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En fait, c’est cela la chose remarquable, quand
on pose la question : « A quot sert socialement
la science ? », pratiquement personne n’est
capable de répondre. Les activités scientifiques
que nous faisons ne servent a remplir
directement aucun de nos besoins, aucun des
besoins de nos proches, de gens que nous
puissions connaitre. Il y a aliénation parfaite
entre nous-meéme et notre travail.
Ce n’est pas un phénoméne qui soit propre a
lactivité scientifique, je pense que c’est une
situation propre a presque toutes les activités
professionnelles a lintérieur de la civilisation
industrielle. C’est un des trés grands vices de
cette civilisation industrielle.
Alexandre Grothendieck
Allons-continuer la recherche scientifique ?,
1972

Yesterday I found the courage at last to study
your mathematical manuscripts even without
reference books, and I was pleased to find that I
did not need them. I compliment you on your
work. The thing is as clear as daylight, so that
we can’t wonder enough at the way the
mathematicians insist on mystifying it. But
this comes from the one-sided way these
gentlemen think.
Friedrich Engels
Letter to Karl Marz, 1881



Résumé

Cette these porte sur 'action de membranes, un mécanisme qui munit I'espace des
extensions de I'opération identité dans une oo-opérade cohérente O% d’une struc-
ture canonique de O-algebre dans 1’co-catégorie des cocorrespondances d’espaces.

Dans un premier temps, on démontre que la construction donnée par Mann—
Robalo de cette action s’étend aux oc-opérades cohérentes générales, sans re-
striction sur I'espace des couleurs ni sur celui des opérations unaires. On établit
ensuite I'équivalence entre les modeles de Lurie et de Mann—Robalo de I’espace des
extensions d’une opération, en les reliant par un zigzag explicite d’équivalences
d’homotopie.

Dans le cas monochromatique, on démontre que, contrairement a ce que la
littérature existante suppose, 'espace des extensions au sens de Lurie n’est en
général pas équivalent a la fibre homotopique du morphisme d’oubli associé mais
en est un quotient homotopique par ’action de I’co-groupe des opérations unaires.
Comme conséquence de ces résultats, on montre que les oo-opérades de petits
disques a reperes tordues sont cohérentes et admettent une action de membranes
reliée aux opérations de topologie des cordes.

Mots-clés

Action de membranes, opérades, oo-opérades cohérentes, fleches tordues, oo-
catégorie des cocorrespondances, théorie des catégories supérieures, ensembles
simpliciaux marqués, opérade des petits disques, topologie des cordes et des mem-
branes, théories topologiques des champs.



Abstract

We study the brane action, which endows the space of extensions of the identity of
a coherent oo-operad O® with a canonical O-algebra structure in the oo-category
of cospans of spaces.

First, we prove that Mann—Robalo’s construction of the brane action extends
to general coherent co-operads, with possibly multiple colors and non-contractible
spaces of unary operations. Second, we establish that Lurie’s model of the space of
extensions of an operation is equivalent to Mann—Robalo’s model, via an explicit
zigzag of homotopy equivalences.

In the monochromatic case, contrary to what is claimed in existing literature,
we show that the space of extensions in the sense of Lurie is not in general
equivalent to the homotopy fiber of the associated forgetful morphism, but rather
to its homotopy quotient by the oco-group of unary operations. As a consequence
of these results, we prove that the oo-operads of B-framed little disks are coherent
and admit brane actions related to string topology operations.

Keywords

Brane action, operads, coherent co-operads, twisted arrows, cospans, higher cate-
gory theory, marked simplicial sets, little disks operad, string and brane topology,
topological field theories.
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Chapter 1

Introduction

1.1 A glimpse of algebraic topology and operads

One of the fundamental goals of algebraic topology is to classify topological
spaces, up to homotopy equivalence. The main tool to this end is the use of
algebraic invariants, that is, objects endowed with operations whose algebraic
structure encode the topological properties of the corresponding spaces. The
simplest of these invariants is the homology of a topological space, which forms
an abelian group, graded by the natural numbers.

While extremely useful, considering only the homology of a topological space
does not in general retain all of its structure. To remedy this issue, algebraic
topologists have studied refined versions of homology, in order to encode the
homotopical properties of spaces more faithfully. These new invariants usually
take the form of certain algebraic structures defined on chain complexes associated
with the space. However, such algebraic structures can be intricate; the adequate
language to define and study them is that of operads.

Operads

In a nutshell, an operad is a device that encapsulates all the operations that one
can perform in any algebra of a given sort.

Consider for instance the associative operad, denoted Ass. It contains the
information of all the possible ways one can multiply &k inputs aq,...,a; in an
associative algebra A: these multiplicative operations are given by all the per-
mutations on the symbols aq,...,a,. In other words, we may say that the set
Ass(k) of arity k operations in the associative operad is in bijection with the
symmetric group on k elements. These sets Ass(k), for varying k € N, are related
one another by composition maps

—o0; —: Ass(k) x Ass(m) — Ass(k+m — 1)

given by inserting an operation of arity k£ as the i-th input of an operation of
arity m, thereby giving rise to a new operation of arity k£ +m — 1.

10



1.1 A glimpse of algebraic topology and operads 11

An operad is then defined as a collection O = {O(k) }xen of sets O(k) equipped
with an action of the symmetric group ¥, together with a distinguished identity
element id € O(1) and composition maps — o; —: O(k) x O(m) — O(k +m — 1)
that are associative, unital and equivariant in an appropriate sense. The set O(k)
encodes all the possible operations with k£ inputs in an O-algebra.

More generally, one can replace sets and maps by topological spaces and con-
tinuous maps to obtain the notion of a topological operad. A similar definition
gives operads in vector spaces, chain complexes, etc. This greater level of gener-
ality allows to consider new types of algebraic structures, where usual algebraic
equations do not hold in a strict sense, but rather up to some homotopies, which
in turn themselves satisfy some equations up to some higher homotopies, etc.

For example, the based loop space €,X := Map,(S', X) of a pointed topo-
logical space (X, z) has a very natural algebraic structure given by concatenation
of loops. This operation is not associative on the nose: the associativity equation
holds only up to some homotopy given by reparametrization of the loops. The
higher homotopies then encode higher coherences, in the sense of associativity-
type relations between the various ways of concatenating multiple loops. The
resulting algebraic structure, which in particular induces a group structure on
the set of connected components 7 (X, z) of 2, X (aka the fundamental group of
X at x), is that of an E;-algebra.

Little disks operads

The topological operad E; encoding the previous algebraic structure of the based
loop space §2, X governs, more generally, the structure of all coherently homotopy-
associative algebras. This operad E; is the first of a sequence of topological oper-
ads [E,,, for n € N*, whose corresponding algebras are associative up to homotopy
and increasingly commutative up to homotopy, as n tends to infinity. The operad
E,, originally introduced by Boardman—Vogt [BV73] and May [May72], is called
the operad of little disks of dimension n and is of major importance in algebraic
topology. The space E,(k) of operations of arity k inside this operad is given
by the space of configurations of k open disks of dimension n embedded in a
larger such disk. Composition in the little disks operad is obtained by insertion
of configurations of disks, as depicted in figure 1.1.

In our work, we do not consider topological operads, but instead the closely
related notion of co-operads. While topological operads can be viewed as exam-
ples of oco-operads (via a nerve construction), the latter notion is more flexible
and adequate for the purposes of modern homotopy theory.

The little disks oco-operads E, form the paradigmatic examples of coherent
oo-operads. Together with the brane actions they give rise to, these oco-operads
are the central objects of this thesis. Other important examples of coherent
oo-operads come from geometry, most notably the operad Mg ;1 of algebraic
curves of genus 0 with marked points, as well as variants of its Deligne-Mumford
compactification My 441, which governs the structure of genus 0 Gromov-Witten
invariants from enumerative geometry (see also the end of section 1.3).
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Figure 1.1: Composition in the little disks co-operad E; of an operation of arity
3 (on the left) with three operations of arity 2, 3 and 4 (in the middle) yields an
operation of arity 9 (on the right).

To motivate our study of coherent oo-operads and their brane actions, we
take a detour through string topology. We will then introduce the brane action
in section 1.3 and explain our contribution in section 1.4.

1.2 String topology

For certain classes of spaces, the homology and its complex of singular chains
naturally carry specific algebraic structures, on top of that of a graded abelian
group. The previous example of the [E;-algebra structure on the based loop space
Q, X suggests to consider the related class of free loop spaces.

By the free loop space LX of a topological space X, we mean the space of
continuous maps of the circle into X, endowed with the compact-open topology.
It turns out that such spaces indeed have very rich algebraic structures, whose
study has given rise to a subfield of algebraic topology named string topology.

Topological viewpoint

One of the roots of string topology can be tracked down to the investigations of
the geometry of surfaces from the years 1980-1990’s. A major contribution was
Goldman’s introduction and study of a Lie bracket on the free abelian group on
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isotopy classes of closed curves on a compact surface [Gol86], in relation to his
celebrated work on the symplectic structure of character varieties [Gol84].

String topology started with the construction by Chas and Sullivan [CS99,
CS04] of an associative product on the homology of the free loop space of a
closed oriented manifold X, called the loop product, which restricts to the inter-
section product on the homology of X via the inclusion X — L£X of constant
loops. Moreover, the interaction of this operation with the S!-action induced
by rotation of loops gives rise to a Batalin—Vilkovisky-algebra structure, which
recovers Goldman’s Lie algebra on Hy(LX) when X is a surface. The operad BV
encoding this algebra is closely related to the little disks operad of dimension 2:
a result of Getzler [Get94] identifies BV with the homology of the framed little
disks operad EE, a variant of Ey obtained as a semi-direct product of the latter
with the group SO(2) of rotations.

