
UNIVERSITÉ PARIS XIII - SORBONNE PARIS NORD

École doctorale Galilée

Algorithmes de parallélisation en temps pour des
problèmes de contrôle optimal de l’équation des ondes

Parallel in time algorithms for internal wave controlled problem

Thèse de doctorat

présentée par

THANH VUONG DANG
pour l’obtention du grade de

DOCTEUR EN MATHÉMATIQUES
APPLIQUÉES

soutenue le 20 décembre 2023 devant le jury d’examen constitué de

DARBAS Marion, USPN, Présidente du jury
DELOURME Bérangère , USPN, co-encadrante de thèse
HALPERN Laurence, USPN, directrice de thèse,
KWOK Felix, rapporteur
MANDAL Bankim, rapporteur

Abstract

2

Résumé Cette thèse de doctorat porte sur des problèmes de contrôle
dans lesquels les systèmes sous-jacents sont gouvernés par des équations aux
dérivées partielles (EDP) hyperboliques qui modélisent des phénomènes de
type onde. De tels problèmes proviennent souvent de problèmes inverses et
d’assimilation de données. D’un point de vue numérique, ces problèmes sont
difficiles à résoudre. L’objectif du projet ANR AlloWAPP est de développer
et d’analyser des méthodes de décomposition de domaines espace/temps pour
les résoudre.

Dans ce travail de thèse nous considérons le contrôle optimal en volume
de l’équation d’onde, et nous avons conçu deux algorithmes de décomposition
de domaine en temps : le premier est appelé inherited dans le sens où il utilise
des conditions de transmission héritées de la fonction de coût. Le second est
une nouvelle version de l’algorithme de Dirichlet-Neumann, conçu pour les
équations elliptiques par Bjorstad et Widlund en 1984. Pour les deux, nous
prouvons que l’algorithme est bien défini, et étudions la convergence. Nous
comparons les résultats théoriques aux résultats numériques par l’application
d’un schéma aux volumes finis de Gander/Halpern/Nataf en dimension 1.

Abstract This PhD thesis deals with control problems in which the un-
derlying systems are governed by hyperbolic partial differential equations
(PDEs) that model wave-type phenomena. Such problems often arise from
inverse problems and data assimilation. From a numerical point of view,
those problems are challenging to solve. The objective of the ANR project
AlloWAPP is to develop and analyse domain decomposition methods in space
and time to solve them.

In the PhD work we consider the optimal control of the wave equation,
and we designed two algorithms for domain decomposition in time: the first
one is called inherited in the sense that it uses transmission conditions in-
herited from the cost function. The second one is a version of the Dirichlet-
Neumann algorithm designed for elliptic equations by Bjorstad and Widlund
in 1986. For both we prove well-posedness and we study the convergence.
We compare the theoretical results to numerical experiments, with a finite
volume scheme developed in Gander/Halpern/Nataf.

3

Contents

1 Introduction 6

2 Presentation of problem, minimisation, existence and unique-
ness 15
2.1 Definition and well-posedness 16
2.2 Discretization of the optimality system in one dimension . . . 19

2.2.1 Discretization of the Problem from [36] 19
2.2.2 Discretization of the optimality system 27

3 Inherited parallel in time algorithm 30
3.1 Definition of the inherited algorithm 31

3.1.1 Statement of the algorithm 31
3.1.2 Important properties 33
3.1.3 Well-posedness of the algorithm 34

3.2 Convergence analysis: computation of the iteration matrix . . 37
3.2.1 Some algebra on matrices 38
3.2.2 The infinite domain case 41
3.2.3 The finite time domain case 48

3.3 Study of the toy model . 54
3.3.1 Analysis of the eigenvalues 57
3.3.2 Numerical illustrations of the theoretical convergence

factor . 59
3.3.3 Theoretical convergence results 61
3.3.4 Numerical comparison 64

4 Variants of algorithm 71
4.1 Description . 72
4.2 Relaxed Inherited algorithm 72

4

4.3 The Dirichlet-Neumann algorithm 78
4.3.1 The Poisson equation 78
4.3.2 Dirichlet Neumann algorithm for the control problem . 81
4.3.3 Infinite domains in time 84
4.3.4 Finite domains in time 86
4.3.5 Numerical comparison 94

5 Bibliography 96

5

Chapter 1

Introduction

6

This PhD thesis deal with control problems in which the underlying sys-
tems are governed by hyperbolic partial differential equations (PDEs) that
model wave-type phenomena. Such problems often arise from inverse prob-
lems and data assimilation (in that field, a physical system is modeled ap-
proximately with unknown parameters and initial conditions, the objective is
to use observations taken over the course of time to adjust or refine the model,
so that model predictions match better with actual observations). One clas-
sic example of an inverse problem is seismic inversion [13, 77, 78] where the
observed data are the seismic waves reflected by the different subsurface rock
formations, and the goal is to deduce and refine the rock parameters that
make the observed data possible. Another concrete example is the optimal
placement of hydraulic generators [3], where a continuous stream of wave
height observations are available at several near-shore locations, and the goal
is to refine the wave model along the shoreline, which in turn allows differ-
ent placements of hydraulic generators to be simulated in order to maximize
energy production.

From a numerical point of view, those problems are challenging to solve:
indeed, first, a large amount of data must be processed. Then, intensive com-
putations are required to simulate hyperbolic phenomena to a high resolu-
tion. Finally, the optimization procedure (for instance by a gradient method)
requires either to solve at each iteration in turn forward and backward equa-
tions or to solve a huge direct non triangular linear system. In order to
tackle problems with such extreme computational requirements, it is essen-
tial to design scalable, highly efficient methods that can perform as many
of the subtasks as possible in parallel using the large number of processors
available on modern computing clusters. The objective of this work is to
develop and analyse domain decomposition methods in time to solve them.

Parallel in space for PDE Let us start by giving a few references on
the parallelization by domain decomposition methods in space for PDE. The
most famous one might be the Schwarz method, whose were first invented by
Hermann Amandus Schwarz in 1869 as an analytical tool to rigorously prove
results obtained by Riemann through a minimization principle (see [88] and
[33]). The pioneer work about the use of Schwarz algorithms as a numerical
tool is presented in series of papers [68, 70, 71, 69] by Pierre Louis Lions.
In particular, in the elliptic case, a convergent algorithm based on non over-
lapping subdomains is proposed: its consists in exchanging Robin traces (of

7

the type ∂nu+ αu) instead of the classical Dirichlet ones. Because there are
infinitely many choices of α providing a convergent the algorithm, a natural
question is to develop so-called optimized Schwarz methods, where the ’best’
choice of transmission data is made in order to optimize the convergence rate
of the method (see e.g. [54] for the first numerical experiments, [79, 61] for an
extended analysis of the optimal transmission conditions, and [61, 30, 8, 55]
for their extensions to different PDE and more sophisticated transmission
conditions. Besides, discrete versions of the methods has been developed
such as additive Schwarz (AS), multiplicative Schwarz (MS) and restrictive
additive Schwarz (RAS)(see [26, 84, 23]). The method appears also powerful
to construct preconditioners [10]: to be more specific, iterative Schwarz meth-
ods corresponds to solve an interface problem (instead of a volumic problems)
by a Jacobi algorithm. It turns out that the interface problem usually have
a better conditioning than its volumic counterpart. Then, the current proce-
dure consists in solving the interface problems with fast iterative solvers such
that conjugate gradient or GMRES. The strategy can also be applied to non
linear equations, see [22]. For multi-subdomains, the standard algorithms
are generally not as performant as in the two domains case, since several
iterations are required to ’transport’ the information between distant subdo-
mains. The problems are known to be non-scalable ([12]). To overcome this
difficulty coarse corrections are proposed: see [38, 27, 25, 24, 12]. For the
time dependent problems (and, in particular wave equation), Schwarz wave-
form relaxations algorithms has been developed in [36], where a space-time
interface condition is used (see also [10, 63]). Besides Schwarz method, the
Schur complement methods (or substructured solvers) [23] such as Dirichlet-
Neumann and Neumann/Neumann algorithms have been widely used. In
that case Dirichlet or Neumann data are in turn exchanged through the
interfaces of the subdomains (see [89]). They required a relaxation param-
eter to converge. Such method can be used also for time dependent prob-
lems [40, 76, 83, 87] or for fourth order equations [47, 48]. We point out that
wave-form algorithms can be additionally parallelized by using the pipeline-
strategy introduced in [63, 82]. The main idea is to compute simultaneously
Schwarz waveform iterations, introducing then a natural time parallelization.
It also has been applied to Neumann-Neumann algorithm, for parabolic and
hyperbolic equations [41, 83].

8

Parallel in space methods for optimal control problems Naturally,
the previous domain decomposition methods has been applied to the solve
optimal control problems. In a nutshell, the goal of such control problems is
to minimize a cost functional J(u, y(u)) (often quadratic in u and y) where
u is a an admissible control which acts on y(u) the solution to a partial dif-
ferential equation (elliptic, parabolic or hyperbolic). in [6], [5], a Schwarz
algorithm for the optimal control of an elliptic PDE is proposed. The work
is extended to parabolic and hyperbolic equations in [7]. In those references,
the Schwarz method is applied to the optimality system (Euler equations
associated with the optimization problem). This problem is made of a sys-
tem equations. transmission conditions exchanged between the subdomains
coupled primal and dual variable. Convergence property of the algorithm
is proven in general by energy estimation. In the elliptic case, Neumann-
Neumann algorithms and Dirichlet Neumann algorithms are proposed (and
analysed) in [58, 42] while an analysis of optimized Schwarz is given in [20].
In [57], a non overlapping Schwarz algorithm is proposed for the optimal con-
trol of parabolic problems. Each iteration requires to solve optimal controls
problems in each subdomains. A proof of convergence for the parabolic case
(boundary control) may be seen in [72] and in [14] for the periodic (in time)
case. As for the optimal control of the dissipative wave equation, a non over-
lapping Schwarz method is given and analysed in [64][Chapter 6]. Recently,
non linear elliptic control problems are tackled in [15] and ’economic’ control
problem (with mixed constraint) may be found in [16].

Parallel in time methods for time dependent PDE With the contin-
uing increase of core counts in modern clusters, we have reached the spatial
saturation point, where the subproblems in space become so small that com-
munication and iteration costs start to dominate, and no more speedup can
be obtained. Thus, the sequentiality of the simulation in time becomes the
bottleneck, and it has become more and more urgent to develop and analyze
methods that also allow parallelization in the time direction, particularly for
computationally intensive applications such as data assimilation. Parallel-
in-time methods have received much interest in the past decade in the high
performance computing community, see the workshop series on parallel-in-
time methods on parallel-in-time.org. We point out that the sequential na-
ture of time dependent problems make their parallelization less natural. In
particular the performance of the method are often sensitive to the nature

9

the equation (parabolic or hyperbolic) An overview of such methods can be
found in [32]. Let us mention a few of them. A first common technique is
based on shooting methods: the time interval of simulation [0, T] is split into
N smaller intervals [Ti, Ti+1], i ∈ J1, NK, and the continuity continuity condi-
tions of the solution of the PDE at each interface Ti are iteratively enforced.
For instance, the famous parareal algorithm [75] solves the interface equation
(ensuring the continuity at each Ti) using a ’approximate’ Newton method
(see [35]). This algorithm is known to be very powerful for parabolic PDE
but leads to slow convergence for hyperbolic equations ([31, 86], see also [18]
and [81] for possible cures). Then, multigrid methods have also been widely
studied [53, 74, 29, 50, 59]. Broadly speaking, those methods use several
grids of different size, the algorithms then alternating between ’smoothing’
steps (made on a fine grids) and a residual correction (on a coarser grid).
We note that the parareal algorithm can also be interpreted as a multigrid
method in time, with aggressive coarsening and slightly special smoother
[51, 29, 45]. In that class, we also mention the algorithm PFASST (parallel
full approximation scheme in space and time), introduced by [28], which is
based on a deferred correction method performed on different grids. Beside,
a collection of methods appears specially interesting for the parallelization of
hyperbolic equations: Paraexp [34] (Exact computation of matrix exponen-
tial), diagonalization techniques [46, 19, 37]. A recent unified analysis of the
different strategies to parallelize in time might be found in [49].

Parallel in time methods for optimal control problems We end this
bibliographical part by given a few references on parallel in time algorithms
for control problems. In the well-known paper of J.E.Lagnese and G. Leuger-
ing in 2002 [65], the authors consider an optimal control problem of the wave
equation. The solution w of the homogeneous wave equation is driven by a
control v imposed through the dissipative boundary condition

∂nw + α∂tw = v.

The authors minimize the quadratic cost function

J(v) =
1

2

∫
ΣN
|v|2dΣ +

k

2

∣∣∣∣∣∣∣∣(w(T),
∂

∂t
w(T))− (z0, z1)

∣∣∣∣∣∣∣∣2
H

As in [6], the exchange data between the subdomains in times are linear
combinations of the primal and the dual variables. They prove the conver-

10

gence of the algorithm for a relaxed algorithm. In 2003, Matthias Heinken-
schloss [56] proposes to solve in parallel (using Gauss-Seidel and Jacobi
methods) the interface in time problem obtained by decomposing the Eu-
ler system associated with an abstract internal optimal control problem. In
[62], F. Kwok and M. Gander introduce an overlapping Schwarz in time al-
gorithm to solve an optimal control governed by a system of O.D.E. They
provide explicit expression of the corresponding convergence factor. The ex-
tension to non-overlapping optimized Schwarz methods can be found in [39],
wherein a convergence proof is given (under appropriate assumptions) as well
as an optimization of the convergence factor. This approach has also been
studied for the parabolic control problem discretized in space by Galerkin
method [92]. Besides Schwarz-like in time algorithms, other parallelization
approaches have been investigated. Without being exhaustive, let us mention
a few of them. In [90], S.Ulbrich proposes a new SQP (sequential quadratic
programming) convergent approach for solving the interface in time problem.
Its method uses parareal algorithms to solve backward and forward equation
at each iteration. This method is extended to the construction of precondi-
tioners in [91]. In [21], a new parallel in time gradient method is introduced:
during the optimisation process, the computation of the gradient of the func-
tional, which requires to solve a forward and a backward equation, is made
in parallel. Space-and time parallel gradient method, based on the use of
PFASST is given in [52]. Then, [4] introduce an additive Schwarz precondi-
tioner for solving the Euler system. Indirect shooting methods applied to non
linear control of parabolic equation can be found in [11]. Finally, an exten-
sion of the parareal algorithm to optimal control problems, named ParaOpt
is proposed in [44]. The convergence is proved for parabolic problems.

Summary of the PhD thesis The aim of this thesis is to study do-
main decomposition in time algorithm to solve a particular optimal control
problem. Let us first consider the functional

J(v, y) =
1

2

∫
Ω×[0,T]

|y(x, t)− ŷ(x, t)|2dxdt+
γ

2

∫
Ω

|y(x, T)− ẑ(x)|2dx

+
α

2

∫
Ω×[0,T]

|v(x, t)|2dxdt, (1.0.1)

where γ ≥ 0 and α > 0 are parameters and, ŷ ∈ L2(Ω×(0, T)) and ẑ ∈ L2(Ω)
are target functions.

11

We shall minimize the functional

Ĵ(v) = J(v, y(v)),

over all the controls v ∈ L2(Ω× (0, T)). The function y(v) is the solution of
the following wave problem:

∂tty −∆y = v (x, t) ∈ Ω× [0, T],

y(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T],

y(x, 0) = y(0)(x), yt(x, 0) = y1(x), x ∈ Ω,

and (y(0)(x), y(1)(x)) ∈ H1
0 (Ω)× L2(Ω).

Remark 1. We emphasize that in this PhD thesis, we only consider the opti-
mal control of the wave equation. This choice is motivated by the fact that the
exact control problem of the wave equation (wherein we impose y(T, x) = ẑ)
is numerically difficult to solve [93]: because the high frequencies are not uni-
formly controllable with respect to the discretization parameter, the discrete
control diverges and blows up when refining the mesh. Fortunately, there
are some cure methods to eliminate the oscillation of discrete control such
as Tychonoff regularization, mixed finite elements, two-grid scheme in time
or Fourier filtering. The research about those methods has became active,
see e.g. [2, 60, 66, 80, 73, 1, 17].

Let us now summarize the content of the manuscript. In Chapter 2, we prove
that the minimization problem is well-posed (using standard tools of convex
optimization) and we write its associated Euler system. Then, we explain
how to discretize it using a finite volume method. In particular, we show
that the discretized problem is also well-posed.

Chapter 3 is dedicated to the construction and analysis of the so-called ’In-
herited algorithm’, a time domain domain decomposition method based on
an optimized Schwarz algorithm. Using Fourier series in space and trigono-
metric matrices, we write the corresponding iteration matrix. We analyse
it first in the overlapping case with infinite subdomains in time. Then on
finite time domains, in the non overlapping case, choosing γ = 0 and α = 1.
We prove that the inherited algorithm converges if T is sufficiently small and
diverged for large T . We conclude this part by presenting numerical results

12

that illustrate our theoretical study.

Finally, Chapter 4 presents two alternative algorithms for the time paral-
lelization. The first one is the relaxed variant of the inherited algorithm. We
prove that there always exists a relaxation parameter for which the relaxed
algorithm converges, regardless of the value of T . Then, we optimized the
relaxation parameter in order to minimize the convergence factor. The sec-
ond algorithm is a Dirichlet Neumann in time algorithm. Here again, we
construct the corresponding iteration matrix. In particular, we prove that in
the case T = +∞, the algorithm converges into two iterations.

13

Chapter 2

Presentation of problem,

minimisation, existence and

uniqueness

15

2.1 Definition and well-posedness

Let Ω be a bounded domain in Rd, T > 0. The cost function is defined by

J(v, y) =
1

2

∫
Ω×(0,T)

|y(x, t)−ŷ(x, t)|2dxdt+γ

2

∫
Ω
|y(x, T)−ẑ(x)|2dx+

α

2

∫
Ω×(0,T)

|v(x, t)|2dxdt,

(2.1.1)

ŷ, ẑ are target, α and γ are the coefficients. Define y = Y(v; y(0), y(1)) the
linear function of v and the initial data, given by

∂tty −∆y = v in Ω× (0, T),

y = 0 in ∂Ω× (0, T),

y(·, 0) = y(0), ∂ty(·, 0) = y(1), in Ω.

(2.1.2)

The initial data are y(0) ∈ H1
0 (Ω) and y(1) ∈ L2(Ω). From [67] follows that

for any v ∈ L2(0, T, L2(Ω)), the problem (2.1.2) has a unique solution. The
mapping

(v; y(0), y(1))→ (y,
dy

dt
)

is a linear continuous map of L2(0, T, L2(Ω))×H1
0 (Ω)×L2(Ω) to L2(0, T,H1

0 (Ω))×
L2(0, T, L2(Ω)).

The minimization problem is to find a global minimum in L2(Ω× (0, T))
of the function

Ĵ(v) = J(v,Y(v; y(0), y(1))). (2.1.3)

Theorem 2.1.1. The function Ĵ has a unique global minimum u ∈ L2(0, T, L2(Ω)),

characterized by the Euler equation Ĵ ′(u) = 0 .

Proof. The function Ĵ is a quadratic function of v, twice differentiable, its
first derivative is calculated easily by

Ĵ ′(v) · w = lim
h→0

Ĵ(v + hw)− Ĵ(v)

h
=

∫
Ω×(0,T)

(y(x, t)− ŷ(x, t))ỹ(x, t)dxdt

+ γ

∫
Ω

(y(x, T)− ẑ(x))ỹ(x, T)dx+ α

∫
Ω×(0,T)

v(x, t)w(x, t)dxdt, (2.1.4)

16

where ỹ = Y(w; 0, 0) is the solution of
∂ttỹ −∆ỹ = w, in Ω× (0, T),

ỹ = 0, in ∂Ω× (0, T),

ỹ(·, 0) = ∂tỹ(·, 0) = 0, in Ω.

(2.1.5)

The second derivative is given by

Ĵ ′′(v) · w1 · w2 = lim
h→0

Ĵ ′(v + hw2) · w1 − Ĵ ′(v) · w1

h

=

∫
Ω×(0,T)

ỹ1(x, t)ỹ2(x, t)dxdt+γ

∫
Ω

ỹ1(x, T)ỹ2(x, T)dx+α

∫
Ω×(0,T)

w1(x, t)w2(x, t)dxdt,

(2.1.6)

where ỹj = Y(wj; 0, 0) is the solution of
∂ttỹj −∆ỹj = wj, in Ω× (0, T),

ỹj = 0, in ∂Ω× (0, T),

ỹj(·, 0) = ∂tỹj(·, 0) = 0, in Ω.

(2.1.7)

From (2.1.6), we infer that for any (v, w), Ĵ ′′(v) ·w ·w ≥ α‖w‖2
L2(Ω×(0,T)), and

therefore Ĵ is α−convex. Standard theorems in convex analysis in [85] apply
to conclude that there exists a unique minimum point, u, characterized by
the Euler equation Ĵ ′(u) = 0.

The next theorem identifies Ĵ ′(u) and sets a system, called the optimality
system, defining u.

Theorem 2.1.2. The global minimizer u of Ĵ satisfies the following system
of partial differential equations, which is therefore well-posed.

Ĵ ′(u) := αu− λ = 0 in Ω× (0, T), with (2.1.8a)
∂tty −∆y = u in Ω× (0, T),

y = 0 on ∂Ω× (0, T),

y(·, 0) = y(0), ∂ty(·, 0) = y(1) in Ω.

(2.1.8b)


∂ttλ−∆λ+ y − ŷ = 0 in Ω× (0, T),

λ = 0 on ∂Ω× (0, T),

λ(., T) = 0, ∂tλ(., T)− γ(y(., T)− ẑ) = 0 in Ω.

(2.1.8c)

17

Remark 2. The direct problem (2.1.8b) for the state y has initial data
(y(0), y(1)) which are given by the problem, and a source term u which is
the goal of the problem. The backward problem (2.1.8c) for the adjoint λ has
a source term and final data (which are of mixed type) involving the state
y. It is well-posed for similar reasons as the direct problem. The relation
(2.1.8a) is the Euler equation of the minimization of Ĵ .

Proof. In order to identify Ĵ ′(v), we use the expression (2.1.4), rewritten in
a more compact way

Ĵ ′(v) ·w = (y− ŷ, ỹ)L2(Ω×(0,T)) +γ(y(·, T)− ẑ, ỹ(·, T))L2(Ω) +α(v, w)L2(Ω×(0,T)).
(2.1.9)

where y is the solution of (2.1.8b) with u replaced by v, and ỹ is the solution
of (2.1.5). Choose now λ solution of (2.1.8c). Multiply the volume equation
by ỹ, and integrate twice by parts in time and space. Compute the terms
separately, ∫ T

0

∫
Ω

(∆ỹ, λ) dtdx =

∫ T

0

∫
Ω

(∆λ, ỹ) dtdx,

since both ỹ and λ vanish on ∂Ω. As for the time derivative,∫ T

0

(∂ttỹ, λ)L2(Ω) dt =

∫ T

0

(∂ttλ, ỹ)L2(Ω) dt+(∂tỹ(·, T), λ(·, T))L2(Ω)−(ỹ(·, T), ∂tλ(·, T))L2(Ω),

since ỹ and ∂tỹ vanish for t = 0. Grouping, we obtain

(∂ttλ−∆λ, ỹ) = (∂ttỹ−∆ỹ, λ)−(∂tỹ(·, T), λ(·, T))L2(Ω)+(ỹ(·, T), ∂tλ(·, T))L2(Ω).

