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Abstract

Recent progress in NLP can largely be attributed to progress in Deep Representation
Learning techniques, which are based on opaque statistical learning methods. The success
of these methods is due to the availability of large volumes of data which they leverage
in pre-training schemes to improve generalization when fine-tuned on specific NLP tasks.
Producing such high performance representations with an understandable meaning most
often calls for the availability of annotated data. However, annotated data comes at great
costs, and incurs recurring annotation effort which is impractical when deploying models
at scale, i.e. for different languages, different tasks, and on different domains.

The purpose of this thesis is therefore to develop methods that enhance the inter-
pretability of recent representation learning techniques, while accounting for the unavail-
ability of annotated data. We choose to leverage Variational Autoencoders (VAEs), given
their established efficiency in learning to relate observations to latent generative factors.
VAEs have also been proven effective for semi-supervised learning, and interpretable rep-
resentation learning, which makes them suitable for the research we tackle in this thesis.

As a first contribution, we identify two unnecessary components in the functioning
scheme of Semi-Supervised VAEs, namely the Kullback-Leibler Divergence and the un-
observed latent variable, and perform ablation experiments on them. Our experiments
show that these components are indeed of no use to the semi-supervised VAE frame-
work, and that removing them speeds-up computations. We also show that without these
components, the model is easier to define and to train.

Our second contribution is based on VAEs, together with Transformers. Recent Deep
Learning-based NLP is largely based on variants of the Transformer architecture, which
is built using as a main component attention, a learning module which allows exchanging
information between a set of elements in a parallel fashion. In previous works, attention
has been shown to excel at spontaneously aligning structures from different languages,
and to process language in a manner that exhibits patterns resembling understandable
NLP concepts such as dependency trees. Based on such observations, we use Transform-
ers attention to build two models with inductive bias to separate information in latent
representations into understandable concepts without annotated data. This information
separation in neural representations is a process called disentanglement.
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The first model we present is an Attention-Driven VAE (ADVAE). It is the first VAE to
use Transformers Cross-Attention to encode and decode vectorial latent variables. We ex-
perimentally demonstrate the ability of this model to separately represent, and separately
control information about the realizations of core syntactic roles in sentences.

The second model we present, called QKVAE, is based on ADVAE and uses separate
latent variables to form keys and values for the Transformer decoder it uses. The name
QKVAE is a contraction of the Query, Key, Value (QKV) abstraction used in Transform-
ers attention and the VAE acronym. We empirically demonstrate the ability of this model
to separate syntactic information from semantic information in its neural representations.
In experiments involving transfer of syntactic or semantic properties between sentences,
QKVAE exhibits competitive performance when compared to previous supervised mod-
els, and equivalent performance to a previous supervised model that uses 50K annotated
samples. Moreover, this final model displays improved syntactic role disentanglement ca-
pabilities compared to ADVAE.

In a context where text data is abundant but annotations are scarce, our work demon-
strates that it is feasible to enhance the interpretability of state-of-the-art deep learning
architectures for language modeling using only unannotated data.

Keywords: Variational Autoencoders, Transformers, Interpretability, Disentanglement,
Semi-Supervised Learning, Unsupervised Learning, Language Modeling, Syntax.



Français

Titre : Représentations de Phrases Interprétables avec Autoencodeurs Variationnels et
Attention

Résumé : Les progrès récents en Traitement Automatique de Langues (TAL) peuvent
en grande partie être attribués aux progrès des techniques d’apprentissage de représentations
profondes, qui reposent sur des méthodes d’apprentissage statistique opaques. Le succès
de ces méthodes est dû à la disponibilité de grandes quantités de données utilisées en pré-
entraînement afin d’améliorer leur généralisation lorsqu’elles sont adaptées (fine-tunées) à
des tâches de TAL spécifiques. Produire de telles représentations qui soient à la fois per-
formantes et compréhensibles nécessite souvent la disponibilité de données annotées. Or,
ces données annotées sont très coûteuses, et doivent être collectées séparément pour les
différents cas d’usage d’un modèle (i.e. langues, domaines, et tâches), ce qui n’est souvent
pas envisageable pour des déploiements à grande échelle.

Le but de cette thèse est de développer des méthodes qui améliorent l’interprétabilité
des techniques récentes d’apprentissage de représentation, tout en prenant en compte
l’indisponibilité de données annotées. Nous avons choisi de nous appuyer sur les Auto-
Encodeurs Variationnels (Variational Autoencoders ; VAE), compte tenu de leur efficacité
établie dans l’apprentissage de la relation entre des observations et des facteurs génératifs
latents. Il a également été montré que les VAE sont efficaces pour l’apprentissage semi-
supervisé et l’apprentissage de représentations interprétables, ce qui les rend pertinents
pour cette thèse.

Dans la première partie des contributions présentées dans cette thèse, nous identifions
deux composants superflus dans le schéma de fonctionnement des VAE semi-supervisés,
à savoir la divergence de Kullback-Leibler et la variable latente non observée, et nous
effectuons des expériences d’ablation sur ces composants. Nos expériences montrent que
ces composants n’ont effectivement pas d’utilité dans le cadre VAE semi-supervisé et
que leur suppression accélère les modules utilisés. Nous montrons également que sans ces
composants, le modèle devient plus facile à définir et à entraîner.

Notre seconde contribution repose sur les VAE, associés aux Transformers. Les tech-
niques récentes de TAL qui reposent sur l’apprentissage profond s’appuient largement
sur des variantes de l’architecture Transformer, laquelle est construite en utilisant comme
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principale brique l’attention, un module d’apprentissage qui permet d’échanger des infor-
mations entre un ensemble d’éléments de manière parallèle. Des travaux précédents ont
montré que l’attention excelle dans l’alignement spontané des structures de différentes
langues et qu’elle présente des motifs ressemblant à des concepts linguistiques interprétables
tels que les arbres de dépendance. Sur la base de ces observations, nous utilisons l’attention
des Transformers pour construire deux modèles dont le biais inductif permet de séparer
l’information dans les représentations latentes en concepts compréhensibles sans données
annotées. Cette séparation d’information dans les représentations neuronales est un pro-
cessus appelé désenchevêtrement (disentanglement).

Le premier modèle que nous présentons est un VAE à attention (Attention-Driven VAE
; ADVAE). C’est le premier VAE à utiliser l’attention croisée des Transformers pour en-
coder et décoder des variables latentes vectorielles. Nous démontrons expérimentalement
la capacité de ce modèle à représenter séparément les informations sur les réalisations de
rôles syntaxiques essentiels (core syntactic roles) dans les phrases et à les contrôler.

Le second modèle que nous présentons, appelé QKVAE, dérive de ADVAE et utilise des
variables latentes séparées pour formuler des clés et des valeurs pour le décodeur Trans-
former qu’il utilise. Le nom QKVAE est une contraction du triplet Query (Requête), Key
(Clé), Value (Valeur) utilisé dans l’attention des Transformers et de l’acronyme VAE. Nous
démontrons empiriquement la capacité de ce modèle à séparer les informations syntaxiques
des informations sémantiques dans ses représentations neuronales. Dans des expériences
de transfert de propriétés syntaxiques ou sémantiques entre les phrases, QKVAE présente
une performance compétitive par rapport aux précédents modèles supervisés et une perfor-
mance équivalente à un précédent modèle supervisé utilisant 50 000 échantillons annotés.
De plus, ce modèle final présente des capacités de désenchevêtrement de rôles syntaxiques
améliorées par rapport à ADVAE.

Dans le contexte actuel où les données textuelles sont abondantes et où les données
annotées sont difficiles à obtenir, notre travail démontre qu’il est possible d’améliorer
l’interprétabilité des architectures de deep learning de pointe pour les modèles de langue
à partir de données non annotées.

Mots-clés : Autoencodeurs Variationnels, Transformers, Interpretabilité, Désenchevêtrement,
Apprentissage Semi-Supervisé, Apprentissage Non-Supervisé, Modèle de Langue, Syntaxe.
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Chapter 1
Introduction

Natural Language Processing (NLP) has come a long way in the recent years due to a
paradigm shift towards Deep Learning-based systems. A major catalyst for the advances
it has seen, is an intense focus on Representation Learning for language, i.e. designing
embedding techniques for language (e.g. word embeddings or sentence embeddings). These
embeddings are the cornerstone to all state-of-the-art NLP systems, since mapping textual
observations to numerical vectors is the starting point of all these systems. Consequently,
over the past years, better representation learning for language has consistently translated
to better performance on downstream tasks such as parsing [Chen and Manning, 2014],
translation [Devlin et al., 2014], or natural language inference [Bowman et al., 2015]. Over
the last decade, representation learning in NLP evolved from static vectors for context-
agnostic word-level representation [Mikolov et al., 2013], to contextual, and thus dynamic,
subword-level representations [McCann et al., 2017].

An essential ingredient to the rapid growth of the literature on contextual language rep-
resentation is the Transformer architecture [Vaswani et al., 2017]. This architecture has
been built to provide sequence elements (tokens) with context information while solely
relying on a mechanism called attention. Contrary to the serial processing occurring in Re-
current Neural Networks (RNNs), attention allows sharing information between sequence
elements in a completely parallel fashion, which allows faster learning and inference. The
first Transformer-based language representation model, BERT [Devlin et al., 2019], led
to a significant improvement on language understanding benchmarks and paved the way
for a surge of similar models [Yang et al., 2019, Lan et al., 2020, Liu et al., 2020], later
dubbed BERT-like models.

The race to performance caused representation learning models to grow larger, deeper,
and thus less and less interpretable. In response to this, great efforts have been deployed
to read into the inner workings of these models [Jawahar et al., 2019a, Hu et al., 2020,
Kodner and Gupta, 2020, Marvin and Linzen, 2020, Kulmizev et al., 2020, Rogers et al.,
2020a], and procedures aimed at grounding language representation into understandable
concepts have grown to become a major research direction in the NLP community. Here
again, attention, the cornerstone of BERT-like models, was essential to a great number of
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insights into state-of-the-art NLP models. As a matter of fact, a byproduct of its design
is that it calculates values that determine how much context information is pulled from a
token to another, which provides a reading into the interaction between these tokens. For
instance, Clark et al. [2019] have shown that attention in BERT spontaneously specializes
in dependency parsing at different parts of the network, an observation that was the basis
for the current state-of-the-art unsupervised dependency parsing system [Shen et al.,
2022].

As an alternative to post-hoc analyses on black-box models, interpretability in NLP
models can be tackled by building models which are understandable by design. This built-
in interpretability can be pursued at different levels in an NLP system. For instance, there
have been efforts to plug knowledge graphs into language models [Logan et al., 2019, Peters
et al., 2019] so as to freely control the knowledge used by these models for generation.
Other types of interpretability-oriented interventions on NLP models include interpretable
inference schemes for multi-hop question answering where, for example, Weber et al. [2019]
integrate a Prolog prover into their system and Saha et al. [2019] turn questions into series
of programmatical queries. In essence, built-in interpretability efforts are channelled into
solving two research questions:

• How can we obtain interpretable inner-representations in neural models ? (i.e. inter-
pretable encoding)

• How can we control interpretable aspects of the output of neural models ? (i.e. in-
terpretable decoding)

To tackle the above problems and design a system that is interpretable with regard
to a certain aspect, the classical procedure is to collect samples annotated with this
aspect. Subsequently, one correlates these annotations to some inner-representations in the
system, or uses them as a conditioning factor for the outputs of the system. For example,
provided text samples annotated with their style, one could train neural representations
to separately encode information that correlates with style, modify it, then decode it to
obtain a sentence with similar meaning but different style [Wang et al., 2019]. However,
this procedure assumes access to annotated samples, which are often costly, especially
when the annotation procedure requires expertise. For instance, [Seddah et al., 2020]
report an annotation cost of 87k€ for 1500 sentences to be fully annotated in morpho-
syntax and Universal Dependency[Nivre et al., 2016] syntax. The cost of labeled data is
not only high, but also recurrent since adapting to data that continuously evolves such
as language or to new domains1 entails a fine-tuning of the learned models, and therefore
a new round of annotation. Given the considerable volumes of data needed for training
neural models and the plurality of languages and domains, there is clearly little hope for
classical supervised learning to provide coverage with interpretable language technologies
to a sufficient proportion of their possible use cases.

1For reviews on concept drift and domain adaptation, readers may refer, respectively, to Lu et al. [2019c] and
Farahani et al. [2021]
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1.1. VAES FOR EXPLAINABLE NLP

x qϕ(z|x)

p(z)

z

z

pθ(x|z) x

Figure 1.1: A diagram sketching the functioning scheme of a Variational Autoencoder. x is an observation,
qϕ(z|x) is an encoder, pθ(x|z) is a decoder, and p(z) is a prior.

To summarize the above, there is a dire need for methods that would improve inter-
pretability for neural NLP models while requiring little-to-no annotated text samples.
Accordingly, we turn to Latent Variable Models (LVMs), a framework where it is possible
to relate observations to a carefully crafted latent structure of probabilistic variables. This
framework provides a principled means to inject beliefs in models through the choice of
distributions (e.g. Gaussian, Categorical, etc) and latent structures (e.g. trees, lattices,
independent variables) which can be leveraged to counteract the lack of annotations.

The flagship of LVMs in the Deep Learning era is the Variational Autoencoder (VAE;
Kingma and Welling, 2014). In that sense, the purpose of this thesis is to explore and
improve on the current usage of VAEs in NLP, so as to ease their application, and to create
neural representations of language with a clear grounding to understandable linguistic
factors, while requiring little-to-no supervised learning.

1.1 VAEs for Explainable NLP

We give, in this section, a quick overview as to what constitutes a VAE. We also give a
broad description of its usages in NLP in general, and how it proved useful for explainable
NLP in particular. The brief explanations given here are elaborated upon in a dedicated
background chapter (Chapter 3).

1.1.1 What is a VAE ?

The components forming a VAE are depicted in Figure 1.1. Given a set of observations
x, VAEs are a class of Deep Learning models that train a generative model pθ(x) =∫
z
pθ(x|z)p(z)dz, where p(z) is a prior distribution on latent variables z that serve as a

seed for generation, and pθ(x|z), called the decoder, generates an observation x from each
latent variable value z.

Since directly maximizing the likelihood pθ(x) to train a generative model is rarely
tractable2, an approximate inference distribution qϕ(z|x), called the encoder, is used to

2Maximizing this likelihood is possible for cases where the support of z is small enough for summation. However
latent variables with such a small support are, in general, not expressive enough to describe the distribution of
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formulate a lower-bound to the exact log-likelihood of the model, called the Evidence
Lower-Bound (ELBo). This lower-bound is formulated as follows:

log pθ(w) ≥ E(z)∼qϕ(z|w) [log pθ(w|z)] − KL[qϕ(z|w)||p(z)] = ELBo(w; z) (1.1)

where KL is the Kullback-Leibler divergence. Although this objective still requires cal-
culating an expectation over z, in practice, it can be approximated with sampling-based
estimates and used to efficiently learn a generative model.

The VAE framework combines the efficiency of Variational Inference [Jordan et al.,
1999] with the representational power of Deep Learning. Its generative capabilities, as
well as its encoder-decoder architecture made it into a Swiss Army knife for NLP, as is
explained in the next section.

1.1.2 An Overview of VAEs in NLP

The first work in NLP exploring the use of VAEs was Bowman et al. [2015]’s work
on language generation from smooth continuous representations, where these continuous
representations are VAE latent variables. The smoothness mentioned by Bowman was a
byproduct of the fact that VAE encoders are probability distributions, as opposed to the
deterministic scalars yielded by classical Sequence Autoencoders [Sutskever et al., 2014].
As a matter of fact, the regularization provided by the sampling procedures occurring
during training produces smooth vicinities in the VAE latent space where intervening
on representations doesn’t damage the well-formedness of output sentences. Moreover,
many recent works have shown that VAEs have a natural tendency toward producing
disentangled representations with their encoders [Higgins et al., 2017, Rolinek et al., 2019],
i.e. representations where understandable concepts are localized in identified neurons. This
ability to disentangle, together with the smoothness property, allowed various works on
interpretability to produce understandable representations with VAE encoders, and to
intervene on these representations and decode them to obtain well-formed samples where
they successfully modify the factors they explicited in their representations [Chen et al.,
2019a, Cheng et al., 2020, Huang and Chang, 2021b]. Although these works produced
encouraging results, they largely assume the availability of annotated data and therefore
mostly rely on supervised learning. In contrast to these works, the present thesis focuses
on data-efficient methods to minimize the need for annotated data.

After the introduction of VAEs, Kingma et al. [2014] also showed that they could be
used for semi-supervised learning, where a classifier is trained normally on annotated sam-
ples, and as a VAE encoder on non-annotated samples. This use of VAEs also propagated
to NLP improving data efficiency across several tasks [Wolf-Sonkin et al., 2018, Habib
et al., 2019, Corro and Titov, 2019, Chen et al., 2018a]. Semi-Supervised Learning with
a VAE produces an Autoencoder where the latent representation is understandable while
requiring relatively few annotated samples. It is therefore an important avenue for re-
target observations x.
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search on both interpretable representations learning (with the encoder), and controllable
generation (with the decoder).

1.2 An Outline of this Thesis

Posterior to the present introductory part of this thesis, we dedicate a part to back-
ground notions which are necessary to understand our contributions, we present our semi-
supervised learning-specific contribution in a third part, then our disentanglement-specific
contribution in a fourth part. A fifth and final part concludes our thesis with a summary
of our findings and a few perspective research directions.

Part II: Background This part details all the notions necessary to understanding the
contributions presented in this thesis. First, in Chapter 2, we go over neural language
modeling, as it is an essential brick to generative NLP systems, and the basis to VAE
language models which are what we aim to build in an interpretable way throughout
the thesis. The chapter first provides explanations on how to build a standard Language
Model (LM), how to build a conditional LM (to lay the groundwork for the introduction
of latent variables), the techniques to sample from LMs, and the most common evaluation
protocols for these models. Masked Language Models are also be explained as they are
an important component of recent representation learning techniques.

Chapter 3 is about VAEs, since they are the machine learning framework used through-
out all contributions in this thesis. It covers its theoretical foundations (i.e. architecture
and loss function), the implementation details necessary for it to work, and how impor-
tance weighting is used to approximate its perplexity, the main evaluation metric for
language modeling. It also discusses posterior collapse, an issue that is specific to lan-
guage modeling with VAEs, and the different solutions that were proposed to deal with
it in the literature. Finally, we discuss in this chapter the way VAEs were adapted for
semi-supervised learning.

Chapter 4 is about a core notion for this thesis : Disentanglement, i.e. the process of
separating understandable concepts in neural representations. The chapter justifies the
need for disentanglement and explains how it works. It also provides technical justifi-
cations for the use of VAEs for disentanglement, and gives precise reasons as to why
and when unsupervised disentanglement works with VAEs. This chapter also describes
the evaluation protocols used to measure disentanglement, and previous works in NLP
pertaining to this area of research.

Chapter 5 revolves around Transformers, the architecture used to implement the in-
ductive bias used for our disentanglement-specific contributions. We first discuss in this
chapter attention, the core component of Transformers, then the way the Transformer
architecture is built with different uses for attention and other carefully crafted compo-
nents. The remainder of this chapter consists in a summary of Transformer-related works
throughout NLP, namely (causal and masked) language modeling with Transformers, and
Transformer-specific model analyses.
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The final background chapter, Chapter 6, goes over a few notions regarding syntactic
analysis that we leverage to explain our disentanglement-specific contributions. Specif-
ically, this chapter summarizes Context-Free Grammars and how they produce con-
stituency trees and presents dependency parsing and the notion of syntactic role. The
explanations on dependency analysis also focus on the distinction between oblique and
core syntactic roles and how the latter relate to the predicate-argument structure.

Part III: Semi-Supervised Learning with VAEs As a first contribution, we chose
to study the use of VAEs in semi-supervised learning (Chapter 7). In this context, textual
observations are described with 2 latent variables: i) a partially-observed latent variable
with a known meaning for which we have a small amount of annotations, ii) an unobserved
latent variable that describes factors other than that of the partially-observed variable,
and for which we have no annotated data. Semi-Supervised VAEs (SSVAE) can be used
to leverage unlabeled data to improve the inference of a factor for which we only have
a small amount of annotations. In this chapter, we provide a detailed description of the
source of this improvement, and use it to ablate two sources of over-complexity in the
SSVAE framework. These ablations yield a model that is smaller, faster, and easier to
define, while preserving the performance of the original framework.

Part IV: Unsupervised Disentanglement of Sentence Representations The
bulk of our contributions pertains to disentanglement of sentence representations where
we build, with Transformers attention, latent variable models with inductive bias that are
capable of giving rise to understandable concepts in the latent representations without
annotations i.e. in an unsupervised fashion. These contributions are presented in this part
over two chapters.

In chapter 8, we tackle unsupervised learning of sentence representations that display
separation (disentanglement) with regard to the realizations of their core syntactic roles.
Drawing from the observation that attention-based Neural Machine Translation systems
are capable of aligning spans between languages in a coherent fashion, we introduce an
Attention-Driven Variational Autoencoder (ADVAE). ADVAE is the first VAE that uses
Cross-Attention to encode and decode latent variables. ADVAE also enables using atten-
tion to quantify the interaction of latent variables with inputs. The assessment of this
model required designing an evaluation procedure that enables quantifying the disentan-
glement of realizations of syntactic roles, both in the encoder and in the decoder of our
model. Our experimental results show that it is indeed possible with ADVAE to obtain
sentence representations where the realizations of syntactic roles exhibit pronounced sep-
aration without using supervised learning. We also show that our model is capable of
separately changing the realizations of core syntactic roles in sentences it generates, and
that it does it better than classical LSTM-based or Transformer-based text VAEs. How-
ever, we show that the success of this separation is limited to the case where a dataset
consists of regularly structured sentences.
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In the same line of work, we tackle in Chapter 9 disentanglement of structure from con-
tent in sentence embeddings. By leveraging the internal variables of the cross-attention
mechanism in the decoder of our previously built ADVAE, we define a variable that is
enforced to only control the keys in the decoder’s Cross-Attention, and control the values
using the remaining latent variable. We experimentally demonstrate the ability of the
key-specific latent variable to channel syntactic information, while leaving semantic in-
formation to the value-specific latent variable. In experiments where the resulting model,
QKVAE, is set to transfer syntax and semantics, we show that it performs competitively
compared to supervised counterparts, and that a previous supervised model needs more
than 50K annotated samples to outperform it. Experiments measuring its ability to disen-
tangle realizations of syntactic roles also show that it improves upon ADVAE, and that it
mitigates its inability to disentangle information from different syntactic roles on datasets
where sentences do not display regular structure.

Part IV: Conclusion and Perspectives This part concludes this thesis by summa-
rizing our findings, and describing a few research directions which may be pursued on
the basis of the contributions presented in this thesis. Specifically, it elaborates the way
a structured latent variable model, as opposed to the independent latent variable mod-
els described in this thesis, can alleviate some of the present shortcomings of our last
model, QKVAE. As a last note, we emphasize the ease of applicability of our models to
non-text data, since they are unsupervised and modality-agnostic, and thus argue their
potential for producing explainable representations for other modalities (e.g. images) or
in the multi-modal setup.

1.3 Publications Related to this Thesis

• Ghazi Felhi, Joseph Le Roux, and Djamé Seddah. 2021. Challenging the Semi-
Supervised VAE Framework for Text Classification. In Proceedings of the Second
Workshop on Insights from Negative Results in NLP, pages 136–143, Online and
Punta Cana, Dominican Republic. Association for Computational Linguistics. [Felhi
et al., 2021a] (Chapter 7)

• Ghazi Felhi, Joseph Le Roux, and Djamé Seddah. 2021. Towards Unsupervised Con-
tent Disentanglement in Sentence Representations via Syntactic Roles. Presented
at CtrlGen: Controllable Generative Modeling in Language and Vision. Online, co-
located with NeurIPS 2021. [Felhi et al., 2021b] (Chapter 8)

• Ghazi Felhi, Joseph Roux, and Djamé Seddah. 2022. Exploiting Inductive Bias in
Transformers for Unsupervised Disentanglement of Syntax and Semantics with VAEs.
In Proceedings of the 2022 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pages 5763–5776,
Seattle, United States. Association for Computational Linguistics. [Felhi et al., 2022]
(Chapter 9)
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Chapter 2
Neural Language Modeling

Language Modeling is a classical NLP task where one builds generative models for a
language. These models can be learned using text corpora and functions with learnable
parameters that allow assigning probabilities to text samples quantifying how likely these
samples are to belong to these corpora. Tractably assigning probabilities to text samples
implies that these models enable sampling text samples, i.e. generating samples which
are likely to come from the training data distribution.

This resulting ability to generate text samples is essential to most generative (as opposed
to discriminative) tasks in NLP: namely the design of Dialogue Systems [Zhang et al.,
2018], Machine Translation [Bahdanau et al., 2015], Textual Style Transfer [Li et al.,
2018], Abstractive Summarization [Chopra et al., 2016], inter alia.

Besides the utility of Language Models (LMs) as a brick for the above NLP systems,
Radford et al. [2019] have shown through their the large-scale training of an LM, GPT-
21, that modeling the distribution of text corpora requires learning a wide set of skills
such as Reading Comprehension, Question Answering, and even Machine Translation.
Subsequent large-scale LMs such as GPT-3 [Brown et al., 2020] have also shown that
LMs can exhibit proficiency at advanced reasoning skills such as few-digit arithmetics
and fake news generation. This stresses the centrality of LMs to NLP in particular, and
to AI in general.

In this thesis, we aim to build interpretable Neural LMs. To lay the groundwork for
our contributions, we explain the intuitions behind LMs, and formally define the learning
modules and objectives used to obtain them (§ 2.1). The particular class of LMs that
we base our work on are Variational Auto-Encoder-based LMs which condition LMs on
latent variables. In that regard, we introduce Conditional LMs (§ 2.2) that are later used
to plug latent variables into LMs in Chapter 3. Next, we introduce sampling techniques we
use to obtain output text samples from LMs(§ 2.3), and metrics that are usually applied
to quantify the quality of an LM(§ 2.4). Finally, we explain MLMs(§ 2.5), which are the
basis to recent Transformer-based representation learning techniques.

1The GPT-2 experiment is explained in more detail in § 5.3.2
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CHAPTER 2. NEURAL LANGUAGE MODELING

2.1 Learning Language Models

Consider a corpus U2 of text samples w. An LM, learned on the basis of this corpus,
consists in a probability distribution pθ, where θ is a set of parameters, that should
assign high probabilities to samples that belong to U , and low probabilities to samples
that are unlikely to come from U . To represent a text sample w, we break it down to
a series of tokens wi ∈ V where V is a predefined vocabulary (e.g. words, characters,
sub-word units, etc). Using these tokens the probability of a sample is then measured
as pθ(w) =

∏
i pθ(wi|w<i), i.e. one token wi at a time conditioned on the tokens w<i

that precede wi in w. This model is referred to as an autoregressive or causal LM3, and
the default learning strategy to estimate θ is simply to maximize the probability (or
log-probability) of samples in U according to pθ as follows4:

argmax
θ

∑
w∈U

log pθ(w) = argmax
θ

∑
w∈U

|w|∑
i

log pθ(wi|w<i) (2.1)

The above learning strategy is called Maximum Likelihood Estimation (MLE)5. Given
this strategy, all that remains is to define pθ(wi|w<i).

LMs can be approached in a naïve way by restricting the dependency of the current
word’s probability estimation to the n− 1 previous words, i.e pθ(wi|w<i) =

pθ(wi|wi−(n−1), . . . , wi−1). This approach, called n-gram language modeling, is limited in
that it can only account for a fixed number of previous words but it is fairly simple to
implement.

Among other design choices, n-gram LMs can be tackled with a linear model as follows:
Let E and C respectively a word embedding matrix and a context embedding matrix
that store for each word wi in the vocabulary V representations Ewi

∈ RDE , and Cwi
∈

RDC . Using a linear transformation defined by the matrix M ∈ M(nDC , DE), and the
concatenation operator Cat one can define an n-gram LM as follows:

pθ(wi|w<i) = pθ(wi|wi−(n−1), . . . , wi−1) = softmaxwi
(s) (2.2)

s.t. : softmaxwi
(s) =

exp(swi
)∑

swj∈s
exp(swj

)
(2.3)

s = {swj
; s.t. swj

= Ewj
MĈ,wj ∈ V ) (2.4)

Ĉ = Cat(Cwi−(n−1)
, . . . , Cwi−1

) (2.5)

2The notation U refers to the fact that samples are unlabeled, i.e. not paired with annotations on some
explaining factor for each observation.

3Non-autoregressive language modeling is outside of the scope of this thesis. Despite being less common, it is
an active area of research [Li et al., 2022],

4The objective described in Equation 2.1 may be accompanied by a regularization term on the parameters θ
which is added to the objective as an auxiliary term R(θ).

5Alternative learning strategies have been proposed in the literature (e.g. Sequential Generative Adversarial
Networks; Yu et al., 2017), but MLE remains dominant for language modeling.
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The above procedure can be summarized in the following steps:

• Calculate a representation Ĉ for the context or the word wi.

• Score all word in the vocabulary with regard to the current context using a score
function s.

• Calculate a normalized version of the score s that will be used to parameterize the
categorical distribution pθ(wi|w<i).

This procedure is the standard procedure used to define an LM even beyond n-gram
language modeling. LMs have been improved across various stages of this procedure com-
pared to the above naïve model. For instance, the work of Yang et al. [2018] has shown
that the softmax operator can only model as many contexts as the number of dimensions
used for its input matrix, and therefore represents a bottleneck for the scoring of contexts
with regard to words. However, research on LMs is most active on the context represen-
tation Ĉ. As a matter of fact, a version of the above n-gram LM has been explored by
Bengio et al. [2000] with neural networks to calculate word representations and achieved,
at the time, state of the art language modeling performance with n = 5.

In the early 2010’s, LMs started incorporating Recurrent Neural Networks (RNNs)
to represent context over indefinitely long series of previous words [Mikolov et al., 2010].
These neural modules enable estimating a fixed size representation hN for context windows
of arbitrary length N using the following recursive rule:

aN = b+WhN−1 + UCwN
(2.6)

hN = tanh(aN) (2.7)

where b, W and U are learnable parameters, and tanh is the hyperbolic tangeant function.
In a similar spirit, previous works have shown that state-of-the-art language modeling
performance can be achieved using variants of RNNs, for instance LSTM [Merity et al.,
2018] or Mogrifier LSTM [Melis et al., 2020]), and neural models thus became the de facto
approach to parameterize LMs.

2.2 Conditional Language Models

In contrast to vanilla LMs, controllable or conditional LMs require an input constraint
on pθ that steers the probability estimation towards a desired property. A simple example
can be that of an LM trained on movie reviews, where we try to control the sentiment
(positive or negative) of the generated reviews. Another example, that is rarely referred
to as a conditional LM, is that of Machine Translation where we aim to generate text
samples in a certain language conditioned on their counterpart in another language.

To model controllable language generation, one simply conditions the output probability
distribution on an additional factor y such that word probabilities at each generation step
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become parameterized by pθ(wi|w<i, y). Together with the previous words w<i, y is used
to estimate a context representation Ĉ that will be trained to assign high probabilities
to words that realize text samples with the desired underlying attribute. Given a labeled
dataset L consisiting in text samples w coupled with annotations y on the attribute that
one aims to account for, learning a conditional LM is straightforward using a slightly
modified version of the Maximum Likelihood objective introduced in 2.1:

argmax
θ

∑
w∈U

log pθ(w|y) = argmax
θ

∑
(w,y)∈L

|w|∑
i

log pθ(wi|w<i, y) (2.8)

However, when the underlying factor we aim to model is only partially-observed in the
data at hand, or when it is never observed6, the above objective must be swapped for
another that accounts for the data points that only consist of an unlabeled observation7

w. An objective that enables working with this constraint is described later in this thesis
in the context of semi-supervised learning with VAEs (§ 3.7).

2.3 Sampling Techniques for Autoregressive Language Models

The canonical sampling procedure to generate text from LMs, random sampling, is to
pick words according to their probabilities pθ(wi|w<i) until a maximum length is reached,
or an end-of-sequence flag is triggered. LMs are typically trained on text samples bracketed
by a beginning of sentence token < bos > that plays the role of w<i for the first generation
step, and an end of sentence token < eos > that signals the end of the text sample, and
thus the token sampling loop.

Random sampling makes sense when the model needs to generate diverse samples. An
instance where this can be useful is data augmentation where the model needs to augment
a dataset with diverse samples in order to improve the generalization of methods learned
on this dataset [Han et al., 2019]. In contrast to such case, many applications such as
Machine Translation, require picking the most likely sequence of tokens rather than a
likely sequence of tokens. In this case, generation is most often referred to as decoding8

since it is required to roll out an expected response within a narrow range of possibilities
based on precise contextual clues.

