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Résumé

Ce travail présente une nouvelle approche permettant de produire un récapitulatif vi-
suel de l’activité physique d’un sujet à l’issue d’un protocole utilisant des capteurs iner-
tiels que nous avons implémenté dans des environnements libres. Grâce à cette nouvelle
méthode de visualisation, le comportement humain, en particulier la marche, peut main-
tenant être présenté de manière condensée sous une forme facile à lire et à interpréter.
Les séries temporelles collectées lors du suivi des patients dans des environnements de
vie libre étant souvent longues et complexes, notre contribution s’appuie sur une chaîne
de traitement innovante composée de méthodes de traitement du signal et d’algorithmes
d’apprentissage automatique. Une fois établie, la représentation graphique finale permet
de résumer les d’activité présentes dans les données et peut être rapidement appliquée à
des séries temporelles nouvellement acquises. En résumé, les objectifs de cette thèse sont
: (i) la segmentation des données brutes issues des centrales inertielles en régimes ho-
mogènes avec une procédure de détection de ruptures adaptative, (ii) la classification de
chaque régime selon ses caractéristiques, (iii) l’extraction de paramètres de chaque régime
de marche, (iv) le calcul d’un score à partir de ces caractéristiques et (v) la construction du
résumé visuel final, à partir des scores des activités et de leurs comparaisons à des modèles
sains. Ce retour graphique est une visualisation détaillée, adaptative et structurée qui aide
à mieux comprendre les événements marquants d’un protocole de marche complexe.

La première contribution de cette thèse est une revue sélective des études en environ-
nement libre utilisant des capteurs inertiels pour évaluer l’activité physique. La deuxième
contribution consiste en la mise en œuvre de trois protocoles (deux dans des environ-
nements semi-libres et un dans un environnement libre) basés sur la revue de littérature
précédente. La troisième contribution est une méthode adaptative de détection de ruptures
qui s’applique à des signaux transformés dans le domaine temps-fréquence et qui est basée
sur l’apprentissage de pénalité. La quatrième contribution de cette thèse est une méthode
de caractérisation qui classe les régimes segmentés en des régimes de marche ou en des
régimes associés à des activités sédentaires ou non sédentaires. La dernière contribution
est le rendu du retour visuel final.





Abstract

This work presents a novel approach to create a graphical summary of a subject’s
physical activity during a protocol in free-living environments that relies on the use of
inertial sensors. Thanks to this new visualization, human behaviour, in particular loco-
motion, can now be condensed in a easy-to-read and user-friendly output. As time series
collected while monitoring patients in free-living environments are often long and com-
plex, our contribution relies on an innovative pipeline of signal processing methods and
machine learning algorithms. Once learned, the graphical representation is able to sum
up all activities present in the data, and can quickly be applied on newly acquired time
series. In a nutshell, the objectives of this thesis are : (i) the segmentation of raw data from
Inertial Measurement Units into homogeneous regimes with an adaptive change-point de-
tection procedure, (ii) the classification of each regime according to its characteristics, (iii)
the extraction of features from each walking regime, (v) the computation of a score using
these features and (iv) the construction of the final visual summary from the scores of the
activities and their comparisons to healthy models. This graphical output is a detailed,
adaptive and structured visualization which helps better understand the salient events in
a complex gait protocol.

The first contribution of this thesis is a selective review of studies in free environments
using inertial sensors to asses physical activity. The second contribution consists in the
implementation of three protocols (two in Semi-Free Living Environments and one in a
Free-Living Environment) based on the previous literature review. The third contribution
is an adaptive change point detection method which applies signals transformed into the
time-frequency domain and which is based on penalty learning. The fourth contribution
of this thesis is a characterisation method that classifies segmented regimes into walk-
ing regimes or into regimes associated to sedentary or non-sedentary activities. The last
contribution is the rendering of the final visual feedback.
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Résumé en français