Replace in the equation to obtain

(ŷ − y, ỹ) = (w, λ)− (∂tỹ(·, T), λ(·, T))L2(Ω) + (ỹ(·, T), ∂tλ(·, T))L2(Ω).

Plug it into (2.1.9) to obtain

Ĵ ′(v) · w = −(w, λ)L2(Ω×(0,T)) + (∂tỹ(·, T), λ(·, T))L2(Ω) − (ỹ(·, T), ∂tλ(·, T))L2(Ω)

+γ(y(·, T)− ẑ, ỹ(·, T))L2(Ω) + α(v, w)L2(Ω×(0,T))

= (αv − λ,w)L2(Ω×(0,T)) + (γ(y(·, T)− ẑ)− ∂tλ(·, T), ỹ(·, T))L2(Ω)

+(∂tỹ(·, T), λ(·, T))L2(Ω)

= (αv − λ,w)L2(Ω×(0,T)), due to the conditions on λ at t = T ,

which shows that Ĵ ′(v) = αv − λ. Now the unique minimum point of the

quadratic function Ĵ is characterized by the Euler equation Ĵ ′(u) = 0, which
shows that (2.1.8) is well-posed and defines u.

18

2.2 Discretization of the optimality system in

one dimension

Here Ω = (a, b). We replace u by 1
α
λ in the equation for y. We use the finite

volumes in time and space developed for the direct problem in [36]. We recall
here the definitions. There are J + 2 points in space numbered from 0 up to
J + 1 and ∆x = (b − a)/(J + 1) and K + 1 grid points in time with ∆t =
T/K numbered from 0 up to K. We denote the numerical approximation to
y(a+ j∆x, k∆t) on Ω at iteration step k by Y (j, k). Similarly the numerical
approximation to λ(a + j∆x, k∆t) on Ω at iteration step k is denoted by
Λ(j, k). Most of this section is integrally taken in [36] for clarity. Adaptation
to the optimality problem (discretization on the final line) is original.

2.2.1 Discretization of the Problem from [36]

Interior Points

Denoting by D the volume around a grid point (x = a + j∆x, t = k∆t) in
the interior of subdomain Ω × (0, T), we obtain the finite volume scheme
by integration of the equation over the volume D and application of the
divergence theorem, see Figure 2.1, on the left

tt DE OD

D

2- DX Lrt) x + DX

t
-
At

DE

.

Ï
2- DX le

,

'

x + DX

tt DE OD

D

2- DX Lrt) x + DX

t
-
At

DE

.

Ï
2- DX le

,

'

x + DX

Figure 2.1: Control volume of an interior grid point and on the initial line

0 =

∫ x+∆x/2

x−∆x/2

∫ t+∆t/2

t−∆t/2

[
∂2y

∂t2
(ξ, τ)− ∂2y

∂x2
(ξ, τ)

]
dτdξ

=

∫ x+∆x/2

x−∆x/2

∂y

∂t
(ξ, t+ ∆t/2)dξ −

∫ x+∆x/2

x−∆x/2

∂y

∂t
(ξ, t−∆t/2)dξ

−
∫ t+∆t/2

t−∆t/2

∂y

∂x
(x+ ∆x/2, τ)dτ +

∫ t+∆t/2

t−∆t/2

∂y

∂x
(x−∆x/2, τ)dτ.

(2.2.1)

19

Now we approximate the remaining derivatives by finite differences on the
grid,

D+
t (Y)(j, k) := Y (j,k+1)−Y (j,k)

∆t
≈ ∂y

∂t
(ξ, t+ ∆t/2),

D−t (Y)(j, k) := Y (j,k)−Y (j,k−1)
∆t

≈ ∂y
∂t

(ξ, t−∆t/2),
x− ∆x

2
≤ ξ ≤ x+ ∆x

2
,

D+
x (Y)(j, k) := Y (j+1,k)−Y (j,k)

∆x
≈ ∂y

∂x
(x+ ∆x/2, τ),

D−x (Y)(j, k) := Y (j,k)−Y (j−1,k)
∆x

≈ ∂y
∂x

(x−∆x/2, τ),
t− ∆t

2
≤ τ ≤ t+ ∆t

2
.

(2.2.2)
We thus obtain from (2.2.1) the discrete quantity

∆x(D+
t −D−t)(Y)(j, k)−∆t(D+

x −D−x)(Y)(j, k) = ∆t∆xU(j, k).

which yields on using the identities ∆tD+
t D

−
t = D+

t −D−t and ∆xD+
xD

−
x =

D+
x −D−x the well known finite difference scheme, for 1 ≤ j ≤ J , 1 ≤ k ≤ K.(
D+
t D

−
t −D+

xD
−
x

)
(Y)(j, k) = U(j, k) =

1

α
Λ(j, k), 1 ≤ j ≤ J, (2.2.3)

for points in the interior of the domain .Similarly(
D+
t D

−
t −D+

xD
−
x

)
(Λ)(j, k) + Y (j, k)− Ŷ (j, k) = 0. (2.2.4)

Points on the Initial Line

Remember that t = 0 has initial data for y, while it is the final time for λ.
Suppose (x = a+ j∆x, 0) is a grid point on the interior of the initial line of
Ω× (0, T). We have half a volume D to integrate over, see Figure 2.1, on the
right. Integrating as before for y we obtain∫
D

u(ξ, τ) dξ dτ =

∫ x+∆x/2

x−∆x/2

∂y

∂t
(ξ,∆t/2)dξ −

∫ x+∆x/2

x−∆x/2

∂y

∂t
(ξ, 0)dξ

−
∫ ∆t/2

0

∂y

∂x
(x+ ∆x/2, τ)dτ +

∫ ∆t/2

0

∂y

∂x
(x−∆x/2, τ)dτ.

Now the remaining derivatives on the right hand side can be approximated by
finite differences (2.2.2), except ∂y

∂t
(ξ, 0). But this derivative is given explicitly

by the initial condition, and approximated on one grid cell by ∆xY (1)(j) :=
∆xy(1)(a+ j∆x). We thus obtain

∆x(D+
t (Y)(j, 0)− Y (1)(j))− ∆t

2
(D+

x −D−x)(Y)(j, 0) =
∆t∆x

2
U(j, 0).

20

and the scheme(
D+
t −

∆t

2
D+
xD

−
x

)
(Y)(j, 0)− Y (1)(j) =

∆t

2
U(j, 0). (2.2.5)

Points on the Final Line

Suppose (x = a + j∆x, 0) is a grid point on the interior of the final line of
Ω× (0, T). We have half a volume D to integrate over, see Figure 2.2.

2- DX Lrt) x t DX

D
- 8DF-

At

Figure 2.2: Control volume of a grid point on the final line

Integrating as before for λ we obtain

−
∫
D

(y − ŷ)(ξ, τ) dξ dτ =

∫ x+∆x/2

x−∆x/2

∂λ

∂t
(ξ, T)dξ −

∫ x+∆x/2

x−∆x/2

∂λ

∂t
(ξ, T −∆t/2)dξ

−
∫ T

T−∆t/2

∂λ

∂x
(x+ ∆x/2, τ)dτ +

∫ T

T−∆t/2

∂λ

∂x
(x−∆x/2, τ)dτ.

Now the remaining derivatives on the right hand side can be approximated
by finite differences (2.2.2), except ∂λ

∂t
(ξ, T). But this derivative is given

explicitly by the final condition and can be replaced by∫ x+∆x/2

x−∆x/2

∂λ

∂t
(ξ, T)dξ = γ

∫ x+∆x/2

x−∆x/2

(y(ξ, T)− ẑ(ξ))dξ.

Which gives the scheme

γ∆x(Y (j,K)−Ẑ(j))−∆xD−t (Λ)(j,K)−∆t

2
(D+

x−D−x)(Λ)(j,K)+
∆t∆x

2
(Y−Ŷ)(j,K) = 0,

defining ∆xẐ(j) =
∫ x+∆x/2

x−∆x/2
ẑ(ξ)dξ. Dividing by ∆x, we obtain

γ(Y (j,K)−Ẑ(j))−D−t (Λ)(j,K)−∆t

2
(D+

xD
−
x)(Λ)(j,K)+

∆t

2
(Y−Ŷ)(j,K) = 0.

(2.2.6)

21

So the discretized optimality condition are, with Y (0)(j) := y0(xj) and
Y (1)(j) := y(1)(xj)

U(j, k) =
1

α
Λ(j, k), 0 ≤ j ≤ J + 1, 0 ≤ k ≤ K. (2.2.7a)

(
D+
t D

−
t −D+

xD
−
x

)
(Y)(j, k) = U(j, k) 1 ≤ j ≤ J, 1 ≤ k ≤ K.

Y (0, k) = Y (J + 1, k) = 0 0 ≤ k ≤ K,

Y (j, 0) = Y (0)(j) 1 ≤ j ≤ J(
D+
t − ∆t

2
D+
xD

−
x

)
(Y)(j, 0)− Y (1)(j) = ∆t

2
U(j, 0). 1 ≤ j ≤ J

(2.2.7b)
(
D+
t D
−
t −D+

xD
−
x

)
(Λ)(j, k) + Y (j, k)− Ŷ (j, k) = 0. 1 ≤ j ≤ J, 1 ≤ k ≤ K.

Λ(0, k) = Λ(J + 1, k) = 0 0 ≤ k ≤ K,
Λ(j,K) = 0 1 ≤ j ≤ J
(D−t + ∆t

2 D
+
xD
−
x)(Λ)(j,K)− γ(Y (j,K)− Ẑ(j))− ∆t

2 (Y − Ŷ)(j,K) = 0. 1 ≤ j ≤ J
(2.2.7c)

Equations (2.2.7b,2.2.7c) are separately well defined by the analysis in
[36]. Note that the initial condition of the backward problem for Λ is a bit
different, but the analysis by energy estimates extends.

Though discretization of the optimality conditions, there is no proof so
far that this system is well-posed. The unknowns of the system are the
(Y (j, k),Λ(j, k)) for 1 ≤ j ≤ J, 0 ≤ k ≤ K, which are 2(J × K + 1)
unknowns. The system is squared. Introduce the discrete functional obtained
by the trapezoidal rule from the cost function J . Define the discrete scalar
product on RK+1 by

(V,W)K = ∆t

(
1

2
V (0)W (0) +

K−1∑
k=1

V (k)W (k) +
1

2
V (K)W (K)

)
.

Since all functions vanish at endpoints in x, the discrete scalar product in x
is

(V,W)J = ∆x
J∑
j=1

V (j)W (j).

The norms are defined accordingly. Then the discrete cost function is easily
defined by

22

Jd(V, Y) =
1

2
‖Y − Ŷ ‖2

J,K +
γ

2
‖Y (·, K)− Ẑ‖2

J +
α

2
‖U‖2

J,K . (2.2.8)

and the discrete targets are obtained by Ŷ (j, k) = ŷ(xj, tk) and Ẑ(j) = ẑ(xj).
Define now Y(V, Y (0), Y (1)) to be the unique solution of (2.2.7b), see [36], and

Ĵd(V) = Jd(V,Y(V, Y (0), Y (1))) (2.2.9)

Theorem 2.2.1. The discrete functional Ĵd is twice differentiable, strictly
convex and therefore has a unique global minimum, defined by the Euler equa-
tion Ĵ ′d(U) = 0. Its gradient is defined by

Ĵ ′d(V) = αV − Λ, with Y = Y(V, Y (0), Y (1)) and Λ defined by (2.2.10a)
(
D+
t D
−
t −D+

xD
−
x

)
(Λ)(j, k) + Y (j, k)− Ŷ (j, k) = 0. 1 ≤ j ≤ J, 1 ≤ k ≤ K.

Λ(0, k) = Λ(J + 1, k) = 0 0 ≤ k ≤ K,
Λ(j,K) = 0 1 ≤ j ≤ J
(D−t + ∆t

2 D
+
xD
−
x)(Λ)(j,K)− γ(Y (j,K)− Ẑ(j))− ∆t

2 (Y − Ŷ)(j,K) = 0. 1 ≤ j ≤ J
(2.2.10b)

Thus Ĵ ′d(u) = 0 is equivalent to the optimality conditions (2.2.7), which are
therefore well-posed.

Remark 3. In short, this proves that the optimality conditions of the discrete
functional are the discretized optimality conditions.

Proof. Parallel to the continuous case,

Ĵ ′d(V)·W = (Y −Ŷ , Ỹ)J,K+γ(Y (·, K)−Ẑ, Ỹ (·, K))J +α(V,W)J,K . (2.2.11)

where Ỹ = Y(W ; 0, 0) is the solution of
(
D+
t D

−
t −D+

xD
−
x

)
(Ỹ)(j, k) = W (j, k) 1 ≤ j ≤ J, 1 ≤ k ≤ K.

Ỹ (0, k) = Ỹ (J + 1, k) = 0 0 ≤ k ≤ K,

Ỹ (j, 0) = 0 1 ≤ j ≤ J

D+
t Ỹ (j, 0) = ∆t

2
W (j, 0). 1 ≤ j ≤ J.

(2.2.12)

The second derivative is

Ĵ ′′d (V)·W1·W2 = (Ỹ1, Ỹ2)J,K+γ(Ỹ1(·, K), Ỹ2(·, K))J+α(W1,W2)J,K . (2.2.13)

23

and therefore
Ĵ ′′d (V) ·W ·W ≥ α‖W‖2

J,K

Therefore Ĵd is α convex, has a unique global minimum, characterized by
Ĵ ′d(U) = 0. To further understand that, define Λ from Y by
(
D+
t D

−
t −D+

xD
−
x

)
(Λ)(j, k) + Y (j, k)− Ŷ (j, k) = 0. 1 ≤ j ≤ J, 1 ≤ k ≤ K.

Λ(0, k) = Λ(J + 1, k) = 0 0 ≤ k ≤ K,

Λ(j,K) = 0 1 ≤ j ≤ J

(2.2.14)
Compute the first term in (2.2.11)

(Y−Ŷ , Ỹ)J,K =
∆t

2
(Y (·, K)−Ŷ (·, K), Ỹ (·, K))J+

∆t

2
(Y (·, 0)−Ŷ (·, 0), Ỹ (·, 0))J

+
K−1∑
k=1

(Y (·, k)− Ŷ (·, k), Ỹ (·, k))J .

Replace for 1 ≤ k ≤ K − 1, Y (j, k) − Ŷ (j, k) using the first equation in
(2.2.14).

(Y−Ŷ , Ỹ)J,K =
∆t

2
(Y (·, K)−Ŷ (·, K), Ỹ (·, K))J+

∆t

2
(Y (·, 0)−Ŷ (·, 0), Ỹ (·, 0))J

−
K−1∑
k=1

(
(D+

t D
−
t −D+

xD
−
x)(Λ)(·, k), Ỹ (·, k)

)
J
.

Due to the boundary conditions in space, for each k,(
D+
xD

−
x (Λ)(·, k), Ỹ (·, k)

)
J

=
(
D+
xD

−
x (Ỹ)(·, k),Λ(·, k)

)
J

Consider now the derivatives in time, and write a discrete integration by
parts formula. For sake of readability, since the space does not intervene

24

here, the index j in space is omitted all through.

∆t

K−1∑
k=1

D+
t D
−
t (Λ)(k) Ỹ (k) =

1

∆t

K−1∑
k=1

(Λ(k + 1)− 2Λ(k) + Λ(k − 1))Ỹ (k)

=
1

∆t

(
K−1∑
k=1

(Λ(k + 1)Ỹ (k)− 2
K−1∑
k=1

Λ(k)Ỹ (k) +
K−1∑
k=1

Λ(k − 1)Ỹ (k)

)

=
1

∆t

(
K∑
k=2

(Λ(k)Ỹ (k − 1)− 2

K−1∑
k=1

Λ(k)Ỹ (k) +

K−2∑
k=0

Λ(k)Ỹ (k + 1)

)

=
1

∆t

K−1∑
k=1

Λ(k)(Ỹ (k − 1)− 2Ỹ (k) + Ỹ (k + 1))

+
1

∆t
(Λ(K)Ỹ (K − 1)− Λ(K − 1)Ỹ (K)) +

1

∆t
(Λ(0)Ỹ (1)− Λ(1)Ỹ (0)).

Consider the boundary terms in the previous sum. First use

Ỹ (0) = 0,
1

∆t
Ỹ (1) = D+

t Ỹ (0) =
∆t

2
W (0).

On the other endpoint, Λ(K) = 0, and

−Λ(K − 1)Ỹ (K) = (Λ(K)− Λ(K − 1))Ỹ (K) = ∆tD−t Λ(K)Ỹ (K).

Grouping all together gives the partial integration by parts formula

∆t
K−1∑
k=1

D+
t D

−
t (Λ)(k) Ỹ (k) = ∆t

K−1∑
k=1

D+
t D

−
t (Ỹ)(k) Λ(k) +D−t Λ(K)Ỹ (K) +

∆t

2
Λ(0)W (0).

Plugging into the formula for (Y − Ŷ , Ỹ)J,K , gives

(Y − Ŷ , Ỹ)J,K = −∆t

K−1∑
k=1

(
(D+

t D
−
t −D+

xD
−
x)(Ỹ)(·, k),Λ(·, k)

)
J

+
∆t

2
(Y (·,K)− Ŷ (·,K), Ỹ (·,K))J − (D−t Λ(·,K), Ỹ (·,K))J −

∆t

2
Λ(·, 0)W (·, 0).

= −∆t
K−1∑
k=1

(W (·, k),Λ(·, k))J +

(
∆t

2
(Y (·,K)− Ŷ (·,K))−D−t Λ(·,K), Ỹ (·,K)

)
J

−∆t

2
Λ(·, 0)W (·, 0).

25

Add now

(Y − Ŷ , Ỹ)J,K + γ(Y (·, K)− Ẑ, Ỹ (·, K))J =(
∆t

2
(Y (·, K)− Ŷ (·, K)) + γ(Y (·, K)− Ẑ)−D−t Λ(·, K), Ỹ (·, K)

)
J

−∆t
K−1∑
k=1

(W (·, k),Λ(·, k))J −
∆t

2
Λ(·, 0)W (·, 0).

Add now

α(V,W)J,K =
α∆t

2
(V (·, 0),W (·, 0))J+α∆t

K−1∑
k=1

(V (·, k),W (·, k))J+
α∆t

2
(V (·, K),W (·, K))J

to obtain

Ĵ ′d(V) ·W =
(

∆t
2 (Y (·,K)− Ŷ (·,K)) + γ(Y (·,K)− Ẑ)−D−t Λ(·,K), Ỹ (·,K)

)
J

+
α∆t

2
(V (·,K),W (·,K))J + ∆t

K−1∑
k=1

(W (·, k), αV (·, k)− Λ(·, k))J +
∆t

2
(αV (·, 0)Λ(·, 0),W (·, 0))J

Add the final condition on Λ,

Y (·, K)− Ŷ (·, K) + γ(Y (·, K)− Ẑ)−D−t Λ(·, K) = 0.

Then the derivative is

Ĵ ′d(V) ·W =
α∆t

2
(V (·, K),W (·, K))J + ∆t

K−1∑
k=1

(W (·, k), αV (·, k)− Λ(·, k))J

+
∆t

2
(αV (·, 0)− Λ(·, 0),W (·, 0))J

And since Λ(·, K) = 0,

Ĵ ′d(V) ·W =
∆t

2
(αV (·, K)− Λ(·, K),W (·, K))J

+∆t
K−1∑
k=1

(W (·, k), αV (·, k)− Λ(·, k))J +
∆t

2
(αV (·, 0)− Λ(·, 0),W (·, 0))J

= (αV − Λ,W)J,K .

This proves the form of the derivative. The end of the proof is similar as in
the continuous case.

26

2.2.2 Discretization of the optimality system

In order to use them with time domain decomposition, we write a monolithic
code. Define the vector

Y (k) = (Y (1, k − 1), . . . , Y (J, k − 1)),

and similarly for Λ. From (2.2.7), we have the vector recursion

Y (k + 1) =
(∆t)2

α
Λ(k) + AY (k)− Y (k − 1), 2 ≤ k ≤ K

Λ(k − 1) = (∆t)2(Ŷ (k)− Y (k)) + AΛ(k)− Λ(k + 1), 2 ≤ k ≤ K

Y (2) =

(
∆t

∆x
C + I

)
Y (1) + (∆t)Y (1) +

2

α

(∆t)2

2
Λ(1),

Λ(K) =

(
∆t

∆x
C + I

)
Λ(K + 1) +

(∆t)2

2
(Ŷ (K + 1)− Y (K + 1))− γ(∆t)(Y (K + 1)− Ẑ),

(2.2.15)
with the initial and final conditions

Y (1) = Y (0), Λ(K + 1) = 0.

where the matrix A and C have the form (r = ∆t
∆x

)

A =



2(1− r2) r2 0 0 ... 0

r2 2(1− r2) r2 0 ... 0

0 r2 2(1− r2) r2 0 0

0 ... r2 2(1− r2) r2 0

0 ... 0 r2 2(1− r2) r2

0 0 ... 0 r2 2(1− r2)



C =



−r r
2

0 0 ... 0
r
2
−r r

2
0 ... 0

0 r
2
−r r

2
0 0

0 ... r
2
−r r

2
0

0 ... 0 r
2
−r r

2

0 0 ... 0 r
2
−r


(2.2.16)

27

We implement the scheme on MatLab. In the case α = 1,γ = 0, a = 0, b = 1
and using the manufactured exact solution

y(x, t) = sin(πx)(t− T) λ(x, t) = π2 sin(πx)(t− T),

we display on Figure 2.3 the associated approximate solution in the case
∆t = ∆x = 1

N−1
.

