NX
i1

u1.
�!r i1/C

1

2Š

NX
i1¤i2

u2.
�!r i1;
�!r i2/C

1

3Š

NX
i1¤i2¤i3

u3.
�!r i1i2;

�!r i2i3;
�!r i1i3/C:::

(2.25)

Where uo.�/ is an energy term which depends only on the electronic density � and it
describes the behaviour of electronic cloud in metallic system. The term

PN
i1
u1.
�!r i1/ de-

scribes the interaction between pairs, the third term 1
2Š

PN
i1¤i2

u2.
�!r i1;
�!r i2/ describes the

interaction between triplets, in a similar way, the other terms represent the multi-body
character of the function by bringing into play the interactions between several atoms
in the system. The two-body interaction takes precedence over other interactions. The
embedded atom method (EAM) of Daw and Baskes (Foiles et al., 1986) is one exam-
ple of potential that results from an empirical implementation of equation 2.25 and is
particularly well suited to metals. It reads

U.�!r / D
X
i

fsi .�i/C
1

2

X
i;j.i¤j /

usisj (2.26)

For
�i D

X
i¤j

�sj .rij / (2.27)

The first term to the right in equation 2.26 describes embedding energy of atom i in the
host of electron density �i induced at site i by other atoms. The second terms describes
the pair interaction between atom i and j. The �sj describes the electron density function
assigned to atom j.
There are other potentials in literature such as FS (Finnis Sinclair) (Finnis and Sinclair,
1984),

UFS.
�!r / D Un C Up D

1

2

X
ij

Vij � A
X
i

p
�i (2.28)

Vij D

8<:.r � ij � c/2.c0 C c1rij C c2r2ij if rij � rcutoff
0 if rij > rcutoff

60



Atomistic calculations 2.5. Simulation environment

Where rij is inter-atomic distance and c0; c1; c2; A are fitting parameters and Modified
Embedded Multi-body Method (Lee et al., 2003) etc... EAM and FS potentials are widely
used in atomistic simulations, thus, there are some of them which have been tested and
validated for a large number of elemental FCC metals for instance potentials for Nickel
(Voter and Chen, 1987; Mishin et al., 1999; Foiles et al., 1986), Copper (Foiles et al.,
1986; Mishin et al., 2001),Gold (Foiles et al., 1986), Aluminum (Voter and Chen, 1987;
Ercolessi and Adams, 1994; Mishin et al., 1999). After comparing available inter-atomic
potential, we have used in this project the EAM-type formalism of Daw and Baskes (Daw
and Baskes, 1984; Daw et al., 1993) developed for mechanical application. More details
on this EAM potential are given in section 2.5.5.

2.5 Simulation environment

In atomistic calculations, it is possible to maintain a constant energy, temperature, pres-
sure, volume, chemical potential or any combination of the them. These conditions cor-
respond to three commonly used thermodynamical ensembles (Allen and Tildesley, 1988;
Evans and Sarman, 1993; Frenkel and Smit, 2001; Martyna et al., 1994).

2.5.1 The Canonical ensemble (NVT)

In this ensemble, which is used in this project, the number (N) of particles and the volume
(V) and the macroscopic value of temperature (T) remain constant. The constancy is
achieved by controlling the temperature through either direct temperature scaling during
the temperature initialisation stage or by coupling a temperature-bath during the data
collection phase. However, some fluctuations can occur but this depends on the size of the
system. For example, a definite temperature T applied to the system results in a specified
average macroscopic value in the system whereas the instantaneous observable parameter
representing the total energy (such as the Hamiltonian H ) of the system can slightly
fluctuates. By considering a system with the average energy Etot , the root mean square
fluctuations HrmsEtot of H around this average value Etot can be related to the average
temperature value through the heat capacity of the system cv as:

HrmsEtot D

q
hH 2iNVT � hH i

2
NV T D T

p
kBcv (2.29)

Where kB is Boltzmann constant. The fluctuation of the instantaneous temperature � is
quantified using the root means square �rmsEtot as follows :

�rmsEtot D

q
h�2iNVT � h�i

2
NV T D T

s
2

Nidof
(2.30)
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Where Nidof and � is the number of internal degrees of freedom and instantaneous tem-
perature in the system respectively. Nidof is calculated from the total number of particles
in a system as :

Nidof D 3N �Ngeom �Nedof (2.31)

in which Ngeom is number of geometrical constraints such boundary conditions and Nedof
is number of external degrees of freedom ( they correspond to the rigid body translation of
the system) . It is evident that as the number of particles increases in the system, thermal
fluctuation vanishes. This points out once again the importance of carefully choosing the
size of the simulation of box.

2.5.2 The isothermal isobaric constant (NPT) ensemble

In this ensemble, the number of atoms remains constant whereas the pressure and tem-
perature have a specified average value. The instantaneous volume � of the system has to
fluctuate. For the system at equilibrium, the root mean square fluctuations �rmsv of the
instantaneous volume around its average value V is calculated as

�rmsv D

q
h�2iNPT � h�i

2
NPT D

p
V kBˇT (2.32)

Where ˇT is the isothermal compressiblity and kB is the Boltzmann’s constant. The
fluctuation in volume goes simultaneously with the fluctuation in instantaneous enthalpy
(� C P�/ of the system around its average value H. These fluctuations can be quantified
in a similar way as before through the root-mean-square fluctuations of enthalpy �rmsH

�rmsH D

q
h.� C P�/2iNPT � h� C P�i

2
NPT D T

p
kBCp (2.33)

Where Cp is the isobaric heat capacity of the system. In this ensemble, the magnitude
of instantaneous fluctuations on P and T vanishes in the limit of macroscopic system as
well.

2.5.3 The Micro-canonical ensemble (NVE)

In the Micro-canonical ensemble (NVE), the number of particles, volume and energy are
fixed in the system but fluctuations in the specific heat may be obtained by examining
fluctuations in the kinetic energy (�) and potential energy (�). In this case the root mean
square of the instantaneous fluctuation in the kinetic energy (�rmsNVE ) and potential
energy (�rmsNVE ) (Lebowitz et al., 1967) read:

�rmsNVE D �rmsNVE D kB h�iNVE

s
3N

2

�
1 �

3NkB

2Cv

�
(2.34)
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Where Cv is isochoric heat capacity. Whereas the root mean square of instantaneous
fluctuation (PrmsNVE / in pressure P is quantified as,

PrmsNVE D

s
kB h�iNVE

V

�
2NkB h�iNVE

3V
C hP iNVE �

1

ˇc
C
h�iNVE
V

�
(2.35)

Where h�iNVE is instantaneous temperature ˇc is compressiblity coefficient of the system
and � is inter-particle pair virial function. It is evident as the volume or number of particles
of the system increases, these fluctuations vanish.

2.5.4 Thermostat

One of the difficulties in statistical ensemble at constant temperature or pressure is to keep
temperature T or pressure T constant on average even if the instantaneous values of T
and P may fluctuate without impacting too much the natural dynamics of the atoms. For
example, in the canonical ensemble (NVT), the constant temperature can be maintained
through the approach of rescaling velocity of particle at each time step. In this approach,
the velocity and temperature are related as follows*X

i

1

2
miv

2
i

+
D
3

2
NkBT (2.36)

The velocity of particle at time step i is re-scaled by a factor of
q

T
Ti
. In this expression T is

the desired temperature whereas Ti is the instantaneous temperature. An other approach
is to use an extended Lagrangian approach in modifying newton’s equation of motion as
proposed by Anderson (Andersen, 1980).

The Nosé – Hoover thermostat

The Working principle of this approach is based on the assumption that the simulation
system is in contact with a thermal reservoir so that an exchange of energy between the
system and the reservoir is allowed. In addition, the thermal reservoir has a certain thermal
inertia to prevent thermal fluctuation in the system. A damping parameter specified
in time units determines how rapidly the temperature and pressure are relaxed. If this
damping parameter is too small, the temperature and pressure can fluctuate wildly; if
this damping parameter is too large, the temperature and pressure will take too long to
equilibrate. We have chosen this thermostat because the total energy in the system and
in reservoir is always conserved (Andersen, 1980; Nosé, 1984; Hoover and Holian, 1996).
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Anderson thermostat

This stochastic approach of Anderson consists of periodically choosing a random particle in
the system and assigning it a velocity following the Boltzmann distribution law (Andersen,
1980). This amounts to consider that at periodic interval of time, a randomly chosen
particle of the system collides with an imaginary particle of the heat reservoir. The time
between collision is sampled from Poisson’s distribution. Unfortunately, the total energy
in the system is no longer conserved.

2.5.5 Synthetic driving force for grain boundary migration

Grain boundary motion is caused by a driving force. In Molecular Dynamics, it is de-
sirable to use a driving force that can be applied identicaly to the large variety of GB
configurations that will be explored, including both symmetric and asymmetric grain
boundaries, flat or curved grain boundaries. This is where the synthetic driving forces
(Janssens et al., 2006; Schönfelder et al., 2006; Coleman et al., 2014; Ulomek and Mohles,
2014; Yang and Li, 2015) can be particularly relevant thanks to their versatility. In this
section will go through the working principle of different synthetic driving force current
used for atomistic simulations.

Synthetic driving force of Janssens

The most recent development in artificial driving forces, is the Janssens’s driving force
(Janssens et al., 2006) which is at the center of this project. It is a driving force produced
from per-atom order parameter describing the local crystallographic orientation. Let us
consider a bicrystal with a grain A and B with crystallographic orientation I and J re-
spectively. In a crystal with specific orientation I, each atom i with position vector ri has
nearest neighbour atom j at position rIj . Any local deviation forces its nearest neighbour
atom to occupy a new position rj . The order parameter �i associated with this deviation
is calculated following equation 2.37.

�i D

nX
j

jrj � r
I
j j (2.37)

It is zero if the local orientation is exactly I. Here, n is the number of nearest neighbour
atoms j of i which is 12 for FCC materials, rIj is the nearest ideal lattice site of crystal I
to rj . The same order parameter is calculated for lattice sites in crystal J that have the
nearest neighbour atom i. The orientation difference between crystal I and crystal J is
then expressed as

�IJ D
X
j

jrJj � r
I
j j (2.38)
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The difference in orientation between crystal I and J creates an extra potential energy
(u�.ri/) to the atoms across grain boundary which reads:

u�.ri/ D

8̂̂̂<̂
ˆ̂:
0; if �i < �l
u0
2
Œ1 � cos(2!i/� ; if �l < �i < �h

u0; if �h < �i

and the resulting driving force �!F .ri/ follows

�!
F .ri/ D �

@u�.ri /

@ri
D �

�uo
2.�h��l /

�hP
j
ıij
jıij j

i
sin(2!i/C

P
j

h
�
ıij
jıij j

sin(!j /
i�

Where f in equation 2.39 is a material and temperature dependent parameter which
is used to exclude thermal vibration on the normalised order parameter !i which varies
from 0 in grain A to 1 in grain B. The value of f by default is 0.25 (Janssens et al., 2006).

�l D f �IJ

�h D .1 � f /�IJ

!i D
�

2

�i � �l

�h � �l

(2.39)

However, even with the parameter f thermal fluctuations may still be large enough to

Figure 38: (a) Comparison of grain boundary position vs. simulation time for migration
induced by elastic and synthetic driving force for †5 h010i asymmetric tilt grain bound-
ary at 1200 K (Zhang et al., 2007) (b) CINEB calculations from †37.570/Œ001� Nickel
symmetric tilt grain boundary comparing energy barrier and grain boundary path for
migration driven by synthetic force and shear (Coleman et al., 2014)

cause atoms in grain A to have an order parameter greater than 0 and or less than 1 in
grain B. This may affect the determination of actual driving force because the average
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energy change as an atom’s local orientation changes from I to J is no longer equal to u0.
This effect might be more pronounced at high temperature and when � (misorientation
angle between grains) is small. At a given temperature and � to accurately determine
the true driving force thermodynamic integration is used to calculate the amount of free
energy per atom added to each grain by virtual force (Olmsted et al., 2009c). Despite
the virtual nature of this synthetic force, it compares favourably with other mechanical
driving forces. For example figure 38 (a) compares the path history of grain boundary
motion triggered by synthetic and elastic force.
In addition, Coleman et al. (Coleman et al., 2014) has also conducted a study to verify
if the non physical nature of this force does not alter the migration of a grain boundary.
Coleman compared the motion of grain boundaries driven by the Jansens’s driving force
and shear. In this work, slip-vector analysis and continuum based deformation metrics
were used to examine micro-rotation and strain. This work concluded that the nonphysical
nature of Jansen’s driving forces does not affect the fundamental mechanisms associated
with grain boundary migration. Furthermore, by using climbing image nudged elastic
band (CINEB) to compare transition path and energy barrier, the work concluded that
the path and deformation history from grain boundary motion was indistinguishable from
both shear and artificial driving force (see figure 38 (b)). Therefore, we can conclude that
the artificial driving force migrates a grain boundary in similar way to real physical forces.
For more example of synthetic driving force used in the atomistic simulation see section
A.2.
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Objectives

The first objective is to identify and characterise defects on surface of a relaxed grain
boundary. This will allow to describe atomic structure of a grain boundary in terms of
arrays of dislocations. The resulting dislocation density which is unique for each grain
boundary will be imported in the continuum scale model in the second part of this work.
The second objective is to develop self-sufficient generic models capable of predicting
mobility of CSL grain boundaries at any temperature and driving force. Having in place
this model can serve many roles, including but not only, a) reducing consumption of
computational resource and time spent in atomistic calculations b) mobility function
can allow to rationalise the origin of some particular phenomena observed during grain
boundary migration and c) mobility function can be used to inform large scale models,
in particular, at continuum scale. Therefore, having mobility functions can be seen a step
forward to bridging atomistics and continuum scale models.

Methodology

In this work, we will perform MD simulations to investigate the motion of Œ001� grain
boundaries in FCC material. Here we will use Nickel as a model system for other FCC
materials because it exhibits intermediate values for stacking fault energy and because
there is a literature to compare with (Homer et al., 2013, 2014b; OMAR, 2019). The
configurations to investigate in this study will encompass both low and high angle grain
boundaries with different characters (tilt, twist and mixed), thus, covering a large part
of the fundamental zone of the corresponding † GB. The initial configuration of a grain
boundary will be carefully chosen (as we will see later) because it conditions energy of a
grain boundary.

Differently to what was done in the literature to investigate migration of a grain
boundary, we will span a very broad range of temperatures and motive forces. We will
systematically explore the T-P parametric space and a detailed map of T-P space will
allow to find major trends that are common for several grain boundaries rather than
some particular behaviours for a specific grain boundary. We will see that this will allow
to identify dynamic transition of kinetic regimes. Based on observed trends and dynamic
transitions, we will rationalise our results and propose migration laws of grain boundary.
All simulations will be carried in LAMMPS (Large-scale Atomic/Molecular Massively
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Parallel Simulator) (Plimpton, 1995). It is a high-performance code, regularly maintained
and updated. It offers a good computing facility required in this work. To visualise outputs
from LAMMPS, we will deploy an other adapted tool known as Open Visualisation Tool
(OVITO) (Stukowski, 2009). To post-process raw data specific to GB, OVITO does not
have this functionality, consequently, we will develop our own codes. This chapter is
organised as follows. We will start by setting up the simulation box, after, we will explain
the choice of inter atomic potential to describe atomic interaction, in the next section,
we will explain the methodology used to obtain a ground state of a grain boundary, in
the fourth section we will give methodology for running MD simulations and in the final
section we will explain the post treatment of raw data obtained from MD simulation.

Setting up the simulation box

In order to perform a systematic study of the GB migration with possibility to compare
from data points reported in literature, we reprise the bi-crystalline geometry employed
in a number of simulation studies (Olmsted et al., 2009a,b; Homer et al., 2013, 2014b,
2015; O’Brien and Foiles, 2016; Hadian et al., 2018). A planar GB is introduced in the
centre of the simulation box with a normal direction along the y-axis of the simulation
cell. The use of Periodic Boundary Conditions (PBCs) along x and z axes allows repre-
senting a semi-infinite domain at the cost of possible periodicity effects as discussed in
section 2.2.3. Free Surface (FS) is employed on y simulation faces, and for that, we made
sure that the y cell dimensions are larger enough to neglect image forces between grain
boundary and free surfaces. The simulation box setup is illustrated in figure 39.

In molecular dynamics, it is very important to choose the initial structure of grain
boundary. For that a great care is taken to construct this atomistic structure. We used
our own tool to build CSL GB with arbitrary orientation. This tool relies upon determining
the CSL vectors of the considered † structure and they are used to orient both grains
with respect to the simulation box. These vectors are also used to properly place the PBC
faces in order to preserve the continuity of atomic structure across PBC. This can also be
seen as a practical way to solve the underlying and coupled sets of Diophantine equations
associated to PBC on both adjacent grains. This tool is similar to the seminal work of
Patala et al.(Banadaki and Patala, 2015), with the difference that steps are done in a
slightly different order to be able to preserve rectangular geometry of the simulation box.
Figure 40 shows grain boundaries that we have built with this tool in fundamental zone
representation of their grain boundary normal.
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Figure 39: The simulation box setup used in this work. �!v X ,�!v Y and �!v Z stand for the
CSL vectors along the X, Y and Z directions respectively and ao is the lattice parameter.
Free surface are shown in a grey colour and the grain boundary is shown in a green colour.

Figure 40: List of all investigated grain boundaries of (a) †5, (b) †25 and (c) †13, shown
using the fundamental zone representation of their grain boundary normal.
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Inter-atomic Potential

The quality of atomistic simulation relies on algorithms and a proper description of atomic
interactions. For that, we have carefully selected the atomic potential to describe interac-
tions among Ni atoms. We picked a well established multi-body semi-empirical potential
(Foiles and Hoyt, 2006) for Ni developed specifically for mechanical applications. In what
follows, we present in more details the formalism of this potential.
Atomic interactions are described following an EAM-type formalism of Daw and Baskes
(Daw and Baskes, 1984; Daw et al., 1993) as presented in section 1.2. The functions used
are those proposed by Voter and Chen (VOTER). To mimic the electrostatic interactions
between two spherical charge densities, the pair interaction is described utilising a Morse
potential,

u.rij / D Eo

h
e�2b.rij�ro/ � 2e�b.rij�ro/

i
(2.40)

in which Eo D 1:39664eV , ro D 2:14146Aı and b D 1:22848=Aı. The electron density
function reads:

�sj .rij / D �or
n
ij

�
e�arij C 2nC3e�2arij

�
(2.41)

Where �o D 1, n=8, a D 3:58321=Aı and the embedding function follows

�i D
X
.j¤i/

�.rij / (2.42)

A cut-off radius of 4:85Aı is used for calculating pair-interaction and density function
following the procedure proposed by Voter and Chen (VOTER). The embedding function
is determined such that the energy versus volume reproduces a Rose’s equation of state
(Rose et al., 1984; Foiles, 1985) which correlates the cohesive energy .Ecoh/ to lattice
parameter a at a given temperature. The equation of state reads:

Ecoh D �Esub.1C a
�/exp.�a�/ (2.43)

Where the sublimation energy Esub D 4:45eV , a�=
�
a
a0
� 1

�
=

q
Esub
9B�

, lattice parame-
ter of Ni at 0K ao D 3:52A

ı, the bulk modulus B D 1:8037x1012erg=cm3 and the atomic
volume � D 4�r3ws

2
in which rws is Wigner-Seitz radius (Rose et al., 1984). The figure

41 shows comparison between equation of state and cohesive energy for different mate-
rials. This potential is in an excellent agreement with experiments. Table 2.1 shows a
comparison for elastic constant, stacking fault energy, etc... between this potential and
experimental data points. One can readily see from the table that this potential repro-
duces well elastic constants Cij , sublimation energy Esub, and stacking fault energy SF .
As a result, it has been successfully employed in several studies of grain boundary in pure
Ni (Homer et al., 2013, 2014b; O’Brien and Foiles, 2016). Therefore, this potential is a
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Figure 41: The cohesive energy of different materials against a reduced lattice parameter
a�. The continuous curve corresponds to the state equation whereas the rest is DFT
results from the literature for different metals (Rose et al., 1984).

Table 2.1: Comparison between the predictions of Foiles potential and experimental results
for material constants (Foiles and Hoyt, 2006)

Parameters Esub�
eV
atom

� a
[Aı]

B
[GPa]

C11
[GPa]

C12
[GPa]

C44
[GPa]

E
f
v

[GPa]
SF
ŒmJ
m2
�

Foiles -4.45 3.52 180.4 233 154 128 1.63 127
Experiment -4.45 3.52 181 247 148 125 1.60 125
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great pick for this kind of work.

Grain boundary relaxation

Up to date, finding the atomic structure corresponding to the most stable state of a grain
boundary from the initial construction described above remains a challenging task. This
is due to existing additional microscopic degrees of freedom of grain boundaries. Thus,
several atomic configurations are possible for a given macroscopic configuration (Sutton,
1996; Tschopp and McDowell, 2007). To address this, Frolov and Mishin (Frolov et al.,
2016) and Banadaki et al.(Banadaki et al., 2018) have performed semi-grand and grand
canonical Monte Carlo (MC) simulations, respectively; and they have shown that one
grain boundary can have many atomic structures that may differ from the previously
known structures of a grain boundary.
To find the most probable ground state of a grain boundary, we have sampled at least
100000 initial grain boundary structures of the same macroscopic degrees of freedom for
each grain boundary. This is achieved by using a more practical solution, commonly used
in literature (Homer et al., 2015; Olmsted et al., 2009a; Tschopp and McDowell, 2007) as
a trade off between numerical cost and accuracy.

Figure 42: Schematic diagram showing shift of grain 2 relative to grain 1 following CSL
vectors (illustrated by black arrows) in plane of a grain boundary.

We have shifted grain 2 with respect to grain 1 along the CSL basis vectors within the grain
boundary plan as figure 42 shows and that would correspond to two of the microscopic de-
grees of freedom. A rigid body body translation of one lattice relative to its adjacent lattice
is an important mode of relaxation of grain boundary (Sutton, 1996). During translation
steps, abutting grains may contain atoms that are physically too close. The overlapping
atoms are resolved by removing one of the atoms from the system. The smallest acceptable
distance between atoms is determined based on convergence test. To determine energy of
the most stable grain boundary configuration, we performed conjugate-gradient minimi-
sation for all sets of initial grain boundary structures at 0K.
In all simulations, we have used equation 1.16 to calculate energy. From a list of different
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atomic configuration for a given grain boundary, we have selected the lowest energy con-
figuration as the most probable ground state of a grain boundary. This was done in the
interest of the dynamics of a grain boundary which is very demanding on the configura-
tion to use. To validate our selection, we compared our grain boundary energy measures
from values reported in literature when available.

MD simulations

The simulation environment was carefully set. In MD calculations, we have used an NVT
ensemble since there is no clear dependence of grain boundary mobility on thermody-
namic ensemble (Janssens et al., 2006). The selected stable configurations at 0K were
heated and expanded to the desired temperature and respective lattice parameter over a
period of 125ps. After, the selected configurations were equillibrated to the desired tem-
perature for 125ps before applying a motive force. To keep the correct dynamical atomic
structure during simulation (see references (Deng and Deng, 2017; Race et al., 2014) for
more details), we performed a convergence test to determine the size of our simulation
cell in each direction within the GB plane. Using a larger simulation box can be viewed
as a way of keeping a constant converged temperature in the simulation box as explained
earlier in section 2.5.1. The simulation box was at least 8 (nx D 8 and nz D 8 see equation
2.23) replicas of smallest GB structure in the GB plane that is respecting the PBC.

To move a grain boundary, we employed the synthetic driving force method developed
by Janssens et al. (Janssens et al., 2006) implemented within LAMMPS (Plimpton, 1995).
This method has been tested, validated and used in many studies (Homer et al., 2014b;
Janssens et al., 2006; Olmsted et al., 2009b,c; O’Brien and Foiles, 2016). The choice of
this type of driving force is motivated by the fact that, its results compare favourably
with results obtained by other motive forces (Deng and Schuh, 2011a; Janssens et al.,
2006; Olmsted et al., 2007). We applied synthetic motive forces that should correspond
to stresses in a range of 50 to 500 MPa. Simulations were allowed to run for 200ps, or
until the boundary reaches the end of a simulation box. For each grain boundary, we
considered 3 or 4 different temperatures from 100K up to 1000K while remaining well
below the melting point of Nickel which is 1726K (Porter and Easterling, 1992). In total,
we performed 1250 simulations of GB motion.

Raw data analysis and post processing

To investigate dynamic properties, MD simulations were run long enough and regardless
of the applied stress and temperature, configuration data were extracted every one pi-
cosecond to statistically collect enough data points. This allows to record more atomistic
details occurring during grain boundary motion and to precisely keep track of all position
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of a gain boundary in a simulation box.
However, to locate a grain boundary in a simulation box is yet challenging. One of the
challenges is to separate, with certainty, atoms belonging to a defect from atoms in per-
fect FCC positions. Although some theoretical metrics (Honeycutt and Andersen, 1987;
Stukowski, 2012; Kelchner et al., 1998) to identify atoms belonging to a defect, are re-
ported in literature, they still have some challenges associated with. For example, at higher
temperatures required to move grain boundaries, atomic vibration can become significant
enough so that atoms in perfect FCC positions can even be detected as zero dimension
defects. This significantly deteriorates accuracy in measured positions of a grain boundary
in a simulation box. For some grain boundaries that move by nucleation and propagation
of disconnections and or facetting, it is difficult to measure with precision the exact posi-
tions of a grain boundary. One of the difficulties is that at high temperatures required for
the migration of thermally activated grain boundaries, atomic vibrations are sometimes
detected as point defects and that interferes with the grain boundary position measure-
ment. Another difficulty is related to the dynamic behaviour of some grain boundaries
which can present steps or facets and that makes the measurement of the average grain
boundary position more difficult.

Figure 43: An example of cluster analysis. a)-b) †5.120/ at 100K and c)-d) †5.122/ at
600K as representatives of all other grain boundaries investigated in this study. a) and
c) show identification of atoms not belonging to the perfect FCC positions. Here atoms
that belong to the defect are shown in black colour and atoms in perfect FCC position
are shown in green colour. One can notice that due to thermal vibrations some atoms in
c) not belonging to grain boundary are also detected as defect. b) and d) Keeping only
atoms belonging to grain boundary.
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Therefore, we have developed our own code written in Python and it allows to identify
atoms belonging to grain boundary, thus, locating a grain boundary. The algorithm fol-
lows three main steps. In the first step, we have used algorithm of Common Neighbour
Analysis, developed by Stukowski (Stukowski et al., 2012), implemented in the Open Vi-
sualisation Tool (OVITO) (Stukowski, 2009) to identify all atoms which are not in the
perfect FCC position ( see figure 43 a).
The second step is a cluster analysis of these atoms to keep only atoms belonging to the
grain boundary (see figure 43 b). This means, excluding atoms in perfect FCC positions
and atoms belonging to free surfaces. In a perfect FCC structure, each atom has 12 neigh-
bors otherwise it is considered as a point defect. To exclude vibration effects due to high
temperature, we have added a negligible distance D � 3%ao to each atomic position. An
atom which is still detected as a defect after adding this distance is, indeed, confirmed as
a defect. This turned out to be an efficient way to separate atoms deviating from their
perfect position due to thermal vibration from actual point defect at a GB.

The third step focuses on calculating positions and average speed of a grain boundary.
The position (xi) of each atom i belonging to the defect was then recorded every time tj .
The average position (Xtj ) of a grain boundary is calculated as

Xtj D
1

n

nX
iD1

xi (2.44)

Xtj is barycenter of atomic positions of n atoms belonging to a grain boundary at time
tj . For grain boundaries forming disconnections and or faceting during migration, a de-
composition of the grain boundary into several smaller slices is envisageable. An average
grain boundary position from each slice is measured and then an average grain boundary
position is given by the average of the averages of grain boundary positions from all slices.
In investigation of grain boundary migration, the main grain boundary property measured
is its velocity. In MD, a steady state velocity is instantaneously reached. Therefore, from
grain boundary positions extracted in the third step of the algorithm, velocity is extracted
as the derivative of the displacement-time curve at each temperature and applied stress.
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Chapter 3

Results

In this section, we present static and dynamic properties of Œ001� CSL grain boundaries.
The number of important relationships and results are derived which will be of use in the
following sections of this PhD manuscript. In this chapter, we will begin by illustrating
the effect of grain boundary relaxation. For that, we will show the influence of microscopic
degrees of freedom of grain boundary in properly defining an energetically stable grain
boundary structure. After, we will report the details of thermodynamic and kinetic prop-
erties of grain boundaries from a systematic exploration of the T � P parametric space.
Since the purpose of dynamic simulations is to find trends that are common for several
grain boundaries, we will show that these details are of profound interests, especially in
devising generic mobility functions that can be imported in the phase field model.

3.1 Static properties of grain boundaries

3.1.1 Energy of grain boundaries

Rigid body translation at grain boundary is an important mode of atomic relaxation of
grain boundary. In general, this translation has components in both direction parallel
and perpendicular to grain boundary plane. In this study, we only translated one grain
relative to its adjoining grain following directions within the grain boundary plane. In this
section we present results from a systematic static study of grain boundaries. We will see
that the results presented here reconfirm the role played by microscopic and macroscopic
degrees of freedom in the relative stability of a grain boundary in agreement with existing
literature (Sutton, 1996; Olmsted et al., 2009b; Priester, 2012).

3.1.2 Dependence of energy on microscopic and macroscopic de-
grees of freedom

It has been reported in several publications (Priester, 2012; Sutton, 1996) that the energy
of a grain boundary strongly depends on microscopic parameters for otherwise fixed five
macroscopic parameters. Microscopic degrees of freedom lead to multiple unequivalent
atomic structures, however, there is still to date no consensus on how to obtain and what
should be the groundstate of a GB. We thus have made a classical assumption that the
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one with the lowest energy is the most probable. In practice, we have generated several
configurations of the same macroscopic degrees of freedom but of different microscopic
degrees of freedom (dof) and then compare their energies. The atomic structure and
corresponding GB energy may vary wildly as function of the microscopic parameters, in
particular with respect to the in-plane displacements. Results are displayed as GB energy
maps as function of the two microscopic dof, in a way similar to gamma surfaces for
stacking faults. Figure 44 shows maps of GB energy for grain boundaries of type †5 and
†13 of different characters, these maps are representative of all other investigated grain
boundaries. The role of microscopic and macroscopic parameters of a grain boundary

Figure 44: Representation of the GB energy obtained as function of the two microscopic
dof (transverse displacement along CSL in plane vectors) for symmetric (a) tilt †5 .120/
(b) twist †13.001/ (c) mixed †5 .122/ and (d) twist †5 .001/ GBs represented with
a colour code, from blue (low energies) to yellow (high energies), as the top grain is
translated relative to the bottom grain by CSL vectors along the grain boundary plane.

becomes evident.
These energy maps differ strongly among GB type (†5 vs †13) and character (tilt

vs twist vs mixed). These GB energy maps consist of a landscape of low energy valleys
and high energy region (hills). In the center of high energy regions, there is usually a blu
region of lower energy certainly resulting from the removal of close atoms procedure, that
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prevent the GB energy reaching unrealistically large values. Here, since have translated
the upper grain by a maximum of 1 CSL vector amplitude, the GB maps cover only one
periodicity of the underlying CSL lattice in both CSL direction. From these maps the most
probable configuration for the GB can be easily identified from the energy minimum, and
corresponds to precise microscopic dof.
In literature (Sutton, 1996; Priester, 2012; Talaei et al., 2019a), map of grain boundary
energy as function of the two degrees of freedom was reported to depend on many factors
including atomic density of a grain boundary. In order to check these ideas and better un-
derstand the GB maps differences observed among a priori similar GB, we have examined
atomic positioning in the same grain boundaries. Therefore, we have compared atomic
structure of †5, †13 and †25pure twist grain boundaries. Figures 45 a) to c) show that
the inplane positioning of few layer of atoms at a grain boundary. As the misorientation
angle � increases the density of atoms increases as well at least for the investigated grain
boundaries. As expected volume of the CSL lattice volume decreases with the increase in
the † value. . It seems also that the thickness of a grain boundary depends on the type
(†). Overall, figure 44 and 45 confirm once again that the most probable ground state
configuration of a grain boundary is achievable if a grain boundary relaxation method
is deployed. Figures 46a) to f) show an example of a comparison between unstable and

Figure 45: Atomic density in relaxed pure twist grain boundaries (a) †25 (b) †5 and (c)
†13 in which the normal of grain boundary plane is parallel to Z axis. Atoms are coloured
function of their position in a grain boundary. Blue and red colour correspond to lower
and upper atomic layer respectively.

the most probable stable configurations of representative grain boundaries. Here we can
notice the difference in atomic configuration in a grain boundary. It is evident that the
atomic arrangement of the most probable configuration is more compact than that of less
probable configurations (based on its energy) for the same macroscopic degrees of free-
dom. To quantify the extent at which grain boundary relaxation affects the geometrical
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Figure 46: Illustration of the atomic relaxation allowed by the Conjugate Gradient re-
laxation (a) †5.310/, (b) †25.710/, (c) †25.340/ and after relaxation (d) †5.310/ (e)
†25.710/ (f) †25.340/.

configuration of grain boundary, we have measured the reduction in the excess volume
by using equation 1.16. We compared the relaxed and unrelaxed grain boundary config-
uration. The table 3.1 shows the percentage of volume reduction following relaxation of
the constructed grain boundary. It shows that the relaxation is followed by a significant
reduction of the excess volume of the grain boundary.