Contexte de la thèse

Contexte général

Au cours des dernières décennies, l’emploi de capteurs inertiels embarqués (centrales in-
ertielles, smartphones ou accéléromètres simples) pour quantifier l’activité physique et
notamment la locomotion des individus s’est généralisé [116, 157]. En effet, plusieurs solu-
tions commerciales ont vu le jour afin de fournir aux utilisateurs la possibilité de visualiser
l’évolution de leur activité physique notamment via des applications d’auto surveillance
[158]. Dans le contexte de la recherche, l’utilisation de ces capteurs inertiels légers et peu
onéreux s’est elle aussi intensifiée : plusieurs études cliniques s’appuient sur les mesures
d’accélération et de vitesse angulaire sur différentes positions du corps humain fournies
par ces capteurs afin par exemple d’entraîner des algorithmes de classification qui perme-
ttront d’évaluer plus précisément les dépenses énergétiques des individus sur une période
donnée [74]. Ces capteurs permettent par ailleurs d’identifier des marqueurs quantifiés de
la chute [133] ainsi que de fournir un suivi innovant de l’influence des traitements d’un su-
jet sur ses mouvements par exemple [23]. En outre, l’utilisation de ces capteurs permet de
proposer des diagnostics précoces, de rendre plus abordables les coûts des suivis de santé,
de définir des marqueurs de fragilité [1] etc.. Les conditions d’utilisation de ces capteurs
(récupération des données, filtres, extraction de paramètres) et leurs limites dans le cadre
des études en milieu clinique - c’est-à-dire dans des environnements contrôlés (hôpital,
laboratoire. . . ) - sont à présent largement documentées dans la littérature.

Ces analyses peuvent par ailleurs s’appliquer en ambulatoire (dans un environnement
libre non supervisé) : une telle approche permet de quantifier la marche d’un individu
de manière plus représentative puisqu’elle évite le syndrome d’Hawthorne ou de blouse
blanche [132]. Ce syndrome intervient lorsque les sujets mesurés réalisent qu’ils sont ob-
servés et mesurés au cours d’une acquisition. Leur approche d’un protocole au cours d’un
test clinique peut ainsi être altérée et la fiabilité de l’interprétation des paramètres car-
actérisant leur activité physique peut être réduite. Une analyse en environnement libre
permet donc d’atténuer cet effet clinique. Néanmoins, l’analyse en ambulatoire (dans des
environnements libres sans supervision) fait face à de nombreux défis : ce type d’étude
s’est longtemps basé sur des questionnaires déclaratifs où le sujet répertoriait ses activ-
ités quotidiennes, leur durée et éventuellement quelques données qualitatives (ressenti,
niveau de stress) [45]. Quant aux analyses quantitatives existantes, des compromis en-
tre la précision des méthodes, le coût de calcul imposés par l’utilisation de longs signaux,
l’encombrement des capteurs sur de longues périodes de mesure, la complexité des retours
quantifiés des analyses de signaux leur sont imposés.

Avant de pouvoir utiliser les capteurs inertiels décrits précédemment pour des études
en ambulatoire, il convient de concevoir une approche itérative et cohérente permettant
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de récupérer les signaux complexes et non stationnaires produits par ces études et de les
traiter pour aboutir à un retour quantitatif et lisible de l’activité physique d’un sujet. Cette
transition des données brutes vers des données exploitables et interprétables est un enjeu
crucial de la médecine actuelle.

Deux cohortes de sujets sont particulièrement étudiées dans ce manuscrit : les pa-
tients cérébro-lésés et les patients ayant subi des chirurgies orthopédiques. En effet, les
lésions cérébrales et médullaires ont des conséquences graves sur la marche d’un patient
et provoquent des incidents imprévus qui se déroulent dans son environnement naturel.
Par ailleurs, au cours de leur rééducation, les patients ayant subi des accidents vasculaires
cérébraux, par exemple, ont une forte propension à chuter [121]. L’étude de l’activité
physique d’un patient atteint d’une telle pathologie par l’enregistrement de plusieurs sig-
naux physiologiques et leur analyse permettrait une surveillance contrôlée de l’état des
patients, de compléter et de préciser les suivis déjà effectués en tests cliniques. En outre,
les séjours en chirurgie traumatologique et orthopédique ont représenté une dépense in-
édite de plusieurs milliards d’euros sur ces dernières années . La chirurgie orthopédique
et traumatologique fait d’ailleurs partie des premiers postes de dépense parmi les services
de chirurgie [54] . La possibilité de suivre longitudinalement des patients ayant subi une
chirurgie ostéoarticulaire revêt donc une importance conséquente et pourrait limiter les
coûts décrits auparavant en permettant d’anticiper des réhospitalisations chez certains pa-
tients.