One is led to wonder whether this BV-algebra is part of a larger structure and
if moreover it can be lifted from homology to the level of the underlying chains.
Motivated by such questions, the study of string topology has considerably ex-
panded since Chas—Sullivan’s seminal work, using methods from stable homotopy
[CJ2f, BM19, Mor20, Roy13], combinatorial models of moduli spaces of Riemann
surfaces [TZ06, God07, Kau07, Kupll, DPR15] or algebraic models based on
Hochschild homology [Goo85, Jon87, Mer04, Malll, GTZ12, Iril7, CHV22|. Cer-
tain string topology operations have also been extended to spaces beyond the case
of manifolds, notably classifying groups [CM12, HL.15], Gorenstein spaces [FT09]
or oriented topological stacks [BGNX12].

Field theory viewpoint

This wealth of operations can be extended and organized into the structure of a
topological field theory of dimension 2 (in a sense closely related to the original
definition by Atiyah [Ati88] and Segal [Seg91]): from this perspective, operations
on free loop spaces are induced by surfaces, viewed as cobordisms between their
boundaries (as depicted in figure 1.2). Since the operad of framed little disks
ES can be realized as the moduli space of Riemann surfaces of genus 0 with
boundaries, we can view the string topology BV-algebra as the genus 0 part of
the homology of this topological field theory.

This viewpoint from field theory has been implemented in various forms
[Cha05, CG04, CV06, Cos07, KS09, CTZ08, BCT09, WW16]. Let us mention
Costello’s approach, which is a form of the noncompact cobordism hypothesis in
dimension 2 (see [Lur09b]): it consists in associating to every Calabi-Yau E;-
algebra A a topological conformal field theory, that is, an action of chains of the
moduli space of Riemann surfaces with boundary on the Hochschild homology of
A. The string topology operations are then obtained by applying this result to
the cochain complex A = C*(X) of the target manifold X, which is an E;-algebra
with Calabi-Yau structure coming from the Poincaré duality pairing, and whose
Hochschild homology is isomorphic to the cohomology of LX, when X is simply
connected (see [FTVP04]).
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Figure 1.2: A configuration in Ey(3) giving rise to a cobordism between circles.

Moreover, the previous approach using topological conformal field theory
makes apparent the strong analogy between string topology operations and the
structure of Gromov-Witten invariants in enumerative geometry. This relation
will come back in the next section, when discussing Toén and Mann-Robalo’s ap-
proach [Toél3, MR18] to Gromov-Witten theory via the study of brane actions.

Symplectic viewpoint

Another aim of algebraic topology is to characterize geometric structures in terms
of algebraic and homotopical data. This question constitutes a further motivation
for the study of free loop spaces, since it has been conjectured that a full set of
string topology operations on a closed oriented smooth manifold could encode
part of its diffeomorphism type, beyond its underlying homotopy type [Sul07].
Such expectations come from the deep connections string topology possess
with symplectic geometry. A central result in this vein is Viterbo’s isomorphism
[Vit98], as well as its generalization by Abouzaid [Abol5], which provides an
isomorphism of BV-algebras between the homology of the free loops space of a
closed oriented manifold X (twisted by a local system) and the so-called sym-
plectic cohomology of its cotangent bundle 7% X. This relation is expected to be
even stronger: for instance, Cieliebak and Latschev proposed in [CL09] (see also
[CFL20]) that the sympletic field theory of the unit cotangent bundle of X and its
equivariant string topology should form quasi-isomorphic structures of homotopy

involutive Lie bialgebras, which are closely related to algebras over the operad
ES (see for instance [CMW16)).
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Brane topology

String topology may be generalized to mapping spaces Map(S™, X) from higher
dimensional spheres: this field is often called brane topology.

For X a closed oriented manifold, Sullivan and Voronov have stated and
sketched a proof that the shifted homology of Map(S™, X) is an algebra over
the higher dimensional version BV, of the BV-operad, defined as the homol-
ogy of the framed little disks operad E, | (as explained in Cohen—Voronov’s book
[CV06]). In particular, this homology inherits an (n 4 1)-Poisson algebra struc-
ture, that is, an algebra over the homology of the little disks operad E,, ;. The
commutative multiplication of these algebras has been constructed by Sullivan—
Voronov and also appears in [Cha05, KS06, HKV06, BGNX12].

This motivates the following conjectural chain level generalization of Sullivan—
Voronov’s construction (which is implicit in [CV06, Section 5.4] and appears
explicitly in the introduction of [GTZ12]).

Conjecture 1.2.1. For X a closed oriented manifold, the chains on Map(S™, X)
form an algebra over the chains of the framed little disks operad Effﬂ.

The case of the underlying £, 1-algebra structure has been proven by Ginot—
Tradler—Zeinalian in [GTZ12], under the assumption that X is an n-connected
Poincaré duality space whose homology groups are projective k-modules, where k
is an arbitrary ring of coefficients for chains (see also [Hu06] for related results).
Passing from E, 1 to ET, | requires to incorporate the SO(n + 1)-action on little
disks, which is still an open problem.

One possible approach to the above conjecture is to realize brane topology
operations via the mechanism of brane actions, which we now introduce.

1.3 Brane actions

Let us come back to Chas—Sullivan’s loop product p. Following a construction of
Cohen and Jones [CJ2f] (completed in [Mor20]), one may construct p from the
following span diagram of spaces

LX X LX «2— Map(S'Vv S, X) -2 £X (1.1)
by a pull-push operation on homology, that is:
W = out, o in'.

Here, the map "out" is given by evaluation at the base point of the circle and
the map "in" is the natural inclusion, which is of finite codimension, so that an
umkehr (ou wrong-way) map in' can be defined on homology [CK09).

As in the field theory viewpoint, diagrams of the form (1.1) are induced by
certain cobordisms of surfaces, parametrized by the configurations of pairs of
disks in Ey(2), as represented in figure 1.2.
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Remarkably, such span diagrams arise canonically from the oo-operad E, it-
self. This results from a universal construction introduced by Toén in [Toél3],
called the brane action, which can be loosely described as a formal incarnation
of topological field theory structures in a general operadic context.

Toén’s approach to brane actions

To describe this construction, let us first recall the notion of categories of cospans
(see section 2.1). Given € an oo-category with finite colimits, we may form its
oo-category of cospans, denoted Cospan(C), whose objects are those of € and
whose morphisms from X, to X; are given by diagrams X, — Y < Xj, called
cospans, where Y is some object of €. Composition of cospans is given by taking
pushouts, in the sense that a composite of X; — Y5 < X, with Xg — Y51 + Xi
is given by
Xo — Yo Uy, Y12 = Xo.

Now let O® be an oo-operad, which we assume to be monochromatic! for
simplicity and suppose that O% is unital, that is, the space of nullary operations
O(0) is contractible.

Given an operation o of arity n, we define an extension of o to be an operation
o™ of arity n + 1 that restricts to o when forgetting the last input (up to some
specified homotopy). More precisely, we consider the morphism O(n+1) — O(n)
that forgets the last input, by composing with the identity on the first n inputs
and with the unique nullary operation on the last one, and form the following
oo-fiber product (or homotopy pullback) of spaces

Exty —— O(n+1)
J - Jforget (1.2)
x ——— O(n).
Definition 1.3.1. We refer to this space
Exty = O(n + 1) Xg(n) {o}
as Toén’s model of the space of extensions of o.

Given two operations v € O(n) and 7 € O(m) and an index i € {1,...,n},
composition at input 7 induces a cospan of spaces of extensions

Exty s Extyo,r ¢ Ext, (1.3)
well-defined in the homotopy category of spaces.

Now assume that the space O(1) of unary operations in the co-operad is con-
tractible. In this situation, the space Extiq of extensions of the identity operation

LOur oc-operads are implicitly coloured, as in [Lurl7]. By a monochromatic co-operad 0%,
we then mean that O® has an essentially unique color.
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is canonically equivalent to that of binary operations O(2). Let o be an oper-
ation of arity n. Writing diagram (1.3) successively for (v,7) = (id, o) and for
(v,7) = (0,id®") yields two composable cospans, with composite

O(2)" m Exty, m 9(2). (1.4)
Informally, we may interpret the above diagram as expressing the following prop-
erty: spaces of extensions come canonically equipped with particular elements
of two types, coming either from extensions of the inputs or from extensions of
the output. The mechanism of brane action then consists in assembling cospans
(1.4) obtained for varying o into the structure of an O-algebra in the oo-category
Cospan(8) of cospans of spaces.

However, to ensure compatibility of the operadic structure with the composi-
tion of cospans, one needs to restrict to a certain class of co-operads, originally
called of configuration type in [Toé13| and corresponding to the notion of coherent
oo-operads in more recent literature [Lurl7]. We shall emphasize that the proof
that these two notions indeed coincide was unavailable in the literature until our
corollary 1.4.1, which requires the assumption that the space O(1) is contractible.
We will come back to this question when adressing the closely related problem of
comparing Toén’s model Ext, for spaces of extensions with Lurie’s model Ext(o)
(defined in 1.3.4), at the end of this section (see problem C and also the discussion
of section 5.1.2).

By [Toé13, Proposition 3.5], we may define oo-operads of configuration type
as follows.

Definition 1.3.2 (oco-operads of configuration type). Let O® be a unital
monochromatic oo-operad with trivial space of unary operations. We say that O®
is of configuration type if for every integers n,m > 2, every operations o € O(n),
7 € O(m) and every integer 1 < i < n, the canonical map

Ext, I Ext, — Extyo,r
0(2)

is an equivalence.

The prototypical example of an co-operad of configuration type is given by the
little disks oo-operad EZ, ,, for every n € N. This follows from the identification
E,+1(2) ~ S™ and the equivalence, for every o € E,,11(m),

8Xto’ = En+1<m + 1) Xgn+1(m) {U} = \/ S

The construction of the brane action associated to an oo-operad of configura-
tion type is then given by the following result of Toén.