Figure 2.3: Illustration of discrete and exact solution

Then, we make varying N (the number of mesh point in space). We compute
the error between the discrete approximate solution and the exact solution for
y and λ. We use the weighted discrete l2 norm defined, for any v ∈ RJ×(K+2)

by

‖v‖2
l2 =

J∑
j=1

K+1∑
k=0

∆x∆t (v2
j,k),

and the l∞ norm. We observe that the errors are of order 2 (as expected
but not proved theoretically), i.e. denoting y∆x and λ∆x the approximate
solution, we obtain 

| |y∆x − y||l2 ≤ C∆x2,

| |y∆x − y||l∞ ≤ C∆x2,

| |λ∆x − λ||l2 ≤ C∆x2,

28

100 150 200 250 300 350 400

iteration

10
-5

10
-4

10
-3

e
rr

o
r

2x

l
2
 error

infinity error

control error

Figure 2.4: Convergence order of coupled wave scheme with respect to ∆x =
∆t

29

Chapter 3

Inherited parallel in time

algorithm

30

3.1 Definition of the inherited algorithm

Let δ ≥ 0, and let us divide (0, T) into two possibly overlapping intervals
O1 = (0, T1 + δ) and O2 = (T1, T). Imitating a Schwarz algorithm, but with
a decomposition in time, our iterative algorithm solves the optimality con-
ditions (2.1.8b-2.1.8c) in turn in Ω1 = Ω×O1 and Ω2 = Ω×O2, see Figure 3.1.

x

t

Ω1 : (y1, λ1)

Ω2 : (y2, λ2)

Ω1 ∩ Ω2
T1

T

T1 + δ
δ

Figure 3.1: Schematic representation of the domains Ω1 and Ω2

3.1.1 Statement of the algorithm

The iteration is as follows: we first solve a system of coupled wave equations
in domain 1 before solving a similar problem on domain 2 but with initial
data coming from domain 1. The solution in Ωj at iteration n is denoted by
(ynj , λ

n
j).

Problem for Subdomain O1

State equation

∂tty
n+1
1 −∆yn+1

1 − 1

α
λn+1
1 = 0, in Ω×O1,

(3.1.1a)

31

with boundary condition

yn+1
1 = 0, in ∂Ω×O1,

(3.1.1b)

with initial data

yn+1
1 (·, 0) = y(0), ,

∂ty
n+1
1 (·, 0) = y(1), in Ω,

(3.1.1c)

Adjoint equation

∂ttλ
n+1
1 −∆λn+1

1 + yn+1
1 = ŷ, in Ω×O1,

(3.1.1d)

with boundary condition

λn+1
1 = 0, in ∂Ω×O1,

(3.1.1e)

with the transmission final conditions

λn+1
1 (·, T1 + δ) = λn2 (·, T1 + δ), (3.1.1f)

∂tλ
n+1
1 (·, T1 + δ)− γyn+1

1 (·, T1 + δ) = ∂tλ
n
2 (·, T1 + δ)− γyn2 (·, T1 + δ), in Ω.

(3.1.1g)

Problem for subdomain O2,

State equation

∂tty
n+1
2 −∆yn+1

2 − 1

α
λn+1

2 = 0, in Ω×O2, (3.1.2a)

with boundary condition

yn+1
2 = 0, in ∂Ω×O2, (3.1.2b)

with initial transmission conditions

yn+1
2 (·, T1) = yn+1

1 (·, T1), in Ω,

∂ty
n+1
2 (·, T1) = ∂ty

n+1
1 (·, T1), in Ω. (3.1.2c)

32

Adjoint equation

∂ttλ
n+1
2 −∆λn+1

2 + yn+1
2 = ŷ, in Ω×O2, (3.1.2d)

with boundary condition

λn+1
2 = 0, in ∂Ω×O2. (3.1.2e)

with the final conditions

λn+1
2 (·, T) = 0,

∂tλ
n+1
2 (·, T) = γ(yn+1

2 (·, T)− ẑ), in Ω (3.1.2f)

For n = 0, the algorithm is initialized by the transmission final conditions

λ1
1(·, T1 + δ) = g, ∂tλ

1
1(·, T1 + δ)− γy1

1(·, T1 + δ) = h.

3.1.2 Important properties

On the domain Ω1, we use the natural initial data of y to initialize y1 at
T = 0 (see (3.1.1c)), and we impose final condition on λ1 at the final t =
T1 + δ (see (3.1.1g)). We point out that those conditions are similar the final
condition (2.1.8c) imposed in λ for the full problem. In the same way, on the
domain Ω2, we know the final data of λ2. Hence, we impose the transmission
condition y2 at the point t = T1 with the same form of initial data of y at the
point t = 0. In that sense, the algorithm is inherited, because the nature
of the subproblems in domain 1 and 2 is the same as the initial one. This
property will be very helpful to prove the well-posedness of our algorithm.
Our proposed inherited algorithm differs from a classical Schwarz algorithm.
Indeed, if the sequence (yni , λ

n
i)i∈{1,2} converges toward (y∗i , λ

∗
i)i∈{1,2}, then it

satisfies the following four different transmission conditions:

y∗1(·, T1) = y∗2(·, T1), ∂ty
∗
1(·, T1) = ∂ty

∗
2(·, T1),

λ∗1(·, T1 + δ) = λ∗2(·, T1 + δ),

∂tλ
∗
1(·, T1 + δ) − γy∗1(·, T1 + δ) = ∂tλ

∗
2(·, T1 + δ) − γy∗2(·, T1 + δ).

As a result, for any δ ≥ 0, (y∗1, λ
∗
1) = (y|Ω1 , λ|Ω1) and (y∗2, λ

∗
2) = (y|Ω2 , λ|Ω2),

namely, if the algorithm converges, it converges toward the solution of the
initial problem, which is not the case for a classical non overlapping Schwarz
algorithm. In that sense the previous algorithm resembles an optimized
Schwarz algorithm.

33

3.1.3 Well-posedness of the algorithm

We shall see that the subproblems in Ω1 and Ω2 correspond to Euler equa-
tions associated with adapted quadratic cost functions. As a result, they are
well-posed.

Define for given (β0, β1) in L2(Ω),

J1(v1, y1) =
1

2

∫
Ω×(0,T1+δ)

|y1(x, t)− ŷ(x, t)|2dxdt

+
γ

2

∫
Ω

|y1(x, T1 + δ)|2dx+
α

2

∫
Ω×(0,T1+δ)

|v1(x, t)|2dxdt

−
∫

Ω

β0(x)∂ty1(x, T1 + δ)dx+

∫
Ω

β1(x)y1(x, T1 + δ)dx,

(3.1.3)

The first two lines contain the quadratic part, the third line is the affine part.
Define

Ĵ1(v1) = J1(v1, y1(v1)), (3.1.4)

where v1 ∈ L1(Ω1) is the control and y1 is the solution of system
∂tty1 −∆y1 = v1 in Ω×O1,

y1 = 0 in ∂Ω×O1,

y1(·, 0) = y(0), ∂ty1(·, 0) = y(1) in Ω.

(3.1.5)

Lemma 1. For any β0, β1 in L2(Ω), Ĵ1 has a unique global minimum. The

minimum point is the only solution of the Euler equation Ĵ ′1(u1) = 0. The

derivative is equal to Ĵ ′1(v1) = αv1 − λ, where λ is defined by
∂ttλ1 −∆λ1 + y1 = ŷ in Ω×O1,

λ1 = 0 in ∂Ω×O1,

λ1(·, T1 + δ) = β0 in Ω,

∂tλ1(., T1 + δ)− γy1(., T1 + δ) = β1 in Ω.

.

34

Proof. Similarly to the first chapter, rewrite

J1(v1, y1) =
1

2
‖y1−ŷ‖2

L2(Ω×(0,T1+δ))+
γ

2
‖y1(·, T1+δ)‖2

L2(Ω)+
α

2
‖v1‖2

L2(Ω×(0,T1+δ))

− (β0, ∂ty1(·, T1 + δ))L2(Ω) + (β1, y1(·, T1 + δ))L2(Ω).

(3.1.6)

Compute the derivative of Ĵ1.

Ĵ ′1(v1) · w1 = (y1 − ŷ1, ỹ1)L2(Ω×(0,T1+δ)) + γ(y1(·, T1 + δ), ỹ1(·, T1 + δ))L2(Ω)

+ α(v1, w1)L2(Ω×(0,T1+δ)) − (β0, ∂tỹ1(·, T1 + δ))L2(Ω) + (β1, ỹ1(·, T1 + δ))L2(Ω).
(3.1.7)

where ỹ1 is solution of
∂ttỹ1 −∆ỹ1 = w1 in Ω×O1,

ỹ1 = 0 in ∂Ω×O1,

ỹ1(·, 0) = 0, ∂tỹ1(·, 0) = 0, in Ω.

For the second derivative,

Ĵ ′′1 (v1)(w1, w1) = ‖ỹ1‖2
L2(Ω×(0,T1+δ))+γ‖ỹ1(·, T1+δ)‖2

L2(Ω)+α‖w1‖2
L2(Ω×(0,T1+δ))

≥ α‖w1‖2
L2(Ω×(0,T1+δ)). (3.1.8)

Hence Ĵ1 is α−convex and therefore admits a unique minimizer u1, charac-
terized by the Euler equation Ĵ ′1(u1). Choose now λ1 solution of

∂ttλ1 −∆λ1 + y1 = ŷ in Ω×O1,
λ1 = 0 in ∂Ω×O1,
λ1(·, T1 + δ) = 0 in Ω.

Then, as in chapter 2,

Ĵ ′1(v1) · w1 = (αv1 − λ1, w1)L2(Ω×(0,T1+δ)) + (γy1(·, T1 + δ)− ∂tλ1(·, T1 + δ), ỹ(·, T1 + δ))L2(Ω)

−(β0, ∂tỹ1(·, T1 + δ))L2(Ω) + (β1, ỹ1(·, T1 + δ))L2(Ω)

+(∂tỹ1(·, T1 + δ), λ1(·, T1 + δ))L2(Ω).

Write the terms at t = T1 + δ as

(γy1 − ∂tλ1 + β1, ỹ2) + (λ1 − β0, ∂tỹ1)

35

to obtain that if
∂tλ1 − γy1 = β1, λ1 = β0,

then Ĵ ′1(v1) = αv1 − λ1.

In the domain Ω2, we consider the cost function

J2(v2, y2) =
1

2
‖y2−ŷ‖2

L2(Ω×(T1,T))+
γ

2
‖y2(·, T)−ẑ‖2

L2(Ω)+
α

2
‖v2‖2

L2(Ω×(T1,T)),

(3.1.9)

Ĵ2(v2) = J2(v2, y2(v2)), (3.1.10)

where v2 ∈ L2(Ω2) is the control and y2 is the solution of system
∂tty2 −∆y2 = v2 in Ω×O2,

y2 = 0 in ∂Ω×O2,

y2(·, T1) = α0, ∂ty2(·, T1) = α1 in Ω.

(3.1.11)

Lemma 2. For any α0, α1 in L2(Ω), Ĵ2 has a unique global minimum. The

minimum point is the only solution of the Euler equation Ĵ ′2(u2) = 0. The

derivative is equal to Ĵ ′2(v2) = αv2 − λ2, where λ2 is defined by
∂ttλ2 −∆λ2 + y2 = ŷ in Ω×O2,

λ2 = 0 in ∂Ω×O2,

λ2(·, T) = 0 in Ω,

∂tλ2(., T)− γ(y2(., T)− ẑ) = 0 in Ω.

(3.1.12)

Proof. Compute the derivative of Ĵ2.

Ĵ ′2(v2)·w2 = (y2−ŷ2, ỹ2)L2(Ω×O2)+γ(y2(·, T)−ẑ, ỹ2(·, T))L2(Ω)+α(v2, w2)L2(Ω×O2).
(3.1.13)

where ỹ2 is solution of
∂ỹ2 −∆ỹ2 = w2, in Ω×O2,

ỹ2 = 0, in ∂Ω×O2,

ỹ2(·, T1) = 0, ∂tỹ2(·, T1) = 0, in Ω.

36

For the second derivative,

Ĵ ′′2 (v2)(w2, w2) = ‖ỹ2‖2
L2(Ω×O2)+γ‖ỹ2(·, T)‖2

L2(Ω)+α‖w2‖2
L2(Ω×O2) ≥ α‖w2‖2

L2(Ω×O2).

(3.1.14)

Hence Ĵ2(v2) is alpha-convex and therefore admits a unique minimizer u2,

characterized by the Euler equation Ĵ ′2(u2). Choose now λ2 solution of
(3.1.12). Then, as in chapter 2,

Ĵ ′2(v2) · w2 = (αv2 − λ2, w2)L2(Ω×O2) + (γ(y2(·, T)− ẑ)− ∂tλ2(·, T), ỹ2(·, T))L2(Ω)

−(β̃0, ∂tỹ2(·, T))L2(Ω) + (β̃1, ỹ2(·, T))L2(Ω) + (∂tỹ2(·, T), λ2(·, T))L2(Ω),
= (αv2 − λ2, w2)L2(Ω×O2),

thanks to the final conditions.

Theorem 3.1.1. For any initial guess (λ0
1, y

0
1) , the sequence of iterates

defined in (3.1.1,3.1.2) is well-defined.

Proof. It relies on the two previous lemma, with

β0 = λn2 (·, T1 + δ), β1 = ∂tλ
n
2 (·, T1 + δ)− γyn2 (·, T1 + δ),

and
α0 = yn+1

1 (·, T1), α1 = ∂ty
n+1
1 (·, T1).

3.2 Convergence analysis: computation of the

iteration matrix

In order to investigate the convergence of the algorithm, we study the error
(ynj − y, λnj − λ), which is solution of the homogeneous equations associated

to (3.1.1 ,3.1.2),i.e. (3.1.1 ,3.1.2) with y(0) = y(1) = 0, ŷ = 0, ẑ = 0. For
the sake on simplicity, we translate the time interval into (−T1, T2), where T1

and T2 are positive and T1 +T2 = T . The (classical) idea is to use separation
of variables and to expand the functions of x and t over the eigenmodes of
the Laplacian in space, and to work on the so-obtained differential equations
in time.

37

We start with the system of wave equations

∂tty −∆y − 1

α
λ = 0, ∂ttλ−∆λ+ y = 0, (3.2.1)

that we rewrite as a system by introducing Y = (y, λ)

∂ttY −∆Y +

(
0 − 1

α
1 0

)
Y = 0. (3.2.2)

Then, we expand (y, λ) on the countable eigenmodes of −∆ in Ω. In one
dimension, Ω = (a, b), and the eigenvalues and eigenmodes of the Laplacian
are given by

ξ(k) =
kπ

b− a, Φk = sin(ξ(k)x), k ≥ 1.

Writing

Y (x, t) =
∑
k≥1

Ŷ (k, t)Φk(t),

we obtain the matrix wave equation

∂ttŶ (k, t) +M(k)Ŷ (k, t) = 0, M(k) =

(
ξ2(k) − 1

α
1 ξ2(k)

)
. (3.2.3)

3.2.1 Some algebra on matrices

The second order vectorial differential equation (3.2.3) can be solved explic-
itly, using trigonometric functions, as in the scalar wave equation. A general
formula is a variation of

Ŷ (k, t) = cos(N(k)t)Y0(k) +N(k)−1 sin(N(k)t)Y ′0(k), (3.2.4)

where N =
√
M .

Let us indicate now how to define properly N , cos(N(k)t) and sin(N(k)t),
and let us show how to compute them in a rigorous way. We define the
matrix

J =

(
0 − 1√

α√
α 0

)
,

38

which is such that J2 = −I. J plays the role of i =
√
−1 and will be very

useful in the work, to develop an algebra parallel to that in the complex
numbers. We will see that all the matrices encountered in the analysis below
are combinations of the identity matrix I and J , starting from

M(k) = ξ2(k)I +
1√
α
J.

For each k, the matrix M(k) is diagonalizable, with conjugate eigenvalues
µ(k) and µ̄(k) where

µ(k) = ξ2(k) + i

√
1

α
.

The corresponding eigenmatrix is given by

P =

 i√
α

−i√
α

1 1


and is independent of k. Therefore, the square root of M is defined by

N =
√
M = P

√
DP−1 with D =

(√
µ(k) 0

0
√
µ̄(k)

)
.

Let
ν =
√
µ = ν1 + iν2,

where ν1 and ν2 real positive. Let us collect useful notations for the sequel

µ = ξ2 + i√
α
, ν =

√
µ = ν1 + iν2

ν2
1 − ν2

2 = ξ2, 2ν1ν2 = 1√
α

ν1 = 1√
2

√
ξ2 +

√
ξ4 + 1

α
, ν2 = 1√

2

√
−ξ2 +

√
ξ4 + 1

α
.

(3.2.5)

All these quantities are functions of k, or similarly of ξ. A direct computation
shows that N

N = ν1I + ν2J, N−1 =
ν1I − ν2J

|ν|2 = Re ν−1I + Im ν−1J. (3.2.6)

Indeed,

(ν1I + ν2J)2 = (ν2
1 − ν2

2)I + 2ν1ν2J = ReµI + ImµJ = M,

(ν1I + ν2J)(ν1I − ν2J) = |ν|2I.

39

Trigonometric matrices Let us start with generalities. The cosine and
sine of a matrix A must be understood as the sum of the Taylor series. If A
and B commute, then the usual trigonometric properties on sine and cosine
of A + B are valid. In our case, since one of the matrices is a multiple of
identity, it is always true. In particular the addition formulas are valid, i.e.

cos(A+B) = cosA cosB − sinA sinB, etc.

Furthermore cos(νI) = cos(ν)I and sin(νI) = sin(ν)I. Compute now

cos(νJ) =
∞∑
p=0

(−1)p
(νJ)2p

(2p)!
=
∞∑
p=0

ν2p

(2p)!
I = cosh(ν)I.

sin(νJ) =
∞∑
p=0

(−1)p
(νJ)2p+1

(2p+ 1)!
=
∞∑
p=0

ν2p+1

(2p+ 1)!
J = sinh(ν)J.

From this, by the addition formulas, we deduce the elegant formulas

C(t) := cos(Nt) = cos(ν1tI + ν2tJ) = cos ν1t cosh ν2tI − sin ν1t sinh ν2tJ,
S(t) := sin(Nt) = sin(ν1tI + ν2tJ) = sin ν1t cosh ν2tI + cos ν1t sinh ν2tJ,

(3.2.7)
which are parallel to the formulas

c(t) := cos νt = cos ν1t cosh ν2t− i sin ν1t sinh ν2t,
s(t) := sin νt = sin ν1t cosh ν2t+ i cos ν1t sinh ν2t,

(3.2.8)

We will use, according to our need, the formulas

cos(Nt) = Re cos νtI + Im cos νtJ,
sin(Nt) = Re sin νtI + Im sin νtJ.

(3.2.9)

C(t) = Re c(t)I + Im c(t)J,
S(t) = Re s(t)I + Im s(t)J,

(3.2.10)

and also

C(t) =

(
Re c(t) − Im c(t)/

√
α√

α Im c(t) Re c(t)

)
, (3.2.11)

and similarly for S(t) and so on. Using again Taylor series, it can be shown
that the derivatives of sine and cosine are calculated as in the scalar case

d
dt

cos(Nt) = −N sin(Nt), d
dt

sin(Nt) = N cos(Nt),
C ′(t) = −NS(t), S ′(t) = NC(t).

(3.2.12)

40

This validates formula (3.2.4).

Furthermore, we compute N sin(Nt) and N−1 sin(Nt) using the algebra de-
fined above. For example

N sin(Nt) = (ν1I + ν2J)(Re sin νtI + Im sin νtJ),
= (ν1 Re sin νt− ν2 Im sin νt)I + (ν1 Im sin νt+ ν2 Re sin νt)J,
= Re ν sin νtI + Im ν sin νtJ.

So we have the useful formulas

sin(Nt) = Re sin νtI + Im sin νtJ,

cos(Nt) = Re cos νtI + Im cos νtJ,

N sin(Nt) = Re ν sin νtI + Im ν sin νtJ,

N cos(Nt) = Re ν cos νtI + Im ν cos νtJ,

N−1 sin(Nt) = Re ν−1 sin νtI + Im ν−1 sin νtJ,

N−1 cos(Nt) = Re ν−1 cos νtI + Im ν−1 cos νtJ.

(3.2.13)

Collect all necessary formulas for the functions of t

C = Re cI + Im cJ,

S = Re sI + Im sJ,

NS = Re(νs)I + Im(νs)J,

NC = Re(νc)I + Im(νc)J,

N−1S = Re(ν−1s)I + Im(ν−1s)J,

N−1C = Re(ν−1c)I + Im(ν−1c)J.

(3.2.14)

3.2.2 The infinite domain case

We consider here T1 = T2 = +∞.

Computation of the convergence matrix

Start with the problem in subdomain 1, whose solution we call Y1 = (y1, λ1).
By separation of variables, we write it as

Y1(x, t) =
∑
k≥1

Ŷ1(k, t)Φk(x),

41

and implement first the boundary condition at infinity,

lim
t→−∞

Y1(·, t) = 0.

We use a simpler variation of (3.2.4).

Ŷ1(k, t) = cos(Nt)Ĝ(k) + sin(Nt)G̃(k). (3.2.15)

We write first the behavior at infinity of the real hyperbolic sine and cosine
functions:

cosh ν2t ∼
1

2
e−ν2t := X, sinh ν2t ∼ −

1

2
e−ν2t = −X.

X is the large parameter. This implies by (3.2.8)

Re cos νt ∼ X cos ν1t, Im cos νt ∼ X sin ν1t,

=⇒ cos(Nt) ∼ X(cos ν1tI + sin ν1tJ).

Re sin νt ∼ X sin ν1t, Im sin νt ∼ −X cos ν1t,

=⇒ sin(Nt) ∼ X(sin ν1tI − cos ν1tJ).

Insert into (3.2.15),

Ŷ1 ∼ X
[
(cos ν1tI + sin ν1tJ)Ĝ+ (sin ν1tI − cos ν1tJ)G̃

]
.

Reorder in cosine and sine

Ŷ1 ∼ X
[
cos ν1t(Ĝ− JG̃) + sin ν1t(JĜ+ G̃)

]
.

Use that J2 = −I,

Ŷ1 ∼ X
[
cos ν1t(Ĝ− JG̃) + sin ν1tJ(Ĝ− JG̃)

]
∼ X(cos ν1tI+sin ν1tJ)(Ĝ−JG̃).

The matrix cos ν1tI+sin ν1tJ is a rotation matrix, has no limit at infinity. If
Y has to tend to 0 at −∞, we must have Ĝ− JG̃ = 0. Therefore G̃ = −JĜ
and since J and N commute, we have

Ŷ1 = (cos(Nt)− J sin(Nt))Ĝ. (3.2.16)

42

Write the same formula in (0,+∞),

Ŷ2 = cos(Nt)H̃ + sin(Nt)Ĥ. (3.2.17)

Enforce the condition at infinity Y (·,+∞) = 0.

cosh ν2t ∼
1

2
eν2t := X, sinh ν2t ∼

1

2
eν2t = X.

X is the new large parameter. First by (3.2.7),

cos(Nt) ∼ X(cos ν1tI − sin ν1tJ), sin(Nt) ∼ X(sin ν1tI + cos ν1tJ).

Insert into (3.2.17),

Ŷ2 ∼ X
[
(cos ν1tI − sin ν1tJ)H̃ + (sin ν1tI + cos ν1tJ)Ĥ

]
,

∼ X
[
(cos ν1tI − sin ν1tJ)H̃ + (− sin ν1tJ + cos ν1tI)JĤ

]
,

∼ X(cos ν1tI − sin ν1tJ)
[
H̃ + JĤ

]
.

Consequently
H̃ + JĤ = 0, or equivalently Ĥ = JH̃.