Table 3.1: Reduction in excess volume following grain boundary relaxation for represen-
tative grain boundaries

hkl .313/ .310/ .120/ .230/ .510/ .710/ .341/ (001) (001)
† 5 5 5 13 13 25 25 5 13
% of excess
volume

8.2 7.2 7.5 5.5 7.2 7.4 9.9 4.3 4.1

Now we have demonstrated the impact of the microscopic dof on the atomic GB structure
and on the resulting GB energy, we have discussed the GB energy of the most probable
structure (e.g. lowest GB energy). For that we have selected the lowest energy configura-
tion from a 2D energy map in figures 44 a) to d) as the most probable ground state of a
grain boundary. In order to validate our procedure, we have compared our grain boundary
energy measures from values reported in literature when available. Table 3.2 compares
our data results from data points of Olmsted et al. (Olmsted et al., 2009a; Homer et al.,
2013) obtained by using the same inter-atomic potential in FCC Ni. It is evident that our
results are in a good agreement with existing data from the literature, which allows to
validate our own tools and methodology to build and obtain the ground state of GB .
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Table 3.2: Comparison between energy evaluations from Olmsted et.(Homer et al., 2013)
and our results reported in mJ=m2.
hkl .310/ .120/ .230/ .510/ .710/ .340/ (001) (001)
† 5 5 13 13 25 25 5 13
Olmsted et al. 1218 1285 1091 1201 1099 939 978 774
Our results 1195 1273 1098 1200 1087 946 997 769

Figure 47 shows energy of all selected most probable ground state configurations of
grain boundaries of type a) †5, b) †13 and c) †25 mapped in their fundamental zone
representation. Overall, energy of the most stable grain boundary configurations depends

Figure 47: Energy of all investigated grain boundaries of type a) †5, b) †13 and c) †13,
shown using the fundamental zone representation of their grain boundary normal.

on orientation of a grain boundary plane. In all † families investigated, there is a rough
common trend. The GB energy increases or decreases monotonically across the fundamen-
tal zone. Pure tilt and twist grain boundaries typically represent maximum and minimum
GB energies, respectively. However, in all investigations carried out, we have found no
clear correlation between grain boundary energy and † value. The same goes for the ex-
cess volume. Despite the rough correlation between grain boundary character and energy,
the details of this correlation is complicated, and the link with † values is also unclear.
This is in agreement with other large scale investigations on hundreds of GB (Olmsted
et al., 2009c,b; Homer et al., 2014b, 2015), which justifies a posteriori the need of investi-
gation like the present one, as the GB energy can only be apprehended from the atomic
structure.
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3.2 Dynamic properties of grain boundaries

3.2.1 Migration velocity of grain boundaries

We have seen in section 1.3.2.2 that, regardless of the nature of driving force (P), velocity
of a grain boundary is proportional (to the first order when activation energy is constant
with Pressure) to the applied motive force. In addition, it strongly depends on tempera-
ture (T), type (†) and character (whether tilt, twist or mixed) of a grain boundary, thus,
on nine degrees of freedom. Despite the fact that, the effect of motive force on migration
of a grain boundary during thermo-mechanical processing of a metallic polycrstalline was
recognised long ago, up to date there is no clear understanding of the evolution of a grain
boundary in T-P parametric space. This is due, in part, to the fact that, in the past, most
numerical studies have focused on finding general trends in grain boundary evolution for
a fixed magnitude of motive force and varying temperature value and thus only partially
explored the P � T parametric space (Homer et al., 2014b, 2015).

The objective of the dynamic simulations that will be presented in what comes next
is thus to fill this gap. For this, we investigated the migration of a large panel of GB in
the large range of T-P parametric space, starting from ground state configurations of GB
determined previously. For this, we did a systematic study of grain boundaries of type
†5, †13, and †25 as representative of other † grain boundaries. Some of these †(s)
have been investigated in the literature, they cover very different GB structures from
low to High Angle Grain Boundaries (LABG and HAGB), for example †5 is a HAGB,
and †25 is LAGB. The character of GB was also varied. This systematic approach on
very varied GB configurations will allow to capture clear and common mobility trends as
function of the full P-T parametric space, these trends are expected to be found in other
GB not considered here. In this section, we first report the raw measure of the migration
velocity, then we classify the GB migration as function of the temperature dependence of
the corresponding mobility. The GB migration velocity often exhibits different behaviour
as function of the driving force applied. This was only partially understood in the existing
literature, and may explain the complexity of migration behaviour observed until now for
many GBs. As we systematically explore the P-T space, a phenomenological model can
be proposed at the mesoscale and capture well the simulated GB migration behaviour.
This mesoscale model will allow for a simple connection with larger scale simulations such
as Phases Field simulations..

3.2.1.1 Extracting velocity of a grain boundary from raw atomistic data

In MD simulations, the GB migation reaches instantaneously a steady state velocity when
the motive force is applied. Regardless of the value of the applied motive force and tem-
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perature, velocity is extracted as the derivative of the grain boundary displacement-time
curve. Thus, velocity at a given constant temperature and driving force is a slope of the
steady displacement-time curve at that temperature and motive force. Figure 48 shows
displacement-time curves of †5.122/ mixed grain boundary as an example representative
of others. It shows that temperature and magnitude of motive force applied can signifi-
cantly affect the slope. Next, we will present the impact of temperature, dirving force and
GB type on the observed GB migration behaviour.

Figure 48: GB displacement versus time of †5.122/ at different temperatures and motive
forces. The grain boundary velocity is slope of the curve.

3.2.1.2 Dependence of velocity on macroscopic degrees of freedom

The measured migration velocity varies wildly among † family, and as function of the
grain boundary character. To show the extent of this variation, we plot grain bound-
ary velocity in the stereographic projection of the grain boundary plane. Here, we show
in figures 49 velocity at 600K with a driving force of 250MPa of all investigated grain
boundaries in their respective fundamental zones. Figures 49 (a) to (c) show that grain
boundaries of the same † family and character but with different misorientation angle,
for example †5.120/ and †5.310/ have different velocity values.

Despite the fact that index values (†) of investigated grain boundaries are close, the
difference in velocity can vary significantly. From figures 49 (a) to (c) we also notice that
grain boundaries of low velocity (< 35ms�1) are the most frequent. Overall, they are
pure twist and mixed grain boundaries in any one fundamental zone. The same trend is
observed for other temperature and driving force explored in this study. However, there
is no clear correlation between velocity and the boundary’s five macroscopic degrees of
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Figure 49: Velocity of investigated grain boundaries of type (a) †5, (b) †13 and (c) †25
at 600K with a driving force of 250MPa. Data points are presented in colour coding, from
deep blue (low velocity) to deep red (high velocity).

freedom observed. It is also evident, by comparing figures 47 (a) to (c) with figures 49 (a) to
(c), that velocity does not correlate with the grain boundary energy in the grain boundary
plane fundamental zone. Indeed, the same observation was reported in literature (Olmsted
et al., 2009c,b; Homer et al., 2015). The lack of a clear correlation between velocity, five
macroscopic degrees of freedom, and energy highlights the fact that the atomic structure
control mostly the static and dynamic properties of GB.

3.2.1.3 Dependence of grain boundary velocity on temperature

The applied temperature may impact differently the migration velocity of GB. This is why,
the migration mobility dependence upon temperature is seen, as a convenient scheme
of classifying the migration behaviour of investigated grain boundaries. Regardless of
the magnitude value of applied motive force, all post-processed data were qualitatively
classified into four main groups. The first group contains Thermally activated grain
boundaries. These are grain boundaries with a velocity that increases with increasing
temperature for the same applied motive force. Grain boundaries that behaved in this
fashion account for � 78:2% of all investigated grain boundaries. They are shown in a red
colour in figure 50 (a) to (c). The second group contains athermally activated grain
boundaries: In this group, the velocity remains insensitive to temperature change. In all
grain boundaries investigated, only †5.313/ mixed grain boundary behaved in this way.
It is shown in figure 50 (a) with a black colour. The third group contains antithermal
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Figure 50: The dependence of migration velocity on temperature of all investigated grain
boundaries of type (a) †5, (b) †13 and (c) †25.

grain boundaries. It comprises grain boundaries with velocities that decrease with in-
creasing temperature. All pure tilt grain boundaries belonging to †25, counting 13% of
all studied grain boundaries, behaved in this fashion. They are marked by a blue colour in
figure 50 (c). The last group contains grain boundaries denoted others. This group con-
tains one exceptional grain boundary †5.120/. †5.120/ behaved in a fashion that could
not be classified in any previous general trends for the whole range of motive force and
temperature. At lower temperature, it is thermally activated whereas it is antithermally
activated at higher temperature. It is shown in green colour in figure 50 (a).

3.2.1.4 Dependence of grain boundary velocity on magnitude of driving force

In this study, we have observed that the dependence of velocity of a grain boundary on
magnitude of applied motive force varies from one grain boundary to another. Regard-
less of the applied temperature, all investigated grain boundaries are classified into three
groups. The first group which counts for 82:6% of all investigated grain boundaries con-
tains grain boundaries whose velocity dependence on magnitude of applied motive force is
exponential for the entire range of motive force explored. The second group contains grain
boundaries which exhibit both exponential and linear regimes. This group contains 8:7%
of all investigated grain boundaries. An exponential regime occurs at lower driving forces
whereas a linear regime manifests itself at higher motive forces. The last group contains
the rest of grain boundaries. These are grain boundaries whose velocity dependence on
magnitude of applied motive force remained linear in the T-P parametric space explored
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a b

c

Figure 51: Velocity versus motive force of a) symmetric tilt †25.710/ b) mixed †5.313/
and c) pure twist †5.001/ grain boundaries at different temperatures. The insets to figure
b) and c) shows the same data points on a semi-logarithmic scale for a better identification
of the transition. We have used error bars to show an estimate of standard deviation in
the measured velocity.

here. This group contains all antithermally activated grain boundaries reported in the
previous section.

Figure 51 a) shows curves of velocity versus applied motive force for †25.710/. It is
clear that the velocity remains linearly proportional to applied driving force for the entire
T-P range. On contrary, figures 51 b) and c) show the same physical quantities for other
GB but we can visually identify both regimes. Initially, an exponential relationship at
lower driving forces followed by a linear relationship at higher motive forces. To facilitate
identification of this dynamic transition, the same data points in figure 51 b) and 51c) are
plotted, in a semi-logarithmic scale, in the insets to figures 51 b) and 51 c) respectively.
From a mathematical point of view, this transition is due to the change in local derivative
of velocity function of motive force. For that, the transition stresses and velocities mark
the starting point at which the velocity function changes from exponential to linear. It
is not surprising that the transition stress and velocity depend on the grain boundary
atomic structure considering the role played by macroscopic and microscopic degrees of
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Figure 52: (a)Transition stress against temperature for mixed †5.313/, pure twist †5
and †13 grain boundaries.(b)The log log scale of velocity of †5.001/ pure twist against
applied stress at various temperatures.

liberty of a grain boundary in the static and dynamic properties explained before. As an
example, this transition stress is insensitive to temperature change for †5.313/ whereas
it decreases linearly with increasing temperature for †5 and †13 as figure 52 (a) shows.
In contrast, the transition velocity increases with increasing temperature for thermally
activated grain boundaries. By doing linear fitting on data points from all investigated
grain boundaries, we have realised that this transition stress .P �/ follows a linear equation
in which ˛ and ˛o are constants for a single grain boundary.

P �.T / D �˛T C ˛o (3.1)

Although, the lack of linear correlation between velocity and applied stresses contrasts
with the generally assumed linear relationship at the low driving force limit, on the other
hand, the effect of temperature is apparent, at least, for the thermally activated grain
boundaries. As temperature increases exponential regime of thermally activate grain
boundaries straightens up as figure 52 (b) shows. This might imply that at tempera-
ture high enough beyond the range investigated, the dependence of velocity on stress of
thermally activated grain boundaries might possibly become linear for the entire stress
range investigated. To facilitate the visualisation of this, data points in figure 51 (c) are
represented in a log-log scale in figure 52 (b). Overall, pure tilt grain boundaries exhibited
a longer exponential regime compared from other grain boundary characters. However,
the origin of exponential regime observed for athermally activated grain boundary will
be explained later. It is very important to note that the range of driving force explored
[50-500 MPa] is very reasonable here, corresponding to what dislocations could generate
when accumulating on a GB.
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Identification of these kinetic regimes allowed developing robust and generic migration
laws for predicting velocity as function of motive force and temperature. These functions
are highly needed because up to date there is no model that can capture the dependence
of velocity on motive force and temperature for the entire T-P parametric space. Hav-
ing a single model in place can tremendously reduce the cost associated with atomistic
calculations. In addition, these laws can serve as input in a continuum scale model of
microstructure evolution which requires atomistic details of a grain boundary as it will
be explained in part II of this PhD manuscript. Surprisingly enough, we will see in the
following that the migration law can even help to rationalise the origin of the transition
observed. In what follows, we will propose migration laws based on the details from the
explored T-P parametric space. For the sake of clarity and simplicity, we will start with
grain boundaries whose velocity-motive force curves manifest both regimes in the range
of temperature and motive force investigated.

3.3 Migration laws to predict grain boundary veloc-
ity

3.3.1 Devising phenomenological migration laws

Referring to experimental studies (Gottstein and Shvindlerman, 2009b) and by recalling
from section 1.3.3, m in the exponential regime can be described by Arrhenius relation
that follows

m D
A

P �
exp.�

�G.P; T /

kBT
/ (3.2)

in which �G.P; T / is given in equation 1.29. Our data suggest that the �H.P; T / in
equation 1.29 may be reduced provided some mechanical work by P . To account for this
effect, we reemploy the phenomenological empirical relation of Kocks, Argon and Ashby
(Kocks et al., 1975), which was intially derived to model the actvation energy associated
to double kink formation on screw dislocations in bcc metals. It reads:

�H D �Ho

�
1 �

�
P

P �

�p�q
(3.3)

For �Ho standing for the activation enthalpy at zero effective stress and p, q are pa-
rameters such that 0 < p � 1 and 1 � q � 2 (Kocks et al., 1975). Of course, this is
based on the assumption that, migration of a dislocation is controlled by a single mi-
gration mechanism for example the double kink formation in BCC metals. Here we can
readily see than �H takes into account the mechanical work applied to the system. The
work of Spitzig (Spitzig and Keh, 1970) has later shown that �S is negligible compared
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from �H . Consequently, �S can be discarded from equation 1.29 (�G � �H ). This
phenomenological function ( �H ) has been successfully used in several studies on dislo-
cations (Tang et al., 1998; Rodney and Proville, 2009; Naamane et al., 2010; Gilbert et al.,
2011; Queyreau et al., 2011). This has been an inspiring idea to our model. At atomistic
scale and qualitatively speaking, a grain boundary may be seen as a periodic array of dis-
locations (Frank, 1950a; Read, 1953; Bollman, 1972; Sutton, 1995), for instance, figure 53
shows periodic arrangement of dislocations in †13.230/ symmetric tilt grain boundary.
Besides, some GB migrated through the nucleation and propagation of disconnections,
that need to overcome an energy barrier. Thus, the same function can be used for grain

Figure 53: Periodic arrays of dislocations in a disconnected †13.230/ STGB. Dislocations
are shown in red and the triangles that are shifted towards are certainly associated to
disconnections as shown in b). Here atoms belonging to the defect are shown in pale yellow
and the atoms in perfect FCC positions are shown by a black colour.

boundaries with the presumption that the overall properties is the summation of property
of one dislocation over the n dislocations existing in a simulation box. In what follows,
we explain concisely how we have determined the values of parameters appearing in this
equation.

3.3.1.1 Determining parameters in law of migration

To determine p and q, we have performed a global least squares fit to the raw data points
of �H calculated from Molecular Dynamics simulations. �Ho was regarded as �H at
zero effective stress for each temperature. Interestingly, we obtained almost similar values
of p � 0:5 and q � 1:5 for all grain boundaries. �Ho can take a wide range of values for
the set of GB considered. Grain boundaries with Athermal mobility exhibit lower values.
�Ho, like �H and �G, depends on temperature as well. The relationship between �Ho

and temperature was observed here to be linear and follows equation

�Ho.T / D ˛HT C ˛Ho (3.4)
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in which ˛H and ˛Ho are constants for a given GB. This expression emphasises that ther-
mal energy is important as well as mechanical energy in facilitating a grain boundary to
overcome the energy barrier. Furthermore, it depends as well on macroscopic degrees of
freedom as figure 54(a) shows. In all investigated grain boundaries, we observed no clear

Figure 54: The dependence of (a) �Ho of †5 type grain boundaries at 1000K and (b) A
prefactor of †13 on macroscopic degrees of freedom of a grain boundary.

correlation between �Ho and grain boundary character. In other respects, the prefactor
A is dependent on macroscopic degrees of freedom as figure 54 (b) shows. We can readily
see that pure tilt grain boundaries have roughly higher values compared from the rest.
However, the prefactor A is insensitive to temperature as figure 55(c) shows. Overall,

Figure 55: Comparison between MD and predicted enthalpy of activation (�H ) of (a) †5
pure twist and (b) mixed †13.513/ grain boundaries at different temperatures.(c) Plot of
the value of constant A versus the normalised stress for †5.001/ pure twist and †5.313/
mixed grain boundary at different temperatures.

activation enthalpy �H and �Ho increase with increasing temperature. Increasing mag-
nitude of motive force decreases the activation enthalpy �H until the transition stress P �

is reached where it drops to zero. Figures 55(a) and (b) shows a comparison between esti-
mated and raw MD data of �H for †5 pure twist and mixed †13.513/ respectively. It is
evident that estimated �H agrees well with �H from MD data. The apparent difference
between †5.001/ and †13.513/ is that the applied motive force is far less than the motive
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stress required by †13.513/ to undergo a dynamic transition. Again, from Figures 55 (a)
and (b), it is clear that past P �, the Arrhenius type relationship between mobility and
motive force loses its validity, hence this linear regime could be fitted by a linear equation
of the type equation 3.5.

vp.P; T / D A

�
P

P �

�k
(3.5)

Where k is a constant which does not depend on temperature nor on magnitude of applied
driving force. To check the suitability of this linear equation we have fitted equation 3.5
on linear data set past P �. Indeed, k � 1 was confirmed, consequently, vp.T; P / in linear
regime can be estimated by

vp.P; T / D
AP

P �
(3.6)

Now, the general closed-form velocity function of stress and temperature that results from
combining the final equations from both exponential and linear regimes reads

vp.P; T / D

8<:AP
P�

exp
�
�
�Ho
kBT

h
1 �

�
P
P�

�piq�
; if P < P �

AP
P�
; if P � P �

As we can notice from this equation, it is evident that the prefactor A
P�

is indubitably
important in this equations and it could be linked to the atomic structure of a grain
boundary. To investigate this, the prefactor is plotted in the FZ to see if there are some
noticeable trends in its dependence on macroscopic degrees of freedom. Figure 56) shows
the dependence on macroscopic degrees of freedom for grain boundaries of type †5 and
†13. It is evident that in both fundamental zones, grain boundaries of character tilt

Figure 56: The dependence of the prefactor A
P�

on macroscopic degrees of freedom at 0K
a)†5 and b)†13.

boundaries have roughly higher values compared to the rest. On the other hand, for
antithermal grain boundaries, we have taken advantage of the linearity between velocity
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Figure 57: ˇ against temperature for pure tilt †25.710/ grain boundary.

and motive force. We have fitted a linear equation 3.7 to MD velocity data points for all
temperatures and motive force. ˇ�1 is a constant that might depend on grain boundary.

vp.P; T / D
P

ˇ
(3.7)

Interestingly, ˇ is a constant that linearly depends on temperature and it reads

ˇ D cˇT C ˇo (3.8)

in which cˇ and ˇo are all constants. Figure 57 shows a good agreement between MD data
points and the predictions of the slope (ˇ) of symmetric †25.710/ tilt grain boundary.
Table 3.3 summarises all parameters appearing in equations of dependence of transition
stress P � and enthalpy of activation at zero effective stress�Ho on temperature along with
the values of other constants in the proposed phenomenological law for all investigated
grain boundaries of type †5 and †13.

3.3.1.2 Comparison of MD raw data from model predictions

Figures 115(a) to (d) (see the appendix A.3) show comparison between MD and predicted
velocity of thermally and athermally activated grain boundaries. Figure 115(a) shows plots
of velocity of pure twist †5 grain boundary against the applied motive forces. Figures
115(b) and (c) shows the same data plots for mixed †5.313/ and pure tilt †13.230/ grain
boundaries. Figure 115 (d) shows plot of velocity of pure tilt †13.230/ grain boundary
against the normalised applied motive force. The latter clearly show that the stress range
considered in this study was far less than the stress required by velocity-motive force
curve of this grain boundary to undergo transition from exponential to linear regime.
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Table 3.3: All parameters involving in equations describing the transition stress and en-
thalpy of activation �Ho at zero effective stress along with the parameters involved in
the closed-form velocity function of grain boundaries of type †5, †13 and †25.

From all figures, we readily see that the proposed model is an excellent agreement with
the MD data. Figure 116, in appendix A.3 shows comparison between MD and predicted
velocity for †25.710/ representative of other antithermal grain boundaries at different
temperatures and motive forces. For a better comparison, we have calculated the relative
error which is given by

error D

ˇ̌̌̌
Vp � VMD

Vp

ˇ̌̌̌
(3.9)

It is clear that the predicted and MD velocities are in a good agreement since the error
remains less that 0:01. It must be emphasized that the various parameters of the model
were not directly fitted from the velocity-P curves but rather from postreatement of these
curves leading to measures of the activation energy, transition stress and exponential
prefactor...

3.3.1.3 Reliability of the proposed functions

In this section, we discuss the suitability of proposed functions. The inspiration for this
work is the phenomenological function to estimate �H that has been widely used for
dislocations (Gilbert et al., 2011; Naamane et al., 2010; Queyreau et al., 2011; Rodney
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Figure 58: Relative error a)†13.230/ b)†25.710/

and Proville, 2009; Tang et al., 1998). From a kinematic point of view like the one from
Bilby, we can describe any GB as dislocation arrays (see example in figures 53 and 62),
hence the same functions can be used for grain boundary considering that total amount
of any kinematic quantity is a summation over the number of dislocations present in a
simulation cell (Priester, 2012) model on low angle grain boundaries for the case of grain
boundary energy.
The �Ho is regarded as the total free energy for a grain boundary to move without the
aid of external work. This may again justify why it is lower for athermally than that
of thermally activated grain boundaries. In agreement with Race (Race et al., 2014), as
driving force increases, less enthalpy of activation (�H ) is required for a grain boundary
to move.

The choice of P � as normalising stress is justified since it is a limiting stress past
which the applied mechanical work is sufficient enough for all grain boundary atoms
to overcome energy barrier. For instance, in our simulations we have realised that as
the ratio P

P�
increases, the number of nucleation sites for disconnections for thermally

activated grain boundaries increases as well. This is reasonable, since the pre-exponential
factor usually accounts for the nucleation site density.
As a consequence, if P

P�
� 1, the grain boundary moves as a whole. On the other hand,

the effect of thermal energy is evident. As temperature increases P � decreases. This is
reasonable since energy barrier decreases with increasing temperature, thus requiring lower
stress to be overcome. Overall, the estimated values of p and q were within the range
reported in theoretical work of Kocks, Argon and Ashby Kocks et al. (1975). With regards
to linear regime, the choice of fitting function is physically justified since for P � �G

the velocity is proportional to applied driving force (Lacasta et al., 2005; Costantini and
Marchesoni, 1999).
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Results 3.3. Migration laws to predict grain boundary velocity

Figure 59: a) Initial relaxed structure of †13.230/ tilt grain boundary, its migration is
mediated by b) nucleation and c) to i) propagation of disconnection. Atoms are coloured
by CNA where green atoms are in perfect FCC positions and black atoms belong to the
defect.
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3.4 Migration mechanism

Categorising adequately migration trends in grain boundary creates the hope of finding a
clear correlation with the underlying elementary mechanisms. For that, we have studied
grain boundary migration mechanisms by analysing their atomic structure as they move.
In general, grain boundary displacement is mediated by the deformation and either ro-
tation or translation of its structural units. As a result, it moves by jumping from one
most energetically stable structural unit to another. This explains once again why it is
very important to start with the most probable ground state of a grain boundary. In-
terestingly, the duration of such jumps depends on temperature and magnitude value of
applied driving force. The migration mechanism of grain boundary strongly depends on
its atomic structure.

3.4.1 Nucleation and propagation of disconnections

For some grain boundaries, the motion is not always planar over a large area. In many
cases, a critical area of the grain boundary disconnects, goes ahead and propagates. Here
we give two examples, from pure tilt †13.230/ (figure 59) and pure twist (figure 60) grain
boundaries.

Figure 60: Pure twist †5 in which atoms are coloured by centro-symmetric Parameter
(CSP). Blue atoms are in perfect FCC positions and the rest belongs to the defect. The
migration of this type of grain boundary is mediated by nucleation and propagation of
disconnections. Figures show a) initial structure of this grain boundary b) nucleation of
opposite disconnections c) and d) propagation of disconnections. mediated by nucleation
and propagation of disconnections.

The nucleation of a disconnection is caused by a local atomic shuffling (see section
3.4.1.1). The later causes a relatively small-in plane atomic displacements which is ac-
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commodated by either transformation or translation of structural unit depending on the
atomic structure of a grain boundary. Once all structural units undergo this transforma-
tion, the propagating disconnections span the simulation box within the GB plane. A
grain boundary makes a step forward. In our study, 82:6%, mostly †5 and †13, of all
investigated grain boundaries move by nucleation and propagation of disconnections.

3.4.1.1 Localised atomic shuffle

A careful examination of our simulations allowed to identify several distinct types of
atomic motions that occur during the migration of a grain boundary. Here we have only
focused on pure twist grain boundaries to study atomic shuffling mechanism. The main
reason is until now it is still challenging to separate shear displacement from localised
atomic shuffle. As we will see in section 3.4.3 pure twist grain boundaries do not un-
dergo a shear coupled migration. Consequently they are right candidates for this study.
In all investigated grain boundaries, we have observed two groups of atomic shuffle. The
first group containing †5. As figure 61 (a) shows the displacements shown by a dotted

Figure 61: (a) The possible atomic jump path for †5 type grain boundary. The two grains
(in black and red) are superimposed (in dichromatic complex). The smaller and bigger
dots correspond to lower and upper atomic layer in the atomic stacking respectively. (b)
A simultaneous motion of 4 atoms shown in blue colour in †5 pure twist grain boundary
at 10ps of simulation at 100K for a motive force of 200MPa.

black arrows are motion between coincidence site lattices. The displacements shown by
red arrows are primarily in the plane perpendicular to the normal of a grain boundary
for pure twist grain boundaries. The displacement shown by green arrows occurs in di-
rection perpendicular to the grain boundary plane. Consequently, they are geometrically
necessary component of grain boundary motion. This displacement is the one at origin
of transformation of the local structural unit described previously. This displacement is
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highly cooperative. For †5, this displacement involves simultaneous motion of four atoms
as figure 61(b) in the direction along the normal of a grain boundary. The motion of these
four atoms is a geometrically necessary component of the grain boundary motion and it
is at origin of localised transformation of the local structural units of a grain boundary.
The second group contains †13 and †25. For these grain boundaries no 4 atomic shuffling
motion was observed instead the jumps are of mostly single atoms. On the other hand, as
dynamics properties of grain boundary depend strongly on macroscopic degrees of free-
dom of a grain boundary, we can only consider atomic structure of a grain boundary to
explain the difference observed here. †5 has higher symmetry compared from †13 and
†25. This is due to the fact that, it is one of the lowest possible CSL with misorientation
axis Œ001� that can be obtained in FCC materials. This symmetry allows it to have a
relatively simple atomic shuffle along the displacement shift complete lattice compared
with its counterparts. Since this subject is beyond the scope of this work, we did not go
into more details but for more details see the textbook of Sutton and Balluffi (Sutton,
1996). These mechanisms may be investigated in the future.

3.4.2 Dislocation gliding

For some grain boundaries, the translation of structural units during migration occurs si-
multaneously in all grain boundary structural units. In our simulations, we have observed

Figure 62: Equidistant dislocations in †25.340/ shown in red colour. Atoms in perfect
FCC position are shown in green and atoms belonging to the defect in black colour.

two groups. The first group contains all antithermal grain boundaries. These grain bound-
aries are made of equidistant arrays of dislocations as figure 62 shows. These dislocations
simultaneously glide and this is the origin of a simultaneous transformation of all struc-
tural units said before. The grain boundary surface remains flat during grain boundary
migration since the local distribution of grain boundary dislocations remains unaffected
by grain boundary migration. In other words, the crystal misorientation associated with
the boundary accompany the moving grain boundary. Although, a grain boundary moves
forwards, the migration was observed to be associated with a macroscopic shape change
accommodated by shearing (see section 3.4.3 for details). Here we give two examples of
†25.340/ in figures 63 a) to c) and †25.710/ in figures 64 a) to c) in which the shape
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Figure 63: Dislocation gliding in †25.340/ at 100K for 150MPa. Atoms in perfect FCC
positions are in green and black colours for atoms identified a belonging to a defect.

change was observed to be controlled by the correlated atomic displacement throughout
the simulation box.

Figure 64: Dislocation gliding in †25.710/ at 100K for 200MPa. Atoms in perfect FCC
positions are in green and black colour for atoms belonging to a defect.

The second group contains athermal †5.313/ grain boundary. This grain boundary
is arguably special as we believe that defects -disconnections- are already existing on
its surface from the beginning. The same grain boundary is shown in figures 65a) to
d) which show propagation of the disconnections. In these figures, atoms are coloured
by the Centro-Symmetric parameter (CSP) with dark blue atoms corresponding to the
atoms in perfect FCC positions and the differently coloured atoms belongs to the grain
boundary. The configuration 65a that corresponds to the initial configuration shows that
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Figure 65: Migration of †5.313/ mixed GB at 200MPa for 400K. Atoms are coloured by
the centro-symmetry parameter(CSP, atoms in perfect FCC positions are shown in blue
and the rest belongs to the defect a) shows the grain boundary containing disconnections
before migration b) and c) during propagation of disconnections d) across the entire
periodic box.

disconnections are already in the GB surface before propagation. The applied driving
force serves to propagate the existing disconnections across the entire periodic box as
shown in figures 65b and 65c) to reach a next stable configurations in figure 65d by
making a complete step forward. Consequently, this grain boundary requires thermal or
mechanical energy to activate and propagate these existing disconnections (figures 65 b
to d) rather than nucleating and propagating new disconnections which is common for
other grain boundaries whose evolution is mediated by motion of disconnections. Once
disconnections have propagated across the entire periodic box a grain boundary copes
with by making a step forward. Due to these existing multiple disconnections, this grain
boundary moves almost as a whole.