Theorem 1.3.3 ([Toél3]). Let O be a unital monochromatic co-operad of con-
figuration type, with contractible space of unary operations. Then the space O(2)
of binary operations has a canonical O-algebra structure in the oco-category of
cospans of spaces, with structure maps given by the cospan diagrams (1.4).
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Operations on spaces of branes

As a consequence of the previous theorem, one can construct operations on
mapping spaces Map(O(2), X), by a pull-push procedure analogous to the one
sketched at the beginning of this section for the loop product. An important
feature of this construction is its level of generality: indeed, it does not require X
itself to be a topological space and can therefore be applied to various geometric
contexts.

Let X be an oo-topos, which we think of as an co-category of geometric objects.
Recall that there is a canonical functor § — X sending a space Z to the colimit of
the constant diagram Z — X with value the terminal object in X. Through this
functor, we can view O(2) as an object in X and transport its O-algebra structure
(given by the brane action) to the co-category Cospan(X).

Let X be an object in X. The internal hom object Map(0(2), X) in X, called
the space of O-branes on X by Toén, carries an O-algebra structure in Span(X),
whose structural morphisms

Map(0(2), X)"* «2 Map (Exty, X) —2— Map(O(2), X), (1.5)

for 0 € O(n), are obtained from the brane action by applying the functor
Map(—, X).

In most applications, one is interested in inverting the "wrong-way"' map in
the above spans to obtain an O-algebra structure in some more tractable, linear
oo-category. The general idea is as follows. Given a presentable stable monoidal
(00, 2)-category €, a functor D: X — € (which we think of as a linear invariant
of objects in X) that satisfies a certain base change condition and an object
X € X with some appropriate finiteness conditions, one can perform a pull-push
operation (see [Ste20]) and obtain morphisms

D(Map(0(2), X))®" 2= D(Map(0(2), X)) (1.6)

that turn D(Map(O(2), X)) into an O-algebra in C.

Following Toén, we now describe an important example of this strategy in an
algebro-geometric context. Let X be the oo-topos d8t; of derived stacks over a
field k of characteristic 0. Consider the functor D = (QCoh that assigns to every
derived stack its derived oo-category of quasi-coherent sheaves, viewed as an
object of the (00, 2)-category € = dgCaty of (possibly large) k-linear presentable
dg-categories with functors preserving small colimits. For X a quasi-projective
derived scheme, or more generally a perfect stack in the sense of [BZFN10] (see
definition 5.4.19), the base change condition is satisfied and the brane action
therefore yields an O-algebra structure on the dg-category QCoh(Map(0(2), X))
of quasi-coherent sheaves on the space of O-branes on X.

In particular, for O® = E¥,; the oc-operad of little disks of dimension n +
1, one obtains an [, -algebra structure on the derived dg-categories of quasi-
coherent sheaves on the space of branes Map(S™, X) of X, for an important class
of stacks X. Toén deduces from it a higher formality theorem, identifying the dg



1.3 Brane actions 19

Lie algebra associated to the E,,o-algebra of endomorphism of the unit object of
QCoh(Map(S™, X)) with that of shifted polyvector fields on X.

Program: string topology via brane actions

The work of Toén on operations on spaces of branes naturally suggest the fol-
lowing approach to string and brane topology, as well as further generalizations
beyond the realm of manifolds.

o Can one adapt the linearization strategy described above to the topologi-
cal setting in order to prove conjecture 1.2.1, thereby extending Sullivan—
Voronov’s construction to the chain level?

o Can one develop brane topology operations, including the original string
topology ones, in more general geometric contexts, such as those of derived
differentiable and derived algebraic stacks, and relate them?

Note that the framed little disks co-operad Ef 41 appearing in conjecture 1.2.1
has a non-contractible space of unary operations Ef (1) ~ SO(n + 1), so that
Toén’s theorem 1.3.3 does not apply to this case. The first step towards realizing
program 1.3 is therefore to extend the brane action to encompass the cases of
oo-operads with non-contractible spaces of unary operations. Moreover, to incor-
porate module-type structures into the brane action, one would like to drop the
requirement for the input co-operad O® to be monochromatic in the construction
of brane actions.

Problem A. Extend the brane action to general co-operads of configuration type,
with possibly multiple colors and non-contractible space of unary operations.

The first contribution of this thesis is to provide a solution to this problem
(see theorem A).

The above program is further motivated by the analogous situation of
Gromov—Witten invariants, for which brane actions turned out to be particu-
larly relevant [MR18].

Gromov—Witten invariants

Since Gromov-Witten theory will play no role in this work but a motivational
one, we only give a very sketchy introduction to these ideas.

Given a smooth projective algebraic variety X over C and some subvarieties of
X, one can associate rational numbers, called Gromov—Witten invariants, which
have an enumerative interpretation in terms of maps from stable curves of pre-
scribed genus to X, transverse to the chosen subvarieties. These invariants, in-
troduced by Kontsevich and Manin [KM94] in the context of algebraic geometry,
can be encoded using different structures: quantum products, cohomological field
theories and Frobenius manifolds, among others. This led Manin and Toén to
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the idea that the Gromov-Witten invariants of X could be detected at the level
of the derived category of X.

The construction of categorified Gromov-Witten invariants was then one of
the major motivation for Toén’s work on brane actions. This was accomplished
by Mann and Robalo in [MR18], for the genus 0 situation, by applying the brane
action to variants of the oo-operad { Mo n+1}nen of stable algebraic curves of
genus 0 with marked points. The strength of this method is that invariants
are constructed at a purely geometric - or motivic - level, in the sense that the
structure exists before taking any invariant, such as cohomology or K-theory.

Mann—Robalo’s approach

The approach taken in [MR18] (see also the survey [MR21]) relies on a new
construction of the brane action, very different from Toén’s original one, and will
be presented in details in section 2.4. For the moment, let us simply note that
their definition of the brane action is encapsulated as an explicit fibration

m: BO — Tw(Env(0))®

over the twisted arrow oo-category of the symmetric monoidal envelope of O%,
whose classifying functor gives the desired O-algebra structure in cospans of
spaces. We will call this functor 7 the brane fibration.

On the one hand, Toén’s definition of the brane action uses the model of
Segal operads for oo-operads and relies on model categorical and strictification
arguments, which have the drawback of making the resulting construction rather
inexplicit. On the other hand, Mann-Robalo’s work is phrased in the language of
quasicategories and involves Lurie’s specific model of co-operads [Lurl7], but has
nevertheless the advantage of coming close to a model-independent construction.

However, contrary to Toén’s original approach, Mann and Robalo do not con-
sider oo-operads of configuration type, but instead the analogous notion of coher-
ent oco-operads in the sense of Lurie, implicitly identifying these two definitions
without proof.

The definition of coherence for oco-operads relies on modeling the spaces of
extensions of an operation o via an explicit simplicial set Ext(o) (see definition
2.2.3%) that we shall call Lurie’s model of the space of extensions of o. Following
Lurie, we can now informally define coherence as follows.

Definition 1.3.4 (Coherent oo-operads). Let O® be an oo-operad, with possibly
several colors and without any assumption on the space of unary operations. We
say that O® is coherent if it is unital, its underlying oco-category is a Kan complex
and moreover for every composable operations f: X — Y and ¢g: Y — Z, the

2Qur definition of the simplicial set Ext(c) and therefore the corresponding definition of co-
herent oco-operads differ slightly from that of [Lurl7]. We refer to remark 2.2.5 for a justification
of this difference.
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diagram
Ext(idy) —— Ext(g)

l l (1.7)

Ext(f) —— Ext(go f),

which is well-defined in the homotopy category of spaces, is homotopy cocartesian.
We refer to definition 2.2.6 for a more rigorous expression of the above condition.

The construction of the brane action given in [MR18, Theorem 2.1.7] then
takes the form of the following statement, analogous to Toén’s theorem 1.3.3: for
0% a coherent monochromatic oo-operad with O(0) ~ O(1) ~ *, there exists a
map of oo-operads

0% — Cospan(8)®

that sends the color ¢ € O to the space Ext(id.) and an operation o: X — Y to

a cospan
Ext(idy) — Ext(o) «— Ext(idy). (1.8)

Note that Mann-Robalo’s construction actually relies on yet another model
for the spaces of extensions of an operation o, given by the fiber BO, of the
brane fibration they define. More precisely, the above theorem of Mann—Robalo
requires an identification of BO, with Lurie’s model Ext(c), but the proof of this
fact is left unexplicit in [MR18].

However, it seems to the author that no straightforward comparison between
those two definitions is available. For instance, simply writing an explicit mor-
phism of simplicial sets relating the two models already seems a non-trivial prob-
lem. We are therefore left with the following issue.

Problem B. Given an operation o in a unital co-operad, prove the equivalence
between Mann—Robalo’s model BO, and Lurie’s model Ext(c) parametrizing ex-
tensions of o.

To apply brane actions to particular examples of coherent oco-operads, or to
prove that a given oo-operad is coherent, one needs to compute the spaces of
extensions. For that purpose, Mann—Robalo’s model BO, and Lurie’s Ext(o) are
both highly impractical. Identifiying the homotopy type of the space of extensions
Ext(id) supporting the brane action seems unnecessarily difficult if using only the
definition of BO, and Ext(c), even in simple examples such as that of the little
disks oc-operad E,,.

In particular, we have the following pair of problems.

Problem C. Provide a method to compute spaces of extensions in particular
examples of co-operads.

Problem D. Prove that the framed little disks co-operad B is coherent.

In this thesis, we will solve problems B, C and D, via the corresponding
theorems B, C and D.
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Kern’s work

Finally, let us also mention the recent work of Kern [Ker21], who extended Mann—
Robalo’s proof of the brane action to the case of colored oo-operads, satisfying a
weaker form of unitality® and without the assumption that O(1) is contractible.