Collaboration avec ENGIE Lab CRIGEN et ABILYCARE

Au cours de ma thèse CIFRE, j’ai travaillé avec le laboratoire Nanotechnologies NANO et
Capteurs de l’ENGIE LabCRIGEN (centre de recherche, de développement et d’expertise du
Groupe ENGIE dédié aux nouvelles utilisations de l’énergie dans les villes). Dans un con-
texte où l’hôpital s’ouvre à la ville (ambulatoire, suivi postopératoire . . . ) ENGIE souhaite
faire émerger des solutions innovantes dans le secteur de la e-santé et proposer de nou-
veaux services pour le patient, les professionnels et les exploitants. En effet, le système de
soins est confronté aujourd’hui à plusieurs difficultés majeures parmi lesquelles la gestion
de la dépendance, l’accès universel à une prise en charge de qualité ou l’accroissement sig-
nificatif des dépenses. Ces difficultés peuvent être en partie relevées grâce aux technologies
numériques qu’ENGIE souhaite mettre au service de la surveillance en ambulatoire et donc
notamment aux défis que cette surveillance occasionne comme expliqué précédemment.
En amont de cette thèse, le laboratoire NANO avait donc déjà développé en collaboration
avec le centre Borelli et l’entreprise ABILYCARE un projet d’évaluation dynamique et sta-
tique de l’activité physique des individus : le projet SMARTCHECK. Ce projet est d’ailleurs
aujourd’hui commercialisé par ABILYCARE. Cette évaluation a pour but de fournir un re-
tour quantifié et visuel à des cliniciens qui souhaiteraient évaluer l’activité physique de
leurs patients dans un environnement contrôlé. Elle s’appuie sur une mesure de 10 mètres
aller retour à l’aide de plusieurs centrales inertielles pour l’aspect dynamique et sur un test
d’équilibre sur une plateforme de force pour l’aspect statique. Ce projet s’inscrit dans une
démarche d’expansion des activités de l’ENGIE Lab CRIGEN aux enjeux de santé généraux
notamment aux aspects de médecine du travail. Cette thèse est le prolongement de cette
démarche et doit permettre à l’ENGIE Lab de CRIGEN de s’inscrire plus encore comme un
acteur des méthodes innovantes d’e-santé. ENGIE s’attache particulièrement à rendre ce
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suivi possible aux praticiens opérant dans des hôpitaux en leur proposant d’identifier par
exemple des risques de réhospitalisation chez leurs patients à la suite de leur séjour dans
un établissement de santé.

Collaboration avec le Centre BORELLI

Au cours de ma thèse, j’ai collaboré avec le Centre BORELLI, un laboratoire incluant des
chercheurs en médecine, des chercheurs en mathématiques appliquées ainsi que des pro-
fessionnels de santé tels que des neurologues, des chirurgiens ou des anesthésistes. La
mission fondamentale de ce laboratoire est d’associer ces différentes expertises afin de
quantifier le comportement humain et animal à l’aide de capteurs légers, et d’algorithmes
de traitement du signal et d’apprentissage statistique. Pour ce faire, les chercheurs du Cen-
tre BORELLI conçoivent et implémentent plusieurs protocoles dans des cadres cliniques en
utilisant notamment des capteurs inertiels ainsi que des capteurs d’oculométrie. Ces pro-
tocoles permettent d’enregistrer des signaux physiologiques (univariés ou multivariés) qui
sont au cœur des travaux du Centre BORELLI. Un premier défi pour le Centre est d’extraire
des informations permettant une analyse de ces signaux physiologiques. Le second est de
mettre en place une automatisation du traitement de ces données afin de pouvoir fournir
aux cliniciens des méthodes innovantes de suivi longitudinal des sujets enregistrés ainsi
que la possibilité d’effectuer des comparaisons interindividuelles entre les sujets.

Collaboration avec le Laboratoire du Traitement et du Transport de
l’Information L2TI

Au cours de ma thèse, j’ai aussi collaboré avec les équipes du Laboratoire de Traitement
et de Transport de l’Information L2TI. Ce laboratoire réunit des équipes de recherche sur
deux aspects principaux donc : le traitement des données et le transport de l’information
notamment au sein des réseaux. Un des enjeux de l’équipe de recherche est d’étendre son
savoir faire à plusieurs domaines existants pour le traitement des données notamment.

Motivations et enjeux : questions scientifiques

Comment mettre en place un protocole adapté à un environnement libre
?