3.4.3 Shear coupled grain boundary migration

Particularly for all pure tilt grain boundaries (39% of studied grain boundaries), the
change in grain boundary surface and the jump from one structural unit to another in the
normal direction of a boundary plane are associated with a relative in-plane translation
of the shrinking crystal. Figures 66 a) to f) show shear coupled migration of †5.120/
symmetric tilt grain boundaries at 100 K and 400 MPa which is representative of all
other shear coupled grain boundaries. On contrary, no such shear coupling migration was
observed for mixed and pure twist grain boundaries. This may be due to the atomic
structure of the GB or to BC. For instance, for pure twist grain boundaries, atomic layers
above and below a grain boundary are identical. Figure 67 shows atomic structure of
†5 pure twist. Green atoms are in a perfect FCC position and the black atoms belong
to a defect. It is clear that the atomic layer in green above a grain boundary is similar
to the one below a grain boundary. This is reasonable since, (001) is a mirror plane of
the DSC. Consequently, applying motive force in any direction is not expected to lead to
grain boundary shearing. As figures 67 shows the grain boundary displacement in opposite
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Figure 66: Mechanical response of †5.120/ to applied driving force of 400MPa at 100K.
Atoms in green are in perfect FCC position and black atoms belong to the defect a)
before applying motive force b) during migration, showing rearrangement of the atomic
configuration in plane of the GB accommodated by a relatively smaller in plane translation
of growing grain. c) when all structural units have undergone this transformation, a grain
boundary copes with by making one step forward d) to f) show the effect of the shear-
coupled migration as the grain boundary advances.

Figure 67: The atomic structure of †5 pure twist grain boundary. Atoms in perfect posi-
tions are shown by green colour and black atoms belong to the defect.
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directions is totally equivalent. From figure 45 b), it is clear that for any applied motive
force, the average lateral position of a grain boundary will not evolve with time since
atoms will shift by DSC vector within grain boundary plane. This results from the fact
that the shear elastic energy is relaxed by sliding of both grains abutting a grain boundary.

3.5 Characterisation and identification of defects on
surface of a grain boundary

As we have seen in the previous sections, Thermodynamics and kinetics of a grain bound-
ary may vary wildy among GB. This could be due to the difference in properties of
either constituent lower dimension defects, specifically, dislocations or nucleated defects
during migration. A clear understanding and categorising of these defects can allow to
rationalise the difference in grain boundary energy and migration mechanisms observed
in the previous sections. For instance, dislocations condition energy and interactions of
grain boundary with dislocation emerging from the bulk of the crystal whereas nucleated
disconnections and their propagation controls evolution of a microstructure. Therefore,
obtaining the spatial distribution of defects on a surface a grain boundary can improve
modelling of grain boundaries at both higher and lower scales. In particular in the present
PhD work, being able to describe GB in terms of dislocation distributions may be very
usefull to connect with mesoscale PF simulations II. In this section, we will first inves-
tigate the atomic structure of a stationary relaxed grain boundary and then the atomic
structure of a moving grain boundary. As the phase field model is a 2D model, we will
only investigate pure tilt grain boundaries which are simple enough for building two di-
mensional simulation cells.
In crystalline materials, characterisation of defects on the surface of grain boundary is
based on constructing the Burgers circuit around a grain boundary following the method-
ology of Hirth and Pond (Hirth et al., 2007). A resulting closure failure is the Burgers
vector of a crystalline defect (Frank, 1951; Stukowski and Albe, 2010; Hirth et al., 2007;
Stukowski et al., 2012). There is a dislocation extraction algorithm (DXA) (Stukowski
et al., 2012) already implemented in OVITO which analyses dislocations in crystals. How-
ever, this module does not allow the analysis of grain boundaries other than those where
the dislocations are significantly distant. For grain boundaries with closer dislocations, we
have developed our own tool referring to DXA for inspiration (OMAR, 2019).
This tool starts first by building the list of neighbour atoms to each atom contained in
the simulation box. By using the cut off radius, we limited ourselves to 12 neighbors for
an FCC materials. In the second step, we used the list of neighbors to separate atoms
belonging to the core of defect from atoms in perfect FCC positions. Here the criterion
is that, an atom belongs to a perfect position if and only if it has 12 neighbors otherwise
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it belongs to a defect. To identify these two categories of atoms, we have used the Com-
mon Neighbor Analysis algorithm already (Honeycutt and Andersen, 1987) implemented
within OVITO (Stukowski, 2009). After identifying the defect, a circuit is constructed
by surrounding the defect. To optimise the search of optimum path, we have used the
commonly known A* algorithm (Hart et al., 1968). Figure 68 a) shows an example of a

Figure 68: The Burgers circuit in a discrete domain a) containing a dislocation (shown in
a red colour) b) perfect crystal.

circuit constructed around a dislocations. Finally, the obtained Circuit is redrawn on the
reference configuration as figure 68 b) shows. As we can see from 68 a) the Burgers circuit
is composed of a set of vectors �!�x such that

P�!
�x � 0 for the closed atom to atom path.

If we map vector �!�x to a vector ��!�X in the perfect crystal 68 b), the true Burgers can be
calculated as

�!
b D

X�!
�x (3.10)

3.5.1 Structure of relaxed grain boundaries

Although structural units of a grain boundary might become compressed or expanded
(Han et al., 2017b) due to atomic relaxation process, surprisingly enough, the determina-
tion of Burgers vector of these dislocations is not affected by relaxations. To validate our
model, we have compared obtained Burgers vectors with the prediction of Frank-Bilby
equation that returns the Burgers vector of dislocations to realise the compatibility at
grain boundary (Priester, 2012).

�!
b i D .I �R

�1/
�!
k (3.11)

Where
�!
b i is the Burgers vector content of defects crossed by the probing vector

�!
k and

R is a deformation matrix that converts grain one into grain two. Consequently,
�!
k must

satisfy the equation of grain boundary plane. Some relaxed grain boundaries were shown
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as examples in figure 46. They show the characteristic structural unit of grain boundaries.
The properties investigated for simple grain boundaries studied here are grouped in Table
3.4 which provides information on Burgers vector

�!
b and the line vector

�!
l of extrinsic

dislocations.

† �!n
�!
b

�!
k

�!
l

5 (120) a
2
Œ110� a

4
Œ210� [001]

5 (130) a
2
Œ110� a

4
Œ310� [001]

13 (150) a
2
Œ110� a

4
Œ510� [001]

13 (230) a
2
Œ110� a

8
Œ320� [001]

25 (430) a
2
Œ110� a

11
Œ340� [001]

25 (170) aŒ100� �a
4
Œ170� [001]

Table 3.4: Characterisation of relaxed symmetric tilt grain boundaries.

3.5.2 Structure of a moving grain boundary

Figure 69: Identification of a structural defect for †5.120/ symmetric tilt grain boundary
a) a disconnection of height h shown by a green line b)shows the possible DSC vectors.

According to Bollmann (Bollmann, 1967), the vector connecting the lattice points
of the DSC lattice is equal to the closure failure vector due to existence of a climbed
intrinsic dislocations. The latter is Burgers vectors always obtained by comparing the
Burgers circuit in reference and defective configurations (Read, 1953) as illustrated in the
previous sections. The same procedure as before was used to determine the Burgers vector
(
�!
b dsc/ of these dislocations. The only difference is that, since we are dealing with the

DSC vectors, we have used the dichromatic complex as the reference configuration.
Figure 69 a) shows a dichromatic complex for †5.120/ as representative for all other
grain boundaries investigated. The open circles correspond to atoms of grain one and the
blue filled circles correspond to atoms of grain two. The smaller cycles and bigger circles
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Figure 70: Burgers circuit around a disconnection in a) †13.230/ and c) †5.120/ symmet-
ric tilt grain boundary with misorientation axis Œ001� b) and c) illustrate the same grain
boundaries in a dichromatic complex in which red atoms belong to grain one and black
atoms belong to grain two. The smaller and larger circles belong to A and B stacking
layers in FCC Nickel. The green line shows location of a grain boundary and the pale blue
arrow is a vector connecting two coincidence sites.
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correspond to layer A and layer B of atomic stacking in FCC materials. The green colour
line shows the next position of a section of a grain boundary that disconnects with a
height (h) from initial position of a grain boundary shown by a long black line. Figure
69 b) shows all possible disconnection (

�!
b dsc) vectors for †5.120/. To demonstrate our

procedure, we give two examples, †5.120/ and †13.230/ symmetric tilt grain boundaries
in figure 70 as representative of other grain boundaries. As figures 70 a to d show, we
constructed our circuit starting from point a by surrounding disconnections to reconnect
the circuit to the same starting point a. The height .h/ of a disconnection is calculated
as:

h D
�!
b dsc:

�!n (3.12)

Where �!n is the normal of a grain boundary plane (Hirth et al., 2007). Table 3.5 gives

Table 3.5: Identification and characterisation of disconnection on surface of a moving grain
boundary.

† �!n
�!
b dsc h ŒAı�

5 (210) ao
5
Œ120� 2.8

5 (310) ao
10
Œ130� 2.1

13 (510) ao
13
Œ150� 2.7

13 (320) ao
13
Œ230� 3.2

Burgers vector and step height of disconnections of †5 and †13 grain boundaries. As the
height of disconnection operating during GB migration may appear explicitly in the expo-
nential prefactor of the mobility function, these data are valuable for future investigation.
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Continuum scale
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The first part of the manuscript showed that atomistic methods allow an accurate
and efficient study of grain boundaries by capturing atomistic details in the five dimen-
sions of a GB orientation parametric space. However, atomistic methods are limited in
both time and length scales. This constrasts with macroscopic methods that can capture
the complexity of microstructure evolution at the scale of polycrystals. In the literature
there exist many of such methods, for example discrete disclination based models (Taupin
et al., 2015; Sun et al., 2016), which profit the kinematic equivalency between equidistant
arrays of dislocations and dipoles of disclinations to investigate grain boundaries, the ver-
tex method (Piękoś et al., 2007) that tracks grain boundary as a sharp front and Phase
Field method (Warren et al., 2003). The latter technique is formulated based on a set of
field variables that are assumed to be continuous accross the interface regions (Elder and
Grant, 2004; Elder et al., 2002) and they are used to model microstructure evolution.

The main challenge of macroscopic methods is to capture multiple phenomena con-
currently occurring during microstructure evolution and preserve at the same time most
of the physics observed in atomistics. Available macroscopic methods capture either evo-
lution of microstructure or deformation but not both at the same time (Raabe, 2002;
Steinbach and Pezzolla, 1999; Krill Iii and Chen, 2002; Kobayashi et al., 2000, 1998).
There exist, in literature, some reformulations which are based on coupling models that
capture grain growth with models that capture crystal plasticity (Raabe and Becker, 2000;
Takaki et al., 2008; Bernacki et al., 2011; Abrivard et al., 2012b,a; Popova et al., 2015; Li
et al., 2016; Zhao et al., 2016; Zhou et al., 2017). The working principle of these coupled
methods is that dislocation density is updated by models that capture crystal plasticity
and it is passed to the models that capture grain boundary evolution. Then, the dislo-
cation density is used in a penalty function to steer grain boundary evolution to areas
with high accumulated plastic strain. Consequently, the deformation is only due to bulk
crystal plasticity and grain boundary motion does not contribute to macroscopic deforma-
tion which renders these model unable to capture shear induced grain boundary migration.

We will now mostly focus upon Phase Field approach. Recently Ask et al. (Ask et al.,
2018) and Admal and Marian (Admal et al., 2018) proposed Phase Field models where the
coupling between plastic mechanisms and GB mechanisms is more organic . The Admal
and Marian’s model, will be the main focus of the present manuscript. This model de-
rives from coupling the Kobayashi Warren Carter PF model, which describes only crystal
growth, to more conventional crystal plasticity to account for plastic activities that take
place during grain boundary evolution (Kobayashi et al., 2000, 1998). The central idea of
this model is to regard the transformation processes that transform grain one into grain
two as a conventional plastic process induced by the Geometrical Necessary Dislocations
(GND). This model is described in details in section 5.3.
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While this model makes it possible to model concurrently grain growth and crystal plastic-
ity, the comparison of this model to atomistic data for example has still to be performed,
and the manner to make this model quantitative and predictive is still unclear. Therefore,
a dialogue must be made between this PF model and atomistics to transfert the neces-
sary physics to the larger scale. Connecting atomistics and mesoscale PF is challenging
and few studies have attempted to connect both approaches in the past. For example,
in (Hoyt et al., 2001) interface energies are extracted from atomistic molecular dynam-
ics simulations and imported in a phase-field model, in (Denoual et al., 2010) to study
martensitic transformation, in (Reina et al., 2014) to investigate grain boundary in Ger-
manium, in (Bergmann et al., 2017) to study anisotropic solid–liquid interface kinetics in
silicon and in (Bragard et al., 2002) for predicting the dendrite growth velocity function
of under-cooling rate in pure Ni. Despite these efforts, there is still to date no generic
physically-based model really capable of predicting microstructure evolution at polycrys-
talline length-scale in FCC materials.

The ultimate goal of this second part of my PhDmanuscript is to provide a path on how
to connect qualitatively and then quantitatively Admal and Marian’s Phase Field Model
to the atomistic data presented in previous part. It starts by recalling the classical phase
field approach. Chapter 4 provides a review of the basic ingredients of phase field method
in terms of energy and dynamics and the corresponding fundamental interpretation of the
phase field dynamic equations along with their route origin from statistical mechanics.
Chapter 5 introduces the KWC and the unified formalism of Admal and Marian’s model,
in addition, it gives examples of some of algorithms to solve phase field equations. Then,
we will give our objectives and methodology. Finally, in chapter 6, we will propose a
parametric study of Admal and Marian’s Phase Field model to fully grasp, the features
and capability of this model. Then, we will perform simulations of the GB stability and
migration of symmetric tilt GB identical to the one considered in MD simulations. We will
see that with its intial parametrization, the Model naturally captures some trends of the
MD results like the GB energy or two of the migration behaviour observed in atomistics.
Finally, to be able to quantitatively connect MD and a phase field, we will propose a fully
analytical closed form solution of the 1D KWC model. This will be the cornerstone to
future parametrization of the PF model allowing for an exact agreement between scales.
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Chapter 4

Introduction to phase field method

A suitable computational model for investigating microstructure evolution at microscopic
scale must be able to describe accurately the complexity of a real microstructure and
be able to capture multiple mechanisms taking place during microstructure evolution.
Such models must have solid foundations in physics. The relatively new modelling meth-
ods of phase field methods may fill these requirements. Phase-field methods describe a
microstructure with a set of field variables which are assumed to be continuous across
the grain boundary regions. These field parameters �i (for i D 1; 2; :::; n where n is the
number of grains in a microstructure) are introduced alongside the usual temperature
field (T ). Recalling that microstructures are developed during the process of solidification
and thermo-mechanical processing. These processes are governed by phase transformation
kinetics. For example nucleation of crystal grains is followed by a competitive growth of
these grains under the drive to reduce the overall free energy of the system. Phase trans-
formations can be categorised as first and second order transformations. The first order
transformation is characterised by a non-continuous first order derivative of total free
energy of the system (see section 4.2.4 for more details) with respect to a thermodynamic
quantity (Langer, 1986; Fix, 1983). In addition, it is characterised by a release of latent
heat. Examples of such transformation include solidification of liquids and condensation
of vapour.
On the other hand, the second order transformation is characterised by a continuous
first order derivative of the total free energy of the system with respect to thermody-
namic quantity and it does not release the latent heat. The second derivative of the total
free energy of the system is discontinuous. Such transformation are generally triggered by
thermal fluctuation in the domain. Examples of such transformation include spinodal de-
composition in metallic alloys, spontaneous ferromagnetic magnetisation of iron below the
Curie temperature (Archer and Rauscher, 2004). Such thermal fluctuations can induce a
spatial fluctuation in material ordering (in �i), for instance, it can induce grain boundary
migration, therefore both fluctuations play a dominant role in modelling the evolution
of thermodynamic quantities. We will see later in section 4.2 that since evolution of a
thermodynamic quantity is driven by the minimisation of the total energy of the system,
the total free energy of the system is expressed in terms of � and T parameters in order
to allow describing and quantifying any fluctuation in these quantities during evolution
of the system.
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4.1 Phase-field variable

In PF simulations dedicated to phase transformations, phases are described using the
order parameter �. The � describes the change of symmetry from disordered to ordered
phase as the transformation evolves. In order words, � describes the degree of crystalin-
ity in a simulation cell (Landau, 1980; Moelans et al., 2008). For example, to describe a
polycrystal, � is customary chosen to be one in a crystalline material region and � ¤ 1 in
a non crystalline material region such as grain boundaries. During phase transformation,
the spatial variation of � occurs on a very specific length scale. This correlation length
sets the scale over which the order changes from one phase to another. For example � is
taken to be the thickness of interface during grain boundary migration. In practice, this
correlation length is taken to be many times larger than the lattice constant of a material
but small enough to describe the spatial variations characterising a particular pattern in
a system.
In general, there are two types of field parameters (Binder, 1987). Order parameter that
evolves with global conservation of a quantity is called conserved order parameter. The
conserved order parameter describes a local composition of quantities such as concentra-
tion of a chemical species (Nigro, 2020). In contrast, non conserved order parameters
do not evolve constrained to a conservation law. Here we can give an example of a grain
boundary migration. The temporal evolution of the conserved and non conserved phase
field variables follows different kinetics (see later 4.3).
In the real world, systems usual seek to achieve an equilibrium state by minimising their
free energy. For a system modelled using a phase field method, a dissipative minimisation
of free energy controls the evolution of dynamic equation of order parameters, heat and
mass transfer which are usually expressed as partial differential equations. Phase field
models are connected to thermodynamics via a phenomenological free energy functional
which is usually expressed in terms of � and other fields such as temperature, strain etc...

4.2 Free energy functional

In phase field, the phenomenological free energy functional of Ginzburg-Landau (equation
4.1) serves a starting point of the formulation for the modeling of microstructure evolution
(Huang, 1987; Gurtin, 1996; Provatas and Elder, 2011).

F .�.x; t/; T .x; t// D

Z
v

�
1

2
j˛or�.x; t/j

2
C f .�.x; t/; T .x; t//

�
dx (4.1)

Where v is volume of a material under consideration, x is the spatial coordinates and ˛o
is the gradient coefficient which is connected with surface energy. �.x; t/ is a continuous
function that describes the uniformity/non-uniformity of a material at each spatial coor-
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dinate x and temporal coordinate t . The spatial variation of �.x; t/ is often assumed to be
small in order, this avoids introducing higher-order gradient terms in the �.x; t/ function
because they are more computationally demanding. f .�.x; t/; T .x; t// is regarded as a
local free energy density (free energy per unit volume) also known as the bulk free energy
density.

4.2.1 Approximating f .�.x; t/; T .x; t//

Following the Landau theory f .�.x; t/; T .x; t// can be approximated (Landau, 1980;
Provatas and Elder, 2011). By considering the fact that � vanishes (� ¤ 1/ in the disor-
dered state and that there is a phase transition in the vicinity of the critical point at which
� undergoes a small jump from � ¤ 1 to � D 1, f .T; �/ is assumed to be a polynomial
function of the form

f .T; �/ D f .T; � D 0/C

MX
nD2

Hn

n
�n (4.2)

Where Hn are coefficients that depend on temperature and other thermodynamic vari-
ables. This free energy may then be tailored to several practical use. For example, this free
energy functional can be chosen to be symmetric or non symmetric by carefully selecting
the coefficients Hn (Provatas and Elder, 2011).

4.2.2 Multi-phase field models

For some applications a phase field model can contain many field parameters (Chen, 1995).
For example, phase field models to simulate eutectic solidification (Steinbach et al., 1996;
Nestler and Wheeler, 2002; Nestler et al., 2005; Eiken et al., 2006). In these models con-
taining many phase field variables, each phase or grain is represented by one field variable
�i for i D Œ1; 2; 3; :::; n� where n describes the number of phase or grains in a system.
For example, the phase field model of Chen and Yang (Chen, 1995). This model is used to
simulate the growth of a single phase polycrystalline microstructure whose grains possess
the same chemical composition and lattice structure but with different local crystalline
orientations. As figure 71 shows each grain i is presented by a non conserved order pa-
rameter �i . In grain i , � D ˙1, while all other field variables equal zero for �j¤i . In this
model, the energy functional is viewed as a generalisation of the free energy of the phase
field model with only one phase field variable. It reads:

F D

Z "
f .�i/C

X
i

˛i

2

�
�!
r �i

�2#
dv (4.3)

By comparing this model from the single field variable model described earlier, one can
easily notice the similarities. For example, the gradient term relating to existence of a
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Introduction to phase field method 4.2. Free energy functional

Figure 71: Schematic representation of a polycrystalline microstructure. Grains are of
different orientation, consequently, are represented by different phase-field variables �i .

grain boundary. With this gradient, the properties of individual grain boundary can be
adapted by varying the constant ˛i . In addition, for isotropic grain boundary properties
˛i takes the same value for all grain boundaries. As figure 72 (a) shows, the free energy

Figure 72: (a) Example of double well potential visualised as a surface which relates the
local free energy density. (b) The order parameter profiles accross a grain boundary. In
grain one , �i D 1. As the value of �i decreases accross a grain boundary, �j of grain two
simultaneously increases, consequently, �i D 1 for �j D 0 and �i D 0 for �j D 1.

density f .�i/ is a double well potential for each grain i and it is chosen to be

f .�i/ D
X
i

�
�˛�2i C ˇ�

4
i

�
C 

X
i

X
j¤i

�2i �
2
j (4.4)

in which ˛, ˇ and  are constant with physical meaning. With this choice of f .�i/, the
free energy is always minimised when �i D ˙1 and all other field variables equal zero. As
figure 72 (b) shows, going from grain i (�i D 1, �j D 0) to grain j (�i D 0, �j D 1), there
is a simultaneous gradual decrease in value of �i and increase in value of the field �j at
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grain boundary. The variation of �i and �j accross the grain boundary increases the free
energy. This energy increase is due to the excess energy resulting from the existence of
grain boundary. In few words, the grain boundary energy strongly depends on the model
parameters and can be defined in dependence on the crystalline orientations associated
with grains. The grain boundary energy has to be taken into account when quantifying
the total free energy of the system.
As it will be shown in chapter 5.2, the grain boundary energy has, however, to be inserted
in the model manually. Indeed, the grain boundary energy does not arise naturally instead
it is a phenomenological functional tailored for a given system. In general a microstructure
in polycrystalline materials is made of several thousands of grains with different orienta-
tions. With this model, each grain should be represented by a different field variable �i
which makes this model computationally expensive.

4.2.3 Phase-field models with orientation field

One common problem for single and multi phase field models described previously is to
describe grain rotation during microstructure evolution, to quantify the consequences of
grain rotation and to realistically capture the nucleation of new sub-grains with different
crystalline orientations. In other words, these models do not consider the macroscopic
degrees of freedom of a grain boundary in consideration. A grain boundary is described by
the crystallographic misorientation angle � between two abutting grains and an inclination
angle ‚. Therefore, a phase field model should be able to take into account these two
parameters in order to realistically describe a grain boundary.
In the literature, few models attempted this, in both two and three dimensions, and have
been developed for different purposes (Warren et al., 2003; Kobayashi et al., 1998, 2000;
Lobkovsky and Warren, 2001; Gránásy et al., 2004, 2005; Pusztai et al., 2005a; Kobayashi
and Warren, 2005; Pusztai et al., 2005b). These models contain at least one phase field
variable � ( 0 � � � 1) to describe the degree of crystalinity in the domain where
minimum value locates in the core of a grain boundary and a field variable � that is used
to measure a change in local orientation with respect to a fixed coordinate system. To
calculate angle difference numerically a crystal is considered to have an n�fold symmetry
so that ��

n
� � � �

n
(Warren et al., 2003). The main challenge here is to develop a

potential functional that includes both � and � and that covers the natural physics of
an evolving dynamic property under study (Admal et al., 2018; Kobayashi and Warren,
2005). Similarly to the previously described cases, this potential functional must be a
double well potential with minima existing at � D 1 and at � D 0, in addition, this
free energy functional must contain � which describes the change in orientation between
two adjacent grains and the inclination of a grain boundary plane ‚. It is important
to note that for grain boundary orientation, we consider the angle difference between
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adjacent grains because there are no preferred grain orientations. Therefore free energy
functional can not explicitly depend on � . Consequently, to obtain a localised interface,
the lowest order gradient term jr� j is included which leads to cups in the free energy
and singularities that are treated adequately in the numerical simulations. The basic
form of this free energy functional of the .� � �/ formalism was developed by Kobayashi
(Kobayashi et al., 1998, 2000; Warren et al., 1998) and later extended by Warren (Warren
et al., 2003). The Kobayashi formalism will be discussed in more details in section 5.2.

4.2.4 Total free energy of the system

The total free energy of the system F .�.x; t/; T .x; t// can be a complex or a relatively
simple functional. For instance, for grain boundary evolution, F.�.x; t/; T .x; t/ can be
reformulated to include r� , which describes a change in local orientation between two
adjacent grains (Kobayashi et al., 1998, 2000) as a grain boundary migrates or to include
a function describing an inclination of the grain boundary plane. The total free energy
(F..�.x; t/; T .x; t//) of the system can be additively decomposed into contributions from
different parts in a system, thus, it is expressed as a sum that reads:

F D f .T; �/C Fgb C Fel C ::: (4.5)

Where Fgb D
R
v
f .r�; T; P /dv is grain boundary energy and accounts for the presence

of interfaces through r� term, v is the volume of the system, T is temperature, P is
pressure, f .T; �/ is the bulk free energy described above and Fel relates to elastic energy
stored in a system subjected to stresses or undergoing elastic deformation. The bulk
free energy f .T; �/ is related to the compositions or volume fractions of the phases in
equilibrium, whereas grain boundary energy (Fgb) and strain energy (Fel) affect the
equilibrium compositions and volume fractions of the coexisting phases.

4.3 Kinetic equations for microstructure evolution

In general, the functional F is used to characterise thermodynamic properties of an evolv-
ing system (Moelans et al., 2008). By neglecting thermal fluctuations, dynamic evolution
of the field variables and of material is, in general governed by kinetic equations. The
time derivative of a phase-field parameter is correlated to the functional derivative of the
total free energy (F / of the system with respect to the phase-field variable. The resulting
kinetic equation depends on the nature of the field variable whether locally conserved or
not.
For locally conserved field variable, the kinetic equation follows theCahn-Hilliard equa-
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tion (Cahn, 1961) that reads

@�i.x; t/

@t
D �r:

�
�Mij

@F

@�j

�
(4.6)

This is also similar to the diffusion equation or Fick’s equation in which the term�
�Mij

@F
@�j

�
describes diffusion flux of the j th component and the term @F

@�j
is the driving

force for diffusion of the j th component and Mij is diffusion coefficient.

On the other hand, the time-dependent Ginzburg-Landau equation, also known
as Allen-Cahn equation (Allen and Cahn, 1979), is used to model the evolution of
non-conserved phase-field variables. It reads

@�i.x; t/

@t
D �Mij

@F

@�j
(4.7)

In this equation Mij is referred to as mobility. As Mij is a positive definite matrix, both
kinetic equations (eqs. 4.6 and 4.7) minimize the total free energy of the system as time
evolves, thus, allowing the dynamic evolution of the microstructure towards the state of
equilibrium (Gurtin, 1996).

4.3.1 Thermal fluctuation of thermodynamic quantities

In a thermally activated transformation, thermodynamic quantities of a system are con-
tinuously fluctuating in space and in time in way which is consistent with statistical
thermodynamics. Thanks to Langevin dynamics, the kinetic equations above are refor-
mulated to include thermal fluctuations (G�j .x; t/) also known as the Langevin noise
(Gunton and San Miguel, 1983) in order to properly model the evolving system. Conse-
quently, equations 4.6 and 4.7 become

@�i.x; t/

@t
D �r:

�
�Mij

@F

@�j

�
C G�j .x; t/ (4.8)

@�i.x; t/

@t
D �Mij

@F

@�j
C G�j .x; t/ (4.9)

The noise G�j .x; t/ is Gaussian distributed and its mean value satisfies 2

�
G�j .x; t/

�
D 0 (4.10)

2In this PhD manuscript,
�
:

�
denotes a mean value in space of a given variable.
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and correlation are�
G�i .x; t/G�j .x

0; t 0/

�
D �2kBTr:Tijr

�
ı.x � x0/ı.t � t 0/

�
�
G�i .x; t/G�j .x

0; t 0/

�
D 2kBTTij ı.x � x

0/ı.t � t 0/

(4.11)

Where Tij is the symmetric part of the matrix Mij and .x; t/ denotes the reference state
x at time t whereas the new state at time t 0 is denoted by x0.

4.4 Reliability of phase field dynamic equations

Cahn-Hilliard and Allen-Cahn equations are often seen as phenomenological, however,
they are indeed physically-based models. Since these equations has set stage for other
phase field models, it is important to understand their connection with statistical me-
chanics. The demonstrations are given in the appendix B.1.

4.5 Phase field dynamic and heat flow equations

To simulate the evolution of a dynamic quantity in a thermo-mechanically processed poly-
crystalline, requires tracking the evolution of temperature field T . Therefore the equation
of motion described in section 4.3 are coupled with the heat conduction equation and it
reads

@T

@t
DMr2T C

L

cp

@�

@t
(4.12)

Where L is the latent heat and cp is the specific heat. This equation can be reformulated
to reproduce a particular phenomena, for example the solidification in which it takes the
form

@T

@t
DMr2T C

L

cp

@�

@t
C c.Tcool � T / (4.13)

WhereM , c and Tcool are constants. The Laplace operators and the directional derivatives
in equations above are approximated with appropriate numerical integration techniques
which are explained in appendix C.1.7. Figure 73 shows snapshot of microstructure evo-
lution in which the heat is extracted to freeze the simulation box (Warren et al., 2003).
These are snapshots from the work of Kobayashi (see (Warren et al., 2003) for more
details). One can note that temperature diffusion is allowed leading to nucleation of den-
dritic microstructures which grow as time passes by. The dendrites grow by approaching
each other and finally recoalesce. They merge forming a network of grains that coarsen.
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Figure 73: Microstructure evolution by solidifying grains from their under-cooled melt.
Grains are crystallographically oriented differently and they are coloured function of their
orientation (Warren et al., 2003).
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Chapter 5

Phase Field models for grain
boundary migration

After presenting the basics and few general example of Phase Field, we now present suc-
cessful example of PF simulations to model and investigate grain boundary evolution. In
this section, we discuss examples of phase field model available in literature, in particu-
lar, phase field models that take into account disorientation between two adjacent grains.
Thus, it mainly focuses on phase field model of Kobayashi Warren Carter and the new
phase field model of Admal and Marian, both of them are at the heart of my work, and
may be used to investigate both sharp and diffuse interfaces. Then, we will show the
difference in GB energy functional of Admal et al.’s model and Asks et al.’s model. Since
this project is only concerned with diffuse interface, this chapter starts by elucidating the
difference between sharp and diffuse interface. The section C.1.7 in appendix discusses
practical algorithms to solve dynamic equations of these phase field models, as numerical
resolution techniques are also important to simulations.

5.1 Description of diffuse and sharp interface

Recalling from section 1.2 that a grain boundary is described in a (at least) five dimen-
sional parametric space. Thus, a grain boundary can be described in terms of a misori-
entation between grain one of orientation R1 and grain two of orientation R2, and an
inclination of the grain boundary plane. The misorientation between grain one and grain
two is

�
R1
�T
R2. This misorientation accounts for three degrees of freedom of the grain

boundary space. In a similar way as in section 1.2, the orientation of the grain boundary
plane accounts for the remaining two degrees of freedom.
A flat grain boundary with a sharp-interface defined by a scalar misorientation angle
�0 between adjoining grain one and grain two with a misorientation axis denoted by a
unit vector w 2 R3 and an inclination i is described by a piece-wise constant rotation
field that reads

R.X I �0; w; i/ D exp
˚
�.X I �0; i/Œw��

	
(5.1)

in which �.X I �0; i/ is a piece-wise constant scalar-valued function that reads
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�.X I �0; i/ D

8<:��02 ; if X:i < 0,
�0
2
; if X:i � 0

Where i is the unit vector describing the grain boundary normal and it is parallel to r� .
Note that , Œw�� in equation 5.1 denotes the second-order anti-symmetric tensor with axial
vector w 3. On contrary, for a diffuse-interface with a width " represented in figure 74,

Figure 74: Schematic illustration of diffuse interface of boundary width " (Admal et al.,
2019).

the smooth rotation field reads

R.X I "; �0; w; i/ D expf�.X I �0; i/Œw.X/��g (5.3)

in which �.X I �0; i/ is smoothened as follows

�.X I "; �0; i/ D

8̂̂̂<̂
ˆ̂:
�f

�
2X:i
"

�
�0
2
; if 2X:i 2 Œ�"; "�,

�
�0
2
; if 2X:i < �";

�0
2
; if 2X:i > �"

Where f is a continuous smoothening function such that

f W Œ�1; 1�! Œ�1; 1� with f .1/ D �f .�1/ D 1

and w is a vector-value function such that w.X/ D w if 2X:i 2 Rn.�"; "/. It is evident
that by construction if " ! 0 the rotation field of the diffuse interface (equation 5.3)
converges to equation 5.1. This is shown in figure 75 which shows a comparison between
sharp and diffuse interface plus the curve of the step-wise � functions described above. It

3The second-order anti-symmetric tensor is described as

Œw��ij WD "ijmwm (5.2)
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Figure 75: Comparison between the sharp and diffuse interface showing the difference in
� field.

is evident that in sharp interface, contrary to diffuse interface, the orientation parameter
� changes sharply accross the grain boundary. Therefore, a sharp interface is regarded as
a singular surface that is explicitly tracked during microstructure evolution. Note that,
here, a singular surface describes a surface in the body across which jump discontinuities
are allowed for various fields and their derivatives which otherwise are continuous in the
body. For example the jump of the field � accross a singular surface is denoted

j� j D �C � �� (5.4)

On the other hand, the orientation order parameter changes rapidly but smooth accross
the diffuse interface. Consequently, the position of interface is implicitly given by the
gradients of the order parameters. Therefore, contrary to sharp interface, explicit tracking
of the grain boundary is no longer required (Rokkam et al., 2009).