Let us note that, in addition to further applications to Gromov—-Witten theory,
Kern explains how in absence of the coherence assumption on O%, the brane action
takes the form of a lax morphism of categorical oo-operads O® — Cospan(8), a
result already present in Toén’s original paper. The approach taken by Kern is
phrased in terms of the algebraic patterns introduced by Chu-Haugseng in [CH21].
As a benefit of this high level of generality, and even if the author has to restrict
eventually to the particular case of the algebraic pattern encoding oco-operads,
his work paves the way towards generalizations of the brane action for a larger
class of algebraic patterns.

However, Kern’s work takes for granted the equivalence between the spaces
Ext(o) and BO,, so that his proof is confronted with the same issue as Mann—
Robalo’s, namely problem B, which is then solved by our theorem B.

1.4 Main results

Extension of the brane action to general coherent oc-
operads

The first contribution of this thesis is to extend the mechanism of brane operations
to encompass the case of general coherent oo-operads, without any restrictions
on the space of colors or that of unary operations, thereby generalizing Toén’s
theorem 1.3.3 and solving problem A.

Theorem A. Let O® be a coherent co-operad. Then the collection of spaces
Ext(idy), for varying colors X € O, carries a canonical O-algebra structure in
Cospan(8), with structural maps given by cospan diagrams (1.8).

Our approach is based on Mann—Robalo’s construction and relies on a careful
analysis of the brane fibration 7: BO — Tw(Env(0))®. It was somewhat un-
expected that the assumption of contractibility of the space of unary operations
can simply be dropped from the theorem, since both Mann—Robalo’s and Toén’s
proofs seem to make essential use of this hypothesis.

Comparison of models of spaces of extensions

Our second main result provides a solution to problem B. In other words, we
prove the following statement.

3The precise condition, called hapazunitality in [Ker21, Definition 2.2.1.2.8], requires that the
oo-operad has a distinguished color whose co-groupoid of unary endomorphisms is contractible.
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Theorem B (Theorem 4.1.1). Let o be an active morphism in a unital co-operad
O®. Then the fiber BO, of the brane fibration and the oo-category of extensions
Ext(o) are equivalent.

Note that this result is actually necessary in Mann—Robalo’s approach of the
brane action, and therefore also in our proof of theorem A (as well as in Kern’s
approach). Our strategy to prove theorem B consists in providing an explicit,
ad-hoc zigzag of homotopy equivalences between BO, and Ext(o).

We now turn to our solution to problem C.

Recall that in order to compute the homotopy type of the spaces of extensions
in applications, neither of the models Ext(c) or BO, of Lurie and Mann-Robalo
is practical. On the other hand, Toén’s model O(n + 1) x?)(n) {o} is very suit-
able to computations in particular examples, and indeed all known computations
involving spaces of extensions rely on the equivalence with Toén’s definition.

Such an equivalence for Lurie’s model Ext(c) (and therefore also for Mann—
Robalo’s model, by theorem B) is claimed in [Lurl7, Section 5.1.1]. More pre-
cisely, a comparison map is defined and asserted to be an equivalence. How-
ever, we find that Lurie’s model Ext(o) only agrees with Toén’s when the oo-
operad O® has a contractible space of unary operations. Moreover, we provide
a counter-example when this assumption fails, thereby contradicting the corre-
sponding statement in [Lurl7]. We refer to section 5.1.2 for a more detailed
discussion.

The general situation is explained by the following result, which exhibits
Ext(o) as a quotient of Ext, by an O(1)-action.

Theorem C (Theorem 5.1.1). Let O% be a monochromatic unital co-operad
whose underlying oco-category O is an oo-groupoid and let o € O(n) an opera-
tion of arity n. Choose a semi-inert morphism i: (n)y — (n+ 1) in O®. Then
the space Ext(o) is equivalent to the homotopy quotient of O(n + 1) xg(n){a} by
an action of the co-group O(1) of unary operations on the additional color of the
extensions.

As a direct consequence of this theorem, we justify that configuration type
and coherent oo-operads agree, at least in absence of non-trivial unary operations.

Corollary 1.4.1. Let O® be a monochromatic oo-operad with O(1) ~ . Then
0% is coherent if and only if it is of configuration type.

Recall that the oc-operad of little disks ES ; is coherent for any n > 0, by
Lurie’s result [Lurl7, Theorem 5.1.1.1], whose proof relies on the validity of our
theorem C.

Using the computation tool given by the previous theorem, we extend this
coherence result to the variants E§ of EY,; obtained by endowing disks with a
framing datum (see [AF15]). These oco-operads depend on the choice of a Kan
complex B equipped with a Kan fibration B — BTop(n + 1) to the classifying
space of the topological group of self-homeomorphisms of R"*!; one recovers the
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case of framed little disks E, | by taking B = BSO(n + 1). Thus, the following
general result solves problem D.

Theorem D (Theorem 5.4.8). Let B a Kan complex equipped with a Kan fibration
to BTop(n + 1). Then the co-operad of B-framed little disks E%, is coherent.

One can prove that the space of extensions Ext(id,) of any color b € B is
homotopy equivalent to the sphere S™. As a consequence of theorems D and A,
we obtain an Epg-algebra structure on S™ in cospans of spaces.

Corollary 1.4.2. Let X be a topological space. Then the space of branes
Map(S™, X) has an Eg-algebra structure in Span(8) given by the brane action.

Taking B = BSO(n + 1), this yields an E, ;-algebra structure on the brane
space Map(S™, X) in the co-category of spans of spaces, hence proving the conjec-
ture 1.2.1 at the level of spans and thereby providing a first step in the realization
of the general program 1.3.

1.5 Outline of the thesis

We start in chapter 2 by recalling some important constructions: the co-categories
of spans and that of twisted arrows, the precise definition of Lurie’s model Ext(o)
for the space of extensions and the definition of coherent oo-operads. We then
define the brane fibration, following Mann—Robalo, and outline the proof of theo-
rem A. This proof is then completed in chapter 3, by establishing that the functor
m: BO — Tw(Env(0))® is indeed a cartesian fibration (theorem 2.5.1).

Chapter 4 is devoted to the proof of B, that is the comparison between Mann—
Robalo’s and Lurie’s model of spaces of extensions, via the construction of an
explicit zigzag of homotopy equivalences.

Finally, we deal in chapter 5 with the problem of computing the homotopy
type of spaces of extensions, by establishing an equivalence between Toén’s and
Lurie’s models, thereby proving theorem C. Moreover, we discuss how our results
differ from a claim in [Lurl7] and provide a counterexample to the latter state-
ment. The end of chapter 5 concerns applications to string topology, via a proof
of coherence of the co-operad of B-framed little disks (theorem D). We end with
a discussion of the new operations on spaces of branes that the previous result
allows to construct, both in the topological context (at the span level) and for
derived algebraic stacks (at the level of derived categories).

An appendix gathers some auxiliary definitions and results that are used
throughout the thesis. Most notably, we prove some results concerning marked
anodyne morphisms, which to the knowledge of the author do not appear in the
literature and might be of independent interest.
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1.6 Notations and conventions

o We work in the particular model of co-category theory given by quasicate-
gories and use Lurie’s presentation of co-operads. Our notations generally
follow those of [Lur09a] and [Lurl7].

o Particular arrows: monomorphisms are denoted as A — B, cofibrations
as A »— B and atomic morphisms (see definition 2.2.1) as A — B.

o When considering a diagram X : P — C from a poset P to an oco-category
C and a sequence i < i1 < ... < 1, in P, we will write X, ... X, for the

n-simplex of X o (ig...7,): A" — P — C. For instance, the notation X;X;
denotes the unique morphism X; — X of the diagram.

o Given a finite linear order I = {ip < 7; < --- < i, }, the full subsimplex of
A! on the objects ij, < --- < i;, will be denoted A%o-"i(unless k = 0).
Similarly, AZEZ”“ stands for the horn in A% s obtained by removing
the face opposed to vertex 4;,. For instance, the horns Aj* and A}® are
respectively the simplicial subsets At} and At} of the 1-simplex A2, while
the notation AL* does not make sense in our convention.

o For simplicity, given an co-operad O®, we will often write € for its symmetric
monoidal envelope Env(0)® and T for the associated twisted arrows oo-
category Tw(Env(0))® (see notation 2.3.1).

o We let F, denote the nerve of the category of pointed finite sets. We usually
identify F, with its equivalent full subcategory on the pointed sets (n) =

({0,...,n},0).



Chapter 2

The brane fibration

In this chapter, following [MR18], we explain how the brane action of theorem
A arises from a certain fibration, which we call the brane fibration. Before giving
the precise construction, we recall the notions of oco-categories of (co)spans, of
twisted arrows, of spaces of extensions in the sense Lurie and the definition of
coherent oo-operads.

Contents
2.1 Categories of spans and of twisted arrows . . . . . .. 26
2.2 Extensions and coherent co-operads . .. ... .. .. 28

2.3 Symmetric monoidal envelope and its twisted arrows 31

2.4 Construction of the brane fibration. . ... ... ... 33
2.5 Proofoftheorem A .. ... ... ............ 36
2.6 Generalized version of theorem A . ... ... .. .. 36

2.1 Categories of spans and of twisted arrows

Given an oo-category € with finite limits, we may form the oo-category Span(C)
of spans in €, whose objects are those of €, morphisms between two objects X and
Y are given by span diagrams X «— Z — Y and composition is given by taking
pullback (see [Barl3] or [Haul8]| for a rigorous oco-categorical definition). Dually,
if € has finite colimits, we may consider its co-category of cospans Cospan(C)
defined as Span(C°P).