Finding the most likely sequence of tokens requires estimating the probabilities of
all possible sequences, which is intractable. Therefore, decoding is usually tackled using
heuristics, where the 2 most commonly used heuristics are Greedy Sampling and Beam

6Later in this thesis, contrary to observed or partially-observed latent variables that we denote y, we denote
unobserved latent variables z.

7For example, one could marginalize the objective described in 2.8 over y, if this marginalization is tractable
(which is rarely the case).

8This most frequently used term, decoding, is short for Maximum A Posteriori (MAP) decoding, where one
tries to produce the sequence with highest overall probability. Other decoding strategies, such as minimum Bayes
risk decoding [Kumar and Byrne, 2004] may be encountered in the literature [Eikema and Aziz, 2020] but the
MAP decoding is by far the dominant paradigm.
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<bos>

I

am

choosing

trying

to

agree

<eos>

0.4

1
0.6

0.5

0.5

1

1

1

1

Figure 2.1: Example transition probabilities for a decoding process.< bos > and < eos > are
respectively beginning-of-sentence and end-of sentence tokens. Transition probabilities are transcribed

over arrows linking different tokens. The absence of an arrow means a null transition probability.

Search. Greedy sampling is fairly straightforward: one simply picks, at each generation
step, the word with the highest probability. However, picking the most likely word at
each generation step does not guarantee sampling the highest-probability sequence. An
example of how this can occur is illustrated in Figure 2.1. When only the token I has
been picked, pθ(am|I) > pθ(agree|I). However, the probability of the sentence that follows
from choosing agree is:

pθ(I, agree,< eos > | < bos >) =

pθ(I| < bos >) pθ(agree| < bos >, I) pθ(< eos > | < bos >, I,agree)

=1∗ 0.4∗ 1 = 0.4 (2.9)

On the other hand, the probability of a sentence that follows the choice am9 is:

pθ(I, am, choosing, to, agree,< eos > | < bos >) =

pθ(I| < bos >)pθ(am| < bos >, I)

pθ(choosing| < bos >, I, am)pθ(to| < bos >, I, am, choosing)

pθ(agree| < bos >, I, am, choosing, to)

pθ(< eos > | < bos >, I, am, choosing, to, agree)

= 1 ∗ 0.6 ∗ 0.5 ∗ 1 ∗ 1 ∗ 1 = 0.3 (2.10)

Therefore, although picking the best option at each generation step favors the token am
at the second step, the overall highest probability sentence is rather obtained by picking
agree.

To better explore word transition graphs such as the one represented in Figure 2.1, we
use Beam Search. This method is initialized by picking the k highest-probability tokens
to initialize k sequences, where k is called the beam width. In what follows, Beam Search
measures for the k sequences the probability for each token in the vocabulary V to be the
next token. The combination of each sequence with each word from the vocabulary yields
an array of sequences of size k ∗ |V | from which k highest-probability sequences will be

9Branching on choosing or trying leads to the same sentence probability here.
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selected. The process is repeated until all k sequences have reached the < eos > flag or a
predetermined maximum length. Here we emphasize that, contrary to Greedy Decoding,
Beam Search keeps or drops sequences on the basis of the entire sequence probability
(i.e. pθ(wi, wi−1, . . . , w1)) instead of the next token probability (i.e. pθ(wi|wi−1, . . . , w1)).
While guaranteeing equal or higher-probability decoded sentences, Beam Search requires
using k times the memory required for Greedy Sampling where typical values for k range
from 5 to 20.

Next to Beam Search and Greedy decoding, other decoding schemes have been de-
veloped in order to better imitate human language. Specifically, Holtzman et al. [2020]
show that aiming for high probability sentences through Beam Search and Greedy De-
coding, even from high quality LMs, leads to sentences that have low diversity compared
to human-generated text. On the other hand, unhinged random sampling results in er-
ratic and often unnatural sequences. A middle-ground can be reached using methods like
Top-k Sampling, or Holtzman et al. [2020]’s Nucleus Sampling which truncate the range
of possible tokens for random sampling to a restricted high-probability list. Although the
output of these methods may exhibit more human-like patterns, we restrict our study to
outputs from Greedy Sampling or Beam Search, which are designed with the intent10 to
produce maximally likely sequences, and are therefore better suited for inquiries about
what the model has learned.

2.4 Evaluation the Generative Capabilities of Language Models

Similar to sampling techniques, evaluation strategies for generative models depend on
whether the model is required to describe a range of outputs with its samples, or to produce
a specific output given some contextual clues like previous words used as a prompt, or
extrinsic factors encoded in the context representation.

In the case where no specific output is required from the LM, we aim to assess the well-
formedness11 of its outputs. Ideally, an oracle would look at samples from the LM, and
score their syntactic and semantic soundness. But since such an oracle is rarely available,
the norm is to evaluate the model with a score that depends on the likelihood that this
model assigns to a held-out collection of unseen ground truth text data. The idea here is
that, since we know that our held-out data was not seen by the model during training, and
that it is well-formed, the higher the probability assigned by our model to this data, the
higher the chances that it will, in general, generate well-formed samples. This principle is
formalized through a metric called perplexity. Given a test set Utest consisting of samples

10We stress here that neither Greedy Sampling, nor Beam Search are guaranteed to produce the most likely
sequence of tokens.

11Here, well-formedeness is relative to the data that we aim to learn. In that sense, a non-normalized text
sample (e.g. c’mon instead of come on), is considered well-formed if it adheres to the distribution of the LM’s
training data, which could allow for non-normalized text.
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w = {w1, . . . , w|w|}, perplexity is calculated as follows:

PP (Utest) = pθ(Utest)
− 1

N (2.11)

s.t: pθ(Utest) =
∏

w∈Utest

|w|∏
i

pθ(wi|w<i) (2.12)

N =
∑

w∈Utest

|w| (2.13)

In the above formula, N is the total number of words in our corpus, and it is used to
normalize the inverse-probability score we measure. As shown in this formula, perplexity is
a decreasing function of the token-wise probability pθ(wi|w<i). Therefore, lower perplexity
means better language modeling performance. It is also important to note that perplexity
does not account for the sampling strategy used at test time.

Now, in case we need to measure how close a model is to generating a specific output, a
range of metrics have been developed in order to compare series of tokens in a linguistically
meaningful way. The metrics we present here are metrics that were mainly aimed at
measuring performance in the task of Machine Translation, and therefore designed to
correlate with human judgment on sentence or phrase semantic similarity. To get the gist
of how these metrics work, we describe, in what follows, the most commonly used metric:
BiLingual Evaluation Understudy (BLEU; Papineni et al., 2001).

Given a generated (or candidate) sentence w and a set of reference translations
{w1

ref , . . . , w
R
ref} (e.g. alternative target translations for a single source sentence), this

metric computes a modified n-gram precision of the n-grams present in the candidate,
where n-grams are n-tuples of tokens. A standard n-gram precision measure consists in
counting the number of n-grams in the candidate sentence that are present in a reference
sentence, and then dividing the result by the total number of n-grams in this candidate.
To see the problem with such a measure, observe the following example:

• Candidate: food food food food food.

• Reference 1: the dog ate its food.

• Reference 2: the canine consumed its nourishment.

Using standard precision, the above sentence that consists only in repeats of an n-gram
that is present in a reference sentence (the unigram food) gets a perfect score. To deal
with the above issue, BLEU modifies precision by clipping the total occurrence count for
an n-gram in references by the maximum number of times it occurs in a reference. This
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measure is formalized as follows:

pn =

∑
C∈Candidates

∑
n-gram∈C

Countclip(n-gram)∑
C′∈Candidates

∑
n-gram ′∈C′

Count(n-gram ′)
(2.14)

s.t.: Countclip(n-gram) = min(Count,Max_Ref_Count) (2.15)

In practice, BLEU is measured through a geometric mean of the above measures for
different values of n, typically for n ≤ 4.

In the same line of work, ROUGE [Lin, 2004] was engineered to maximally correlate with
human judgment of summarization quality, and improvements over BLEU were brought
about with METEOR [Banerjee and Lavie, 2005] and METEOR 1.5 [Denkowski and
Lavie, 2014] which match words exactly, through stemming and through synonymy, and
includes an explicit account for grammaticality through a chunking penalty.

More recently, efforts have been deployed to use neural representations as a continuous
estimate of meaning, and to correlate similarity metrics between these representations (e.g.
cosine similarities) with human judgments. A number of works have shown that state of
the art correlations with human judgements could be obtained either with unsupervised
representation learning techniques [Zhang et al., 2020, Kamal Eddine et al., 2022] or with
supervised versions of these techniques where the representation is trained to be invariant
to paraphrasing [Huang et al., 2021b].

2.5 Masked Language Modeling

As discussed earlier in this chapter, the term Language Model generally refers to models
that assign probabilities to text samples. An exception to this rule is a recent class of
models trained to perform a task dubbed masked language modeling. This task consists in
recovering a sequence of tokens from a corrupted version of this sequence. More precisely,
to train a Masked Language Model (MLM), one takes a sequence of tokens, replaces a
proportion of the tokens with a special [MASK] token, replaces another proportion of
tokens with a random token, and trains a neural module pθ to recover the original sequence
using the following objective:

argmax
θ

∑
w∈L

|w|∑
i

log pθ(wi|wcorr) (2.16)

s.t. : wcorr = corrupt(w) (2.17)

where the corrupt operator applies the random replacements described above. Contrary
to classical LMs, the above pθ cannot be used to measure the probability of a sentence.
In that sens, although it can be used to fill-in missing words in a sequence, it can not
be used to generate sequences of tokens. In fact, it is important to notice that sampling
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a token from pθ(w4|wcorr,1 = t1, wcorr,2 = t2, wcorr,3 = t3, wcorr,4 = [MASK]) does not
yield the next token for the sequence {t1, t2, t3} but rather the last token since pθ takes
bidirectional information as a context. Therefore, using only previous tokens as a context
for an MLM implicitly gives it the information that there are no other words in the
sentence.

The concept of Masked Language Models (MLM) has been formulated and applied first
in the work of Devlin et al. [2019] to train their Bidirectional Encoder Representations
from Transformers (BERT). The objective was to obtain neural representations that feed
off the entirety of the context in sentences through a self-supervised learning scheme, i.e.
a learning scheme where the target information for inference is the input data itself. The
intent behind this objective was to transfer the information channeled in these represen-
tations to other tasks. Transferring representations was popularized in NLP by Mikolov
et al. [2013], and contextual representations were explored before MLMs (see for example
Peters et al., 2018), but the work of Devlin et al. [2019] has shown that the ability of
MLMs to factor context from the entire sentence enables contextual representations to
display significantly higher transfer performance when applied to new tasks. The success
of Devlin et al. [2019]’s model, BERT, was due to masked language modeling but also to
the Transformer architecture. This architecture, which was highly popularized by BERT,
is better explicited in Chapter 5, together with its implementation details, and some of
the most prolific BERT variants that were also based on it.

2.6 Conclusion

Since the purpose of our work is to build interpretable neural LMs, we dedicated this
chapter to introducing neural language modeling. First, we explained how Auto-regressive
LMs can be formulated, and how they can be parameterized by learnable modules pθ
(§ 2.1). We then explained how, in addition to previous tokens, the probability assigned
by pθ to a token can be conditioned on other factors to explicitly model dependency on
extrinsic attributes(§ 2.2).

Using LMs for generation requires sampling techniques, among which random sampling,
Greedy Sampling and Beam Search are described in this Chapter(§ 2.3). Subsequently,
we gave intuitive then formal descriptions of a few evaluation metrics, namely perplexity
and BLEU, which are respectively used to measure the quality of unconstrained randomly
generated samples, and the similarity of conditionally-generated samples with regard to
a specific desired output(§ 2.4).

As a final point, we presented masked language modeling(§ 2.5), a training objective
that deviates from classical language modeling in order to produce representations from
a bidirectional textual context, and that provides the basis for modern high-performance
NLP representation learning.

36



Chapter 3
Variational Autoencoders

Variational Autoencoders [Kingma and Welling, 2014] are models which leverage Deep
Learning components by using the Autoencoder architecture [Rumelhart et al., 1985]
to learn a generative model using Variational Inference [Jordan et al., 1999]. Contrary
to what its name implies, its primary purpose is, therefore, not to learn encodings but
rather to learn to generate observations that are likely to come from a given dataset U =

{x1, . . . , x|U |}. For a generative model p(x) =
∫
z
p(x|z)p(z)dz, where x is an observation

and z is a latent variable with a known prior distribution p(z), Variational Inference
can be used to approximate the posterior distribution p(z|x), which is often intractable,
by optimizing a different distribution q(z|x). Using Neural Networks, or more precisely
Autoencoders, this Variational Inference-based approach can be implemented using a
neural encoder qϕ(z|x) and a neural decoder pθ(x|z) to form what later came to be called
Varational Autoencoders (VAEs). The presence of both an encoder and a decoder in VAEs
led to a plethora of works that employ them outside of the strict generative modeling
setup, namely for semi-supervised learning [Wolf-Sonkin et al., 2018, Habib et al., 2019,
Corro and Titov, 2019, Chen et al., 2018a], or interpretable representation learning and
controllable generation [Chen et al., 2019a, Cheng et al., 2020, Xu et al., 2020b, John
et al., 2020, Bao et al., 2019, Huang and Chang, 2021b, Huang et al., 2021b].

This chapter is dedicated to presenting VAEs, the machine learning framework used
throughout all of our contributions. We first describe the architecture it uses as a back-
bone, the Autoencoder architecture (§ 3.1). Then we explain how the encoder and decoder,
together with a prior distribution on the latent variables, are used to formulate a lower-
bound on the exact log-likelihood of a generative model (§ 3.2). This generative model
requires a few implementation tricks to be learned efficiently which we explain in a dedi-
cated section (§ 3.3). Language modeling with VAEs is discussed in Section 3.4, followed
by the method used to evaluated perplexity for such models (§ 3.5). VAEs, when applied
to language modeling, exhibit a particular type of failures called posterior collapse which
we describe, together with common techniques to deal with it, in Section 3.6. Finally, we
lay out the principles governing semi-supervised learning with VAEs (§ 3.7). The reasons
why VAEs are capable of producing disentangled representations as well as the way they
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x q̂ϕ(x) z pθ(x|z) x

Figure 3.1: A diagram sketching the Autoencoder architecture. x is an observation, q̂ϕ(x) is an encoder
and pθ(x|z) is a decoder. Green denotes the ground truth variable, while red denotes inferred variables.

are used for that purpose are later detailed in Chapter 4.

3.1 The Autoencoder Architecture

Autoencoders [Rumelhart et al., 1985] are a class of Deep Learning models which aim to
learn lossy compressions or encodings of high dimensional data through low dimensional
representations. These models usually consist of an encoder function q̂ϕ which produces
representations z from a samples x, and a decoder distribution pθ which aims to re-
construct the input sample x from its representation z. This architecture is sketched in
Figure 3.1.

Given observations x coming from a ground truth distribution pdata, the parameters
ϕ and θ of Autoencoders can be learned by maximizing the following reconstruction
objective:

argmax
θ,ϕ

Ex∼pdata(x) [log pθ(x|z = q̂ϕ(x))] (3.1)

Notice that for textual observations, the above objective is exactly that of a conditional
LM (cf. Eq. 2.8 in Section 2.2), where the conditional LM pθ is jointly learned with qϕ,
the module that provides the conditioning variables z. For the sake of the forthcoming
explanations, we also point out the fact that the deterministic encoding function q̂ϕ(x)

can be written as a conditional Dirac probability density function qϕ(z|x) such that:

qϕ(z|x) =

 +∞ if z = q̂ϕ(x)

0 if z ̸= q̂ϕ(x)

Which enables rewriting the reconstruction loss as:

argmax
θ,ϕ

Ex∼pdata(x)Ez∼qϕ(z|x)[log pθ(x|z)] (3.2)
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3.2 Theoretical Foundation of Variational Autoencoders

A generative model that generates observations x from a latent variable z with a known
prior distribution, is modeled using this prior p(z) and a decoder pθ(x|z). Directly learning
it through Likelihood Maximization is inefficient since the summation over all values of
z to calculate pθ(x) =

∫
z
pθ(x|z)p(z)dz is intractable in general1. For an observation x,

Variational Inference uses a distribution q(z)2 to formulate a lower-bound on the exact
log-likelihood of the model log pθ(x). This lower-bound finds its origin in the following
derivations:

Given that pθ(x) =
pθ(x, z)

pθ(z|x)
:

log pθ(x) = Ez∼q(z) log
pθ(x, z)

pθ(z|x)
(3.3)

By splitting pθ(x, z) to pθ(x|z)p(z) and simply multiplying and dividing by q(z), we obtain:

Ez∼q(z) log
pθ(x, z)

pθ(z|x)
= Ez∼q(z)

[
log

(
pθ(x|z)

p(z)

q(z)

q(z)

pθ(z|x)

)]
(3.4)

Then, using the Kullback-Leibler Divergence operator defined by KL[q(z)||p(z)] =
Ez∼q(z)

[
log q(z)

p(z)

]
, we obtain:

Ez∼q(z)

[
log

(
pθ(x|z)

p(z)

q(z)

q(z)

pθ(z|x)

)]
= Ez∼q(z) [log pθ(x|z)]−KL[q(z)||p(z)]

+ KL[q(z)||pθ(z|x)] (3.5)

The above derivations lead to the equality:

log pθ(x)−KL[q(z)||pθ(z|x)] = Ez∼q(z) [log pθ(x|z)]−KL[q(z)||p(z)] (3.6)

Since KL divergences are positive, the above equality allows writing the inequality that
enables learning with VAEs3:

log pθ(x) ≥ Ez∼q(z) [log pθ(x|z)]−KL[q(z)||p(z)] = ELBo(x; z) (3.7)

The right-hand side of the above inequality, called the Evidence Lower-Bound (ELBo), is a
tractable lower-bound to the exact log-likelihood of our model. According to Equation 3.6,
maximizing this lower-bound either maximizes the log-likelihood of our model, or brings

1The integral can be made tractable if the support of p(z) is small enough for summation, but such a choice
of prior makes for an extremely weak generative model.

2We stress that each observation x is assigned with a dedicated q(z). To lighten notations and to adhere to
conventions adopted by other resource on this matter, q is not indexed with x.

3z, the latent variable, is marginalized throughout ELBo with expectations. Therefore, the value of ELBo does
not depend on z. Nevertheless, we abuse notations and specify it as an argument in ELBo(x; z) to clarify the role
of each variable in different instances of ELBo throughout the thesis.
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xU qϕ(z|x)

p(z)

z

z

pθ(x|z) x

U : Unabeled data

: Inference model samples

: Real data samples

: Generation model samples

: Training forward path

: Generation forward path

: KL Divergence

: Cross-Entropy Loss

Figure 3.2: Variational Autoencoder Functioning scheme. Inference paths and components are colored in
red, while components only used during training are colored in blue. Loss functions linking the different

variables are sketched using links with two lines.

q(z) closer to the true posterior pθ(z|x). Since q(z) is intended to mimic the true posterior,
it is referred to as the approximate posterior.

Classical Variational Inference assumes the estimation of an approximate posterior q(z)
for each observation x. However, one can use a single model qϕ(z) =

∫
x
qϕ(z|x)pdata(x)dx

to learn approximate posteriors for all observations x. This is called Amortized Variational
Inference (AVI; Kim et al., 2018).

Variational Autoencoders’ learning is simply an application of the AVI learning scheme
where qϕ(z|x), the encoder, and pθ(x|z), the decoder, are neural networks which are learned
through some form of Stochastic Gradient Descent (SGD).

After training, VAEs are used to generate samples with a two-step sampling process:
First, a latent variable must be sampled from the prior distribution p(z), then this latent
variable is decoded using the decoder pθ(x|z) to obtain a generated sample x.

Figure 3.2 summarizes the way a VAE is built, trained, and used for generation after
training. It should be emphasized that, in the context of generative modeling, the input
samples from the ground truth distribution together with the inference network (the blue
components and the green components in Figure 3.2) are only used during training. At
test time, only the prior distribution and the decoder (the red components in Figure 3.2)
are used.

Figure 3.2 also illustrates the way ELBo is calculated. The first term in ELBo is a
reconstruction term where the probability of the input sample x ∼ pdata(x) is evaluated
according to pθ(x|z), the output distribution on observations conditioned on a sample
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from the encoder’s distribution qϕ(z|x). The second term brings this encoder distribution,
or approximate posterior, qϕ(z|x), closer to the prior distribution. In simple terms a VAE
is trained to reconstruct input samples from latent codes that are made likely to come
from the prior distribution.

3.3 Implementation Details

The objective ELBo requires calculating expectations over the distribution qϕ(z|x).
This expectation is classically approximated using a Monte-Carlo estimate, i.e. an aver-
age of the term inside the expectation applied to a few samples from qϕ(z|x). Fortunately,
empirical investigations [Kingma and Welling, 2014, Bowman et al., 2016] have shown
that VAEs can be trained using single-sample estimations of the aforementioned expec-
tations, and that learning with multiple samples displays no significant gain compared to
learning with a single sample. This means that the reconstruction term in ELBo can be
approximated during training as follows:

Ez∼qϕ(z|x) [log pθ(x|z)] ≈
N∑
i=1

1

N
log pθ(x|zi) ≈ log pθ(x|z0) (3.8)

s.t. z0, z1, . . . , zN ∼ qϕ(z|x) (3.9)

Similarly, the Kullback-Leibler term can be efficiently estimated as follows:

KL[qϕ(z|x)||p(z)] =

Ez∼qϕ(z|x)

[
log

p(z)

qϕ(z|x)

]
≈

N∑
i=1

1

N
log

p(z0)

qϕ(z0|x)
≈ log

p(z0)

qϕ(z0|x)
(3.10)

s.t. z0, z1, . . . , zN ∼ qϕ(z|x) (3.11)

Despite the fact that it is usable, the Monte-Carlo sampling approximation can be
avoided for the Kullback-Leibler divergence term in ELBo in cases where a closed form is
available for this divergence, e.g. if the prior p(z) and the approximate posterior qϕ(z|x)
are both Gaussian.

Although sampling enables efficiently estimating expectations, it requires the sampling
operations to be differentiable in order to propagate the gradients to the encoder and
to learn the parameters ϕ. This is made possible through this simple observation: given
µ ∈ Rd and σ ∈ Rd∗d if z, a d-dimensional random variable, follows a standard normal
distribution N (0, Id), then σz + µ follows N (µ, σ). Accordingly, the expectation of a
function f(z) over a Gaussian distribution qϕ(z|x) with mean vector µ(x) and standard
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deviation σ(x) can be reformulated as follows:

Ez∼qϕ(z|x)[f(z)] = Ez∼N (0,Id)[f(σ(x) ∗ z + µ(x))] (3.12)

Using the above formula decouples the parameterization from the sampling procedure
and introduces it through differentiable operations (addition and multiplication). This
trick, called the reparameterization trick [Kingma and Welling, 2014], is applicable to
any distribution from the location-scale family (Gaussian, Laplacian, . . . ). Posterior to
the initial work of Kingma and Welling [2014] on Variational Autoencoders where the
reparametrization trick was introduced, differentiable sampling schemes have also been
developed for Categorical distributions such as the Gumbel-Softmax Trick [Jang et al.,
2017], and direct optimization through argmax [Lorberbom et al., 2019].

Besides the above implementation tricks, a few techniques have also been developed to
reduce the variance of the stochastic gradient estimation during the optimization process.
Namely, throughout the experiments carried in this thesis, we use a technique called
Sticking The Landing (STL-ELBo; Roeder et al., 2017) which helps reduce the variance
of the gradients estimated during the learning process. The techniques stems from a
derivation on the gradient of ELBo which identifies a term which is null in expectation.
To identify this term, let us first derive ELBo as follows:

ELBo = Ez∼qϕ(z|x) [log pθ(x|z)]−KL[qϕ(z|x)||p(z)] (3.13)

= Ez∼qϕ(z|x) [log pθ(x|z) + log pθ(z)− log qϕ(z|x)] (3.14)

= Ez∼qϕ(z|x) [log pθ(z|x) + log pθ(x)− log qϕ(z|x)] (3.15)

where the last line exploits the equality pθ(x|z)p(z) = pθ(x, z) = pθ(z|x)pθ(x). In the fol-
lowing, we calculate the total derivative of the expression inside the expectation operator
w.r.t ϕ, which yields partial derivatives w.r.t ϕ and z since z is a function of ϕ:

d

dϕ
[log pθ(z|x) + log pθ(x)− log qϕ(z|x)] (3.16)

=
∂

∂z
[log pθ(z|x)− log qϕ(z|x)]

∂z

∂ϕ
− ∂

∂ϕ
log qϕ(z|x) (3.17)

In the last line, the expectation of the last term can be proven null as follows:

Ez∼qϕ(z|x)
∂

∂ϕ
log qϕ(z|x) =

∫
z

qϕ(z|x)
∂

∂ϕ
log qϕ(z|x)dz (3.18)

=

∫
z

qϕ(z|x)
1

qϕ(z|x)
∂

∂ϕ
qϕ(z|x)dz =

∫
z

∂

∂ϕ
qϕ(z|x)dz (3.19)

=
∂

∂ϕ

∫
z

qϕ(z|x)dz =
∂

∂ϕ
1 = 0 (3.20)

Since this term has a null expectation, it can be dropped from the gradient estimator
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without biasing it. The STL-ELBo technique consists in dropping this term, which leads
to better log-likelihood results than the standard ELBo estimator, as shown by Roeder
et al. [2017].

3.4 Language Modeling with a VAE

VAEs were first explored as LMs by Bowman et al. [2016]. Prior to this work, Neu-
ral LMs were mainly tackled through purely auto-regressive generation schemes such as
the one presented in Section 2.1. Purely auto-regressive generation schemes, mainly im-
plemented in recent works with LSTMs [Melis et al., 2020] or Transformers [Radford
et al., 2019], achieve low perplexity values and model long-term dependencies through
step-wise updates to a context vector, which does not clearly separate sequence-level fac-
tors of variation for word-level factors of variation. When need arises, the sequence-level
factors are usually modeled through the introduction of conditioning variables to the
generative model, where the model is trained with supervised learning as was explained
in Section 2.2. However, ELBo provides a means to train a generative LM in the form
pθ(x) =

∫
pθ(x|z)p(z)dz while waving the need for any specifics on z beyond the prior p(z).

Therefore, in order to train generative models with explicit sequence-level representations
z, Bowman et al. [2016] explored the VAE option.

Bowman et al. [2015] trained VAEs for language modeling, using single-layer LSTMs as
encoders and RNNs conditioned on the latent codes as decoders. They obtained compet-
itive results with RNN LMs on the Penn Treenbank [Marcinkiewicz, 1994] dataset. Their
work also led to a few interesting observations on such VAE LMs. They first observed
that, given that a VAE encoder is trained to concentrate all representations in the same
vicinity through the KL-Term, and to generate well-formed sentences from this vicinity
through the reconstruction term, VAEs had what they called a smooth latent space. This
smoothness manifests in the fact that intervening on a sample z (e.g. resampling com-
ponents or interpolating with another vector) from an encoded sentence and decoding
the resulting latent vector resulted in well-formed sentences. In contrast to this, operat-
ing on representation from classical Sequence-to-Sequence Autoencoders [Sutskever et al.,
2014] in their latent spaces often leads to malformed decoded sentences. To illustrate
this smoothness, Bowman et al. [2016] produce sentences by decoding latent codes cor-
responding to progressive linear interpolations of the representations of two sentences4.
The original sentences and the sentences generated from the progressive interpolation are
displayed in Table 3.1.

The sentences displayed in Table 3.1 clearly show progressive change from the first
sentence to the second sentence. This smoothness property is especially valuable when it
comes to combining characteristics from different sentences in the context of controllable
generation.

A second valuable observation highlighted by this work was a phenomenon dubbed
4This process is often refered to as a homotopy.
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3.5. A TIGHTER LOWER-BOUND TO THE LOG-LIKELIHOOD WITH IMPORTANCE
WEIGHTING

i went to the store to buy some groceries .

i store to buy some groceries .
i were to buy any groceries .
horses are to buy any groceries .
horses are to buy any animal .
horses the favorite any animal .
horses the favorite favorite animal .
horses are my favorite animal .

Table 3.1: Example sentence interpolations using VAE latent variables from Bowman et al. [2016]. Original
sentences constituting the edges of the linear interpolation are given in bold.

posterior collapse, where all the posterior distributions qϕ(z|x) converge (or collapse) to
the prior distribution p(z), and therefore become uninformative on the input x. This
phenomenon stems from the fact that auto-regressive decoders used in VAE LMs are
powerful enough to learn good LMs without the need for latent variables. Solutions to
avoid this problem are detailed in Section 3.6

3.5 A Tighter Lower-Bound to the Log-Likelihood with Importance
Weighting

VAEs allow optimizing a generative model via ELBo, a lower-bound to the exact log-
likelihood. ELBo is a convenient strategy when it comes to training, but testing generative
models often requires estimating the exact likelihood of data according to a model. In
fact, as explained in Section 2.4, assessing the generative capabilities of an LM requires
estimating its perplexity, which is based on the exact likelihood measure. In order to
provide such a measure for VAEs, so as to be able to compare their generative capabilities
to standard Maximum Likelihood-based LMs, one needs a tight estimate of the exact
likelihood.

Posterior to Kingma and Welling [2014]’s work on VAEs, the following Importance
Weighting-based lower-bound to the exact log-likelihood of a VAE has been developed by
Burda et al. [2016]:

log pθ(x) ≥ Ez1,...,zk∼qϕ(z|x)

[
log

1

k

k∑
i=1

pθ(x, zi)

qϕ(zi|x)

]
= IWO(x; z; k) (3.21)

VAEs using this Importance Weighted Objective (IWO) during training are referred to
as Importance Weighted Autoencoders (IWAEs). Notice that this objective is equal to
ELBo when it uses a single sample (i.e. k = 1). More importantly, Burda et al. [2016]
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provided a proof establishing that this objective satisfies the following inequality:

log pθ(x) ≥ IWO(x; z; k + 1) ≥ IWO(x; z; k) (3.22)

and that, under mild assumptions, IWO(x; z; k) converges to log pθ(x) when k goes to infin-
ity. This means that using more importance samples (i.e. a higher k) allows monotonously
approaching an exact estimate of the log-likelihood, and therefore approaching the exact
value of perplexity5 for a language model.

Other tight lower-bounds to the exact log-likelihood were developed after IWAE, such as
the Thermodynamic Variational Objective (TVO; Masrani et al., 2019), but Importance
Weighting remains the standard method to assess VAE-based LM perplexities.

3.6 Dealing with Posterior Collapse

As mentioned in Section 3.4, VAEs suffer from posterior collapse, a phenomenon where
the VAE LM converges to a local minimum where the LM is only learned through the
autoregressive decoder, and the distributions qϕ(z|x) parameterized by the encoder all
converge exactly to p(z) minimizing the Kullback-Leibler divergence term in ELBo. A first
solution to this problem was proposed in the work of Bowman et al. [2016], and consists
in jump-starting the encoder by multiplying the KL term by β = 0 for a few optimization
steps, so that the whole network is only optimized for reconstruction. The KL term is then
slowly introduced over a number of annealing steps by linearly increasing β to 1. Another
trick they implemented which mitigated posterior collapse was word-dropout : A technique
where a proportion (set to 40% in their work) of the previous words in the auto-regressive
generation scheme of decoders is replaced with a null vector during training to enforce
reliance on the latent codes.

In the later work of Kingma et al. [2016], this solution was improved upon through
a strategy called Free-bits strategy or KL-thresholding strategy. Given that, for a d-
dimensional latent variable z = {z1, . . . , zd}, the prior p(z) and the approximate posterior
qϕ(z|x) are most often respectively set to a standard normal distribution N (0, Id) and to a
diagonal Gaussian distribution N (µϕ(x), σϕ(x)), The KL-term can be written as the sum
of dimension-wise KL divergences between prior and approximate posterior distributions,
i.e. KL[qϕ(z|x), p(z)] =

∑d
i KL[qϕ(zi|x), p(zi)]. The KL-thresholding strategy consists in

minimizing these dimension-wise KL terms as part of the ELBo optimization only down
to a global threshold γ.

Other works have proposed diverse solutions to the posterior collapse problem through-
out the years such as a cyclic annealing scheme for the KL term [Fu et al., 2019], or
aggressive optimization phases that focus on the encoder [He et al., 2019], but Li et al.
[2019] have shown that simply combining KL annealing with KL-thresholding leads to
the most effective fix to the posterior collapse problem while still requiring minimal mod-

5Since perplexity is a decreasing function of likelihood, our estimate here would be an upper-bound to the
perplexity.
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ification to the original VAE learning scheme. In fact, the modification simply consists in
an ELBo that takes the following form:

ELBo(x; z) = Ez∼q(z) [log pθ(x|z)]− β
d∑
i

max(γ,KL[qϕ(zi|x)||p(zi)]) (3.23)

where γ is fixed, and β is used for the progressive introduction of the KL term to the
optimization procedure as described above. It is worth noting that a common practice in
VAE-based language modeling to counteract posterior collapse is simply to lower the final
value of β so as to allow qϕ(z|x) to drift further from p(z) in order to better optimize the
model for reconstruction and therefore to absorb more information about x. This is espe-
cially common in works that employ VAEs as regularized Autoencoders for controllable
generation (e.g. Chen et al., 2019b).