5.2 The Kobayashi Warren Carter model

The work of Kobayashi, Warren and Carter (Kobayashi et al., 1998, 2000; Warren et al.,
2003) has set stage to modelling the evolution of a microstructure of a pure polycrystalline
material by taking into account the orientational order parameter. They proposed a phase
field model to study evolution of grain boundary in a two dimension polycrystalline (�0 2
R2). The model consists of three scalar field parameters � , � both described earlier (see
section 4.2.3) and temperature T . T is not often explicitly written, but it is understood
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to enter the free energy parameters. The KWC free energy function FKWC reads

FKWC Œ�; �� D

Z
�0

‰KWCdV (5.5)

Where
‰KWC .�;r�;r�/ D

˛2

2
jr�j2 C f .�/C g.�/sjr� j C

"2

2
jr� j2 (5.6)

and
f .�/ D e.� � 1/2

g.�/ D �2
(5.7)

Where ˛, e, s and " are constants. r� is the rotationally invariant expression that describes
interface energy due to orientational mismatch between two rotated grains. The term
g.�/sjr� j localises the interface whereas the term "2

2
jr� j2 diffuses it. Therefore, both

terms in r� plays an important role for a grain boundary to have a finite width. In
addition, the term " plays an important role in a mobility of a grain boundary as it will
be shown later in this manuscript.

5.2.1 Mobility function of field variables

In phase field methods for grain boundary problems, it is difficult to maintain angle
variable constant or almost constant within each grain during grain boundary migration.
One can solve this by creating local minima in the energy space according to the number
of grain orientations (Morin et al., 1995; Chen and Yang, 1994; Kobayashi and Giga,
1999). Unfortunately, this solution is physically undesirable since it breaks the rotational
invariance of the model. On the other hand, if the leading term of the energy with respect
to r� is jr� j2 and if there is no local minimum assumed in the energy space, the angle
variable is hardly kept constant in interior of each grain during migration (Kobayashi
et al., 1998; Warren et al., 1998; Lusk, 1999), especially without the help of boundary
conditions. Therefore, the following equations containing jr� j instead of jr� j2 for the
dynamic evolution of field variables � and � are derived by taking independent variation
of ‰KWC with respect to � and � which results in 4

��
@�

@t
D ˛2�� � f

0

�.�/ � g
0

�.�/sjr� j (5.8)

��
@�

@t
D r:

�
"2r� C g.�/s

r�

jr� j

�
(5.9)

Where �� and �� are kinetic time constant with respect to � and � and for a function
M.'; #/, its derivatives are M 0

'.'; #/ and M
0

#
.'; #/ with respect to ' and # . Note that

4Note that� denotes Laplacian operator, r denotes the gradient operator and r: denotes the divergent
operator.
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M
P�
� D ��

@�

@t
and M P�

�
D ��

@�
@t

are inverse mobilities of � and � respectively. This model
includes � only in r� form, therefore the model retains a symmetry in evolution of �
under rotation. The main idea behind the formulation of energy functional ( equation
5.6) and mobility function (equations 5.8 and 5.9) by including jr� j is to keep angle
variable constant by means of singular diffusivity in each grain. In this way, the jump of
the angle variable can inevitably appear at the grain boundary, consequently, the singular
jr� j term appears in equations 5.6, 5.8 and 5.9. Therefore the term r�

jr� j
makes equation

5.9 a singular diffusive equation (Admal et al., 2018). By this singularity, the graph of
� decreases gradually to pick downward at the core of grain boundary, while � D 1 in
interior of each grain. For more details on the derivation of such equations see (Kobayashi
and Giga, 1999).

5.2.2 Numerical implementation of KWC model

Numerical implementation of the KWC model requires to properly treat the singular term
because the singular term makes the model mathematically difficult to converge. In the
following section, we explain the approximation of the singular term.

5.2.2.1 Numerical convergence of the mobility equations

The presence of the singular term makes equations numerically difficult to converge.
Kobayashi and Giga (Kobayashi and Giga, 1999) proposed an elegant method of replacing
the singular term with non singular term without compromising the physics.

p.jr� j/ WD
ln.cosh. jr� j//


(5.10)

Where  is an adjustable parameter such that

lim
!1

p .jr� j/ � jr� j

By replacing jr� j by p .jr� j/, the Euler–Lagrange equations 5.8 and 5.9 become:

M
P�
� D ˛

2�� � f
0

.�/ � g
0

.�/sp (5.11)

and
M
P�
� D r:

�
"2r� C gsp

0

jr� j

r�

jr� j

�
(5.12)

A comparison of the numerical and analytical solution of the KWC model is given in
appendix B.2 and B.3.
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5.2.3 Energy of a grain boundary

Energy gb of a grain boundary is a key element in assessing relative stability of a grain
boundary. In addition, gb takes part of an important motive force for grain boundary
migration, through the expressions of GB stiffness. In the continuous PF model, the
gb is expected to include a contribution from �

p
0 and �GB0 . Warren and Co-workers

(Warren et al., 2003) have proposed a methodology to calculate the excess energy of
a grain boundary (Warren et al., 2003). The procedure is to integrate the steady state
form of equations 5.8 and 5.9 and substitute the resulting equations into the free energy
functional. after the temperature dependent reference bulk energy (fref ) is subtracted

Figure 76: Grain boundary energy (gb) against misorientation angle (�) for different g.�/
functions (Admal et al., 2018).

from the resultant (f .�o.x/) functional.

gb D sg.�min/�� C 2˛

Z 1

�min

�
f .�o.x/ � fref

�
dx (5.13)

For low angle grain boundaries, grain boundary energy is approximated as

gb � �s�� ln .��/ (5.14)

Since the energy contribution from the terms containing � is very negligible relative to
the contribution from terms containing (r�/. This is the Read-Shockley model for low
angle tilt grain boundaries (Read and Shockley, 1950). �� is the misorientation across
the bicrystal and �min is the value of the �0.x/ field, in the centre of the grain boundary

123



Phase Field models for grain boundary migration 5.3. Admal and Marian’s phase field model

with a width WGB and �min ( the global minimum of �0.x/) reads

�min D 1 �
��

��c

WGB D
2˛

e
ln
�
1 �

��

��c

�
��c D

˛e

s

(5.15)

For more details on the derivation of these functions see in (Warren et al., 2003). In general,
g.�/ is chosen to increase monotonically in �, for example equation 5.7. However, in some
cases, for example in the work of Kobayashi (Kobayashi et al., 2000) and Admal et al.
(Admal et al., 2018) it is chosen to follow

g.�/ D �2

�
ln.1 � �/ � �

�
(5.16)

The Work of Admal et al.(Admal et al., 2018) has shown that the choice of g.�/ from
equation 5.16 yields a grain boundary energy of the Read–Shockley form (Read and
Shockley, 1950) as figure 76 shows, whereas Kobayashi and Giga (Kobayashi and Giga,
1999) realised that the choice of g.�/ from equation 5.7 results in a linear dependence of
the grain boundary energy on misorientation as figure 76 shows.

5.2.4 Limitation of KWC model

The main advantage of KWC model is that it is possible to model both grain rotation and
shrinkage simultaneously. Despite the fact that the KWCmodel models qualitatively grain
boundary migration, it is purely phenomenological with no connection with underling
plastic mechanisms. For that, it does not provide a detailed picture of plastic activities
due to dislocations during microstructure evolution.

5.3 Admal and Marian’s phase field model

A quantitative and qualitative prediction of microstructure evolution requires tracking
factors that affect the displacement of a grain boundary such as its interaction with
dislocations and understanding how plastic activities from these dislocations affect the
motion of a grain boundary. One of the recent model to simulate grain boundary evolution
with plastic activity of dislocations was recently proposed by Admal and Marian (Admal
et al., 2018). It is a model based on modelling a grain boundary as a continuum collection of
dislocations. Its basic form originates from the free energy functional of Kobayashi Warren
Carter model (Kobayashi et al., 1998, 2000). Therefore, it might inherit the computational
challenges of the KWC model, especially, originating from the singular diffusive nature of
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its governing equations. In this section we discuss this model in more details since it is at
the center of the present work.

5.3.1 Kinematics of polycrystal plasticity

The kinematic of polycrystal plasticity is essentially concerned with the change of shape
of microstructure due to plastic deformation activities. Note that change in shape are
observed on both macroscopic and microscopic scales. It is of great importance to describe
this microstructure shape change in order to be able to quantify how it affects properties
of an evolving microstructure, in particular mobility of a migrating grain boundary. This
section gives fundamental insights of kinematics behind a continuum polycrystal plasticity
model of Admal and Marian (Admal et al., 2018). Thus, it starts by describing useful
kinematic variables required to successfully describe grain boundary plasticity. Since this
model originates from the theory of single crystal plasticity, we start by describing the
kinematic of a single crystal and then later, we will introduce a grain boundary in a crystal
as a continuum array of geometrically necessary dislocations.

5.3.1.1 Macro and micro-scopic kinematics of bulk polycrystal

Here, we describe a body as an open subset ˇ � R3. In circumstances when a body
undergoes deformation, its deformation is described relative to a reference body ˇt �
R3 identified with the bounded regions of R3 it occupies. ˇt is customary assumed to
be homogeneous. In order words, each point X 2 ˇt , referred to as a material point,
is associated with a reference lattice that does not vary from point to point. During
deformation of the body, the description of the resulting x 2 ˇ relative to the material
point X 2 ˇt follows a one to one mapping

x D y.X; t/ (5.17)

Where y.X; t/ D X C u is a deformation function of X at each time t where u is a
displacement of any point in ˇ. The deformation gradient F reads,

F D ry D ru (5.18)

The gradient is expressed with respect to the material coordinates. The determinant
of F (detF ) satisfies the following condition

detF ¤ 0 (5.19)

In general, the micro-kinematical hypotheses of classical theory of crystal plasticity are
based on the multiplicative decomposition of the deformation gradient F into its elastic
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F e and plastic F p components (Lee, 1969; Kröner, 1959; Reina and Conti, 2014; Gurtin,
2000).

F D F eF P (5.20)

Figure 77: Schematic diagram illustrating the decomposition of deformation gradient into
elastic distortion F e and plastic distortion F p(Kröner, 1959; Gurtin, 2008).

F e represents elastic stretching and rotation of the atomic lattice and F p describes the
plastic distortion of atoms due to dislocation slip. Both tensors F e 6 and F p are invert-
ible and they can be viewed as describing deformation of infinitesimal neighbourhoods.
This means that they are not necessary gradient of motions. In order words F p maps
the infinitesimally small material element dX to F pdX . In this framework, the lattice
configuration is used to describe the collection of infinitesimal configurations obtained by
applying either F e locally to reference increment dx or F p locally to reference increment
dX. Thus, F p and F e fields are very different. Here F e maps the lattice configuration
to the deformed configuration whereas F p maps the reference configuration to the lattice
configuration. Furthermore, F and F T maps as well the reference configuration to the
deformed configuration (see figure 77 for visualisation). The velocity gradient L (rv) is
important when describing F e and F p. rv can also be decomposed into its elastic and

6Note that F e and F l carry the same description.

126



Phase Field models for grain boundary migration 5.3. Admal and Marian’s phase field model

plastic components by using the Kron̈er–Lee decomposition technique8̂̂<̂
:̂
rv D L D Le C F eLpF e�1

Le D PF e
�
F e
��1

Lp D PF p
�
F p
��1

The terms Le and Lp denote the elastic and plastic components of the velocity gradient.
In classical single crystal plasticity, the presumption that plastic flow takes place though
slip manifests itself in the description of the evolution of the deformation gradient F p. It
is determined from the plastic flow rate PF p which is expressed in terms of plastic velocity
gradient Lp and the plastic deformation gradient F p as

PF p D LpF p (5.21)

Since the motion of dislocations takes place on prescribed slip systems, the overall plastic
velocity gradient considers the contribution from each slip ˛ (˛ D 1; 2; :::; A/. For more
on slip system in FCC materials see section 1.1.2. Therefore Lp becomes

Lp D

AX
˛

v˛V (5.22)

where v˛ is microshear rates in order words the slip rate and

V WD s˛ ˝m˛

is Schmid tensor that projects the amount of slip on each system with respect to the
frame of reference. Here, s˛ describes the dislocation slip glide direction and m˛ is the
normal of dislocation slip plane. s˛ and m˛ are vectors in the lattice configuration. Due
to orthogonality existing between s˛ and m˛, t r.Lp/ D 0 consequently

det . PF p/ D det
�
.F p/t r.Lp/

�
D 0 (5.23)

On the other hand, F e > 0 and from classical plasticity F e can be decomposed into
rotation field Re and the right stretch tensor U e

F e D Re:U e (5.24)

For
U e
D

p
.F e/TF e (5.25)

The right Cauchy-Green lattice deformation tensor C e and the lattice Lagrangian strain

127



Phase Field models for grain boundary migration 5.3. Admal and Marian’s phase field model

Ee are obtained from F e

C e D .F e/TF e

Ee D
1

2
.C e � I/

(5.26)

Where I is the identity matrix. The crystal plasticity framework successfully describes
materials deformation.

5.3.2 Kinematic framework to include grain boundary plasticity

The grain boundary plasticity is centered on describing a grain as an array of periodic
arrangement of Geometrically Necessary Dislocations (GND) (Admal et al., 2017; Cer-
melli and Gurtin, 2002; Admal et al., 2018). In this way each grain boundary is described
in terms of its own GND with unique characteristics (e.g. properties, densities etc...)
sufficient enough to precisely define it. In this way, during any deformation mechanism,
plastic distortion due to climbing or sliding of the GND dislocations emerges naturally
and follows the plastic flow rule in equation 5.21. During the flow of geometrically neces-
sary dislocations, their Burgers vectors is characterised by the closure failure of referential
circuits as mapped by F p or of deformed circuits as mapped by F e. By means of charac-
terising the Burgers vector, a tensor field referred to as the Burgers tensor G is derived
from F p or F e(Cermelli and Gurtin, 2002) and reads,

G D F pcurlF p

D J eF e�1curlF e�1
(5.27)

Where J e D detF e. Considering the fact that, a grain boundary is planar defect, it is
worthy noting that G is not a function, instead it is a distribution supported by the surface
of a grain boundary. G allows to measure the net Burger vector in each surface from the
collection of grain boundary surfaces that support the distribution of G (Acharya, 2008;
Gurtin et al., 2010). For instance, if we consider the normal n of a given surface in a
lattice configuration, the net Burger vector Gn of dislocation lines per unit area passing
through a plane of normal n in the lattice configuration is given by

Gn D G
T :n (5.28)

This method of interpreting a grain boundary as a continuum periodic array of geometri-
cally necessary dislocation was previously used in both atomistic simulations (Lim et al.,
2009; Warrington and Bollmann, 1972) and in elastic models (Saada, 1979). In atomistic
simulations, G is expressed in terms of the number (ni) of arrays of geometrically neces-
sary dislocations, their dislocation line Li and their net Burgers vector bi and the volume
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of the domain V (Cermelli and Gurtin, 2001).

G D
1

V

niX
i

Li ˝ bi (5.29)

or by a equation of Frank-Bilby (Priester, 2012), where I is the identity matrix and
�!
k is

a probing vector within the GB plane.

G D
�
R0.�.X// � I

��!
k (5.30)

For flat diffusive tilt interface, G tensor has two non zero components G31 and G32 which
are expressed in terms of the smoothened step function �.X/ describing the orientation of
the two grains. Evaluation of G tensor with F p D R0T .�.X// using equation 5.27 returns

G31 D �cos(�.X//
@�.X/

@�1

G32 D �sin(�.X//
@�.X/

@�1

(5.31)

and the rest of the components are zeros. Figure 78 shows the plots of the components
of jGj tensor against the position x along the x axis. From here, one can easily notice

Figure 78: Dislocation density obtained from one dimension steady state simulation mod-
elling of a flat symmetric tilt grain boundary of misorientation angle �0 D 30ı with
misorientation axis Œ001� located at the center of a simulation box of 20nm long (Admal
et al., 2018).

the importance of interpreting a grain boundary as an array of dislocations. The major
advantage is that the evolution of tensor G tracks simultaneously the bulk dislocation
activities and grain boundary activities through PF p field.
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5.3.2.1 Building a grain boundary

To build a grain boundary we take advantage of the multiplicative polar decomposition
of F in equation 5.20. The main advantage of building a grain boundary based on this
polar decomposition is that it offers an immediate access to G tensor. As figure 79 shows,

Figure 79: Constructing a grain boundary by utilising polar decomposition of the defor-
mation gradient (Admal et al., 2018, 2017).

a strain free (F � I ) single crystal with initial states below is considered as a reference
configuration.

F e.X; 0/ D R .�.X//

F p.X; 0/ D R .�.X//T
(5.32)

In the second step, this single crystal is plastically deformed by applying a step-wise rota-
tion R

�
�.X/

�
, a functional representing a lattice rotation field in bicrystal. This rotation

field is a piece-wise constant value (Admal et al., 2017, 2018) functional. Apparently, the
resulting plastic deformation gradient F p deforms the material leaving the lattice fixed.
In the next step an elastic deformation is applied. On contrary to plastic deformation,
elastic deformation deforms the lattice. This results in a total deformation gradient that
is compatible

F.X; 0/ D F eF P � I (5.33)
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This method results in a relaxed bicrystal which is strain free since the resulting La-
grangian strain is zero. Figure 80 shows the plot of a components a) of plastic distortion
and b) lattice Lagrangian strain obtained from a steady state simulation of a flat sym-
metric tilt grain boundary with a misorientation angle 30ı and disorientation axis Œ001�.
Thus, this procedure produces bicrystal with the right amount of slip in each grain. How-

Figure 80: Plots of components of a) plastic distortion F p and b) Lattice Lagrangian
strain Ee for a flat symmetric tilt grain boundary with a misorientation angle 30ı around
Œ001� misorientation axis located in centre of the simulation box of 20nm long (Admal
et al., 2018).

ever, this seems contradictory from a visual comparison between the resulting bicrystal
and the initial single crystal in figure 79. This apparent contradiction results from in-
terpreting F P D RT in an absolute sense for a discrete lattice (Admal et al., 2017). To
circumvent this apparent contradiction, F P should be viewed in an average sense using
the theory of weak convergence (Admal et al., 2017; Rudin, 1991). For more details on
this theory see appendix C.1.1.

5.3.3 Macroscopic and microscopic force balance

To arrive at the force balance equations requires taking independent variation of equation
C.10 (in appendix) with respect to Py, P� and v˛.˛ D 1; :::; n/. Here we list all macroscopic
and microscopic force balance equations obtained:

1. Macroscopic force balance equations are(
DivP D 0; in ˇt
t D PN; on @ˇt

(5.34)

2. Microscopic force balance for each slip system ˛ reads(
Div�˛ �…˛

D 0; in ˇt
„˛ D �˛:N; on @ˇt

(5.35)
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3. Microscopic force balance equations for � reads(
Div% � � D 0; in ˇt
s D %:N; on @ˇt

(5.36)

The details of the model as proposed by Admal and his collaborators is left in appendix
C.1 for the sake of conciseness.

5.3.4 Grain boundary energy  gb
By taking advantage of G tensor described in section 5.3.2, grain boundary energy is
expressed in terms of G. The Admal and Marian’s model is inspired by the KWC model
in a sense that the gradient of lattice rotation is replaced by G which is a frame-invariant
tensorial quantity that includes the misorientation axis, angle and the inclination of a
grain boundary.

 gb.T; �;r�;G/ D
˛2

2
jr�j2 C f .�/C g.�/sjGj C

"2

2
jGj2 (5.37)

Where ˛, s and " are constants that depend on temperature. This is natural since G is
unique for each grain boundary. In addition, under the assumptions of small strain, Nye
(Nye, 1953) has shown that tensor r� � jGj can be related to the gradient of lattice
rotation. We may refer the reader to the appendix C.1 for more on derivation of this
energy functional.

5.3.5 Bulk elastic energy  bulk
The bulk elastic energy is assumed to depend on T and Ee through the lattice constants.
It is described by a polyconvex energy density for isotropic materials proposed by Ciarlet
and Geymonat (Ciarlet et al., 1982).

‰bulk D a .3C 2T r.E
e//C b

�
3C 4T r.Ee/C 2T r2.Ee/ � 2T r

�
.Ee/2

��
C c det .2Ee C I / �

1

2
d log det .2Ee C I / � .3aC 3b C c/

(5.38)

For
a D � �

1

2

�
�C

�

4

�
b D �

�

2
C
1

2

�
�C

�

4

�
c D

�

8

d D �C
�

2
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Where � and � are the Lame’s constant. Figure 118 (in appendix) shows curve of elastic
energy function of the x�coordinates for a flat symmetric tilt grain boundary of mis-
orientation angle 30ı around a misorientation axis Œ001� obtained from a steady state
simulation at 0K.

5.3.6 Mobility function of Admal & Marian’s model

The Euler-Lagrange equations resulting from taking independent variations of  gb with
respect to � and G are

M
P�
� D ˛

2
r
2� � f 0�.�/ � g

0.�/sjGj

M
PG
G D g.�/s C "

2
jGj

(5.39)

Similar to KWC model, jGj in the functions above is approximated by p.jGj/ where the
function p is given in equation 5.10. M P�

� and M PG
G are inverse mobility function with

respect to � and G. For more on the derivation of these equations, we may refer the
reader to the section C.1 in appendix.

5.4 The phase Field model of Anna

This is another recent model devised to capture simultaneously grain boundary evolution
in unison with plastic activities. As for Admal and Marian’s model, this model derives
from the extension of KWC model (Warren et al., 2003). The difference with Admal
and Marian model described in previous sections is that this model is formulated using
the Cosserat crystal plasticity to incorporate plastic activity induced by a moving grain
boundary (Ask et al., 2018). The resulting grain boundary energy functional reads

‰.�;r�; ee; �; �˛/ D f0

�
f .�/C

a2

2
jr�j2 C sg.�/jj�jj C

"2

2
h.�/jj�jj2

�
C
1

2
"e W Es W "e C 2�c.�/

x
e e:

x
e e C‰�.�; �

˛/

(5.40)

Where � is order parameter,
e
e elastic deformation tensor , � is the curvature tensor, �˛

internal variable that is function of the dislocation densities, f0 is a normalisation param-
eter, h.�/ is an interpolation function , "e plastic strain tensor, Es is elasticity tensor, �c
is the coupling modulus,

x
e e is skew-symmetric deformation tensor and all others have(s,

g.�/, Dg(�/, a2 D ˛2, ") the same meaning as in the KWC or Admal’s model presented
before.
This model capture successfully the moving grain boundary and plastic activity associ-
ated with. For example, figures 81 a) and b) shows initial profiles of � , e� (the Eigen-
deformation tensor) and � (at t D 0) and after the grain with a high content of stored dis-
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Figure 81: Profiles of a) � and e� and b) � of a moving grain boundary at initial position
(t D 0) and after t D 450 (Ask et al., 2018).

locations is almost entirely consumed by a growing dislocation free grain ( after t D 450).
For more in the model see in (Ask et al., 2018).

5.5 Algorithms to solve phase field equations

The quality of phase field simulations roots in both carefully choosing algorithm to solve
partial differential equations appearing in phase field equations and on properly meshing
the simulation domain. Therefore, it is important to compare available algorithms in
order to make a proper choice on which one to use. In this literature review we have
assessed different algorithms used for discretisation and numerically solving phase field
equations and related partial differential equations. Since in this project, we simulated
only two dimensional phase field equations, we have limited ourselves to algorithms that
are applicable to a two dimensional system. For that reason, we have assessed the finite
difference and finite element methods. In addition, we have assessed the implicit and
explicit algorithms for time marching and compares their stability. To capture the whole
theoretical backgrounds of these schemes we may refer the reader to the section C.1.7 in
appendix of this manuscript.
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Objectives

The ultimate objective of this work is to develop a physically based model capable of
predicting microstructure evolution at the scale of FCC Nickel polycrystals. This has been
a challenge for several decades now. In the general introduction we identified two main
challenges that must be overcome at the mesoscale to reach this objective. 1) One of the
major difficulties lies in the fact that many mechanisms are occurring concurrently, ranging
from Grain Boundary (GB) migration, accompanied -or not- by GB rotation and shear
coupling, existence of multiple driving forces, to GB interaction with crystal dislocations.
The relative contribution of each of these mechanisms is difficult to assess with most
of the currently available models. 2) Because the details of GB migration and of their
interaction with crystal dislocations depend upon the atomic details of GB structures,
and can only be assessed by atomistics, a successful predictive model for microstructure
evolution should retain the key atomistics data like these obtained by Molecular dynamics
in the first part of this manuscript. In the previous chapters, we reviewed the basics of PF
and demonstrated that the PF model proposed by Admal et al. (Admal et al., 2018) could
be a good framework to include all the necessary physical mechanisms. In this chapter,
we will implement and assess the capability of this model to produce the mechanisms
that hopes to reproduce. We will start by a sensitivity study, to fully understand all the
role of the parameters and terms in the model, then we will investigate the stability and
migration of the symmetric tilt GB around [001] corresponding to the configuration of
the first part of this part, and we will see that the model captures spontaneously with
the existing parametrization many of the qualitative and even some quantitative features
observed in MD. Finally at the end of the chapter, we will propose an explicit analytical
solution of the KWC model in 1D, upon which the Admal et al. model is based. This
analytical solution allows for the first time to rigorously and unambiguously identify the
PF parameters.

Methodology

In this section, we will perform numerical simulation to investigate migration of two
dimensional Œ001� diffuse symmetric tilt grain boundaries from a list of grain boundaries
investigated by atomistic method in the first part of this thesis. The list of grain boundaries
investigated here which are shown in table 3.4 encompasses both symmetric tilt grain
boundaries with low and high misorientation angle. All simulations will be carried in
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COMSOL Multi-physics V5.6 which is a cross-platform finite element analysis, solver and
multi-physics simulation software. The choice of this software is centred on the fact that
it is a high performance code which features faster and more memory-lean solvers for
multicore and cluster computations and more efficient CAD assembly handling. It is a
regularly maintained and updated code. COMSOL Multiphysics is seamlessly integrated
with MATLAB to extend our modelling with scripting programming in the MATLAB
environment. This will allow us to utilise the full power of MATLAB and its toolboxes in
pre-processing, scripting and post-processing of raw data.

Dynamic equations to solve

During numerical simulation, we will solve the following force balance equations 5.34,5.36,5.35
(for P , %, �˛, … and �), for the unknowns �, u, v˛.˛ D 1; ::; A/ and the plastic flow equa-
tion for the unknown F p using finite element analysis methods. For each equation an
appropriate boundary condition was applied. For instance,

1. divP D 0 in � with boundary conditions on u as shown in figure 82.

2. div% � � D 0 in � with boundary conditions on � (see figure 82).

3. div�˛ �…˛ D 0 in � with boundary condition on v˛

4. PF p D LpF p in � with F p.:; 0/ D QROT in �

To solve these equations we have reprised the methodology devised by Admal (Admal
et al., 2018), we have used the MUMPS (Multifrontal Massively Parallel Sparse direct
Solver which is used to solve large sparse systems of linear algebraic equations on dis-
tributed memory parallel computers) and BDF (Backward Differential Formula) time
stepping algorithm due to its versatility (it is described in appendix section C.1.9.4) both
implemented in COMSOL V5.6 and both with a tolerance of 10�8:

Input parameters to the governing equations

To solve force balance equations (eqs.5.34, 5.35 and 5.36 derived in appendix C.1.3), grain
boundary energy equation (eq.5.37), bulk elastic energy equation (eq. 5.38) and thermo-
dynamic constitutive equations (eq.C.35) require input parameters and/or functions. For
instance, the presence of a linear term g.�/sjGj in equation 5.37 results in a singular
diffusive terms in both microscopic force balance equation 5.35 and mobility function,
therefore for numerical convenience, the terms jGj is approximated with p.jGj/ with a
function p defined in equation 5.10. However,  has to be carefully chosen because if 
increases the gradient of plastic distortion tends to zero in the bulk (Admal et al., 2018).
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For the function g.�/ we have used

g.�/ D �2

�
ln.1 � �/ � �

�
(5.41)

which results in non-convex grain boundary energy as predicted by Read and Shockley
(Read, 1953; Kobayashi and Giga, 1999). For other constants appearing in grain boundary
energy functional such as ˛, e, s and ", we have initially used the value from KWC model
and they are given in table 5.1, and then after we have redone the convergence test
to determine the suitable values for our cases (see section 6.1.1 for more details). For

Table 5.1: List of parameters used for the implementation of the Admal & Marian model
(Admal et al., 2018).
"2

�10�10

ŒJm�1�2

˛2

�10�9

ŒJm�1�2

s

ŒJm�2�

e

�10�8

ŒJm�3�

B˛

�10�15

ŒJ:s:m�1�



�10�7

Œm�

s1 s2 s3 s4

3:1999 7:95 1:7 3.5 1 5 .1; 0/ .0; 1/ 1
p
2
.1; 1/ 1

p
2
.1; 1/

parameter B˛ associated with �˛
diss

in equation C.35, we have used the value provided by
Admal (Admal et al., 2018). In addition we have assumed that plastic distortion evolves
due to the presence of four slip systems with slip directions s˛D.1;2;3;4/ which are also given
in table 5.1. For the initial value of jGj we have used the values in table 3.4 to calculate
the initial values of the components of G following equation 5.30. For a material, we have
imported elastic constants entering the bulk elastic energy functional for Nickel from a
data base of COMSOL V5.6.

Geometry setup and initial conditions

We have used the bi-crystalline geometry employed in atomistic simulations. A planar
grain boundary is introduced in the centre of the simulation box by following procedure
described in section 5.3.2.1. A smoothened step-wise function �.x/ is used to describe
orientation of the crystal lattice. As described in section 5.1 a diffuse interface bicrystal
is generated by regularising �.x/ into a smooth function as follows

�.x/ D �
�0

2
C

�0

1C expŒ�4.x � L=2/�
(5.42)

Where �0 is a misorientation angle between adjacent grains. Note that this expression for �
is not exactly solution of the KWC model as we will see at the end of the chapter, and few
iterations are required to fully relax the initial fields. A strain free bicrystal is obtained by
starting with F p.X; 0/ D R0T .�.x// where R is a regularised rotation field. Contrary to
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atomistic part, we will use only a two dimensional domain � since the primary focus here
is to provide a working and reliable model of simulating grain boundary evolution that
is able to preserve the physics observed in atomistic simulations. Similarly to atomistic
simulation box, we have used the same length along the x and y axis. The use of similar
box size will allow to compare directly both methods. Figure 82 shows the simulation box
setup in which the grain boundary is shown by a dotted green line in the middle of the
box.