Les études en environnement libre référencées dans la littérature sont variées et proposent
des objectifs nombreux. Les études peuvent par exemple différer dans les instructions don-
nées aux participants (liberté complète dans la réalisation des activités ou production d’une
liste et d’une chronologie détaillée), dans les moyens d’annotations (présence ou non d’un
examinateur, utilisation d’une caméra externe ou portable, utilisation d’un agenda que
le sujet doit remplir lui-même), dans les spécificités des environnements où les prises de
mesure ont lieu (environnement libre complet, campus d’université, hôpital) etc.. Deux
types d’environnement couramment implémentés dans les travaux ambulatoires que l’on
retrouve dans la littérature se dégagent notamment : les environnements semi libres où
certaines conditions de la prise de mesure sont contrôlées par un examinateur et les en-
vironnement entièrement libres qui sont exclusivement les environnements naturels des
sujets mesurés. Dans cette thèse, l’un des premiers défis était de regrouper ces différentes
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observations effectuées dans la littérature dans une revue étayée afin de notamment mieux
définir les environnements semi libres et les environnements entièrement libres. Cette
étude bibliographique a permis de définir les enjeux de mise en place des dispositifs de
mesure dans ces environnements afin de pouvoir construire des protocoles de mesure
de l’activité physique qui soient valides dans un environnement libre. Cette étude bib-
liographique a également permis de cibler au mieux le type de capteurs à utiliser en milieu
libre (capacité de stockage des données et autonomie importantes).

Comment analyser les signaux récupérés en sortie des protocoles en
environnement libre ?

Dans le contexte des études en environnements libres, les signaux physiologiques récupérés
sont complexes : ils sont multivariés, plus longs que des signaux physiologiques récupérés
dans des cadres cliniques et non stationnaires. la figure 0.1montre des signaux d’accélération
mesurés dans des environnements semi libres : ces signaux sont composés d’une succes-
sion de phases homogènes, correspondant aux différentes phases du protocole. La seg-
mentation de signal ou la détection de ruptures intervient alors comme une étape impor-
tante afin de pouvoir dégager des régimes homogènes dans les signaux physiologiques qui
permettront une meilleure analyse en sortie. Ces algorithmes permettent, à partir d’une
définition mathématique de la notion de changement, de repérer automatiquement ces
changements dans des signaux. Un des défis de cette thèse est d’utiliser ces approches
pour le traitement des signaux récupérés lors des protocoles implémentés en environ-
nement libre. Ces méthodes permettent de produire une analyse pertinente des informa-
tions transportées par ces signaux. La segmentation pourrait être effectuée par un expert :
cela est notamment souvent le cas lors d’études effectuées dans des cadres cliniques. Néan-
moins, cette annotation manuelle induit des tâches longues et fastidieuses qui doivent être
répétées sur chaque enregistrement ce qui constitue un frein au déploiement des méthodes
notamment lorsque les annotations s’effectuent sur des signaux récupérés dans un envi-
ronnement libre. Uneméthode de segmentation automatique apparaît donc nécessaire afin
d’éviter cette complexité importante dans le contexte de cette thèse.
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Figure 0.1: Signaux filtrés récupérés dans le bas du dos de participants enregistrés dans
un environnement semi libre : vitesse angulaire craniocaudale et accélération antéro-
postérieure.

La conception d’une méthode automatisée de détection de ruptures passe notamment
par la spécification du type de ruptures que l’on cherche, et du niveau de granularité at-
tendu. Un défi de cette thèse est donc de définir les types de ruptures qui doivent être
détectés en mettant en place une méthode supervisée. L’approche utilisée dans cette étude
permet en effet, à partir de quelques données annotées, d’isoler des régimes particuliers sur
les signaux. Des méthodes non supervisées de détection de ruptures sont parfois utilisées.
Néanmoins, dans le contexte de cette étude effectuée dans un environnement libre plus
chaotique qu’un environnement clinique, une définition au préalable des types de rupture
permet de cibler plus efficacement des types spécifiques de régimes homogènes. Il s’agit
donc de pouvoir développer uneméthode adaptative de segmentation. Le niveau de granu-
larité de cette détection est contrôlé pour que seules les ruptures annotées soient détectées.
Une telle méthode d’apprentissage qui permet de répliquer une stratégie d’annotation sur
de nouvelles données est développée dans cette thèse.

Comment caractériser des régimes homogènes segmentés et notamment
les régimes de marche ?