The oo-category Span(€) has a canonical symmetric monoidal structure
Span(€)®= induced from the cartesian monoidal structure on C*, although
Span(€)®= is not itself cartesian.

Definition 2.1.1 (Twisted arrow oco-category). Let s: A — A be the func-
tor given by s[n| = [n] * [n|°’. Precomposition with s yields an endofunc-
tor s*: sSet — sSet that we shall denote Tw. Left Kan extension of s along
the Yoneda embedding of A induces a functor s,.: sSet — sSet left adjoint to

26
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Tw. The image under Tw of an oo-category € is again an oo-category Tw(C)
called its twisted arrow oo-category, whose n-simplices are (2n + 1)-simplices
S (A™) = A™ %« A™°P — @, represented as

Xo X1 Xn
I |

To depict a morphism in Tw(C€), that is, a twisted arrow between two arrows f
and g of C, we will often write f ~~ g.

Remark 2.1.2. Given a 2-simplex o

Y
7N
X h 7

in € that exhibits h as a composite of g and f, we obtain twisted arrows h ~ ¢
and h ~ f in Tw(C) given respectively by the following commutative squares:

X -,z X .z
INC o ] N
YT>Z XT)Y

in which the 2-simplices are either degenerate, are equal to o.

By [Lurl7, Example 5.2.2.23.], any symmetric monoidal oo-category C% in-
duces a symmetric monoidal structure Tw(€)® on the twisted arrow co-category
Tw(C), in which the tensor product of two morphisms f: x — y and ¢g: z — t is
the obvious arrow of the form f®g: 2 ® 2z - y @ t.

An important feature of the construction of oo-category of twisted arrows is
the following universal property.

Proposition 2.1.3 (Universal property of Tw and Span). Let C and D be
two co-categories and assume that D has all finite limits. Then:

(1) There is a natural equivalence between the space of functors € — Span(D)
and that of functors F: Tw(C) — D satisfying the pullback condition:

namely that for every 2-simplex h: X Ly %7 exhibiting h as a composite
of g and f, the induced square

h ~rsnns g
b
f s idy

in Tw(C) is sent by F to a cartesian square in D.
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(2) If C® is a symmetric monoidal oo-category with underlying oo-category
C, then there is a natural equivalence between the space of symmetric
monoidal functors €% — Span(D)®* and that of symmetric monoidal func-
tors Tw(C)® — D* satisfying the above pullback condition.

A proof of the first part of this result can be found in the appendix of [Ras14,
Section 20]: there, the statement takes the stronger form of an adjunction between
Cat,, and a certain oo-category Catdlr of small co-categories with directions, which
fully-faithfully contains the oco-category of small co-categories with finite limits
and functors preserving them. In particular, this requires to enhance Tw to
a functor Cat,, — Cat®™. The extension to the symmetric monoidal case is
explained in [MR18, Corollary 2.1.3.].

2.2 Extensions and coherent co-operads

In this subsection, we recall the definition of the oco-category of extensions of
an operation in an oc-operad and the closely related notion of coherence. We
essentially follow [Lurl7, Section 3.3.1], except for a small difference in the
definition of Ext(c) (see remark 2.2.5).

Let p: O® — F, be a unital co-operad.

Definition 2.2.1 (Semi-inert and atomic maps). Let f: X — Y be a morphism
in O, corresponding to a morphism a = p(f): (n) — (m) in F, together with
a family of multimorphisms f;: {X;}au)=; — Y; for j € (m)°. We say that f is
semi-inert if for every j € (m)°

o either the set a™1{j} is empty, or

« the set a~'{j} is the singleton {i;} and the map f;: X; — Yj is an equiv-
alence.

Following the terminology of [Ker21], we say that f is atomic if it is semi-inert
and lies over an inclusion a: (n) — (n + 1). In other words, f is atomic if and
only if it is semi-inert with no non-trivial factorization through another semi-inert
morphism. Given a commutative diagram

X ——Y

I

X/ f Y/ / Y/
with fx and fy atomic, we say that f is compatible with extension if f sends the
unique color of p(X’) \ im(p(fx)) to the unique color of p(Y”) \ im(p(fy)).

Remark 2.2.2. In [Lurl?7, Definition 3.3.2.3.], the notion of a m-semi-inert mor-
phism is introduced, for m € N. In terms of this definition, a morphism f in O%
is atomic if and only if it is 1-semi-inert but not O-semi-inert.
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Definition 2.2.3 (co-category of extensions). Let o: A" — 0%, be an n-simplex

corresponding to a sequence of active morphisms X oI X,. Given a
downward-closed subset S = {0,...,r} C [n], let Ext(c,S) be the (non-full)
subcategory of Fun(A", 0®),, whose

e objects are diagrams A x A" — O represented as

X, P I x, X, In

{90 {gr Zlgrﬁ»l Zlgn
/

Xy x X

satisfying the following conditions:

« morphisms are diagrams A% x A" — 0% represented as

X, I I x,
{90 gnll
X i, & X! h
- y
xy S

in which the morphisms h;: X — X" are compatible with extension for all

1€ 8.

Given an active morphism o: Al — 0%, we write Ext(c) for Ext(c,{0}). We
call Ext(co) the co-category of extensions of o. When the underlying co-category
O of 0% is an oco-groupoid, Ext(o) is a Kan complex and therefore refered to as
the space of extensions of o.

Ezample 2.2.4 (Description of Ext(o) in the discrete case). Let Oa be an operad
in sets, O% its homotopy coherent nerve and o: (m) — (1) an active morphism
in O®. Then the k-simplices of Ext(o) are those functors between 1-categories
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[1] x [1 + k] = Oa whose associated diagrams is of the form

(m) —— (1)

[atomie |~
(m+1) =% (1)
(2.1)

(m;|—1> 2, (i)

| I

(m 4 1) =2 (1),

and such that all the left vertical morphism (m + 1) — (m + 1) are compatible
with extensions.

Remark 2.2.5 (Difference with the existing definition). The previous definition
is slightly different from the initial definition from [Lurl7] in that we impose a
condition on the morphisms in Ext(c), rather than defining it as a full subcat-
egory of Fun(A", 0%),,. The reason for this choice is that the space defined in
[Lurl?7, Definition 3.3.1.4.], that we shall denote Ext™* (5) here, does not have the
expected homotopy type. To see this, consider the example of the commutative
oc-operad O® = Comm® and o: (m) — (1) be an active map in Comm®. As
described in [Lurl7, Example 3.3.1.12], the space of extensions of ¢ is supposed to
be the singleton set (1)°, viewed as a discrete space. However, the space Ext™ ()
is not discrete. Indeed, consider the object a € ExtHA(a) given by the following
diagram
(m) —— (1)

(m+1) —— (1)

where m is a positive integer, !: (m 4+ 1) — (1) is the unique active map and
i the canonical inclusion. We claim that 7, (Ext"™ (o), a) is not trivial. Let
p: {m+1) — (m+ 1) be the morphism in Comm¢, that restricts to the atomic
morphism ¢ on (m) and sends the remaining color m + 1 to 1. Then the diagram

(m) —— (1)

ok

!

il (m+1) —— (1) |id (2.2)

| [ia
(m+ 1) —— (1)
defines a morphism v: o — a in Ext™ (o) with the property that [y] # [id,] in

7 (Ext™(¢), ). Indeed, a homotopy between ~ and id, would give a retraction
p of p, which can’t be.
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Note that diagram (2.2) does not define a morphism in Ext(c) since p is not
compatible with extensions. We will see that definition 2.2.3 yields the expected
homotopy type for the spaces of extensions: this is the content of theorem C.

Definition 2.2.6 ([Lurl7, Definition 3.3.1.9]). An oc-operad O® is coherent if it
satisfies the following conditions:

(a) it is unital,
(b) its underlying oo-category O is an oco-groupoid,

(c) for every degenerate 3-simplex o

Y 9 7
% \di %
X ! Y

in O2,, the commutative diagram

Ext(o,{0,1}) ——— Ext(o|at013,4{0,1})

l J (2.3)

Ext(o]aw0221,{0}) ——— Ext(o]awa, {0})

is a homotopy cocartesian square of Kan complexes.

Remark 2.2.7. Let 0 and S = {0, ...,r} be as in definition 2.2.3 and suppose that
O is an oco-groupoid. As mentionned before, the simplicial set Ext(c) is a Kan
complex. By remark [Lurl7, Remark 3.3.1.6.], if » < [n], there is a canonical map
Ext(o,S) — Ext(f,+1) which is trivial Kan fibration. Using these equivalences,
we may rewrite the commutative square (2.3) as

Ext(idy) —— Ext(g)

J J (2.4)

Ext(f) —— Ext(go f).

Note that the previous square is only well-defined in the homotopy category
of spaces.

2.3 Symmetric monoidal envelope and its
twisted arrows

Recall the construction of the symmetric monoidal envelope Env: Op,_, — Cat®

which is left adjoint to the forgetful functor from symmetric monoidal oo-

categories to oo-operads [Lurl7, Section 2.2.4]. This left adjoint sends an oo-
operad P® to the oo-category

EDV(?)® = j)@ X Fun({0},F+) FunaCt(Al, F*),
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where the superscript act indicates the full subcategory of Fun(A!, F,) whose ob-
jects are active morphisms in [F,. This co-category inherits a symmetric monoidal
structure via the functor p;: Env(0)® — F, given by evaluation at 1 € A'. Note
that the underlying co-category Env(O) of Env(O)® can be identified with the
wide subcategory 0%, of O% consisting of all objects and only active maps be-
tween them. As explained in 2.1, the oo-category of twisted arrows Tw (Env(0O))
inherits a symmetric monoidal structure from that of the monoidal envelope, also
denoted p;: Tw(Env(0))® — F,.

For later purposes, we let pg: Env(0)® — F, denote the functor given by
evaluation at 0.