Boundary conditions

We will use both periodic and Dirichlet Boundary conditions (see section C.1.10 in ap-
pendix for more details). Periodic Boundary Conditions are shown in black. The use of
periodic boundary conditions allows to simulate a semi-infinite domain which is large
enough to statistically collect general trends on a large sample. Dirichlet boundary con-

Figure 82: A schematic of a bicrystal used to study grain boundary migration. The grain
boundary is shown as a dotted line. Dirichlet boundary conditions are shown in red and
blue, the periodic boundary conditions are shown in black.

ditions are shown in red and blue. On the Dirichlet boundary conditions in red x D �L,
we will impose solutions to our unknowns (u, � and v˛) as follows:8̂̂<̂

:̂
.u1; u2/ D .0; 0/

�.�L/ D 1

v˛.�L/ D 0

On the Dirichlet boundary conditions in blue (x D CL), we will apply driving force
for grain boundary migration. This motive force is exerted by translating the surface
x D CL upwards (along the y axis) with a constant velocity cŒm:s�1� for a time duration
t0Œs� and then held fixed in that position for the duration of a simulation. Consequently,

138



Objectives and methodology

the following solutions are imposed to unknowns at x D CL8̂̂̂̂
<̂
ˆ̂̂:
.u1; u2/ D

�
0; ctIŒ0;t0/ C ct0IŒt0;1/

�
�.CL/ D 1

v˛.CL/ D 0

Where I.x; t/ is an indicator function defined for x 2 Rd (d D 1; 2) and A � RdC1 as

I.x; t/ D

(
1 if .x; t/ 2 A,

0 otherwise
(5.43)

Isoparametric representation of the simulation box

Creating a high-quality mesh is one of the most critical factors that must be considered
to ensure accuracy in numerical simulations. Consequently, the displacement variables u1
and u2, the slip rate v˛ and order parameter � will be interpolated using the Lagrange
quadratic finite elements due to a dominant second derivative term in kinetic equations.
A convergence test was carried out in order to choose the shape and size of an element to

Figure 83: An adaptive mesh of triangular elements used in out simulation.

use in meshing the simulation box. Figure 83 shows an unstructured mesh with quadratic
triangular elements used in our simulations in which the region around a grain boundary is
finely meshed to improve accuracy in the grain boundary region. Note that we have taken
advantage of the Adaptive Mesh Refinement (AMR) method implemented in COMSOL
Multiphysics in order to mitigate computational time while maintaining precision. It is
also important to note that since F p is a smooth rotation field at t D 0s, it satisfies the
orthogonality conditions ( to mean F pTF p � I ). Since it does not satisfy requirements to
be interpolated using the Lagrange finite element, it has been replaced by its components
Rp and U p by using the polar decomposition as follows F p D RpU p Where Rp is
plastic component of rotation field and it depends only on �p. U p is the positive definite
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symmetric stretch tensor. Therefore F p is interpolated using the Lagrange quadratic
finite element interpolation of �p, U p

11, U
p
12 and U

p
22 thus guaranteeing to circumvent this

orthogonality conditions.
To move a grain boundary, a shear stress is applied on the blue surface of the simulation

box (figure 82). The shear stress is imposed by translating the blue surface upwards at a
constant velocity c in a range Œ0 � 30� � 10�4ms�1 for a time t0 D 2 � 10�5s and it was
held in that position for the rest of the simulations. From section C.1.5 in appendix, we
did not solve energy balance equation in this study because all simulations are performed
at a constant temperature. All simulations were allowed to run long enough (2 � 105s).
In order to investigate the influence of temperature on migration of a grain boundary, we
have applied temperature in a range Œ0; 1000�K which will allow to compare directly with
the MD results. In our simulations we have used the inverse mobility (M P̨

˛ / function used
by Admal and Marian (Admal et al., 2018). It reads, for ˛ D Œ1; 2; 3; 4�,

M P̨
˛ D m

˛
min C

�
1 � 10�3 C 15�4 � 6�5

��
m˛max �m

˛
min

�
(5.44)

Where the minimum mobility is attained when � D 1 is m˛min D 1 � 10�12m3J�1s�1

and the maximum mobility is attained when � D 0 is m˛max D 1 � 10�3m3J�1s�1. It is
important to note that if m˛max � m˛min, it ensures that the simulation is only restricted
to modelling grain boundary mediated plasticity otherwise reversing m˛max and m˛min in
equation 5.44 leads to modelling bulk plasticity.
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Chapter 6

Results

In this chapter, we present static and dynamic properties of all investigated grain bound-
aries that are listed in table 3.4. The curves are plotted from phase fields and fields
collected from a dashed red horizontal line passing through the center of the simulation
domain as figure 84 shows. In this chapter, important relationships and results are de-

Figure 84: All data points are collected on the horizontal red line passing through the
center of the simulation box.

rived. We will start by doing a sensitivity test on the parameters and terms appearing in
the phase field model to investigate a role they play. This will allow us to find suitable
values of these parameters to be used in this project.

6.1 Static study of grain boundary properties

6.1.1 Parametric sensitivity analysis

In the first step, we have analysed the role played by different parameters in the phase field
equation. We know from the analysis made on KWC model that " and ˛ in particular
are expected to be parameters that set the strength of the penalties for gradients in
misorientation and degree of crystalline orientational order, respectively. In addition, "
and s are expected to have an opposing effect in setting the width of a grain boundary.
In order words, decreasing s increases the width of a grain boundary whereas decreasing
" decreases the width of a grain boundary. Importantly, if " D 0 and s ¤ 0, a grain
boundary becomes a sharp interface and if " ¤ 0 and s D 0, the misorientation field �
becomes a linear function in steady state. Therefore, the terms with jGj are expected
to act together to set the finite width of a grain boundary. From equation 5.15, one can
readily notice that ˛, e and s play an important role in defining the width of the grain
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Figure 85: Effect of varying values of ˛ on field a) � and b) � in †5.310/ symmetric tilt
grain boundary.

boundary and from equation 5.14 that s plays an important role in describing energy
of a grain boundary. As we will see later, it is also expected that " plays an important
role in the mobility of a grain boundary. According to Kobayashi et al. (Kobayashi and

Figure 86: Effect of varying values of e on field parameter � for †25.710/ symmetric tilt
grain boundary.

Giga, 1999), the role played by different parameters can be examined by studying the
steady state solution. Therefore, in this study our system was allowed, in the absence of
driving force for migration, to evolve 2� 10�3s long enough to reach a static equilibrium
configuration. The values of these constants were varied in a range given in table 6.1. To

Table 6.1: Range of values used for sensitivity test
Parameter ˛2ŒfJ=nm�2 sŒfJ=nm2� "2ŒfJ=nm�2 Œnm� eŒJ:m�3

Range Œ0 � 1� Œ0 � 1� Œ0 � 1� Œ1 � 2000� Œ0 � 1�

study influence of a given parameter, we have kept other parameters constant with the
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Results 6.1. Static study of grain boundary properties

Figure 87: The effect of varying s on a) � and b) � (in radians) solutions of †5.310/.

values from the Admal et al. (Admal et al., 2018) and vary a parameter of interest. Since
the field � and the width of a grain boundary controls energy of a grain boundary, in
the first time, we have investigated how parameter ˛ affects the solution of � and the
width of a grain boundary. From figure 85a) one can notice how significantly ˛ influences
the solution of �. As the value of ˛ decreases the solution of � picks downward in the
region �GB0 (grain boundary region) and the width of the �GBo region decreases. This is
reasonable considering the solution of � given in appendix D.1 and equation 5.15.

Figure 88: a) The Effect of varying a) s on the energy density of †5.310/ b) " on the
misorientation field � .

This means that: (
If ˛ !C1 then �min ! 1

If ˛ ! 0 then �min ! 0
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One can also see that the changes in the value of ˛ manifest themselves in the solution

Figure 89: The effect of varying " on norm of density of geometrically necessary dis-
locations in †25.710/ symmetric tilt grain boundary at 100K with a shear rate of
P D 2 � 10�4m:s�1.

of � as figure 85b) shows, however, there is no clear trend. Here, it is important to note
that for all values of ˛, a simulation domain is still divided into two regions �p0 and �GB0 ,
this is reasonable since the terms containing jGj are not affected by changing ˛. In this
study we have observed that the change in total energy of the system is not significantly
affected by varying ˛. This is due to the fact that, depending on the relative weight of
the other parameters in the energy equation, the contribution of the terms containing
� to the total energy of the system is negligible compared from contributions of terms
containing jGj (see figure 102). In the second step, we have examined the role of e. Figure
86 shows the dependence of � field on the value of e. As the value of e decreases � picks
downwards and the width increases. This observation agrees with the formula 5.15 from
KWC model. On the other hand from figures 87a) and b) one can notice the influence of
s on numerical solution of � and � . It is evident that(

If s !C1 then �min ! 0

If s ! 0 then �min ! 1

The value of s decreases energy density decreases (see figure 88 a)). This is reasonable
since �min tends to one leading to an increase in crystalinity in the domain. In the third
case study, we have varied " in a range given above. Figure 88 b) shows the influence of
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Figure 90: Effect of Œm� on the components of the dislocation density jGj in †5.310/
symmetric tilt grain boundary.

" on the solution of � . We see that:8̂̂<̂
:̂
If "! 0, � function becomes a sharp step wise function

If "!1, � function tends to be a linear function

At intermediate value of ", � is a step wise smooth function.

The sharpwise nature of � for " ! 0 is shown by a curve in cyan colour.When the
value of " decreases the width of a grain boundary decreases. The increase of value of
" increases the width of a grain boundary until the field � looses its step-wise nature
and becomes a linear function as illustrated in figure 88 b). The same grain boundary
width variation by changing the value " manifests itself in plot of density of geometrically
necessary dislocations. Figure 89 shows the dependence of the norm of jGj on " in†25.710/
symmetric tilt grain boundary. It shows that as the value of "2 increases the width of a
grain boundary increases and as the value of "2 decreases the curve picks upwards. Plus,
one can remark also that the Z

jGij jdx D
X�!

b i

where
�!
b is the Burgers vector in the Franck Bilby model. Thus for a given grain boundary,P�!

b i is a constant and changing epsilon only changes the width of the grain boundary.
By comparing the effect of varying s and "2, one can conclude that the term g.�/sjGj

plays a role of localising a grain boundary in the simulation box whereas the term "2

2
jGj2

tends to diffuse a grain boundary. Since jGj is approximated by p.jGj/ as shown in
equation C.42 in appendix, we have investigated how varying the value of  affects jGj.
This is necessary since it allows assessing the quality of approximation we are making.
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Table 6.2: Parameter used in our calculations.
Parameters ˛2 ŒfJ=nm�2 s ŒfJ=nm2� "2 ŒfJ=nm�2  Œnm�

values 0.0053 0.0017 0.0002133 510

One can notice from figures 90a) and 90 b) that the components of jGj are slightly
affected by varying  . This is supported by the fact that varying  does not affect the
misorientation field between abutting grains which is reasonable since it is only used to
remove the singularity. However, in our calculations, we have realised that as the value of
 increases the stiffness of the governing equations increases therefore consuming much
computational resources. In conclusion, we have chosen to use, in the next calculations,
the values of these parameters that produce the step-wise nature of � function. These
values are listed in table 6.2.

Here recalling that, the rotation field described in equation 5.42 has been used as an
initial input to describe misorientation between grain one and grain two. Here we show

Figure 91: a) Colour plot of �.x/ over the domain for †5.310/ tilt grain boundary (units in
degrees) and b) curve of �.x/ function of the x-coordinates. The data points are collected
from a horizontal line passing through the center of the simulation box.

its plots for symmetric †5.310/ tilt grain boundary as a representative of all other grain
boundaries investigated. Figure 91a) shows a colour coded steady state �.x/ field from
�.x/ function and figure 91b) shows the same �.x/ function for only points collected from
an horizontal line passing through the center of the simulation box (see figure 84). As
expected, the KWC model (and by extension Admal et al. model) localised the GB in a
finite region where r� ¤ 0 and a prefect crystalline region surrounding a grain boundary
where r� D 0. This localization of the GB, has been exploited to propose a path for
an analytical solution of the 1D KWC problem, as will be seen latter. �.x/ acts as a
regularised step function that returns a diffuse interface with a characteristic width. In
the region �p0 , 8x 2 �

p
0 , �.x/ D �18:43ı in grain one and �.x/ D C18:43ı in grain two,

whereas it increases smoothly from grain one to grain two in the region �GB0 15.
In the next step, we have plotted the numerical solution of jGj and �. We have observed

15Note that we have denoted our domain �0 D Œ�L;L� and the region containing a grain boundary is
denoted �GB0 D Œ�l; l � and the perfect crystalline region is denoted by �p0 D �0n�GB0 .
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Results 6.1. Static study of grain boundary properties

Figure 92: Plots of components of a) elastic deformation gradient F e and b) plastic de-
formation gradient F p in †5.310/ grain boundary c) colour map of F e components for
the same grain boundary.
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that within each grain jG.x/j D 0 and �.x/ D 1. This indicates a perfect crystalline region.

Figure 93: a) Deformation gradient F for †5.310/ symmetric tilt and b) plots of one
dimensional simulation modelling of a flat †25.430/ symmetric tilt grain boundary under
steady state conditions.

�.x/ drops at the grain boundary indicating a decrease in crystallanity and in the same
time jG.x/j, which is equivalent to the presence of geometrically necessary dislocations
at grain boundary. Next, we considered the distribution of different components of the
deformation gradient. Note, here, that the regularised �.x/ shown above has been used
to describe initial rotation field Ro.�.x// in the bicrystal as described in section 5.3.2.1.
Recall here that Ro.�.x// satisfies the condition of orthogonality, therefore, the total

Figure 94: Map of the norm of the density of the Geometrically necessary dislocations (in
units of m�1) in the un-deformed flat †25.430/ symmetric tilt grain boundary.

deformation gradient F satisfies F � I and both elastic and plastic deformation gradients
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read 8̂̂̂̂
<̂̂
ˆ̂̂̂:
F e D R0

�
�.x/

�
F p D R0T

�
�.x/

�
F D F eF p

(6.1)

Figure 92 a) to c) show the resulting steady state profiles for components of elastic .F e/,
plastic deformation .F p/ gradient and the colour code map for the F e components re-
spectively for †5.310/ symmetric tilt grain boundary. One can see from figure 92 a) to c)
that all components remain constant in each grain and vary only at the grain boundary.
In addition, one can notice that F p is a inverse of F e.

Figure 95: Dependence of the maximum value of
p
G231 CG

2
32 on misorientation angle � .

For instance, Fe12 increases at grain boundary to reach a maximum value while F p12
decreases in a similar way to reach a minimum value. The F e being an inverse of F p and
vice versa manifests itself in the curves of components of F shown in figure 93a). They
show that all diagonal components of F (F11 and F22) equals one, whereas F12 and F21
are zero in each grain and at grain boundary.

Although there exist both elastic and plastic distortion in the vicinity of a grain
boundary as explained in section 5.3.1.1, there is a conservation of the mass densities
in the reference and the deformed configurations. This comes from the fact that detF
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Figure 96: The normalised distribution of G31 and G32 in S25(710) and S5(310).

describes the volumetric part of the deformation which reads

J D detF �
�0

�
(6.2)

where �0 is the mass density in the reference configuration and � is the mass density in
the deformed configuration. In addition, the symmetric nature of curves of components
of F e and F p indicates that both grains are equally distorted. On the other hand, it
is important to note that both F e and F p were expected to be zero in the interior of
both grains. The non zero value is a consequence of approximating jGj by p.jGj/ in term
g.�/sjGj.

Next, we discuss the distribution of jGj (see figure 94) since jGj depends upon F .
But first a precision is required. The model of Admal et al. is based on the kinematic
equivalence of a rotation transformation described by a matrix RG1G2 and an array of
discrete dislocations. The Frank-Bilby equation states this equivalence as:X

bi D
�
RG1G2 � I

�
� k; (6.3)

where I is the identity matrix, and
P

bi the sum of Burgers vectors intersected by the
probing vector k contained within the interface. This is equivalent, to a GND tensor G:

G D
X Li ˝ bi

V
(6.4)

Where, Li is a dislocation line and V is a volume of a domain. For a STGB around the
z axis and a plane along x the dislocation array is made of edges, which correspond to
a GND component G31. Admal’s model not only deals with GND but with the GND’s
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spatial distribution, taken first as a Dirac ı.x/:

G D

264 0 0 0

0 0 0

��0ı.x/ 0 0

375 (6.5)

, where ��0 is the misorientation across the GB. The model, after relaxation will in 2D,
have two non zero distributions:

G31 D �cos. Q�/r�.x/ (6.6)

G32 D �sin. Q�/r�.x/ (6.7)

with jGj D r�.x/ However, we can notice that the distribution of G32 is antisymmetrical
and will not contribute to the overall rotation of the grains. Figure 93b) shows plots of

Figure 97: Plots of a) lattice Lagrangian strain E over the constant ˛2 where rij stands
for the Eij

˛2
component b) Right Cauchy-Green lattice deformation in †25.430/.

components of jGj tensor versus normalised x coordinates obtained from a steady state
simulation of †25.430/ symmetric tilt grain boundary which is shown as a representative
of all other investigated grain boundaries.

The obtained results are compared from initial inputs obtained from using initial �.x/
values. It is clear that they are in a good agreement. In addition, figure 93b) confirms that
all components of jGj are zero except G31 and G32. One sees that in interior of the grains
all components are zero indicating the lack of dislocation inside the grains this is re-shown
in the colour plot of the norm of the density of the geometrically necessary dislocations
in figure 94 in which the dark blue and dark red corresponds to the lowest and highest
dislocation density respectively.
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Figure 98: a) Elastic and b) plastic component of velocity gradient over ˛2 for †25.430/
symmetric tilt grain boundary.Where reij and rpij stand for Le

ij

˛2
and L

p

ij

˛2
respectively.

To assess the change in GND distribution for the various STGB we have considered,
we plot first the maximum of jGj (which corresponds mostly to the maximum of G31)
as a function of the misorientation angle. This is shown in Figure 95, and we see the
maximum of jGj linearly increases with misorientation ��0. When, considering the two
previous equations 6.5 and 6.7, it becomes clear, that the GND distribution may be the
same. This is what is checked in figure 96, for two GBs with respectively small and large
misorientation angles. We see that the -rescaled- spacial distribution for G31 and G32 are
rigorously identical. This is a key feature of the Admal et al. model, that could be very
interesting to exploit for future modelling and theoretical developments.

Since the time dependent simulations of flat symmetric grain boundary requires to
start with a relaxed configuration, we have made sure that both crystals are equally de-
formed in order to avoid favouring one grain over an an other. As we want to deploy a
strain free bicrystal, we have started by examining the strain distribution in the bicrystal.
Figure 97a) shows curves of components of the lattice Lagrangian strain (Ee) versus the
normalised x� coordinate of the simulation box.
One can see that Ee is zero away from grain boundary and negligibly oscillates about
zero in the vicinity of a grain boundary even if it was expected to be zero. This expecta-
tion comes from the fact that representing a grain boundary as a continuum dislocation
distribution instead of a discrete array of dislocations results in no Lagrangian strain
near a grain boundary. However, the presence of negligible Ee in the vicinity of a grain
boundary shown in figure 97a) can be attributed to the construction of grain boundary
that uses jGj instead of the exact lattice gradient tensor ReT curlReT . This Lagrangian
strain is insignificant, in fact, a measure of the deformation independently of the rotation
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has confirmed a deformation free bicrystal as shown in figure 97b.
Figure 97b) shows that there is no right Cauchy green lattice deformation C e in the
bicrystal, consequently, there is no stretching of the lattice. U e � I can be explained by
the fact that in the case where micro-rotation follows elastic rotation such that R D Re

the resulting microstructure coincides with the frame of the reference microstructure and
the associated elastic stretches are significantly small. We have also verified that the fac-

Figure 99: a)Resolved shear stress � on ˛ D Œ1; 2; 3; 4� slip plane expressed in equation
C.18, RSS for ˛ D Œ1; 2; 3; 4� denotes resolved shear stress due to slip plane ˛ D 1 b)Plots
of micro-stress �˛ due to slip activity in flat symmetric tilt grain boundary †5.310/. Note
that the �˛;b indicates the back stress of slip ˛ D Œ1; 2; 3; 4� with a slip direction b D Œ1; 2�
for b D 1 in x�direction and b D 2 in y�direction.

tors that contribute to the micro or macro stress during grain boundary migration are
inactive in static simulations. We have first verified that the components of elastic and
plastic velocity gradients are both inactive. Since, time dependant simulations of flat sym-
metric grain boundary requires to start with equal amount of slip in each grain to avoid
favouring one grain over an other, in the second step, we have that the resolved shear
stress � is equal for both grain one and grain two. Figure 99a) shows the resolved shear
stress � on ˛ slip plane expressed in equation C.18 ( in appendix). It is clear that � is zeros
in the interior of each grain whereas it is not at grain boundary. In addition One can see
that there is an equal amount in both grains. In addition, it is important to verify if both
grains in a bicrystal are subjected to similar magnitude of the stress due to slip system.
Figure 99b) shows microscopic stress �˛ on each slip system ˛ expressed in equation C.31.
One can once again see that there is an equal amount of stress on each side of a grain
boundary core and that the stress is zero in interior of grain one and two. This means
that, the bicrystal is obtained from a reference single crystal by the right amount of slip
in each grain such that both grains undergo a relative rotation but the underlying lattice
in the bicrystal remains strain free as equation 6.1 shows. One can recall that �˛ is addi-
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Figure 100: Plots of energetic component of the micro-stress �˛ due to slip activity in flat
symmetric tilt grain boundary †5.310/. Note that the �˛;b indicates the back stress of
slip ˛ D Œ1; 2; 3; 4� with a slip direction b D Œ1; 2� for b D 1 in x�direction and b D 2 in
y�direction.

tively decomposed into energetic part which is described by equation C.33 and dissipative
part described by equation C.35. It is important to understand the contribution of both
parts to the total energy due to slip systems. Since we want one grain to be exactly a
mirror image of the other, it is also important to verify if the force due to dislocations
(Peach-Koehler force) is identical on both sides of the grain boundary.
Figure 100 shows curves of the Peach-Koehl force (�˛energy) versus normalised x� coor-

Figure 101: Plots of components of the plastic flow rate PF p (described in equation 5.21)
over constant ˛2 for a flat symmetric tilt †25.430/ grain boundary.Where Prij stands for
PF
p

ij

˛2

dinate. One can notice that the Peach-Koehler force is zero in each grain but change at
grain boundary this is due to the existing geometrically necessary dislocations at grain
boundary. In addition, if one compares both figures 99 b) and 100 one can notice that the
contribution of the dissipative component is very negligible compared from the energetic
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component.
This is reasonable since a grain boundary is stationary and �˛

diss
depends on micro-

shear rate rv˛ due to slip (see equation C.35) which is inactive since a grain boundary
is stationary. During dynamic simulation, F p is updated from PF p as section 5.21 shows,
it is imperative to be sure that there is no localised plastic flow prior to applying driving
force for grain boundary migration. Therefore, in our static simulation, we have made
sure that there is no active localised plastic flow. In the next step, we can compare the

Figure 102: Contributions of the three parts of the total energy density of the symmetric
†25.710/ tilt grain.

relative contributions of the different energy terms (with the current parameters used),
from section 4.3, one can recall that this energy functional will be connected to the
driving force for the grain boundary migration. As discussed in section 4.2.4, the total
energy of the system is a summation of contributions from different terms in the equation
of total energy of the system (see equation 4.5). Figure 102 shows, the contributions
to total energy of the system from different terms in the total energy functional at 0K
for a relaxed GB. One can easily see that the major contribution comes from the terms
containing dislocations density tensor and the contribution from the terms that depend
on the order parameter � is insignificant. This agrees fair well with the work of Admal
and Marian (Admal et al., 2018).

6.1.1.1 Comparison between the GB energy obtained from MD and PF

It is now possible to compare the GB energy predicted by the Phase field method from the
GB energies measured by molecular dynamics in part I. However, simulations made using
the phase field method are performed in a two-dimensional domain, whereas atomistic
simulations were performed in a three-dimensional domain. Therefore to compare grain
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boundary energy on equal footing, grain boundary energies from MD is expressed per unit
length, by multiplying by the appropriate length. The table 6.3 shows this comparison
and the GB energies obtained by the two approaches are found to be in a nice agreement.
This result is very surprising as the PF parameters used until now have no connections
with MD data except for the initial input of the G tensor. The values are however close
to the values (˛, �, s, e) suggested in (Warren et al., 2003) where the materials parameter
are scaled with respect to a typical value for the latent heat L per unit of volume, L D
2 � 109J=m3 of metals. The PF model accounts for the elastic distortion induced by the
GBs. Alternatively, this nice agreement could means that for the simple GB included
here, including elasticity as the main part of the GB energy is sufficient. This should be
investigated in more details.

Table 6.3: Comparison of grain boundary energy from Molecular Dynamics (MD) and
Phase Field (PF).

GB plane .310/ .120/ .510/ .230/ .340/ .710/

† 5 5 13 13 25 25
MD energy ŒJ:m�1� 5.9 6.3 6 5.4 4.7 5.5
PF energy ŒJ:m�1� 6.1 6.4 5.8 5.8 5.5 5.3

6.2 Simulations of grain boundary migration

We now move to dynamic simulations of GB migration and compare the results to migra-
tion simulated thanks to MD in part I. For this we will mimic in the PF, the configuration
and simulation conditions employed in MD. To move a grain boundary we have applied
a shear stress as described in previous section and all simulations were run 2 � 105s and
the temperature was varied between the range Œ0 � 1000�K. In the literature, it was re-
ported that the active slip systems control the migration mechanisms of a grain boundary
whether sliding or shear coupling (Admal et al., 2018), therefore in our time dependent
simulations we have first run a test to investigate the influence of slip system on migration
mechanism of a grain boundary.

6.2.1 Sensitivity Study

In section 6.1.1, we have proposed a sensitivity study for static simulations (immobile
GB), here we are going to do the same for dynamic simulations. In the phase field, the
materials parameters (˛; �; e and s) appears explicitly in both the static and dynamic
behaviours, as it will be demonstrated clearly in the analytical model shown at the end
of this part.
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Effect of ", s, e and ˛ on migration of grain boundary

For this second sensitivity study, we reprise the methodology and value range considered
in the first part of the PhD manuscript. We will see that the various parameters preserve
their role observed in static simulation, with slight nuances. To investigate the role played
by the parameter " in the migration of grain boundary, we have varied the value of "
in range of Œ0; 1� at each time we kept other parameters fixed with value reported in
table 5.1. A shear rate P D 1:5 � 10�4m:s�1 was applied to the system at 100K and it
was allowed to run for 9 � 105s. Figure 126 in the appendix D.3.1 shows the effect of
varying the value of " on diffusion of density of geometrically necessary dislocations in
†25.710/ symmetric tilt grain boundary as a representative of all other grain boundaries
investigated. As the value of " increases the grain boundary migrates faster, and the GND
distribution is wider. For " D 0 and s ¤ 0, a grain boundary becomes sharp and does
not move. From all investigated grain boundary a common trend emerge as the value of
" decreases the normal of density of geometrically necessary dislocations increases. This
observation agrees with the equation D.9 in the appendix D.1 as figure 89 shows. When
the value of " decreases, the curve picks upwards and the width of the grain boundary
decreases.
We have also varied the value of s in range Œ0; 1� for other parameters fixed and then after
the value of s and ˛ were allowed to vary and other parameters kept fixed. For ˛ ¤ 0 and
" ¤ 0, if s tends to zero the width of a grain boundary tends to zero too as discussed in
section 6.1.1. If the value of s increases, the computational time increases. For s D 0 and
, " D 0, ˛ D 0 and e, there is no grain boundary. If s, tends to zero the width of a grain
boundary decreases and a grain boundary does not move. As the value of e increases for
the others fixed with the values in the table 5.1, the width of grain boundary decreases
and a grain boundary tends not to move. Different tests at different values of ˛, e and s
are listed in the appendix D.3.

6.2.1.1 Role of the different slip systems composing a GB

In the PF in static, the GBs correspond to the same continuous distribution of jGj scale
with the misorientation; and we will see that GB migration will correspond to the motion
of GND fields (in correlation with the shift of �.x/). We started by probing the impact of
the various slip system implemented in the PF as shown in the table 5.1 by turning the
activity on or off. The details of these results can be found in the appendix D.2 for the sake
of conciseness. From this, several observations can be made. The slip system S˛ D .1; 0/

was observed to be responsible of grain boundary sliding, slip systems S˛ D 1
p
2
.1;�1/ and

S˛ D 1
p
2
.1; 1/ play an important role of keeping the diffuse nature of a grain boundary

as it moves and the slip system S˛ D .0; 1/ is responsible for shear coupling. As the
last image in figure 124 shows, all slip systems listed in 5.1 act together to allow a grain
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boundary to move by mechanism that involves a combination of both shear coupling and
sliding motion. This decomposition of the role played by the different slip system, is still
particularly useful to dissociate the different effects happening on a given GB in PF. We
can also say that this decomposition, while a bit simplistic, still in a way reflects the
kinematics of what is observed in MD, with shear coupling for example controlled by the
in plane shear contribution of disconnections operating during migration.

6.2.2 Simulation of the migration of symmetric tilt GB

Figure 103: Evolution of � with time and b) associated crystal rotation for †25.710/
symmetric tilt grain boundary at a shear rate P D 8 � 10�4ms�1.

Here, we show how the PF model describes the migration of a GB in a bicrystal.
Figure 103 a) shows the evolution of the field �.x; t/ with time during GB migration. We
can consider that the minimum value of �.x; t/ locates in the core of a grain boundary.
As expected, when applying the driving force the �.x; t/ distribution translated to the
right and its shape remains mostly the same. The slight asymmetry observed on the red
curve and change in width may be due to either numerical issues or due to the fact that
the field exited the fine mesh region. Figure 103 b) shows the evolution of the � field with
time, as expected the front follows the �.x; t/ field due to the cross terms in the energy
density functional, linking the two fields. The r� is related to jGj, which itself is related
to G D FPcurlFP. Next we present the evolution and distribution of F P .

Since in the model, the GB is equivalent to a distribution of dislocations, its motion
leaves in its wake a plastic distortion corresponding to the transformation of grain 1 into
grain 2. To illustrate the propagation of the crystal rotation change from grain 1 into
grain 2, we have plotted in figures 104 a) to d) the streamlines of vectors F ee1 and F ee2.
Note that, here e1 D .1; 0/, e2 D .0; 1/ and the color density corresponds to the first
component of the plastic strain Ep D 1

2
.F pTF p � I /.
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Figure 104: Streamlines tangential to the vector fields F e1 and F e2 describing the variations
in the lattice plotted in the reference configuration. Note that the colour density here
corresponds to the first component of the plastic strain a) and c) undeformed lattice of
†5.310/ and †25.710/. grain boundaries respectively b) and d) deformed lattice of b)
†5.310/ and d)†25.710/ respectively after 1:5 � 105s.

Figure 105: Colour plot of the norm of the GND density jGj in undeformed (initial)
configurations a) †5.310/, b) †25.710/ and deformed configurations c) †5.310/ after
9 � 104s, d) †25.710/ after 26833s at 400K with a shear rate P D 8 � 10�4ms�1.

Since this plastic deformation must conserve the volume of the system, we also made
sure that detF p D 1 at all times. Figure128 a) shows the evolution of detF p at different
time steps. It is clear that the determinant remains equal 1 at all times. Here, one can
notice that, this determinant means that F p remains a piece-wise constant field, with
only the discontinuity translating with time.

Finally, we considered the evolution of the distribution of the GND density constituting
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Figure 106: Plots of a) density of GNDs density components G31 and G32 and evolution
of energy density at different time steps in †5.310/ grain boundary at a shear rate of
P D 8 � 10�4ms�1.

the GB during the GB migration. Figures 105 a) to d) show the colour plot of evolution
of the norm of the GND density for two different grain boundaries. One can notice that
even if the simulations of both grain boundaries are run at the same temperature with
the same shear rate applied, migration of GNDs depends on the type of grain boundary
as evidently, the grain boundaries did not move the same distance. In a more quantitative
manner, Figure 106 a) shows the evolution of components of jGj in †5.310/ at two
different time steps. When comparing with the undeformed configuration (at t D 0s), the
dislocation distribution are shifted to the right due to the driving force application in the
deformed configuration (at t D 9 � 104s). The distributions are also slightly wider, again
certainly due to an effect of the application of the driving force.