Après avoir appliqué notre méthode de segmentation adaptative sur nos signaux, nous
récupérons des régimes homogènes segmentés auxquels nous allons donner des labels
afin de les caractériser (régimes demarche, d’activité sédentaire, d’activité non sédentaire).
Dans la littérature, les portions de signaux physiologiques peuvent être classées selon cer-
tains labels prédéfinis (portions de marche, d’activité sédentaire, de course...). Cette car-
actérisation des signaux permet plusieurs interprétations cliniques. En effet, cela permet
d’évaluer par exemple le taux d’énergie dépensée par un sujet dans une journée, l’évolution
de l’activité physique d’un patient après l’administration d’un traitement etc...La grande
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((a)) Stratégie d’annotation 1

((b)) Stratégie d’annotation 2

Figure 0.2: Évolution des résultats de la détection de ruptures pour un participant témoin
en fonction des annotations données en entrée. Les lignes verticales correspondent aux
moments où la méthode détecte un point d’arrêt. La partie inférieure des visuels corre-
spond au spectrogramme construit à partir des signaux physiologiques : les différences
des régimes dans leur signature spectrale sont visibles. La succession de couleur dans la
partie supérieure correspond aux régimes annotés.

majorité des autres études sont des méthodes de classification d’activité qui permettent de
caractériser tous les régimes segmentés et non pas uniquement les régimes de marche. Ces
approches s’appliquent à des fenêtres glissantes ce qui peut induire un coût computation-
nel élevé lorsqu’elles sont utilisées sur des longs signaux comme ceux récupérés dans un
environnement libre. Un défi de la thèse est de proposer une approche de caractérisation
des régimes homogènes isolés sur des signaux longs récupérés dans des environnements
libres en évitant les écueils décrits auparavant. L’originalité de notreméthode de classifica-
tion repose ainsi sur sa condition d’application aux signaux : elle s’applique à des régimes
pré-segmentés et non à des portions de signaux sélectionnés par des fenêtres glissantes
comme cela est utilisé couramment par les études de la littérature. Cette méthode classe
tout d’abord les régimes segmentés en des régimes de marche ou de non marche avant
de classer les régimes qui ne sont pas des régimes de marche en des régimes d’activité
sédentaire ou d’activité non sédentaire.
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Comment construire un outil graphique innovant pour fournir un suivi
quantifié de l’activité physique ?

Dans presque tous les travaux cités ci-dessus, les mesures en sortie fournies aux cliniciens
sont souvent généralisées/agrégées grâce à des caractéristiques simples adaptées aux ob-
jectifs des études (temps passé dans diverses activités ciblées, évaluation de la dépense
énergétique à partir du temps passé dans des activités plus ou moins énergivores, nom-
bre de chutes, temps de chute...). Ces mesures de sortie agrégées et moyennées peuvent
cacher certains phénomènes pertinents d’intérêt. Une autre approche serait d’utiliser des
caractéristiques d’une granularité plus fine telles que celles utilisées en milieu clinique.
Cependant, cela impliquerait un plus grand coût de calcul (par exemple sur la détection
de tous les pas, des foulées...) et un flux d’informations excessif qui submergerait les clini-
ciens. Cela les empêcherait d’obtenir une évaluation claire et rapidement compréhensible
de l’activité physique de leurs patients. Partant de ce constat, un des défis de cette thèse
est d’apporter une solution alternative et intermédiaire permettant unemacro-analyse pré-
cise, à un faible coût de calcul, ergonomique pour les cliniciens et qui conserve la structure
temporelle. Un objectif de cette étude est donc d’extraire pour chaque régime de marche
identifié des paramètres cohérents permettant cette macro-analyse. Ainsi, il serait possible
de construire des modèles de comparaison sur des sujets sains afin d’aboutir à un retour
graphique didactif pour un praticien. Un exemple de retour visuel calculé grâce à notre
chaîne de traitement est présenté dans la figure 0.4.

Contributions

Une chaîne de traitement est mise en place dans cette thèse. Elle permet de traiter les
signaux récupérés dans un environnement libre pour aboutir à un outil graphique inno-
vant d’évaluation de l’activité physique. Cette approche est donc composée de plusieurs
étapes : une analyse de la littérature existante sur les études utilisant des capteurs iner-
tiels afin de quantifier l’activité physique dans des environnements libres, la mise en place
de protocoles pour la récupération de signaux en environnement libre, la segmentation
des données, la classification des régimes segmentés, l’extraction des paramètres associés
à des caractéristiques de la marche et la comparaison de ces paramètres avec le modèle
sain. la figure 0.3 résume les étapes successives depuis les données brutes jusqu’au retour
graphique final.