Hence
Ŷ2(k, t) = (cos(Nt)I + sin(Nt)J)Ĥ, (3.2.18)

renaming H̃ by Ĥ. We will need to express separately y and λ in these
formulas, in order to be able to enforce the transmission conditions. For this
we use again formulas (3.2.9) or in the concise form (3.2.10).

cos(Nt)I − sin(Nt)J = Re c(t)I + Im c(t)J − (Re s(t)I + Im s(t)J)J,

= (Re c(t) + Im s(t))I + (Im c(t)− Re s(t))J,

Ŷ1(k, t) = (Re c(t) + Im s(t))Ĝ+ (Im c(t)− Re s(t))JĜ.

Use now

J

(
G1

G2

)
=

(− 1√
α
G2√

αG1

)
,

to write y and λ separately:{
ŷ1 = (Re c(t) + Im s(t))Ĝ1 − 1√

α
(Im c(t)− Re s(t))Ĝ2,

λ̂1 = (Re c(t) + Im s(t))Ĝ2 +
√
α(Im c(t)− Re s(t))Ĝ1.

(3.2.19)

43

It is very easy to differentiate in time, from (3.2.12),

d

dt
Ŷ1(k, t) = −N sin(Nt)Ĝ(k)− JN cos(Nt)Ĝ(k), (3.2.20)

and by the formulas (3.2.14), it suffices to replace in (3.2.19) c(t) by −νs(t)
and s(t) by νc(t), to obtain{

ŷ′1 = (−Re νs(t) + Im νc(t))Ĝ1 − 1√
α

(− Im νs(t)− Re νc(t))Ĝ2,

λ̂′1 = (−Re νs(t) + Im νc(t))Ĝ2 +
√
α(− Im νs(t)− Re νc(t))Ĝ1.

(3.2.21)
For Y2 just change t in −t, that is s into −s:{

ŷ2 = (Re c(t)− Im s(t))Ĥ1 − 1√
α

(Im c(t) + Re s(t))Ĥ2,

λ̂2 = (Re c(t)− Im s(t))Ĥ2 +
√
α(Im c(t) + Re s(t))Ĥ1.

(3.2.22)

d

dt
Ŷ2(k, t) = −N sin(Nt)Ĥ(k) +N cos(Nt)H̃(k), (3.2.23)

{
ŷ′2 = (−Re νs(t)− Im νc(t))Ĥ1 − 1√

α
(− Im νs(t) + Re νc(t))Ĥ2,

λ̂′2 = (−Re νs(t)− Im νc(t))Ĥ2 +
√
α(− Im νs(t) + Re νc(t))Ĥ1.

(3.2.24)
It is easy now to address the transmission conditions

λ̂n+1
1 (·, δ) = λ̂n2 (·, δ) ⇐⇒

(Re c(δ) + Im s(δ))Ĝn+1
2 +

√
α(Im c(δ)− Re s(δ))Ĝn+1

1 =

(Re c(δ)− Im s(δ))Ĥn
2 +
√
α(Im c(δ) + Re s(δ))Ĥn

1 ,

and

(∂tλ̂
n+1
1 − γŷn+1

1)(·, δ) = (∂tλ̂
n
2 − γŷn2)(·, δ) ⇐⇒

(−Re νs(δ) + Im νc(δ))Ĝn+1
2 +

√
α(− Im νs(δ)− Re νc(δ))Ĝn+1

1

− γ((Re c(δ) + Im s(δ))Ĝn+1
1 − 1√

α
(Im c(δ)− Re s(δ))Ĝn+1

2) =

− (Re νs(δ) + Im νc(δ))Ĥn
2 −
√
α(Im νs(δ)− Re νc(δ))Ĥn

1

− γ((Re c(δ)− Im s(δ))Ĥn
1 −

1√
α

(Im c(δ) + Re s(δ))Ĥn
2).

44

We rewrite this as a system, defining two matrices,

S̃1(t) =

 √
α(Im c(t)− Re s(t)) Re c(t) + Im s(t)[

−√α(Im νs(t) + Re νc(t))
[

Im νc(t)− Re νs(t)
− γ(Re c(t) + Im s(t))

]
+ γ√

α
(Im c(t)− Re s(t))

]


(3.2.25)

S1(t) =

 √
α(Im c(t) + Re s(t)) Re c(t)− Im s(t)[√

α(− Im νs(t) + Re νc(t))
[
− (Im νc(t) + Re νs(t))

− γ(Re c(t)− Im s(t))
]

+ γ√
α

(Im c(t) + Re s(t))
]


(3.2.26)
and

S̃1(δ)Ĝn+1 = S1(δ)Ĥn, or

Ĝn+1 = M1Ĥ
n,M1 = S̃−1

1 (δ)S1(δ).

Rewrite S̃1 more explicitly.

Re s− Im c = sin ν1t(sinh ν2t+ cosh ν2t) = sin ν1te
ν2t,

Re c+ Im s = cos ν1t(sinh ν2t+ cosh ν2t) = cos ν1te
ν2t.

We need now to express Im νs(t) + Re νc(t) and Im νc(t)− Re νs(t)

Re νc+ Im νs = ν1 Re c− ν2 Im c+ ν1 Im s+ ν2 Re s,
= ν1(Re c+ Im s) + ν2(Re s− Im c),
= (ν1 cos ν1t+ ν2 sin ν1t)e

ν2t.

Similarly,

Im νc(t)− Re νs(t) = ν1 Im c+ ν2 Re c− (ν1 Re s− ν2 Im s),
= −ν1(Re s− Im c) + ν2(Re c+ Im s),
= (−ν1 sin ν1t+ ν2 cos ν1t)e

ν2t.

We obtain

S̃1(t) = eν2t
(−√α sin ν1t cos ν1t
−(
√
αν1 + γ) cos ν1t−

√
αν2 sin ν1t −(ν1 + γ√

α
) sin ν1t+ ν2 cos ν1t

)
(3.2.27)

We easily compute the determinant of S̃1(t):

det S̃1(t) = (
√
αν1 + γ)e2ν2t > 0.

Do the same on S1:
Re s+ Im c = sin ν1te

−ν2t,

45

Re c− Im s = cos ν1te
−ν2t,

Re νc− Im νs = ν1 Re c− ν2 Im c− (ν1 Im s+ ν2 Re s),
= ν1(Re c− Im s)− ν2(Re s+ Im c),
= (ν1 cos ν1t− ν2 sin ν1t)e

−ν2t.

Similarly,

Im νc(t) + Re νs(t) = ν1 Im c+ ν2 Re c+ ν1 Re s− ν2 Im s,
= ν1(Re s+ Im c) + ν2(Re c− Im s),
= (ν1 sin ν1t+ ν2 cos ν1t)e

−ν2t.

S1(t) = e−ν2t
(√

α sin ν1t cos ν1t
(
√
αν1 − γ) cos ν1t−

√
αν2 sin ν1t (−ν1 + γ√

α
) sin ν1t− ν2 cos ν1t

)
.

Compute now the iteration matrix M1 = S̃−1
1 (t)S1(t). First

S̃−1
1 (t) =

e−ν2t√
αν1 + γ

(−(ν1 + γ√
α

) sin ν1t+ ν2 cos ν1t − cos ν1t

(
√
αν1 + γ) cos ν1t+

√
αν2 sin ν1t −

√
α sin ν1t

)
A long calculation shows

M1 =
e−2ν2t√
αν1 + γ

(−√αν1 + γ cos(2ν1t) + ν2
√
α sin(2ν1t) 2 cos ν1t(− γ√

α
sin ν1t+ ν2 cos ν1t)

2
√
α sin ν1t(γ cos ν1t+

√
αν2 sin ν1t)

√
αν1 + γ cos(2ν1t) + ν2

√
α sin(2ν1t)

)
,

Now the transmission conditions

ŷn+1
2 (0) = ŷn+1

1 (0), ∂tŷ
n+1
2 (0) = ∂tŷ

n+1
1 (0),

are easy to treat. They give

Ĥn+1
1 = Ĝn+1

1 ,

−ν2Ĥ
n+1
1 − ν1√

α
Ĥn+1

2 = ν2Ĝ
n+1
1 + ν1√

α
Ĝn+1

2 .

In matrix form
S̃2Ĥ

n+1 = S2Ĝ
n+1,

S̃2 =

(
1 0
−ν2 − ν1√

α

)
, S2 =

(
1 0
ν2

ν1√
α

)
.

Consequently,

Ĥn+1 = M2Ĝ
n+1, M2 := S̃−1

2 S2 = −
√
α

ν1

(
− ν1√

α
0

2ν2
ν1√
α

)
.

46

We couple now

Ĝn+1 = M1Ĥ
n, M1 := S̃−1

1 (δ)S1(δ), Ĥn = M2Ĝ
n, M2 := S̃−1

2 S2,

to obtain the iterate

Ĝn+1 = MĜn, M = M1M2.

Compute now the matrix M , or rather what we need from matrix M : the
determinant and the trace. It is easy to find that

detM =
detS1(δ)

det S̃1(δ)

detS2

det S̃2

= −detS1(δ)

det S̃1(δ)
= e−4ν2δ

γ −√αν1

γ +
√
αν1

.

Now

TrM = (M1)11(M2)11 + (M1)12(M2)21 + (M1)21(M2)12 + (M1)22(M2)22,

= −
√
α
ν1

(
− ν1√

α
(M1)11 + 2ν2(M1)12 + ν1√

α
(M1)22

)
,

= −
√
α
ν1

(
ν1√
α

((M1)22 − (M1)11) + 2ν2(M1)12

)
,

= −
√
α
ν1

e−2ν2δ√
αν1+γ

(
ν1√
α

(2ν1

√
α) + 4ν2 cos ν1δ(− γ√

α
sin ν1δ + ν2 cos ν1δ)

)
,

= −2
√
α
ν1

e−2ν2δ√
αν1+γ

(
ν2

1 + 2ν2
2 cos2 ν1δ − 2ν2

γ√
α

sin ν1δ cos ν1δ
)
,

= −2
√
α
ν1

e−2ν2δ√
αν1+γ

(
|ν|2 + ν2

2 cos 2ν1δ − ν2
γ√
α

sin 2ν1δ
)
.

using that
2 cos2 θ = 1 + cos 2θ, 2 sin θ cos θ = sin 2θ.

The characteristic polynomial is λ2 −TrMλ+ detM . The reduced discrim-
inant is

∆′ =
α

ν2
1

e−4ν2δ

(
√
αν1 + γ)2

(
|ν|2 + ν2

2 cos 2ν1δ − ν2
γ√
α

sin 2ν1δ

)2

−e−4ν2δ
γ −√αν1

γ +
√
αν1

.

Analysis of the case γ = 0

The general analysis of the convergence matrix is not easy. However, in the
case γ = 0, we can show a divergence result:

Theorem 3.2.1. Assume that γ = 0. For any α > 0, there exists, δ0 > 0,
such that, for any δ < δ0,the algorithm is divergent.

47

Proof. In that case, we see that the discriminant is positive, the trace is
negative:

∆′ =
e−4ν2δ

ν4
1

(
(|ν|2 + ν2

2 cos 2ν1δ)
2 + ν4

1

)
.

TrM = −2
e−2ν2δ

ν2
1

(
|ν|2 + ν2

2 cos 2ν1δ
)
,

and the determinant, equal to detM = −e−4ν2δ, is negative.
Therefore there are two opposite sign eigenvalues and the spectral radius of
the matrix M is equal to

ρ(ξ) =
e−2ν2δ

ν2
1

(
|ν|2 + ν2

2 cos 2ν1δ +
√

(|ν|2 + ν2
2 cos 2ν1δ)2 + ν4

1

)
.

For large ξ, ν1(ξ) ∼ ξ is large and ν2(ξ) ∼ 1/(2ξ
√
α) is small. The spectral

radius ρ(ξ) is considered as

ρ(ξ) ∼ e−δ/(ξ
√
α)(1 +

√
2) > 1.

With this asymptotics computation, we can conclude that there exists large
ξ where the convergence factor with respect to ξ is larger than 1 when δ is
small and therefore the algorithm is divergent.

So it seems that the algorithm is not suitable for infinite time domains.
We now turn to finite time domains, and see if we can forge a converging
algorithm.

3.2.3 The finite time domain case

The aim of this section is to prove the following result:

Theorem 3.2.2. The convergence of the algorithm is defined by the iter-
ation matrix M = M1M2, with M1 = S̃1(δ + T1)−1S1(δ − T2) and M2 =
S̃−1

2 (−T2)S2(T1), with

S̃1(t) =

(
Re c(t) Re ν−1s(t)

−Re νs(t) + γ√
α

Im c(t) Re c(t) + γ√
α

Im ν−1s(t)

)
, (3.2.28)

S1(t) =

(√
α Im c(t) + γ Re ν−1s(t)

√
α Im ν−1s(t)

−√α Im νs(t) + γ2√
α

Im ν−1s(t)
√
α Im c(t)− γ Re ν−1s(t)

)
,

(3.2.29)

48

S̃2(t) =

(
Re c(t)− γ√

α
Im ν−1s(t) Re ν−1s(t)

−Re νs(t)− γ√
α

Im c(t) Re c(t)

)
, (3.2.30)

S2(t) =
1√
α

(
− Im c(t) − Im ν−1s(t)
Im νs(t) − Im c(t)

)
. (3.2.31)

In each subinterval in time, we have the matrix wave equations (3.2.2) and
hence (3.2.3). The solutions are in vector form Ŷ n

1 defined on (−T1, δ) and
Ŷ n

2 defined on (0, T2). Rewrite the boundary conditions on the coefficients
Ŷ n
j (k, t) = (ŷnj (k, t), λ̂nj (k, t)):

ŷn1 (k,−T1) = ∂tŷ
n
1 (k,−T1) = 0,

λ̂n+1
1 (k, δ) = λ̂n2 (k, δ),

∂tλ̂
n+1
1 (k, δ)− γŷn+1

1 (k, δ) = ∂tλ̂
n
2 (k, δ)− γŷn2 (k, δ),{

λ̂n2 (k, T2) = ∂tλ̂
n
2 (k, T2)− γŷn2 (k, T2) = 0,

ŷn+1
2 (k, 0) = ŷn+1

1 (k, 0), ∂tŷ
n+1
2 (k, 0) = ∂tŷ

n+1
1 (k, 0).

(3.2.32)

We now write the iterates in the convenient form{
Ŷ n

1 (k, t) = C(t+ T1)Ỹ n
1 +N−1S(t+ T1)Y n

1 ,

Ŷ n
2 (k, t) = C(t− T2)Ỹ n

2 +N−1S(t− T2)Y n
2 .

(3.2.33)

and we will use formulas (3.2.12) for the derivatives:{
∂tŶ

n
1 (k, t) = −NS(t+ T1)Ỹ n

1 + C(t+ T1)Y n
1 ,

∂tŶ
n

2 (k, t) = −NS(t− T2)Ỹ n
2 + C(t− T2)Y n

2 .
(3.2.34)

From the condition ŷn1 (k,−T1) = 0 we get

(Ỹ n
1)1 = 0.

From the condition ∂tŷ
n
1 (k,−T1) = 0 we get

(Y n
1)1 = 0.

It remains only two parameters,

Ỹ n
1 = αn1e2, Y n

1 = βn1 e2,

with e1 = (1, 0)T , e2 = (0, 1)T and Ŷ n
1 takes the form

49

Ŷ n
1 (k, t) = αn1C(t+ T1)e2 + βn1N

−1S(t+ T1)e2. (3.2.35)

We will also use

∂tŶ
n

1 (k, t) = −αn1NS(t+ T1)e2 + βn1C(t+ T1)e2. (3.2.36)

For the domain (0, T2), from the condition λ̂n2 (k, T2) = 0 we get

(Ỹ n
2)2 = 0.

From the condition ∂tλ̂
n
2 (k, T2)− γŷn2 (k, T2) = 0 we get

(Y n
2)2 − γ(Ỹ n

2)1 = 0.

Define
αn2 = (Ỹ n

2)1, βn2 = (Y n
2)1

Then (Y n
2)2 = γαn2 , and we can write

Ỹ n
2 = αn2e1, Y n

2 = βn2 e1 + γαn2e2.

Ŷ n
2 (k, t) = αn2C(t−T2)e1 +βn2N

−1S(t−T2)e1 +γαn2N
−1S(t−T2)e2. (3.2.37)

We will also use

∂tŶ
n

2 (k, t) = −αn2NS(t− T2)e1 + βn2C(t− T2)e1 + γαn2C(t− T2)e2. (3.2.38)

From formulas (3.2.10),

Ŷ n
1 (k, t) = αn1 (Re c(t+T1)I+Im c(t+T1)J)e2+βn1 (Re ν−1s(t+T1)I+Im ν−1s(t+T1)J)e2.

Since Je2 = − 1√
α
e1 and Je1 =

√
αe2, we can rewrite

Ŷ n
1 (k, t) = αn1 (Re c(t+T1)e2−

1√
α

Im c(t+T1)e1)+βn1 (Re ν−1s(t+T1)e2−
1√
α

Im ν−1s(t+T1)e1).

Separate now the components:

ŷn1 (k, t) = −αn1 1√
α

Im c(t+ T1)− 1√
α
βn1 Im ν−1s(t+ T1),

λ̂n1 (k, t) = αn1 Re c(t+ T1) + βn1 Re ν−1s(t+ T1).
(3.2.39)

50

For ∂tY1 we replace c by −νs and ν−1s by c.{
∂tŷ

n
1 (k, t) = αn1

1√
α

Im νs(t+ T1)− 1√
α
βn1 Im c(t+ T1),

∂tλ̂
n
1 (k, t) = −αn1 Re νs(t+ T1) + βn1 Re c(t+ T1).

(3.2.40)

In subdomain 2,

Ŷ n
2 (k, t) = αn2 ((Re c(t−T2)I+Im c(t−T2)J)e1+βn2 (Re ν−1s(t−T2)I+Im ν−1s(t−T2)J)e1

+ γαn2 (Re ν−1s(t− T2)I + Im ν−1s(t− T2)J)e2).

which is rewritten as

Ŷ n
2 (k, t) = αn2 ((Re c(t−T2)e1+

√
α Im c(t−T2)e2)+βn2 (Re ν−1s(t−T2)e1+

√
α Im ν−1s(t−T2)e2)

+ γαn2 (Re ν−1s(t− T2)e2 −
1√
α

Im ν−1s(t− T2)e1).

{
ŷn2 (k, t) = αn2 (Re c(t− T2)− γ√

α
Im ν−1s(t− T2)) + βn2 Re ν−1s(t− T2),

λ̂n2 (k, t) = αn2 (
√
α Im c(t− T2) + γ Re ν−1s(t− T2)) + βn2

√
α Im ν−1s(t− T2).

(3.2.41)
For the time derivative replace c by −νs, and ν−1s by c.{

∂tŷ
n
2 (k, t) = αn2 (−Re νs(t− T2)− γ√

α
Im c(t− T2)) + βn2 Re c(t− T2)

∂tλ̂
n
2 (k, t) = αn2 (−√α Im νs(t− T2) + γ Re c(t− T2)) + βn2

√
α Im c(t− T2)

(3.2.42)
Now impose the conditions at t = δ,{

λ̂n+1
1 (k, δ) = λ̂n2 (k, δ),

∂tλ̂
n+1
1 (k, δ)− γŷn+1

1 (k, δ) = ∂tλ̂
n
2 (k, δ)− γŷn2 (k, δ),

Write

∂tλ̂
n
1 (k, t)− γŷn1 (k, t) = αn1 (−Re νs(t+ T1) + γ Im c(t+ T1)/

√
α)

+ βn1 (Re c(t+ T1) + γ Im ν−1s(t+ T1)/
√
α).

∂tλ̂
n
2 (k, t)− γŷn2 (k, t) = αn2 (−√α Im νs(t− T2) + γ2 Im ν−1s(t− T2)/

√
α)

+ βn2 (
√
α Im c(t− T2)− γ Re ν−1s(t− T2)).

51

So the transmission conditions at t = δ give

αn+1
1 Re c(δ + T1) + βn+1

1 Re ν−1s(δ + T1)

= αn2 (
√
α Im c(δ − T2) + γ Re ν−1s(δ − T2)) +

√
αβn2 Im ν−1s(δ − T2),

αn+1
1 (−Re νs(δ+T1)+γ Im c(δ+T1)/

√
α)+βn+1

1 (Re c(δ+T1)+γ Im ν−1s(δ+T1)/
√
α)

= αn2 (−√α Im νs(δ−T2)+γ2/
√
α Im ν−1s(δ−T2))+βn2 (

√
α Im c(δ−T2)−γ Re ν−1s(δ−T2)).

(3.2.43)

Then we have the recursion

S̃1(δ + T1)

(
αn+1

1

βn+1
1

)
= S1(δ − T2)

(
αn2
βn2

)
. (3.2.44)

Lemma 3. For any t 6= 0, the determinant of S̃1(t) is equal to

det S̃1(t) =
ν2

1 cosh2(ν2t) + ν2
2 cos2(ν1t)

|ν|2 − γ√
α

Im ν−1s(t)c(t). (3.2.45)

If it is different from 0 for t = T1 + δ, the system (3.2.44) can be solved into(
αn+1

1

βn+1
1

)
= S̃−1

1 (δ + T1)S1(δ − T2)

(
αn2
βn2

)
(3.2.46)

Proof.

det S̃1(t) = (Re c(t))2+Re νs(t) Re ν−1s(t)+
γ√
α

(Re c(t) Im ν−1s(t)−Im c(t) Re ν−1s(t)).

Use

Re νs(t) = ν1 Re s(t)− ν2 Im s(t), Re ν−1s(t) =
ν1 Re s(t) + ν2 Im s(t)

|ν|2 .

to obtain

det S̃1(t) = (Re c(t))2 +
ν2

1(Re s(t))2 − ν2
2(Im s(t))2

|ν|2 − γ√
α

Im ν−1s(t)c(t).

Expand the first term into

ν2
1

|ν|2 ((Re c(t))2 + (Re s(t))2) +
ν2

2

|ν|2 ((Re c(t))2 − (Im s(t))2),

and from (3.2.8),

(Re c(t))2 + (Re s(t))2 = cosh2(ν2t), (Re c(t))2 − (Re s(t))2 = cos2(ν1t),

which gives formula (3.2.45).

52

We turn now to the second transmission condition, which is

ŷn+1
2 (k, 0) = ŷn+1

1 (k, 0), ∂tŷ
n+1
2 (k, 0) = ∂tŷ

n+1
1 (k, 0).