6.2.2.1 Influence of the temperature

Here, in preparation for the next sections, we discuss the impact of temperature on the
mechanical loading of the GB (equivalent GND distribution). We have examined the
Peach-Koehler (PK) contribution ( calculated using equation C.33 in appendix) felt on
the various slip systems possible for the dislocations. This contribution is now continuous
as the GND are themselves distributions, and the PK was observed to be unaffected by
the temperature. This is in contrast to the dissipative back stress (calculated in equation
C.35 in appendix) shown in figure 107. These distributions are plotted as function of
the slip system and for two different grain boundaries at a temperature of 400K. This is
interesting to not that the dissipative back stress are rather very different for the two GB
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type, while we have shown earlier that the re-scaled GND distributions constituting these
GB are rigorously the same.

Figure 107: Dissipative energy �˛
diss

in x direction due to slip a) S1 b)S2 c)S3 and d)S4
for two grain boundaries †5.310/ and †25.710/ at 400K.

6.2.2.2 Shear coupling migration

As a grain boundary described as an array of dislocations sweeps through a bicrystal,
it plastically deforms a bicrystal. For all investigated grain boundary, the migration of
a grain boundary in normal direction is accompanied by the translation of the grain
being consumed in tangential direction with respect to the growing grain. This migration
mechanism is illustrated in figure 108 for two different grain boundaries †25.710/ and
†5.310/ at 100K. By using the shear coupling factor ˇ which is the ratio of the distance
traversed by a grain boundary along its normal direction to the vertical displacement, one
can assess the extent of shear coupling in a grain boundary motion. Figure 109 a) shows
the evolution of the shear coupling factor as function of time. ˇ converges after some time-
steps as in (Admal et al., 2018). This could be due to the fact that shear coupling is not a
local phenomena therefore the measurement of ˇ is also not local. Next, we have compared
the obtained values from theoretical values ( calculated from ˇ D 2tan.�=2/, where � is a
misorientation angle between two abutting grains (Homer et al., 2013)). The figure 109 b)
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Figure 108: Colour plot of the norm of the GND density jGj in a)†25.710/, c) †5.310/ ini-
tial and b) †25.710/, d) †5.310/ deformed configuration at shear rate P D 2�10�4ms�1.

shows that the shear coupling factors increases with the misorientation angle. Overall, the

Figure 109: a) Convergence of the coupling factor ˇ with respect to time for †5.310/
symmetric tilt grain boundary.b) Comparison of the dependence of numerically and the-
oretically calculated shear coupling on misorientation angle.

simulated shear coupling factors from PF are in good agreement with the theoretical model
derived from geometric arguments. The simulation slightly underestimate the theoretical
values and this could be related to numerical issues. For all investigated grain boundaries,
as general trends, it was observed that as the shear coupling increases the velocity of a
grain boundary in the normal direction of grain boundary decreases. By comparing figure
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109 b) with figure 95, it is evident that the shear coupling factor increases with the density
of geometrically necessary dislocations. Figure 109 b) compares the shear coupling factor
from the phase field study from theoretical values.

6.2.3 Velocity of GB migration as function of applied shear rate
and temperature

In this final subsection, we plot the average velocity of GB migration in a similar manner
as for the atomistic data e.g. as function of the GB type, in the 2D parametric phase
space shear rate and temperature. As in the MD, and independently of the applied tem-
perature and motive force, GB velocity reaches an instantaneous steady state and the
velocity is extracted as the derivative of the grain boundary displacement-time curve.
Note that, the position of a grain boundary is extracted from the evolution of the crystal
lattice rotation curves in figure 103b). Figure110 shows the time displacement curve of
†25.710/ symmetric tilt grain boundary as a representative of all other investigated grain
boundaries.

Figure 110: The position of †25.710/ symmetric tilt grain boundary at over time at 100K
and P D 1 � 10�4m:s�1.

Before presenting the results, a remark is necessary regarding the substitution of the
shear rate instead of the actual driving force employed in MD, which is harder to assess
in the present PF simulations. For, this we will consider a discrete array of dislocations
to describe the GB. Driving GB migration by a shear rate P will correspond to using the
second Orowan’s law (Orowan, 1934) that reads

P D �mobjbj Nv

Where �mob is the mobile dislocation density and jbj the norm of the GB Burgers vector.
For a given GB, these two quantities are fixed, the average dislocation velocity Nv has thus
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to increase to accommodate P . In the model, and similarly to most crystal dislocations, the
dislocation velocity (v) is linearly related to the effective stress (�eff ) felt by dislocations
(v D �eff =B.T /, where B.T / is a temperature dependent coefficient) (Queyreau et al.,
2011). For all investigated grain boundaries, the GB velocity depends upon the magnitude
of applied driving force and temperature. Depending on the correlation between applied
shear rate and the resulting velocity of grain boundary, all investigated grain boundaries
are classified into different groups, in a similar manner as was done for MD results.
The first group contains grain boundaries whose correlation is linear. The second group
contains grain boundaries whose correlation between velocity and applied shear rate is
non linear, probably exponential.

Figure 111 shows migration velocity against the applied shear rate at 400K and 1000K
for the †25.710/ and †5.120/ STGB. First, the †25.710/ exhibits a linear dependence of
its migration velocity as function of shear rate, and the linear dependence decreases with
the increase of temperature. Interestingly, this behaviour is in qualitative agreement with
the viscous behaviour obtained for the same GB as simulated by MD. The quantitative
values are however not comparable, in part due to the nature of graph that is function of
shear rate and not driving force explicitly. Second, the †5.120/ GB have a very different

Figure 111: Plot of velocity of †25.710/ and †5.120/ symmetric tilt grain boundaries at
different temperature against different applied shear rate.

behaviour with a non linear -possibly exponential- increase of the GB migration velocity
with shear rate, and the velocity increases with temperature for a given shear rate. This
is again in qualitative agreement with the thermally activated clearly identified in MD for
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this particular GB.
This qualitative agreement between PF and MD regarding the velocity dependence

upon temperature and the GB type is really surprising. Indeed, as of right now, the
PF was not particularly set to match the MD results obtained for FCC Ni. Again, the
materials parameters were set close to scale with the latent heat, and Read and Shockley
GB energy, but they do not account yet for the details in the atomistic structure of the
GB and associated migration processes. This being said, the only feature that the PF
may reproduce naturally is thus the GB structure in terms of dislocation distribution. To
check that idea, we show the resolved shear stress distribution 112 and dissipative energy
107 for the two GB examples and at various temperatures. The two GB being made of
different dislocation distributions on the various systems, may be activated differently and
interact differently when set in motion. This need to be investigated further. In the mean
time, this suggest that GB properties such as migration for such simple CSL GB could
be simply more related to the GB structures in terms of defects and less the atomistic
nature of the GB.

Figure 112: a) Evolution of the resolved shear stress due to slip systems S2 and S3 for
†25.710/ and b) Dependence of resolved shear stress on slip system S2 for †5.310/ grain
boundary.

6.3 Towards a quantitative way to connect MD and
Phase Field

In the previous chapters of part 2, we have shown that the PF from Admal et al., deriving
from the KWC model could be (along with a few other models) a good candidate to
include the various mutual effects between crystal dislocations and GBs that are required
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to fully capture microstructure evolution. This is the answer to the first challenge listed
in the general introduction. The second challenge is to being able to make PF truly quan-
titative by using MD data. In particular, our existing MD results provide GB energies
and complex mobility functions for about 30 different CSL grain boundaries with a [001]
misorientation axis. While the two types of simulations are capable of describing similar
mechanisms, connecting the two approaches is not straightforward. In particular, phase
field relies upon continuous fields, whose direct determination from atomistic calculations
seems unclear (this is particularly true for the order parameter �.x/ and the generalised
forces). In the original form, parametrizing a KWC model with MD data, would require
to run many PF simulations and a lot of trials and errors in an attempt to find the correct
set of PF material parameters to match the GB energy and mobility from MD. In addition
to being extremely costly in terms of time and computing resource, there is no guaranty
that this procedure will converge to a unique set of PF material parameters identified
this way. Here, we derive an analytical solution of the KWC phase field set of equations
of the 1D problem of a single GB in a bicrystal under static and steady motion conditions.

In this section we want to provide analytical solution of �.x/ and �.x/ which were pre-
viously expressed in the inverted form in the section B.3 in appendix. Thus, the method-
ology relies on a formal asymptotic expansion of the model as devised by Lobkovsky
et al. (Lobkovsky and Warren, 2001) and demonstrated in section B.3 in appendix for
KWC model and for Marian & Admal’s model in appendix D.1. The solution proposed
in (Lobkovsky and Warren, 2001) while remaining general and constituting the starting
point to our development, suffers the following limitations:

� The solution for � and � are expressed as integral equations (equations B.44, D.5,
D.14, D.13 below), while being general, are not trivial to solve.

� Even if these equations may be solved to obtain x.�/, the solution still need to be
inverted to obtain �.x/, and there is no guarantee that this is even possible.

� The �.x/ solution will ultimately depend upon its own minimal and maximal values
�min and �max through some integral constants. Solving an implicit equation for
�min and �max is thus required prior to obtaining the final �.x/. These parameters
will depend upon the material constants and nature of the GB.

In this context, we propose a closed form analytical solution of the 1D KWC PF
equations, which have the following advantages:

� The solutions x.�/ and the inverted �.x/ solutions are both analytical (semi-
analytical to be exact as it relies on Elliptic integrals and Jacobi amplitude).

� The energy and inverse mobility functions are also analytical.
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� The �min and �max can now be obtained using a very efficient Newton-Raphson
algorithm.

� The role played by the various materials parameters can now be unambiguously
investigated.

� The identification of the materials parameters, or mobility functions in PF to match
MD is now very simple, as we simply have to equate physical quantities (e.g. GB
energy, or migration velocity) obtained with the two approaches.

The solution is however rather long and complicated and obtaining this analytical solution
was admittedly tedious.

6.3.1 Closed-form analytical static solution for the 1D KWC
model

We start recalling the KWC model. The energy density can be written:

 KWC D
˛2

2
jr�j2 C f .�/C g.�/sjr� j C

�2

2
jr� j2 (6.8)

with,

f .�/ D e.� � 1/2 (6.9)

g.�/ D �2 (6.10)

The parameters ˛; � and s are material constants. For non conservative phase fields, the
time evolution of �.X/ and �.X/ are related to the partial derivative of  KWC with
respect to � and � :

b� P� D ˛2�� � f;� C g;�sjr� j (6.11)

b� P� D div
�
�2r� C g;�s

r�

jr� j

�
(6.12)

It must be noted that the formulation above, which includes the term r�=jr� j leads to
a singular diffusive equation. A non-singular approximation may be found in [Kobayashi
Giga, JSP 1999], but this did not seem to be initially required in the 1D solution proposed
in what follows. Let us recall that both models tend to localise a grain boundary, therefore
our domain �0 D Œ�L;L� is typically separated into a grain boundary region �GB0 D

Œ�l; l � and a crystalline region �p0 D �0n�
GB
0 within grains. 8x 2 �p0 , r�.x/ D 0 and

r�.x/ D 0. The boundary conditions are:

�.˙L/ D 1; �.˙L/ D ˙
�0

2
(6.13)
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On contrary, in grain boundary region delimited by ˙l , r�.x/ ¤ 0 and r�.x/ ¤ 0. The
�.x/ field is symmetric whereas the �.x/ is anti-symmetric about the origin. Under static
conditions, 8x 2 �p0 , �.x/ satisfies:

˛2�� � f;� D 0 (6.14)

By multiplying both sides of equation 6.14 by @�

@x
and integrating the resultant equation

leads to
˛2

2
�;� � f .�/ D c (6.15)

where c is an integration constant. Integrating equation 6.15 leads to

L � x D

Z 1

�

˛q
2.f . Q�/C c/

d Q� (6.16)

In order to obtain a closed form analytical solution for �.x/, we have to find an analytical
function for the integral in the right hand side of the equation 6.16, and then we have to
be able to invert that function. Luckily, this is the case for the choice of f .�/ in equation
5.7. The solution outside the GB region, thus, becomes:

�.x/ D 1 �

s
c

e

tanh2.�.x//
1 � tanh2.�.x//

(6.17)

�.x/ D

p
2e

˛
.x � L/ (6.18)

c D

�
1 � tanh2.�.l//

tanh2.�.l//

�
f .�2/ (6.19)

In the region �GB0 , �.x/ and �.x/ must satisfy the conditions:

˛2�� � f;� C g;�sjr� j D 0 (6.20)�
"2r� C g;�s

�
;x
D 0 (6.21)

By integrating equation 6.21 leads

�2r� C g;�s D constant

and considering boundary conditions �;x D 0 at x D l ;

�;x D
s

�2

�
g.�2/ � g.�/

�
(6.22)
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Inserting equation 6.22 into equation 6.21 yields�
˛2

2
�;x � f .�/C

s2

2�2
.g.�2/ � g.�//

2

�
;x

D 0 (6.23)

Using boundary condition, ˛2
2
.�;x/

2 � f .�2/ D c, equation 6.23 becomes :

˛2

2
�;x � f � C

s2

2�2
.g.�2/ � g.�//

2
D c (6.24)

By integrating equation 6.24 provide an equation in the form of an integral

x.�/ D

Z �

�1

˛q
2.f . Q�/C c/ � s2

�2
.g.�2/ � g.�//2

d Q� (6.25)

To find �.x/, one has to find an analytical and inversible solution to the RHS of equation
6.25 in order to provide a closed form expression. However, the presence of the term�
g.�2/ � g.�/

�
in equation 6.25 makes it harder to solve. Therefore, the equation 6.25

can be presented as an ordinary differential equation (ODE).

d Q�

dx
D

1

˛

r
2.f . Q�/C c/ �

s2

�2
.g.�2/ � g.�//2 (6.26)

Under this form, the main difficulty is that the resulting equation 6.26 is a non-linear
first order ODE. We tried to solve the ODE (equation 6.26) using the Laplace Transforms
without success. This is due to the presence of the terms in power of �4 and �2 in the
polynomial P.�/ under the square root, for which there is no known Laplace Transform.
An alternative way, is to consider tables of known integrals whose form would be similar
to the form of equation 6.26. To do this P.�/ must be reworked in the following way :

P.�/ D �
s2

�2
�4 C .2

s2

�2
�22 C 1/�

2
� 2� C .2c C 1 �

s2

�2
�42/ (6.27)

D
s2

�2

�
��4 C .2�22 C

�2

s2
/�2 � 2

�2

s2
� C

�2

s2
.2c C 1 �

s2

�2
�42/

�
(6.28)

D
s2

�2

�
�.� � r1/.� � r2/.� � r3/

2
�

(6.29)

Where ri are roots of the polynomial P.�/ in equation 6.27. Note that, the roots of this
quartic equations can still be analytically obtained using Ferrari’s solution. Therefore, to
find an analytical solution for the integral in equation 6.26 one can distinguish two cases:
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Case One: if P.�/ admits three distinct roots

If we assume the root r3 to be double. One can thus find an analytical solution for the
integral in equation 6.26

x.�/ D
˛�

s

Z �

�1

1q
�. Q� � r1/. Q� � r2/. Q� � r3/2

d Q� (6.30)

c1 C x D
˛�

s

264 2
p
r1 � r3

p
r3 � r2

tan�1

0B@pr3 � r2
q
r1 � Q�

p
r1 � r3

q
r2 � Q�

1CA
375
�

�1

(6.31)

Interestingly, this function is invertible, yielding a solution of �.x/:

�.x/ D
r1A � r2tanh2 .B.c2 � x//
A � tanh2 .B.c2 � x//

(6.32)

A D
r3 � r2

r1 � r3
(6.33)

B D
s
p
.r1 � r3/.r3 � r2/

2˛"
(6.34)

In this solution, the periodic tan function has been replaced by a non-periodic hyperbolic
tan function. Consequently, a new integration constant c2 was introduced.

c2 D c1 �
˛"

s
F.�1/

Where F.�1/ is the primitive on the RHS of equation 6.31. It can be made sure that this
new expression of �.x/ is indeed a solution by emerging it in the equation 6.25 and 6.26.
On the other hand, the solution of �.x/ is obtained from integration of equation

�;x D
s

"2

�
�22 � �

2.x/

�
(6.35)

after a solution of �.x/ is inserted in. The integration leads to

�.x/ D
s

"2
�22x C

s

"2
1

2.A � 1/2B

�
C tanh�1

�
tanh.Bx/
p
A

�
D tanh.Bx/

A � tanh2.Bx//
�EBx

�
C D

p
A .A.3r1 C r2/.r1 � r2/C .3r2 C r1/.r2 � r1//

D D A.A � 1/.r1 � r2/
2

E D 2.r2 � Ar1/
2
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The integration constant can be implicitly defined as:

c D �f .�1/C
s2

2�2
.g.�2/ � g.�1//

2 (6.36)

which is problematic as the solution for �.x/ depends on its own extremas. Finally, it
can be checked that the two solutions for �.x/ and �.x/ can be analytically integrated to
calculate the GB energy and the GB mobility.

Case two: if P.�/ admits four distinct roots

In general, P.�/ admits four different roots. The solutions are still obtainable but in a
semi-analytical manner only. This is due to the fact that, it implies an incomplete Elliptic
integral of the first kind where F.xjm/ and

x.�/ D
˛�

s

Z �

�1

1q
�. Q� � r1/. Q� � r2/. Q� � r3/. Q� � r4/

d Q� (6.37)

c1 C x D
˛�

s

24 2
p
r1 � r3

p
r2 � r4

F

0@sin�10@As r1 � Q�

r2 � Q�

1A ˇ̌̌̌m1A35�
�1

(6.38)

A D

r
r2 � r4

r1 � r4
(6.39)

m D
.r2 � r3/.r1 � r4/

.r1 � r3/.r2 � r4/
(6.40)

Elliptic integral of the first kind is defined as

F.xjk/ D

Z x

0

dyp
1 � k2 sin2 y

Where k is the elliptic modulus k and it must satisfy 0 < k < 1.

�.x/ D
r2sin2.�; k/ � r1A2

sin2.�; k/ � A2
(6.41)

� D
s

˛�

p
.r1 � r3/.r2 � r4/

2
.c1 � x/C F.�1/ (6.42)

With, F.�1/ is the primitive function appearing on the RHS in equation 6.38. While,
the expression for �.x/ is rather short and simple, this is not the case anymore for �
field and the GB energy. However, the semi-analytical expression can still be obtained for
these two terms thanks to Mathematica. It exhibits a sum of various Elliptic functions
and integrals. For the sake of conciseness however, and as � is well bounded between �1
and 1, � is approximated using a Taylor Series on different terms. This Taylor expansion
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offers advantages that the remaining unknowns �1 and �2 can be obtained using the
Newton-Raphson scheme to solve these non-linear equations

c D �f .�1/C
s2

2�2
.g.�2/ � g.�1//

2 (6.43)

�0 D
˛s

�2

Z �2

�1

g.�2/ � g.�/q
2.f . Q�/C c/ � s2

�2
.g.�2/ � g.�//2

d Q� (6.44)

Ł D

Z �2

�1

˛q
2.f . Q�/C c/ � s2

�2
.g.�2/ � g.�//2

d Q� C

Z 1

�2

˛q
2.f . Q�/C c/

d Q� (6.45)

Jacobian that appears in the Newton-Raphson algorithm for this multi-variable problem
is calculated analytically using Mathematica.

To validate our model, we have made a direct comparison of the analytical solution
with numerical calculations of the KWC model presented in (Admal et al., 2018). �1
and �2 were measured from (Admal et al., 2018). Materials parameters we have used are
registered in table 6.4. At the time of writing of the manuscript, one application to a †5
is performed, applying the model to other GBs is left for future work.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10-8

0.85

0.9

0.95

1

1.02

Fully analytical solution

Numerical resolution KWC

[Admal et al. IJP 19]

Φ(
x)

x [m]

∇θ = 0 ∇θ = 0∇θ
≠0

Φ2

Φ12ξ0

Figure 113: Validation of the analytical (1D) model with the numerical resolution of the
(2D) KWC model.

However, note that s has to be greatly reduced compared from the value used in
numerical solutions. This is because, the analytical model does not smooth our the r� in
the grain boundary region as opposed to what is done in the numerical solve. Figure 113
shows a comparison between analytical and numerical solution of �. Figure 114 shows the
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Table 6.4: Materials parameters and �i.i D 1; 2/ values used to compare our analytical
solution from the numerical solution of KWC model.
˛2 �2 e s �1 �2 �0
5:3 � 10�9 2:1333�10�10 2:1 � 109 0:17 0.875 0.9 0.7nm

normalised solution of �.x/ and �.x/ for a representative grain boundary. Note that here
the purpose is to show that the proposed solutions describe qualitatively the domain into
crystalline and grain boundary regions. Similar to the functional form outside the GB

Figure 114: Plot of the normalised �.x/ and �.x/ solutions.

approximation of the polynomial when looking at the Admal & Marian’s model (Admal
et al., 2018) rather than the KWC model, the solution of G13 can be determined in a
similar manner from the equation D.7 in appendix. For an analytical solution of mesoscale
properties of a grain boundary, see section 6.3.2

6.3.2 Analytical mesoscale properties of the GB

Finally, we are continuing deriving analytical solution devised in section 6.3, and at this
time focusing on dynamic properties of a grain boundary. Going back to (Lobkovsky and
Warren, 2001), the mesoscale properties of a grain boundary i.e. GB energy, velocity v
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and mobility M can be expressed from the � and � fields derived in section 6.3 as

 D s��0�
2
2 C 2˛

Z 1

�max

q
2.f . Q�/C c/ d Q� (6.46)

C2˛

Z �max

�min

r
2.f . Q�/C c/ �

s2

�2
.g.�2/ � g.�//2 d Q� (6.47)

M�1 D

Z L

�L

�
b��2;x C b

��2;x

�
dx (6.48)

with b� and b� inverse mobility functions associated to the time variation of � and � ,
respectively. For the case of the 1D configuration, these mobility functions are simple
constants. The velocity of a grain boundary reads

v DM�

and is the result of capillarity through  and curvature driving forces through curvature
�. However, in this present 1D model, the curvature � is undefined. Here, will assume
that mobility will be preserved when the GB migrates under other driving forces. A more
complete exploit of the present model is left for future work.
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6.4 General conclusions

The general context of this project was to better understand the evolution of microstruc-
ture in FCC materials under thermo-mechanical conditions. To capture the full complex-
ity of microstructure evolution at higher temperatures and/or stresses requires to have
in place more robust models capable of capturing simultaneously grain boundary migra-
tion and plastic activities associated with and preserve, at the same time, the physics
observed at atomistic level. The path forward to having such models in place requires
bridging both atomistics and continuum scale simulation techniques. In this work we at-
tempted to bridge both scales by importing atomisitic data into a Phase field model of
Admal and Marian (Admal et al., 2018) capable of capturing concurrently grain boundary
migration and associated plastic activities.

In the first and principal part of this work, we have performed large scale Molecular
dynamics simulations on a large set of [001] symmetric CSL grain boundaries of differ-
ent characters in pure Nickel, encompassing pure tilt, twist and mixed GB. Since atomic
structure of a grain boundary is very important in this study, we have carefully built sev-
eral configurations of similar macroscopic degrees of freedom but of different microscopic
degrees of freedom for each grain boundary. This was done using our own in-house tools,
that are the continuation of the PhD work of Omari (OMAR, 2019). Then, we have re-
laxed these configurations and compare their energy values. This is seen as a practical way
of finding the most stable -thus, most probable- configuration of a grain boundary. This
practice has allowed us to confirm, once more, that the energy of a grain boundary has a
complex dependence on both macroscopic and microscopic degrees of freedom. Therefore,
both type of degrees of freedom must always be taken into account, and thus justifies
aposteriori the need for such reference atomistic data. For each grain boundary, we have
selected a configuration with the lowest energy value as the most stable configuration of
a grain boundary.

To validate our procedure, we have compared the energy values of the most stable
configurations with reference data reported in literature, which allowed to validate our
methodology and tools. In addition, we have observed that the energy of the selected
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most stable configurations varies from one grain boundary to another and from one GB
character to an other. Overall and in simplifying a bit, pure twist GB have the lowest
energy whereas pure tilt grain boundaries have the highest energy. Then, we have char-
acterised and identified the defects on the surface of the most stable configurations. This
has allowed to define the density of geometrically necessary dislocations of each grain
boundary that may be imported in a continuum scale model.

In a second step, we have investigated dynamic properties of a grain boundary still
using MD. To trigger grain boundary migration, we have applied the synthetic driving
force methodology of Janssens (Janssens et al., 2006). The objective here was to explore
a large parametric space function of driving force (P) - temperature (T) in order to reveal
trends that are common for a large set of grain boundaries, and clarify some contradic-
tory results of the literature. More specifically, we have conducted a systematic study of
the grain boundary migration by applying a driving force in range of Œ50� 500�MPa and
temperature in Œ100 � 1000�K. This study has revealed that velocity of grain boundary
strongly depends again initially on the atomic structure of a grain boundary and vary
widely among grain boundary characters and type. However, the velocity does not corre-
late with the grain boundary energy in the respective fundamental zone.

We have also observed very different temperature dependence of the migration velocity
as was observed in the literature, with different behaviour ranging from thermally acti-
vated, athermal, to antithermal grain boundary migration, although some grain bound-
aries behaved in a fashion that could not be classified in any of these three general trends.
In addition, we have observed that the way a grain boundary responds to an applied driv-
ing force depends on its atomic structure, thus, varies from one grain boundary to another.
There were grain boundaries whose velocity correlation with driving force remained either
a) linear or b) exponential for the entire stress. However, few grain boundaries on our list,
exhibited both an exponential regime at lower stress and a linear regime at higher stress
regime. In all investigated grain boundary, we have observed that the transition stress
from exponential to linear regime varies from one grain boundary to another and linearly
decreases with increasing temperature.

All these details from a systematic exploration of the P-T parametric space has al-
lowed to propose a generic phenomenological mobility function, to capture microstructure
evolution at atomic scale. This is one of the main result of the atomistic study in this
work. This generic mobility function was obtained by least square fitting raw data from
post-treatment of the atomistic simulations using the phenomenological empirical relation
of Kocks, Argon and Ashby (Kocks et al., 1975) for the migration activation energy, which
has been initially proposed for dislocation. Interestingly, for all grain boundaries investi-
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gated we have obtained very close values for p D 0:5 and q D 1:5 (in Kocks, Argon and
Ashby’s phenomenological function). This implies that these parameters are not influenced
by the atomic structure of a grain boundary instead they may depend solely on the type
of material. In addition, the enthalpy of activation for grain boundary migration varies
largely among grain boundaries. To validate our post-treatment and model, we have com-
pared raw data of mobility from predictions by this proposed model. One single mobility
equation, can thus reproduce the data for the entire P-T parametric space for a given GB.

Obtaining such mobility law was key for several reasons. First, this phenomenological
law allowed to rationalise results obtained from atomistic simulations. For instance, now
we know that when the applied driving force equals the transition stress, the mechanical
work allows to overcome the migration energy barrier, consequently the grain boundary
moves as whole, and the velocity becomes linear. Moreover, having in place a generic law
to capture grain boundary migration at atomistic scale can not only reduce the need for
cpu-demanding MD calculations but also serve as an input to models at continuum scale,
which in turn could help optimizing thermomechanical treatements.

In the second part of this work, we have investigated both static and kinetic properties
of a grain boundary using now the phase field model of Admal et al., which derives from
the so-called KWC model. In brief, the key idea of the model is to describe GB as GND
and thus approximate r� D jGj and relate the density tensor G to a crystal plastic-
ity framework. The ultimate objective, here, was to capture microstructure evolution at
the length scale of microstructure. First, We have carried out a sensitivity test on the
parameters of the Admal et al. model by assessing the influence of each parameter on
the energetic stability of the system. In addition, this study has allowed to select values
to use in our simulation. Parameters may have antagonistic effects to spread the width
(through the � and GND fields) of the diffuse interface that the GB represents in the
model. For some extreme values, the GB becomes a singular interface and may remain
immobile or numerical resolution becomes more computationally demanding. As a start
point, we performed PF simulations using the initial parametrization derived in Admal
et al.

We have investigated the static and dynamic behaviour of symmetric tilt grain bound-
aries around [001] in 2D phase field corresponding to the same CSL grain boundaries as
those considered by atomistics. GB structure correspond to the spatial distribution of
GND, and we found that the distribution scales with the misorientation angle and the
distribution is the same for all STGB when rescaled. The rescaled GND distribution
depends solely upon the materials parameters. In a very surprising manner, the PF cal-
culation of the GB energy agree quantitatively with those measured by MD. We have
investigated the migration of STGB by applying a shear rate in range Œ0�30��10�4ms�1
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and temperature in a range Œ0; 1000K�. During migration, the GND distributions are very
similar in shape between the equilibrium and steady state motion, as we would want to,
based on physical arguments. The PF simulations agree quantitatively well with the ge-
ometric model for the shear coupling coefficient. Interestingly, the PF recovers naturally
some of the trends obtained in MD, when considering the velocity of GB migration as
function of both temperature and shear rate. For some GB, the velocity is non linear
as function of the shear rates and increases with the temperature, akin to the thermally
behaviour observed in MD. Some other GBs exhibit a linear relationship of the velocity
with driving force and the slope decreases with temperature, akin to the dragging regime
observed in MD. It is possible that the existence of the two temperature behaviours in PF
are related to the dynamic and dissipation associated to the motion of the slip systems
(GND). Arguably, the rearrangement of slip systems in the GB may lead to a non linear
regime, while the simple gliding of dislocations may explain the linear regime and may be
associated to more dissipation. This needs to be further studied. Bottom line, The fact
that the PF "naturally" captures some key features such as GB energy, or migration ve-
locity trends is very striking, as no data was directly coming from atomistic at that stage.
Therefore, this suggests that describing GB as dislocation arrays (or GND distribution)
is very effective and promising, at least for the STGB considered here.

In the final step of this work, we have derived semi-analytical solutions of �.x/ and
�.x/ of the one dimensional problem of a single GB in a bicrystal under static and steady
motion conditions. This can be seen as one way to compare and validate numerical so-
lution. Having in place an analytical solution for both � and � field parameters is more
convenient than numerically evaluating these fields from implicit integral equations. In
addition, this analytical solution can be used as an ansatz for initial conditions or as a
fit for the dynamical case where the grain boundary is moving. However, the solutions for
both field parameters remain implicit because of the integral constant c that can only be
identified iteratively.

6.5 Future works of the project

Atomistic simulations

� The generic phenomenological mobility function was only devised for bi-crystalline
geometries of Œ001� flat grain boundaries, therefore, the future work will focus on
validating this phenomenological mobility function on a) other misorientation axes
b) curved grain boundaries and c) a more realistic polycrystalline microstructure,
where differently oriented grain boundaries form a network and react differently
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once a driving force is applied.

� There should be also a challenging study aiming at relating different parameters in
the mobility function to the atomic structure or migration mechanism of a grain
boundary. For example, in literature the prefactor of mobility function was reported
by some studies (Sutton, 1996) to be related to the number of nucleation site for a
pair of disconnections or the number of atoms involved in shuffle at grain boundary.
This requires to have in a place a code to identify and characterise a defect on a
surface of moving grain boundary. Therefore the future work will also aim at devel-
oping this tool to analyse the atomic structure a moving GB.

� It will be interestingly to verify if this mobility function is transferable to other
material system for example BCC materials.

Phase Field simulations

� Our analytical solution was only applied to a †5 is performed, for the future of
this model, we will aim at applying the model to other GBs of different characters
including both low and high angle grain boundaries.

� A natural extension of the work would be to import the developed atomistic mobil-
ity functions in both Admal’s & Marian’s phase field model and in our developed
analytical solutions, for that we will do a one-to-one comparison between analytical
and numerical solution for the same grain boundaries investigated in this study.

� In the next step, we will rework this phase field model for the 3D representation,
which can allow a direct comparison with the atomisitic simulations conducted in
this study.

� We could provide a mathematical way of comparing the physical work applied in
mesoscale simulation from synthetic driving force applied in atomistic simulation.

� We would assess the capability of the atomistically informed phase field model to
model a polycrystal with dozen of grains, and compare this with a MD simulation
on a similar configuration.

� We could compare the prediction of this atomistically informed phase field model
with experimental data.
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Appendix A

A.1 Adapted Verlet algorithm to integrate equation
of motion

Leap frog algorithm

On the other hand, there exist more sophisticated adapted Verlet algorithms to integrate
the equations of motion. In Leap frog algorithm, velocity of a particle is calculated on
.t C �t

2
/ and .t � �t

2
/ whereas position is collected on .t C�t/ and .t ��t/ as shown in

the equations
vi

�
t C

�t

2

�
D
ri.t C�t/ � ri.t/

�t
(A.1)

vi

�
t �

�t

2

�
D
ri.t/ � ri.t ��t/

�t
(A.2)

Here we are not diving into more details of this algorithm since the fundamental features
of this scheme is already demonstrated in the simple Verlet algorithm.