More recent works like those of Wu et al. [2020] and Menon et al. [2022] propose solutions
that further mitigate posterior collapse, but they both employ auxiliary networks with
sizes similar to that of the original generative model. Since designing competitive LMs in
the Deep Learning era is a memory sensitive endeavor, we stick to the above combination
proposed by Li et al. [2019] for the works presented in this thesis as it constitutes a
suitable middle ground between effectiveness and memory efficiency.

3.7 Semi-Supervised Learning with VAEs

Standard supervised learning considers the setup where an inference module qϕ(y|x) is
tasked with learning to predict labels y from observations x using a dataset of labeled
samples L = {(x1, y1), ..., (x|L|, y|L|)}. The semi-supervised learning setup however, also
makes use of an auxiliary set of unlabeled data points U = {x′

1, ..., x
′
|U |} which are typically

available in much larger quantities than their labeled counterparts. The use of VAEs in
semi-supervised learning has first been explored by Kingma et al. [2014].

The idea here, is to use the VAE encoder as a classifier by introducing the target label
as a latent variable to the VAE-based generative model. Specifically, besides the usual
unobserved latent variable z, the semi-supervised VAE framework also uses a partially-
observed latent variable y. These variables are typically modeled as independent latent
variables such that qϕ(y, z|x) = qϕ(y|x)qϕ(z|x) and pθ(x) =

∫
pθ(x|y, z)p(y)p(z). The en-

coder qϕ(y|x) serves both as the inference module for the supervised task, and as an
approximate posterior (and encoder) for the y variable in the VAE framework. Accord-
ingly, y is learned on data from U in a similar manner to z, i.e. as an unobserved latent
variable as part of the VAE generative model. But when presented with data from L,
the learning procedure uses y both as a target for supervised learning with the encoder
qϕ(y|x) and as an observed conditioning variable for the decoder pθ(x|y, z) on L. Formally,
the training objective J α [Kingma et al., 2014] for a Semi-Supervised VAE (SSVAE) is
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expressed as follows:

J α =
∑

(x,y)∈L

(
ELBo((x, y); z) + α log qϕ(y|x)

)
+
∑
x∈U

ELBo(x; (y, z)) (3.24)

where the first argument of ELBo is the set of observed variables, and the second argument
is the set of unobserved variables. As can be seen in the formula above, for samples coming
from L, qϕ(y|x) is trained to predict y using a Cross-Entropy6 objective that is weighted
with regard to the remaining terms of the overall objective using a scalar α.

3.8 Conclusion

This chapter is an introduction to the main technical framework for this thesis: Varia-
tional Autoencoders. We explained the motivation behind generative modeling with VAEs
in general, and Language Modeling with VAEs in particular. Starting from the standard
Autoencoder architecture (§ 3.1), we explained the additions and modifications required
to obtain the basic components of a VAE, and to derive its objective ELBo (§ 3.2). To
give better practical insight into VAEs, we explained in Section 3.3 the basic tricks re-
quired to implement it and to train it. Given the NLP-specific context of this thesis, we
also summarized the main findings of the first work on VAE-based LMs (§ 3.4). We also
layed-out the IWO, a tighter lower-bound to the exact log-likelihood which constitutes
the basis for estimating perplexity in order to measure language modeling performance
(§ 3.5). The particular case of language modeling with VAEs suffers from an issue called
posterior collapse, which we explained and for which we described a few solutions while
pointing to the solution we retain for the works described in this thesis (§ 3.6).

Finally, we broke down semi-supervised learning with VAEs in the final section of this
chapter (§ 3.7) so as to provide the prerequisites for our semi-supervised learning-related
contribution. The second part of our contributions, which is dedicated to disentanglement,
relies on the disentanglement capabilities of VAEs. As this is better explained following a
few introductory notions, we elaborate on the relation between VAEs and disentanglement
in the chapter dedicated to disentanglement (Chapter 4).

6Recall, here, that the Cross-Entropy objective is an application of Maximum-Likelihood Estimation. In fact,
maximizing the likelihood of ground truth labels according to a classifier is equivalent to minimizing the Cross-
Entropy between the ground truth label distribution, and the label distribution defined by the classifier.
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Chapter 4
Disentangled Representation Learning

A neural network is a function fθ with parameters θ, where the parameters are esti-
mated so as to learn a relation between an input to the function and a desired output. This
function is most often built as a composition of functions such that fθ = f 1

θ1
◦f 2

θ2
, . . . , ◦fn

θn

where each f i
θi

is called a layer and n is the number of layers in the neural network fθ.
The individual f i

θi
have multidimensional outputs, where each output is called a neuron,

and any combination of neurons (e.g. a layer, part of a layer, a concatenation of lay-
ers) is called a neural representation. Neural representations have shown great promise
as automatic feature extractors in and outside of NLP [Mikolov et al., 2013, Simonyan
and Zisserman, 2014, He et al., 2016b, Devlin et al., 2019]. However, aside from out-
put neurons, it is difficult to separate and identify understandable concepts in neural
representations. Investigating methods which yield neural representations with identified
interpretable concepts is the very purpose of disentanglement. More precisely, disentangled
representation learning aims at designing methods which produce neural representations
where each dimension, or set of dimensions, relates significantly to an understandable
concept.

Interest in disentangled neural representation learning started emerging in the early
2010’s where, for instance, Bengio et al. [2013] argue in their review of representation
learning that it is crucial for the future of AI to disentangle understandable factors of
variation within neural representations. It persists as a crucial research direction in recent
works such as Rudin et al. [2022] which lists supervised and unsupervised disentanglement
within the ten great challenges for interpretable machine learning. Besides interpretability,
disentanglement is also sought as a means to improve sample complexity under the intu-
ition that reducing inputs to a minimalistic set of human-validated interpretable concepts
should improve generalization. This intuition was empirically confirmed by a number of
studies such as the large-scale experiments carried by Locatello et al. [2020b] which show
that disentangled representations improve sample efficiency and generalization under co-
variate shift(i.e. a change in the distribution of observations).

From a practical point of view, disentanglement is induced either with supervised learn-
ing where neural representations are constrained to be informative on a given factor, or
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through unsupervised learning which is the paradigm chosen for this thesis. An underlying
assumption to unsupervised disentanglement, is that the data can be factored into a set
of independent generative factors. This was the main guiding principle for the design of
unsupervised disentanglement methods, and also the main reason behind the successes of
VAEs at disentanglement.

As a starting point, we describe the mechanisms inside VAEs that encourage obtaining
independent generative factors (§ 4.1). In the following section, we clarify the relation
between the factorization induced by VAEs and disentanglement using a few recent the-
oretical results(§ 4.2). Subsequently, we describe the few common ways inductive bias is
introduced to neural networks in order for them to exhibit disentanglement, specifically in
a supervised or in an unsupervised fashion(§ 4.3). Moving on to evaluation, in Section 4.4,
we summarize the intuition behind measures of disentanglement, and detail a few mea-
sures that serve here as an example, and later in the thesis (Chapter 8) as the basis for
disentanglement measures of our own design. Finally, we give in Section 4.5 an overview
of the disentanglement in NLP landscape with an emphasis on a few shortcomings of the
current literature in regard to which we aim to contribute in this thesis.

4.1 Finding Independent Generative Factors with VAEs

VAEs are a natural candidate method for disentanglement as their primary purpose
is to relate observations to latent variables. The conditional or marginal distributions of
these latent variables are set by the practitioner, which most often chooses them to be
independent. In fact, the most common VAE is built with a standard Gaussian prior p(z)
and a diagonal Gaussian approximate posterior qϕ(z). To the best of our knowledge, choos-
ing Gaussians for both distributions mostly stems from the fact that practitioners usually
default to Gaussians when no information is available about the underlying distribution
of a variable. This default choice also enables using a closed form of the KL divergence
instead of its Monte-Carlo estimate. It can be argued, for the standard Normal distribu-
tion often set to be the prior, that it works as a regularization on latent variables [Chen
et al., 2018a, Wolf-Sonkin et al., 2018, Yacoby et al., 2020], similar to a Ridge regulariza-
tion [Hoerl and Kennard, 1970]. As for the posterior distribution, the choice of a diagonal
Gaussian was due to computational gains, since it only requires estimating the diagonal
elements of the covariance matrix instead of the entire matrix. Given these design choices,
latent variable modeling in VAEs aims to retrieve a set of independent generative factors
from the observations, which makes it an intuitive choice for disentanglement.

The first approach to disentanglement using VAEs is called β-VAE [Higgins et al., 2017],
as it simply consists in adding a scalar β to scale the KL term in ELBo (Eq. 3.7):

Ez∼qϕ(z|x) [log pθ(x|z)]− βKL[qϕ(z|x)||p(z)] (4.1)

The argument behind this modification is fairly straightforward: The KL term pushes the
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UNDERSTANDABLE CONCEPTS

distribution of the encoded representations qϕ(z|x) towards p(z), which is most often a
standard Normal distribution that encourages the different dimensions in qϕ(z|x) to be
independent. Therefore, β-VAE allows choosing a compromise between high disentangle-
ment with a high β, or high reconstruction fidelity with a low β.

The subsequent work of Chen et al. [2018c] further pinpoints the source of disen-
tanglement in ELBo through a decomposition of its KL term. Assuming that observa-
tions x in the training set are indexed with an integer n ∈ {1, . . . , N}, we can define a
uniform distribution p(n) over that range, and subsequently consider the distributions
qϕ(z|n) = qϕ(z|xn), qϕ(z, n) = qϕ(z|n)p(n) = qϕ(z|n) 1

N
and qϕ(z) =

∑N
1 qϕ(z|n)p(n).

These distributions can be used to write the following decomposition1:

En∼p(n)KL[qϕ(z|n)||p(z)] =KL[qϕ(z, n)||qϕ(z)p(n)] 1○

+KL[qϕ(z)||
∏
j

qϕ(zj)] 2○

+
∑
j

KL[qϕ(zj)||p(zj)] 3○ (4.2)

The decomposition of the KL term of ELBo in equation 4.2 displays three components:
1○ The index-code Mutual Information, which is the mutual information between inputs
x (indexed by n in the equation) and latent variables z; 2○ The Total-Correlation (TC),
which is a measure of dependence between components of the latent variable vector; 3○
The dimension-wise KL divergence. Chen et al. [2018c] argue that component 2○, TC, is
responsible for disentanglement, since it measures the dependence between components
of latent vectors, and propose to control a weight on this component instead of the entire
KL term, leading to the TC-VAE objective.

Driven by the same intuition, other objectives were designed in order to force indepen-
dence between the components of latent vectors, namely Annealed VAE [Burgess et al.,
2017], FactorVAE [Kim and Mnih, 2018], and DIP-VAE [Kumar et al., 2018]. However,
the large-scale experiments carried by Locatello et al. [2020a] have shown that no objec-
tive from the above encourages disentanglement significantly more than the others, and
that, in general, random seeds influence disentanglement results more than the choice
of method. Therefore, for its simplicity, β-VAE is the most commonly chosen objective
in recent disentanglement works. It is also the objective chosen to carry out the works
described in this thesis.

4.2 About the Alignment Between Independent Generative Factors and
Understandable Concepts

Crucially, the above methods only enable relating observations x to independent gener-
ative factors z. However, does this mean that such methods will converge to THE target
independent generative factors ? As will be argued below using Figure 4.1, the answer is

1The full derivation leading to this decomposition can be found in Appendix A.1.
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"no".

x1 x2
x1

x2
x1

x
2

Figure 4.1: Different perspectives on a 2D Gaussian distribution. Arrows in black represent directions
x1 and x2, which are two independent axes of variation for this Gaussian distribution. Arrows in red
represent directions (x1 + x2) and (x1 − x2), which also represent independent axes of variation.

Figure 4.1 is a plot of the density of a 2D standard Normal distribution. Coordinates
x1 and x2 of 2D samples from this distribution have independent distributions. Therefore,
x1 and x2 represent independent generative factors for samples from this distribution.
However, notice that (x1 + x2) and (x1 − x2) also have independent realizations, and
thus equally represent independent generative factors for samples from this distribution.
The above simple case demonstrates that simply seeking independent generative factors
cannot alone yield generative factors that align with a predefined set of such factors. This
rationale is the basis of the unsupervised disentanglement impossibility result presented
in the work of Locatello et al. [2020a].

Through a formal proof that unsupervised factorization into independent generative
factors cannot align different latent variables with identifiable disentangled generative
factors, Locatello et al. [2020a] argue that disentanglement requires an additional form of
inductive bias in order to align latent variables with identifiable generative factors.

Posterior to that work, Rolinek et al. [2019] presented yet another important result:
standard VAE implementation guidelines induce a behavior that mimics Principled Com-
ponent Analysis (PCA): As mentioned earlier, the most commonly used distributions for a
VAE are a standard Normal prior, and a diagonal Normal approximate posterior. Rolinek
et al. [2019] show that a PCA-like behavior is displayed by VAEs and that it is caused by
diagonal posteriors. Most importantly, PCA factors observations into independent axes of
variation, and greedily select the highest direction of variation at each factorization step.
Contrary to a plain search of independent factors, this process converges to a fixed set of
generative factors (up to a permutation operation).

Rolinek’s result requires the covariance matrix of the different generative factors to have
distinct singular values. This means that the different generative factors must contribute
differently to the overall variance of the samples. In fact, for generative factors with equal
contribution to the overall variance, e.g. x1 and x2 for the isotropic Gaussian in Fig-
ure 4.1, Locatello’s impossibility result stands unquestioned. In practice, Rolinek shows
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that disentanglement works out better when the gap in variance is higher between gener-
ative factors, which partly explains the difference in disentanglement performance across
different datasets. In light of these observations, and as concluded by Locatello, VAEs en-
courage disentanglement but require additional inductive bias for disentanglement either
from the model or from the data. The nature of such inductive bias is explicited in the
next section.

4.3 Disentanglement as a Result of Inductive Bias

In this section, we describe different methods to implement bias inducing separation
in the latent representations of neural networks. The most explicit method is of course
a form of supervision. To implement separation, a latent variable z is usually split into
two latent variables z1 and z2, where we try to associate one of the variables (e.g. z1
in what follows) to the target factor of variation y. Given generative model pθ(x) =∫
z1,z2

pθ(x|z1, z2)p(z1, z2)dz1dz2 with approximate posterior qϕ(z1, z2|x) and labeled data
L aligning observation x with generative factors y, the latent variables z1 can be made
informative about generative factor y simply by means of the objective:∑

(x,y)∈L

ELBo(x; (z1, z2)) + αEz1∼qϕ(z1|x)[qϕ(y|z1)] (4.3)

where qϕ(y|z1)2 is an additional inference module relating z1 to y, and α is a weighting
coefficient. The objective described in Equation 4.3 encourages z1 to be fully informative
on y. Given that VAEs also encourage latent variables to be independent, encouraging all
the information about y to be in z1 also discourages z2 from including any information
on y.

Alternatively, bias towards disentanglement can be induced through the way a model is
built. To better understand this, we take the example of HoloGAN [Nguyen-Phuoc et al.,
2019], a model for natural image generation. During generation, this model generates a 3D
structure from a latent vector z, chooses an angle θ, then projects the 3D structure on a
plane according to θ in order to obtain a 2D image. This model is trained as a Generative
Adversarial Network (GAN; Goodfellow et al., 2014) to generate natural images. Without
any information on the latent 3D structure or its orientation in samples from the training
set, this model naturally learns to decouple elements represented in natural images from
their pose. To better summarize the idea, Figure 4.2 shows a graphic by Nguyen-Phuoc
et al. [2019] as well as a few samples from their generative model.

HoloGAN’s example shows that disentanglement can be induced in neural models given
a shared inductive bias between the model and the data it is trained on. Namely here, the
model infers 3D structures and projects them on 2D planes in accordance with the data
which consists in 3D structures projected on 2D planes.

2If the random variable z1 has the same support as y, z1 can be directly trained to take the values of y by
setting qϕ(y|z1) to an identity function. In this case, one can even use the Semi-Supervised VAE objective for
labeled data from Equation 3.24 in Section 3.7.
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Figure 4.2: A graphic by Nguyen-Phuoc et al. [2019] summarizing the generation steps in HoloGAN
together with a few generated sample at different angles.

4.4 Measuring Disentanglement

Perfectly disentangled neural representations are supposed to display 3 characteris-
tics [Ridgeway and Mozer, 2018, Eastwood and Williams, 2018]:

1. Modularity/Disentanglement: Each portion3 of the latent code must capture at most
one factor of variation.

2. Compactness/Completeness : Each factor of variation must be captured by at most
one portion of the latent code.

3. Informativeness/Explicitness : The representations must be maximally informative on
the factors of variation.

3Portions here emphasizes the fact that one can aim for disentanglement along distinct single dimensions in
the neural representations, or a multi-dimensional partition of neural representations.
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A generic measure for disentanglement: Multiple generic metrics have been devel-
oped in the literature with the above characteristics in mind [Higgins et al., 2017, Kim
and Mnih, 2018, Ridgeway and Mozer, 2018]. As an example, we detail the design of
Mutual Information Gap (MIG; Chen et al., 2018b) which is fairly generic, accounts for
axis alignment between latent variable dimensions and generative factors, and requires
no post-hoc classifier training. To define this metric, Chen et al. [2018b] first define the
joint distribution qϕ(zj, vk) =

∑N
n=1 p(vk)p(n|vk)qϕ(zj|n), where vk ∈ {v1, . . . , vK} is a

generative factor, n is the index of a ground truth sample among N available samples,
and zj ∈ {z1, . . . , zJ} is a component of the latent vector. Given that joint distribution,
the following empirical estimate of mutual information between latent dimension zj and
generative factor vk is defined :

In(zj; vk) = Ezj ,vk∼q(zj ,vk)

log ∑
n∈Xvk

qϕ(zj|n)p(n|vk)

+H(zj) (4.4)

where Xvk is the support of p(n|vk); i.e. the available samples verifying the sampled vk.
Using this estimator, MIG sums over all generative factors the gap between the highest
calculated In with regard to a component of the latent vector and the second highest of
such measures, normalized by the entropy of the present generative factor:

1

K

K∑
k=1

1

H(vk)

(
In(zj(k) ; vk)− max

j ̸=j(k)
In(zj; vk)

)
(4.5)

where j(k) = argmaxj In(zj; vk). For each generative factor vk, the corresponding com-
ponent in the above sum is high if it has high mutual information with a single latent
dimension, since the value of this component is penalized by the second highest mutual
information. Ideally, the component is equal to 1 if the most informative latent variable is
perfectly informative on vk (meaning In(zj(k) ; vk) = H(vk)) and if all other latent variables
contain no information on vk (meaning maxj ̸=j(k) In(zj; vk) = 0).

Notice that, among the 3 criteria explicited above, MIG only captures Compactness and
Informativeness. In fact, a representation where only one latent dimension zj captures all
the information from all generative factors vk would obtain a perfect score of MIG=1.
Therefore, to complement MIG on Modularity, Li et al. [2020c] define MIG-sup, which
simply differs with MIG through a partial4 permutation of the roles of latent variables
and generative factors:

1

J

J∑
j=1

1

H(vk)

(
In(zj; vk(j))− max

k ̸=k(j)
In(zj; vk)

)
(4.6)

4The permutation is only partial in that the normalization in MIG-sup is still done with regard to the Entropy
of vk.
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where k(j) = argmaxk In(zj; vk).

Ad hoc disentanglement measure: The above measure assumes the tractability of
its mutual information estimate, which assumes knowledge of the distribution of genera-
tive factors in the data at hand p(vk). This is a mild assumption when the target factor
of variation is simple, such as a categorical factor. However, generative factors underlying
textual content are often ill-defined and difficult to encapsulate in a simple probabil-
ity distribution. In fact, disentangled textual representations must account for meaning,
and therefore require estimating semantic similarity for evaluation which is still an open
problem.

Textual disentanglement works often employ procedures that correlate representations
with human semantic similarity judgement to report on semantic disentanglement. Two
examples of such procedures can be found in the work of Huang et al. [2021a]. Namely,
they measure correlation of embedding similarity with human similarity judgment, and
train linear classifiers over their embeddings for paraphrase detection.

Alternatively, works employing Autoencoding models for disentanglement can leverage
outputs from the decoder to quantify disentanglement. More precisely, for an embedding
z = {z1, . . . , zJ} corresponding to an observation x for which we want to study the
relation between a generative factor of interest vk(x) and portion of interest zp such that
p = {j, . . . , j′} ⊂ J , a common procedure employing the decoder consists in resampling
zp, either from a prior p(zp) or from qϕ(zp|x′), the encoding of a distinct sample x′. The
rest of the representation zp̄ is then concatenated to the newly sampled z′p and decoded to
produce a sample x1. The analogous sampling and decoding procedure is also conducted
in order to generate x2 with the original zp and a newly sampled z′p̄. Disentanglement is
then studied by comparing vk(x) to vk(x1) and vk(x2). Given a similarity measure simvk

over realizations of the generative factor vk, one concludes that vk is disentangled in z

and represented by zp if, on average, simvk(vk(x), vk(x2)) >> simvk(vk(x), vk(x1)).
An instance of this perturb-and-measure procedure can be found in Xu et al. [2020a].

Conveniently this work provides 2 examples of similarity measures for assessing disen-
tanglement: An exact match between the predictions of a pre-trained classifier for the
sentiment factor, and a continuous score between 0 and 1 for content preservation (BLEU).

4.5 Applications in NLP

The main line of work in the area of disentanglement in NLP revolves around using
multitask learning to separate concepts in neural representations. Works on unsupervised
learning of disentangled representations remain rare compared to their supervised coun-
terparts. Disentanglement without supervision on text data has first been explored in the
work of Xu et al. [2020b] where they proposed a method to improve meaning preservation
and applied it to separate sentiment or topic information from content in sentence repre-
sentation. Other examples of works addressing unsupervised disentanglement on text data
include that of Mercatali and Freitas [2021] who studied the use of discrete latent vari-
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ables for such purpose, the work of Behjati and Henderson [2021] who worked on inducing
morphemes-level representations using character-level Seq2Seq models, and Tjandra et al.
[2021]’s work in which they disentangle speech content features from its style features by
leveraging the intuition that content is local and style is global.

Works on supervised disentanglement in NLP are however abundant. Looking at their
respective contribution types, these works can be divided in two categories: works with
task-specific contributions and works which present contributions that aim to improve
disentanglement in the general case.

Withing task-specific disentanglement, particular effort has been invested in separat-
ing semantics from form in general (meaning for example style) or syntax in particular.
This is due to the fact that this separation proved useful for many applications, namely
paraphrase detection [Chen et al., 2019a, Bao et al., 2019, Huang et al., 2021a] often
accompanied by paraphrase generation [Romanov et al., 2019, Chen et al., 2019b, Zhang
et al., 2019b, Huang and Chang, 2021a, Hosking and Lapata, 2021, Li et al., 2021a,
Hosking et al., 2022] as well as for Machine Reading Comprehension [Wu et al., 2022].
Additionally, task-specific disentanglement has been used to enforce fairness by dissociat-
ing sensitive attributes from task relevant information in the prediction process [Colombo
et al., 2022].

Concerning contribution that aim to improve disentanglement, methods generally fall
within two categories: Methods that use Information Theoretic constraints to enforce
dependence or independence between latent variables and generative factors [Cheng et al.,
2020, Mercatali and Freitas, 2021, Colombo et al., 2021], and Methods that use adversarial
learning schemes to enforce separation between information in latent variables [Romanov
et al., 2019, John et al., 2019].

Concerning the types of inductive biases discussed in section 4.3, the vast majority of
NLP works addressing disentanglement seem to employ supervised learning as inductive
bias. Only a few attempts have been made at using unsupervised inductive bias, i.e. using
known characteristics of language to direct information towards specific parts of latent
representations. For instance Chen et al. [2019a], Li et al. [2021a] and Huang and Chang
[2021a] discard word order information from semantic embedding modules in order to
encourage syntactic embeddings to contain this information5.

4.6 Conclusion

This chapter served laying the groundwork for a major component of the contributions
described in this thesis: Disentanglement. In Section 4.1, after defining and motivating
disentanglement, we explained how VAEs factor observations into independent generative
factors, as dictated by the intuitive understanding of what disentanglement requires. To
provide deeper understanding of how VAEs truly operate on data, and how that may relate
to a set of target generative factors, we explained in Section 4.2 Locatello’s impossibility

5This invariance of semantic representations to word order is, of course, not a viable design choice since it leads
to sentences such as "John loves Mary." and "Mary loves John." to have the same semantic representations.
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result regarding unsupervised disentanglement, and the relation put forward by Rolinek’s
work between VAEs and PCA.

Since VAEs only factor observations into independent latent factors, we explained in
Section 4.3 alternative inductive biases used in the literature to induce disentanglement.
Moving on to more practical notions, we summarized in Section 4.4 the different ways
disentanglement can be measured and described MIG and MIG-sup to give examples, but
also to provide better understanding of disentanglement metrics designed in this thesis
(Chapter 8) which were inspired by MIG.

Finally, we provided in Section 4.5 an overview of the current NLP disentanglement
landscape with an emphasis on two important observations:

• Unsupervised disentanglement in NLP is a research direction that needs more explo-
ration.

• Most of the effort expanded towards disentanglement in NLP relies on labeled data,
information theory-based or adversarial training-based objectives. In fact, little-to-
no contributions in this area address the design of linguistically inspired built-in
inductive bias for models to spontaneously induce (or help induce) disentanglement.
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Chapter 5
Transformers and their NLP applications

Transformers have been introduced by Vaswani et al. [2017] as an architecture to pro-
cess sets of observations in general, or sequences of observations in the particual case of
linguistic observations. Contrary to RNNs, the de facto language modeling architecture
before Transformers, this alternative architecture computes a contextualized representa-
tion of each element of the input sequence using a parallelizable computation method, as
opposed to the recursive computations implemented within RNNs. The core component
that enables this parallelizable contextualisation in Transformers is called attention and
has been used in Deep Learning way before the introduction of Transformers [Schmidhu-
ber, 1992, Bahdanau et al., 2015, Luong et al., 2015].

Besides parallelizability, the quick adoption of attention was driven by the clear meaning
behind its computation: Assigning a weight to each element in a sequence in order to
calibrate the extent to which it participates in the prediction at hand. Simply put, this
mechanism calculates the degree to which attention must be paid to each element of the
sequence, hence its name. On top of performance gains often brought by attention, its
clear meaning enables inspecting attention weights to understand the rationales behind
predictions at test time. An instance where this feature can prove crucial is, for example,
that of Deep Learning systems subject to strict fairness regulation such as the attention-
based hireability prediction system of Hemamou et al. [2019].

Transformers were widely adopted after the introduction of the first Transformer-based
MLM: Bidirectional Encoder Representations from Transformers (BERT; Devlin et al.,
2019). The ensuing prolific research on Transformer-based language modeling can be de-
scribed along three Major research directions:

• Pre-training and transfer : This area pertains to self-supervised Transformer training
schemes which yield models that perform well on tasks for which they are only fine-
tuned with minimal data and computational resources.

• Language Modeling : This area looks into the use of Transformers for causal (classical)
language modeling, and takes special interest in scaling them to unusually large
corpora with an unusually large number of parameters.
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• Model Interpretability and Analysis : This area looks into the inner-working of Transformer-
based NLP systems with a special focus on BERT and its variants.

The disentanglement-related contributions we present in this thesis are all built upon
Transformers attentions as an inductive bias. In that sense, we dedicate this chapter to
providing in-depth explanations on attention and Transformers. We first describe the ini-
tial motivation behind attention, as well as the first formulations proposed to calculate it
(§ 5.1). Moving on to the subject matter, we formally describe the Transformer architec-
ture introduced by Vaswani et al. [2017] (§ 5.2). The subsequent section (§ 5.3) consists
in an overview of Transformer-based language modeling where we present MLMs such
as BERT and its variants(§ 5.3.1), prominent causal LMs and VAE-based Transformer
LMs(§ 5.3.2), and a summary of findings from BERT-specific studies (a.k.a. Bertology)
in particular and Transformer-based LM analysis in general (§ 5.3.3) .

5.1 The Core Component of Tranformers: Attention Mechanisms

As explained above, the purpose of an attention mechanism is to produce scores that
are used to weight the contribution of each sequence element in a sequence-level repre-
sentation. Formally, a sequence of token-level representations h = {h1, . . . , hN} can be
aggregated to a sequence-level representation h̄ using attention as follows:

h̄ =
N∑
i=1

hifi(h) (5.1)

s.t.: fi(h) = softmax i({s(h1, c), . . . , s(hN , c)}) (5.2)

=
exps(hi,c)∑
j exp

s(hj ,c)
(5.3)

where s is a scoring function that calculate the unnormalized weight of each sequence
element, and c is a context element with regard to which attention is calculated. Across
the literature, attention mechanisms mainly differ in the way s and c are formulated.

Attention before Transformers: In the pre-Transformer era, for applications such
as sequence classification, c is was usually posited to be a vector (or multiple vectors) of
constant learnable parameters [Yang et al., 2016]. The intuition behind this design choice
was to calculate relevance scores with regard to the task at hand, which was constant and
therefore represented by a fixed context vector c.

The more sophisticated uses of attention, which led to the Transformer architecture,
arose from sequence-to-sequence prediction tasks such as Machine Translation [Bahdanau
et al., 2015] or Speech Recognition [Chorowski et al., 2014]. In this setup, the informa-
tiveness of each element of the source sequence depends on the step reached in the target
sequence generation. Accordingly, a context vector cj is calculated at each generation step
j as a function of the current state of the generator (or decoder). This use of attention in
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the sequence-to-sequence setup was introduced by Bahdanau et al. [2015], and the benefit
of it was twofold:

• Seeking the most relevant source token to generate the current target token is similar
to predicting alignments between source and target tokens. Simultaneously learning
to translate and align was actually the main motivation behind Bahdanau et al.
[2015]’s pioneering use of attention for sequence-to-sequence transduction.

• Contrary to previous sequence-to-sequence models in the literature [Sutskever et al.,
2014], attention mechanisms allow calculating a representation of the source sequence
that accommodates information pertaining each decoding step. In fact, the perfor-
mance of previous models which used a single sequence representation for all gener-
ation steps was know to deteriorate for long sequences [Cho et al., 2014a].

Concerning the scoring function s, Bahdanau et al. [2015] used a feed forward neural
network with a tanh activation function on the concatenation of context cj, representing
the current target generation step, and hi which is a representation of the ith source token:

s(hi, cj) = tanh(Ws.Cat(hi, cj) + bs) (5.4)

where Ws and bs are respectively a matrix and a bias term with learnable parameters and
Cat is the concatenation operator. This formulation of attention later came to be known
as additive attention. It was referred to as such in contrast to multiplicative formulation of
the score function developed by Luong et al. [2015]. In this formulation attention is rather
computed as a dot product between the current target context, and a linear transformation
of the source token representation:

s(hi, cj) = cTj ·Ws · hi (5.5)

where Ws is a matrix with learnable parameters.
As mentioned above, Bahdanau et al. [2015]’s use of attention was, in part, an attempt

at learning alignments between source and target words in Machine Translation without
using annotations on alignment. Their work, as well as subsequent works using attention,
was successful at inducing such alignments and led to results such as the ones depicted
in Figure 5.1.

Quantifying the influence of source tokens on target tokens using attention, as is done
in Figure 5.1, is important technique which serves as a basis for quantitative evidence
presented later in Chapter 8.

Attention within Transformers: Transformers attention is multiplicative attention
augmented with a few changes. A first change, we deem important, is a change in ter-
minology. Although it was hinted prior to Transformer, that attention is a "soft-search"
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Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight αij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).
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Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight αij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Figure 5.1: Two example alignments between source and target tokens induced by attention values in the
work of Bahdanau et al. [2015]. The brightness of each cell is proportional to the value of s(hi, cj), where
the columns i correspond to source tokens and the rows j correspond to target tokens.

module [Bahdanau et al., 2015], this interpretation of its functioning scheme is explicited
in Transformers terminology. In fact, source hidden states hi are said to formulate keys
(K) and values (V ), and target hidden states, previously referred to as contexts, are said
to formulate queries (Q) that call for the source hidden states according to their keys,
and aggregate their values using the obtained weights. Formally, for a given query Qj

and a set of source keys K = {K1, . . . , KN} and values V = {V1, . . . , VN}, the result of
attention for the target with index j is formulated as follows:

Attention(Qj, K, V ) =
N∑
i=1

fi(Qj, K)Vi (5.6)

s.t. : fi(Qj, K) = softmax i(
Qj ·KT

√
d

) (5.7)

where d is the size of the representations Qj and Ki. Normalizing by the size of the
representation is one of the changes brought by Transformers attention, and benefits the
model with more numerical stability according to Vaswani et al. [2017]. When considering
the full range of targets Q = {Q1, . . . , Q|L|}, Transformers attention can be abbreviated
in its efficient matrix multiplication formulation as follows:

Attention(Q,K, V ) = softmax(
Q.KT

√
d

).V (5.8)

In the above, we insist on the importance of the change in terminology as it constitutes
the basis of the intuition behind the last work described in this thesis (Chapter 9).