Notation 2.3.1. For simplicity, we will write & for Env(0)® and T for
Tw(Env(0))®.

Let us unravel the definitions of € and 7.

e An object in €, is given by an object X € O% together with an active
map (k) — (n) in F,. In terms of the projection functors py and p;, we have
that po(X, (k) — (n)) = (k) and p;(X, (k) — (n)) = (n). Thus, we may
think of the object (X, (k) — (n)) in € as a list of n objects (Xi,..., X,)
in 0%, with total arity &7, po(X;) = (k).

e A morphism f in & from (X, po(X) — (n)) to (Y,po(Y) — (m)) is a
morphism X — Y in O% together with a commutative diagram

po(X) —— po(Y)
| |
(n) —=— (m).

In the case where « is active, the morphism f is p;-cocartesian if and only
if X — Y is an equivalence, by [Lurl7, Lemma 2.2.4.15.]

+ An object of T, is given by an active map g: X — Y in 0% together with
a commutative triangle

po(X) _ne po(Y)

%H/m

of active maps in F,. A morphism in T from the previous object to (¢': X' —
Y’ po(Y') — (m)) is given as a pair of commutative diagrams

po(X) —— po(X')

X — s X/ po(g)l Jpo(g’)
gl ng and po(Y) —— po(Y) (2.5)
Y «+—Y' J{act J{act



2.4 Construction of the brane fibration 33

respectively in O% and F,. If one interprets the objects in & as lists of
objects of O, then the equivalence T,y ~ Tw(Og)™ allows to view the
object (g: X — Y,po(Y) — (n)) in Ty, as a list of n active morphisms

(X1 —Y,..., X, = Y,)in 0%

e A morphism in T between two objects (o1: X7 — Y1,...,0,: X, = Y,)
and (o}: X{ — Y{,...,0/ : X! — Y!) then corresponds to a morphism
a: (n) — (m) in F, together with a commutative diagram in O® of the
form

ica=1(j)

Dio; Jact l{aCt

® Vi

ica1(j)
for each j € (m)°.

Remark 2.3.2. Consider the morphism in T given by diagrams (2.5) and assume
that « is active. Then this morphism is p;-cocartesian if and only if both maps
X — X' and Y/ — Y are equivalences.

2.4 Construction of the brane fibration

To prove theorem A, we will follow the strategy developed by Mann—Robalo in
[MR18, Section 2.1]. Let us recall their approach.

Mann—Robalo’s strategy

First, note that the datum of a map of oco-operads O® — Cospan(8)® is equiva-
lent to that of a map of symmetric monoidal functors & — Cospan(8)®. By the
universal property of spans (proposition 2.1.3), this datum is equivalently that
of a symmetric monoidal functor T — (8°P)! satisfying the pullback condition.
By [Lurl7, Proposition 2.4.1.7.], since the monoidal structure (8§°°)! on 8°P is
cartesian, this is the same as providing a weak cartesian structure 7 — 8°P satis-
fying the pullback condition. Using the Grothendieck construction, it will suffice
to construct a right fibration 7: BO — T whose classifying functor F: T — 8§°P
satisfies the conditions described above.
The rest of this section is devoted to the construction of this fibration 7.

Definition 2.4.1 (The brane fibration, following [MR18]). Define BO as the
subsimplicial set of Fun(A!, T) whose

« objects are twisted morphisms o ~ o such that

— the projection p; (o ~» o) in F, is the unique active map p; (o) — (1);
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— in the corresponding 3-simplex in O%

oy
Soc—O\SJ

Ul |-+ (2.6)

~ +
Sy +—— 5%
the map og is atomic and o, is an equivalence;

o morphisms from o ~ o* to 7 ~ 77 are the morphisms f in Fun(A!, T)
such that

O~y o F
— the projection p; é é in F, 1is the diagram

T —onny TT

pi(o) == (1)

J J

p(7) == (1),
— in the induced square
Sy 2 S
fol lfg (2.7)

T0 +
TO TO 3

the morphism f; is compatible with extension, in the sense that po(fy")
is of the form (s+1) — (t+1), sending the singleton (s+1)\im(py(cyp))
to the singleton (¢t + 1) \ im(po(70)).

Let m: BO — T be the composite of evy with the inclusion BO C Fun(Al, T).
Remark 2.4.2. The following properties will be useful throughout this paper.

 Since equivalences and atomic maps are active, the diagram (2.6) is in fact
in O2,.

e The image of BO under p; is constant along the fibers of 7, in the sense
that there is a commutative diagram

BO —— Fun(AY,T)

‘I p1o—
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Here € is the unique functor that sends (n) to the unique active morphism
(n) — (1) and such that evgoe = idp, and evy o e = const(yy. Thanks to
this observation, we will often leave implicit the description of the projection
under p; of various constructions.

Let us mention the following general facts about BO.

Lemma 2.4.3. The inclusion BO C Fun(A',T) is a conservative isofibration.
In particular, BO is an oo-category.

Proof. We have to show that BO is a replete subcategory (in the sense of [Lur22,
Definition 01CF] and [Lur22, Example 01EX]) of Fun(A!, 7). First, we verify
the conditions of [Lur22, Corollary 01CR] to prove that BO is a subcategory
of Fun(A!,T). As the condition of compatibility with extension of 2.4.1 only
depends of the image of the morphisms in the 1-category F., one easily verifies
that the set of morphisms in BO contain all identities of objects in BO is closed
under homotopy and composition, as desired.

Next, we turn to the proof that BO is replete. Let f*: ot — 71 be an equivalence
in Fun(A!, 7) with 0™ € BO. We have to show that both 7 and f* belong to BO.
Since the canonical functor Tw(O®) — 0% x (0%)°P is conservative (being a right
fibration), we deduce that in the diagram induced by f* in 0%, all four morphisms
fo: So = To, fof : S — To5, fi: Ty — S, fi: Ty — S are equivalences. From
this and the commutativity of the square (2.7), one obtains that 7o: Ty — 75" is
semi-inert, lies over an injection (t) < (¢t + 1) and that f; is compatible with
extension. Similarly, the morphisms oy, f; and f;" are equivalences, therefore so
must be 7. This concludes the proof. O

Lemma 2.4.4. Assume that the underlying co-category O of O% is an co-groupoid
and let 0 € T. Then the fiber BO, of m at o is a Kan complex.

Proof. By the previous lemma, the inclusion BO C Fun(A'!, T) is a conservative
isofibration. So is the map evg: Fun(A',T) — T, hence 7 is an isofibration.
To prove the result, it now suffices to show that 7 is conservative. Consider a
morphism f: o7 — 77 in BO whose image 7(f) in T is an equivalence. The data
of f is that of a diagram of the following form:

y Sa_ f(;r y T(j_
So ‘ fo To ‘T+
o ) (2.8)
s S Ty
f J
: o : ; o

Using that the fibration T — & x €°P is conservative, we deduce that f, and f;
are equivalences. By definition of the objects in BO, the maps o, and 7, are also
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equivalences, therefore so is f;7. Finally, we claim that f; is an equivalence. To
see this, write fi" as the sum fy @ fif|., where fi|4: S5\ So — Ty \ Ty is the
restriction of f to the new color. Since f | is a map in O, which by assumption
is an oo-groupoid, it is an equivalence; therefore so is f. O

2.5 Proof of theorem A

One of the key steps in the proof of theorem A is the following result, whose proof
is given in chapter 3.

Theorem 2.5.1. Let O% be a unital co-operad. Then the functor m: BO — T is
a cartesian fibration.

Assuming theorems 2.5.1 and B, whose proofs will be given in chapters 3 and
4, we can prove theorem A.

Proof of theorem A. By Mann—Robalo’s argument (as described in section 2.4),
in order to prove the theorem it suffices to construct a right fibration over T, with
fibers equivalent to spaces of extensions and whose associated functor T — 8°P
is a weak cartesian structure and satisfies the pullback condition of proposition
2.1.3.

Theorem 2.5.1 ensures that 7 is a cartesian fibration. By lemma 2.4.4, its fibers
are Kan complexes, hence 7 is a right fibration. Moreover, theorem B identifies
the fiber BO, over an object o € T as its space of extensions Ext(o). Therefore,
it remains to show that the functor F,: T — 8° classifying the right fibration
7 is a weak cartesian structure and satisfies the pullback condition. The latter
is exactly the condition that the co-operad O® is coherent, using the equivalence
BO, ~ Ext(o). For the weak cartesian condition, let ¢ in T be decomposed
as a sum o ~ ®!,0; of objects in Tpyy ~ Tw(0L,;). Since p; is constant along
fibers of 7 (in the sense of remark 2.4.2), the fiber BO, decomposes as a disjoint
union of the spaces BO,, so that the natural map F, (o) ¢ [~ Fx(0;) in 8 is an
equivalence. This shows that F}; is a lax cartesian structure. To verify that it is in
fact a weak cartesian structure, let f: 0 — ¢’ in T be a p;-cocartesian lift of the
unique active morphism (n) — (1) in F,. By remark 2.3.2, this implies that the
two maps source(o) — source(c’) and target(c) < target(o’) are equivalences,
which in turn ensures that F,(f) is an equivalence, as desired. O

2.6 Generalized version of theorem A

The brane action given by theorem A can be generalized to the setting where O®
is a unital oo-operad, without assuming that its underlying oo-category O is an
oo-groupoid (condition (b) in the definition of coherence given in 2.2.6).

To make this claim precise, let us say that an oo-operad O% is categorically
coherent if it is unital and satisfies the variant (¢’) of condition (c) in definition
2.2.6 in which one requires diagram (2.3) to be a categorical pushout square of
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oo-categories (instead of a homotopy pushout square). Note that if O® is unital
with 0% an co-groupoid, i.e. 0% satisfies conditions (a) and (b) from definition
2.2.6, then conditions (c) and (¢’) actually coincide, since for Kan complexes,
homotopy pushout squares are automatically categorical pushout squares. As
a consequence, coherent oo-operads are categorically coherent. The generalized
version of theorem A writes as follows.