Predictor-Corrector algorithm

There exist also other distinct and sophisticated class of integration schemes known as
Predictor-Corrector schemes. The first kind was introduced in Molecular dynamics by
Rahman (Ackermann et al., 1988). As in simple Verlet algorithm, this class also relies
on the Taylor series expansion method. Predictor-Corrector scheme uses temporal and
spacial coordinates, velocity of a given atom and higher time derivatives to predict atomic
coordinates and velocity on the next time step. The latter are then refined by a corrector
procedure. An example of the commonly used method is the Gear-predictor-corrector
algorithm (Allen and Tildesley, 2017) which comes from the collection of methods devised
by Gear (Broughton et al., 1986). More details of this integration scheme can be found in
textbook (Allen and Tildesley, 2017),(Satoh, 2010) and (Paul, 1993).
After carefully comparing all algorithms above, we have decided to use Verlet algorithm
in this project.
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A.2 Synthetic driving force of Schönfilder

The first virtual driving force was introduced in 2006 (Schönfelder et al., 2006) with the
name of orientation-correlated driving force (OCDF). From Schönfilder, the excess energy
for each atom i is a function of the structural factor

ˇ̌̌
S.
�!
k ˛

ˇ̌̌2
that depends on orientation

and this structural factor is calculated in the vicinity of atom i. The vicinity of atom is
measured using a sphere of chosen radius known as cut-off radius which must be centred
around atom i. The overall contribution of excess energy to the system (Ecorr) is given
by the summation of excess energy per atom i (ecorri ).

Ecorr D

NX
iD1

ecorri D

NX
iD1

2X
˛D1

a˛:jS.k˛/j
2
i D

NX
iD1

a1:jS.K1/j
2
i C a2:jS.k2/j

2
i (A.3)

WhereN is the number of atoms in a system, k˛ is the reciprocal lattice vector correspond-
ing to a crystallographic orientation ˛, a1 and a2 are the parameters that determine the
amount of energy per atom added to crystal 1 and crystal 2 respectively. jS.k˛/j2 follows
equation A.4 in which rj and �!r k are the real space vector of atom j and k respectively.

jS.k˛/j
2
D

1

N 2

NX
jD1

NX
kD1

exp.ik˛.rj � rk// (A.4)

By carefully choosing a1 and a2 an energy difference between grain 1 and grain 2 is cre-
ated which drives a grain boundary.

Results obtained from using this driving force were reported to be in a good agreement
with results from the more classical elastic driving force. Schönfelder et al. compared the
rate of migration of Œ001� grain boundaries induced by orientation correlated force and an
elastic driving force. Both driving forces were reported to be in a good agreement. Schön-
felder et al. reported that orientation correlation driving force was able to continuously
drive grain boundaries whereas in case of elastic driving force, grain boundary sliding
events happened that did not produce a steady rate of motion. This is one advantage of
orientation correlated driving force over elastic force. It means that elasticity or processes
that lead to plastic deformation can easily be separated from the issue of introducing
driving force. One of feature that orientation correlation driving force and elastic driving
force share in common is their temperature dependence.The orientation correlated driv-
ing force’s magnitude for a fixed a1 and a2, decreases with increasing temperature. This
is reasonable, since increasing temperature leads to increase in thermal fluctuations in
the atomic positions which results in reducing the energy applied to each grain, hence a
reduction in the driving force.
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A.3 Comparison between predicted and MD raw ve-
locity

Figures 115 a-d and figure 116 show comparison between velocity from MD and predicted
velocity points at different temperature and driving force from some grain boundary
representatives of all other investigated grain boundaries.

Figure 115: Comparison between MD and predicted velocity for a) thermal †5.001/ pure
twist b) athermal †5.313/ mixed and for thermally activated †13.320/ (c) over the stress
range investigated (d) over the applied stress normalised by the transition stress P �.
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Figure 116: Comparison between MD and predicted velocity for antithermal †25.710/
grain boundaries.
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B.1 Reliability of phase field dynamic equations

Here, we start by recalling the Hamiltonian dynamics discussed in section 2.2.1.1 and the
Langevin dynamics that explicitly separates the thermal fluctuation.

For a system containing N atoms of spatial coordinates q D fq1; q2; q3; :::; qN g and
momenta p D fp1; p2; p3; :::; pN g of individual atoms, thus, resulting in 6N degrees of
freedom, the time evolution of the system in the Hamiltonian mechanics is described by
the following equation

@q

@t
D
@H

@p

@p

@t
D
@H

@q

(B.1)

Where H is the Hamiltonian. By considering each individual atoms, this may result in 2N
partial differential equations which is quite expensive to solve all numerically. In practice
it is preferable to use the principle of statistical mechanics to reduce the complexity of
the system. In statistical mechanics, a large number of degrees of freedom of the system is
replaced by a probability function that represents an averaged consequence. This function
describes a 2N dimensional phase space with coordinates p and q and each point in this
space represents a particular state called a micro-state of the system. Temporal evolution
of the system is then viewed as a trajectory connecting a sequence of micro-states. For
a smaller volume of the system with coordinate .p; q/ at time t , the probability P of
finding a state .p; q/ is equal to �.p; q; t/dpdq and is normalised in a such way thatZ

�.p; q; t/dpdq D 1 (B.2)

Where �.p; q/ describes the density of the micro-states in a volume. The phase space
distribution function �.p; q/ derives the observable property Aobs as the ensemble average�
A.p; q/

�
of property A.p; q/ with explicit dependence on the micro-state .p; q/. Aobs
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reads
Aobs D

�
A.p; q/

�
D

Z
�.p; q; t/A.p; q/dqdp (B.3)

The dynamic equation is obtained by substituting equation B.1 into the continuity equa-
tion
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@x

@t

�
D 0 (B.4)

For a conserved phase points x which is sampled such that x D .p; q/. The dynamic
equation for �.p; q/ reads

@�

@t
D �L � (B.5)

Which is commonly known as Liouville equation and L is the Liouville operator which
reads

L �

�
@H

@p
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�
@H
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@

@p

�
(B.6)

Although in thermodynamic problem, a system in contact with a thermal reservoir is
modelled as a whole by using either Hamiltonian or Liouville equations, it is preferable
to model both entities separately to reduce the complexity of the system. Thanks to
Langevin dynamics, thermal fluctuation or force from a thermal reservoir G can explicitly
be separated from the internal force v.x/. The dynamic evolution of the system follows a
Langevin dynamic equation

@x

@t
D v.x/C G (B.7)

B.1.1 Fokker-Planck’s equation

Fokker-Planck equation is a very useful starting point for relating phenomenological con-
tinuum equations to the master equations16. Thus, Fokker-Planck equation allows to re-
late kinetic equations (Cahn-Hilliard and Allen-Cahn equation) to statistical mechanics.
In statistical mechanics, this partial differential equation is used to describe the time evo-
lution of the probability density function of the velocity of a particle subjected to drag
and random forces. For a Gaussian distributed thermal fluctuation v.x/ depends only on
the current state x. By considering an average over thermal noise by following equation
B.3 and combining equation B.7 and equation B.4 give the Fokker-Planck equation also
known as noise averaged distribution function (Pathria and Beale, 1996)

@�.x; t/
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D �
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@x

�
v.x/�.x; t/

�
C

@

@x

�
B
@

@x
�.x; t/

�
(B.8)

16Master equations are a set of differential equations which are used to describe the time evolution of
a system that can be modelled as being in a probabilistic combination of states at any given time. In
addition, the switching between states must be determined by a transition rate matrix.
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Where B is a function that depends on x. The Fokker-Planck equation is identical to
the Liouville equation in Hamiltonian dynamics. To derive the Fokker-Planck equation
for a general case is based on the transition state theory (Pathria and Beale, 1996). In
the transition state theory, the rate of transition P.x; x0/ from x to x0 is obtained from
equation again by averaging P.x; x0/ by using equation B.3

@�.x; t/

@t
D

Z �
��.x; t/P.x; x0/C �.x0; t /P.x0; x/

�
dx0 (B.9)

The two terms in the integrand represent respectively the flow of � that leaves and enters
the state x. Consequently, their sum is the net flow of � that leaves the state x. If we
consider the situation where the noise is low enough so that the transition only occurs
between the neighbouring states, the function P.x; x0/ becomes a sharply peaked function
whose center is on x and decreases rapidly with .x0�x/. Considering, the transition from
state x to state .x0 � x/, the function P.x; x0/ is rewritten as P.x; x0 � x/. By doing a
Taylor expansion of both functions �.x; t/ and P.x; x0/ in the vicinity of state x leads to
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By only keeping the terms up to second order expansion term leads
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For
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Apparently, �1 is the rate at which the system leaves the state x therefore it is seen as a
velocity term v.x/ and �2 is the fluctuation on x. For a case where �2 does not depend
on x equation B.11 becomes identical to Fokker-Plank equation B.8. The demonstrations
shown above have used the generalised form of P.x; x0/, in some specific derivations, like
ours for deriving Cahn-Hilliard and Allan-Hilliard, P.x; x0/ can be expressed function of
the free energy of the system.

B.1.2 Derivation of the phase field dynamic equations

In this section, we use the theory developed in previous sections and follow the procedure
described in (Langer, 1969) and (Langer, 1971), to derive dynamic equations given in
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section 4.3.

Cahn-Hilliard equation

Let consider a binary system of dimension d containing N number of atoms which is
in direct contact with a temperature reservoir. The system is subdivided into N

�
cells

each containing n atoms. We further assume that the pair-exchange of atoms is the only
transition mechanism between neighbouring cells. In this case, P.X;X 0/ takes the form

P.X;X 0/ D
1

2

X
˛;˛0

Y
ˇ¤˛;˛0

ı
�
X 0ˇ �Xˇ

�
M˛˛0

Z
R.X;X 0/ı.X 0˛ � " �X˛/ı.X

0
˛0 C " �X˛0/

3d"

(B.13)
X and X 0 denote the initial and final transition states respectively whereas indices ˛,
˛0 and ˇ denote the cells. In equation, the term M˛˛0 is the matrix with value unity if
˛ and ˛0 are neighbouring cell and zero elsewhere. The term ı.X 0

ˇ
� Xˇ ) plays the role

of constraining the pair-exchange between cells ˛ and ˛0. A change of �" in cell ˛, as
the term ı.X 0˛ � " � X˛/ shows, is accompanied by a change of +" in cell ˛0 as the term
ı.X 0˛0 C " � X˛0/ shows. It is important to note that this pair-exchange ensures a local
conservation of the composition. The rate of pair exchange R.X;X 0/ reads

R.X;X 0/ D T .X;X 0/exp

�
F.X/ � F.X 0/

2kBT

�
(B.14)

For
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�
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�
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(B.15)

For a thermal reservoir which is always at equilibrium, � is a constant, ER.r/ and ER.r 0/
are the internal energy of the thermal reservoir at state r and r 0. The internal energy
of system at states X and X 0 are denoted as E.X/ and E.X 0/ respectively. W.X/ and
W.X 0/ describe the number of possible microscopic configurations of the same macro-
scopic configuration X and X 0 respectively. Therefore W.X/ and W.X 0/ account for the
configurational entropy from atomic scale length up to the cell length scale. Trr 0 is pro-
portional to the transition rate between states r , X and r 0, X 0. Note that, the terms
ı .ER.r/ �ER.r

0/CE.X/ �E.X 0// ensures the conservation of the total internal energy
of the system and thermal reservoir. F is total free energy of a system described previ-
ously. If we substitute equation B.14 into equation B.13 and the resultant equation into
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equation B.9 yield

@�.X; t/

@t
D
1

2

X
˛˛0

M˛˛0

Z �
T ."/exp .F1/ �.X˛0 � ";XC"/ �T ."/exp .F2/ �.X˛0; X˛/

�
d"

(B.16)
For

F1 D
F.X˛0 � ";X˛ C "/ � F.X˛0; X˛/

2kBT

F2 D
F.X˛0; X˛/ � F.X˛0 � ";X˛ C "/

2kBT

However, due to the constrained transition between X and X 0, as previously explained,
T .X;X 0/ is rewritten as T ."/ for convenience. If the system is large enough, the variation
in time of X during transition is expected to be smaller, therefore, T ."/ peaks at " D 0.
By doing Taylor expansion on function F.X˛0�";X˛C"/ to keep only second order terms
returns
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and doing the same for �.X˛0 � ";X˛ C "/ gives
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By substituting equations B.17 and B.18 into equation B.16 and by considering that the
first-order terms vanishes due to symmetric function T ."/, equation B.16 leads to
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This equation is similar to Fokker-Planck equation if M˛0˛ is explicitly replaced by the
summation

�P.i:i/
˛0

�
over i the 2d nearest neighbors of the cells ˛ and the phenomeno-

logical fluctuation frequency F which follows

F � �.1C
2
d /
Z
"2T ."/d" (B.20)
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It leads to
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Let multiply this equation by X! and then integrate over the configuration X , he first
term becomes Z
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(B.22)

X! is X! averaged over the fluctuation due to thermal reservoir. The right hand side
becomesZ

X!
X
˛

@

@X˛

24X
ˇ

F

2�.1C2=d/

 
2dı˛ˇ �

.i:i/X
˛0

ı˛0ˇ

!�
@F

kBT @Xˇ
�C

@�

@Xˇ

�35 dX
� �

Z X
ˇ

F

2�.1C2=d/

 
2dı!ˇ �

.i:i/X
˛0

ı˛0ˇ

!�
@F

kBT @Xˇ
�C

�

@Xˇ

�
dX!

� �

X
ˇ

F

2�.1C2=d/

 
2dı!ˇ �

.i:i/X
˛0

ı˛0ˇ

!Z
�

F

kBT @Xˇ
dX!

� �

X
ˇ

F

2�.1C2=d/

 
2dı!ˇ �

.i:i/X
˛0

ı˛0ˇ

!�
@F

kBT @Xˇ

�
(B.23)

Here, to make a transition to the continuum limit, the summations in equation above is
replaced by their continuum analog, that is an integral. In d�dimensions, it is achieved
by X

˛

!

Z
1

�ad
dX (B.24)

To encapsulate the volume that was previously contained within one cell, terms are divided
by �ad . Then  

2dı!ˇ �

.i:i/X
˛0

ı˛0ˇ

!
! �.ad�/.a2�.2=d//r2.X �X 0/ (B.25)

and

@

@X˛
! �ad

@

@X
(B.26)

If we consider here X.r/ and
�
@F
@X

�
which are values averaged over fluctuation due to the

thermal reservoir, consequently, the term @�

@X
that corresponds to the fluctuation vanishes
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by this averaging. Then, equation B.21 becomes

@X.r/

@t
D

Fa.2Cd/

2kBT
r
2

�
@F

@X

�
(B.27)

If the function �.X/ is sharply peaked at X D X so that the average of any quantity
over � can be successfully approximated by its value at X , then equation B.27 reduces to
equation B.28 which is the famously known Cahn-Hilliard equation given in equation 4.6

@X.x; t/

@t
D

Fa.2Cd/

2kBT
r
2

@F

�
X.x; t/

�
@X.x; t/

(B.28)

where x and t denote the spatial and temporal coordinates and X.c; t/ D �.x; t/.

Allen-Cahn equation

Let again consider a d�dimensional system in direct contact with thermal reservoir. The
system has N degrees of freedom and is divided into N

�
cells. Let consider an order pa-

rameter �˛ in the cell . In a similar way as before

P.�; � 0/ D
X
˛

Y
ˇ¤˛

ı.� 0ˇ � �ˇ /R.�; �
0/ (B.29)

The master equation B.9 becomes

@�.�; t/

@t
D

X
˛

Z
T ."/

�
exp

�
F.�˛ C "/ � F.�˛/

2kBT

�
�.�˛ C "/

� exp

�
F.�˛/ � F.�˛ C "/

2kBT

�
�.�˛

�
d"

(B.30)

Note that, from here, we followed procedure described in (Langer, 1971), therefore, we
slightly change the mathematical expression of T because, the transition in the non
conserved variable dynamics does not require the pair exchange mechanism to occur,
therefore

F � �

Z
"2T ."/d" (B.31)

In a similar manner as before, we do the Taylor expansion on functions �.�˛ C "/ and
F.�˛ C "/ and keeping up to the second order terms leads to

@�

@t
D

X
˛

"2T
@

@�˛

�
@F

kBT @�˛
C

@�

@�˛

�
(B.32)
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If we multiply both side by �! and do the integration as described in previous section

@�!
@t
D �

F

�

Z
@F

kBT @�!
�d� (B.33)

The term corresponding to the fluctuation vanishes by averaging evolving quantity which
leads to

@�!
@t
D �

F

�

�
1

kBT

@F

@�!

�
(B.34)

If we consider the continuum representation described in the previous section this equation
leads to the Allen-Cahn equation

@�

@t
D �

Fad

kBT

@F Œ�.x; t/�

@�.x; t/
(B.35)

B.2 Numerical solution of one dimensional KWCmodel

Numerical implementation of this model for one dimensional model requires providing
the initial boundary conditions for the entire domain �0 and use powerful numerical
integration scheme to approximate the derivatives (numerical integration schemes are
treated in section C.1.7). Initial boundary conditions are :

Table B.1: Values of parameters used in KWC model(Admal et al., 2018)
"2

�10�10

ŒJm�1�

˛2

�10�9

ŒJm�1�

s

ŒJm�2�

e �109

ŒJm�3�



�10�7

Œm�

L Œnm� �0 Œ
ı�

2:133 5:3 1:7 2.1 5 20 30

� D

(
�.x; 0/ D 1

�.L; t/ D �.�L; t/ D 1

� D

8̂̂<̂
:̂
�.x; 0/ D �

�0

2
C

�0

1C expŒ�4.x � L=2/�

�.L; t/ D ��.�L; t/ D
�0

2

(B.36)

Where �0 denotes the jump in the lattice orientation in grain boundary region. The
functions M P�

� and M P�
�
are assumed to be equal to 1� 103J:s:m3. In the numerical imple-

mentation, the values for the constants involved in the equations are summarised in the
table B.1. Figure 117 compares the steady state analytical from numerical solution. For
the derivation of analytical solution, see first the section B.3
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Figure 117: Comparison of the steady state analytical from steady state numerical solution
for � and �(Admal et al., 2018)

B.3 Analytical solution of one dimensional KWCmodel

This section provides an analytical solution for a one dimension grain boundary by fol-
lowing the procedure devised by Lobkovsky and Warren (Lobkovsky and Warren, 2001).
For a system �0 extending from -L to +L and the grain boundary is located at center of
the domain (at zero), the boundary condition of � and � are:(

�.˙L/ D 1

�.˙L/ D ˙�0

The existence of a grain boundary creates a sub-domain �GB0 � �0 with distinct proper-
ties. Thus, r� ¤ 0 in �GB0 and r� � 0 in �p0 (for �p0= �0n�

GB
0 ). In �p0 , � meets the

condition
˛2
@2�

@x2
�
@f .�/

@�
D 0

By multiplying both side of equation by @�

@x
leads to

˛2
�
@�

@x

@2�
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�
�
@�

@x
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D 0

Knowing that
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@2�

@x2
/ D

1

2

@

@x
.
@�

@x
/2
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For x 2 �p0 , integrating this resulting equation results inZ
@

@x

"
˛2
1

2

�
@�

@x

�2
� f .�/

#
D
˛2

2

�
@�

@x

�2
� f .�/C c (B.37)

Where c is integration constant. If we further integrate equation B.37, it returns the
analytical solution of � in �p0 . Here, the solution is given in the inverted form

L � x D

Z 1

�

˛p
2 .f .�/C c/

d� (B.38)

In the grain boundary region �GB0 , for x 2 �GB0 ,

@�

@x
¤ 0;

@�
@x

j
@�
@x
j
� 1

� and � must satisfy both conditions

˛2
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�
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� s
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ˇ̌̌̌
@�

@x

ˇ̌̌̌
D 0 (B.39)

and
@

@x

�
"2
@�

@x
C sg.�/

�
D 0 (B.40)

If we integrate equation B.40, it leads to

@�

@x
D

�
d � sg.�/

�
"2

(B.41)

Where d 2 �GB0 is integration constant which is equal to sg.�2/ and �2 WD �.˙L/. By
substituting equation B.41 in equation B.39 and multiplying the resultant equation by @�

@x

lead to
@

@x

�
˛2

2

�@�
@x

�2
� f .�/C

s2

2"2

�
g.�2/ � g.�/
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D 0

By integrating this equation leads to�
˛2

2
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@x
� f .�/C

S2

2"2
.g.�2/ � g.�//

2

�
D 0 (B.42)

An other integration of this equation returns the spatial evolution of �.x/ 2 �GB0 in the
inverted form.

x.�/ D

Z �2

�1

˛d�p
2.f .�/C c � . s

"
/2.g.�2/ � g.�//2

/
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Where �1 WD �.0/ and � < �2 for the solution of � 2 �GB0 is obtained by integrating
equation B.41 and substituting in the expression for @�

@x
from equation B.42 which leads

to

�.�/ D
1

"2

Z �2

�1

s

�
g.�2/ � g.�/

�
@�

@x

d�

D
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2
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2
� (B.43)

Note that all derived solutions are expressed in terms of constant c, �1 and �2 which are
obtained from the relations

�0 D
˛s
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Z �2

�1

g.�2/ � g.�/s
2

�
f .�/C c �

�
s
"

�2
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�d�
c D �f .�1/C

s2

2"2
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g.�2/ � g.�1/

�2
;

L D

Z �2

�1

˛q
2 .f .� C c/ �
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s
"

�2
.g.�2/ � g.�//

2
d� C

Z 1

�2

˛p
2 .f .�/C c/

d�

(B.44)

From this one dimensional solution, one can easily note that as " ! 0, �2 ! �1 conse-
quently � converges to a step-wise function with a discontinuity at x D 0.
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Appendix C

C.1 More on the Phase field model of Admal and
Marian

C.1.1 Weak convergence

The theory of weak convergence 8 (Admal et al., 2017) gives a physical interpretation of
the decomposition in equation 5.32. A sequence of distributions !n converge weakly to a
distribution ! if

lim
n!1

!n.�/ D !�

for all � in the space of functions with compact support C1c 9. Then for a constant
rotation field R, a sequence of plastic deformation gradient .F p/n leaves the lattice with
a constant an unchanged and an ! 0 as n!1. If this is viewed on average sense then

lim
n!1

.F p/n D RT

as the lattice constant tends to zero. For example let us consider a square lattice, from
which .F p/n D r Qxn.X/ for

Qxn.X/ D

�
RTX

an

�
an (C.3)

and this deformation ensures that lattice remains unchanged (where b:c denotes the floor
function). Since .F p/n is a distribution supported by the grain boundary surface, conse-

8Theory of weak convergence: A sequence fxng of vectors in a inner product space M is called
weakly convergent to a vector in M if

hxn; yi ! hx; yi as n!1 , 8y 2M

9Definition of a compact support: Let D be an open set in Rn and let the function f .x/ defined
such that f .x/ W D ! Rn be a continuous function, the support of f .x/ is C1 such that S D fx 2 D W
f .x/ ¤ 0g. Then, one can say that f .x/ has compact support C1c if C1 is a closed bounded set located
at a distance ı from the boundary T of D , such that ı > 0 and ı is sufficiently small.
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quently;
lim
an!0

Qxn.X/ D RTX (C.4)

Interestingly, .F p/n does not converge point-wise or uniformly to RT but weakly to RT .
By using the divergence theorem along with ' D 0 on @� and the uniform convergence
of Qxn to interchange the limit and integral signs in this equality (equation C.5).

lim
n!0

Z
�

.F p/n�dX D lim
n!0

Z
�

Qxn ˝r�dX (C.5)

leads to Z
�

RTX ˝r�dX D

Z
�

RT�dX

by using weak convergence theory explained above .F p/n ! RT weakly. For F e ! R

and the sequence
F n D F e .F p/

n
! RRT (C.6)

C.1.2 Virtual power formulation of the force balance

The purpose of applying this virtual power formulation is to arrive at the necessary
macroscopic and microscopic force balance equations. In order to apply this virtual power
formulation on an isolated system necessitates determining virtual powers of the system
from the applied generalised force. Note that, in this context, generalised forces and
generalised stresses denote all events or reactions contributing to the energy equation
(Fried and Gurtin, 1994; Gurtin, 1996). It is imperative to note that, in this method,
generalised stresses are not directly introduced but rather by the value of the virtual power
they produce for a given order parameter. This section uses virtual power formulation
following the framework described in papers (Gurtin, 2008; Gurtin et al., 2010; Admal
et al., 2018) for kinematic variables introduced in previous sections.
The principle of virtual power is based on the power balance between external power
W .�/ and internal power I.�/ expended within an arbitrary part of the body � (for
� � ˇt) (Admal et al., 2018; Gurtin, 2008; Gurtin et al., 2010). Mathematically, it reads

W .�/ D I.�/ (C.7)

It is assumed that internal power is expended by stresses summarised in table C.1
The internal power expended within � reads

I.�/ D
Z
�

�
P: PF C %:r P� C � P�

�
dV C

X
˛

Z
�

.…˛v˛ C �˛:rv˛/ dV (C.8)

On the other hand, external power W .�/ comes from the body forces and traction force
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Table C.1: Internal power expended at point � 2 ˇt and their conjugate (Admal et al.,
2018).
Internal power is expended by stress Conjugate of
P F
a stress vector % r P�

a scalar internal microscopic force � P�

for each slip system ˛, a scalar internal microscopic force …˛ the slip v˛
a vector microscopic stress �˛ rv˛

acting on @�. The surface integral L.�/ resulting from the expression of internal power
given in equation C.8 gives the structure of the work done by external traction forces

L.�/ D
Z
@�

"
PN: Py C %:N P� C

X
˛

.�˛:N / v˛

#
dA

C

Z
�

�
P� .� �Div%/ � Py:DivP

�
dV C

X
˛

Z
�

.…˛
�Div�˛/ v˛dV

(C.9)

Equation C.9 contains a macroscopic surface traction which is conjugate to Py and two
types of microscopic traction which are conjugate to P� and slip rates v˛. Therefore, based
on equation C.9, the surface integral W .�/ has the form

W .�/ D

Z
@�

�
t .N /: Py C s.N / P� C„˛.N /v˛

�
dA (C.10)

Where t is the macroscopic traction conjugate to Py, s is microscopic traction conjugate
to P� and „˛ is microscopic traction conjugate to v˛.

C.1.3 Macroscopic and microscopic force balance

To arrive at the force balance equations requires taking independent variation of equation
C.10 with respect to Py, P� and v˛.˛ D 1; :::; n/. Here we list all macroscopic and microscopic
force balance equations obtained:

1. Macroscopic force balance equations are(
DivP D 0; in ˇt
t D PN; on @ˇt

(C.11)

2. Microscopic force balance for each slip system ˛ reads(
Div�˛ �…˛

D 0; in ˇt
„˛ D �˛:N; on @ˇt

(C.12)

197



Appendix C C.1. More on the Phase field model of Admal and Marian

3. Microscopic force balance equations for � reads(
Div% � � D 0; in ˇt
s D %:N; on @ˇt

(C.13)

C.1.4 Energy balance

Here, we derive laws of energy balance in terms of the previously defined variables and then
link the equation derived in sections C.1.2 and C.1.3 to the second law of thermodynamics
expressed in the form of the Clausius–Duhem inequality. Energy balance for � � ˇt reads

PZ
�

"dV D �

Z
@�

.q.n/dAC
Z
�

rdV CW .�/ (C.14)

Where " is energy density, PR
�
"dV � d

dt

�R
�
"dV

�
, q is heat flux vector and r is external

heat source. If we substitute equation C.8 into equation C.14 gives the following differential
equation

P" D �divqC r C
�
P: PF C %:r P�

�
C

X
˛

.…˛v˛ C �˛:rv˛/C � P� (C.15)

Note from equation C.15 that configurational forces act in response to changes in the
order parameter. The term P: PF in equation C.15 that describes the power extended due
to deformation can be expressed in terms of lattice Lagrangian strain Ee and the right
Cauchy-Green tensor C e as follows

P: PF D S: PEe C

AX
˛D1

.sm˛:C es˛/ v˛

D S: PEe C

AX
˛D1

�˛v˛

(C.16)

The lattice stress tensor S in equation C.16 reads

S WD F e�1PF pT (C.17)

and the resolved shear stress � on ˛ slip plane reads

� WD Sm˛:C es˛ (C.18)
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C.1.4.1 Clausius-Duhem inequality

As per the second law of thermodynamics, in a situation where thermal effects are sup-
pressed, the rate of energy increase can never exceed the total amount of energy expended
in a process. Next we present the use of the second law of thermodynamics expressed in
the form of the Clausius-Duhem inequality at our arbitrary part � � ˇt . Clausius-Duhem
inequality gathers most of the quantities which intervene when deriving constitutive laws.
Thus, here we write the second law in the form of a dissipation inequality that has to be
satisfied at all time t and 8X 2 �.

PZ
�

�dV � �

Z
@�

q:n

T
dAC

Z
�

r

T
dV (C.19)

�.X; t/ is entropy density (�.X; t/ D "
T
), T .X; t/ is temperature fields and r denotes a

heat source. Then, equation C.19 becomes

P� � �div
� q
T

�
C
r

T
(C.20)

By multiplying equation C.20 by T leads to

T P� � �divq C
q:rT

T
C r (C.21)

If we replace divq by expression derived from equation C.15 leads to

P" �
�
S: PEe C %:r P�

�
�

X
˛

.…˛v˛ C �˛v˛ C �˛:rv˛/ � � P� C
q:rT

T
� T P� (C.22)

If we finally introduce the free energy density  D " � T � in our inequality C.22 leads
to dissipation inequality which links the derived equations in sections C.1.2 and C.1.3 to
the second law of thermodynamics in the form of the Clausius-Duhem inequality.

P C PT � �
�
S: PEe C %:r P�

�
�

X
˛

.…˛v˛ C �˛v˛ C �˛:rv˛/ � � P� C
q:rT

T
� 0 (C.23)

C.1.5 Thermodynamically consistent Constitutive equations

In this section, we reproduce the thermodynamically consistent constitutive laws. The
purpose is to emerge grain boundary energy and bulk elastic energy into the free energy
density functional through its dependence. We use the Coleman-Noll procedure discussed
in section C.1.5.1 to connect the kinematic variables derived in section 5.3.1 to the force
laws derived in section C.1.2. But before using the Coleman–Noll procedure, important
constitutive assumptions are made. Free energy density  is assumed to be
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 D O .s; v;rv/

For 8̂̂<̂
:̂
s D .T;rT;Ee; G; �; P�;r�/

v D .v1; v2; :::; v˛/

rv D .rv1;rv2; :::;rv˛/

A second assumption is that the fields �; q; �˛; �;…˛ and S are function of s; v;rv and
F p. The third assumption is that the free energy depends only on Ee and G. The lack of
dependence of free energy on F e; F p and rF p is attributed to the frame invariance of  
described in (Berdichevsky, 2006).

C.1.5.1 The Coleman–Noll procedure

The central idea of the Coleman-Noll procedure is to ensure that the second law of ther-
modynamics described above in the form of Clausius-Duhem inequality is met for any
admissible thermodynamic process (Coleman and Noll, 1974). An admissible thermody-
namic process is defined as the process that is compatible with the constitutive assump-
tions given above and meets the principles of mechanics and the law of conservation of
energy. (see references (Coleman and Noll, 1974) and (Hütter, 2016) for more details on
admissible thermodynamic processes).
In this section, we only use the Coleman–Noll procedure to arrive at thermodynamically
consistent constitutive law of the Admal and Marian model (Admal et al., 2018). It allows
expressing all forces in the force balance equations 5.34, 5.35 and 5.36 and the govern-
ing equation C.22 in terms of temperature, temperature gradient and kinematic variables.