The last difference between Transformers attention and standard multiplicative atten-
tion is called Multi-Head Attention (MHA). Specifically, in contrast to previous Neural
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5.2. TRANSFORMER ARCHITECTURE

Networks employing attention, Transformers utilize a multitude of attention mechanisms
in parallel and concatenate their results:

MHA(Q̃, K̃, Ṽ ) =Cat(head1, ...headH)W
O (5.9)

s.t : headi =Attention(Q̃WQ
i , K̃WK

i , Ṽ W V
i ) (5.10)

where WQ
i , WK

i , W V
i , and WO are matrices with trainable parameters.

5.2 Transformer Architecture

The Transformer architecture [Vaswani et al., 2017] has been proposed for sequence-to-
sequence processing, and therefore consists of a sequence encoder and a sequence decoder.

Throughout encoding and decoding, each MHA layer and each feed-forward layer are
followed by a residual connection [He et al., 2016a], which is crucial for scaling to deeper
networks, and a Layer Normalization [Ba et al., 2016] which helps improve training sta-
bility and speed.

Transformer encoders: A Transformer encoder uses only one sequence of input ele-
ments S, which is typically a source language sequence of tokens in Machine Translation.
Attention is used in this encoder for the different elements of the input sequence to
exchange information; i.e. for contextualization. Specifically, Multi-Head Attention inter-
nally calculates its queries, keys, and values (cf. Eq. 5.10) from this single input sequence,
and thus produces contextualized sequence elements. This single input Multi-Head At-
tention is called Self-Attention (SA):

SA(S) = MHA(S, S, S) (5.11)

Given this operator, a Transformer encoder with Denc layers can be formulated as
follows1:

Enc(S) = S̃Denc , s.t. S̃d =

 S if d = 0

Fd(SAd(S̃d−1)) if d > 0

where each Fd is a feed-forward neural network. Feed-forward neural networks in Trans-
formers are formulated as two linear transformations with a Rectified Linear Unit (ReLU)
activation in between2:

1Here, we omit layer normalization and residual connections to lighten these equations, although they are
essential to learn Transformers reliably [He et al., 2016a, Ba et al., 2016].

2The ReLU activation is the function f : x −→ max(0, x). Subsequent Transformer-based models such as
GPT [Radford et al., 2018] and BERT [Devlin et al., 2019] replaced this function by a Gaussian Error Linear Unit
(GELU) activation function, which is a continuous version of ReLU introduced by Hendrycks and Gimpel [2016]
who show that it empirically outperforms ReLU across various NLP tasks, among others.
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CHAPTER 5. TRANSFORMERS AND THEIR NLP APPLICATIONS

F(x) = max(0, x.W1 + b1).W2 + b2 (5.12)

where W1 and W2 are learnable parameter matrices, and b1 and b2 are learnable bias
terms.

Transformer decoders: A transformer decoder takes as an input a source sequence of
elements S, and a target sequence of elements T . In the decoder, attention is used in two
manners. The first is an SA module that exchanges information between elements in the
target sequence. The second is a Cross-Attention (CA) module which pulls information
from source values through their keys with target queries :

CA(T, S) = MHA(T, S, S) (5.13)

A Transformer decoder with Ddec layers can be formulated as follows3:

Dec(T, S) = T̃Ddec , s.t. :

T̃d =

 T if d = 0

F(CA(SA(T̃d−1), S)) if d > 0

NLP-specific processing in Transformers:4 To process textual sequences with Trans-
formers, textual tokens must be embedded and their positional information must be en-
coded withing their embedding vectors. The token embedding step simply employs an
embedding lookup layer, which is a standard component in Deep Learning-based NLP.
However, contrary to previous sequence processing architectures such as LSTMs [Hochre-
iter and Schmidhuber, 1997], Transformers are order-invariant, and therefore require en-
gineering a mechanism to encode word order information. Vaswani et al. [2017] chose a
mechanism, which they called positional encoding5, that consists in injecting order in-
formation by adding the amplitudes of sine and cosine functions applied to different

3Layer Normalization and Residual connections are also omitted here.
4We refer to the implementation details described here as NLP-specific since they were originally engineered

for textual inputs. Nevertheless, they remain applicable to any discrete times series, and the positional encoding,
described later in this section, remain applicable to any type of ordered input sets (e.g. image patches; Lu et al.,
2019b).

5This is neither the first, nor the best attempt at encoding positions. For instance, Gehring et al. [2017] train
a separate embedding for each position while experimenting with attention-augmented Convolutional Neural
Networks for sequence-to-sequence modeling, and Shaw et al. [2018] show that embedding relative, as opposed to
absolute, positions improves results for Machine Translation.
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5.3. LANGUAGE MODELING WITH TRANSFORMERS

position-dependant frequencies:

PE pos,2i = sin(
pos

10000
2i

dmodel

) (5.14)

PE pos,2i+1 = cos(
pos

10000
2i

dmodel

) (5.15)

where pos is the position of the token, and i is the dimension at which addition is being
performed in the token embedding vector. This positional encoding operation is applied to
both source and target input tokens. The intuition behind Vaswani et al. [2017] choosing
sinusoidal functions is that the model should better attend to relative positions since, for
any fixed offset k, PEpos+k is a linear function of PEpos.

To model textual sequences in an auto-regressive manner, Transformers are also re-
quired to restrict the information exchange between target tokens so that target sequence
elements only pull information from previous tokens. In practice, this is enforced through
a binary mask M on attention, leading to what is called masked attention:

Attention(Q,K, V ) =(softmax(QKT )⊙M)V (5.16)

s.t. : Mij =

 1 if i ≤ j

0 if i > j
(5.17)

This masked attention is typically used in Transformer decoders for SA between the
target elements.

Given the above adaptations, NLP-specific Transformers only further require a linear
layer with softmax activations in order to produce word probabilities for sequence mod-
eling.

The Transformer architecture for textual sequence-to-sequence modeling: Fig-
ure 5.2 displays how the Transformer encoder and decoder are assembled with NLP-
specific processing steps for the textual sequence-to-sequence modeling in the work of
Vaswani et al. [2017].

5.3 Language Modeling with Transformers

In this section, we go over recent Transformer-based trends in NLP research, namely
through the 3 axes along which they can be categorized: masked language modeling and
pre-training, causal language modeling, and LM Analysis.

5.3.1 Masked Language Modeling and Pre-training with Transformers

The flagship of MLMs is the very first model to use masked language modeling: BERT [De-
vlin et al., 2019]. This model encodes tokens using only the Transformer encoder from
the architecture depicted in Figure 5.2. BERT is trained to encode consecutive sentences
A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|} tokenized with a WordPiece Tokenizer [Schuster
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Multi-Head Attention

Positional Encoding Positional Encoding
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Figure 5.2: The Transformer architecture for textual sequence to sequence modeling. The encoder and
decoder are recursively applied Denc and Ddec times respectively. As emphasized in the figure, the middle
part "Transformer Model" constitutes the core Transformer architecture, which is input agnostic, while
the parts above and below this core part represent NLP-specific adaptations.

and Nakajima, 2012]. These sentences are provided to the model under the form
{[CLS], a1, . . . , a|A|, [SEP ], b1, . . . , b|B|}6 where [CLS] and [SEP ] are special tokens. Apart
from summing token embeddings with their positional encodings, BERT also sums them
with a an additional segment embedding, where the segment is either A or B.

Pre-training BERT consists in optimizing it for two tasks on 16 GB of text data from

6Notice that BERT does not use and end-of-sentence token, since it does not perform language generation.
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BookCorpus [Zhu et al., 2015] and english Wikipedia. The first task is masked language
modeling as described in Section 2.5 (Eq. 2.16). The second is a Next Sentence Prediction
(NSP) task, where C, the output representation of the [CLS] token, is fed to a binary
classifier which predicts whether sentence B is the sentence that follows A in the corpus,
or a randomly sampled sentence from this corpus.

After pre-training, BERT is finetuned on tasks from the General Language Under-
standing Evaluation suite (GLUE; Wang et al., 2018). BERT outperformed the previous
state-of-the-art on the GLUE benchmark by a large margin, which opened an avenue for
research on Transformer-based Pre-trained LMs.

Numerous works after BERT succeeded in establishing new state-of-the-art performance
on language understanding using variants of its pre-training scheme. Yang et al. [2019]
use a Transformer architecture optimized for longer sequences [Dai et al., 2020], and refor-
mulate the masked language modeling objective as an auto-regressive language modeling
objective that goes through tokens in a randomized order. Liu et al. [2020] find that train-
ing BERT longer, with larger batches, more data (160 Gb) and without the NSP objective
substantially improves performance on downstream tasks.

Besides the above works, a number of studies explored modifying BERT while aiming for
improvements other than better downstream task transfer. For instance, ALBERT [Lan
et al., 2020] outperforms BERT on language understanding benchmarks with less parame-
ters by using a single layer that applies to the inputs multiple times in order to simulate a
multi-layer Transformer. Also on the parameter efficient side, Sanh et al. [2019] distill the
original BERT to 60% of its original size while retaining 97% of its original performance.
To improve training speed, Clark et al. [2020] train a Transformer encoder (ELECTRA)
to distinguish real tokens from fake tokens, rather than to generate tokens in masked
placeholders, and achieve performance similar to that of Liu et al. [2020]’s approach while
using only ∼ 22% of their compute7.

Pre-trained Transformers have also been proven effective outside of BERT’s token em-
bedding paradigm, namely in the sequence-to-sequence setup [Raffel et al., 2020, Lewis
et al., 2020], and the multimodal (language and vision) setup [Lu et al., 2019a, Li et al.,
2021b, Huang et al., 2021c].

5.3.2 Causal Language Modeling with Transformers

In addition to lower perplexity scores, the ability of Transformers to scale to high
volumes of data benefited causal language modeling in that it enabled verifying a crucially
important hypothesis for the future of AI as a whole that we discuss in what follows:
"Language models are unsupervised multitask learners" [Radford et al., 2019]8.

Through the relatively large-scale9 LM GPT-2, Radford et al. [2019] showed that lan-
guage modeling is a task that involves learning, and therefore requires solving, multiple

7Compute, here, was measured in Floating Point Operations (FLOPs).
8The quoted sentence is actually the title of Radford’s paper
9GPT-2 used 40Gb of text for its training which, at the time, was considered "large-scale".
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non-trivial reasoning subtasks for which there are no labels in the data apart from the
text itself, hence the unsupervised multitask learning mentioned by Radford. For instance,
a large-scale LM is likely to encounter many times the phrase "TL;DR"10, which is a cue
signaling the presence of a small summary. Consequently, one can probe the ability of
an LM to summarize by prompting it with a text appended with the phrase "TL;DR",
and scoring the completion generated by the LM with regard to a gold standard sum-
mary. Similar prompting strategies can be developed for a number of tasks like translation
(e.g. <French sentence>’s translation in English is <LM completion>), reading compre-
hension (often investigated with conversational prompts), or even basic arithmetics (e.g.
<x> times <y> is <LM completion>). Radford et al. [2019] succeed in showing that LMs
learn these tasks underlying language modeling by demonstrating the ability of GPT-2 to
score at least significantly above random chance at the aforementioned tasks.

The recent years have seen the emergence of Transformer-based LMs larger than GPT-
2 by multiple orders of magnitude. The first instance of such models, which was GPT-
3 [Brown et al., 2020], consisted of 175 billion parameters (approximately 116 times the
size of GPT-2) and was trained on 540 Gb of data (approximately 11 times the data
used for GPT-2). GPT3 demonstrated strong few-shot learning performance through pure
prompting on a wide range of tasks, and even generated short news articles (∼200 words)
which were nearly unidentifiable11 by humans. Extremely large LMs subsequently started
emerging as a research direction primarily fueled by industrial fundings [Rae et al., 2021,
Chowdhery et al., 2022, Smith et al., 2022, Du et al., 2022, Thoppilan et al., 2022] with
a specific focus on how they can solve tasks through prompting with few-to-no training
steps [Su et al., 2022].

Due to the difficulties incurred by posterior collapse, Transformers have rarely been
trained as VAEs for language modeling, and latent variable LMs have therefore been
relatively left out of the large-scale language modeling race. To the best of our knowledge,
Optimus [Li et al., 2020b] and DELLA [Hu et al., 2022] constitue the only attempts
at building large-scale VAE LMs. Optimus uses BERT as an encoder and GPT-2 as a
decoder to demonstrate that Transformer-based VAE LMs can outperform their standard
Transformer-based LM counterparts when similar effort is expanded to train them. But
seeing that Optimus still suffers from posterior collapse to a certain extent, Hu et al.
[2022] proposes through DELLA a hierarchical latent variable modeling scheme which
they prove to be effective in dealing with posterior collapse to a large extent. Given that
DELLA is very recent, its potential effect on the language modeling landscape is yet to
be seen.

10This phrase is internet lingo for "Too Long; Didn’t Read". Although the phrase was originally meant to be
commented on long posts, it came to be used as a marker for small abstracts accompanying long internet posts
that may be skipped by readers due to their length.

11When asked to identify the model-generated article between a GPT-3 article and a human-generated article,
human operators had a 52% accuracy with a confidence interval of 49%-54%. Random chance accuracy (50%)
being in this interval, the experiment could not conclude that humans were capable of discerning GPT-3 articles
from human articles.
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5.3.3 Bertology and Transformer-Based Model Analysis

The previous sections enumerated the successes Transformers have had across various
NLP tasks, which necessarily raises the question: How do they do it ? A flurry of studies,
following the pioneering work of Devlin et al. [2019], have dived into the inner working of
Transformers in order to make sense out of the information flow in this architecture, and
how it relates to what we know about linguistics. A digest of the BERT-specific portion
of these works (a.k.a Bertology) can be found in Rogers et al. [2020b].

The first series of works on the subject tackled identifying the content of each layer
through probing, a technique that consists in training a classifier on top of a representa-
tion and measuring the performance of the classifier with the intuition that the higher
it is, the more informative the representation is about the target concept. When apply-
ing this methodology to BERT, Tenney et al. [2020] observed that it tends to process
information in a manner that bears resemblance to the classical NLP pipeline, meaning
that the first layers tend to encode low-level surface form information such as PoS Tags,
the middle layers appear to be informative on more advanced syntactic relations such as
dependencies, while semantic information is either in the final layers (e.g. for co-reference
resolution) or spread out throughout the entire network as is the case for relation classifi-
cation. These findings were corroborated by later studies on BERT [Jawahar et al., 2019b,
Hewitt and Manning, 2019b], but do not seem to generalize to all BERT-like models. As a
matter of fact, Fayyaz et al. [2021] have shown that linguistic information emerges earlier
compared to BERT in the layers of XL-Net [Yang et al., 2019], and later in the layers of
ELECTRA [Clark et al., 2020].

In order to better understand the way Transformers encode linguistic information, a
number of works have focused on the extent to which these models grasp syntactic notions.
To that end, Marvin and Linzen [2020] developed a test suite with minimally modified
pairs designed to assess specific syntactic capabilities in LMs such as subject/verb agree-
ments and correct selection of negative polarity items. By compiling this evaluation suite
together with similar syntactic and psycholinguitic evaluation toolsets [Wilcox et al., 2018,
Futrell et al., 2018, Wilcox et al., 2019], Hu et al. [2020] compared a range of popular
architectures for language modeling and observed that the syntactic capabilites of the dif-
ferent models they tested was not correlated with their respective perplexities, meaning
that advances in language modeling measured by perplexity do not translate to models
that better understand the syntax underlying their training corpora. Additionally, their
experiments revealed that syntactic capabilities were more influenced by architectures
than they were by the size of the training corpora, with the Transformer architecture
tested with GPT-2 coming on top of previous state-of-the art RNN-based architectures
such as RNNG [Dyer et al., 2016] and ON-LSTM [Shen et al., 2019]. Subsequent studies
on the presence of syntactic information in Transformers have backed and better justified
the ability of Transformers to process syntactic information by showing that Transformers
encode information in tree-like structures [Jawahar et al., 2019b, Hewitt and Manning,
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2019b].
Concerning the role played by different Transformer components in formulating output

representations, Geva et al. [2021] proposed and leveraged an interesting perspective on
feed-forward layers in Transformers to provide a unified view on information processing in
Transformers: the two matrices forming these layers (W1 and W2 in Eq. 5.12) function as
keys and values where rows from the first matrix are used to weight (or call) lines from the
second matrix. Using this insight they show that the values called by keys in these matri-
ces correspond to human-understandable textual patterns. Then, In Geva et al. [2022], the
same authors show that these feed-forward layers operate on outputs by gradually pro-
moting concepts, which are also largely understandable, in their outputs while forming
the word representations. Also pertaining to the association between Transformer compo-
nents and understandable concepts, Clark et al. [2019] have shown that many attention
heads in BERT emulate identifiable syntactic functions such as dependency relations and
co-references with high accuracy. They also show that BERT attention heads learn to
default to special tokens ([CLS] and [SEP]) when they can’t find the target argument for
their specific linguistic functions.

It is worth noting that, alongside a better understanding of Transformers, this line
of works also led to numerous advances in methodology concerning, for instance, the
use of attention as an explanation [Jain and Wallace, 2019, Wiegreffe and Pinter, 2020],
the validity of probing [Pimentel et al., 2020a], or contrastive evaluation with minimal
pairs [Kodner and Gupta, 2020, Vamvas and Sennrich, 2021].

5.4 Conclusion

This background chapter is aimed at explaining crucial architectural components for our
contributions on disentanglement: Transformers and attention. We first motivated atten-
tion mechanisms and introduced the first attempts at formulating them (additive and mul-
tiplicative), as well as the first alignment results they exhibited in Machine Translationng
(§ 5.1). We then showed in the same section how Transformers normalized multiplica-
tive attention, and duplicated it into Multi-Head Attention to form their basic building
block. Given this attention mechanism, we explained in section 5.2 how Transformers
exchange information between sequence elements (i.e. Self-Attention) or pull information
from source sequences to target sequences (i.e Cross-Attention). In the same section, we
also explained how these attention blocks, together with other Transformer components
come together to form the complete multi-layer Transformer architecture, and how NLP-
specific measures, such as positional encoding and masked attention, must be applied in
order to deal with textual inputs and outputs.

Moving to their applications, we painted in Section 5.3 a picture of the current landscape
of Transformer-based works in NLP. Specifically, we descibed the first MLM, BERT, and
gave a summary of the subsequent models that modify and improve upon it (§ 5.3.1).
In the following subsection (§ 5.3.2), we outlined works on large-scale language modeling
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with Transformers and how they exhibited the ability of LMs to solve a range of reasoning
tasks underlying simple text completion. We also provide a summary of the few works
attempting large-scale VAE-based language modeling with Transformers. Finally, we give
an overview of the different conclusions drawn by works attempting to understand the
inner-working of Transformer-based LMs (§ 5.3.3).
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Chapter 6
Syntactic Structure of Sentences

The approach to interpretable machine learning in the context of NLP is peculiar in that
language, the input data, is a media that has been subjected to meticulous scrutiny for
millennia1. The myriad works investigating and theorizing about language provide solid
foundations for interpretable NLP to lean on. As briefly discussed in the previous chapter
(§ 5.3.3), works analyzing the behavior of Transformers are largely built on relations to
linguistic notions [Hewitt and Manning, 2019b, Tenney et al., 2020, Hu et al., 2020].
Similarly, we build in this thesis interpretable representation learning techniques for NLP
which are largely motivated by their meaningfulness with regard to linguistics in general,
and syntax in particular.

Syntax is the area of linguistics that looks into the way words combine in order to
produce phrases or sentence that abide by the grammar of a language. Although the-
oretical frameworks formalizing this set of rules may vary, it is generally agreed upon
that words in a sentence can be embedded in a tree-like structure describing its syntax,
where these words combine into phrases. Figure 6.32 is a minimal example illustrating
this combination process through the dependency tree of a sentence.

A talented musician holds his nice guitar

ROOT

nsubj

dobj

amod

det

amod

poss

Figure 6.1: A sentence and its dependency structure. The structure is built as a tree over words in the
sentence, where arrows go from heads (or parents) to dependents (or children).

Beyond enumerating valid constructions in a certain language, syntax reflects the way
minimal semantic units are composed to convey complex meaning. For instance, depen-

1Dependency grammars for instance, approached in Section 6.2, have first been formulated by the Indian
scholar Panini around the 5th century B.C.E. [Joshi et al., 1991].

2These dependency relations can be obtained using Spacy’s online dependency parser which can be used at
this URL: https://explosion.ai/demos/displacy
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dency relations illustrate the compositional nature of language and the role of syntax in
this composition by relating words through head-to-dependent relations. These relations
model the way words in sentences feed off the meaning of other words in a hierarchical
modification process that yields the overall meaning of the composed phrase or sentence
[Tesnière, 1959, Chapter 21]. With that in mind, recall that the core component of Trans-
formers, discussed in the previous chapter (§ 5.1), is attention: a mechanism that organizes
the exchange of information between token representations, i.e. the way representations
are composed. Understanding the relation between the way attention behaves and the
linguistic theory describing the rules for phrase and sentence composition, i.e. syntax, is
therefore crucial in making sense of NLP systems in the Transformers era.

In light of the above, we dedicate this chapter to presenting the syntactic notions which
inspired our contributions, and provided grounding for the evaluation protocols used to
validate them. First, we introduce constituency analysis (§ 6.1) and its backbone, Context-
Free Grammars(CFGs). Subsequently, we present an alternative to the constituency view
on syntax: dependency analysis (§ 6.2). This second section also emphasizes the strong
relation of dependencies to semantics and predicate-argument structures.

6.1 Constituency Analysis

The constituents, referred to in constituency analysis, are groups of words that can
behave as a single unit(cf. Chomsky, 1957, Chapter 4 and Jurafsky and Martin, 2022,
Chapter 12). In other words, constituency analysis is a description of:

• the way words form constituents, i.e. multi-word units.

• the type of each of these constituents.

Classifying constituents into different types is useful for describing rules governing word
grouping, e.g. A determiner (DT ) and a noun (NN) form a Nominal Phrase (NP ) in
English, which in turn may be followed by a Verb Phrase (V P ) to form a sentence (S).
The set of such production rules for a certain language can be formalized through what
is called a Context-Free Grammar3 (CFG). For instance, the aforementioned production
rules for English would appear in a CFG as follows:

NP −→ DT NN (6.1)

S −→ NP V P (6.2)

The first line from the above rules means "a nominal phrase may be formed by a deter-
miner and a noun (in that order)". Symbols used in production rules belong to two cate-
gories: terminal and non-terminal symbols. terminal symbols are the words that actually
appear in sentences (e.g. car, he, draw, ...) and non-terminal symbols are the abstractions

3Note that CFGs are simplified models for the syntax of natural languages. In fact, as shown by Shieber [1985],
some syntactic phenomena exhibited by natural languages fall outside of the range of CFGs.
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(or types) that may produce words or other non-terminals (e.g. noun, preposition, verb
phrase, ...). The subset of non-terminals that produce terminals, such as determiners (DT )
and nouns (NN), are called Parts-of-Speech (PoS). With the rules defined over terminal
and non-terminal nodes, the set of possible strings of terminals that can be generated by
a CFG from the starting symbol S forms a formal language. Conversely, sentences that
can not be arrived at from the rules within a CFG are said to be ungrammatical with
regard to that CFG.

Given these rules, constituency trees are constructions over sentences that depart from
the starting symbol node S and use production rules from the CFG of the language at
hand to arrive at the leaf nodes containing the terminal symbols in the sentence. An
example of such construction can be seen in Figure 6.24.

6.2 Dependency Analysis

As discussed in the introduction, dependency analysis illustrates sentence structure
through syntactic relations between words [Mel’cuk et al., 1988]. These relations form a
tree where each node is a word, in contrast to the constituency tree where words are only
leaf-nodes.

4This constituency tree was obtained through AllenAI’s online NLP demo platform available at this URL:
https://demo.allennlp.org/constituency-parsing

S

NP

DT

A

JJ

talented

NN

musician

VP

V

VBZ

holds

NP

PRP$

his

JJ

nice

NN

guitar

Figure 6.2: Example constituency tree for the sentence "A talented musician holds his nice guitar".
Terminal nodes are labeled in green while non-terminal nodes are labeled in blue. JJ , V BZ and PRP
are respectively "adjective, numeral or ordinal", "verb, present tense, 3rd person singular" and "pronoun,
personal".
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The words forming subtrees in a dependency tree (i.e. a node and all its descendants)
correspond to words that form sentence constituents from the constituency perspec-
tive [de Marneffe et al., 2006]. However, the dependency perspective offers different infor-
mation on this constituent. First, in a dependency tree we label arcs (relations between
words) rather than nodes (constituent types). Second, a dependency subtree features a
head word that is targeted by the syntactic functions of its direct children in the sub-
tree; e.g. in "talented musician", "talented" is an adjectival modifier (amod) targeting the
word "musician". Third, dependency trees are less rigid when it comes to word order5.
Figure 6.36 shows the same dependency tree displayed in the introduction augmented with
PoS tags, and semantic annotation concerning its predicative structure which is explicited
below.

DT JJ NN VBZ PRP$ JJ NN
A talented musician holds his nice guitar

ROOT

nsubj

dobj

amod

det

amod

poss

ARG0 ARG1

Dependency
Parse

PoS Tags
Predicative
Structure

Figure 6.3: A sentence and its syntactic roles. The correspondence between syntactic roles and elements
of the predicative structure is highlighted with colors. ROOT is the root node of the dependency tree,
nsubj is a nominal subject, dobj is a direct object,det is a determiner, poss is a possessive determiner, and
amod is an adjectival modifier. ARG0 and ARG1 are semantic proto-roles [Bonial et al., 2012] designating
respectively the entity that performs the action (a.k.a the agent) and the entity affected by the action
(a.k.a the patient).

The dependency structure of a sentence is especially interesting in that it strongly re-
lates to the semantic structure of the sentence. In fact, formal theories of semantics, such
as Generative Lexicon Theory [Pustejovsky, 1998], often posit that sentences translate to
lambda expressions7 which describe semantic composition as function applications over
some abstract arguments. The lambda expression corresponding to the semantic process-
ing underlying the sentence in Figure 6.3 can be written as follows8:

λx.λy.[musician(x) ∧ talented(x) ∧ nice(y) ∧ guitar(y) ∧ holds(x, y)] (6.3)

This expression reads "Let x and y such that x verifies musician, x verifies talented, y
verifies nice, y verifies guitar, and (x, y) verifies holds". Notice that, in Figure 6.3, the
part of the sentence characterizing the argument x corresponds to the nsubj dependency
subtree, while the dobj subtree contains all the information about the argument y. The

5This property is interesting for languages with a free word order since dependency trees do not need to register
different rules for different arrangements of the same syntactic roles.

6The semantic roles describing the predicative structure here can be obtained through AllenAI’s online semantic
role labeling demo available at this URL: https://demo.allennlp.org/semantic-role-labeling

7Refer to Rojas [2015] for an introdution to lambda calculus.
8The possession information expressed by the pronoun "his" is ignored here for simplicity.
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ROOT node which is directly above dobj and nsubj is anchored to the verb holds, which
informs about the main predicate expressed by the sentence. Identifying elements of the
predicative structure, most often called semantic role labeling, is an NLP task introduced
by Gildea and Jurafsky [2002] where portions of the sentence are labeled according to se-
mantic roles which identify arguments of the semantic structure of the sentence. Although
semantic role labeling started out with a large vocabulary of fine-grained semantic roles,
subsequent annotation guidelines such as those of PropBank [Bonial et al., 2012] collapse
semantic roles into a minimalistic set of proto-roles such as the ones used in Figure 6.3.

The correspondence of high-level syntactic roles such as ROOT , nsubj, and dobj with
the main predicate and its arguments illustrated in Figure 6.3 is a well-marked pattern. As
a matter of fact, statistics on the coNLL 2008 shared task on joint parsing of syntactic and
semantic dependencies [Surdeanu et al., 2008] calculated by Lang and Lapata [2010] show,
for instance, that 84% of constituents having the agent (ARG-0) semantic role have the
subject syntactic role, and that 58% of constituents having the patient semantic role have
the object syntactic role. This correspondance is strong enough for it to be emphasized
by dependency annotation guidelines such as Universal Dependencies [Nivre et al., 2020]
through a distinction between core syntactic roles, i.e. syntactic roles which directly relate
to an element of the predicative structure such as the ones we color in Figure 6.3, and
non-core syntactic roles9.

The distinction between core and non-core syntactic roles, as well as the fact that core
syntactic roles are placeholders segmenting the main information carried by the sentence
are of particular importance to this thesis as they constitute the basis for the intuition
behind the work presented in Chapter 8.

6.3 Conclusion

In this chapter, we introduced two syntactic analysis schemes, namely constituencies
and dependencies. We explained that constituencies find their roots in CFGs, and describe
sentences as the result of the successive application of the rules registered in the generative
grammar describing the language at hand (§ 6.1). We use them to quantify the effectiveness
of the method described in Chapter 9 of this thesis. More precisely, we study the degree
to which syntactic information is present in latent variables where syntactic information
ranges from shallow constituency structures, i.e. constituency trees cut at the 2nd or 3rd

level, to deep constituency structures, i.e. entire trees. Example cuts of a constituency
tree, also called syntactic templates, are displayed in Figure 6.4.

Concerning dependencies, we explained that they offer a perspective on sentences which
explicits the role played by each word in the sentence structure and therefore better
relates it to the manner in which it participates in building the meaning behind the
sentence (§ 6.2). A particular notion that was emphasized in the section pertaining to
dependencies is the relation between core syntactic roles and elements of the predicative

9As an example, Universal Dependencies provide a comprehensive inventory of syntactic roles they use with
definitions and examples at the following URL: https://universaldependencies.org/u/dep/index.html

75

https://universaldependencies.org/u/dep/index.html


6.3. CONCLUSION

S

NP

DT

A

JJ

talented

NN

musician

VP

V

VBZ

holds

NP

PRP$

his

JJ

nice

NN

guitar

Second-level template Third-level template

Figure 6.4: Example syntactic templates obtained by cutting a constituency tree at a certain level. The
red frame delimits a syntactic tree cut at the 2nd level (2nd level template), while the green frame delimits
a syntactic tree cut at the 3rd level (3rd level template).

structure, which is important to explain the intuition behind disentanglement with regard
to syntactic roles in Chapter 8.
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Part III

Semi-Supervised Learning with VAEs
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Chapter 7
Challenging the Semi-Supervised VAE Framework for
Text Classification

Obtaining labeled data to train NLP systems is a process that has often proven to
be costly and time-consuming, and this is still largely the case [Böhmová et al., 2003,
Martínez Alonso et al., 2016, Choudhary, 2018, Seddah et al., 2020]. Consequently, semi-
supervised approaches are appealing to improve performance while alleviating dependence
on annotations. To that end, Variational Autoencoders (VAEs; Kingma and Welling, 2014)
have been adapted to semi-supervised learning [Kingma et al., 2014], and subsequently
applied to several NLP tasks [Chen et al., 2018a, Corro and Titov, 2019, Gururangan
et al., 2020]. As mentioned in 4.3, semi-supervised learning with VAEs is an instance
of the case where supervised learning signal is used as an inductive bias to obtain a
latent variable that has a clear meaning. This learning framework therefore yields an
Autoencoder where the encoded representations are partly understandable, and where the
decoded observations are decoded from this partly understandable representation, hence
its importance for interpretability in general and for the present thesis in particular.

A notable difference between the generative model case from where VAEs originate,
and the semi-supervised case is that only the decoder (generator) of the VAE is kept
after training in the first case, while in the second, it is the encoder (classifier) that we
keep. This difference, as well as the auto-regressive nature of text generators has not
sufficiently been taken into account in the adaptation of VAEs to semi-supervised text
classification. In this chapter, we show that some components can be ablated from the
long used semi-supervised VAEs (SSVAEs) when only aiming for text classification. These
ablations simplify SSVAEs and offer several practical advantages while preserving their
performance and theoretical soundness.