Theorem A’. Let O% be a categorically coherent oo-operad. Then the collec-
tion of oo-categories {Ext(id.)}eco carries a canonical O-algebra structure in
Cospan(Caty,), which recovers that of theorem A when O is an co-groupoid.

The proof of theorem A’ is almost the same as the one given above for
theorem A, only slightly simpler. Indeed, most of the arguments, including the
use of theorems 2.5.1 and B, do not use the assumption that O is an co-groupoid.
The only difference is that in the situation of theorem A’, 7 is merely a cartesian
fibration (as opposed to a right fibration) and therefore its classifying functor is
of the form T — CatZl.

Following [Toé13], one may go one step further in generality by dropping the
assumption that O% is coherent, that is assuming only that O® is a unital oo-
operad. In this case the brane action merely gives a lax algebra structure on
the oo-category Ext(o) in cospans of co-categories, which is an genuine algebra
structure precisely when O is coherent (in the previous generalized sense). We
refer to Kern’s thesis [Ker21] for more details on this lax structure.



Chapter 3

Cartesianity of the brane
fibration

This chapter is devoted to the proof of theorem 2.5.1, asserting that the brane
fibration 7: BO — Tw(Env(0))® of definition 2.4.1 is indeed a cartesian fibration.
We will define particular lifts of edges along 7 and then show that these are
cartesian arrows in BO in the rest of the chapter. Note that cartesianity of this
fibration is the property ensures the existence of all the homotopical coherences
involved in the definition of the O-algebra in Cospan(8) given by the brane action.

Contents

3.1 Construction of cartesian lifts . . . .. ... ... ... 38
3.2 Outline of the proof of cartesianity . . . . . ... ... 40
3.3 From slices to functor categories: the functor ¢(® .. 43
3.4 Anodyne extensions: the functors ¢ and ¢® . ... 46

3.5 Existence and uniqueness of factorizations: the func-
tor q(l) ............................ 49
3.6 Proof of technical lemmas . ............... 53
3.6.1 Proofoflemma3.3.2 .. ................. 53
3.6.2 Proofoflemma 3.5.3 . .. ... ... ... ...... 55
3.6.3 Proofoflemma 3.5.5 . .. ... ... ... .. .... 57

3.1 Construction of cartesian lifts

Let f: 0 ~ 7 be a morphism in T and let e,: 7 ~» 7% be in the fiber BO,. We
will construct a cartesian edge f1: o ~» 71 lying m-above f.

+ ST+

o - » T BO
3 | K
g

o ——— T T

38
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Unraveling the definition of BO, we are given a diagram of the form

Ty

SITTI

in & and want to extend it to one of the shape

i
o1 T

51 f

+

so that the resulting morphism f*: o™ ~ 77 is in BO. We proceed in several

steps, depicted in figure 3.1.

Step 1. Pick a representative f for the composite e, o f in T. In particular, this
yields a 3-simplex SoTy T7HS; and a 5-simplex SoToT, 15 T1.S; extending
diagram (3.1).

Step 2. Define the object Si™ as S; and the morphism o;: S;7 — S; as the identity.
Since o7 is an equivalence, by using Joyal’s lifting theorem [Lur22, Theorem

019F] and several horn fillers, we can extend the 3-simplex SoT, T;"S; to a
4-simplex SoT, 15 ST S:.

Step 3. We now turn to the key step, namely the construction of the triangle
SoSy Ty Decompose T as a sum of colors

T(T = @iepo(1)Ci cr

so that CT is the color lying above the element po(75") \ im(po(70)). Since
O® is unital, there exists an essentially unique morphism ¢+ from the zero
object of O% to CF. Define Sy as the sum Sy @ C* and oy as idg, o+,
which is clearly an atomic morphism.

It remains to construct fo". Note that po(fy) is required to coincide with
the unique morphism h: po(Sy) — po(Ty") that restricts to po(fo) on po(So)
and preserves po(CT). Consider the oo-category

M = (0%) X (o)l {15} X geyaot {00} X]ng {(po(fo), 1)}
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Step 4.

consisting of all diagrams of the form

V (3.3)

satisfying po(a) = h and po(b) = po(fo). The inclusion A% < A? yields a
morphism

M — Maph) (o, T;F) < T Map§"(So, C). (3.4)
=1

On the other hand, from the inner anodyne inclusion A? < A? and the
definition of oco-operads, we get the following sequence of equivalences

M = Mapg®(Sa“,T0+)

- 11 Mapgigh(SJ, C;) x Mapgz;l(’h(S(T, Ct)
i1

— ] Mapgigh(so, C;) x Mapy(C*,C™).
i1

Composing those equivalences with the projection Mapy(C™,CT) — x re-
covers exactly the morphism (3.4). Therefore we see that the oco-category
of diagrams of the form (3.3) satisfying that b = f,, which we identify with
the fiber of the morphism (3.4) at fo, is equivalent to Mapy,(CT, CH).

To define fy and a corresponding 2-simplex of diagram (3.3), it then suffices
to specify any object in this co-groupoid Mapg(Ct,C™T).

At that point, we have extended the 3-simplex SyT; T;"S; to a diagram of
shape

AST TS 51 L ASSI T
ASOTO
A simple computation shows that the inclusion of the latter simplicial set
. +ptpt ot .. . .
into A%0% 7o 775151 g inner anodyne; this allows us to choose an extension

of this diagram to a 5-simplex SySq T 15 ST Sy

This completes the construction of an edge f*: o ~ 77 lifting f. The bulk
of the proof of theorem 2.5.1 consists in proving that f* is cartesian.

3.2 Outline of the proof of cartesianity

Given a morphism f: o — 7 in 7 and an object 77 in BO, we have constructed
a particular edge f*: o™ — 77 lying over f, which can be interpreted as an
object in the co-category BO, -+ x5, T,;. The purpose of this section is to give
an overview of the proof that f* is cartesian. The details will be dealt with in
the rest of the chapter.
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T Ty

St —— 1

7

S1

Figure 3.1: Diagrams of steps 1, 2 and 3 of the construction of f*. An arrow is
dashed if it is added at the current step.

Notation 3.2.1. Throughout the proof, we will make use of the notation intro-
duced in A.2.2. In other words, from now on, we fix an object v € BO, write
D,+ for the oo-category BO/r+ X, T/f Xpo {v"} and fix an object u in it. We
then consider the associated space of lifts

L= BO/JH- XBO {I/Jr} XDV+ {u}

More explicitly, the datum of the object u € D+ is that of a triangle uy in T

of the form
o
/ \ (3.5)
g
v T

together with a morphism ¢*: v* — 7+ in BO lying m-above g. An object in £
is a lift of u, that is the datum of a triangle

ot
/ \f* (3.6)
a3 9" +t

in BO that lies m-above the triangle uy depicted in (3.5). In the diagrams
parametrized by this oco-groupoid £, only the morphism v* — o and the
2-simplex filling triangle (3.6) are allowed to vary.

By lemma A.2.3, proving that f* is m-cartesian amounts to showing the fol-
lowing result.
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Proposition 3.2.2. The space of lifts £ is contractible.

The rest of this chapter is devoted to the proof of proposition 3.2.2. To help
the reader, let us first explain the strategy of the argument: we will study the
terminal morphism ¢: £ — *, decompose it as a composition

q© ey

g: £ 9% g0 20 s 1% po) % @) oy (3.7)

and prove that each of the maps ¢ is an equivalence of Kan complexes. The
idea is that each oco-category £ parametrizes diagrams in T of a certain shape
S and with certain data fixed. For i > 0, the functors ¢ : £0=D — £@ can be
interpreted as forgetful maps. The simplicial set S is A% x A' and corresponds
to the shape of diagrams in € corresponding to triangle in BO (such as diagram
(3.6)). The decreasing sequence of simplicial sets S > 1) 5 5 5 §G) encode
diagrams with fewer and fewer non-fixed data (see definition 3.4.1).

The following picture illustrates the decomposition of the composite functor
L0 - 6

ot ot ot
i \ / \ \
vt 7t vt Tt as y 7+
/ g / q® ¢®
// // —> *
/Il III
// g ,/I o g
/ /
y / \ y / \ / \
V————T V————T V———-T7
(3.8)

In this description, solid arrows stand for morphisms in T that are fixed within
L) whereas dashed arrows indicate morphisms that are allowed to vary in that
space. At each step of the composition, the new diagram is obtained from the
previous one by removing one 3-simplex in T (and some simplices of smaller
dimension), namely the 3-simplices vvtot7, voot 7T and vorT™, respectively
for ¢, ¢ and ¢® (as indicated in grey in the picture). The last co-category
LB) 2 4 should be thought of as the fixed data in the £®).

The functors ¢ and ¢® are both induced by inner anodyne morphisms and
will therefore be trivial Kan fibrations. The case of the functor ¢V is more
delicate, and proving that it is also a trivial fibration will constitute the heart of
the proof of proposition 3.2.2.

We divide the argument outlined above in three steps: each one amounts to
proving that some of the functors ¢ are equivalences. We postpone the most
technical parts of the proof to the end of the chapter (section 3.6).
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3.3 From slices to functor categories: the func-
tor q(o)

The first step is to define the functor ¢(®: £ — £ and prove that it is a categor-
ical equivalence. The co-category £ will be a slight variation of £, in that these
two oo-categories both parametrize triangles of the form (3.6) with the following
data fixed: the morphisms f* and ¢* in BO and the triangle uy underlying u
of shape (3.5). The two oco-categories thus share the same objects, the difference
being that £ is constructed from the slice oo-category BO, s+ whereas L£O) is ob-
tained from the functor co-category Fun(A2 BO). More precisely, we define £(©)
as

£O=BO x_ o {(f %)} xqaz {uo}. (3.9)

Lemma 3.3.1. There exists an equivalence of co-categories ¢9: L — L£O). In
particular, £ is a Kan complex.