By emerging the functional form given in section C.1.5 in equation C.23 leads to 10

. ;T C �/ PT C‰;rT :r PT C . ;Ee � S/ : PE
e
C
�
 ;� � �

�
P�

C
�
 ;r� � %

�
:r P� �

AX
˛D1

.…˛v˛ C �˛v˛ C �˛:rv˛/C‰;G PG

C  ;v: Pv C‰;rv:r Pv C‰; P�
R� C

q:rT

T
� 0

(C.24)

This inequality must be satisfied 8X 2 ˇt . However this inequality can be oversimplified
by evaluating each term individually. For example, note that r PT appears in only one
term and the coefficient of r PT in that term does not depend on r PT . In addition, the
coefficients of the terms Pv;r Pv and R� appearing in inequality have no dependence on these

10Note that f;x denotes the independent differentiation of the functional f with respect to the quantity
x. Throughout this textbook ^ stands for a cross product.
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terms. This implies that
 ;rT �  ; P� �  ;v �  ;rv � 0

, otherwise inequality C.24 is not met. Consequently, with this simplification, inequality
C.24 becomes

. ;T C �/ PT C . ;Ee � S/ : PE
e
C
�
 ;� � �

�
P� C

�
 ;r� � %

�
:r P�

�

AX
˛D1

.…˛v˛ C �˛v˛ C �˛:rv˛/C  ;G PG C
q:rT

T
� 0

(C.25)

If we consider again that PT appears in one term and the coefficient of that term does not
depend on PT and the same goes for PEe and r P� our inequality is verified if and only if8̂̂<̂

:̂
 ;T D ��.T;E

e; G; �;r�/

 ;Ee D S.T;E
e; G; �;r�/

 ;r� D %.T;E
e; G; �;r�/

(C.26)

Remark : Restrictions above (equation C.26) on functional forms make associated func-
tional form thermodynamically-consistent. One realises that ‰ has no dependence on rT ,
P�,v, and rv.
The inequality becomes

�
 ;� � �

�
P� �

AX
˛D1

.…˛v˛ C �˛v˛ C �˛:rv˛/C  ;G PG C
q:rT

T
� 0 (C.27)

The term PG can be expressed in terms of slip rate by using the plastic flow equation
(Cermelli and Gurtin, 2002)

PG D LpG CG .Lp/
T
C J p

AX
˛D1

Œ.F p/
�T
rv˛ ^m˛ �˝ s˛ (C.28)

The term ‰;G : PG becomes

 ;G : PG D

AX
˛D1

h
 ;G :

�
V G CGV T

�
v˛ C J p .F p/

�1
.m˛ ^‰;Gs

˛/ :rv˛
i

(C.29)

Where V WD s˛ ˝ m˛ which is the Schmid tensor described in section 5.3.1.1. If we
substitute equation C.28 and C.29 into our dissipation inequality in equation C.27 leads
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to �
 ;� � �

�
P� C

AX
˛D1

� �
 ;G W

�
V G CGV T

�
�…˛

� �˛
�
v˛

C

�
J p.F p/�1 .m˛ ^  ;Gs

˛/ � �˛
�
:rv˛

�
C
q:rT

T
� 0

(C.30)

The microscopic stress �˛ is additively decomposed into an energetic �˛energy part which
does not depend on rv and dissipative part �˛

diss
which depends on rv

�˛ D �˛energy C �
˛
diss (C.31)

By substituting C.31 into our inequality leads to

�
 ;� � �

�
P� C

AX
˛D1

� �
 ;G W

�
V G CGV T

�
�…˛

� �˛
�
v˛

C

�
J p.F p/�1 .m˛ ^  ;Gs

˛/ � �˛energy � �
˛
diss

�
:rv˛

�
C
q:rT

T
� 0

(C.32)

Again J p.F p/�1 .m˛ ^  ;Gs˛/ � �˛energy D 0, then our inequality is met if

�˛energy D J
p.F p/�1 .m˛ ^  ;Gs

˛/ (C.33)

For J p D detF p and �˛energy is regarded as the Peach-Koehler force 11 due to pile up
of dislocations. The �˛

diss
is the dissipative micro-stress conjugate to the gradient in slip

rate. By substituting equations C.33 into C.32 leads

�
 ;� � �

�
P�C

AX
˛D1

� �
 ;G W

�
V G CGV T

�
�…˛

� �˛
�
v˛��˛diss:rv

˛

�
C
q:rT

T
� 0 (C.34)

A solution to equation C.34 reads8̂̂̂̂
<̂̂
ˆ̂̂̂:
…˛
D  ;G W

�
V G CGV T

�
� �˛ C b˛.s; v;rv/v˛;

q D �K .s; v;rv/rT

� D  ;� C b
�
�
s; v;rv/ P�

�˛diss D B
˛ .s; v;rv/rv˛

(C.35)

K is the positive valued definite tensor of thermal conductivity, b˛ is inverse mobility
function associated with the slip rate v˛, B˛ is inverse mobility function associated with
rv and b� is inverse mobility function associated with P�.

11Peach-Koehler force is a configurational force due to equilibrium between a dislocation and the
adjacent elastic medium. The dislocation pile up increases the magnitude of this configurational force so
that it becomes capable of driving dislocation outside of equilibrium (Gurtin, 1999; Hirth et al., 1983).
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C.1.5.2 Reliability of replacing gradient of lattice rotation by G

The aim of this section is to show that G can be expressed in terms of the gradient of
lattice rotations, U e and the gradient of U e. Let start by expressing G in terms of F e

G D J e .F e/
�1 curl .F e/�1 (C.36)

Note that J e D detF e. The gradient of lattice rotation ReT
�
curlReT

�
reads

ReT
�
curlReT

�
D .J e/

�1
�
U eGU eT

C U ecurlU e
�

(C.37)

curl denotes the curl operators with the derivative appearing with respect to the deformed
configuration whereas curl denotes the curl operators with the derivatives appearing with
respect to the lattice configurations. By using polar decomposition in equation 5.24 to
express F e function of U e and substitute the resulting equation into equation C.36 and
denoting the resulting using tensor 12 notation gives

Gij D J
eF e�1ik

�
curl

�
F e�1

��
kj

D J eU e�1

ik
Re�1
kk
"krsF

e�1

js;r

D J eU e�1

ik
Re�1
kk
"krs

h
U e�1

jl;r
Re�1
ls
C U e�1

j l
Re�1
ls;r

i (C.38)

The indices with over-line in the expressions above denote components corresponding to
lattice configurations. Note that U e�1

j l;r
U e

lt
C U e�1

j l
U e

lt;r
D 0 because the U e�1

j l
U e

lt
D ıj t

and the gradient of U e�1

j l
U e

lt
with respect to the spatial coordinate identically equals zero.

Consequently,

U e�1

j l;r
D �U e�1

jp
U e�1

tl
UL
pt;r

Now let express the gradient of the stretch tensor with respect to the coordinates of the
lattice configuration.

U e�1

j l;r
D �U e�1

jp
U e�1

tl
U e
pt;r

F e�1r;r

D �U e�1

jp
U e�1

tl
U e
pt;r

U e�1
rs Re�1sr

(C.39)

Now let substitute equation C.39 into equation C.38 leads to

Gij D J
e
h
�"krsR

e

kk
RersR

e

sl
U e�1

ik
U e�1

jp
U e�1

tl
U e�1
rs U e

pt;r
C U e�1

ik
Re
kk
"krsR

e�1

ls;r
U e�1

j l

i
By considering that "krsRe

kk
RersR

e

sl
D "ksl.detRe/ and substituting in the equation

12An example of tensor notation: Œu ^ v�i = "ijkuj vk see more details on https://www.
continuummechanics.org/tensornotationbasic.html
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above leads to

Gij D �J
e"kslU

e�1

ik
U e�1
rs U e�1

tl
U e�1

jp
U e
pt;r
C J e

�
U e�1ReT

�
curlReT

�
U e�T

�
ij

Again, by replacing "kslU e�1

ik
U e�1
rs U e�1

tl
D "irt

�
detU e�T

�
in the equation above leads to

Gij D �"irtU
e
pt;r

U e�1

jp
C J e

�
U e�1ReT

�
curlReT

�
U e�T

�
ij

By considering
�
curlU e

�
ip
WD "irtU

e
pt;r

and substituting in the equation leads to

Gij D
�
�
�
curlU e

�
U e�T

C J eF e�1
�
curlReT

�
U e�T

�
ij

If this equation is expressed in non indicial notation leads to

G D �
�
curlU e

�
U e�T

C J eF e�1
�
curlReT

�
U e�T (C.40)

If equation 5.25 is substituted into equation C.37 and rearrange the resultant equation to
obtain the expression of G leads to equation C.40. Therefore jGj qualifies to replace jr� j
and the resulting grain boundary energy  gb reads

 gb.T; �;r�;G/ D
˛2

2
jr�j2 C f .�/C g.�/sjGj C

"2

2
jGj2 (C.41)

Where ˛, s and " are constants that depend on temperature. Figure 118 shows the c
contribution of the terms in equation C.41 to the total energy. It additions it compares
their contribution from elastic energy wel.Ee/. It is evident that large contribution to the
total energy of the system comes from energy due to existence of a grain boundary. Note
also that  gb depends on the misorientation.

C.1.6 Mobility function of Admal &Marian’s model

The Euler-Lagrange equations resulting from taking independent variations of  gb with
respect to � and G are

M
P�
� D ˛

2
r
2� � f 0�.�/ � g

0.�/sjGj

M
PG
G D g.�/s C "

2
jGj

(C.42)

Similar to KWC model, jGj in the functions above is approximated by p.jGj/ where the
function p is given in equation 5.10. M P�

� and M PG
G are inverse mobility function with

respect to � and G.
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Figure 118: Comparison of energy contribution from different terms in equation C.41
which are shown in red and brown colour. The curve in blue colour shows elastic bulk
energy described in section 5.3.5. They are obtained from a steady state simulation of
flat symmetric tilt grain boundary of misorientation angle 30ı with a misorientation axis
Œ001� (Admal et al., 2018).

C.1.7 Algorithms to solve phase field equations

The quality of phase field simulations roots in both carefully choosing algorithm to solve
partial differential equations appearing in phase field equations and on properly meshing
the simulation domain. Therefore, it is important to compare available algorithms in order
to make a proper choice on which one to use. This section reviews different algorithms
used for discretisation and numerically solving phase field equations and related partial
differential equations. Since in this project, we simulated only two dimensional phase
field equations, in this section we limit ourselves to algorithms that are applicable to a
two dimensional system. For that reason, this section discusses finite difference and finite
element methods. In addition, it describes the implicit and explicit algorithms for time
marching and compares their stability.

C.1.8 Finite difference algorithm

Finite difference algorithms provide a more direct approach for solving partial differential
equations. The central idea of finite difference algorithms is to replace each derivative
term by a difference quotient (Vetterling et al., 2002; Biner et al., 2017).

C.1.8.1 Spatial discretization

Let consider a continuous and smooth function �.x; t/ on a one dimensional grid such
that dx is a distance between two adjacent grid points, the following algorithms are used
to estimate the following terms:
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1. The backward difference
.r�/�i D

�ni � �
n
i�1

dx

2. The forward difference
.r�/Ci D

�niC1 � �
n
i

dx

3. The central difference
.r�/˙i D

�niC1 � �
n
i�1

dx

4. The central second difference�
r
2�
�
i
D
�niC1 � 2�

n
i C �

n
i�1

dx2

In a two dimensional grid of grid spacing dx along x axis and dy along the y axis
shown in figure 119, the Laplacian operator in the centered second difference above is
approximated at each node using five points, therefore it is called a five stencil. Figure
119 shows arrangement of grid points which are used to formulate an equation C.43

Figure 119: Schematic representation of the uniform rectangular grid showing node or-
dering representation for a two-dimensional grid

�
�2�

�
i;j
D
�
r
2
xx�

�n
i;j
C
�
r
2
yy�

�n
i;j

D
�niC1;j � 2�

n
i;j C �

n
i�1;j

dx2
C
�ni;jC1 � 2�

n
i;j C �

n
i;j�1

dy2

(C.43)
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C.1.8.2 Temporal discretization

The temporal evolution of the quantity �.x; t/ on the grid shown in figure 119 is approx-
imated using the simple forward differencing scheme as follows

@�

@t
�
�mC1i;j � �mi;j

�t
(C.44)

Where �t D
�
tmC1 � tm

�
is time increment between two consecutive time steps tmC1

and tm. The value on n in equations above allows choosing the integration scheme to use
whether explicit or implicit.

1. For n D m, we have an explicit scheme

2. For n D mC 1, we have an implicit scheme

The explicit scheme utilises information from the previous time .m/ to propagate a field
� by �t into the future .mC1/. However, implicit scheme uses information of � from the
future .mC 1/ to propagate a field � by �t . The main advantages of the finite difference
algorithms are that they easy to code, cost-effective to compute and easily adapted in a
parallel computing environment. They have as well disadvantages in terms of accuracy.
On the other hand, explicit scheme for time marching algorithm is conditionally stable
compared from implicit scheme. For example for model type A (see section 4.3), it is only
stable for

�t <
�x2

4
(C.45)

Whereas for model type B, explicit scheme is stable only when

�t <
�x4

32
(C.46)

Note the extra �x2 which is due to the extra Laplacian in the conservation law of model
type B.

C.1.9 Finite element analysis

Finite element analysis FEA also called finite element method was first deployed in the
simulation in 1960s (Biner et al., 2017). As of today, it is a very mature technique widely
used in computational engineering and sciences to solve partial differential equations
whose initial and boundary conditions are known. Similar to finite difference technique,
finite element analysis is also local in nature. Contrary to finite difference method, finite
element method has superior and unique characteristics because it has capability of de-
scribing complex geometries.
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This section discusses fundamental aspect of finite element analysis. It starts by discussing
the representation of the domain and then, it discusses strong and weak forms of finite
element method formulation. Note that, Weak formulation serves for turning differential
equation (strong form ) into an integral equation (weak form) in order to lessen the burden
on the numerical algorithm in evaluating derivatives.

C.1.9.1 Isoparametric representation of the domain

Isoparametric formulation consists of describing a simulation domain in terms of nodal
coordinates and shape functions. Shape functions are very important because they are
used to interpolate unknowns such as temperature, displacement etc... on a node within
element of a mesh. On the other hand, shape functions are customary expressed in terms
of a dimensionless localised coordinate system .�,�/ and they are allowed to vary only
from �1 to 1 over an element. Note that, the adaptation of this new local coordinate
system is important for numerical integration required for forming a system of equations
in the finite element analysis.

Figure 120: Examples of isoparametric elements shaped differently with their nodes num-
bered. The red coordinate system defines an element in a local coordinate system whereas
the back coordinated system describes an element in a global coordinate system (Biner
et al., 2017).

Figure 120 shows example of isoparametric element whose nodes are numbered. Figure
121 gives an example of a mesh made of twelve square elements and each element is made
of four nodes. As figures 120 and 121 show, the transfer of global coordinates to local
coordinates requires a transfer function or shape function. Any point within an element
with x and y cartesian coordinates in a global system is presented in a local coordinate
.�,�) as follows: 8̂̂̂̂

<̂̂
ˆ̂̂̂:
x .�; �/ D

nX
j

N e
j x

e
j

y .�; �/ D

nX
j

N e
i y

e
j

(C.47)
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Figure 121: AN example of a mesh made of 12 squared elements and each elements is
made of four nodes.

Where n denotes the number of nodes in the element ( for example four nodes in figure
121), N e

j denotes nodal values of shape functions, xej and yej are the nodal coordinate val-
ues in a Cartesian coordinate system. An element of four nodes as in figure 121 requires
four shape functions. For example let consider element 6 (e6) and use linear Lagrange in-
terpolation to obtain the shape functions. There are two 1-dimensional linear interpolation
function ‡j .�/ along � which are(

‡
e6
1 .�/ D 1=2.1 � �/

‡
e6
2 .�/ D 1=2.1C �/

(C.48)

and two linear ‡j .�/ along � axis which are(
‡
e6
1 .�/ D 1=2.1 � �/

‡
e6
2 .�/ D 1=2.1C �/

(C.49)

If we take the product of these four functions (equation C.48 and C.49) to find the two
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dimensional shape functions for each nodes results in8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

N
e6
1 .�; �/ D

1

4
.1 � �/.1 � �/

N
e6
2 .�; �/ D

1

4
.1C �/.1 � �/

N
e6
3 .�; �/ D

1

4
.1C �/.1C �/

N
e6
4 .�; �/ D

1

4
.1 � �/.1C �/

In isoparametric formulation, the transformation from local to global coordinate system
for e6 leads to a trial function U.x; y/

U.x; y/ D

(
x D N

e6
1 .�; �/x

e6
1 CN

e6
2 .�; �/x

e6
2 CN

e6
3 .�; �/x

e6
3 CN

e6
4 .�; �/x

e6
4

y D N
e6
1 .�; �/y

e6
1 CN

e6
2 .�; �/y

e6
2 CN

e6
3 .�; �/y

e6
3 CN

e6
4 .�; �/y

e6
4

Where xe6j and ye6j (for j D Œ1; 2; 3; 4�) are coordinates of four nodes of element e6. The
Finite element method is not limited to linear polynomial approximations, it is extensible
to higher-degree polynomials. For instance, the quadratic Lagrange polynomial (Burden,
1993) in which an extra nodes are added at the mid points of each element. For example,
our element e6 of four nodes results in element of nine nodes as figure 122 shows. The

Figure 122: The quadratic Lagrange interpolation introduces extra nodes in element.

three one dimensional interpolation functions ‡j .�/ along the � axis are8̂̂<̂
:̂
‡
e6
1 .�/ D �.� � 1/=2

‡
e6
2 .�/ D 1 � �

2

‡
e6
3 .�/ D �.1C �/=2

(C.50)
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The three one dimensional interpolation functions ‡j .�/ along the � axis are8̂̂<̂
:̂
‡
e6
1 .�/ D �.� � 1/=2

‡
e6
2 .�/ D 1 � �

2

‡
e6
3 .�/ D �.1C �/=2

(C.51)

In addition, shape function must satisfy continuity between adjacent elements over
any elementary boundary that includes node i . Any function f .x; y/ defined in a global
coordinate system is transformed into local coordinate system as follows. First a Jacobian
matrix Jm is defined by following formulations above.

Jm D

264@x@� @y

@�
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@�

@y

@�

375 D
2664
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i

@N e
i
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i

@N e
i

@�
:yeiPn

i

@N e
i

@�
:xei

Pn
i

@N e
i

@�
:yei

3775
Second, a function f .x; y/ is transferred to local coordinate system asZ

�e

Z
f .x; y/dxdy D

Z C1
�1

f .�; �/ detJmd�d�

D

Z C1
�1

Z C1
�1

g.�; �/d�d�

(C.52)

where �e denotes the domain in this case element e. Note that dxdy D detJmd�d� is
the area of the element. By using Gauss-Legendre rule 13 for a four node isoparametric
element with n-integration, this integration is expressed asZ 1

�1

Z 1

�1

g.�; �/d�d� D

nX
iD1

nX
j

WiWjg.�i ; �i/ (C.54)

Where Wi and Wj are the weight coefficients and g.�i ; �i/ is the value evaluated at the
sampling points.

C.1.9.2 Strong and Weak Forms of FEM Formulation

In general, phase field models contain high order derivative terms (often second order
derivative). For example, the mobility function of � in Admal and Marian phase field

13Gauss Legendre rule is used to approximate definite integrals. For example, the integral of a polyno-
mial function f .x/is approximated as : Z 1

�1

f .x/ �

nX
iD1

wif .xi / (C.53)

where xi is coordinate of the node i and Wi is weight function for i D 1; :::; n.
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model described in section 5.3 contains the second derivative of �.

��
@�

@t
D ˛2divq � f 0�.�/ � g

0

�.�/sjGj

q D grad�
(C.55)

The second derivative terms cause numerical issues in practical situations where the dif-
ferentiability of the � profile may be limited especially at domain’s boundary. The first
derivative of � can be evaluated but the second derivative can not be evaluated numeri-
cally. The central idea of the weak formulation is to turn the differential equation into an
integral equation. This permits to lessen the burden on numerical algorithms in evaluating
higher order derivatives. The weak form of phase field equations to be solved with finite
element method are obtain in following four main steps.

1. Multiplying the phase field equation with a test function � to reduce the equation
to a scalar.

2. Integrating the resulting equation over the domain of consideration �.

3. Integrating by parts using Green’s theorem in order to reduce the order of derivatives

4. The last step is to supplement the resulting equation with boundary conditions.

Let use equation C.55 for demonstration. Let start by multiplying C.55 by test function
�

���
@�

@t
� �˛2divq C �f 0�.�/C �g

0

�.�/sjGj D 0 (C.56)

Let integrate this equation over the domain �Z
�

���
@�

@t
d� �

Z
�

�˛2divqd�C
Z
�

�f
0

�.�/d�C

Z
�

�g
0

�.�/sjGjd� D 0 (C.57)

Now let integrate the term involving high order derivative using Green’s theorem14Z
�

˛2�divqd� D ˛2
�Z

A

.�:q/ :ndA �

Z
�

.grad�/ qd�
�

(C.59)

To recall that q.˙L/ D 0 then the term
R
A
.�:q/ :ndA D 0. By substituting equation C.59

into C.57 leadsZ
�

���
@�

@t
d�C

Z
�

˛2r�r�d�C

Z
�

�f
0

�.�/d�C

Z
�

�g
0

�.�/sjGjd� D 0 (C.60)

14Green’s formula: Z
�

u:v;id� D

Z
A

.u:v/:nidA �

Z
�

u;i :vd� (C.58)

Where A is surface around the domain � and ni is the component of the outward vector normal to A.
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Since solving equation C.60 requires only first order derivatives in comparison to equation
C.55. Equation C.60 is a weak form.

C.1.9.3 Discretization of Weak Form

Now casting equation C.60 into FEM solution is achieved by using the isoparametric
representation presented above. In order words, the test function � is replaced by the
shape functions. But before going any further, note that integrals appearing in equation
C.60 are at an element level and the cartesian derivative of function f is defined over an
element by using shape functions as follows:

f .�; �/ D

nX
i

N e
i f

e
i (C.61)

where f ei is the value of the function at the element nodal positions. By using the chain
rule of differentiation, independent variation of f are :8̂̂<̂

:̂
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D
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:
@�
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C
@f

@�
:
@�
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D
@f

@�
:
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@y
C
@f

@�
:
@�
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(C.62)

With 8̂̂̂̂
<̂
ˆ̂̂:
@f

@�
D

nX
i

@N e
i

@�
:f ei

@f

@�
D

nX
i

@N e
i

@�
:f ei

(C.63)

Thus, in the similar way as in equation C.61, the function � in equation C.60 is expressed
as

�.�; �/ D

nX
i

N e
i �

e
i (C.64)

and the gradient terms appearing in Equation C.60 can be expressed with shape functions
as follows

r� D

264
@N e1
@x

@N e2
@x
:::::

@N en
@x

@N e1
@y

@N e2
@y
:::::

@N en
@y

375�ei D Be�e1 (C.65)

It is evident that the components of B matrix are easily evaluated by forming the Jaco-
bian matrix and taking advantage of the chain rule of differentiation as described above.
Utilising equations C.47, C.61 and C.65, equation C.60 is expressed as
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Figure 123: Spatial discretisation of a domain � into square noded elements.
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for f 0�.�/ D 2e.� � 1/ and g
0

�.�/ D 2� from equation 5.7. Our equation becomes

A
@�e

@t
CM�e C F1�

e
C F2�

e
D F1 (C.66)

Where A, M , F1 and F2 are matrices. Figure 123 gives an example of a discretisation in
space of the domain.

C.1.9.4 Discretization in time

The discretization of equation C.66 follows the trapezoid method described in this text-
book (Hughes, 2012) in which stability and accuracy of discretization algorithms are fully
discussed. By following procedure described in (Hughes, 2012), the final equation reads�

A

�t
CJ .M C F1 C F2/

�
.�e/mC1 D

�
A

�t
�
�
1 �J

�
.M C F1 C F2/

�
.�e/m C F1

(C.67)
Where �t D

�
tmC1 � tm

�
is time increment between two consecutive time steps tmC1 and

tm. The constant J controls the discretization method to use:

1. If J=0 leads to forward Euler method (explicit method).

2. If J=0.5 leads to Crank–Nicholson method.

3. J=1 leads to backward Euler method ( (implicit method).

Explicit scheme utilises information from the previous time .m/ to propagate a field � one
time step into the future .mC 1/. However, Explicit scheme has also main advantage of
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requiring minimal overhead in terms of memory allocation. In addition, they are easy to
program on a computer. However, the forward Euler method has limitations. The main
disadvantage is that explicit scheme has a conditional stability. It is limited to small time
step �t . For larger time step �t , numerical integration becomes highly inaccurate and
ultimately fails to converge. Contrary to forward Euler method, both Crank–Nicholson
and backward Euler methods are unconditionally stable. Comparatively, backward Euler
method is usually preferred over Crank–Nicholson method. Even if the Crank–Nicholson
method is second-order accurate, the solutions obtained with this method contains unde-
sirable oscillations.

C.1.10 Boundary conditions

In numerical simulations, one intends to simulate a large system in order to statistically
collect thermodynamic quantities over a large sample. It is therefore very important to
properly define boundary conditions that allow to extend the simulation domain. One
usually use Periodic Boundary Conditions, discussed in section 2.2.3, to achieve an
infinite simulation domain. However, other boundary conditions can be imposed to reflect
different flow conditions. They can be classified into two types. The first type contains
boundary conditions that indicate the value of the solution on the boundary of the domain
�.

Dirichlet boundary conditions

The Dirichlet boundary conditions state the value that the solution function f .x; y/ to
the phase field equation must have in the boundary of the domain � (Dirichlet, 1852).
For a two dimensional domain � that is described by x and y and it has a boundary @�,
its typical Dirichlet boundary condition would be

f .x; y/ D g.x; y/ for .x; y/ 2 @�

Where the function g.x; y/ may not only depend on x and y but also on other additional
independent variable for instance time. In addition, g.x; y/ can also be a constant.

Neumann boundary conditions

The second type of boundary conditions state that the derivative of the solution func-
tion f .x; y/ to the phase field equation must have a given value on the boundary @� of
the domain �. These boundary conditions are known as Neumann boundary conditions
(Neumann, 1865). A typical Neumann boundary condition would be
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@f .x; y

@x
D g.x; y/ for .x; y/ 2 @�

or
@f .x; y

@y
D g.x; y/ for .x; y/ 2 @�

Where the function g.x; y/ may not only depend on x and y, but also on other additional
variables such as time. Recall that in section 2.2.3, we have stated that the top surface of
a domain must have a shear stress equals zero and this boundary conditions was denoted
Free surface. Free surface boundary conditions are regarded as the Neumann boundary
condition since shear stress is calculated from the first derivative of velocity.
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Appendix D

D.1 Analytical solution of Admal & Marian’s phase
field model

A one dimension bi-crystalline system

In this sections we give a solution of a one dimension Admal and Marian’s boundary value
problems by following the procedure devised by Lobkovsky et al.(Lobkovsky and Warren,
2001). We consider a domain �0 D Œ�L;L� with boundary conditions �.˙L/ D 1 and
jGj.˙L/ D 0.
Here, we have assumed that 9 �GB0 � �0 and �GB0 D Œ�l; l � (in order words a grain
boundary extends from �l to l). It is important to note that in �GB0 r� ¥ 0 and
jGj ¤ 0. On contrary, in the region �p0 D �0n�GB0 , r� � 0 and jGj D 0.
Therefore in the region �p0 , � satisfies the equation

˛2
@2�

@x2
�
@f .�/

@�
D 0 (D.1)

If we multiply D.1 with @�

@x
leads

˛2
@2�

@x2
@�

@x
�
@f .�/

@�

@�

@x
D 0

(D.2)

If @2�
@x2

@�

@x
D

1
2
@
@x

�
@�

@x

�2
is replaced in the equation above, it will lead

˛2

2

@

@x

�
@�

@x

�2
�
@f .�/

@x
D 0 (D.3)

By integrating equation D.3 leads

˛2

2

�
@�

@x

�2
� f .�/ D c (D.4)
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Now the solution for � in the region �p0 in the inverted form reads

L � x D

Z 1

�

˛s
2

�
c C f .�/

�d�; for x 2 �p and � < 1 (D.5)

Where c is an integration constants.
At grain boundary (in the region �GB0 ), jGj ¤ 0 and r� ¥ 0, therefore � and jGj satisfy
both conditions

˛2
@2�

@x2
�
@f .�/

@�
� s

@g.�/

@�
jGj D 0 (D.6)

and
@

@x

�
"2jGj C sg.�/

�
D 0 (D.7)

Integrating equation D.7 leads to

"2jGj C sg.�/ D d (D.8)

For
lim
x!1

� ' �2

lim
x!1

jGj ' 0

Then d D sg.�2/. Equation D.8 becomes

jGj D
s

"2

�
g.�2/ � g.�/

�
for � � �2 (D.9)

Now let multiply equation D.6 by @�

@x

˛2
@2�

@x2
@�

@x
�
@f .�/

@�

@�

@x
� s

@�

@x

@g.�/

@�
jGj D 0 (D.10)

By rearranging this equation and knowing that @�

@x

@g.�/

@�
jGj D � s2

2"2
@
@x

�
g.�2/� g.�/

�2
, it

leads to
˛2

@

@x

�
1

2

�
@�

@x

�2 �
�
@f .�/

@x
C

s2

2"2
@

@x

�
g.�2/ � g.�/

�2
D 0 (D.11)

Integrating this equation and integrate it lead to

˛2

2

�
@�

@x

�2
� f .�/C

s2

2"2

�
g.�2/ � g.�/

�2
D c (D.12)
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Rearranging this equations leads to

x.�/ D

Z �

�1

˛d�s
2

�
f .�/C c � s2

"2

�
g.�2/ � g.�/

�2� , for � < �2, �1 D �.0/ and x 2 �GB0
(D.13)

Then in the region �0, the solution of � in the inverted form reads

Œ�L;L� D

Z 1

�

˛s
2

�
c C f .�/

�d� C Z �

�1

˛d�s
2

�
f .�/C c � s2

"2

�
g.�2/ � g.�/

�2� (D.14)

The value of the integration constant c, �1 and �2 are obtained implicitly from equations
D.4 and D.14.

D.2 Effect of slip systems on migration mechanism
of a grain boundary

To investigate the influence of each slip system on migration mechanism of grain boundary,
a shear rate of P D 1:5 � 10�4m:s�1 was applied to the system at 100K and the system
was allowed to evolve for 9 � 105s. To investigate the influence of a given slip system,
the others were kept inactive. Figures and 124 shows the evolution of normalised density
of geometrically necessary dislocation of †25.710/ symmetric tilt grain boundary as a
representative of other investigated grain boundaries.
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Figure 124: Effect of slip systems on migration mechanism of †25.710/ symmetric tilt
grain boundary.

D.3 Sensitivity test

To investigate the role of different parameters in Phase Field equation on mobility of grain
boundary, we have carried out several tests at each time varying the value of the parameter
of interest for other parameters remaining fixed with the values reported in table 6.2. The
system was allowed to evolve for 9� 105s at 100K with a shear rate P D 1:5� 10�4m:s�1.

D.3.1 Dependence of grain boundary evolution on "
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Figure 125: Effect of slip system on migration mechanism of †25.710/ symmetric tilt
grain boundary.
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Figure 126: Effect of " on the evolution of the norm of density of geometrically necessary
dislocations in †25.710) symmetric tilt grain boundary at 100K with a shear rate P D
1:5 � 10�4m:s�1.
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D.3.2 Dependence of grain boundary evolution on e

Figure 127: The effect of e on the evolution of the norm of density of geometrically
necessary dislocation in †25.710/ symmetric tilt grain boundary at 100K with a shear
rate of P D 1:5 � 10�4m:s�1
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D.4 Evolution of both elastic and plastic deformation
gradient

Figure 128: a) Determinant of plastic deformation gradient F p b) the evolution of plastic
flow rate PF p in †5.310/ symmetric tilt grain boundary at different time step and a shear
rate P D 2 � 10�4ms�1.

D.5 Evolution of plastic stretch tensor
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Figure 129: Evolution of components U p
11 and U p

22 of plastic stretch tensor in †25.710/
at 100K with a shear rate P D 2 � 10�4ms�1.

D.6 Evolution of slip mobility

Figure 130: Evolution of the inverse mobility M P̨
˛ in †5.310/ grain boundary at a) 100K

and b) comparison of evolution at 0K and 1000K with a shear rate P D 2 � 10�4ms�1.
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Figure 131: Comparison of inverse slip mobility of different grain boundaries from a list
of investigated grain boundaries at 100K after 1000s with a shear rate P D 2� 10�4ms�1.
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