The usage of unlabeled data through SSVAEs is often described as a regularization
on representations [Chen et al., 2018a, Wolf-Sonkin et al., 2018, Yacoby et al., 2020].
More specifically, we explain in Section 7.1 that SSVAEs add to the supervised learning
signal, a conditional generation learning signal that is used to train on unlabeled samples.
From this observation, we study two changes to the standard SSVAE framework. The
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first simplification we study (§ 7.1.2) is the removal of a term from the objective of
SSVAEs: the Kullback-Leibler term. This encourages the flow of information into latent
variables, frees the users from choosing priors for their latent variables, and is harmless to
the theoretical soundness of the semi-supervised framework. The second simplification we
study (§ 7.1.1) is made to account for the auto-regressive nature of text generators. In the
general case, input samples in SSVAEs are described with two latent variables: a partially-
observed latent variable, which is also used to infer the label for the supervised learning
task, and an unobserved latent variable, which describes the rest of the variability in the
data. However, auto-regressive text generators are powerful enough to converge without
the need for latent variables. Therefore, removing the unobserved latent variable is the
second change we study in SSVAEs. The above modifications can be found in some rare
works throughout the literature, e.g. Corro and Titov [2019]. We, however, aim to provide
justification for these changes beyond the empirical gains that they exhibit for some tasks.

Our experiments on four text classification datasets show no harm to the empirical
classification performance of SSVAE in applying the simplifications above. Additionally,
we show that removing the unobserved latent variable leads to a significant speed-up.

The contributions presented in this chapter are the following: we justify two simplifica-
tions to the standard SSVAE framework, we explain the practical advantage of applying
them (§ 7.1), and we provide empirical results showing that they speed up the training
process while causing no harm to the classification performance(§ 7.2).

7.1 Simplifying SSVAEs for Text Classification

As explained in § 3.7, semi-supervised learning with VAEs was introduced by Kingma
et al. [2014]. Keeping the same terminology, we consider here a set of labeled examples
L = {(x1, y1), ..., (x|L|, y|L|)}, and a set of unlabeled examples U = {x′

1, ..., x
′
|U |}. Also

recall that i) besides the usual unobserved latent variable z, the semi-supervised VAE
framework uses a partially-observed latent variable y; ii) the encoder qϕ(y|x) serves both
as the inference module for the supervised task, and as an approximate posterior (and
encoder) for the y variable in the VAE framework.

[Kingma et al., 2014] formulate the semi-supervised objective with L, U , x, y and z as
follows:

J α =
∑

(x,y)∈L

(
ELBo((x, y); z) + α log qϕ(y|x)

)
+
∑
x∈U

ELBo(x; (y, z)) (7.1)

The first term in Equation 7.1 is the part used to train the network on the labeled data
L, where ELBo considers x and y to be observed and z to be non-observed, and qϕ(y|x) is
also trained with a Cross-Entropy objective weighted by a hyper-parameter α. The second
term in J α is the term to be used with unlabeled samples from U , which is simply an
ELBo that only considers x to be observed.
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The simplifications we propose to the above SSVAE framework stem from an analysis of
the alternative form under which ELBO can be written (Eq. 3.6 in Chapter 3). Although
it is valid for any arguments of ELBo(.; .), we display it here for an observed variable x,
and the couple of latent variables (y, z):

ELBo(x; (y, z)) = log pθ(x)−KL[qϕ(y, z|x)||pθ(y, z|x)] (7.2)

For the case of SSVAEs, this form provides a clear reading of the additional effect of ELBo
on the learning process: i) maximizing the log-likelihood of the generative model pθ(x),
ii) bringing the parameters of the inference model qϕ(y, z|x) closer to the posterior of
the generative model pθ(y, z|x). Since pθ(y, z|x) is the distribution of the latent variables
expected by the generative model pθ for it to be able to generate x, we can conclude that
ELBo trains both latent variables for conditional generation on the unsupervised dataset
U . If we write ELBo((x, y), z) under the same form:

ELBo((x, y); z) = log pθ(x, y)−KL[qϕ(z|x, y)||pθ(z|x, y)] (7.3)

it can also be seen that only z is trained on conditional generation for the labeled examples
in L.

7.1.1 Dropping the Unobserved Latent Variable

Building on observations from equations 7.2 and 7.3, we question the usefulness of
training both latent variables for conditional generation when semi-supervised learning
only aims for an improvement on the inference of the partially-observed latent variable y.

VAEs’ generative capabilities have first been exhibited on image datasets [Kingma and
Welling, 2014]. For such datasets, the reconstruction loss in ELBo is an L2 loss (resp. L1
loss). This stems from the fact that pθ(x|z) is modeled by a Gaussian (resp. a Laplace)
distribution. Given a single sample z, the blur modeled by such distributions cannot
(in the general case) model an entire image dataset. The reader may refer to Zhao et al.
[2017c] for a full discussion of this issue. As a consequence, it is necessary for such datasets
to incorporate a latent variable z besides the partially-observed variable y to model the
characteristics that y does not describe.

As explained in Chapter 3, most decoders used for language are auto-regressive, i.e.
of the form pθ(x|y, z) =

∏
i pθ(xi|y, z, x<i). Such decoders are able to generate realistic

samples when trained on a target text corpus, in fact so much that it causes them to
ignore latent variables (cf. posterior collapse discussed in section 3.6). Given the above,
pθ(x) =

∫
y
pθ(x0|y)

∏
i pθ(xi|y, x<i)dy, an autoregressive LM that incorporates only y as a

latent variable is an expressive enough generative model to provide quality learning signal
for y’s training on conditional generation (Eq. 7.2). We therefore propose to keep only y

and to drop z from the model avoiding its presence in the Kullback-Leibler divergence in
Equation 7.2 and saving some parameters.
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With this simplification, the training objective shown in Equation 7.1 becomes:

∑
(x,y)∈L

(
log pθ(x|y) + α log qϕ(y|x)

)
+
∑
x∈U

ELBo(x; y) (7.4)

There is a caveat regarding this modification: Since using only y often makes integration
over the latent variables possible1, one may be tempted to optimize the exact log-likelihood
instead of ELBo. This should not be done as it would remove the second term from Eq. 7.2,
decoupling the learning processes of the generative model from that of the inference model,
and therefore discarding the benefit provided by semi-supervised learning with VAEs.
Nevertheless, keeping only y still often enables calculating exactly the reconstruction
term which presents no harm to the learning process.

7.1.2 Dropping the Kullback-Leibler Term

As discussed in Section 3.6, the KL divergence in ELBo sometimes discourages the
model from using latent variables and makes them useless in practice [Bowman et al.,
2016, Zhao et al., 2017a, Chen et al., 2018c].

An interesting result from Zhao et al. [2017a] is that ELBo without KL divergence
(KL-free) is still a theoretically sound objective for generative modeling with VAEs. The
difference between the generative model resulting from a regular ELBo and a KL-free
ELBo is the prior of the model. A KL-free ELBo results in a generative model that uses
as a prior qϕ(z) =

∫
z
qϕ(z|x)pdata(x)dx. This prior is intractable which makes the resulting

model impractical for generation, but causes no problem for semi-supervised VAEs. We
therefore propose, as a second change to the standard SSVAE framework, the removal of
the KL-divergence in ELBo.

Note that using the prior qϕ(z) mentioned above means that the network formulates its
own prior instead of requiring the user to choose it. Priors for partially-observed latent
variables are delicate to choose as it is highly preferred for them to i) yield a closed
form or the KL-divergence in ELBo to stabilize training, ii) realistically model the default
behavior of the latent variables. The latter requirement can be particularly tedious for
non-trivial latent variable models (e.g. trees; Corro and Titov, 2019).

If we apply this removal of the KL-divergence to both ELBo’s in the standard SSVAE
objective J α in Equation 7.1, it becomes:∑

(x,y)∈L

(
Ez∼qϕ(z|x) [log pθ(x|y, z)] + α log qϕ(y|x)

)
+
∑
x∈U

E(y,z)∼qϕ(y,z|x) [log pθ(x|y, z)] (7.5)

1For instance, integration becomes possible when the support of the discrete latent variable is small, as is the
case for binary classification.
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Figure 7.1: A diagram sketching the functioning scheme of a vanilla SSVAE. Dashed components are
components we argue are unnecessary in our study.

7.1.3 Resulting Objective

Applying both of the previous simplifications to the semi-supervised objective in Eq. 3.24
leads to the following objective:

∑
(x,y)∈L

(
log pθ(x|y) + α log qϕ(y|x)

)
+
∑
x∈U

Ey∼qϕ(y|x) [log pθ(x|y)] (7.6)

As can be seen, the first ELBo in Eq. 3.24 turns into a supervised conditional generation
objective, while the second ELBo turns into a reconstruction term that relies only on y.
Nevertheless, we stress that the second term is still an ELBo since removing the KL term
still trains a generative model [Zhao et al., 2017a], and the whole objective is therefore
still a VAE-based semi-supervised learning objective.
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It should also be noted that, without z, the latent variables cannot provide the decoder
with the full information about a sentence and, therefore, cannot reach a state where each
sample is reconstructed. To avoid confusion, instead of reconstructing from y, the role of
the reconstruction term is better read in our case as raising the probability of the sample
at hand under the associated label y.

To better envision the impact of our modifications on the SSVAE framework, Figure 7.1
presents a holistic view of the ablations we presented in this section.

7.2 Experiments

In this section, we display comparisons between instances of standard SSVAEs and the
same SSVAEs after applying the changes we propose.

7.2.1 Setup

Datasets We consider 4 datasets for our study: the IMDB [Maas et al., 2011] and Yelp
review [Li et al., 2018] binary sentiment analysis datasets, and the AG News and DB-
Pedia [Zhang et al., 2015] topic classification datasets. The datasets have been chosen to
represent a range over different tasks (Sentiment Analysis and Topic Classification), dif-
ferent numbers of classes, and different sentence lengths. A summary of dataset statistics
is in Table 7.1.

dataset Labels Av. Sample length N° Classes

AG News Topic 37.85±10.09 4
DBPedia Topic 46.13±22.46 14
IMDB Sentiment 233.79±173.72 2
Yelp Sentiment 8.88±3.64 2

Table 7.1: Dataset properties.

As was done in Chen et al. [2020], we measure performance on the different datasets
with equal numbers of samples. Accordingly, for each dataset, we randomly subsample
10K samples from the original training set as unlabeled data. We also use 4K labeled
samples as training set and 1K as development set. We use the original test sets from
each dataset. All the samples are tokenized using a simple whitespace tokenizer.

Network architecture The size of z is set to 32. For experiments without z, we simply
drop all the components associated to it from the network.

The encoder consists of a pre-trained 300-dimensional fastText [Bojanowski et al., 2017]
embedding layer, and 2 Bidirectional LSTM networks with 100 hidden states each, one
for each of the latent variables y and z. The logits of y are then obtained by passing the
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last state of its Bidirectional LSTM through a linear layer. Similarly the last state of the
Bidirectional LSTM for z is passed through a linear layer to obtain its mean parameter,
and a linear layer with a softplus activation to obtain its standard deviation parameter.

As for the decoding step, to allow backpropagation, z is sampled using the reparame-
terization trick [Kingma and Welling, 2014], and y is sampled using the Gumbel-Softmax
trick [Jang et al., 2017]. Xu et al. [2017] have shown that latent variables are best ex-
ploited in SSVAEs when concatenated with the previous word at each generation step
to obtain the next word. We design our decoder accordingly and use a 1-layered LSTM
with size 200. The only hyper-parameter we tune on the development set is α, the coef-
ficient weighting the supervised learning objective in Eq. 7.1, which is selected in the set
{100, 10−1, 10−2, 10−3}.

Training and validation data splits We sample 5 labeled data splits of size 1K. Each
of these 5 splits will play, in turn, the role of validation set for one experiment, while
the other 4 splits are used for training. Looping over these splits yields 5 runs for each
experiment. The results we display are the average (and standard deviation) of the results
for each of these runs. The validation score serves selecting hyper-parameters (in our case
only α from Eq. 7.1). The final test scores are measured on the original test set of each
dataset.

Probabilistic graphical model For models that use both z and y, we consider the
latent variables to be conditionally independent in the inference model (i.e. qϕ(y, z|x) =
qϕ(y|x)qϕ(z|x)) ) and independent in the generation model (i.e pθ(y, z) = p(y)p(z)).

Training procedure The network is optimized using ADAM [Kingma and Ba, 2015],
with a learning rate of 4e-3 and a dropout rate of 0.5. If the accuracy on the validation set
doesn’t increase for 4 epochs, the learning rate is divided by 4. If it doesn’t increase for
8 epochs, the training is stopped. For objectives that include a KL-divergence, we scale
it with a coefficient that is null for 3K steps then linearly increased to 1 for the following
3K steps to avoid posterior collapse [Li et al., 2020a].

7.2.2 Results

Classification performance In Table 7.2, we compare the performance of a standard
SSVAE, to a SSVAE where we remove the KL-divergence (SSVAE-{KL}) another where
z is removed (SSVAE-{z}) and a third version where both the KL-divergence and z are
removed (SSVAE-{KL, z}) for amounts of data varying from 1% to 100% of the 4K labeled
samples in each dataset. We measure performance on all datasets using accuracy. As a
baseline, we also include the results of an objective that does not use unlabeled data. The
architecture we use for this objective is simply the LSTM encoder that we use to obtain
y for the SSVAE objectives. This baseline is referred to as Supervised.

The aim of our experiment is to see whether we observe that there is a harm to the
performance of SSVAEs when applying the proposed simplifications. In Table 7.2, we only
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Dataset Objective 1% 3% 10% 30% 100%

IMDB

Supervised 54.62(3.30) 56.47(1.02) 62.01(2.75) 69.65(2.02) 81.02(0.64)
SSVAE 53.92(2.34) 56.03(4.20) 62.15(5.03) 75.39(0.49) 83.34(0.91)

SSVAE-{KL} 52.70(1.72) 54.95(0.77) 62.37(4.45) 74.18(1.97) 83.87(0.47)
SSVAE-{z} 54.15(2.46) 56.86(1.77) 62.15(2.87) 75.42(1.80) 81.90(5.17)

SSVAE-{KL, z} 53.51(1.99) 56.58(2.22) 63.24(4.15) 75.87(1.30) 84.79(1.34)

AGNEWS

Supervised 68.60(4.88) 75.92(1.74) 81.96(0.83) 84.59(0.67) 86.98(0.74)
SSVAE 65.79(5.02) 75.95(1.27) 82.47(0.43) 85.50(0.30) 87.89(0.54)

SSVAE-{KL} 68.56(1.89) 76.25(2.21) 82.76(0.45) 85.73(0.80) 87.95(0.19)
SSVAE-{z} 67.13(6.55) 77.28(1.81) 83.48∗(0.75) 85.75(0.74) 87.94(0.33)

SSVAE-{KL, z} 66.96(3.42) 76.47(1.24) 82.58(0.97) 85.51(0.57) 87.85(0.29)

Yelp

Supervised 70.32(1.84) 76.32(2.07) 83.41(1.75) 87.85(0.58) 92.47(0.48)
SSVAE 71.34(1.93) 76.96(1.64) 82.96(0.69) 89.35(0.39) 92.85(0.78)

SSVAE-{KL} 69.85(2.86) 76.82(1.31) 82.90(2.23) 88.33(0.99) 92.90(0.54)
SSVAE-{z} 68.74(2.95) 78.26(1.70) 84.11(1.25) 90.27∗(0.28) 93.60(0.74)

SSVAE-{KL, z} 69.21(1.10) 77.30(2.57) 85.02∗(1.24) 89.74(1.31) 93.77(0.61)

DBPedia

Supervised 63.67(1.74) 81.49(2.25) 90.56(1.21) 94.63(0.32) 96.97(0.28)
SSVAE 64.42(1.83) 83.16(1.49) 92.95(0.82) 96.26(0.25) 97.75(0.11)

SSVAE-{KL} 66.09(3.05) 81.97(1.54) 93.64(0.76) 96.32(0.28) 97.58(0.13)
SSVAE-{z} 62.56(5.60) 83.40(2.42) 93.37(1.00) 96.39(0.21) 97.40†(0.14)

SSVAE-{KL, z} 62.15(1.68) 82.67(2.16) 93.40(1.10) 96.31(0.24) 97.58(0.19)

Table 7.2: Accuracies on IMDB, AGNEWS, Yelp and DBPedia with varying amount of labeled data.
The values are averages over 5 runs with standard deviations between parentheses. The best score for
each dataset and each amount of labeled data is given in bold. Each semi-supervised objective that scores
above (resp. below) SSVAE with p-value<0.05 is marked with ∗ (resp. †)

find 4 statistically significant differences between SSVAE and its variants: 3 in favor of
one of our Simplified SSVAEs, and 1 in favor of the standard SSVAE.

Out-of-domain experiments The sentiment analysis tasks we use for these experi-
ments take place in different domains (restaurant reviews for Yelp, and movie reviews
for IMDB). Using models trained for each domain (with 100% of the data), we measure
performance on the other domain to see whether the changes we study have an effect on
out-of-domain generalization. In Table 7.3, we compare the out-of-domain performances of
each of the objectives to that of the baseline that doesn’t use unlabeled data (Supervised).

Dataset Supervised SSVAE SSVAE-{KL} SSVAE-{z} SSVAE-{KL, z}

IMDB−→Yelp 59.07(1.19) 61.78(6.03) 68.67+(4.85) 71.30+(7.67) 64.69+(3.84)
Yelp−→IMDB 66.17(2.62) 69.54(2.49) 66.67(3.26) 65.15(2.31) 66.13(3.82)

Table 7.3: Out-of-domain Accuracies between IMDB and Yelp for the different objectives. The best
objective for each out-of-domain inference direction is given in bold. The scores displaying statistically
significant improvement compared to the score of the supervised objective are marked with +

The table shows no statistically significant gains from using unlabeled Yelp training
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data for inference on IMDB. This is to be expected as reviews from Yelp are drastically
shorter than those from IMDB (cf. Table 7.1). However, for out-of-domain inference in the
opposite direction, all the semi-supervised objectives except the standard SSVAE show
statistically significant gains. Removing the KL-divergence to accumulate more informa-
tion in y, and removing z to have conditional generation exclusively rely on y seem to be
effective to help generalization beyond the original domain of the task.

Speeding up the learning process By removing the KL-divergence and the com-
ponents associated with z, an improvement on the speed of the learning process is to be
expected. This improvement is highly dependent on the model and on the implementation
at hand. As an example, we measure the average speed of an optimization iteration for
each dataset, and each version of SSVAE. In Table 7.4, the speed of each objective is dis-
played proportionally to the speed of standard SSVAEs. The calculations associated with
the KL-divergence do not seem to slow down the iterations. However, removing z and its
associated components consistently cuts out a considerable proportion of the duration of
optimization steps. This proportion ranges from 14% (DBPedia) to 26%(AGNEWS).

Dataset SSVAE-{KL} SSVAE-{z} SSVAE-{KL, z}

AGNEWS 0.911(0.73) 0.742(0.65) 0.742(0.81)
DBPedia 1.03(0.56) 0.861(0.61) 0.867(0.56)
IMDB 1.018(0.25) 0.822(0.25) 0.816(0.25)
Yelp 0.986(1.52) 0.819(1.39) 0.819(1.52)

Table 7.4: Training durations for each objective relative to standard SSVAE, averaged over 200 iterations.
Standard deviations are given between parentheses. Lowest duration for each dataset is given in bold.

7.3 Related Works

After the pioneering work of Kingma et al. [2014], SSVAEs were extended to tasks such
as morphological inflections [Wolf-Sonkin et al., 2018], controllable speech synthesis [Habib
et al., 2019], parsing [Corro and Titov, 2019], sequential labeling [Chen et al., 2018a]
among many others. VAE internals have also been tweaked in various manners to improve
the learning performance. For instance, Gururangan et al. [2020] introduce a low resource
pretraining scheme to improve transfer with VAEs, while Zhang et al. [2019a] propose to
use the deterministic ancestor of a latent variable to perform classification, and constrain
it with an adversarial term to have it abide by the values of the random latent variable.

While this chapter is dedicated to the theoretical soundness and the practical advan-
tages of two simplifications to the SSVAE framework for text classifications, it could be
extendend to other tasks involving text generation as the unsupervised VAE objective.
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For instance, the work of Corro and Titov [2019] shows that semi-supervised dependency
parsing scores higher with both the changes we study.

7.4 Conclusion

Starting from the observation that SSVAEs can be viewed as the combination of a
supervised learning signal with an unsupervised conditional generation learning signal,
we show that this framework needs neither to include a KL-divergence nor an unobserved
latent variable (z) when dealing with text classification (§ 7.1). We subsequently perform
experimental comparisons between standard SSVAEs and simplified SSVAEs that indicate
that our simplifications show no harm to performance both for in-domain classification
and out-of-domain classification (§ 7.2).

Our changes provide a number of practical advantages. First, removing the KL-divergence
frees practitioners from choosing priors for the variables they use, and allows information
to flow freely into these variables. Second, removing the latent variable z from the compu-
tational graph speeds up computation and shrinks the size of the network. Despite their
popularity, VAEs are often tedious to train for NLP tasks. In that regard, our simplifica-
tions should facilitate their usage in future works.

The inductive bias used to obtain an interpretable latent variable in this chapter is
a supervised learning signal that trains y to abide by a certain label. Although semi-
supervised learning minimizes the need for labels, it still requires annotated data. As
discussed in 4.3, inductive bias comes in various forms, some of which require no supervised
learning signal and only rely on structural patterns shared by the model and the data (cf.
HoloGAN’s example discussed in the same section). The following chapters explore these
types of inductive bias where models are built to induce understandable concepts in their
latent representations without labeled data.
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Chapter 8
Towards Unsupervised Content Disentanglement in
Sentence Representations via Syntactic Roles

This chapter presents our first contribution on unsupervised disentanglement of sen-
tence representations, i.e. the process of separating information in neural representations
of sentences along understandable axes without annotated data. As discussed in § 4.5,
disentanglement in NLP has been mostly performed to separate the semantics (or con-
tent) in a sentence from characteristics such as style and structure in order to generate
paraphrases [Chen et al., 2019a, Bao et al., 2019, John et al., 2020, Huang and Chang,
2021b, Huang et al., 2021b]. We show in this chapter that the information in the con-
tent itself can be separated with a VAE-based model, and that this separation can be
accomplished without supervision or input syntactic information. The axes along which
we demonstrate content separation are the lexical realizations of core syntactic roles. As
explained in § 6.2, some syntactic roles, such as subjects and direct objects, are said to be
core because they strongly relate to the predicate-argument structure of sentences, which
makes them compelling axes to separate information in sentences. In order to study this
separation, we present a framework including a model designed to disentangle information
from the realizations of different core syntactic roles and an evaluation protocol aimed at
measuring this disentanglement.

The model we introduce is an Attention-Driven VAE (ADVAE), which we train on raw
text from the Stanford Natural Language Inference (SNLI) dataset [Schmidt et al., 2019],
a dataset where sentences exhibit low syntactic variation. It draws its inspiration from
attention-based Machine Translation models [Bahdanau et al., 2015, Luong et al., 2015].
Such models translate sentences between languages with different underlying structures
and can be inspected to show a coherent alignment between spans from both languages, as
shown in § 5.1. Our ADVAE uses Transformers [Vaswani et al., 2017], an attention-based
architecture, to map sentences from a language to a fixed number of independent latent
variables, then map these variables back to the same sentences. Although ADVAE could
be used to study other attributes, we motivate it (§ 8.2.1) and therefore study it for the
alignment of syntactic roles with latent variables.
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Evaluating disentanglement with regard to spans is challenging. After training the
model and only for evaluation, we use linguistic information (from an off-the-shelf de-
pendency parser) to first extract syntactic roles from sentences, and then study their
relation to latent variables. To study this relation on the ADVAE decoder, we repeatedly
i) generate a sentence from a sampled latent vector ii) perturb this latent vector at a
specific location iii) generate a sentence from this new vector and observe the difference.
On the encoder side, we study the attention values to see whether each latent variable
is focused on a particular syntactic role in input sentences. The latter procedure is only
possible through the way our ADVAE uses attention to produce latent variables. To the
best of our knowledge, we are the first to use this transparency mechanism to obtain
quantitative results for a latent variable model.

We first justify our focus on syntactic roles in § 8.1, then we go over our contribution,
which is threefold: i) We introduce the ADVAE, a model that is designed for unsupervised
disentanglement of syntactic roles, and that enables analyzing the interaction between
latent variables and observations through the values of attention (§ 8.2), ii) We design an
experimental protocol for the challenging assessment of disentanglement over realizations
of syntactic roles, based on perturbations on the decoder side and attention on the encoder
side (§ 8.3), iii) Our empirical results show that our architecture disentangles syntactic
roles better than standard sequence VAEs and Transformer VAEs and that it is capable
of controlling realizations of syntactic roles separately during generation when trained on
a dataset with regularly structured sentences (§ 8.4.1). To better characterize the limits
of our model, we also provide results for hierarchical version of ADVAE(§ 8.4.2), and for
our standard ADVAE when trained on Yelp, a dataset with more challenging syntactic
variability (§ 8.4.3).

8.1 Syntactic Roles as Targets for Unsupervised Disentanglement

As presented in § 6.2, dependency parsing yields a tree, where edges are labeled with
syntactic roles (or relations or functions) such as nominal subject (nsubj ). The lexical
realizations of these syntactic functions are textual spans and correspond to syntactic
constituents. For instance, the lexical realization of the direct object (dobj ) of the verb
holds in our example sentence displayed in Figure 8.1 is the span his nice guitar, with
guitar as head.

In our work, we focus1 on verbal roots of sentences, their nominal subjects, and their
direct or prepositional objects, i.e. core (as opposed to oblique) syntactic roles. These
syntactic roles directly relate to the predicative structure (cf. § 6.2) which is a decompo-
sition of the information in a sentence into a predicate and its arguments. With that in
mind, we hypothesize in this work that core syntactic roles could constitute principal axes
of variation for the information in sentences. Given the similarity between the way VAEs
form latent variables and PCA (cf. § 4.2), and under the hypothesis that core syntactic

1Future research that takes interest in the finer-grained disentanglement of content may simply study a larger
array of syntactic roles. Using our current system we display results including all syntactic roles in Appendix B.5.
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DT JJ NN VBZ PRP$ JJ NN
A talented musician holds his nice guitar

ROOT

nsubj

dobj

amod

det

amod

poss

ARG0 ARG1

Dependency
Parse

PoS Tags
Predicative
Structure

Figure 8.1: A sentence and its syntactic roles. The correspondence between syntactic roles and elements of
the predicative structure is highlighted with colors. ROOT is the root node of the dependency tree, nsubj
is a nominal subject, dobj is a direct object, det is a determiner, poss is a possessive determiner, and
amod is an adjectival modifier. ARG0 and ARG1 are semantic proto-roles [Bonial et al., 2012] designating
respectively the entity that performs the action (a.k.a the agent) and the entity affected by the action
(a.k.a the patient).

roles are principal axes, we expect our VAE model to separate information pertaining
to realizations of these syntactic functions without supervision, which is the goal of our
work.

8.2 Model Description

The usual method to obtain sentence representations from Transformer models uses
only a Transformer encoder either by taking an average of the token representations or
by using the representation of a special token (e.g [CLS] in BERT [Devlin et al., 2019]).
Recently, the usage of both Transformer encoders and decoders has also been explored in
order to obtain representations whether by designing classical Autoencoders [Lewis et al.,
2020, Siddhant et al., 2019, Raffel et al., 2020], or VAEs [Li et al., 2020b], where training
involves Transformer encoders and decoders but representations are obtained with only
the encoder. Our model, the ADVAE, differs from these models in that it uses both an
encoder and a decoder to produce sentence representations, similar to the way a Machine
Translation (MT) Transformers produces translations.

Producing representations with Cross-Attention has been introduced by Locatello et al.
[2020c] as part of the Slot Attention modules in the context of unsupervised object dis-
covery. However, in contrast to Locatello et al. [2020c], we simply use Cross-Attention
as it is found in Vaswani et al. [2017], i.e. without normalizing attention weights over
the query axis, or using GRUs [Cho et al., 2014b] to exchange information between the
vectorial representations. As will be shown through our experiments, this is sufficient to
disentangle syntactic roles. Concurrently to our work, Jaegle et al. [2022] also develop
a model that uses Cross-Attention to encode inputs into latent vectors and to decode
them with the intent to produce an architecture that is general enough to apply to all
input/output format. Contrary to our model, their model i) does not use Self-Attention;
ii) is not trained as a VAE, meaning it is not generative; ii) is not designed or evaluated
for disentanglement.

We explain the observation that motivates our work in § 8.2.1, we then describe in
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§ 8.2.2 the minimal changes we apply to MT Transformers, and finally, we present the
objective we use in § 8.2.3. The parallel between our model and MT Transformers is
illustrated in Figure 8.2.

s1, s2, ..., sNs

Positional
Encoding

Transformer
Encoder

t1, t2, ..., tNt−1

Positional
Encoding

Masked Self-Attention
+ Cross-attention to
align source informa-
tion with target

MLP

Transformer
Decoder

t1, t2, ..., tNt

(a) An MT Transformer

w1, w2, ..., wN

Positional
Encoding

Transformer
Encoder

e1, e2, ..., eL

Cross-attention to align
source information
with latent variable
information

MLP

Transformer
Encoder

µ1, µ2, ..., µL σ1, σ2, ..., σL

(b) Our encoder

z1, z2, ..., zL

z-Identifier

Transformer
Encoder

w1, w2, ..., wN−1

Positional
Encoding

Masked Self-Attention
+ Cross-attention to
align latent variable in-
formation with source

MLP

Transformer
Decoder

w1, w2, ..., wN

(c) Our decoder

Figure 8.2: (a) is a minimalistic representation of the functioning scheme of an MT Transformer (full
scheme can be seen in Figure 5.2).In blue, we highlight in (b) the difference between our encoder and
a source-to-target MT model, and in (c) the difference between our decoder and a target-to-source MT
model. The input at the bottom right for the Transformer Decoders in (a) and (c) is the series of previous
words for auto-regressive generation. The input to our model is a series of words w, at the bottom left of
(b), and its output is the reconstruction of these words in the same language, at the top right of (c).

8.2.1 The Intuition Behind our Model

Consider s = (si)1≤i≤Ns and t = (tj)1≤j≤Nt , two sequences of tokens forming respec-
tively a sentence in the source language and a sentence in the target language. Given s,
attention-based translation models are capable of yielding t while also providing informa-
tion about the alignment between the groups of tokens (of different sizes) in both sentences
[Bahdanau et al., 2015, Luong et al., 2015]). This evidence suggests that attention-based
architectures are capable of factoring information from groups of words according to a
source structure, and redistributing it according to a target structure.

The aim of our design is to use, as a target, a set of L independent latent variables that
will act as fixed placeholders for the information in sentences. We stress that L is fixed
and independent of the input sentence size N . Combining Transformers, an attention-
based MT model, and the VAE framework for disentanglement, our ADVAE is intended
to factor information from independent groups of words into separate latent variables. In
the following sections, we refer to this set of independent latent variables as the latent
vector z = (zl)1≤l≤L and to each zl as a latent variable.

8.2.2 Model Architecture

Inference model: This is the inference model qϕ (encoder in Fig. 8.2.b) for our latent
variables z = (zl)1≤l≤L. It differs from an MT Transformer in two ways. First it uses
as input a sentence w, and L learnable vectors (el)1≤l≤L instead of the source and target
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tokens s and t used in translation. The learnable vectors e will go through Cross-Attention
without Self-Attention. We stress that these learnable vectors are input-independent.
Second its output is not used to select a token from a vocabulary but rather passed to
a linear layer (resp. a linear layer followed by a softplus non-linearity) to yield the mean
parameters (µl)1≤l≤L (resp. the standard deviation parameters (σl)1≤l≤L) to parameterize
the diagonal Gaussian distributions (q

(l)
ϕ (zl|w))1≤l≤L.

Formally, let us define Mµ and Mσ to be linear layers that will respectively be used to
obtain the latent variables’ means and standard deviations. Given input token sequence w,
the encoder qϕ(z|w) =

∏
l qϕ(zl|w) yields parameters µl and σl to be used by the diagonal

Gaussian distribution of each of the latent variables zl as follows2:

z̃ = Dec(e; Enc(w))

∀ l s.t. 1 ≤ l ≤L :

µl = Mµ(z̃l), σl = SoftPlus(Mσ(z̃l))

zl ∼ N (µl;σl) (8.1)

The distribution of the whole latent vector is simply the product of Gaussians
qϕ(z1, . . . , zL|s) =

∏L
l q

(l)
ϕ (zl|w).

Generation model: Our generation model consists of an autoregressive decoder
(Fig. 8.2.c) pθ(w|z1, . . . , zL) =

∏N
i pθ(wi|w<i, z1, . . . , zL) where w<i is the series of to-

kens preceding wi, and a prior assuming independent standard Gaussian variables, i.e.
p(z1, . . . , zL) =

∏L
l p(zl). Each latent variable zl is concatenated with an associated learn-

able vector dl (z-Identifier in Fig. 8.2.c) instead of going through positional encoding.
From there on, the latent variables are used like source tokens in an MT Transformer.