To construct this equivalence ¢(*), we first need a comparison between slice
oo-categories and corresponding co-categories of diagrams, given by the following
lemma.

Lemma 3.3.2. Let C be an oo-category and p: K — C a diagram. Then there is
a canonical equivalence of co-categories

G/p L) @Kq X eK {p}

For the sake of completeness, we provide a proof of this folklore result at the
end of this chapter, see 3.6.1. We can now proceed to the proof of lemma 3.3.1.

Proof of lemma 3.3.1. First, note that we can write
2
LO = (BOY xyoan {f7}) xp {u},

where P denotes the pullback

P = <3OA02 XBOA{Q} {T+}) X(‘IAOQX iTA2 Xgal2 {f}) .

sal2) {T}> (

We define the functor ¢®: £ — £© as the one induced from the commutative
square

BO/]H- L BOAQ X%OA12 {f+}
f’l Jé (3.10)
'BO/T+ XT/T iT/f i P

by taking the fiber at u € BO -+ x5, T/

To prove that ¢'?) is an equivalence of co-categories, we will use that Joyal’s
model structure is locally right proper (although it is not right proper). This
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property holds for any model structure, and means that for any diagram d =
(X, = Xp « X,) of fibrant objects in which one of the maps is a fibration, the
canonical morphism X, X x, X, = X, x}}(b X. from the pullback to the homotopy
pullback is an equivalence. In particular, if a morphism of such diagrams d — d’
is a pointwise weak equivalence, then the induced morphism limd — limd’ is a
weak equivalence.

Since each of the simplicial sets in diagram (3.10) is an oo-category (hence a
fibrant object in Joyal’s model structure), to show that ¢(® is an equivalence of
oo-categories, it suffices to establish that the following two claims :

(1) ¢ and @' are categorical equivalences,
(2) & and &' are isofibrations.
To prove the first claim, we make again use of the argument described in the

previous paragraphs. Indeed, the morphism ) is itself induced from the natural
transformation of diagrams

BO, T/ T

|+ [ Jo

fBOAOQ X {2} {T+} E— TAO2 XU_A{Q} {7‘} <T ‘.TA2 Xgal2 {f}

BOA

Lemma 3.3.2 guarantees that each of the vertical morphism are equivalences. We
know that J,; — T, is a right fibration (by the dual of Proposition 2.1.2.1 in
[Lur09a]), hence an isofibration.

We now prove that the functor x: T x a2 {f} — TA” Xoatzy {T} 18 an
isofibration. Let v be an object in T4 x a12 {f} and y(v) —= @ an equivalence
in TA” X at2t {7}. We want to lift this equivalence to one in T2 % ar2 {f}. The
datum of v is that of a triangle in T of the form

/ ’ N (3.11)
l

The datum of the morphism x(v) — @ is that of a commutative square of the
form

(3.12)

As a natural transformation is an equivalence if it so pointwise, the fact that
x(v) — w is an equivalence translates into the statement that o — o' is an
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equivalence. We want to extend the previous diagram into one of the form

Iy

)
/

l/"\f

O{/ 7_/

(3.13)

which represents an equivalence in T2 Xqa12z {f}. We do this construction in
several steps : first, by gluing diagrams (3.11) and (3.12) and adding degenerate
2-simplices o771’ and oo’7’, we obtain the diagram

I

T

B
f
o \ 7.

From this point, the construction of diagram (3.13) is obtained using successive
horn fillers in T, that is to say a sequence of choices of solutions to lifting problems,
each of the form

A} — T.

i
.
.
.
.
.
.
.

An

First, choosing a filler of the horn of shape A3 in ao77’, we construct the
2-simplex awo7’. Similarly, by filling the horn A? in aco’, we obtain a morphism
ao’. Using a filler of the horn A? in aco’r’, we get a 2-simplex ac’7’. Finally,
using that the morphism o’ is an equivalence, we can fill the horn A2 in
ad'c’; as well as the horn A3 in aa’c’r’. This yields a diagram of the form
(3.13) in which @ — o’ is an equivalence; hence an equivalence v — w lifting

the given morphism x(v) — w along y. This concludes the proof of the first claim.

We now come to the second claim. As ¢’ is a right fibration, it is in particular
an isofibration. It remains to prove that ¢ is also an isofibration. Consider an
object ¥ € BO/+ Xg, T,y and an equivalence &(r) — 7y in P. We want to
construct an equivalence x — y lifting {(x) — 7. The data of z is that of a
triangle in BO of the form

O-+
/ \f* (3.14)
at a Tt
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The data of the morphism &(x) — ¥ is that of a diagram of the form (3.13) and
a lift

+
at —— 71

N

at —— 7

(3.15)

+

of its subdiagram (3.12) along 7. By [Lur22, Corollary 01H4], since the morphism
X is an isofibration, the maximal oco-subgroupoid P~ of P is given by the limit of
the following diagram of co-categories

~

(BOAOQ XBOA{2} {T+}): - (‘J’AO2 X galz} {7—})2 = (TAZ Xgal2 {f}>

The morphism £(z) — 7 being an equivalence therefore translates into the fact
that the morphism at — o/t from is an equivalence. Our aim is to extend
diagrams (3.14) and (3.15) to obtain a lift

ot

St I

+

at T

(3.16)

=
f+
o't / \ Tt

of the given diagram (3.13) along the functor 7. The construction of diagram
(3.16) is given by solutions to the same sequence of horn filling problems as that
of the proof that y is an isofibration (in claim (1)); the only difference being that
in the present case, the horn filling problems have to be considered relative to
the inner fibration 7, that is as problems of lifting of the form

A} —— BO

A
.
e s
.
.
.
.

A" — T

This construction provides an equivalence x — y as desired, ensuring that £ is
an isofibration. This concludes the proof of lemma 3.3.1. O]

3.4 Anodyne extensions: the functors ¢® and
(3)
q

We have defined the functor ¢(©: £ — £© and proved it is an equivalence of oo-
groupoids. We now spell out the rest of the decomposition (3.7) of the terminal
morphism ¢: £ — *, by defining the oo-categories £, for i € {1,2,3}, as well
as the functors ¢(®.
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Definition 3.4.1.  « First, let S© denote the simplicial set A? x A with
vertices labelled with v, o, 7,07, 0", v" as in the diagrams represented in
(3.8).

« Fori € {1,2,3}, we define decreasing subsimplicial sets S of S using
the following formulas:

S(l) — AVV+ Tt U
5(2) — AVV+T+

+ ++

Avrt L AVOTT UAI/UT+ AYooTT
vorTT ootrt

Uport AT U e AT (3.17)

o+ + ot
5(3) — AW'T UAW+ A:O’TT UAO‘T+ AT

Y

For i € {0,1,2}, the simplicial set S will encode the shape of the diagrams
parametrized by £ whereas S® will describe the shape of diagrams that are
fixed within £®). The simplicial sets S(©, ..., S®) can be pictured as

+ 0 + + i o + +U > + +/Ul}+
(3.18)

We define £ as the terminal oo—groupoid ; we think of its unique object as
the diagram SB) — T given by the data (f*, g7, ug) that we fixed earlier on. The
inclusion j®: S® < SG=1 induces a forgetful functor p® : TS 759 that
we use to deﬁne the oo-categories

(1)
LW — gs¢ X 153) {(f", 9" uw)},

L2 — ‘J’S(z) X 150) {(f+79+>uo)}-

Recall that £ was defined by formula (3.9) using terms of diagrams with val-
ues in BO. Nevertheless, the following lemma ensures that £ actually admits
a simple equivalent description in terms of diagrams in T, following the above
pattern for £ and £®.

Lemma 3.4.2. We have a canonical equivalence of co-groupoids
)
L0 = T3 x o {(F, 97 u0)})-

Proof. It follows from its definition that the oo-groupoid £ fits into the com-
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mutative diagram

Lo,
|- |

BOY —— BOM x; TN —— BOM
J | - |

‘IAQ <Al 75(3) TA% x Al

in which the upper left and the bottom right squares are cartesian. To prove

the lemma, it therefore suffices to show that the bottom outer square is carte-

2 2
sian. Note that both vertical maps BO2 — TAIXAT and BOA™ — TA™XA! are
subcategories, meaning they are monomorphisms that are inner fibrations. This
2
implies that the morphism BON2 X aZxal TA* _y JA*XAT g also the inclusion of

a sulgcategory, hence it is enough to verify that the two subcategories BOA’ ang
BOA X a2xal TA* have the same objects and morphisms. An object in BOA

(respectively in BOA X _aZxal TAQ) is a diagram

in 7 in which the maps agag, ajaf and asag are objects in BO and such that
the morphisms s, ¢t and w (respectively only ¢ and w) lie p;-above id;y and are
compatible with extension (conditions of definition 2.4.1). The key observation
is that whenever ¢t and w both satisfy these properties, then so does s; this fact
implies that the two subcategories have the same objects. One can use a similar
argument to show that the same is true for morphisms of these two subcategories,
as desired.

[]

Therefore, the functors ¢ and the co-categories £ fit into the commutative
diagram

£,0) L £, L £ L L£B) 2

J ] l ’ J ” J(fﬂg*,uo) (3.19)

(1) (2) (3)
5(0) p S(1) p S(2) p S(3)
P T — T —— T

where all squares are cartesian.
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We now claim that the inclusions j®: S ¢ S® and j®: @ < SO are
inner anodyne. For the latter morphism, this is obvious from the formulas (3