We write it

αn+1
2 Re c(−T2) + βn+1

2 Re ν−1s(−T2)− γ√
α
αn+1

2 Im ν−1s(−T2)

= −αn+1
1 Im c(T1)/

√
α− βn+1

1 Im ν−1s(T1)/
√
α,

− αn+1
2 Re νs(−T2) + βn+1

2 Re c(−T2)− γ√
α
αn+1

2 Im c(−T2)

= αn+1
1 Im νs(T1)/

√
α− βn+1

1 Im c(T1)/
√
α.

Then we have the recursion

S̃2(−T2)

(
αn+1

2

βn+1
2

)
= S2(T1)

(
αn+1

1

βn+1
1

)
. (3.2.47)

Lemma 4. For any t 6= 0,

det S̃2(t) =
ν2

1 cosh2(ν2t) + ν2
2 cos2(ν1t)

|ν|2 +
γ√
α

Im ν−1s(t)c(t). (3.2.48)

For any T2, α, δ and γ = 0, det S̃2(−T2) is different from 0 and the system
(3.2.47) can be written as(

αn+1
2

βn+1
2

)
= S̃−1

2 (−T2)S2(T1)

(
αn+1

1

βn+1
1

)
(3.2.49)

Proof.

det S̃2(t) = (Re c(t))2+Re νs(t) Re ν−1s(t)− γ√
α

(Re c(t) Im ν−1s(t)−Im c(t) Re ν−1s(t)).

We proceed in the same way as lemma (3) to obtain

det S̃2(t) = (Re c(t))2 +
ν2

1(Re s(t))2 − ν2
2(Im s(t))2

|ν|2 − γ√
α

Im ν−1s(t)c(t).

From the proof of lemma (3), we get

ν2
1

|ν|2 ((Re c(t))2 + (Re s(t))2) +
ν2

2

|ν|2 ((Re c(t))2 − (Im s(t))2),

53

and

(Re c(t))2 + (Re s(t))2 = cosh2(ν2t), (Re c(t))2 − (Re s(t))2 = cos2(ν1t),

which gives formula (3.2.48).

For the moment we have no hint as when the determinants are different from
0, except when γ = 0. We finally have the recursion equation.

(
α1

β1

)n+1

= M1

(
α2

β2

)n

,(
α2

β2

)n+1

= M2

(
α1

β1

)n+1

.

(3.2.50)

with M1 = S̃1(δ + T1)−1S1(δ − T2) and M2 = S̃−1
2 (−T2)S2(T1). Define

M = M1M2, (3.2.51)

then the recursion relation becomes(
α1

β1

)n+1

= M

(
α1

β1

)n
.

If the matrices S̃1 and S̃2 are invertible, then we can iterate and the conver-
gence depends of the spectral radius of M . Even though the general existence
theorem for the subproblems implies that those matrices are invertible, we
have no hint up to now on how to deal with γ. Therefore we study now
the case γ = 0, where the matrices are much simpler. If furthermore δ = 0:
no overlap, and the two windows are equal, the matrices simplify greatly,
depending only of one parameter T1 = T2. We call

A1 = S̃1(T1), A2 = S1(−T1), B1 = S̃2(−T1), B2 = S2(T1).

3.3 Study of the toy model

The toy model is as described above γ = 0, δ = 0, T1 = T2, and also α = 1.
We are aware that this problem is only academic. Indeed, in practice the

54

parameter α is often a regularization term, that could be very small, see
Remark 1. In this case, the formulas (3.2.5) for µ and ν simplify into

k ≥ 1, ξ(k) =
kπ

b− a, µ(k) = ξ2(k) + i, ν(k) =
√
µ(k) = ν1 + iν2,

ν2
1 − ν2

2 = ξ2(k), 2ν1ν2 = 1,

ν1 =
1√
2

√
ξ2(k) +

√
ξ4(k) + 1.

(3.3.1)
In particular ν1 is an increasing function of k, and ν2 a decreasing function
of k. Furthermore the matrices defining convergence are now

A1 =

(
Re c(T1) Re ν−1s(T1)
−Re νs(T1) Re c(T1)

)
, A2 =

(
Im c(T1) − Im ν−1s(T1)

Im νs(T1) Im c(T1)

)
,

(3.3.2)

B1 =

(
Re c(T1) −Re ν−1s(T1)

Re νs(T1) Re c(T1)

)
, B2 =

(
− Im c(T1) − Im ν−1s(T1)
Im νs(T1) − Im c(T1)

)
.

(3.3.3)
We note M1 = A−1

1 A2 and M2 = B−1
1 B2. From lemmas 3 and 4, the matrices

A1 and B1 have the same determinant equal to

d(T1) =
ν2

1 cosh2(ν2T1) + ν2
2 cos2(ν1T1)

|ν|2 . (3.3.4)

Note A = d(T1)M1 and B = d(T1)M2. Then

A =

(
Re c(T1) −Re ν−1s(T1)

Re νs(T1) Re c(T1)

)
×
(

Im c(T1) − Im ν−1s(T1)
Im νs(T1) Im c(T1)

)
,

which gives

A =

(
Re c(T1) Im c(T1)− Re ν−1s(T1) Im νs(T1) −Re c(T1) Im ν−1s(T1)− Im c(T1) Re ν−1s(T1)
Re νs(T1) Im c(T1) + Re c(T1) Im νs(T1) −Re νs(T1) Im ν−1s(T1) + Re c(T1) Im c(T1)

)
.

B =

(
Re c(T1) Re ν−1s(T1)
−Re νs(T1) Re c(T1)

)
×
(
,− Im c(T1) − Im ν−1s(T1)
Im νs(T1) − Im c(T1)

)
which gives

B =

(
−Re c(T1) Im c(T1) + Re ν−1s(T1) Im νs(T1) −Re c(T1) Im ν−1s(T1)− Im c(T1) Re ν−1s(T1)

Re νs(T1) Im c(T1) + Re c(T1) Im νs(T1) Re νs(T1) Im ν−1s(T1)− Re c(T1) Im c(T1)

)
.

55

Finally, we have

M =
1

d(T1)2
AB (3.3.5)

where, defining the coefficients of A to be aij,

A =

(
a11 a12

a21 a22

)
, B =

(
−a11 a12

a21 −a22

)
,

therefore

R := AB =

(
−a2

11 + a12a21 a12(a11 − a22)
−a21(a11 − a22) −a2

22 + a12a21

)
. (3.3.6)

The coefficients are

a11 = −sin(2ν1T1) sinh(2ν2T1)

2
+
ν1ν2

2|ν|2 (cos(2ν1T1)− cosh(2ν2T1)),

a12 =
−ν1 cos(2ν1T1) sinh(2ν2T1) + ν2 cosh(2ν2T1) sin(2ν1T1)

2|ν|2 ,

a21 =
ν1 cos(2ν1T1) sinh(2ν2T1) + ν2 cosh(2ν2T1) sin(2ν1T1)

2
,

a22 = −sin(2ν1T1) sinh(2ν2T1)

2
+
ν1ν2

|ν|2 (cosh(2ν2T1)− cos(2ν1T1)),

(3.3.7)
and since 2ν1ν2 = 1,

a11 = −sin(2ν1T1) sinh(2ν2T1)

2
− 1

4|ν|2 (cosh(2ν2T1)− cos(2ν1T1)),

a12 =
−ν1 cos(2ν1T1) sinh(2ν2T1) + ν2 cosh(2ν2T1) sin(2ν1T1)

2|ν|2 ,

a21 =
ν1 cos(2ν1T1) sinh(2ν2T1) + ν2 cosh(2ν2T1) sin(2ν1T1)

2
,

a22 = −sin(2ν1T1) sinh(2ν2T1)

2
+

1

4|ν|2 (cosh(2ν2T1)− cos(2ν1T1)).

(3.3.8)

56

3.3.1 Analysis of the eigenvalues

Theorem 3.3.1. The eigenvalues of M (see (3.2.51) and (3.3.5)) are real
negative, given by

λ± = − 1

d2

[√
ϕ± 1

4|ν|2 (cosh(2ν2T1)− cos(2ν1T1))
]2
,

ϕ =
1

4|ν|2
[
ν2

1 sinh2(2ν2T1)− ν2
2 sin2(2ν1T1)

]
,

d =
ν2

1 cosh2(ν2T1) + ν2
2 cos2(ν1T1)

|ν|2 .

(3.3.9)

Consequently, the spectral radius of the matrix M is

ρ(k, T1) =
[√ϕ+

1

4|ν|2 (cosh(2ν2T1)− cos(2ν1T1))

d

]2

. (3.3.10)

Proof. Since M = 1
d2
R, we concentrate on R, using the coefficients in (3.3.6).

Expand the characteristic polynomial of R

P (λ) = λ2 − Σλ+ Π,
Σ := TrR = 2a12a21 − (a2

11 + a2
22),

Π := DetR = (a12a21 − a11a22)2.
(3.3.11)

We see that the extradiagonal terms intervene only by their product, we call
C = a12a21.

P (λ) = (λ−(C− 1

2
(a2

11+a2
22)))2−Φ, Φ = (C− 1

2
(a2

11+a2
22))2−(C−a11a22)2.

(3.3.12)

Lemma 5. For all k and T1, Φ is positive.

Expand Φ using a2 − b2 = (a− b)(a+ b),

Φ =
[
C − 1

2
(a2

11 + a2
22) + C − a11a22

][
C − 1

2
(a2

11 + a2
22)− (C − a11a22)

]
,

=
[
2C − 1

2
(a2

11 + a2
22)− a11a22

][
− 1

2
(a2

11 + a2
22) + a11a22)

]
,

=
[
2C − 1

2
(a11 + a22)2

][
− 1

2
(a11 − a22)2

]
.

Φ = −1

2
(a11 − a22)2(2C − 1

2
(a11 + a22)2).

57

Φ = (a11 − a22)2ϕ, ϕ =
1

4
(a11 + a22)2 − C. (3.3.13)

Insert now the formulas for the aij into ϕ, using for shortening.

ζ1 := 2ν1T1, ζ2 := 2ν2T1.

a11 + a22 = − sin(ζ1) sinh(ζ2),

C := a12a21 =
1

4|ν|2 (ν2
2 cosh(ζ2) sin(ζ1)− ν2

1 cos(ζ1) sinh(ζ2))

ϕ =
1

4
sin2(ζ1) sinh2(ζ2)− 1

4|ν|2 (ν2
2 cosh2(ζ2) sin2(ζ1)− ν2

1 cos2(ζ1) sinh2(ζ2))

=
1

4|ν|2
[
|ν|2 sin2(ζ1) sinh2(ζ2)− (ν2

2 cosh2(ζ2) sin2(ζ1)− ν2
1 cos2(ζ1) sinh2(ζ2))

]
=

1

4|ν|2
[
ν2

1 sinh2(ζ2)− ν2
2 sin2(ζ1)

]
=

ν2
1ν

2
2

4|ν|2
[

sinh2(ζ2)

ν2
2

− sin2(ζ1)

ν2
1

]
=

4T 2
1 ν

2
1ν

2
2

4|ν|2
[

sinh2(ζ2)

ζ2
2

− sin2(ζ1)

ζ2
1

]
=

T 2
1

4|ν|2
[

sinh2(ζ2)

ζ2
2

− sin2(ζ1)

ζ2
1

]
> 0. (3.3.14)

The term in the bracket is positive since the first term is larger than 1 and
the second is smaller than 1. It is zero only if T1 or k is zero, which is not
in the range of values. Therefore we have proved that the eigenvalues are
always real. Their product is Π defined in 3.3.11 which is positive. Therefore
they are either both positive, or both negative. Let’s find the sign of their
sum Σ = 2C − (a2

11 + a2
22).

Σ = 1
2|ν|2

[
ν2

2 cosh2(ζ2) sin2(ζ1)− ν2
1 cos2(ζ1) sinh2(ζ2)

]
−
[sin2(ζ1) sinh2(ζ2)

2
+

1

8|ν|4 (cosh(ζ2)− cos(ζ1))2
]
,

= 1
2|ν|2

[
ν2

2 cosh2(ζ2) sin2(ζ1)− ν2
1 cos2(ζ1) sinh2(ζ2)− |ν|2 sin2(ζ1) sinh2(ζ2)

]
− 1

8|ν|4 (cosh(ζ2)− cos(ζ1))2,

= 1
2|ν|2 (ν2

2 sin2(ζ1)− ν2
1 sinh2(ζ2)))− 1

8|ν|4 (cosh(ζ2)− cos(ζ1))2,

= −2ϕ− 1

8|ν|4 (cosh(ζ2)− cos(ζ1))2 < 0.

58

Therefore the sum of the eigenvalues is negative, and there are both negative,
given by

λ± = −ϕ− 1

16|ν|4 (cosh(ζ2)− cos(ζ1))2 ±
√

Φ,

= −ϕ− 1

16|ν|4 (cosh(ζ2)− cos(ζ1))2 ± |a11 − a22|√ϕ.

But

|a11 − a22| =
1

2|ν|2 (cosh(ζ2)− cos(ζ1)),

and

λ± = −ϕ− 1

16|ν|4 (cosh(ζ2)− cos(ζ1))2 ± 1

2|ν|2 (cosh(ζ2)− cos(ζ1))
√
ϕ.

a =
√
ϕ, b =

1

4|ν|2 (cosh(ζ2)− cos(ζ1)),

λ± = −a2 − b2 ± 2ab = −(a∓ b)2.

a and b are positive, therefore

max(|λ±|) = (a+ b)2.

3.3.2 Numerical illustrations of the theoretical conver-
gence factor

On figure 3.2, we have plotted the convergence factor ρ(M) as a functions
of the two variables ξ and T1. On Figure 3.3, we have plotted ρ(M) as a
function of ξ for different values of T1 (the right part being a zoom the figure
is a zoom of the left one).

59

0

1

10

2

3

4

5

6

T
1

5

5430 210

Figure 3.2: ρ(M) as a function of ξ and T1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

0.1

1

2

20

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

0.1

1

2

20

40

Figure 3.3: ρ(M) as a function of ξ for different values of T1: 0.1, 1, 2, 20,
40.

1. For a given T , the function ξ 7→ ρ(M) seems decreasing. As a result,
the convergence factor corresponds to ρ(M) computed at the smallest

60

value of ξ, namely ξ1 = π
b−a associated with k = 1. We have not been

able to prove that. We use it as an empirical theorem. Because ξ1 is
proportional to the inverse of (b − a), the smaller the space interval,
the better the convergence is.

2. For a given ξ, the function T 7→ ρ(M) seems increasing but, here again,
we have not been able to prove it. However, we prove in Theorem 3.3.2
and Theorem 3.3.3 that the convergence factor is smaller than one for
small T and larger than one for T large.

3. For a given T , ρ(M) tends to 0 as ξ goes to infinity. Indeed,

lim
ξ→+∞

√
ϕ = lim

ξ→+∞

1

4|ν|2 (cosh(2ν2T1)− cos(2ν1T1)) = 0

and
lim

ξ→+∞
d = 1.

As a result, the inherited algorithm acts as a smoother and is in the-
ory very efficient for high frequencies. As a consequence, the conver-
gence factor will a priori not deteriorate as the discretization step (in
space and time) decreases. Indeed, a smaller space and time step leads
to consider higher frequencies, that are efficiently treated by the al-
gorithm. This result has to be temperated by numerical results (see
Section 3.3.4) that show that in practice, the numerical convergence
rate for high frequencies is different from the theoretical one (although
the worst convergence rate is still obtained at the small frequency).

3.3.3 Theoretical convergence results

Theorem 3.3.2. There exists T0 > 0 such that, for any T < T0, the algo-
rithm converges.

61

Proof. We first prove that d(T1) > 1:

d(T1) =
ν2

1 cosh2(ν2T1) + ν2
2 cos2(ν1T1)

ν2
1 + ν2

2

=
cosh2(ν2T1) +

ν22
ν21

cos2(ν1T1)

1 +
ν22
ν21

=
cosh2(ν2T1) + 4ν4

2 cos2(ν1T1)

1 + 4ν4
2

=
cosh2(ν2T1) + 4ν4

2 − 4ν4
2 sin2(ν1T1)

1 + 4ν4
2

≥ cosh2(ν2T1) + 4ν4
2 − 4ν4

2ν
2
1T

2
1

1 + 4ν4
2

≥ cosh2(ν2T1) + 4ν4
2 − ν2

2T
2
1

1 + 4ν4
2

≥ 1 + ν2
2T

2
1 +

ν42T
4
1

4
+ 4ν4

2 − ν2
2T

2
1

1 + 4ν4
2

=
1 +

ν42T
4
1

4
+ 4ν4

2

1 + 4ν4
2

> 1.

Then, it is easily seen (see formula (3.3.9), reminding that ϕ is positive (3.3.14))
that

ϕ ≤ 1

4
sinh2(2ν2T1),

and
1

4|ν|2 (cosh(2ν2T1)− cos(2ν1T1)) ≤ 1

4|ν|2 (cosh(2ν2T1) + 1) .

Therefore, we can somehow ’brutally’ bound the convergence factor as fol-
lows:√

ρ(k, T1) ≤ 1

2
sinh(2ν2T1) +

1

4|ν|2 (cosh(2ν2T1) + 1)

≤ 1

2
sinh(2ν2(1)T1) +

1

4|ν(1)|2 (cosh(2ν2(1)T1) + 1) . (3.3.15)

Here, we use the fact that k 7→ ν2(k) and k 7→ 1
|ν(k)|2 are both decaying. The

function f : R→ R defined by

f(T1) =
1

2
sinh(2ν2(1)T1) +

1

4|ν(1)|2 (cosh(2ν2(1)T1) + 1) ,

is strictly increasing and continuous. Since |ν(1)| > 1,

f(0) =
1

2|ν(1)|2 ≤
1

2
< 1.

62

Moreover
lim

T1→+∞
f(T1) = +∞,

and by the intermediate values Theorem, there exists T0 > 0 such that, for
any T1 < T0 (T = 2T1), the algorithm converges.

We notice that our upper-bound is not very sharp. On Figure 3.4, we plot√
ρ and its upper bound f with respect to T1 in the case a = 0 and b = 1.

We remark that for large T1, f is much bigger than
√
ρ.

5 10 15 20
0

0.5

1

1.5

2

Figure 3.4: Evolution of
√
ρ (plain) and f (dashed) with respect to T1

Theorem 3.3.3. For fixed k, as T1 tends to infinity,

ρ(M) ∼
(|ν|
ν1

+
1

2ν2
1

)2
> 1. (3.3.16)

Therefore there exists a time T̄ such that the algorithm diverges for T > T̄ .

Proof. If T1 tends to infinity, cosh(ν2T1) ∼ sinh(ν2T1) ∼ 1
2
eν2T1 . Similarly

cosh(2ν2T1) ∼ 1
2
e2ν2T1 ∼ 2 cosh2(ν2T1) . Replace in (3.3.9):

63

d ∼ ν2
1 cosh2(ν2T1)

|ν|2 ,

ϕ ∼ ν2
1

4|ν|2 sinh2(2ν2T1),

λ± = − 1

d2

[√
ϕ± 1

4|ν|2 (cosh(2ν2T1)− cos(2ν1T1))
]2
.

Therefore

−λ+ ∼ 1

d2

[ν1

2|ν| sinh(2ν2T1) +
1

4|ν|2 cosh(2ν2T1))
]2
,

∼
(

sinh(2ν2T1)

d

)2 [ν1

2|ν| +
1

4|ν|2
]2
,

∼
(

sinh(2ν2T1)
|ν|2

ν2
1 cosh2(ν2T1)

)2 [ν1

2|ν| +
1

4|ν|2
]2
,

∼
(

2
|ν|2
ν2

1

)2 [ν1

2|ν| +
1

4|ν|2
]2
,

=
(|ν|
ν1

+
1

2ν2
1

)2
> 1.

3.3.4 Numerical comparison

We finish this chapter by discussing the practical efficiency of the inherited
algorithm. The discretization of the subproblems in domains 1 and 2 is based
on the finite volume approach described in Section 2.2 (we remind that the
subproblem have by construction the same structure as the initial one, see
Section 3.1.2).
On Figure 3.5, we plot the theoretical and numerical convergence factor with
respect to the frequency k. For the experiment, we choose T = 1, b = 1 and
a = 0. We use N = 51 discretization points in space (∆x = 1/50) and ∆t =
∆x. For each frequency, the theoretical convergence factor is computed using
Theorem 3.3.1. For the numerical one, we solve the homogeneous problem
(without source, computing the zero solution) and we initialize the domain
decomposition algorithm by the following mono-frequency initial guess:

λ0
2(xj, T1) = sin(

kπ

b− axj), ∂tλ
0
2(xj, T1) = 0 xj = j∆x.

64

0 20 40 60

k

10
-6

10
-4

10
-2

c
o

n
v
e

rg
e

n
c
e

 f
a

c
to

r

 theory

numerics

Figure 3.5: Numerical and theoretical convergence factor for N = 51

The convergence factor is then computed by making the quotient of the L2

norm of the approximate solution between two consecutive iterations:

ρnum(k) =
‖y(j)

∆x‖L2((a,b)×(0,T))

‖y(j−1)
∆x ‖L2((a,b)×(0,T))

. (3.3.17)

Note that y
(j)
∆x = (y

(j)
∆x,1, y

(j)
∆x,2) stands for the approximate solution on the

whole domain (a, b)× (0, T) at iteration j obtained by concatenating the so-
lutions on domain 1 and 2. For the computation, we have chosen empirically
j = 5.

We first remark that numerical and theoretical convergence rates coincide for
small frequencies but not for high frequencies. Reproducing the experiment
for finer meshes on Figure 3.6 leads to the same observation. We point out
that the coincidence of theoretical and numerical rates holds for about 10
frequencies for N = 51, 20 frequencies for N = 101 and 40 frequencies for
N = 201. Therefore, for each k the numerical convergence rate tends punc-
tually toward the theoretical one as ∆x goes to 0, the convergence being
not uniform with respect to k. Besides, we also remark that the numeri-
cal convergence rate is almost symmetric with respect the middle frequency

65

kmin+kmax

2
, although we are not able to explain this phenomenon (a precise

theoretical study of the discrete convergence rate is then required).

0 50 100

k

10
-5

c
o

n
v
e

rg
e

n
c
e

 f
a

c
to

r

 theory

numerics

(a) N = 101

0 50 100 150 200

k

10
-5

c
o

n
v
e

rg
e

n
c
e

 f
a

c
to

r

 theory

numerics

(b) N = 201

Figure 3.6: Numerical and theoretical convergence factor

On figure 3.7, in the case N = 50, we plot the error with respect of
the number of iterations for three different values of k. For k = 1, we
obtain a straight line while for the two other frequencies, there is an inflection
point after about 8 iterations: we see successively two different convergence
rates. We point out that after the inflection point, the three curves look
parallel, meaning that, after a few iterations, the convergence rate for the
three frequencies is approximately the same. The situation is similar when
refining the mesh. We also notice that the convergence curve starting with
a random initial guess seems to be similar to the case k = 1.
To visualize the phenomenon, we plot the approximate solutions y

(j)
∆x and

λ
(j)
∆x for k ∈ {1, 20, 40} at different iterations (j ∈ {2, 5, 7, 20}). For k =

1 (Fig. 3.8), the shape of the solution remains globally the same at each
iteration. This is not the case for k = 20 and k = 37 (Fig. 3.9,3.10) wherein
the solution, initialized with a high frequency initial guess seems to become
smoother after a few iterations.