For autoregressive decoding, Vaswani et al. [2017] define a version of Dec we call Dec.
This version uses Masked Self-Attention (Eq. 5.16 from Section 5.2) so that each word
only queries information from the previously generated words. Even though Dec yields a
sequence of length equal to that of the sentence w, in what follows, we consider its output
to be only the last element of the sequence in order to express auto-regressive generation
in a clear manner.

Given the above, Cross-Attention is used by the ADVAE decoder to dispatch informa-
tion from the source latent variable samples to the target generated sequence. Accordingly,
using a beginning-of-sentence token w0, pθ(w|z) =

∏
i pθ(wi|w<i, z) yields probabilities for

the categorical distribution of the generated tokens w by decoding latent variables z con-

2The Dec and Enc modules used here were defined in § 5.2. To simplify equations, we omit word embedding
look-up tables and positional encodings.
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catenated with their embeddings d:

y = Cat(d; z)

∀ i s.t. 1 ≤ i ≤ |w| :
w̃i = Dec(w0, . . . , wi−1; Enc(y))

wi ∼ Categorical(softmax(Mw(w̃i)))

8.2.3 Optimization Objective

We train our ADVAE using the β-VAE [Higgins et al., 2017] objective discussed in
§ 4.1:

log pθ(w) ≥ E(z)∼qϕ(z|w) [log pθ(w|z)]− βKL[qϕ(z|w)||p(z)] (8.2)

In Eq. 8.2, w is a sample from our dataset, z is our latent vector and the distributions
pθ(w) =

∫
pθ(w|z)p(z)dz and qϕ(z|w) are respectively the generation model and the in-

ference model. We use a standard Gaussian distribution as prior p(z) and a diagonal
Gaussian distribution as the approximate inference distribution qϕ(z|w). The weight β is
used (as in Chen et al., 2018c, Xu et al., 2020b, Li et al., 2020c) to control disentangle-
ment, but also to find a balance between the expressiveness of latent variables and the
generation quality.

8.3 Evaluation Protocol

In order to quantify disentanglement, we first measure the interaction between latent
variables and syntactic roles. To do so, we extract core syntactic roles from sentences
according to the procedure we describe in § 8.3.1. Subsequently, for the ADVAE decoder,
we repeatedly perturb latent variables and measure their influence on the realizations
of the syntactic roles in generated sentences (§ 8.3.2). For the ADVAE encoder, we use
attention to determine the syntactic role that participates most in producing the value of
each latent variable (§ 8.3.3).

Given these metrics, we measure disentanglement taking inspiration from MIG in
§ 8.3.4. Recall from § 4.4 that MIG consists in measuring the difference between the
first and second latent variables with the highest mutual information with regard to a
target factor. It is intended to quantify the extent to which a target factor is concentrated
in a single variable. This metric assumes knowledge of the underlying distribution of the
target information in the dataset.However, there is no straightforward or agreed-upon way
to set this distribution for text spans, and therefore to calculate MIG in our case. As a
workaround, we use the influence metrics defined in § 8.3.2 and § 8.3.3 as a replacement
for mutual information to quantify disentanglement.
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8.3.1 Syntactic Role Extraction

We use the Spacy3 dependency parser [Honnibal and Montani, 2017] trained on
Ontonotes5 [Weischedel et al., 2013]. For each sentence the realization of verb is the root
of the dependency tree if its POS tag is VERB. Realizations of subj (subject), dobj (direct
object), and pobj (prepositional object) are spans corresponding to subtrees whose roots
are labelled resp. nsubj, dobj, and pobj and which are direct children4 of the verbal root.

A realization of a syntactic role in R = {verb, subj, dobj, pobj} is empty if no node in
the dependency tree satisfies its extraction condition.5

8.3.2 Latent Variable Influence on Decoder

Intuitively, we repeatedly compare the text generated from a sampled latent vector to
the text generated using the same vector where only one latent variable is resampled.
Thus we can isolate the effect of each latent variable on output text and gather statistics.

More precisely, we sample T dec latent vectors (z(j))1≤j≤T dec = (z
(j)
l )1≤j≤T dec,1≤l≤L. Then

for each zj, and for each l we create an altered version z̃(jl) = (z̃
(jl)
l′ )1≤l′≤L where we

resample only the lth latent variable (i.e. ∀l′ ̸= l, z̃
(jl)
l′ = z

(j)
l′ ).

Generating the corresponding sentences6 with pθ(w|z) yields a list of original sentences
(w(j))1≤j≤T dec , and a matrix of sentences displaying the effect of modifying each latent
variable (w̃(jl))1≤j≤T dec,1≤l≤L. For each syntactic role r ∈ R, we denote the realization
extracted from a sentence w with ρr(w).

To measure the influence of a variable zl on the realization of a syntactic role r, denoted
Γdec
rl , we estimate the probability that a change in this latent variable incurs a change in

the span corresponding to the syntactic role. We first discard, for the influence on a role
r, sentence pairs (w(j), w̃(jl)) where one the syntactic role is not realized in one of the
sentences7 , because the presence of a syntactic role is a property of its parent word, (e.g.
the presence or absence of a dobj is controlled by the transitivity of the verb) hence not
directly connected to the representation of the role r itself. As they are out of the scope of
our chapter, we report measures of these structural changes (diathesis) in Appendix B.1,
and leave their extensive study to future works. We denote the remaining number of
samples T ′dec

rl .
In the following, we use operator 1{.}, which is equal to 1 when the boolean expression

it contains is true and to 0 when it is false. This process yields a matrix Γdec of shape
(|R|, L) which summarizes interactions in the decoder between syntactic roles and latent

3https://spacy.io/models/en#en_core_web_sm
4pobj syntactic roles are taken to be the direct descendants of a preposition (prep) that is directly underneath

the root.
5Examples of syntactic role extractions can be found in Appendix B.2.
6Throughout this chapter, we use greedy sampling, i.e. sampling the highest-probability word at each step as

explained in § 2.3, for all generated sentences.
7In the original version of this work published in Felhi et al. [2021b], we discarded sentence pairs where a

syntactic role appears or disappears. This causes sentence pairs that do not contain realizations of the syntactic
role to count as sentences where the realization of the syntactic role did not change. This leads to some variations
in the decoder-specific measures compared to the original publication. However, these variations do not alter the
conclusions drawn from empirical results.
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variables:

Γdec
rl =

T ′dec
rl∑
j=1

1{ρr(w
(j)) ̸= ρr(w̃

(jl))}
T ′dec
rl

(8.3)

8.3.3 Encoder Influence on Latent Variables

We compute this on a held out set of size T enc of sentences (w(j)
i )1≤j≤T enc,1≤i≤N

w(j)
. Each

sentence w(j) of size Nw(j) generates an attention matrix (a
(j)
li )1≤l≤L,1≤i≤N

w(j)
. Attention

values are available in the Transformer encoder with Cross-Attention computing the infer-
ence model8, and quantify the degree to which each latent variable embedding eenczi

draws
information from each token wj to form the value of zi.

For the encoder, we consider the influence of a syntactic role on a latent variable to be
the probability for the attention values of the latent variable to reach their maximum on
the index of a token in that syntactic role’s realization. The indices of tokens belonging to
a syntactic role r in a sentence w(j) are denoted argr(w

(j)). For each syntactic role r and
sentence w(j), we discard inputs where this syntactic role cannot be found, and denote the
remaining number of samples T ′enc

r . The resulting measure of influence of syntactic role r

on variable zl is denoted Γenc
rl . The whole process yields matrix Γenc of shape (|R|, L) which

summarizes interactions in the encoder between syntactic roles and latent variables:

Γenc
rl =

T ′enc
r∑
j=1

1{argmax
l

(a
(j)
li ) ∈ argr(w

(j))}

T ′enc
r

(8.4)

8.3.4 Disentanglement Metrics

For Γ∗ (either Γdec or Γenc) each line corresponds to a syntactic role r ∈ R. The disen-
tanglement metric for role r is the following:

∆Γ∗
r = Γ∗

rm1
− Γ∗

rm2
(8.5)

s.t. m1 = argmax
1≤l≤L

Γ∗
rl, m2 = argmax

1≤l≤L,l ̸=m1
Γ∗
rl (8.6)

We calculate total disentanglement scores for syntactic roles using Γdec, Γenc as follows:

Ddec =
∑
r∈R

∆Γdec
r , Denc =

∑
r∈R

∆Γenc
r (8.7)

In summary, the more each syntactic role’s information is concentrated in a single
variable, the higher the values of Ddec and Denc. However, similar to MIG, these metrics
do not say whether variables capturing our concepts of interest are distinct. Therefore,

8For simplicity, attention values are averaged over attention heads and transformer layers. This also allows
drawing conclusions with regard to the tendency of the whole attention network, and not just particular specialized
heads as was done in Clark et al. [2019]. For the sake of completeness, we display per-layer results in Appendix B.8.
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we also report the number of distinct variables that capture the most each syntactic role
(i.e the number of distinct values of m1 in Eq. 8.5 when looping over r). This is referred
to as NΓenc for the encoder and NΓdec for the decoder.

8.4 Experiments

8.4.1 Experimenting on Regularly Structured Sentences

Dataset Previous unsupervised disentanglement works [Higgins et al., 2017, Kim and
Mnih, 2018, Li et al., 2020c] tend to use relatively homogeneous and low complexity data.
The data has low complexity if it varies along clear factors which correspond to what the
model aims to disentangle. Similarly, we use a dataset where samples exhibit low variance
in terms of syntactic structure9 while providing a high diversity of realizations for the
syntactic roles composing the sentences, which is an adequate test-bed for unsupervised
disentanglement of syntactic roles’ realizations. This dataset is the plain text from the
SNLI dataset [Bowman et al., 2015] extracted10 by Schmidt et al. [2019]. The SNLI data
is a collection of premises (on average 8.92±2.66 tokens long) made for Natural Language
Inference. We use 90K samples as a training set, 5K for development, and 5K as a test
set.

Setup Our objective is to check whether the architecture of our ADVAE induces bet-
ter syntactic role disentanglement. We compare it to standard Sequence VAEs [Bowman
et al., 2016] and to a Transformer-based baseline that doesn’t use Cross-Attention. Instead
of Cross-Attention, this second baseline uses mean-pooling over the output of a Trans-
former encoder for encoding. For decoding, it uses the latent variable as a first token in a
Transformer decoder, as is done for conditional generation with GPT-2 [Santhanam and
Shaikh, 2019]. These comparisons are performed using the same β-VAE objectives, and
the decoder disentanglement scores as metrics. Training specifics and hyper-parameter
settings are detailed in Appendix B.3. For each of the two baselines, the latent variables
we vary during the decoder’s evaluation are the mono-dimensional components of its la-
tent vector. It is easier to pack information about the realizations of multiple syntactic
roles into Dz dimensions than into a single dimension. Consequently, the single dimen-
sions we study for the baselines should be at an advantage to separate information into
different variables.

Scoring disentanglement on the encoder side will not be possible for the baselines above
as it requires attention values. To establish that our model effectively tracks syntactic
roles, we compare it to a third baseline that locates each syntactic role through its me-
dian position across the dataset. This baseline is fairly strong on short sentences from a
language where word order is rigid (i.e a configurational language) such as English. We
refer to this Position Baseline as PB.

9Statistics regarding syntactic diversity for SNLI are provided in section 8.4.3 with a comparison to a more
syntactically diverse dataset.

10github.com/schmiflo/crf-generation/blob/master/generated-text/train
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The scores are given for different values of β (Eq. 8.2). Raising β lowers the expressive-
ness of latent variables, but yields better disentanglement [Higgins et al., 2017]. Following
Xu et al. [2020b], we set β to low values to avoid posterior collapse. In our case, we
observed that the models do not collapse for β < 0.5. Therefore, we display results for
β ∈ {0.3, 0.4}. We stop at 0.3 as lower values for β result in poorer generation quality. For
our model we report performance for instances with L = 4 (ours-4 ) and L = 8 (ours-8 ).

Results The global disentanglement metrics are reported in Table 8.1.11

Table 8.1: Disentanglement quantitative results for the encoder (enc) and the decoder (dec). NΓ indicates
the number of separated syntactic roles, and D measures concentration in a single variable. Values are
averaged over 5 experiments. The standard deviation is between parentheses. PB refers to the Position
Baseline.

Model β Denc ↑ NΓenc ↑ Ddec ↑ NΓdec ↑

Sequence VAE
0.3 - - 0.43(0.18) 1.70(0.48)
0.4 - - 0.91(0.32) 1.40(0.52)

Transformer VAE
0.3 - - 0.08(0.04) 3.00(0.71)
0.4 - - 0.11(0.05) 3.80(0.45)

PB - 0.98 (-) 3.00(-) - -

ours-4
0.3 1.48(0.15) 3.00(0.00) 0.78(0.10) 3.00(0.00)
0.4 1.43(0.79) 3.00(0.00) 0.84(0.10) 3.00(0.00)

ours-8
0.3 1.34(0.18) 3.80(0.45) 0.62(0.17) 3.20(0.45)
0.4 1.75(0.47) 2.80(0.45) 0.80(0.11) 3.00(0.00)
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Figure 8.3: Encoder influence heatmap (Γenc).
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On the decoder side, the Sequence VAE exhibits disentanglement scores in the range of
those reported for our model for β = 0.3, and higher for β = 0.4. However, NΓdec shows
that it controls the realizations of the 4 syntactic roles with less than 2 latent variables on
average, meaning that it struggles to factor the realizations of different syntactic roles in
different latent variables. The higher score shown for β = 0.4 is accompanied by an even

11Fine-grained scores are given in Appendix B.4.
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Table 8.2: Resampling a specific latent variable for a sentence. The ID column is an identifier for the
example.

ID Original sentence Resampled sub-
ject

Resampled verb Resampled dob-
j/pobj

1 people are sitting
on the beach

a young man is
sitting on the
beach

people are play-
ing in the beach

people are sitting
on a bench

2 a man and
woman are sit-
ting on a couch

a man is sitting
on a park bench

a man and
woman are run-
ning on a grassy
field

the man and
woman are on a
beach

3 a man is playing
with his dog

a boy is playing in
the snow

a man is selling
vegetables

a man is playing
the game with his
goal .

lower tendency to separate the information from different syntactic roles (i.e. lower NΓdec).
The Transformer VAE baseline assigns different latent variables to different syntactic roles
(high NΓdec), but suffers from very low specialization for these latent variables (low Ddec).
In contrast, our model is consistently able to separate 3 out of 4 syntactic roles, and a
higher β raises its Ddec. As ours-8 has more latent variables, this encourages the model to
further split the information in each syntactic role between more latent variables12. The
fact that ADVAEs perform better than both Sequence VAEs and classical Transformer
VAEs shows that its disentanglement capabilities are due to the usage of Cross-Attention
to obtain latent variables, and not only to the usage of Transformers. On the encoding
side, our models consistently score above the baseline, showing that our latent variables
actively follow the syntactic roles.

In Figures 8.3 and 8.4, we display the influence matrices Γenc and Γdec for an instance of
our ADVAE with L = 4 as heatmaps. The vertical axes correspond to the latent variables.
As can be seen, our model successfully associates latent variables to verbs and subjects
but chooses not to separate direct objects and prepositional objects into different latent
variables. Upon further inspection of the same heatmaps for the Sequence VAE baseline,
it appears that it most often uses a single latent variable for verb and subj, and another
for dobj and pobj.

One can also notice in Figures 8.3 and 8.4, that the encoder matrix is sparser than
the decoder matrix (which is consistent with the higher encoder disentanglement scores
in Table 8.1). This is to be expected since the decoder pθ(w|z) adapts the realizations of
syntactic roles to each other after they are sampled separately from p(z). The reason for
this is that the language modeling objective requires some coherence between syntactic
roles (conjugating verbs with subjects, changing objects that are semantically inadequate
for a verb, etc). This co-adaptation, contradicts the independence of our latent variables.
It is further discussed in the following paragraph.

12Results for a larger grid of L values are reported in Appendix B.9.
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Table 8.3: Swapping the value of a specific latent variable between two sentences. The SSR (Swapped
Syntactic Role) column indicates the syntactic role that has been swapped.

ID Sentence 1 Sentence 2 SSR Swapped Sen-
tence 1

Swapped Sen-
tence 2

1 a woman is
talking on a
train

people are
sitting on the
beach

subj people are talk-
ing on a train

a woman is
sitting on the
beach

2 people are
sitting on the
beach

a woman is
talking on a
train

verb people are talk-
ing on a beach

a woman is
standing on a
train

3 a woman is
talking on a
train

a man is play-
ing with his
dog

dobj/
pobj

a man is play-
ing the guitar
with a goal

a woman is per-
forming a trick

Changing the realizations of syntactic roles Here, we display a few qualitative
examples of how the realizations of syntactic roles can be separately changed using an
instance of our ADVAE.

As a first example, we generate a sentence from a random latent vector, then resample
for each syntactic role the corresponding disentangled latent variable to observe the change
on the subsequently generated altered sentence. The results of this manipulation are in
Table 8.213. As can be seen, some examples exhibit changes that only affect the target
syntactic role (example 1). However, the model often produces co-adaptations that go past
the target syntactic role either for semantic soundness (example 2, resampled verb adapts
the object), or simply for lack of generalization from the SNLI data used for training.

A second example we display is a swap of syntactic role realizations between sentences.
A few examples are given in Table 8.3. Similar to Table 8.2, the model often yields the
expected result. Co-adaptation is best seen here, as taking a syntactic role to a sentence
with which it is incompatible results in unexpected changes (example 3).

The co-adaptation seen here is caused by the independence between our latent vari-
ables which leaves it to the the decoder pθ(w|z) to correct the incoherence between in-
dependently sampled syntactic role realizations14. Using structured latent variables to
learn relations between syntactic roles seems to be the natural solution to this problem.
Accordingly, the next section describes an investigation of a hierarchical version of the
ADVAE.

8.4.2 A Hierarchical Version of our ADVAE

As we stated, our ADVAE aims to factor sentences into independent latent variables.
However, given the dependency structure of sentences, realizations of syntactic roles are
known to be interdependent to some degree in general. Therefore one may think that
a structured latent variable model would be better suited to model the realizations of
syntactic roles. In fact, such a model could absorb the language modeling co-adaptation

13More Examples are available in Appendix B.6
14We stress, here, that the co-adaptation we describe is different from entanglement. In fact, entanglement

happens at the representation-level while co-adaptation can re-scramble, with the decoder, information that was
separated in the representations.
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Figure 8.5: The conditional inference module linking each of the hierarchy levels in our prior with the
next level pθ(zm|zm−1). This module treats latent variables from previous layers as they are treated in
our original decoder, and generates parameters for latent variables in subsequent hierarchy levels as it is
done in our encoder.

between syntactic roles. For instance, instead of sampling an object and a verb from
p(z) that are inadequate, then co-adapting them through pθ(w|z), a structured pθ(z)

could produce an adequate object for the verb. For this experiment, rather than using an
independent prior p(z), we use a structured prior pθ(z) = p(z0)

∏M
m=1 pθ(z

m|zm−1) where
p(z0) is a standard Gaussian, and all subsequent M−1 hierarchy levels are parameterized
by learned conditional diagonal Gaussians. The model used for each pθ(z

m|zm−1) is shown
in Figure 8.5.

We display the results for M = 2 and M = 3 in Table 8.4. For both models, we set L

to 4.

Table 8.4: Disentanglement results for structured latent variable models on SNLI.

Depth β Denc NΓenc Ddec NΓdec

M = 2
0.3 0.79(0.36) 3.60(0.55) 0.69(0.22) 2.60(0.55)
0.4 0.42(0.23) 2.80(0.45) 0.61(0.08) 2.40(0.55)

M = 3
0.3 0.90(0.25) 3.14(0.69) 0.60(0.18) 2.80(0.45)
0.4 0.32(0.38) 2.75(0.50) 0.59(0.20) 3.20(0.84)

The results show lower mean disentanglement scores, and high standard deviations
compared to the standard version of our ADVAE. By inspecting individual training in-
stances of this hierarchical model, we found that some instances achieve disentanglement
with close scores to those of the standard ADVAE, while others completely fail, which
results in the high variances observed in Table 8.4. Unfortunately, hierarchical latent vari-
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able models are notoriously difficult to train [Zhao et al., 2017b]. Our independent latent
variable model is therefore preferable to the structured one due to these empirical re-
sults. More advanced hierarchical latent variable training techniques (such as Progressive
Learning and Disentanglement [Li et al., 2020c]) may, however, provide better results. We
plan to investigate this in our future works (cf. § 10.2).

8.4.3 Experimenting with the Yelp Dataset

As this is a first step in this research direction, we conducted this study on a dataset
of relatively regular sentences. In this section, we aim to investigate the behavior of our
ADVAE on the user-generated reviews from the Yelp dataset used in Li et al. [2018] using
the same procedure we used for SNLI.

Contrasting SNLI to YELP: The length of sentences from this dataset (8.88 ±
3.64) is similar to the length of sentences from the SNLI dataset. However, contrary to
SNLI, sentences presenting the regular Subject-Verb-Object (SVO) structure are much
less common. To emphasize this difference, we label tokens in each dataset by the path
that leads to them in the dependency tree and calculate the frequency (i.e. chances it
appears in a sentence) of each one of such labels in SNLI and Yelp datasets. For example,
in the sentence "The man plays Football", The is labeled with >nsubj>det, meaning it is
a determinant to a nominal subject beneath the root15 of the sentence. In Figure 8.6, we
display the top 30 labels in each dataset ranked by their frequency.

As can be seen in the figure, the frequency of core syntactic roles in SNLI is markedly
higher than that of other remaining syntactic roles. Yelp, however, displays very different
statistics where the core syntactic roles are much more rare, and where distributions of
syntactic roles is much flatter, making it more difficult to learn syntactic regularities.

Results Similar to the experiments in the main body of the paper, we display the
disentanglement scores in Table 8.5, and the influence metrics of one of the instances of
our model as heatmaps in Figures 8.7 and 8.8.

Although the results show similar trends, they are weaker than what we obtained for
SNLI. Given the difference between SNLI and Yelp (also discussed in Appendix B.2) there
are two clear reasons for this decrease. The first is that Yelp is a dataset where it is harder
to locate the syntactic roles. This is illustrated by the fact that the PB baseline obtains a
much lower score. The second is that our syntactic role extraction heuristics are tailored
for regular sentences with verbal roots, which subjects the evaluation metrics on Yelp to
a considerable amount of noise. Nevertheless, the comparisons between a Sequence VAE,
a Transformer VAE, an ADVAE, and PB retain the same conclusions, but with lower
margins and some overlapping standard deviations.

Through manual inspection of examples, we observed that the occurrence of various
syntactic phenomena (enumerations, sentences with nominal roots, presence of coordinat-
ing conjunctions, etc) was controlled by different latent variables. This calls for a model

15The root is ommitted in these labels for brevity.
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Figure 8.6: Top 30 dependency paths for each of SNLI (top, blue bars) and Yelp (bottom, red bars)
datasets. In the top figure, the frequency of each dependency path among SNLI’s top 30 is plotted in red
with low opacity for Yelp to ease comparison. Analogously, low opacity blue bars are displayed in the
bottom figure for SNLI’s frequencies. The columns with an empty label corresponds to the root (empty)
dependency path.

that provide ways to separate structural information, i.e. information pertaining to varia-
tions in syntax, from content-related information, i.e. information pertaining to variations
in the lexical realization of the observed syntactic functions.
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Table 8.5: Disentanglement results for the Yelp dataset

Model β Denc NΓenc Ddec NΓdec

Sequence VAE
0.3 - - 0.49(0.04) 2.00(0.00)
0.4 - - 0.49(0.06) 1.8(0.84)

Transformer VAE
0.3 - - 0.11(0.02) 2.80(0.45)
0.4 - - 0.11(0.05) 3.00(0.71)

PB - 0.33(-) 2.00(-) - -

ours-4
0.3 0.48(0.07) 2.00(0.00) 0.23(0.09) 2.20(0.45)
0.4 0.54(0.04) 3.00(0.00) 0.22(0.08) 2.20(0.45)

ours-8
0.3 0.44(0.04) 3.80(0.45) 0.17(0.09) 3.00(0.00)
0.4 0.57(0.26) 3.40(0.55) 0.25(0.10) 2.80(0.84)
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Figure 8.7: Encoder influence heatmap for
Yelp(Γenc).
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8.5 Related Works

Linguistic information in neural models Accounting for linguistic information so
as to design neural networks with beneficial inductive bias has been a successful trend in
NLP system design during recent years. For instance, successful attempts at capturing
linguistic information with neural models helped improve grammar induction (RNNG;
Dyer et al., 2016), constituency parsing and language modeling (ON-LSTM; Shen et al.,
2019, ONLSTM-SYD; Du et al., 2020), as well as controllable generation (SIVAE; Zhang
et al., 2019b). The evaluation protocol we present also relates our work to research that
dives into the linguistic capabilities of neural NLP models (cf. 5.3.3). However, such studies
most often rely on structural probes [Jawahar et al., 2019a, Liu et al., 2019, Hewitt and
Manning, 2019b] to explain representations, probes which are not without issues, as shown
by Pimentel et al. [2020b]. In that regard, the generative capabilities and the attention
mechanism of our model offer an alternative to probing: analysis is performed directly on
sentences generated by the model and on internal attention values.
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CHAPTER 8. TOWARDS UNSUPERVISED CONTENT DISENTANGLEMENT IN SENTENCE
REPRESENTATIONS VIA SYNTACTIC ROLES

Disentanglement in NLP As discussed in § 4.5, the main line of work in this area
revolves around using multitask learning to separate concepts in neural representations
(e.g. style vs content John et al., 2020; syntax vs semantics Chen et al., 2019a, Bao
et al., 2019) and literature on unsupervised disentanglement in NLP remains scarce [Xu
et al., 2020b, Behjati and Henderson, 2021]. The work of Behjati and Henderson [2021]
is closest to ours as it uses Slot Attention [Locatello et al., 2020c], a Cross-Attention-
based representation technique, to induce meaningful units from character sequences.
Although developed with a different goal in mind, Perceiver IO [Jaegle et al., 2022], a
work concurrent to ours, also shares similarities with our work given that it uses Cross-
Attention to encode and decode latent vectors.

Our contribution differs from previous work in that i) syntactic parses are not used as
learning signals but as a way to interpret our model, and ii) Cross-Attention enables our
model to link a fixed number of latent variables to text spans.

8.6 Conclusion

The work presented in this chapter is the first part of our contribution on unsupervised
disentanglement of sentence representations. Specifically, we study the hypothesis that
lexical realizations of core syntactic roles can be disentangled without supervision (§ 8.1).
Our framework includes: i) our model, the ADVAE (§ 8.2), which maps sentences to
vectorial latent variables and allows for the use of attention to study the interaction
between latent variables and spans; ii) an evaluation protocol to quantify disentanglement
between latent variables and spans both in the encoder and in the decoder (§ 8.3).

Using our evaluation protocol we show in Section 8.4.1 that, when trained on a dataset of
regularly structured sentences, ADVAE learns representations of sentences which exhibit
a significant separation in the realizations of core syntactic functions without supervision.
We also show that it separates syntactic roles to more latent variables than standard
Sequence VAEs and with better concentration than standard Transformer VAEs.

This study constitutes a first step in a promising process towards unsupervised explain-
able modeling and fine-grained control over the lexical realizations of core syntactic roles
in sentences. Although we focused on syntactic roles realizations, this architecture as well
as the evaluation method are generic and could be applied to other tasks. For example, the
architecture could be used at the document level (e.g. disentangling discourse relations),
while the evaluation protocol could be applied to other spans such as constituents.

The limitations of ADVAE revealed in the last sections are twofold: i) a phenomenon
we called co-adaptation where the independently sampled syntactic roles are subject to
corrections by the decoder, which hurts our disentanglement metrics; ii) a degradation of
disentanglement performance when dealing with a dataset that does not exhibit regular
syntactic structures such as Yelp (§ 8.4.3). We have shown in section 8.4.2 that simply
adding structure to our probabilistic graphical model so as to learn relations between
our latent variables is not sufficient to deal with limitation i). As for limitation ii), it is
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likely to originate from the fact that our model does not model syntactic variation. In
the next chapter, we introduce a new latent variable that models syntactic information
(again without supervision) and addresses this limitation.
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Chapter 9
Exploiting Inductive Bias in Transformers for
Unsupervised Disentanglement of Syntax and
Semantics with VAEs

This chapter is the continuation of our work on unsupervised disentanglement of sen-
tence representations. It focuses on a form of disentanglement that we discussed in Sec-
tion 4.5 and that received a lot of interest from the NLP community: the separation
between syntax and semantics in neural representations [Chen et al., 2019a,b, Bao et al.,
2019, Zhang et al., 2019b, Huang and Chang, 2021a, Huang et al., 2021a]. The interest
in this separation is mainly justified by the fact that purely semantic representations
enable better paraphrase detection, and separation between syntax and semantics in an
Seq2seq models enables paraphrase generation by changing syntax while keeping the same
semantics. Previous works perform disentanglement using paraphrase pairs as informa-
tion for semantics, and/or constituency parses as information for syntax. In general, the
dependence of models on labeled data is known to often entail high cost [Böhmová et al.,
2003, Martínez Alonso et al., 2016, Choudhary, 2018, Seddah et al., 2020], and to often
require new labels to handle problems such as concept drift (i.e. changes in the relation
between observation and label; Lu et al., 2019c) and domain adaptation (changes in the
distribution of the observations; Farahani et al., 2021).

In light of the the difficulties incurred by the use of annotated data, we propose in
this chapter an unsupervised model which directs syntax and semantics into different
neural representations without semantic or syntactic information. In the Transformer
architecture [Vaswani et al., 2017] presented in chapter 5, the attention mechanism is built
upon a query from a set Q, which pools values V through keys K. For each query, values
are selected according to their matching score computed by the similarity between their
corresponding keys and the query. Building on an analogy between the (K,V ) couple and
syntactic roles with their lexical realizations (explicited in § 9.1.2) we present QKVAE1,
a Transformer-based VAE.

To build our model, we modify ADVAE, the model presented in the previous chapter.
1A contraction of the (Q,K, V ) triplet with the VAE acronym.
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Using Cross-Attention, QKVAE encodes sentences into two latent variables: zsem to infer
values for V , and zsyn to assign keys in K for values in V . These keys and values are then
used in the attention mechanism of a Transformer Decoder to generate sentences. We
show that zsyn tends to contain syntactic information, while zsem tends to represent se-
mantic information. Additionally, comparisons with a supervised model show that it needs
a considerable amount of data to outperform our model on syntactic and semantic trans-
fer metrics. Finally, we confirm the hypothesis formulated about syntactic information
hindering syntactic role disentanglement with ADVAE’s latent variables in the previous
chapter, and show that QKVAE displays better syntactic role disentanglement metrics on
the decoder side.

The contributions presented in this chapter can be summarized as follows:

• We describe QKVAE (§ 9.1), a model designed to disentangle syntactic information
from semantic information by using separate latent variables for keys and values in
Transformers attention.

• We run experiments on a dataset for English which empirically show that the two
types of latent variables have strong preferences respectively for syntax and semantic
(§ 9.2.2).

• We also show that our model is capable of transferring syntactic and semantic infor-
mation between sentences by using their respective latent variables (§ 9.2.3). More-
over, we show that our model’s ability to transfer syntax is competitive with super-
vised models when they use their full training set (more than 400k sentences), and
that a supervised model needs a fairly large amount of labeled data (more than 50k
samples) to outperform it on both semantic and syntactic transfer (§ 9.2.4).

• Looping back to syntactic role disentanglement (§ 9.3), we show that semantic latent
variables in QKVAE, when freed of the syntactic information modeled by the syn-
tactic variable, display better syntactic role disentanglement numbers on the decoder
side than ADVAE’s latent variables across 3 datasets which include datasets with
non-regular syntactic structures2.

9.1 QKVAE: Using Separate Latent Variables for Keys and Values

In this section, we describe the architecture of our model, the behavior it entails, and
how we deal with the optimization challenges it poses.

9.1.1 QKVAE Architecture

The modification we bring to ADVAE is aimed at controlling how information is selected
from the latent space with the value of a newly introduced latent variable. We call this
latent variable zsyn, and refer to the latent variables already formulated in ADVAE as

2This contribution came after the publication corresponding to this chapter [Felhi et al., 2022], and was
therefore not included in the publication.
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zsem = {zsem1 , . . . , zsemL }. zsyn is obtained with the same process as each zseml (Eq. 8.1),
i.e. by adding an additional identifier embedding es, and matrices Mµs and Mσs to obtain
its mean and standard-deviation parameters.

For the QKVAE Decoder, we modify the Transformer Decoder Dec introduced in § 5.2
into QKVDec so as to use Multi-Head Attention with separate inputs for keys and values
instead of Cross-Attention :

QKVDec(T ;SK ;SV ) = T̃DQKV , s.t. :

T̃d =

 T if d = 0, else:

F(MHA(SA(T̃d−1), SK , SV )

where DQKV is the number of layers. Recall, here, that theres a fixed number L of keys k
and values v for all sentences regardless of their length. Similar to Dec, we define QKVDec

to be the auto-regressive version of QKVDec. The QKVAE decoder yields probabilities
for the generated tokens by using this operator on values given by zsem concatenated with
embeddings d, and keys given by a linear transformation on zsyn:

v = Cat(d;zsem), k = M s(zsyn)

∀ i s.t. 1 ≤ i ≤ |w| :
w̃i =QKVDec(w0, . . . , wi−1; k; v)

wi ∼Categorical(softmax(Mw(w̃i))) (9.1)

wi

w1z1
semzsyn zL

sem

MHA

... ...

Head N
Head 1

...K1 V1 KL VL

Attention

Q

wi-1 z1 zL

CA

... ...

Head N
Head 1

...K1 V1 KL VL

Attention

Q

wi

w1 wi-1

Figure 9.1: The usage of latent variables within ADVAE’s decoder (right) and QKVAE’s decoder (left).
In contrast to ADVAE, all keys used during decoding in QKVAE come from a single latent variable that

is separate from the latent variables used to obtain values.

where M s is a linear layer.3 While ADVAE already uses Cross-Attention to encode and
decode latent variables, our model uses separate variables to obtain keys and values for
Multi-Head Attention in its decoder. To better envision the difference between QKVAE

3The output of Ms is reshaped to obtain a matrix of keys.
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and ADVAE, Figure 9.1 depicts the usage of latent variables in QKVAE and ADVAE
decoders.

9.1.2 QKVAE Behavior

v child to
wear

cloak winter

k1 nsubj root dobj ∅ −→ decoded (v, k1): A child wears a cloak.
k2 agent root nsubjpass pobj −→ decoded (v, k2): A cloak is worn, in

winter, by a child

Table 9.1: Example of interpretable values for the v and k in our model with L = 4. We display a sentence
transiting from the active form to the passive form, to illustrate how different keys arranging the same
values can lead to the same minimal semantic units being rearranged according to a different syntactic
structure. We also stress that a different set of keys may omit or bring forth an element from the values
vector (e.g. "winter" here above).

In the Multi-Head Attention of our decoder, zsyn controls keys, and zsem controls val-
ues. In other words, the value of each zseml is called to be passed to the target sequence
according to its key kl which is given by the variable zsyn. Therefore, for each query, zsyn

decides which content vector zseml participates most to the value of the generated token
at each generation step. To better get a gist of the kind of behavior intended by this con-
struction, we assume in Table 9.1 for explanatory purposes, that our decoder has one layer
and one attention head, that the value of each kl in key matrices k1 and k2 corresponds to
syntactic roles, and that each vl informs on the realization of the corresponding syntactic
role. Table 9.1 displays the resulting sentence when each of k1 and k2 are coupled with v.

In the examples in Table 9.1, the generator uses a query at each generation step to pick
a word in a manner that would comply with English syntax. Therefore, the key of each
value should inform on its role in the target structure, which justifies syntactic roles as
an adequate meaning for keys.

Although our model may stray from this possibility and formulate non-interpretable
values and keys, keys will still inform on the roles of values in the target structure, and
therefore influence the way values are injected into the target sequence. And given the
fact that our model uses multiple layers and attention heads, and the continuous nature
of keys in attention (as opposed to discrete syntactic role labels), our model performs a
multi-step and continuous version of the behavior described in Table 9.1.

Injecting values into the structure of a sentence requires the decoder to model this struc-
ture. Previous works have shown that this is well within the capabilities of Transformers.
Specifically, Hewitt and Manning [2019a] showed that Transformers embed syntactic trees
in their inner representations, Clark et al. [2019] showed that numerous attention heads
attend to specific syntactic roles, and we showed in the previous chapter that Transformer-
based VAEs can capture the realizations of syntactic roles in latent variables obtained with
Cross-Attention.
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9.1.3 Balancing the Learning of zsem and zsyn

Similar to ADVAE, we use a standard Normal distribution as a prior
p(z) = p(zsem)p(zsyn) and train QKVAE with the β-VAE objective. To avoid posterior
collapse, we follow the strategy from Li et al. [2020a] presented in § 3.6: i) We pretrain
our model as an autoencoder by setting β to 0; ii) We linearly increase β to its final value
(KL annealing; Bowman et al., 2016) and we threshold each dimension of the KL term
with a factor λ (Free-Bits strategy; Kingma et al., 2016).

In preliminary experiments with our model, we observed that it tends to encode sen-
tences using only zsem. As we use conditionally independent posteriors4 q(zsyn|w) and
q(zsem|w) for our latent variables, their KL terms can be written separately, and they can
therefore be weighted separately with different values of β. Using a lower β for zsyn as
was done by Chen et al. [2019b] 5 did not prove effective in making it informative for the
model. Alternatively, linearly annealing β for zsem before zsyn did solve the issue. This
intervention on the learning process was inspired by the work of Li et al. [2020c] which
shows that latent variables used at different parts of a generative model should be learned
at different paces.

9.2 Experiments

9.2.1 Setup

Data To compare our model to its supervised counterparts, we train it with data from
the English machine-generated paraphrase pairs dataset ParaNMT [Wieting and Gimpel,
2018]. More specifically, we use the 493K samples used by Chen et al. [2019b]6 to train their
model VGVAE. Since our model is unsupervised, we only use the reference sentences (half
the training set) to train our model. Using the development and test sets of ParaNMT,
Chen et al. [2019b] also provide a curated set of triplets formed by a target sentence
(target), a semantic source (sem_src),and a syntactic source (syn_src). The semantic
source is a paraphrase of the target sentence, while the syntactic source is selected by
finding a sentence that is syntactically close to the target (i.e. edit distance between
the sequence of PoS Tags of both sentences is low7) and semantically different from the
paraphrase (has low BLEU score with it). Contrary to paraphrases in the training set of
ParaNMT, paraphrases from this set were manually curated. These triplets are divided
into a development set of 500 samples and a test set of 800 samples. We display results
on the test set in the main body of the paper. The results on the development set, which
lead to the same conclusions, are reported in Appendix C.1.

Training details & hyper-parameters Encoders and Decoders in QKVAE are ini-
tialized with parameters from BART [Lewis et al., 2020]. After manual trial and error

4These posteriors are ADVAE encoders (Eq. 8.1).
5Although not explicitly mentioned in the paper, this is performed in their companion source code.
6https://drive.google.com/open?id=1HHDlUT_-WpedL6zNYpcN94cLwed_yyrP
7We follow Chen et al. [2019b] by using this evaluation data, although edit distance between PoS tags might

not be a good proxy for syntactic similarity.
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on the development set, we set the sizes of zsyn and zsem to 768, and L to 4. Further
Hyper-parameters are in Appendix C.2. We train 5 instances of our model and report the
average scores throughout all experiments.

Baselines We compare our system to 4 previously published models, where 2 are super-
vised and 2 are unsupervised: i) VGVAE [Chen et al., 2019b]: a VAE-based paraphrase
generation model with an LSTM architecture. This model is trained using paraphrase
pairs and PoS Tags to separate syntax and semantics into two latent variables. This sep-
aration is used to separately specify semantics and syntax to the decoder in order to
produce paraphrases; ii) SynPG [Huang and Chang, 2021a]: A paraphrase generation
Seq2Seq model based on a Transformer architecture which also separately encodes syntax
and semantics for the same purpose as VGVAE. This model is, however, trained using
only source sentences with their syntactic parses, without paraphrases; iii) Optimus [Li
et al., 2020b]: A large-scale VAE based on a fusion between BERT [Devlin et al., 2019]
and GPT-2 [Radford et al., 2019] with competitive performance on various NLP bench-
marks; iv) ADVAE: This model is QKVAE without its syntactic variable. The size of its
latent variable is set to 1536 to equal the total size of latent variables in QKVAE.

Official open-source instances8 of the 4 models above are available, which ensures ac-
curate comparisons. The off-the-shelf instances of VGVAE and SynPG are trained on
ParaNMT with GloVe9 [Pennington et al., 2014] embeddings. We fine-tune a pre-trained
Optimus on our training set following instructions from the authors. Similar to QKVAE,
we initialize ADVAE with parameters from BART [Lewis et al., 2020] and train 5 instances
of it on ParaNMT with L = 4.

9.2.2 Syntax and Semantics Separation in the Embedding Space

We first test whether zsyn and zsem respectively specialize in syntax and semantics.
A syntactic (resp. semantic) embedding should place syntactically (resp. semantically)
similar sentences close to each other in the embedding space.

Using the (target, sem_src, syn_src) triplets, we calculate for each embedding the pro-
portion of target sentences closer to sem_src than they are to syn_src in the embedding
space. For simplicity, we refer to the syntactic and semantic embeddings of all models as
zsyn and zsem. For Gaussian latent variables, we use the mean parameter as a representa-
tion (respectively the mean direction parameter from the von Mises-Fisher distribution of
the semantic variable of VGVAE). We use an Euclidean distance for Gaussian variables
and a cosine distance for the others.

Since Optimus and ADVAE do not have separate embeddings for syntax and semantics
i) We take the whole embedding for Optimus; ii)For ADVAE, we measure the above
proportion on the development set for each latent variable zl (Eq. 8.1). Then, we choose

8VGVAE: github.com/mingdachen/syntactic-template-generation/; SynPG: github.com/uclanlp/synpg; Opti-
mus: github.com/ChunyuanLI/Optimus; ADVAE: github.com/ghazi-f/ADVAE

9Gains could be observed with better embeddings for supervised models, but we stick to the original imple-
mentations.
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zsem ↑ zsyn ↓
Supervised Models

VGVAE 99.9 14.8
SynPG 93.4 26.5

Unsupervised Models

Optimus 91.8 -
ADVAE 39.5 40.0
QKVAE 89.2 26.4

Table 9.2: The proportion*100 of embeddings that place a target sentence closer to its semantic source
than it is to its syntactic source in the embedding space. Arrows (↑/↓) indicate whether higher or lower
scores are better.

the latent variable that places target sentences closest to their sem_src (resp. syn_src)
as a semantic (resp. syntactic) variable. The results are presented in Table 9.2.

Table 9.2 clearly shows for QKVAE, SynPG, and VGVAE that the syntactic (resp. se-
mantic) variables lean towards positioning sentences in the embedding space according to
their syntax (resp. semantics). Surprisingly, the syntactic variable of our model specializes
in syntax (i.e. has low score) as much as that of SynPG. The generalist latent variable
of Optimus seems to position sentences in the latent space according to their semantics.
Accordingly, we place its score in the zsem column. Interestingly, the variables in ADVAE
have very close scores and score well below 50, which shows that the entire ADVAE em-
bedding leans more towards syntax. This means that, without the key/value distinction
in the attention-based decoder, the variables specialize more in structure than in content.

9.2.3 Syntactic and Semantic Transfer

Similar to Chen et al. [2019b], we aim to produce sentences that take semantic content
from sem_src sentences and syntax from syn_src sentences. For each of SynPG, VG-
VAE, and QKVAE we simply use the syntactic embedding of syn_src, and the semantic
embedding of sem_src as inputs to the decoder to produce new sentences. Using the
results of the specialization test in the previous experiment, we do the same for ADVAE
by taking the 2 latent variables that lean most to semantics (resp. syntax) as semantic
(resp. syntactic) variables. The output sentences are then scored in terms of syntactic and
semantic similarity with sem_src, syn_src and target.

Control and reference baselines Beside model outputs, we also use our syntactic
and semantic comparison metrics, explicited below, to compare syn_src and sem_src
sentences to one another and to target sentences. Additionally, using Optimus, we embed
sem_src and syn_src, take the dimension-wise average of both embeddings, and decode
it. As VAEs are known to produce quality sentence interpolations [Bowman et al., 2016, Li
et al., 2020b], the scores for sentences from Optimus help contrast a naïve fusion of features
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sem_src syn_src target
STED↑ TMA2↓ TMA3↓ STED↓ TMA2↑ TMA3↑ STED↓ TMA2↑ TMA3↑

Control and Reference baselines

sem_src 0.0 100 100 13.0 40.3 4.8 12.0 39.6 7.0
syn_src 13.0 40.3 4.8 0.0 100 100 5.9 84.3 45.8
Optimus 11.6 50.0 15.9 9.2 61.6 23.6 10.2 58.9 21.8

Supervised Models

VGVAE 13.1 39.9 5.4 3.3 86.4 64.1 6.7 80.4 44.6
SynPG 11.7 41.9 18.0 13.5 74.1 10.5 13.1 69.1 13.3

Unsupervised Models

ADVAE 11.9 47.3 14.0 10.3 54.3† 19.2† 11.1 52.3 17.0
QKVAE 12.7 40.2 7.8 7.2 68.2 39.5 8.9 63.9 28.1

Table 9.3: Syntactic transfer results. STED is the Syntactic Tree Edit Distance, and TMA2/3 is the
exact matching between constituency trees truncated at the 2nd/3rd level. The comparison scores between
sentences and syn_src that are not significantly different from the same scores produced with regard to
sem_src are marked with †. We consider differences to be significant if their associated t-test yields a
p-value<0.01.

in the embedding space with a composition of well identified disentangled features.

Transfer metrics We measure the syntactic and semantic transfer from source sen-
tences to output sentences. i) Semantics: For semantics, previous works [Chen et al.,
2019b, Huang and Chang, 2021a] rely on lexical overlap measures such as BLEU [Pap-
ineni et al., 2001], ROUGE [Lin, 2004], and Meteor [Denkowski and Lavie, 2014]. As
will be shown in our results, the lexical overlap signal does not capture semantic trans-
fer between sentences when this transfer is too weak to produce paraphrases. Therefore,
we use Meteor (M ) in conjunction with ParaBART [Huang et al., 2021a] a model where
BART [Lewis et al., 2020] is fine-tuned using syntactic information to produce neural rep-
resentations that represent semantics maximally and syntax minimally. We measure the
cosine similarity between sentences according to ParaBART embeddings (PB). ii) Syntax:
We use the script of Chen et al. [2019b] to produce a syntactic tree edit distance (STED)
between the constituency trees of sentences, as was done to assess VGVAE. Additionally,
following the evaluation procedure designed by Huang and Chang [2021a] for SynPG, we
measure the Template Matching Accuracy between sentences, where the template is the
constituency tree truncated at the second level (TMA2). TMA2 is the percentage of sen-
tence pairs where such templates match exactly. We extend this measure by also providing
it at the third level (TMA3)10. Transfer results are presented in Tables 9.3 and 9.4.

Sanity checks with metrics and baselines We notice in Table 9.4 that using Me-
teor as a semantic similarity measure results in various inconsistencies. For instance,
paraphrases target have a higher Meteor score with the syntactic sources than with in-
terpolations from Optimus. It can also be seen that the Meteor score between outputs
from VGVAE and both syntactic and semantic sources are rather close 11. In contrast,

10For example cuts of constituency trees at the second or third level, refer to Figure 6.4 in Chapter 6.
11This was not observed by Chen et al. [2019b], as they only compared outputs from VGVAE to the target

paraphrases.

114



CHAPTER 9. UNSUPERVISED DISENTANGLEMENT OF SYNTAX AND SEMANTICS

sem_src syn_src target
M ↑ PB↑ M ↓ PB↓ M ↑ PB↑

Control and Reference baselines
sem_src 100 1.0 6.9 0.14 28.8 0.84
syn_src 6.9 0.14 100 1.0 12.1 0.16
Optimus 12.4 0.34 15.9 0.39 10.8 0.32

Supervised Models
VGVAE 17.6 0.58 15.3 0.18 24.9 0.58
SynPG 45.9 0.87 8.0 0.13 25.2 0.75

Unsupervised Models
ADVAE 8.0 0.19 8.3† 0.17 7.4 0.19
QKVAE 12.8 0.35 11.0 0.19 12.6 0.34

Table 9.4: Semantic transfer results. M is the Meteor score, and PB is the ParaBart cosine similarity.
The comparison scores between sentences and syn_src that are not significantly different from the same
scores produced with regard to sem_src are marked with †.

ParaBART score behaves as expected across comparisons in Table 9.4. Consequently, we
retain ParaBART score as a semantic similarity measure. In the following, we use the
scores between sem_src, syn_src, and target (first two rows in Tables 9.3 and 9.4) as
reference scores for unrelated sentences, paraphrase pairs, and syntactically similar sen-
tences.

Comparing the supervised baselines VGVAE and SynPG greatly differ in scores. It
can be seen that SynPG copies a lot of lexical items from its semantic input (high Meteor
score) which allows for higher semantic similarity scores. However, Table 9.3 shows that
SynPG transfers syntax from syn_src at a high level (high TMA2, but low TMA3). In
contrast, VGVAE transfers syntax and semantics in a balanced way and achieves the best
syntax transfer scores overall (lowest STED with syn_src and target).

Analysing the scores of QKVAE The semantic similarity scores PB of QKVAE
outputs with target and sem_src are close to those of Optimus outputs. Although these
scores are low compared to supervised models, they are notably higher than semantic
similarity scores between unrelated sentences (e.g. syn_src and sem_src). However, in
contrast to Optimus, QKVAE outputs display low PB scores with syn_src, which show
that they draw very little semantic information from the syntactic sources. Concerning
syntactic transfer in Table 9.3, QKVAE outputs share syntactic information with syn_src
on all levels (low STED, and high TMA2 and TMA3). Our model is even competitive with
SynPG on TMA2, and better on TMA3 and STED. As expected, the scores comparing
QKVAE outputs to sem_src show that they share very little syntactic information. On
the other hand, ADVAE shows poor transfer performance on syntax and semantics, with
only slight differences between scores w.r.t syn_src and scores w.r.t sem_src.
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9.2.4 Comparison with a Supervised Model with Less Data

Since VGVAE displays balanced syntactic and semantic transfer capabilities, we use it
for this experiment where we train it on subsets of sizes in {10K, 25K, 50K, 100K} from
its original training data. Our goal is to find out how much labeled data is needed for
VGVAE to outperform our unsupervised model on both transfer metrics.
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Figure 9.2: Plotting STED w.r.t syn_ref and the PB cosine similarity w.r.t sem_ref for VGVAE with
different amounts of labeled data and for QKVAE. Points are scaled proportionally to the amount of
training data. The vertical and horizontal diameters of each ellipse are equal to the standard deviation
of the associated data points and axes.

In Figure 9.2, we plot for QKVAE and instances of VGVAE the STED of their out-
puts w.r.t syn_src and the PB of these outputs w.r.t sem_src. All values are averages
over 5 runs, with standard deviations plotted as ellipses. Figure 9.2 shows that to outper-
form QKVAE on syntactic and semantic transfer, VGVAE needs more than 50K labeled
samples.

9.3 A Look-Back to Syntactic Role Disentanglement

In the previous chapter, we saw that ADVAE performed poorly when it came to syn-
tactic role disentanglement outside of the case where the dataset it was trained on was
regularly structured, e.g. on the Yelp dataset instead of the SNLI dataset. We speculated
that latent variables in ADVAE also had to model syntax, and that accordingly, syntactic
variation coming from re-sampling the latent variables made it very difficult to observe
change focused on fixed syntactic roles.

In this chapter, we partly confirmed that speculation through the previous investi-
gations. In fact, Table 9.2 showed that the vectorial latent variables in ADVAE leaned
slightly more to syntax than they did to semantics. This shows that syntactic informa-
tion does indeed hinder encoding semantic content in ADVAE. In the same table, we can
see that those latent variables, when accompanied with a new variable which deals with
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syntactic information as is done in QKVAE, display a much higher specialization in se-
mantics. Given that the information encoded by QKVAE’s zc is much more semantic than
the information encoded by ADVAE’s z, chances are that QKVAE can better disentangle
information about realizations of syntactic roles than ADVAE.

Setup: We run the same quantitative syntactic role disentanglement experiment as
the one displayed in the previous chapter, while setting QKVAE to use the same hyper-
parameters and architecture as ADVAE from the previous chapter. We use L = 4 since
results from the last chapter have shown that splitting information into more latent vari-
ables than the target syntactic roles generally leads to worse disentanglement. We train
and measure performance on SNLI, Yelp and and a 1.5 Million sentences extract from
Wikipedia.

Results: The results are displayed in Table 9.5.

data model beta Denc NΓenc Ddec NΓdec

SNLI
ADVAE

0.3 1.48(0.15) 3.00(0.00) 0.78(0.10) 3.00(0.00)
0.4 1.43(0.79) 3.00(0.00) 0.84(0.10) 3.00(0.00)

QKVAE
0.3 1.06(0.09) 3.80(0.45) 1.09(0.17) 3.00(0.00)
0.4 1.06(0.18) 3.00(0.00) 1.31(0.14) 3.00(0.00)

Wiki
ADVAE

0.3 0.41(0.30) 2.00(0.00) 1.72(0.61) 1.00(0.00)
0.4 0.25(0.29) 2.67(0.58) 0.44(0.50) 2.00(1.00)

QKVAE
0.3 0.32(0.06) 2.80(0.45) 0.69(0.18) 2.20(0.45)
0.4 0.41(0.03) 3.00(0.00) 0.62(0.07) 2.33(0.58)

Yelp
ADVAE

0.3 0.48(0.07) 2.00(0.00) 0.23(0.09) 2.20(0.45)
0.4 0.54(0.04) 3.00(0.00) 0.22(0.08) 2.20(0.45)

QKVAE
0.3 0.45(0.07) 2.80(0.45) 1.05(0.11) 2.40(0.55)
0.4 0.46(0.03) 2.60(0.55) 0.87(0.15) 2.40(0.55)

Table 9.5: Syntactic role disentanglement results for QKVAE vs ADVAE. For QKVAE, the indicated β
value is used for both latent variables zs and zc.

On the encoder side, the table displays comparable or better performance for ADVAE
compared to QKVAE across the 3 datasets. This is to be expected as the semantic latent
variables of QKVAE will look at different syntactic roles for sentences with different
syntax.

On the decoder side, the disentanglement measure for QKVAE involves only resampling
one zci while keeping zs and any other zcj s.t. j ̸= i fixed, which should enable it to
vary separately syntactic role realizations while better maintaining a fixed syntax for
sentences. The numbers in Table 9.5 confirm this hypothesis by displaying consistently
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higher12 disentanglement concentration scores Ddec for QKVAE than it does for ADVAE
across the 3 datasets with a considerable margin, especially for Yelp. The number of
disentangled latent variables NΓdec is also either equal or slightly higher for QKVAE than
it is for ADVAE.

9.4 Related Work

We broadly divide recent works on explainability in NLP into two research directions,
where the first seeks post hoc explanations for black-box models (cf. § 5.3.3) and the
second seeks to build models that are explainable by design. This led to models with
explicit linguistically informed mechanisms such as the induction of grammars (RNNG;
Dyer et al., 2016, URNNG; Kim et al., 2019) or constituency trees (ON-LSTM; Shen
et al., 2019, ONLSTM-SYD; Du et al., 2020).

As a work on disentangled representation learning, this work belonds to this second
research direction. As explained in § 4.5, disentanglement in NLP was performed on
various characteristics in text such as style [John et al., 2020, Cheng et al., 2020], sentiment
and topic [Xu et al., 2020b], or word morphology [Behjati and Henderson, 2021], with
a particular focus on the separation between syntax and semantics, whether merely to
obtain an interpretable specialization in the embedding space [Chen et al., 2019a, Bao
et al., 2019, Ravfogel et al., 2020, Huang et al., 2021a], or for controllable generation [Chen
et al., 2019b, Zhang et al., 2019b, Huang and Chang, 2021a, Hosking and Lapata, 2021, Li
et al., 2021a, Hosking et al., 2022]. However, all these works rely on syntactic information
(constituency parses and PoS tags) or semantic information (paraphrase pairs). To the
best of our knowledge, our work is the first to present a method that directs syntactic and
semantic information into assigned embeddings in the challenging unsupervised setup.

From a broader machine learning perspective, using knowledge of the underlying phe-
nomena in our data, we design our model QKVAE with an inductive bias that induces
understandable behavior in an unsupervised fashion. Among the existing line of applica-
tions of this principle [Rezende et al., 2016, Hudson and Manning, 2018, Locatello et al.,
2020c, Tjandra et al., 2021], ADVAE [Felhi et al., 2021b], the model presented in Chap-
ter 8 which constitutes the basis for QKVAE, is designed to separate information from
the realizations of different syntactic roles without supervision on a dataset of regularly
structured sentences.

9.5 Qualitative Results and Discussion

In Table 9.6, we display example outputs of SynPG, VGVAE, and QKVAE along with
their syntactic sources, semantic sources, and targets. We generally observed that the
outputs of QKVAE range from paraphrases (line 6) to broadly related sentences (line 3).

As was shown by our quantitative results, outputs from VAE-based models (VGVAE
and QKVAE) share relatively few lexical items with the semantic input. This can be seen

12The only exception is ADVAE with β = 0.3 for Wiki, but it concentrates all syntactic roles in a single latent
variable; i.e. NΓdec = 1.
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sem_src syn_src SynPG VGVAE QKVAE target

we have
destroyed
the 49th
armored
division.

concomitant
usage is
not recom-
mended.

we have
destroyed
the 49th
armored
division.

armored
division
hasn’t de-
stroyed.

this mili-
tary force
will be
destroyed.

49th ar-
mored
division
has been
destroyed .

let the fire
burn and
put a piece
of hot iron
in it.

sing a song.
sing a song
for boys.

don’t put
the fire in
it burn a
hot piece
of iron and
fire.

burn the
fire. put
the iron on
burns.

come on
fire. get a
fire on it.

keep this
fire going.
keep a
piece of
hot iron on
it.

they took
the lunch
boxes ?

have you
given me
your hands
?

do they
boxes took
the lunch ?

have they
taken
them your
snacks ?

have you
heard of
some lunch
?

have they
taken
the lunch
boxes ?

does it
have a
coach ?

that’s a
phone
switcher,
right ?

how does
it have a
coach ?

that’s
a coach
coach,
right ?

that’s a
warden,
huh?

it has a
coach, no ?

an old lady
in a ceme-
tery.

that is a
bad time
for a war.

there’s a
lady in an
old ceme-
tery.

that’s an
old lady in
the ceme-
tery.

this is a
strange
place for a
woman.

there is
an old
lady in the
cemetery.

don’t be
afraid.

there are
still many
places to
go.

you don’t
be afraid.

there
aren’t be
afraid to
be.

there will
be no need
to worry.

there is no
need to be
afraid .

isn’t there
a door
open ?

the ma-
chines are
still good,
right ?

a isn’t open
door there
?

the doors
aren’t
open, right
?

the door
will be
open,
okay?

there is a
door open,
right ?

Table 9.6: Syntactic sources (syn_src), semantic sources (sem_src), the sentences produced when using
them with different models, and the corresponding correct paraphrases (target).

in the qualitative examples where they often swap words in the semantic source with
closely related words (e.g. "armored division" to "military force" in line 1, or "lunch
boxes" to "snacks" in line 2). We attribute this quality to the smoothness of the latent
space of VAEs which places coherent alternative lexical choices in the same vicinity. The
examples above also show that our model is capable of capturing and transferring various
syntactic characteristics such as the passive form (line 1), the presence of subject-verb
inversion (lines 3, 4, and 7), or interjections (lines 4 and 6).

9.6 Conclusion

As a continuation to the work on unsupervised disentanglement of sentence repre-
sentations presented in the previous chapter, we presented in this chapter QKVAE, an
unsupervised model which is designed to disentangle syntax from semantics without syn-
tactic or semantic information (§ 9.1). Our experiments show that its latent variables
effectively position sentences in the latent space according to these attributes (§ 9.2.2).
Additionally, we show that QKVAE displays clear signs of disentanglement in transfer
experiments (§ 9.2.3). Although the semantic transfer is moderate, syntactic transfer with
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QKVAE is competitive with SynPG, one of its supervised counterparts. We also show
that VGVAE, a supervised model, needs more than 50K samples to outperform QKVAE
on both syntactic and semantic transfer (§ 9.2.4). Finally, we show (§ 9.3) that QKVAE
moderates the shortcomings of ADVAE when it comes to syntactic role disentanglement
outside of the regularly structured dataset SNLI as speculated in the previous chapter .

We plan to extend this work in three directions: i) Finding ways to bias representa-
tions of each zseml towards semantic proto-roles (cf. § 6.2) instead of syntactic roles; ii)
Applying QKVAE to non-text data since it is data agnostic (e.g. to rearrange elements of
a visual landscape.); iii) Investigating the behavior of QKVAE on other languages. These
extensions are elaborated upon in the next chapter.
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Chapter 10
Conclusion and Perspectives

The objective of the work presented in this thesis is to help remedy the dire need
in NLP for explainable Deep Learning techniques. It was conducted while keeping in
mind the rarity of annotated data that plagues explainability. In light of these elements,
we present methods that ease obtaining explainable representations with recent Deep
Learning components while requiring little-to-no annotated text data. As a conclusion to
this thesis, we summarize our contributions in Section 10.1, and outline a few perspective
research directions which could extend our work in Section 10.2.

10.1 Summary of Contributions

In the last 3 chapters, we detailed contributions made to data-efficient explainable
Deep Learning-based NLP. In Chapter 7, we have shown that the Semi-Supervised VAE
framework, in the case of sentence classification, was impeded by unnecessary components,
namely the Kullback-Leibler divergence in its loss, and the unobserved latent variable in
its architecture. Removing these components displayed no degradation to the performance
of SSVAEs, improved their speed, and made them easier to design (i.e. no prior to specify)
and to train (i.e. no posterior collapse to counteract).

The remainder of our contributions pertained to inducing understandable representa-
tions without annotations through unsupervised disentanglement with VAEs and Trans-
formers attention. First, in Chapter 8, we presented our Attention-Driven VAE (ADVAE),
which is the first VAE to use Cross-Attention to encode and decode vectorial latent vari-
ables. We have shown that these vectorial latent variables are able to spontaneously align
with the realizations of core syntactic roles when trained on a dataset of regularly struc-
tured sentences. The latent variables in ADVAE actively follow separate syntactic roles
using Cross-Attention, and are able to separately change the realizations of syntactic
roles. Subsequently in Chapter 9, we have shown that, when different latent variables are
asssigned to produce keys and values in the Cross-Attention of a VAE-based Transformer
decoder, the keys naturally lean towards encoding syntactic information while the values
lean towards semantic information. QKVAE, the neural network we designed to verify
this hypothesis, has shown clear signs of successful syntactic and semantic transfer be-

122



CHAPTER 10. CONCLUSION AND PERSPECTIVES

tween sentences. Moreover, we showed that a previous supervised disentanglement model
needs more than 50K samples to perform better than QKVAE, which shows that QKVAE
allows for a considerable gain in annotation effort for disentanglement. Looking back to
syntactic role disentanglement with this last model, we finally show that its separation
between syntax and semantics also allows for better scores on different datasets when it
comes to separately varying the realizations of core syntactic roles in generated sentences.

10.2 Perspectives

10.2.1 Extending our Investigations to Other Languages

As is the case for the large majority of works on disentanglement in NLP, such as the
ones discussed in § 4.5, the works presented in this thesis in Chapters 8 and 9 only exhibits
results on English corpora. We expect extensions to other languages to be interesting,
especially for free word order language such as Arabic [Bassam et al., 2014]. The richer
morphology of free word order language allows swapping the positions of syntactic roles
in sentences, e.g. from Subject-Verb-Object (SVO) to Verb-Subject-Object (VSO), while
keeping the sentences grammatical. However, although word order is more flexible for
these languages, a preferred word order exists and is usually largely dominant over other
word orders [Song, 2014, Chapter 4].

Since our work pertains to disentanglement of syntactic roles and to disentanglement
of syntax from semantics, results on free word order languages should be informative
about the extent to which ADVAE and QKVAE use word order information to achieve
disentanglement.

10.2.2 A Structured Latent Variable Version of QKVAE with an Account
for Compositional Semantics

The last model presented in this work, QKVAE, relies on some simplifying assumptions
which hinder its ability to accurately model languages. Here are the main simplifications
that we think future works could address to extend our work:

1. Syntax and Semantics are modeled as independent generative factors : It is clearly
inaccurate to model language with independent syntax and semantics. For instance,
if the semantics of a sentence are expressed by a verbal predicate that subcategorizes
multiple arguments, the sentence cannot be syntactically realized through only a
subject and a verb. In other words, syntax and semantics in a sentence should be
bound by a common frame1, which is not modeled in QKVAE.

2. Semantics is modeled as a set of independent latent variables : Decomposing the se-
mantics of sentences is largely understood as identifying predicates and their argu-

1Frame here, refers to frames in Frame Semantics theory [Fillmore et al., 1976]. This theory is a theory of mean-
ing which defines for each word a semantic frame, i.e. a set of typed semantic arguments that may accompany the
word. From a compter science perspective, semantic frames can be understood as function signatures, where the
functions are linguistic predicates. Example semantic frames can be seen on the lexical database FrameNet [Rup-
penhofer et al., 2016] accessible through this URL: https://framenet.icsi.berkeley.edu/fndrupal/frameIndex.
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ments, which are not independent. As a matter of fact, predicates are known to per-
form argument selection by applying paradigmatic restrictions. Furthermore, some
arguments to the predicates may narrow down the selection process:

(a) [ARG0] is using a stick.
(b) [ARG0] is using a computer.