We also investigate the convergence of the algorithm with respect to T1

in Figure 3.11. In that experiment, we compute the numerical convergence
factor by using (3.3.17) for j = 5 and taking the maximum over all the
frequencies k. As in the continuous case, the numerical convergence factor
seems to be an increasing function of T and there is a number T ∗num such that
the algorithm converges if T < T ∗num while diverges for T ≥ T ∗num. We remark
that T ∗num almost coincides with the theoretical parameter T ∗, although it is
always smaller than the theoretical one.

66

0 5 10 15 20 25 30 35 40 45 50

iteration

10
-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

e
rr

o
r

k = 1

k = 20

k = 40

rand

Figure 3.7: Error with respect to the number of iterations for different values
of k

(a) j = 2 (b) j = 5

(c) j = 7 (d) j = 20

Figure 3.8: Solution y
(j)
∆x and λ

(j)
∆x for k = 1

67

(a) j = 2 (b) j = 5

(c) j = 7 (d) j = 20

Figure 3.9: Solution y
(j)
∆x and λ

(j)
∆x for k = 20

68

(a) j = 2 (b) j = 5

(c) j = 7 (d) j = 20

Figure 3.10: Solution y
(j)
∆x and λ

(j)
∆x for k = 37

0 2 4 6 8 10 12 14 16 18 20

T
1

0

0.2

0.4

0.6

0.8

1

1.2

C
o

n
v
e

rg
e

n
c
e

 f
a

c
to

r

theory

numerics

rho = 1

Figure 3.11: Convergence factor with respect to T1

69

Finally, we consider the case of several subdomains, using the parallel
inherited algorithm: to be more specific, we fixed T , ∆t and ∆x. It means
that when using more subdomains, the subproblems to solve have a smaller
size. We plot the error with respect to the number of iterations starting
from a random initial guess. We see that the convergence rate deteriorates
as the the number of subdomains increases, meaning that our algorithm is
not scalable. This is not surprising since this is a classical feature of domain
decomposition methods that can be overcome by the addition of a coarse
grid solver (see [38, 27, 25, 24, 12]).

0 20 40 60 80 100 120 140 160 180

iteration

10
-10

10
-5

10
0

l2
 e

rr
o
r

sub = 2

sub = 4

sub = 8

sub = 16

Figure 3.12: Convergence with respect to the number of iterations for 2, 4,
8 and 16 subdomains in time

70

Chapter 4

Variants of algorithm

71

4.1 Description

In the chapter, we continue to work on the ’toy problem’, that is in one
dimension, with γ = 0, no overlap δ = 0, and α = 1, T1 = T/2. We have
defined the inherited algorithm that converges for T ≤ T0 but diverges for T
large.

The aims of this chapter is to study two different algorithms: the first
one is the inherited algorithm with relaxation, while the second one, which
contains relaxation inherently, is a Dirichlet-Neumann type algorithm.

4.2 Relaxed Inherited algorithm

Let us first describe the relaxed Inherited algorithm. It iterates on λn, λ′,n

as follows:

- Step 1, domain 1: Final transmission conditions in (0, T1):

λn+1
1 (T1) = λn, ∂tλ

n+1
1 (T1) = λ′n,

- Step 2, domain 2: Initial transmission conditions in (T1, T):

yn+1
2 (T1) = yn+1

1 (T1), ∂ty
n+1
2 (T1) = ∂ty

n+1
1 (T1),

- Step 3, relaxation step:(
λn+1

λ′n+1

)
= θ

(
λn+1

2

∂tλ
n+1
2

)
+ (1− θ)

(
λn

λ′n

)
The iteration matrix is

Mθ = (1− θ)I + θM, (4.2.1)

where M is defined in (3.2.51) in the general case, and is given by (3.3.5) for
the toy model. The eigenvalue of Mθ are given by

λ±(θ) = (1− θ) + θλ±,

where λ± (depending on T , a, b and k) are real negative and given by (3.3.9).

We first prove that we are always able to find a parameter θ such that the
relaxed inherited algorithm converges:

72

Theorem 4.2.1. Let T > 0, (a, b) ∈ R2 such that b > a and let

θ∗ =
2

(1 + max
k∈[kmin,kmax]

|λ−|)
.

For any θ ∈ (0, θ∗), the relaxed inherited algorithm converges. In particular,
if the inherited algorithm converges without relaxation, the relaxed inherited
converges for any θ ∈ (0, 1].

Proof. The algorithm converges if and only if, for any k ∈ [kmin, kmax],

−1 < λ±(θ) < 1,

that is to say

−1 < 1− θ(1− λ±) < 1⇔ −2 < −θ(1− λ±) < 0.

Because λ± are always negative (see (3.3.9)), (1 − λ±) > 0, and the second
inequality is always fulfilled for θ > 0. Then, the first equality becomes

θ <
2

(1− λ±)
∀k ∈ [kmin, kmax]. (4.2.2)

Reminding that λ−(k) < λ+(k) < 0 for any k ∈ [kmin, kmax], we have

1 < 1− λ+ < 1− λ−.
Therefore, the condition (4.2.2) is equivalent to

θ <
2

(1− λ−)
∀k ∈ [kmin, kmax].

Noticing that

min
k∈[kmin,kmax]

2

(1− λ−)
=

2

(1 + max
k∈[kmin,kmax]

|λ−|)
= θ∗,

then, for any θ ∈ (0, θ∗), the algorithm converges.

If the inherited algorithm (without relaxation) converges, then

max
k∈[kmin,kmax]

|λ−| < 1

so that θ∗ > 1. Consequently, the relaxed inherited algorithm converges for
any θ ∈ (0, 1).

73

Remark 4.

- Because it seems numerically that maxk∈[kmin,kmax] |λ−| = |λ−(kmin)| (see
Section 3.3.2), presumably,

θ∗ =
2

(1 + |λ−(kmin)|) .

- For θ = 0, and θ = θ∗, the associated convergence factor is equal to 1.

Let us define
ρrelax(θ) = max

k∈[kmin,kmax]
max
±
|λ±(θ)|.

The next natural question is to know if we can choose θ that minimizes the
convergence factor ρrelax, namely if we can solve

min
θ∈[0,θ∗]

ρrelax(θ). (4.2.3)

Theorem 4.2.2. In the case kmax < +∞, this problem has a solution.

Proof. the function ρrelax is continuous. Indeed, the function λ±(θ) are con-
tinuous functions on [kmin, kmax] × [0, θ∗]. Therefore, maxk∈[kmin,kmax] |λ±(θ)|
are continuous with respect to θ, and consequently ρrelax. Because [0, θ∗] is
compact, the function ρrelax reaches a minimum.

It seems not trivial to obtain a closed formula for the optimal θ. However,
the case kmax = +∞ appears easy to solve.

Theorem 4.2.3. Assume that kmax = +∞ and that the function k 7→ λ−(k)
is increasing. The minimum of ρrelax is reached in

θopt =
2

2− λ−(kmin)
< min(θ∗, 1). (4.2.4)

The corresponding convergence factor is equal to 1− θopt.
Proof. Let

θ1 =
1

1− λ−(kmin)

We remark that θ1 < θopt < min(θ∗, 1). Indeed,

θ1 < θ∗ ⇔ λ−(kmin) < 0 and 2− λ−(kmin) > 1− λ−(kmin).

Let us consider separately the intervals [0, θ1] and [θ1, θ
∗].

74

- For θ ∈ [0, θ1], the quantities

(1− θ) + θλ±

are both positive for any k ∈ [kmin,+∞). Indeed,

(1− θ) + θλ+(k) ≥ (1− θ) + θλ−(k) ≥ (1− θ) + θλ−(kmin) > 0.

As a result,
ρrelax(θ) = (1− θ) + θλ+(k).

Besides, reminding that λ+(k) < 0 and limk→+∞ λ+(k) = 0

(1− θ) + θλ+(k) ≤ (1− θ) and lim
k→+∞

(1− θ) + θλ+(k) = (1− θ).

Therefore
ρrelax(θ) = 1− θ.

- For θ ∈ [θ1, θ
∗], we still have

(1− θ) + θλ+(k) ≤ (1− θ), lim
k→+∞

(1− θ) + θλ±(k) = (1− θ).

and (1 − θ) + θλ−(k) ≤ (1 − θ) + θλ+(k). The only difference is that
(1− θ) + θλ−(k) take negative values (for small k). As a result, using
again the monotony of λ−(k), (see Fig. 4.1)

ρrelax(θ) = max{(1− θ),− ((1− θ) + θλ−(kmin))}.

Note that
(1− θ) = (θ − 1)− θλ−(kmin)

if and only if θ = θopt. Therefore, for θ ∈ [θ1, θopt], the maximum is
1− θ while for θ ∈ [θopt, θ

∗], the maximum is (θ − 1)− θλ−(kmin).

To summarize,

ρrelax(θ) =

{
1− θ if θ < θopt

(θ − 1)− θλ−(kmin) if θ ∈ [θopt, θ
∗].

Since θ 7→ 1− θ is decreasing and θ 7→ θ(1− λ−(kmin))− 1 is increasing, the
minimum of ρrelax is reached in θopt.

75

<latexit sha1_base64="lYD2cCygrjELQbJxJAFOVtJA+yM=">AAACxHicjVHLSsNAFD2Nr/quunQTLIKrkoioy4IgXbZgH1CLJOm0Dp0mITMRStEfcKvfJv6B/oV3ximoRXRCkjPn3nNm7r1hKrhUnvdacBYWl5ZXiqtr6xubW9ulnd2WTPIsYs0oEUnWCQPJBI9ZU3ElWCfNWDAOBWuHowsdb9+xTPIkvlKTlPXGwTDmAx4FiqjG6KZU9iqeWe488C0ow656UnrBNfpIECHHGAwxFGGBAJKeLnx4SInrYUpcRoibOMM91kibUxajjIDYEX2HtOtaNqa99pRGHdEpgt6MlC4OSZNQXkZYn+aaeG6cNfub99R46rtN6B9arzGxCrfE/qWbZf5Xp2tRGODc1MCpptQwurrIuuSmK/rm7peqFDmkxGncp3hGODLKWZ9do5Gmdt3bwMTfTKZm9T6yuTne9S1pwP7Pcc6D1nHFP634jZNytWZHXcQ+DnBE8zxDFTXU0TTej3jCs3PpCEc6+WeqU7CaPXxbzsMHUAKPfA==</latexit>

k

<latexit sha1_base64="H9MBXb4Pg+/6KXFd63srPI0O/RI=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwY0lE1GXBTXdWsA9siyTTaRuaF5OJUKpu/QG3+lviH+hfeGdMQS2iE5KcOfeeM3PvdWPfS6RlveaMufmFxaX8cmFldW19o7i51UiiVDBeZ5EfiZbrJNz3Ql6XnvR5KxbcCVyfN93RmYo3b7hIvCi8lOOYdwNnEHp9jzmSqCvbPDA7csilc10sWWVLL3MW2BkoIVu1qPiCDnqIwJAiAEcISdiHg4SeNmxYiInrYkKcIOTpOMcdCqRNKYtThkPsiL4D2rUzNqS98ky0mtEpPr2ClCb2SBNRniCsTjN1PNXOiv3Ne6I91d3G9Hczr4BYiSGxf+mmmf/VqVok+jjVNXhUU6wZVR3LXFLdFXVz80tVkhxi4hTuUVwQZlo57bOpNYmuXfXW0fE3nalYtWdZbop3dUsasP1znLOgcVi2j8v2xVGpUs1GnccOdrFP8zxBBVXUUCfvEI94wrNxbqTGrXH/mWrkMs02vi3j4QP3GZJ7</latexit>

1 � ✓

<latexit sha1_base64="tbRjzDX71r+Sfxpc3ONoHoccLSE=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVlw02VF+4BWS5JO69C8mEzEUgri1h9wqz8l/oH+hXfGFNQiOiHJmXPvOTP3Xjf2eSIt6zVnzM0vLC7llwsrq2vrG8XNrUYSpcJjdS/yI9FynYT5PGR1yaXPWrFgTuD6rOkOT1W8ecNEwqPwQo5idhk4g5D3uedIoq6G3XFHsls5Dng4mXSLJats6WXOAjsDJWSrFhVf0EEPETykCMAQQhL24SChpw0bFmLiLjEmThDiOs4wQYG0KWUxynCIHdJ3QLt2xoa0V56JVnt0ik+vIKWJPdJElCcIq9NMHU+1s2J/8x5rT3W3Ef3dzCsgVuKa2L9008z/6lQtEn2c6Bo41RRrRlXnZS6p7oq6ufmlKkkOMXEK9yguCHtaOe2zqTWJrl311tHxN52pWLX3stwU7+qWNGD75zhnQeOgbB+V7bPDUqWajTqPHexin+Z5jAqqqKFO3gKPeMKzcW6MjDvj/jPVyGWabXxbxsMH7m6Vsg==</latexit>

kmin

<latexit sha1_base64="sqfa8co8MtcanLoDaKYocBpqfao=">AAAC43icjVHLSsNAFD3GV62vqktBBotQEUsioi4FNy4V7ANaKZN01MFpEpKJUIo7d+7ErT/gVv9F/AP9C++MEXwgOiHJmXPvOTP3Xj9WMtWu+zzkDI+Mjo0XJoqTU9Mzs6W5+XoaZUkgakGkoqTp81QoGYqallqJZpwI3vOVaPjneybeuBBJKqPwSPdjcdzjp6E8kQHXRHVKSxWPrbf1mdB8la2xd8Taihy6vLPeKZXdqmsX+wm8HJSRr4Oo9IQ2uogQIEMPAiE0YQWOlJ4WPLiIiTvGgLiEkLRxgUsUSZtRlqAMTuw5fU9p18rZkPbGM7XqgE5R9CakZFghTUR5CWFzGrPxzDob9jfvgfU0d+vT38+9esRqnBH7l+4j8786U4vGCXZsDZJqii1jqgtyl8x2xdycfapKk0NMnMFdiieEA6v86DOzmtTWbnrLbfzFZhrW7IM8N8OruSUN2Ps+zp+gvlH1tqre4WZ5dz8fdQGLWEaF5rmNXezjADXyvsI9HvDoCOfauXFu31OdoVyzgC/LuXsDUtmZ6w==</latexit>

(1 � ✓) + ✓��

<latexit sha1_base64="slCkyzMCoNghcNmKY2r1pbKQimk=">AAAC43icjVHLSsNAFD2N73fVpSCDRVDEkoioy4KbLivYVrBSJtNRg9MkJBOhiDt37sStP+BW/0X8A/0L70xT8IHohCRnzr3nzNx7/VgFqXbd14IzNDwyOjY+MTk1PTM7V5xfaKRRlghZF5GKkiOfp1IFoazrQCt5FCeSd30lm/7Fvok3L2WSBlF4qHuxPOnyszA4DQTXRLWLy2se22zpc6n5OttgfcRaihw6vL3RLpbcsmsX+wm8HJSQr1pUfEELHUQQyNCFRAhNWIEjpecYHlzExJ3giriEUGDjEteYJG1GWZIyOLEX9D2j3XHOhrQ3nqlVCzpF0ZuQkmGVNBHlJYTNaczGM+ts2N+8r6ynuVuP/n7u1SVW45zYv3SDzP/qTC0ap9izNQRUU2wZU53IXTLbFXNz9qkqTQ4xcQZ3KJ4QFlY56DOzmtTWbnrLbfzNZhrW7EWem+Hd3JIG7H0f50/Q2Cp7O2XvYLtUqeajHscSVrBG89xFBVXUUCfvGzziCc+OdG6dO+e+n+oUcs0ivizn4QNOGZnp</latexit>

(1 � ✓) + ✓�+

<latexit sha1_base64="FqwRwBLO7PGep4RbSeyEX8ZJZyE=">AAAC9HicjVHLSsNAFD3Gd31VXboZLEKlWBMRdSm4calgrWCkTNKpDs2LZCJK6We4cydu/QG3+g3iH+hfeGeM4APRCUnOnHvPmbn3ekkgM2XbzwPW4NDwyOjYeGlicmp6pjw7d5jFeeqLhh8HcXrk8UwEMhINJVUgjpJU8NALRNPr7uh481ykmYyjA3WZiJOQn0ayI32uiGqVV6sOW3HVmVB8mdXYO2JuQA5t3qpVXSUuVK/bb/XcUEb95Va5Ytdts9hP4BSggmLtxeUnuGgjho8cIQQiKMIBODJ6juHARkLcCXrEpYSkiQv0USJtTlmCMjixXfqe0u64YCPaa8/MqH06JaA3JSXDEmliyksJ69OYiefGWbO/efeMp77bJf29wiskVuGM2L90H5n/1elaFDrYMjVIqikxjK7OL1xy0xV9c/apKkUOCXEatymeEvaN8qPPzGgyU7vuLTfxF5OpWb33i9wcr/qWNGDn+zh/gsO1urNRd/bXK9u7xajHsIBFVGmem9jGLvbQIO8r3OMBj9a5dW3dWLfvqdZAoZnHl2XdvQHURaFf</latexit>

(1 � ✓) + ✓�+(kmin)

Figure 4.1: Schematic representation of (1− θ) + θλ±(k) for θ ∈ [θ1, θ
∗].

The previous theorems are illustrated on Figure 4.2 for two different values
of T (T = 1 and T = 10). We have chosen a = 0, b = 1 and kmax = 100.
The red cross corresponds to the value θ∗, namely the largest value of k
that makes the relaxed algorithm converging. The circle corresponds to the
optimal parameter θopt computed using the formula (4.2.4). We notice that
it provides a good estimation even for kmax is finite. This is probably due to
the fact that λ± goes very fast to 0 as kmax goes to infinity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) T = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) T = 40

Figure 4.2: Convergence factor with respect to θ

Remark 5. If the case kmax large were similar to the case kmax = +∞
(this is not proved), then the previous lemma is an encouraging result if we

76

think of solving the corresponding interface problem using GMRES (seeing
the inherited algorithm as a preconditioner). Indeed, the GMRES algorithm
is usually better than the relaxation one.

We made some numerical tests on the discretized problem using the finite
volume method described in Chapter 2. In Figure 4.3, we evaluate the theo-
retical and numerical convergence factor as a function of T and θ. We remark
that theoretical and numerical convergence factor coincide. Then, we plot on
Figure 4.4, the error with respect to the number of iterations for T = 1 and
T = 40 for two values of θ: θ = 1 (no relaxation) and θ = θopt (computed
using formula 4.2.4). In the first case, the inherited algorithm already con-
verges but the convergence rate is improved using a relaxed parameter. In
the second case T = 40, the inherited algorithm diverges without relaxation
but adding the relaxation parameter permits to recover the convergence.

Figure 4.3: theoretical and numerical convergence factors with respect to T1

and θ

77

1 2 3 4 5 6 7 8 9 10 11

iteration

10
-20

10
-15

10
-10

10
-5

10
0

e
rr

o
r

opt
 = 0.99

 = 1

(a) T = 1

0 2 4 6 8 10 12 14 16 18 20

iteration

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

e
rr

o
r

opt
 = 0.64

 = 1

(b) T = 40

Figure 4.4: Error with respect to the number of iterations with and without
relaxation

4.3 The Dirichlet-Neumann algorithm

4.3.1 The Poisson equation

The Dirichlet-Neumann algorithm was invented by Bjorstad and Widlund in
1986 [9] for elliptic problems. We first recall the definition and properties for
the Poisson problem on a rectangle divided into two sub rectangles, without
overlap. The domain in x is (0, L) and in y it is (−a1, a2). The goal is to
solve −∆u = f in Ω, with Dirichlet boundary condition u = 0 all around.

Ω is divided into Ω1 = (0, L) × (−a1, 0) and Ω2 = (0, L) × (0, a2). One
step of the algorithm is defined as follows. Given gn(x) define the iterate n
in Ω1 by

−∆un1 = f in Ω1,
un1 = 0 in ∂Ω1 ∩ ∂Ω,
un1 = gn in ∂Ω1 \ ∂Ω.

(4.3.1)

−∆un2 = f in Ω2,
un2 = 0 in ∂Ω2 ∩ ∂Ω,
∂yu

n
2 = ∂yu

n
1 in ∂Ω2 \ ∂Ω.

(4.3.2)

gn+1 = θun2 + (1− θ)gn, (4.3.3)

with θ ∈ (0, 1). The error is solution of the same algorithm with zero data.
It is computed by series in x as in previous chapter. Write

gn =
∑
k≥1

ĝn(k) sin ξkx,

78

with ξk = kπ/L. Then

unj =
∑

ûnj (ξk, y) sin ξkx,

with the transmission conditions

ûn1 (ξk, 0) = ĝn(k), ∂yû
n
2 (ξk, 0) = ∂yû

n
1 (ξk, 0).

We separate 3 cases
Case 1 a1 = a2 = +∞. Then

ûn1 (ξk, y) = αn1 (k)eξky, ûn2 = αn2 (k)e−ξky.

Use the transmission conditions

αn1 = ĝn, αn2 = −αn1 .

Therefore
ĝn+1 = (1− 2θ)ĝn.

The convergence factor is 1 − 2θ. For θ = 1
2

the algorithm converges in one
iteration. For θ ∈ (0, 1),

‖ĝn+1‖ = |1− 2θ|‖ĝn‖,

and by Parseval identity, the sequence gn converges geometrically.
Case 2 a1 = a2 := a < +∞
Then

ûn1 (ξk, y) = ĝn(k)
sinh(ξk(y + a))

sinh(ξka)
, ûn2 = αn2 (k) sinh(ξk(y − a)).

Use the transmission conditions for ûn2

αn2 cosh(ξka) = ĝn(k)
cosh(ξka)

sinh(ξka)

Therefore αn2 = ĝn

sinh(ξka)
, and

ĝn+1 = (1− 2θ)ĝn.

79

Case 3 a1 6= a2 = +∞ The same analysis gives

ĝn+1 = ĝn
[
1− θ(1 +

tanh(ξka2)

tanh(ξka1)
)

]
.

Then the convergence factor is ρ(ξ) = 1 − θ(1 + tanh(ξa2)
tanh(ξa1)

). The algorithm
converges if for all k, its absolute value is smaller than 1. It diverges if there
exists a k for which it is larger than 1 (see [43])

∂ξρ = −θ
[

a2
cosh2(ξa2) tanh(ξa1)

− a1 tanh(ξa2)

sinh2(ξa1)

]
= −θ

[
a2 cosh(ξa1)

cosh2(ξa2) sinh(ξa1)
− a1 sinh(ξa2)

cosh(ξa2) sinh2(ξa1)

]
= − θ(a2 cosh(ξa1) sinh(ξa1)−a1sinh(ξa2) cosh(ξa2))

cosh2(ξa2) sinh2(ξa1)

= − θ(a2 sinh(2ξa1)−a1sinh(2ξa2))

2 cosh2(ξa2) sinh2(ξa1)

= − a2a1ξθ
2 cosh2(ξa2) sinh2(ξa1)

(sinh(2ξa1)
2ξa1

− sinh(2ξa2)
2ξa2

)

= a2a1ξθ
2 cosh2(ξa2) sinh2(ξa1)

(sinh(2ξa2)
2ξa2

− sinh(2ξa1)
2ξa1

)

The function x→ sinh(x)/x is increasing, furthermore

lim
ξ→0

ρ(ξ) = 1− θ(1 +
a2

a1

)

lim
ξ→+∞

ρ(ξ) = 1− 2θ ∈ (−1, 1),

• If a1 > a2, ρ is decreasing in ξ. Furthermore ρ(0) ∈ (−1, 1), we have
for all values of θ, for all values of ξ, |ρ(ξ)| < 1, and the algorithm
converges. Can we find an optimal θ. There are three cases, depending
on θ:

– ρ(0) > ρ(+∞) > 0, which is equivalent to 1−2θ > 0 ⇐⇒ θ < 1
2
.