For instance, while sentences (1) and (2) display the same verbal predicate, agent
selection in sentence (1) is restricted to the set of animate agents while the agent
of sentence (2) should normally be in human, a subset of animate. Since semantic
roles are tightly linked to core syntactic roles, this flaw is also behind syntactic role
co-adaptation observed in Chapter 8.

3. Sentence-level semantics are only trained using the sentences themselves : when rear-
ranging the content of a sentence in a new syntactic structure, QKVAE often changes
its semantics. This is not surprising since QKVAE does not feature design choices
that are targeted at well estimating, an thus, preserving sentence-level semantics (or
compositional semantics in general). More specifically, sentence representations are
not trained using the context in which sentences appear.

Future works could improve upon the above simplifications by investigating the solu-
tions below:

Binding all latent variables to a common underlying frame In QKVAE, p(z) =
p(zsyn)

∏
i p(z

sem
i ). To deal with the first two simplifications listed above, one could intro-

duce a frame variable zf to the probabilistic model as follows p(z) = p(zsyn|zf )
∏

i p(z
sem
i |zf ).

This variable would be able to conditionally bind syntax zsyn to semantics zsem, but also
the different component of zsem so as to absorb syntactic role co-adaptation into this
minimalistic structured latent variable model. As shown in 8.4.2, hierarchical versions of
our Cross-Attention-based models are not trivial to train. In that regard, the recently
introduced DELLA [Hu et al., 2022], a successfully trained structured latent variable
Transformer for language modeling, should help guide the design we describe here.

Training for effective unsupervised estimation of sentence-level semantics The
work of Kiros et al. [2015] on Skip-Thought vectors has shown that sentence level semantic
vectors can be effectively estimated, without supervision, simply through next sentence
prediction. As discussed in Chapter 5, this method continued to thrive for sentence-level
representation learning over the following years and propagated to BERT [Devlin et al.,
2019] and other Bert-like models. Using our semantic variable zsem and our newly de-
fined frame variable zf , one could design a sentence representation process which takes
inspiration in how syntagms compose the meaning of a sentence according to the composi-
tional semantics governing the sentence at hand2. This linguistically inspired sentence-level

2According to our preliminary investigations, Generative Lexicon theory [Pustejovsky, 1998] constitutes a
reasonable candidate to inspire such work.
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representation, together with the well established next sentence prediction method could
make for a method to obtain semantic representations which i) better model sentence-level
semantics since they make use of next sentence prediction; ii) are more understandable
since they feature a variable zf modeling the semantic frame, other variables zsemi mod-
eling the arguments to this frame, and linguistically interpretable interactions between
these variables.

10.2.3 Applying this Work to Multi-Modal Data

As highlighted in the conclusion of Chapter 9, QKVAE is input agnostic, and could
therefore as well be used for non-linguistic data. We think an interesting research direction
would be to investigate the behavior of QKVAE on other modalities so as to observe the
information that will be disentangled analogously to the linguistic concepts studied in
our work. The idea of applying linguistically-inspired analysis to all types of data is the
basis for Semiotics3, a discipline which studies signs and symbols of all natures. In a
similar fashion, the research presented in this thesis could lead, for instance, to models
that could learn to extract the core syntagms4 in pictures, regenerate the picture while
changing only one of these syntagms, or produce a version of this picture where these
syntagms are rearranged. As a matter of fact, the work of Jaegle et al. [2022] shows that
Cross-Attention can be used to build an encoder-decoder model that can generalize to any
input format with good scaling and generalization performance, and the work of Locatello
et al. [2020c] shows that Cross-Attention based architectures are capable of unsupervised
object segmentation on images, which encourages pursuing this research direction.

Further down the road, one could investigate our models in the multi-modal context,
where multiple information channels are aggregated in order to model an event syntacti-
cally and semantically as one would model the sentence describing the event.

3Readers may refer to Chandler [1994] for a beginner friendly introduction to Semiotics.
4The term Syntagm, here, refers to an element in the structure of an observation, where the observation may

or may not be textual.
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Appendix A
Background

A.1 Derivations for the TC-VAE decomposition

Here, we lay out the derivations necessary to obtain the decomposition displayed in
Eq. 4.2 in Section 4.1. We start from the 3 terms on the left-hand-side:

KL[qϕ(z, n)||qϕ(z)p(n)] +KL[qϕ(z)||
∏
j

qϕ(zj)] +
∑
j

KL[qϕ(zj)||p(zj)] (A.1)

=E(z;n)∼qϕ(z,n)

[
log

qϕ(z, n)

qϕ(z)p(n)

]
+ Ez∼qϕ(z)

[
log

qϕ(z)∏
j qϕ(zj)

]

+
∑
j

Ezj∼qϕ(zj)

[
log

qϕ(zj)

p(zj)

]
(A.2)

=
∑
n

∫
z

qϕ(z, n) log
qϕ(z, n)

qϕ(z)p(n)
dz +

∫
z

qϕ(z) log
qϕ(z)∏
j qϕ(zj)

dz

+
∑
j

∫
zj

qϕ(zj) log
qϕ(zj)

p(zj)
dzj (A.3)

We first unify all three terms under the expectation over qϕ(z, n). For the second term we
can use qϕ(z) =

∑
n qϕ(z, n):∫

z

qϕ(z) log
qϕ(z)∏
j qϕ(zj)

dz =
∑
n

∫
z

qϕ(z, n) log
qϕ(z)∏
j qϕ(zj)

dz (A.4)

For the third term, we apply an expectation over qϕ(z1, . . . , zj−1, zj+1, . . . , z|z||zj) on
each element of the sum over j 1, then also use qϕ(z) =

∑
n qϕ(z, n):

1The expectation of an expression over the distribution of variables which are not involved in the expression
is the expression itself, i.e. Ex∼p(x)[f(y)] = f(y).
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A.1. DERIVATIONS FOR THE TC-VAE DECOMPOSITION

∑
j

∫
zj

qϕ(zj) log
qϕ(zj)

p(zj)
dzj (A.5)

=
∑
j

∫
z1,...,zj−1,zj+1,...,z|z|

∫
zj

qϕ(z1, . . . , zj−1, zj+1, . . . , z|z||zj)qϕ(zj) log
qϕ(zj)

p(zj)
dzjdz1, . . . , dzj−1, dzj+1, . . . , dz|z| (A.6)

=
∑
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∫
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qϕ(z) log
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p(zj)
dz (A.7)

=

∫
z

qϕ(z) log

∏
j qϕ(zj)∏
j p(zj)

(A.8)

=
∑
n

∫
z

qϕ(z, n) log

∏
j qϕ(zj)∏
j p(zj)

(A.9)

Finally, fusing the three terms under the same expectation yields:

E(z;n)∼qϕ(z,n)

[
log

qϕ(z, n)

qϕ(z)p(n)
+ log

qϕ(z)∏
j qϕ(zj)

+ log

∏
j qϕ(zj)∏
j p(zj)

]
(A.10)

=E(z;n)∼qϕ(z,n)

[
log
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�
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���qϕ(z)

�����∏
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�����∏
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j p(zj)

]
(A.11)

Since qϕ(z,n)

p(n)
= qϕ(z|n) and p(z) has independent components (i.e. p(z) =

∏
j p(zj)), the

derivation continues as follows:

E(z;n)∼qϕ(z,n)

[
log

qϕ(z|n)
p(z)

]
= KL [qϕ(z|n)||p(z)] (A.12)

which proves the equality in Equation 4.2.
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Appendix B
Unsupervised Disentanglement of Syntactic Roles

This appendix contains the supplementary materials for our work on unsupervised dis-
entanglement of syntactic roles. In section B.1, we measure the effect of varying latent
variables on the appearance/disappearance of syntactic roles to analyze the influence
of these latent variables on the structure of sentences rather than their content. Ap-
pendix B.2 displays a few sentences from both SNLI and Yelp datasets together with
the syntactic role extractions obtained with our extraction heuristic to get an idea of the
successes/failures of this heuristic. In Appendix B.3, we provide the training details and
hyper-parameters for our experiments. In Appendix B.4 we display the fine-grained syn-
tactic role-wise disentanglement scores corresponding to the global scores we display in
the core text. Appendix B.5 shows influence heatmaps produced by our model when mea-
sured for a wide range of syntactic roles over Stanford Dependency-type annotations and
Universal Dependency-type annotations, and also for PoS tags. In Appendix B.6 we give
a larger array of random examples demonstrating the controlled generation on syntactic
roles realizations enabled by ADVAE. Appendix B.7 provides standard VAE language
modeling metrics reported for the runs we conducted with the different architectures we
compare. Since for our encoder-related metrics we average attention values over all the
layers, we display Appendix B.8 layer-wise encoder influence heatmaps to show that that
trends we described can also be observed on individual layers. Finally, Appendix B.9 dis-
play disentanglement results for ADVAE over a larger grid of values for L, the number of
vectorial latent variables used.

B.1 Measuring the effect of latent variables on the structure of sentences

In Figure B.1, for each latent variable and each syntactic role, we report the probability
that resampling the latent variable causes the appearance/disappearance of the syntactic
role. The instance we use here is the same as the one we use for the heatmaps in the main
body of the paper. According to the heatmaps in Figures 8.3 and 8.4, latent variable 3 is
the one associated with the verb. As can be seen in the present heatmap in Figure B.1, this
same variable is the one that has the most influence on the appearance/disappearance of
direct and prepositional objects, and this is a pattern that proved to be consistent across
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B.2. EXAMPLE SENTENCES FROM YELP AND SNLI AND THEIR CORRESPONDING
SYNTACTIC EXTRACTIONS
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Figure B.1: The influence of latent variables on
the appearance or disappearance of syntactic

roles.

our different runs. This constitutes empirical justification for our choice of discarding these
cases from our decoder influence metrics.

B.2 Example Sentences from Yelp and SNLI and their Corresponding
Syntactic Extractions

Table B.1 shows some samples from SNLI and Yelp reviews. Samples from Yelp Reviews
exhibit a clearly higher structural diversity. On the other hand, most SNLI samples are
highly similar in structure.
Our syntactic role extraction heuristics were tailored for sentences with verbal roots. As
a result, it can be seen that they struggle with sentences with nominal roots as well as
other forms of irregular utterances present in Yelp. For SNLI, our extractions mostly yield
the expected results, allowing for a reliable global assessment of our models.

B.3 Training Details and Hyper-Parameter Settings

Our ADVAE’s hyper-parameters Our model has been set to be large enough to
reach a low reconstruction error during the initial reconstruction phase of the training.
We use 2-layer Transformers with 4 attention heads and a hidden size of 192. Contrary
to Vanilla VAEs, our model seems to perform better with high values of L. Therefore, we
set our latent vector to a size of 768, and divide it into 96-dimensional variables for our
L = 8 model and to 192-dimensional latent variables for our L = 4 model. No automated
hyper-parameter selection has been done afterward.

Sequence VAE hyper-parameters As is usually done for this baseline [Xu et al.,
2020b], we set both the encoder and the decoder to be 2-layer LSTMs.
We run this model for hidden LSTM sizes in [256, 512], and latent vector sizes in [16, 32].
The results for the model scoring the highest Ddec are then reported. Even though selec-
tion has been done according to Ddec, we checked the remaining instances of our baselines
and they also yielded low NΓdec values.
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APPENDIX B. UNSUPERVISED DISENTANGLEMENT OF SYNTACTIC ROLES

Table B.1: Example syntactic role extractions from both SNLI and Yelp

Source Sentence subj verb dobj pobj

Yelp i was originally told it would
take _num_ mins .

it told _ num
_ mins

Yelp slow , over priced , i ’ll go
elsewhere next time .

i go

Yelp we will not be back we
Yelp terrible .
Yelp at this point they were open

and would be for another
hour .

they this
point

SNLI people are outside playing
baseball .

people baseball

SNLI two dogs pull on opposite
ends of a rope .

two
dogs

pull opposite
ends of
a rope

a rope

SNLI a lady lays at a beach . a lady lays a beach
SNLI people are running through

the streets while people
watch .

people running the
streets

SNLI someone prepares food into
bowls

someone prepares food bowls

Transformer VAE hyper-parameters We set the hidden sizes and number of layers
for this baseline similarly to ADVAE, since it is also a Transformer. We run this model
for latent vector sizes in [16, 32] and display the highest scoring model, as is done for the
Sequence VAE.

Training phases All our models are trained using ADAM [Kingma and Ba, 2015]
with a batch size of 128 and a learning rate of 2e-4 for 20 epochs. The dropout is set
to 0.3. To avoid posterior collapse, we train all our models for 3000 steps with β = 0

(reconstruction phase), then we linearly increase β to its final value for the subsequent 3000
steps. Following Bowman et al. [2016], we also use word-dropout. We set its probability
to 0.1.

Evaluation For the evaluation, T dec is set to 2000, and T enc is equal to the size of the
test set.

B.4 Disentanglement Scores for each Syntactic Role

The full disentanglement scores are reported in Table B.2 for the decoder, and in Ta-
ble B.3 for the encoder.

B.5 Disentanglement Heatmaps Over the Entire Range of Syntactic Roles
and PoS Tags

We report decoder and encoder heatmaps for all the syntactic roles following the Stan-
ford Dependencies (SD; De Marneffe and Manning, 2008) annotation scheme of Ontonotes,
which was used to train our Spacy2 parser, in Figures B.2 and B.3. For the sake of ex-

147



B.5. DISENTANGLEMENT HEATMAPS OVER THE ENTIRE RANGE OF SYNTACTIC ROLES
AND POS TAGS

Table B.2: Complete decoder disentanglement scores for SNLI

Model β Ddec NΓdec ∆Γdec,verb ∆Γdec,subj ∆Γdec,dobj ∆Γdec,pobj

ours-4
0.3 0.78(0.10) 3.00(0.00) 0.41(0.17) 0.33(0.09) 0.03(0.01) 0.02(0.02)
0.4 0.84(0.10) 3.00(0.00) 0.47(0.04) 0.31(0.07) 0.04(0.01) 0.01(0.01)

ours-8
0.3 0.62(0.17) 3.20(0.45) 0.32(0.08) 0.23(0.14) 0.04(0.01) 0.03(0.03)
0.4 0.80(0.11) 3.00(0.00) 0.45(0.06) 0.27(0.05) 0.04(0.03) 0.04(0.03)

Sequence VAE
0.3 0.43(0.18) 1.70(0.48) 0.07(0.05) 0.26(0.10) 0.04(0.05) 0.06(0.05)
0.4 0.91(0.32) 1.40(0.52) 0.24(0.13) 0.45(0.13) 0.05(0.05) 0.16(0.13)

Transformer VAE
0.3 0.08(0.04) 3.00(0.71) 0.05(0.06) 0.01(0.01) 0.01(0.01) 0.01(0.01)
0.4 0.11(0.05) 3.80(0.45) 0.04(0.03) 0.04(0.03) 0.02(0.01) 0.01(0.02)

Table B.3: Complete encoder disentanglement scores for SNLI

Model β Denc NΓenc ∆Γenc,verb ∆Γenc,subj ∆Γenc,dobj ∆Γenc,pobj

ours-4
0.3 1.30(0.09) 3.00(0.00) 0.28(0.05) 0.65(0.02) 0.08(0.03) 0.29(0.03)
0.4 1.46(0.33) 3.00(0.00) 0.38(0.12) 0.64(0.10) 0.14(0.04) 0.30(0.10)

ours-8
0.3 1.36(0.13) 3.40(0.89) 0.44(0.12) 0.60(0.18) 0.21(0.08) 0.11(0.06)
0.4 1.44(0.79) 3.40(0.55) 0.42(0.23) 0.61(0.34) 0.17(0.10) 0.23(0.16)

Average Position - 0.98 (-) 3.00(-) 0.12(-) 0.70(-) 0.12(-) 0.04(-)
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Figure B.2: Decoder influence heatmap for all SD syntactic roles.

tensiveness and to make sure we did not draw results from some parser biases, we also
report the same heatmaps but using UDPipe 2.0 [Straka, 2018], which uses UD type an-
notations1, in Figures B.6 and B.7. Finally, we also report heatmaps for interaction with
PoS Tags extracted with Spacy2 in Figures B.4 and B.5. As was done in the main body
of the paper, the span corresponding to each syntactic role (in both annotation schemes)
was taken to be the series of words included in its corresponding subtree. In contrast, the
span corresponding to each PoS tag was just taken to be the tagged word. Results from
UD parsing extraction lead to the same conclusions as from our initial SD results.

The instance of our ADVAE for which we display the above heatmaps is the same one
1A widely adopted annotation scheme derived from Stanford Dependencies.
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APPENDIX B. UNSUPERVISED DISENTANGLEMENT OF SYNTACTIC ROLES
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Figure B.3: Encoder influence heatmap for all SD syntactic roles.
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Figure B.4: Decoder influence heatmap for all PoS Tags.

��� ��� ��� ��� ��� ��� ���� ���� ��� ���� ���� ����� ���� ���� ���� �

�
�

�
�

����	 ������ ����� ������ ����� ������� ���� �����	 ������ �����
 ����� ����	 ����� ����	 ����
� ����

���� ���� ���
 ������ ���� ������ ���� ����� ����� ����� ����	 ���� ������ ���� ���		 ����

���� ���� ���� ���� ��� ����� ���� ���� ���� �����
 ���� ���� ������ ������ ���� �����

���� ���� ���	 ����� ����� ����� � ���� ����� ����� ����� ���� �����	 ��� ���� �

���

���

���

���

���

���

���

���

Figure B.5: Encoder influence heatmap for all PoS Tags.
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Figure B.6: Decoder influence heatmap for all UD syntactic Roles.

for which we display the heatmaps in Figures 8.3 and 8.4 in the main body of the paper.
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B.6. ADDITIONAL EXAMPLES OF RESAMPLED REALIZATIONS FOR EACH SYNTACTIC
ROLE
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Figure B.7: Encoder influence heatmap for all UD syntactic Roles.

As shown in those Figures, it mostly uses variable 3 for verbs, variables 2 for subjects, and
variable 1 for objects. The remaining variable (0) also seems to capture some interaction
with objects. The heatmaps show that our ADVAE tends to group syntactic roles into
latent variables in a way that aligns with the predicative structure of sentences. In fact,
variable 2 displays the highest influence on the PoS tag VERB as well as its surroundings
as a predicate argument such as adverbs and adverbial phrases. Similarly, latent variable
2 displays a high influence on subjects (nominal or clausal), numeral modifiers, adjectival
modifiers, and auxiliaries (for conjugation). Moreover, Variable 1 highly influences the
direct and prepositional objects, which we study in the main body of the paper, but
also diverse clausal modifiers and obliques which often play similar roles to direct and
prepositional objects in a predicate structure.

B.6 Additional Examples of Resampled realizations for each syntactic role

Table B.4 contains a wide array of examples where the latent variable corresponding to
each syntactic role is resampled.
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APPENDIX B. UNSUPERVISED DISENTANGLEMENT OF SYNTACTIC ROLES

Table B.4: More examples where we resample a specific latent variable for a sentence.

Original sentence Resampled subject Resampled verb Resampled dob-
j/pobj

the woman is riding
a large brown dog

two men are riding
in a large city

the woman is wet the woman is riding
on the bus

the police are run-
ning in a strategy

a man is looking at
a date

the police are at an
arid

the police are run-
ning in a wooded
area

a man is holding a
ball

a man is holding a
ball

a man is , and a
woman are talking
on a road

a man is sitting on
a cellphone outside

everyone is watch-
ing the game

some individuals
are watching tv

everyone is a man everyone is watch-
ing the game in the
air

there is a man in
the air

a man is sitting in
the air

there is no women
wearing swim
trunks

there is a man in a
red shirt

a group of friends
are standing on a
beach

an elderly father
and child are stand-
ing on the beach

a group of people
are standing on a
beach

a group of friends
are looking at the
beach

the women are in a
store

a man is playing a
game

two women are on a
break

two women are sit-
ting on a bench

a man is playing a
game

a little girl is play-
ing with a ball

a man is clean a man is sitting on a
lake to an old coun-
try

a man is playing a
game

some dogs are play-
ing in the pool

a man is preparing
to chase himself

a man is playing a
game

the memorial
woman is happy

a dog is happy the memorial work-
ers are in a room

the memorial is
happy

a man is wearing a
green jacket and a
ship

a boy sitting in a
green device

a man is dancing for
the camera

the man is wearing
a hat

a man is playing a
game

a man is playing a
game

two men are tripod a man is playing
with a guitar

a man is wearing a
brown sweater and
green shirt

a karate dog is
swimming in a chair

a man is bought a
brown cat in an air-
plane

a man is wearing a
dress and talks to
the woman

the woman is about
to visitors

three people are
working at a babies

the woman is wear-
ing a sewer

the woman is about
to sell a tree

a man is sitting in
the snowy field

a man is sitting in
the snowy field

a man is wearing
electronics

a man is sitting on
a park bench

two people are play-
ing in the snow

the motorcycle is a
woman on the floor

two people play
soccer in the snow

two people are play-
ing in a concert

a man is stand-
ing next to another
man

a boy is stand-
ing next to another
man

a man is standing a man is standing
next to a man

a man is on his bike a man is on his bike a dog is showing
water

a man is on his bike

a man is sitting in
front of a tree , tak-
ing a picture

a man is sitting in
front of a tree

a man is holding a
red shirt and climb-
ing a tree

a man is sitting on
a suburban own

a man is sitting
with a dog

the children are sit-
ting with the dog

a man is playing
with a dog

a man is sitting
with an umbrella
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B.7 Reconstruction and Kullback-Leibler Values Across Experiments

Table B.5: Reconstruction loss and Kullback-Leibler values on SNLI.

Model β −E(z)∼qϕ(z|x) [log pθ(x|z)] KL[qϕ(z|x)||p(z)] Perplexity Upper Bound

Sequence VAE
0.3 31.38(0.12) 2.80(0.25) 22.02(0.30)
0.4 32.19(0.13) 1.22(0.04) 21.08(0.22)

Transformer VAE
0.3 24.35(0.14) 13.38(0.19) 25.07(0.27)
0.4 26.57(0.27) 8.36(0.32) 20.68(0.16)

ours-4
0.3 10.75(0.94) 42.63(1.16) 68.49(5.96)
0.4 16.01(0.64) 27.93(1.52) 36.16(2.20)

ours-8
0.3 8.83(1.66) 46.99(2.99) 77.26(9.02)
0.4 16.84(8.50) 27.34(14.99) 39.23(11.27)

Table B.6: Reconstruction loss and Kullback-Leibler values on Yelp.

Model β −E(z)∼qϕ(z|x) [log pθ(x|z)] KL[qϕ(z|x)||p(z)] Perplexity Upper Bound

Sequence VAE
0.3 32.55(0.27) 4.26(0.57) 36.97(0.82)
0.4 33.35(0.11) 1.42(0.15) 32.42(0.13)

Transformer VAE
0.3 23.64(0.11) 19.24(0.32) 53.94(1.14)
0.4 26.41(0.11) 12.79(0.20) 41.25(0.55)

ours-4
0.3 7.30(0.27) 55.19(0.30) 121.44(5.16)
0.4 18.19(4.38) 29.85(6.52) 58.11(8.40)

ours-8
0.3 5.36(0.48) 59.24(0.61) 129.54(7.63)
0.4 15.36(5.75) 34.16(12.40) 63.62(16.56)

The values for the reconstruction loss, the KL divergence, and the upper bound on
perplexity concerning the experiments in the main body of the paper are reported in
Table B.5. The same value for the Yelp experiments are in Table B.6. Since our models are
VAE-based, one can only obtain the upper bound on the perplexity and not its exact value.
These upper bound values are obtained using an importance sampling-based estimate
of the negative log-likelihood, as was done in Wu et al. [2020]. We set the number of
importance samples to 10.

It can be seen that the behavior of ADVAEs is very different from classical Sequence
VAEs and Transformer VAEs. On the plus side, they are capable of sustaining much more
information in their latent variables as shown by their higher KL, and they do better at
reconstruction. The upper bound estimate of their perplexity is however higher. A high
KL makes it more difficult for the importance sampling-based perplexity estimate to reach
the true value of the model’s perplexity. This may be the reason behind the higher values
observed for ADVAEs.
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APPENDIX B. UNSUPERVISED DISENTANGLEMENT OF SYNTACTIC ROLES

B.8 Layer-wise Encoder Attention

In the main body of the paper, we use attention values that are averaged throughout the
network. We display the encoder heatmaps obtained by using attention values from the
first layer (Fig. B.8), the second layer (Fig. B.9), or an average on both layers (Fig. B.10)
for comparison.

���� ��� ���� ����

�
�

�
�

������ �����	 ���	 ����

����� ���
� ���� ����

��
� ����	 � �

���� ���� ���� ����

���

���

���

���

��	

���

Figure B.8: Encoder influence
heatmap (Γenc) when only

using the first layer.
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Figure B.9: Encoder influence
heatmap (Γenc) when only

using the second layer.
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Figure B.10: Encoder influence
heatmap (Γenc) when

averaging over both layers.

As can be seen, the first layer alone provides the most sparse heatmap, and thus, the
clearest correspondence between syntactic roles and latent variables. This corroborates
the claims of Tenney et al. [2020] about syntax being most prominently processed in the
early layers of Transformers.

B.9 ADVAE Results for a larger grid of L values

We display in Table B.7 the quantitative results of ADVAE on SNLI for L in {2, 4, 6, 8}.
For ours-2, it is normal that it only separates syntactic role realizations into a maximum
of 2 latent variables, as seen from the values of NΓenc and NΓenc , since 2 is its total number
of latent variables.

As observed in the main body of the thesis, the increase of the number of latent variables
used in ADVAE leads to dispatching the influence on the realization of a single syntactic
role to multiple latent variables. This in turn,leads to the decrease observed for Denc and
Ddec. In Figures B.11 and B.12, we respectively display the encoder and decoder heatmaps
of ADVAE with 16 latent variables. As can be seen in these figures, latent variables still
specializes in specific syntactic roles. This is seen more clearly on the encoder heatmap due
to co-adaptation harming the clarity of the decoder heatmap. This specialization seems
to be shared among groups (e.g. variables 0, 7 and 8 specialize in the subject, as indicated
by the green squares on the figure). This causes the difference of influence between the
most influential variable and the second most influential one to be low, and thus decreases
the values of Denc and Ddec.
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B.9. ADVAE RESULTS FOR A LARGER GRID OF L VALUES

Table B.7: Disentanglement quantitative results on SNLI for a larger grid of L values.

Model β Denc NΓenc Ddec NΓdec

ours-2
0.3 2.01(0.07) 2.00(0.00) 0.89(0.10) 2.00(0.00)
0.4 0.33(0.15) 1.60(0.55) 0.94(0.03) 2.00(0.00)

ours-4
0.3 1.30(0.09) 3.00(0.00) 0.78(0.10) 3.00(0.00)
0.4 1.46(0.33) 3.00(0.00) 0.84(0.10) 3.00(0.00)

ours-8
0.3 1.36(0.13) 3.40(0.89) 0.62(0.17) 3.20(0.45)
0.4 1.44(0.79) 3.40(0.55) 0.80(0.11) 3.00(0.00)

ours-16
0.3 0.60(0.31) 3.60(0.55) 0.38(0.20) 2.80(0.45)
0.4 0.65(0.16) 3.40(0.55) 0.50(0.28) 3.00(0.71)

Figure B.11: Encoder influence heatmap for
ADVAE with 16 latent variables on SNLI (Γenc).
Squares with similar colors highlight groups of

latent variables that relate to the same syntactic
role.

Figure B.12: Decoder influence heatmap for
ADVAE with 16 latent variables on SNLI (Γdec).
Squares with similar colors highlight groups of

latent variables that relate to the same syntactic
role.
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Appendix C
Unsupervised Disentanglement of Syntax and
Semantics

In this Appendix, we provide supplemental materials related to our work on unsu-
pervised disentanglement of syntax and semantics. Appendix C.1 displays results on the
development set of ParaNMT to confirm our findings, and to enable future works to com-
pare to our work without experimenting on the test set. The hyper-parameters used for
our model as well as the strategy to find them are explicited in Appendix C.2.

C.1 Results on the development set

We display, here, the scores on the development set. The encoder scores concerning
the specialization of latent variables are in Table C.1, while the transfer scores are in
Table C.2 for semantics, and Table C.3 for syntax. The values on the development set
concerning the comparison of QKVAE with VGVAE trained on various amounts of data
is in Figure C.1.

C.2 Hyper-parameters

Hyper-parameter values The β weight on the KL divergence is set to 0.6 for zc and
to 0.3 for zs, and the λ threshold for the Free-Bits strategy is set to 0.05. KL annealing is
performed between steps 3K and 6K for zsem, and between steps 7K and 20K for zsyn. The
model is trained using Adafactor [Shazeer and Stern, 2018], a memory-efficient version of

zsem ↑ zsyn ↓
Supervised Models

VGVAE 99.0 16.4
SynPG 91.6 31.2

Unsupervised Models
Optimus 89.4 -
ADVAE 41.0 40.3
QKVAE 86.7 27.0

Table C.1: The probability*100 that an embedding places a target sentence closer to its semantic source
than it is to its syntactic source in the embedding space. (development set results)
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C.2. HYPER-PARAMETERS
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Figure C.1: Plotting STED w.r.t syn_ref and the PB cosine similarity w.r.t sem_ref for VGVAE with
different amounts of labeled data and for QKVAE. Points are scaled proportionally to the amount of
training data. The vertical and horizontal diameters of each ellipse are equal to the standard deviation
of the associated data points and axes.

sem_src syn_src target
M ↑ PB↑ M ↓ PB↓ M ↑ PB↑

Control and Reference baselines
sem_src 100 1.0 7.4 0.13 27.4 0.82
syn_src 7.4 0.13 100 1.0 12.0 0.16
Optimus 13.00 0.35 13.4 0.34† 10.5 0.32

Supervised Models
VGVAE 18.3 0.58 15.2 0.17 23.0 0.57
SynPG 47.6 0.86 7.8 0.11 24.4 0.73

Unsupervised Models
ADVAE 9.0 0.20 8.1 0.17 7.7 0.19
QKVAE 13.4 0.36 11.3 0.19 12.9 0.35

Table C.2: Semantic transfer results (development set results). The comparison scores between sentences
and syn_src that are not significantly different from the same scores produced with regard to sem_src
are marked with †.

sem_src syn_src target
STED↑ TMA2↓ TMA3↓ STED↓ TMA2↑ TMA3↑ STED↓ TMA2↑ TMA3↑

Control/Ceiling baselines

sem_src 0.0 100 100 11.9 46.4 6.8 10.9 47.0 7.3
syn_src 11.9 46.4 6.8 0.0 100 100 6.0 81.6 45.0
Optimus 9.7 58.2 20.6 9.2† 61.6† 22.6† 9.9 59.6 18.4

Supervised Models

VGVAE 11.9 45.4 6.8 3.2 84.2 58.2 6.7 77.6 39.0
SynPG 9.3 49.4 21.4 12.2 73.0 12.2 12.2 68.6 13.0

Unsupervised Models

ADVAE 10.1 53.4 18.6 9.8† 55.0† 17.4† 10.5 52.8 15.4
QKVAE 11.4 45.0 9.1 6.8 66.4 37.4 8.6 63.0 26.9

Table C.3: Syntactic transfer results (development set results). The comparison scores between sentences
and syn_src that are not significantly different from the same scores produced with regard to sem_src
are marked with †.
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APPENDIX C. UNSUPERVISED DISENTANGLEMENT OF SYNTAX AND SEMANTICS

Adam [Kingma and Ba, 2015]. Using a batch size of 64, we train for 40 epochs, which takes
about 30 hours on a single Nvidia GEForce RTX 2080 GPU. We use 4 layers for both
Transformer encoders and decoders. The encoders (resp. decoders) are initialized with
parameters from the 4 first layers (resp. 4 last layers) of BART encoders (resp. decoders).
In total, our model uses 236M parameters.

Manual hyper-parameter search Given that the architecture for Transformer layers
is fixed by BART, we mainly explored 3 parameters: number of latent variables L, number
of Transformer layers, and values for β. Our first experiments have shown that setting L

to 8 or 16 does not yield good results, which is probably due to the fact that a high L

raises the search space for possible arrangements of values with keys, and consequently
makes convergence harder. Concerning the number of layers, we observed that results
with the full BART model (6 layers) have high variance over different runs. Reducing the
number of layers to 4 solved this issue. In regards to β, we observed that it must be 0.6 or
less for the model to produce adequate reconstructions and that it is beneficial to set it
slightly lower for zsyn than for zsem so as to absorb more syntactic information with zsyn.
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