Then
max
ξ
|ρ(ξ)| = ρ(0) = 1− θ(1 +

a2

a1

).

– > ρ(0) > 0 > ρ(+∞), or equivalently 1
2
< θ < 1/(1 + a2

a1
), then

max
ξ
|ρ(ξ)| = max(ρ(0),−ρ(+∞)) = max(2θ − 1, 1− θ(1 +

a2

a1

)).

– 0 > ρ(0) > ρ(+∞), or equivalently 1
1+

a2
a1

< θ < 1, then

max
k
|ρ(k)| = −ρ(+∞) = 2θ − 1

80

Therefore the optimal θ is when 2θ − 1 = 1− θ(1 + a2
a1

) that is

θopt =
2

3 + a2
a1

.

• If a1 < a2, ρ is increasing in ξ. There are three cases, depending on θ:

– 0 < ρ(0) < ρ(+∞), which is equivalent to 0 < 1−θ(1+ a2
a1

) < 1−2θ
or θ < 1/(1 + a2

a1
). Then

max
ξ
|ρ(ξ)| = ρ(+∞) = 1− 2θ.

– ρ(0) < 0 < ρ(+∞), or equivalently 1/(1 + a2
a1

) < θ < 1
2
, then

max
ξ
|ρ(ξ)| = max(−ρ(0), ρ(+∞)) = max(1− 2θ,−1 + θ(1 +

a2

a1

)).

– 0 < ρ(0) < ρ(+∞) < 0, or equivalently θ > 1
2
, then

max
ξ
|ρ(ξ)| = −ρ(0) = −1 + θ(1 +

a2

a1

)

We have two conclusions

1. The algorithm diverges for θ > θlim = 2
1+

a2
a1

,

2. The maximum of |ρ| is minimal for

θopt =
2

3 + a2
a1

.

For all values of θ ∈ (0, θopt), the algorithm converges.

4.3.2 Dirichlet Neumann algorithm for the control prob-
lem

This question of symmetry does not arise in the previous algorithm. In
order to take this phenomenon into account we change a little bit the defi-
nition of the intervals in time. The time interval for the control problem is

81

(−T1, T2), and will be divided into (−T1, 0) and (0, T2). Motivated by the
paper by Gander and Yongxiang Liu [48], we create a new algorithm which
is called Dirichlet Neumann algorithm. We solve the optimality system 2.1.8
by changing the transmission conditions in (3.1.1,3.1.2). Let G0 a function
of x, define recursively an algorithm on Gn by

In subdomain O1 = (−T1, 0),

State equation

∂tty
n+1
1 −∆yn+1

1 − 1

α
λn+1
1 = 0, in Ω×O1, (4.3.4a)

with boundary condition

yn+1
1 = 0 in ∂Ω×O1, (4.3.4b)

with initial data

yn+1
1 (·,−T1) = y(0), ,

∂ty
n+1
1 (·,−T1) = y(1), in Ω, (4.3.4c)

Adjoint equation

∂ttλ
n+1
1 −∆λn+1

1 + yn+1
1 = ŷ, in Ω×O1, (4.3.4d)

with boundary condition

λn+1
1 = 0 in ∂Ω×O1, (4.3.4e)

with the transmission final conditions

(yn+1
1 , λn+1

1)(·, 0) = Gn(·, 0). (4.3.4f)

In subdomain O2 = (0, T2),

State equation

∂tty
n+1
2 −∆yn+1

2 − 1

α
λn+1

2 = 0, in Ω×O2, (4.3.5a)

82

with boundary condition

yn+1
2 = 0 in ∂Ω×O2, (4.3.5b)

with initial transmission conditions

∂ty
n+1
2 (·, 0) = ∂ty

n+1
1 (·, 0), in Ω,

∂tλ
n+1
2 (·, 0) = ∂tλ

n+1
1 (·, 0), in Ω. (4.3.5c)

Adjoint equation

∂ttλ
n+1
2 −∆λn+1

2 + yn+1
2 = ŷ, in Ω×O2, (4.3.5d)

with boundary condition

λn+1
2 = 0 in ∂Ω×O2. (4.3.5e)

with the final conditions

λn+1
2 (·, T2) = 0,

∂tλ
n+1
2 (·, T) = γ(yn+1

2 (·, T2)− ẑ), in Ω (4.3.5f)

Relaxation

Gn+1 = θ(yn+1
2 , λn+1

2)(·, 0) + (1− θ)Gn. (4.3.5g)

The lines in red, (4.3.4f, 4.3.5c,4.3.5g) are the new transmission condi-
tions.

In the Schwarz algorithm, the well-posedness of the subproblems was
given by the fact that they were the optimality systems of convex functions.
It does not seem to be the case here, so we must manage differently. We use
the sine decomposition defined in chapter 3, for the well-posedness and for
the convergence too. We start with the infinite domain (in time) case which
it is a good warming. For simplicity we assume that ŷ = 0.

83

4.3.3 Infinite domains in time

We use the notations of chapter 3.Start with the problem in subdomain 1,
whose solution we call Y1 = (y, λ). By the equation we write it as

Y1(x, t) =
∑
k≥1

Ŷ1(k, t)Φk(x),

and use the boundary conditions

Y1(·,−∞) = 0, Y1(·, 0) = G.

They are very easy to implement into the series as follows.

Y1 = cos(Nt)Ĝ+ sin(Nt)G̃. (4.3.6)

G̃ has now to be determined such as to enforce the condition at infinity.
To that end, use formulas (3.2.9), and determine the behaviour at −∞ of
the sine and cosine terms, using formulas (3.2.9,3.2.7), and the behavior at
infinity of the real hyperbolic sine and cosine functions.

cosh ν2t ∼
1

2
e−ν2t := X, sinh ν2t ∼ −

1

2
e−ν2t.

X is the large parameter. For cosNt use

Re cos νt ∼ X cos ν1t, Im cos νt ∼ X sin ν1t,

=⇒ cos(Nt) ∼ X(cos ν1tI + sin ν1tJ).

For sinNt write

Re sin νt ∼ X sin ν1t, Im sin νt ∼ −X cos ν1t,

=⇒ sin(Nt) ∼ X(sin ν1tI − cos ν1tJ).

Insert into (4.3.6),

Ŷ1 ∼ X
[
(cos ν1tI + sin ν1tJ)Ĝ+ (sin ν1tI − cos ν1tJ)G̃

]
.

Reorder in cosine and sine

Ŷ1 ∼ X
[
cos ν1t(Ĝ− JG̃) + sin ν1t(JĜ+ G̃)

]
.

84

Use that J2 = −I,

Ŷ1 ∼ X
[
cos ν1t(Ĝ− JG̃) + sin ν1tJ(Ĝ− JG̃)

]
∼ X(cos ν1tI+sin ν1tJ)(Ĝ−JG̃).

The matrix cos ν1tI+sin ν1tJ is a rotation matrix, has no limit at infinity. If
Y has to tend to 0 at −∞, we must have Ĝ− JG̃ = 0. Therefore G̃ = −JĜ
and since J and N commute, we have

Ŷ1 = (cos(Nt)− J sin(Nt))Ĝ. (4.3.7)

For each k, the problem has therefore a unique solution, and

‖Y1(k, t)‖ = ‖Ĝ(k)‖.

By Parseval, this shows that the problem is well-posed. The problem in Ω2

has the the boundary condition.

∂tY2(·, 0) = H.

Write
Y2(x, t) =

∑
k≥1

Ŷ2(k, t)Φk(x),

and use the boundary condition to write

Ŷ2 = cos(Nt)H̃ +N−1 sin(Nt)Ĥ. (4.3.8)

Enforce now the condition at infinity Y (·,+∞) = 0.

cosh ν2t ∼
1

2
eν2t := X, sinh ν2t ∼

1

2
eν2t.

X is the large parameter. First by (3.2.7),

cos(Nt) ∼ X(cos ν1tI − sin ν1tJ), sin(Nt) ∼ X(sin ν1tI + cos ν1tJ).

Insert into (4.3.8),

Ŷ2 ∼ X
[
(cos ν1tI − sin ν1tJ)H̃ + (sin ν1tI + cos ν1tJ)N−1Ĥ

]
.

∼ X
[
(cos ν1tI − sin ν1tJ)H̃ + (− sin ν1tJ + cos ν1tI)JN−1Ĥ

]
∼ X(cos ν1tI − sin ν1tJ)

[
H̃ + JN−1Ĥ

]
.

85

Consequently
H̃ + JN−1Ĥ = 0,

and

cos(Nt)H̃ +N−1 sin(Nt)Ĥ = − cos(Nt)JN−1 +N−1 sin(Nt)Ĥ,

Ŷ2(k, t) = N−1(sin(Nt)I − cos(Nt)J)Ĥ. (4.3.9)

This problem is thus well-posed (see the analysis for domain 1).
Write now the recursion

Ŷ n+1
1 (k, t) = (cos(Nt)− J sin(Nt))Ĝn(k),

Ŷ n+1
2 (k, t) = N−1(sin(Nt)I − cos(Nt)J)∂tY

n+1
1 (k, 0).

Compute ∂tŶ
n+1

1 (k, 0) = −JNĜn(k), which gives

Ŷ n+1
2 (k, t) = −N−1(sin(Nt)I − cos(Nt)J)JNĜn(k),

hence, since all the matrices involved commute,

Ŷ n+1
2 (k, 0) = −Ĝn(k).

Therefore

Ĝn+1(k) := θŶ n+1
2 (k, 0) + (1− θ)Ĝn(k) = (1− 2θ)Ĝn(k).

The convergence matrix is independent of k and equal to (1 − 2θ)I as in
the elliptic case. Therefore the algorithm converges for any 0 < θ < 1. For
θ = 1

2
, it converges in two iterations.

4.3.4 Finite domains in time

Again in order to prove well-posedness, we decomposed in series in space,
and compute explicitly for each frequency the solution of of the transform
problem.

Then we use the formulas to compute the convergence factor of the algo-
rithm.

86

Well-posedness of the subproblems

Domain O1 The boundary conditions in time at T = 0 are the same as
before, so the formula (4.3.6) is still valid, but now G̃ is such that y(·,−T1) =
y(0) and ∂ty(·,−T1) = y(1). We proceed as in (??).

ŷ(k,−T1) = (cos(NT1)Ĝ− sin(NT1)G̃)1 = ŷ(0),

∂tŷ(k,−T1) = (N sin(NT1)Ĝ+N cos(NT1)G̃)1 = ŷ(1).
(4.3.10)

Use the formulas (??) to develop the four terms on the left. Start with those
concerning Ĝ.

cos(NT1)Ĝ = Re(cos νT1)Ĝ+ Im(cos νT1)JĜ.

N sin(NT1)Ĝ = Re(ν sin νT1)Ĝ+ Im(ν sin νT1)JĜ.

Note that (IĜ)1 = Ĝ1, (JĜ)1 = −Ĝ2, and rewrite

(cos(NT1)Ĝ)1 = Re(cos νT1)Ĝ1 − Im(cos νT1)Ĝ2

(N sin(NT1)Ĝ)1 = Re(ν sin νT1)Ĝ1 − Im(ν sin νT1)Ĝ2.
(4.3.11)

Define the matrix

S1(ν, T1) =

(
Re(cos νT1) − Im(cos νT1)

Re(ν sin νT1) − Im(ν sin νT1)

)
(4.3.12)

then (
(cos(NT1)G)1

(N sin(NT1)G)1

)
= S1(ν, T1)G. (4.3.13)

Proceed with the terms containing G̃.

sin(NT1)G̃ = Re(sin νT1)G̃+ Im(sin νT1)JG̃.

N cos(NT1) = (Re νI+Im νJ)(Re(cos νT1)I+Im(cos νT1)J) = Re(ν cos νT1)I+Im(ν cos νT1)J

N cos(NT1)G̃ = Re(ν cos νT1)G̃+ Im(ν cos νT1)JG̃

Which gives

−(sin(NT1)G̃)1 = −Re(sin νT1)G̃1 + Im(sin νT1)G̃2

(N cos(NT1)G̃)1 = Re(ν cos νT1)G̃1 − Im(ν cos νT1)G̃2.
(4.3.14)

87

or (
−(sin(NT1)G̃)1

(N cos(NT1)G̃)1

)
= S̃1(ν, T1)G̃, (4.3.15)

with

S̃1(ν, T1) =

(
−Re(sin νT1) Im(sin νT1)
Re(ν cos νT1) − Im(ν cos νT1)

)
(4.3.16)

then the system (4.3.10) can be rewritten as

S̃1(ν, T1)G̃+ S1(ν, T1)Ĝ =

(
ŷ(0)

ŷ(1)

)
:= Ŷ 0. (4.3.17)

The determinant of S̃1(ν, T1) is

det S̃1(ν, T1) =
1

2
(ν2 sin 2ν1T1 − ν1 sinh 2ν2T1). (4.3.18)

It can also be rewritten for further analysis

det S̃1(ν, T1) =
T1

2
(
sinh(2ν2T1)

2ν2T1

− sin(2ν1T1)

2ν1T1

)

For all x, sinh(x)
x
≥ 1 and sin(x)

x
∈ (−1, 1). Therefore the determinant is

positive. Furthermore it can vanish only if ν1 = ν2 = 0 which is impossible.
Therefore it is strictly positive for all values of k ≥ 1. When k tends to
infinity ν1 tends to infinity and ν2 tends to 0. Therefore det S̃1 tends to T1

2

and is bounded from below in dependence of ξ1 = π
b−a and T1. The matrix

S̃1(ν, T1) is uniformly invertible, and

S̃−1
1 (ν, T1) =

1

det S̃1(ν, T1)

(
− Im(ν cos νT1) − Im(sin νT1)
−Re(ν cos νT1) −Re(sin νT1)

)
Replace now G̃ in (4.3.6)

Ŷ1(k, t) = cos(Nt)Ĝ+ sin(Nt)S̃−1
1 (ν, T1)(Y 0 − S1(ν, T1)Ĝ), (4.3.19)

which defines uniquely Y1.

88

Domain O2 = (0, T2) We use here formula (4.3.8) where H̃ and Ĥ must
be relates to enforce the boundary condition λ(:, T2) = ∂tλ(·, T2) = 0, which
is

(cos(NT2)H̃ +N−1 sin(NT2)Ĥ)2 = 0,

(−N sin(NT2)H̃ + cos(NT2)Ĥ)2 = 0.
(4.3.20)

Use formula (3.2.14) to obtain, since (JH)2 = H1, we obtain

(N−1 sin(NT2)Ĥ)2 =
[
Re(ν−1 sin νT2)Ĥ2 + Im(ν−1 sin νT2)Ĥ1

]
(cos(NT2)Ĥ)2 = Re(cos νT2)Ĥ2 + Im(cos νT2)Ĥ1

(cos(NT2)H̃)2 = Re(cos νT2)H̃2 + Im(cos νT2)H̃1

(−N sin(NT2)H̃)2 = −Re(ν sin νT2)H̃2 − Im(ν sin νT2)H̃1

Define the matrices

S2(ν, T2) =

(
Im(ν−1 sin νT2) Re(ν−1 sin νT2)

Im(cos νT2) Re(cos νT2)

)
, (4.3.21)

S̃2(ν, T2) =

(
Im(cos νT2) Re(cos νT2)
− Im(ν sin νT2) −Re(ν sin νT2)

)
(4.3.22)

And the final condition (4.3.20) takes the form

S̃2(ν, T2)H̃ + S2(ν, T2)Ĥ = 0.

The determinant of S̃2 is

det S̃2(ν, T2) =
1

2
(ν1 sinh(2ν2T2) + ν2 sin(2ν1T2)). (4.3.23)

The same argument as in the other subdomain shows that it is uniformly
bounded from below. Therefore S̃2 is invertible, and we can replace H̃ in
(4.3.8)

Ŷ2(k, t) =
[
− cos(Nt)S̃−1

2 (ν, T2)S2(ν, T2) +N−1 sin(Nt)
]
Ĥ, (4.3.24)

which defines uniquely Ŷ2 from Ĥ.

89

Convergence of the algorithm

Collect the informations from the previous section, and apply it to the errors,
that is Y 0 = 0. Y n+1

1 is the solution of the subproblem in (−T1, 0) withe data
Gn at t = 0, thus

Ŷ n+1
1 =

[
cos(Nt)I − sin(Nt)S̃−1

1 (ν, T1)S1(ν, T1)
]
Ĝn.

Compute now

∂tŶ
n+1

1 =
[
−N sin(Nt)I −N cos(Nt)S̃−1

1 (ν, T1)S1(ν, T1)
]
Ĝn,

therefore

Ĥn+1 := ∂tŶ
n+1

1 (k, 0) = −NS̃−1
1 (ν, T1)S1(ν, T1)Ĝn.

Now Ŷ n+1
2 is the solution of the subproblem in (0, T2) with data Ĥn+1:

Ŷ n+1
2 (k, t) =

[
− cos(Nt)S̃−1

2 (ν, T2)S2(ν, T2) +N−1 sin(Nt)
]
Ĥn+1,

and the value at t = 0 is

Ŷ n+1
2 (k, 0) = −S̃−1

2 (ν, T2)S2(ν, T2)Ĥn+1 = S̃−1
2 (ν, T2)S2(ν, T2)NS̃−1

1 (ν, T1)S1(ν, T1)Ĝn.

defining the convergence matrix by

M = S̃−1
2 (ν, T2)S2(ν, T2)NS̃−1

1 (ν, T1)S1(ν, T1),MDN(k, θ, T1, T2) = (1−θ)I+θM,
(4.3.25)

we find for the iteration
Ĝn+1 = MDNĜ

n.

The convergence properties

A long computation shows that

Lemma 6.

S̃−1
1 S1 =

1

det S̃1

(
−ν2 cos2 ν1t ν1 sinh2 ν2t
−ν1 cosh2 ν2t ν2 sin2 ν1t

)

NS̃−1
1 S1 =

1

det S̃1

(
ν1ν2(cosh2 ν2t− cos2 ν1t) ν2

1 sinh2 ν2t− ν2
2 sin2 ν1t

−(ν2
1 cosh2 ν2t+ ν2

2 cos2 ν1t) ν1ν2(cosh2 ν2t− cos2 ν1t)

)
90

S̃−1
2 S2 =

1

|ν|2 det S̃2

(
ν1ν2(cosh2 ν2t− cos2 ν1t) −(ν2

1 cosh2 ν2t+ ν2
2 cos2 ν1t)

ν2
1 sinh2 ν2t− ν2

2 sin2 ν1t ν1ν2(cosh2 ν2t− cos2 ν1t)

)
,

with

det S̃1(t) =
1

2
(ν2 sin 2ν1t−ν1 sinh 2ν2t), det S̃2(t) =

1

2
(ν2 sin 2ν1t+ν1 sinh 2ν2t).

Symmetric case, T1 = T2

Theorem 4.3.1. The iteration matrix without relaxation M has two negative
eigenvalues, given by

u = ν1ν2(cosh2 ν2T1 − cos2 ν1T1),
v = ν2

1 cosh2 ν2T1 + ν2
2 cos2 ν1T1,

w = ν2
1 sinh2 ν2T1 − ν2

2 sin2 ν1T1

(4.3.26)

λ± =
4
(
u2 + v2+w2

2
± |ν|2

√
u2 + (v+w

2
)2
)

|ν|2(ν2
2 sin2 2ν1T1 − ν2

1 sinh2 2ν2T1)
(4.3.27)

Proof.

S̃−1
2 S2(T1) =

1

|ν|2 det S̃2(T1)

(
u −v
w u

)
, NS̃−1

1 S1(T1) =
1

det S̃1(T1)

(
u w
−v u

)
Therefore

(S̃−1
2 S2NS̃

−1
1 S1)(T1) =

1

|ν|2 det S̃2(T1) det S̃1(T1)
R, R =

(
u2 + v2 u(w − v)
u(w − v) u2 + w2

)
The matrix R is symmetric, its invariants are

TrR = 2u2 + v2 + w2 > 0, detR = (u2 + vw)2 > 0.

The reduced discriminant of the characteristic equation is

(TrR/2)2 − detR = (v − w)2(u2 + (
v + w

2
)2) > 0.

Therefore R has two positive eigenvalues,

u2 +
v2 + w2

2
±
√

(v − w)2(u2 + (
v + w

2
)2).

91

Now

det S̃2 det S̃1 =
1

4
(ν2

2 sin2 2ν1t− ν2
1 sinh2 2ν2t) < 0,

which gives formula (4.3.27).

These formulas are very useful to study the convergence of the algorithm.

Lemma 7. For fixed k (defined by a discretization) the asymptotic in T1 is

λ± = −(1± |ν|
ν1

cosh−2(ν2T1) + o(cosh−2(ν2T1)). (4.3.28)

For fixed T1 (defined by the problem) the asymptotics in ν1 (which is equiva-
lent to k) is

λ+ = −4
ν2

1

T 2
1

+ o(ν2
1), λ− = − T

2
1

4ν2
1

+ o(ν−2
1). (4.3.29)

Proof. To obtain the expansion in T1, just use the same arguments as in
chapter 3. The expansion in ν1 is more tricky since the two eigenvalues don’t
have the same order of magnitude. Just expand the determinant and the
trace of M at first order in ν1 to get the sum and product of the eigenvalues

λ+ + λ− ∼ −4
ν2

1

T 2
1

, λ+λ− ∼ 1.

From this we can finish the proof.

These asymptotics give us informations on the convergence behavior.

Theorem 4.3.2 (Convergence behavior of the Dirichlet Neumann algo-
rithm).

• For any T , there is a k0, for any k ≥ k0, ρ(M) > 1. Consequently,
there is no θ such that the continuous algorithm converges.

• For the discrete algorithm associated to kmax, suppose ρ(M) is reached
for −λ+(kmax). Then there exists a θ0, for 0 < θ < θ0, the algorithm
converges.

92

Proof. 1. The first item only follow from Theorem 7, using the fact that

lim
k→+∞

ρ(M) = +∞.

2. The second proof is entirely similar to the proof of Theorem 4.2.1,
yielding

θ0 =
2

1− λ+(kmax)
.

The previous theorems are illustrated on Figure 4.5. On Figure 4.5a, we
have plotted the convergence factor without relaxation. As demonstrated,
the convergence factor blows up as k goes to infinity. Then, we present on
Figure 4.5b the convergence factor of the relaxed algorithm for T = 100
and kmax = 20. The parameter θ has to be chosen very small to make the
algorithm converge: indeed, θ0 goes to 0 as kmax increases. The experience is
reproduced for T = 500 and T = 1000 on Figure 4.6. Note that the optimum
is reached for θ around 0.5, which corresponds to the best parameter for
T1 = ∞. As also predicted, the optimal convergence rate is approaching 0
as T increases.

5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

T=2

T=50

(a) Convergence factor w.r.t k

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

(b) Convergence factor w.r.t. θ

Figure 4.5: Illustrations of the convergence of the D.N. algorithm with and
without relaxation from Theorem 4.3.2

93

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) T = 500

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) T = 1000

Figure 4.6: Convergence factor w.r.t. θ

Remark 6. The behavior of the Dirichlet-Neumann algorithm is opposite to
that of the inherited algorithm: it is better converging for low frequency, while
the inherited algorithm converges better for low frequencies.

4.3.5 Numerical comparison

We finally evaluate the performances of the Dirichlet Neumann algorithm
for the discrete finite volume scheme described in Chapter 2. Figure 4.7
displays the numerical and convergence factor without relaxation for N = 50
and N = 100. As for the inherited algorithm, theoretical and numerical
convergence factors coincide for low frequencies but not for large ones. Here
again, it probably means that the numerical convergence factor tends to
the theoretical one but non uniformly in frequency. Besides, the surprising
behaviour of the numerical convergence factor for the largest frequency is not
understood.

94

0 5 10 15 20 25 30 35 40 45 50

k

10
2

10
3

10
4

10
5

10
6

C
o
n
v
e
rg

e
n
c
e
 f
a
c
to

r

theory

numerics

(a) N = 51

0 10 20 30 40 50 60 70 80 90 100

k

10
2

10
3

10
4

10
5

10
6

10
7

C
o
n
v
e
rg

e
n
c
e
 f
a
c
to

r

theory

numerics

(b) N = 101

Figure 4.7: Numerical and theoretical convergence factor with respect to k
for the unrelaxed Dirichlet Neumann algorithm

95

Chapter 5

Bibliography

96

Bibliography

[1] Fatiha Alabau-Boussouira, Roger Brockett, Olivier Glass, Jérôme
Le Rousseau, Enrique Zuazua, Sylvain Ervedoza, and Enrique Zuazua.
The wave equation: Control and numerics. Control of Partial Differ-
ential Equations: Cetraro, Italy 2010, Editors: Piermarco Cannarsa,
Jean-Michel Coron, pages 245–339, 2012.

[2] M Asch and G Lebeau. Geometrical aspects of exact boundary con-
trollability for the wave equation-a numerical study. ESAIM: Control,
Optimisation and Calculus of Variations, 3:163–212, 1998.

[3] Aurélien Babarit. On the park effect in arrays of oscillating wave energy
converters. Renewable Energy, 58:68–78, 2013.

[4] Andrew T. Barker and Martin Stoll. Domain decomposition in time for
PDE-constrained optimization. Comput. Phys. Commun., 197:136–143,
2015.

[5] JD Benamou. Domain decomposition, optimal control of systems gov-
erned by partial differential equations, and synthesis of feedback laws.
Journal of optimization theory and applications, 102:15–36, 1999.

[6] Jean-David Benamou. A domain decomposition method for control
problems. In DD9 Proceedings, pages 266–273. Citeseer, 1998.

[7] Jean-David Benamou and Bruno Desprès. A domain decomposition
method for the Helmholtz equation and related optimal control prob-
lems. J. Comput. Phys., 136(1):68–82, 1997.

[8] Daniel Bennequin, M Gander, and Laurence Halpern. A homographic
best approximation problem with application to optimized Schwarz

97

waveform relaxation. Mathematics of Computation, 78(265):185–223,
2009.

[9] Petter E. Bjorstad and Olof B. Widlund. Iterative methods for the
solution of elliptic problems on regions partitioned into substructures.
SIAM Journal on Numerical Analysis, 23(6):1097–1120, 1986.

[10] Filipa Caetano, Martin J Gander, Laurence Halpern, Jérémie Szeft//el,
et al. Schwarz waveform relaxation algorithms for semilinear reaction-
diffus//ion equations. Networks Heterog. Media, 5(3):487–505, 2010.

[11] T. Carraro, Michael Geiger, and R. Rannacher. Indirect multiple shoot-
ing for nonlinear parabolic optimal control problems with control con-
straints. SIAM J. Sci. Comput., 36(2):452–481, 2014.

[12] Faycal Chaouqui, Gabriele Ciaramella, Martin J Gander, and Tommaso
Vanzan. On the scalability of classical one-level domain-decomposition
methods. Vietnam Journal of Mathematics, 46:1053–1088, 2018.

[13] Guy Chavent. Nonlinear least squares for inverse problems: theoretical
foundations and step-by-step guide for applications. Springer Science &
Business Media, 2010.

[14] Gabriele Ciaramella, Laurence Halpern, and Luca Mechelli. Conver-
gence analysis and optimization of a Robin Schwarz waveform relaxation
method for periodic parabolic optimal control problems, 2022.

[15] Gabriele Ciaramella, Felix Kwok, and Georg Müller. A Nonlinear Op-
timized Schwarz Preconditioner for Elliptic Optimal Control Problems.
In Domain Decomposition Methods in Science and Engineering XXVI,
pages 391–398. Springer, 2023.

[16] Gabriele Ciaramella and Luca Mechelli. An overlapping waveform relax-
ation preconditioner for economic optimal control problems with state
constraints. In Domain Decomposition Methods in Science and Engi-
neering XXVI, pages 461–469. Springer, 2023.

[17] Nicolae Ĉındea and Arnaud Münch. A mixed formulation for the direct
approximation of the control of minimal L2-norm for linear type wave
equations. Calcolo, 52(3):245–288, 2015.

98

[18] Xiaoying Dai and Yvon Maday. Stable parareal in time method for first-
and second-order hyperbolic systems. SIAM J. Sci. Comput., 35(1):a52–
a78, 2013.

[19] Federico Danieli and Andrew J Wathen. All-at-once solution of lin-
ear wave equations. Numerical Linear Algebra with Applications,
28(6):e2386, 2021.

[20] Bérangère Delourme and Laurence Halpern. A complex homographic
best approximation problem. Application to optimized Robin-Schwarz
algorithms, and optimal control problems. SIAM J. Numer. Anal.,
59(3):1769–1810, 2021.

[21] Xiaodi Deng and Matthias Heinkenschloss. A parallel-in-time gradient-
type method for discrete time optimal control problems. Preprint, De-
partment of Computational and Applied Mathematics, Rice University,
2016.

[22] Victorita Dolean, Martin J Gander, Walid Kheriji, Felix Kwok, and
Roland Masson. Nonlinear preconditioning: How to use a nonlinear
Schwarz method to precondition Newton’s method. SIAM Journal on
Scientific Computing, 38(6):A3357–A3380, 2016.

[23] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An introduction to
domain decomposition methods: algorithms, theory, and parallel imple-
mentation. SIAM, 2015.

[24] Victorita Dolean, Pierre Jolivet, Pierre-Henri Tournier, Laure Combe,
Stéphane Operto, and Sebastian Riffo. Large-scale finite-difference
and finite-element frequency-domain seismic wave modelling with
multi-level domain-decomposition preconditioner. arXiv preprint
arXiv:2103.14921, 2021.

[25] Victorita Dolean, Frédéric Nataf, Robert Scheichl, and Nicole Spillane.
Analysis of a two-level Schwarz method with coarse spaces based on
local Dirichlet-to-Neumann maps. Computational Methods in Applied
Mathematics, 12(4):391–414, 2012.

[26] Maksymilian Dryja and Olof B Widlund. Additive Schwarz methods for
elliptic finite element problems in three dimensions. New York Univer-
sity. Courant Institute of Mathematical Sciences. Computer . . . , 1991.

99

[27] Olivier Dubois, Martin J Gander, Sébastien Loisel, Amik St-Cyr, and
Daniel B Szyld. The optimized Schwarz method with a coarse grid
correction. SIAM Journal on Scientific Computing, 34(1):A421–A458,
2012.

[28] Matthew Emmett and Michael Minion. Toward an efficient parallel
in time method for partial differential equations. Communications in
Applied Mathematics and Computational Science, 7(1):105–132, 2012.

[29] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. Maclachlan, and J. B.
Schroder. Parallel time integration with multigrid. SIAM J. Sci. Com-
put., 36(6):c635–c661, 2014.

[30] Martin J Gander. Optimized schwarz methods. SIAM Journal on Nu-
merical Analysis, 44(2):699–731, 2006.

[31] Martin J. Gander. Analysis of the parareal algorithm applied to hyper-
bolic problems using characteristics. Bol. Soc. Esp. Mat. Apl., S~eMA,
42:21–35, 2008.

[32] Martin J. Gander. 50 years of time parallel time integration. In Multiple
shooting and time domain decomposition methods. MuS-TDD, Heidel-
berg, Germany, May 6–8, 2013, pages 69–113. Cham: Springer, 2015.

[33] Martin J Gander et al. Schwarz methods over the course of time. Elec-
tron. Trans. Numer. Anal, 31(5):228–255, 2008.

[34] Martin J Gander and Stefan Güttel. Paraexp: A parallel integrator for
linear initial-value problems. SIAM Journal on Scientific Computing,
35(2):C123–C142, 2013.

[35] Martin J. Gander and Ernst Hairer. Analysis for parareal algorithms
applied to Hamiltonian differential equations. J. Comput. Appl. Math.,
259:2–13, 2014.

[36] Martin J Gander, Laurence Halpern, and Frédéric Nataf. Optimal
Schwarz waveform relaxation for the one dimensional wave equation.
SIAM Journal on Numerical Analysis, 41(5):1643–1681, 2003.

[37] Martin J. Gander, Laurence Halpern, Johann Rannou, and Juliette
Ryan. A direct time parallel solver by diagonalization for the wave
equation. SIAM J. Sci. Comput., 41(1):a220–a245, 2019.

100

[38] Martin J Gander, Laurence Halpern, and Kévin Santugini Repiquet.
Discontinuous coarse spaces for DD-methods with discontinuous iter-
ates. In Domain Decomposition Methods in Science and Engineering
XXI, pages 607–615. Springer, 2014.

[39] Martin J. Gander and Felix Kwok. Schwarz methods for the time-parallel
solution of parabolic control problems. In Domain decomposition meth-
ods in science and engineering XXII. Proceedings of the 22nd interna-
tional conference on domain decomposition methods, Lugano, Switzer-
land, September 16–20, 2013, pages 207–216. Cham: Springer, 2016.

[40] Martin J. Gander, Felix Kwok, and Bankim C. Mandal. Dirichlet-
Neumann and Neumann-Neumann waveform relaxation for the wave
equation. In Domain decomposition methods in science and engineer-
ing XXII. Proceedings of the 22nd international conference on domain
decomposition methods, Lugano, Switzerland, September 16–20, 2013,
pages 501–509. Cham: Springer, 2016.

[41] Martin J Gander, Felix Kwok, and Bankim C Mandal. Convergence of
substructuring methods for elliptic optimal control problems. In Domain
Decomposition Methods in Science and Engineering XXIV 24, pages
291–300. Springer, 2018.

[42] Martin J. Gander, Felix Kwok, and Bankim C. Mandal. Convergence of
substructuring methods for elliptic optimal control problems. In Domain
decomposition methods in science and engineering XXIV. Proceedings
of the 24th international conference, Svalbard, Norway, February 6–10,
2017, pages 291–300. Cham: Springer, 2018.

[43] Martin J Gander, Felix Kwok, and Bankim C Mandal. Dirichlet–
Neumann waveform relaxation methods for parabolic and hyperbolic
problems in multiple subdomains. BIT Numerical Mathematics, 61:173–
207, 2021.

[44] Martin J. Gander, Felix Kwok, and Julien Salomon. PARAOPT: a
parareal algorithm for optimality systems. SIAM J. Sci. Comput.,
42(5):a2773–a2802, 2020.

[45] Martin J. Gander, Felix Kwok, and Hui Zhang. Multigrid interpretations
of the parareal algorithm leading to an overlapping variant and MGRIT.
Comput. Vis. Sci., 19(3-4):59–74, 2018.

101

[46] Martin J Gander, Jun Liu, Shu-Lin Wu, Xiaoqiang Yue, and Tao Zhou.
Paradiag: Parallel-in-time algorithms based on the diagonalization tech-
nique. arXiv preprint arXiv:2005.09158, 2020.

[47] Martin J Gander and Yongxiang Liu. On the definition of dirichlet
and neumann conditions for the biharmonic equation and its impact
on associated schwarz methods. In Domain Decomposition Methods in
Science and Engineering XXIII, pages 303–311. Springer, 2017.

[48] Martin J Gander and Yongxiang Liu. Is there more than one dirichlet–
neumann algorithm for the biharmonic problem? SIAM Journal on
Scientific Computing, 43(3):A1881–A1906, 2021.

[49] Martin J Gander, Thibaut Lunet, Daniel Ruprecht, and Robert Speck.
A unified analysis framework for iterative parallel-in-time algorithms.
arXiv preprint arXiv:2203.16069, 2022.

[50] Martin J. Gander and Martin Neumüller. Analysis of a new space-
time parallel multigrid algorithm for parabolic problems. SIAM J. Sci.
Comput., 38(4):a2173–a2208, 2016.

[51] Martin J. Gander and Stefan Vandewalle. Analysis of the parareal time-
parallel time-integration method. SIAM J. Sci. Comput., 29(2):556–578,
2007.

[52] Sebastian Götschel and Michael L. Minion. An efficient parallel-in-time
method for optimization with parabolic PDEs. SIAM J. Sci. Comput.,
41(6):c603–c626, 2019.

[53] Wolfgang Hackbusch. Parabolic multi-grid methods. Computing meth-
ods in applied sciences and engineering VI, Proc. 6th Int. Symp., Ver-
sailles 1983, 189-197 (1984)., 1984.

[54] Thomas Hagstrom, Reginal P Tewarson, and Aron Jazcilevich. Numer-
ical experiments on a domain decomposition algorithm for nonlinear el-
liptic boundary value problems. Applied Mathematics Letters, 1(3):299–
302, 1988.

[55] Laurence Halpern, Caroline Japhet, and Jérémie Szeftel. Optimized
schwarz waveform relaxation and discontinuous galerkin time stepping

102

for heterogeneous problems. SIAM Journal on Numerical Analysis,
50(5):2588–2611, 2012.

[56] Matthias Heinkenschloss. A time-domain decomposition iterative
method for the solution of distributed linear quadratic optimal control
problems. J. Comput. Appl. Math., 173(1):169–198, 2005.

[57] Matthias Heinkenschloss and Michael Herty. A spatial domain decom-
position method for parabolic optimal control problems. J. Comput.
Appl. Math., 201(1):88–111, 2007.

[58] Matthias Heinkenschloss and Hoang Nguyen. Neumann-Neumann do-
main decomposition preconditioners for linear-quadratic elliptic optimal
control problems. SIAM J. Sci. Comput., 28(3):1001–1028, 2006.

[59] Andreas Hessenthaler, Ben S Southworth, David Nordsletten, Oliver
Röhrle, Robert D Falgout, and Jacob B Schroder. Multilevel conver-
gence analysis of multigrid-reduction-in-time. SIAM Journal on Scien-
tific Computing, 42(2):A771–A796, 2020.

[60] Juan-Antonio Infante and Enrique Zuazua. Boundary observability for
the space-discretizations of the 1 − d wave equation. C. R. Acad. Sci.,
Paris, Sér. I, Math., 326(6):713–718, 1998.

[61] Caroline Japhet. Méthode de décomposition de domaine et conditions
aux limites artificielles en mécanique des fluides: méthode Optimisée
d’Orde 2. PhD thesis, Université Paris-Nord-Paris XIII, 1998.

[62] Felix Kwok. On the time-domain decomposition of parabolic optimal
control problems. In Domain decomposition methods in science and en-
gineering XXIII. Proceedings of the 23rd international conference, Jeju
Island, South Korea, July 6–10, 2015, pages 55–67. Cham: Springer,
2017.

[63] Felix Kwok and Benjamin W Ong. Schwarz waveform relaxation
with adaptive pipelining. SIAM Journal on Scientific Computing,
41(1):A339–A364, 2019.

[64] J. E. Lagnese, Günter Leugering, and E. J. P. G. Schmidt. Modeling,
analysis and control of dynamic elastic multi-link structures. Syst. Con-
trol Found. Appl. Boston, MA: Birkhäuser, 1994.

103

[65] John E Lagnese and Günter Leugering. Time-domain decomposition
of optimal control problems for the wave equation. Systems & control
letters, 48(3-4):229–242, 2003.

[66] Liliana León and Enrique Zuazua. Boundary controllability of the finite-
difference space semi-discretizations of the beam equation. ESAIM:
Control, Optimisation and Calculus of Variations, 8:827–862, 2002.

[67] Jacques Louis Lions. Optimal control of systems governed by partial
differential equations, volume 170. Springer, 1971.

[68] Pierre Louis Lions. Interprétation stochastique de la méthode alternée
de schwarz. CR Acad. Sci. Paris, 268:325–328, 1978.

[69] Pierre-Louis Lions. On the schwarz alternating method. iii: a variant for
nonoverlapping subdomains. In Third international symposium on do-
main decomposition methods for partial differential equations, volume 6,
pages 202–223. SIAM Philadelphia, 1990.

[70] Pierre-Louis Lions et al. On the schwarz alternating method. i. In First
international symposium on domain decomposition methods for partial
differential equations, volume 1, page 42. Paris, France, 1988.

[71] PL Lions. On the schwarz alternating method, ii, t. chan, r. glowinski,
j. périaux, and o. widlund, editors. In Second International Symposium
on Domain Decomposition Methods for Partial Differential Equations,
Los Angeles, California, pages 47–70, 1988.

[72] Wenyue Liu and Keying Ma. An iterative non-overlapping domain de-
composition method for optimal boundary control problems governed by
parabolic equations. IAENG, Int. J. Appl. Math., 46(3):291–297, 2016.

[73] Paola Loreti and Michel Mehrenberger. An Ingham type proof for a
two-grid observability theorem. ESAIM, Control Optim. Calc. Var.,
14(3):604–631, 2008.

[74] Ch. Lubich and A. Ostermann. Multi-grid dynamic iteration for
parabolic equations. BIT, 27:216–234, 1987.

[75] Yvon Maday and Gabriel Turinici. A parareal in time procedure for the
control of partial differential equations. Comptes Rendus Mathematique,
335(4):387–392, 2002.

104

[76] Bankim C. Mandal. Neumann-Neumann waveform relaxation algorithm
in multiple subdomains for hyperbolic problems in 1d and 2d. Numer.
Methods Partial Differ. Equations, 33(2):514–530, 2017.

[77] Ludovic Métivier. Une méthode d’inversion non linéaire pour l’imagerie
sismique haute résolution. PhD thesis, Université Paris-Nord-Paris XIII,
2009.

[78] Ludovic Métivier, Patrick Lailly, Florence Delprat-Jannaud, and Lau-
rence Halpern. A 2d nonlinear inversion of well-seismic data. Inverse
Problems, 27(5):055005, 2011.

[79] Frédéric Nataf, Francois Rogier, and Eric de Sturler. Optimal interface
conditions for domain decomposition methods. PhD thesis, CMAP Ecole
Polytechnique, 1994.

[80] Mihaela Negreanu and Enrique Zuazua. Convergence of a multigrid
method for the controllability of a 1-D wave equation. C. R., Math.,
Acad. Sci. Paris, 338(5):413–418, 2004.

[81] Hieu Nguyen and Richard Tsai. A stable parareal-like method for the
second order wave equation. J. Comput. Phys., 405:26, 2020. Id/No
109156.

[82] Benjamin Ong, Scott High, and Felix Kwok. Pipeline schwarz waveform
relaxation. In Domain Decomposition Methods in Science and Engineer-
ing XXII, pages 363–370. Springer, 2016.

[83] Benjamin W. Ong and Bankim C. Mandal. Pipeline implementations of
Neumann-Neumann and Dirichlet-Neumann waveform relaxation meth-
ods. Numer. Algorithms, 78(1):1–20, 2018.

[84] Alfio Quarteroni and Alberto Valli. Domain decomposition methods for
partial differential equations. Oxford University Press, 1999.

[85] R Tyrrell Rockafellar. Convex analysis, volume 11. Princeton university
press, 1997.

[86] Daniel Ruprecht. Wave propagation characteristics of Parareal. Comput.
Vis. Sci., 19(1-2):1–17, 2018.

105

[87] Soura Sana and Bankim C Mandal. Dirichlet-neumann and
neumann-neumann waveform relaxation algorithms for time frac-
tional sub-diffusion and diffusion-wave equations. arXiv preprint
arXiv:2212.12366, 2022.

[88] H. A. Schwarz. Über einen Grenzübergang durch alternierendes Ver-
fahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich,
15:272–286, 1870.

[89] Andrea Toselli and Olof Widlund. Domain decomposition methods-
algorithms and theory, volume 34. Springer Science & Business Media,
2004.

[90] Stefan Ulbrich. Generalized SQP methods with “parareal” time-domain
decomposition for time-dependent PDE-constrained optimization. In
Real-time PDE-constrained optimization, pages 145–168. Philadelphia,
PA: Society for Industrial and Applied Mathematics (SIAM), 2007.

[91] Stefan Ulbrich. Preconditioners based on “parareal” time-domain de-
composition for time-dependent pde-constrained optimization. In Mul-
tiple Shooting and Time Domain Decomposition Methods: MuS-TDD,
Heidelberg, May 6-8, 2013, pages 203–232. Springer, 2015.

[92] Chen-Ye Wang, Yao-Lin Jiang, and Zhen Miao. Time domain decom-
position of parabolic control problems based on discontinuous Galerkin
semi-discretization. Appl. Numer. Math., 176:118–133, 2022.

[93] Enrique Zuazua. Propagation, observation, and control of waves ap-
proximated by finite difference methods. SIAM Rev., 47(2):197–243,
2005.

106

	Introduction
	Presentation of problem, minimisation, existence and uniqueness
	Definition and well-posedness
	Discretization of the optimality system in one dimension
	Discretization of the Problem from gander2003optimal
	Discretization of the optimality system

	Inherited parallel in time algorithm
	Definition of the inherited algorithm
	Statement of the algorithm
	Important properties
	Well-posedness of the algorithm

	Convergence analysis: computation of the iteration matrix
	Some algebra on matrices
	The infinite domain case
	The finite time domain case

	Study of the toy model
	Analysis of the eigenvalues
	Numerical illustrations of the theoretical convergence factor
	Theoretical convergence results
	Numerical comparison

	Variants of algorithm
	Description
	Relaxed Inherited algorithm
	The Dirichlet-Neumann algorithm
	The Poisson equation
	Dirichlet Neumann algorithm for the control problem
	Infinite domains in time
	Finite domains in time
	Numerical comparison

	Bibliography