Les contributions de cette thèse sont donc résumées comme suit.

• Revue de littérature : Nous effectuons une revue complète des études utilisant
des capteurs inertiels pour évaluer l’activité physique des sujets dans des environ-
nements libres. Au sein de cette revue, nous nous attachons à recenser les différents
objectifs de ces études, les activités effectuées par leurs sujets, les types de capteurs
utilisés, les méthodes d’instructions et d’annotations. Nous avons détaillé une partie
de cet état de l’art dans une publication précédente [78].

• Protocoles dans un environnement libre : Nous concevons et mettons en place
trois protocoles (deux en environnements semi libres incluant 15 participants sains
et un en environnement entièrement libre incluant 21 sujets sains, 6 patients avec
une pathologie orthopédique et 3 patients cérébro-lésés) en s’appuyant sur les con-
clusions détaillées dans la revue de littérature décrite auparavant. Nous choisissons
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Figure 0.3: Etapes successives de la chaîne de traitement mise en place dans cette thèse.

les capteurs à utiliser, les activités à réaliser au cours des prises de mesure, les transi-
tions entre les régimes d’activité à identifier... Nous incluons et mesurons des sujets
sains, des patients cérébrolésés et des patients ayant subi une intervention chirurgi-
cale orthopédique ou sur le point d’en subir une.

• Segmentation : Nous implémentons un algorithme adaptatif de détection de rup-
tures pour traiter les signaux mesurés par les centrales inertielles. La méthode
recherche les changements significatifs dans l’espace temps-fréquence à une échelle
donnée, c’est-à-dire les instants où le sujet a modifié son comportement/activité.
Les signaux sont ainsi segmentés en plusieurs régimes homogènes qui permettront
d’extraire des informations des enregistrements. Nous effectuons cette segmenta-
tion via un apprentissage de pénalité sur plusieurs signaux annotés. Les résultats de
cette méthode sur deux protocoles sont présentés (en utilisant plusieurs métriques
d’évaluation) et discutés. Les premiers détails de cette méthode ont été décrits dans
une publication précédente [79].

• Classification : Une fois les régimes homogènes segmentés, nous les classons comme
phases de marche ou phases de non-marche par une procédure de classification su-
pervisée. Un second algorithme identifie, au sein des phases de non marche, les
régimes sédentaires et les régimes non sédentaires, fournissant ainsi une labellisa-
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tion complète des régimes. Pour chaque tâche, des paramètres sont extraits sur les
régimes de marche afin d’entraîner des classifieurs spécifiques (plusieurs classifieurs
sont comparés). Les résultats de cette méthode sur deux protocoles sont présentés
(Matrices de confusion, précision...) et discutés.

• Construction de l’outil graphique : Nous sélectionnons des paramètres à ex-
traire sur les régimes de marche afin d’évaluer quatre critères de marche (Stabilité,
Régularité, Vigueur et Symétrie). En outre, nous contrôlons la pertinence et la ro-
bustesse du choix de ces paramètres pour caractériser chaque critère d’évaluation de
la marche. En utilisant des modèles construits sur ces paramètres et appris à partir
de sujets sains, nous associons à chaque régime de marche un score représenté par
une couleur distincte, permettant un retour visuel et intuitif. Un exemple de retour
visuel calculé grâce à notre chaîne de traitement est présenté dans la figure 0.4. Nous
associons ces retours graphiques à des commentaires de praticiens (un neurologue
et un chirurgien orthopédique). Les détails de la méthode de classification ainsi que
de la construction de l’outil graphique sont décrits dans une publication en cours de
soumission.

Figure 0.4: Exemple de retour graphique visuel proposé aux praticiens après la mise en
place du processus de méthodes appliquées dans cette thèse.

Vue d’ensemble du manuscrit

Le reste du manuscrit est composé de six chapitres :
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• Chapitre 2 : Selective Review of FLE/Semi-FLE Studies : Ce chapitre vise à fournir
un aperçu sélectif mais complet des études en environnements entièrement libres
ou semi libres utilisant des capteurs inertiels pour évaluer l’activité physique, en
passant en revue les aspects techniques liés aux capteurs utilisés, les aspects com-
portementaux tels que les protocoles ou les instructions.

• Chapitre 3 : Protocols’ Setups and Contexts : Ce chapitre décrit l’implémentation
de trois protocoles (deux en environnements semi libres et un en environnement
entièrement libre) basés sur la revue de la littérature précédente.

• Chapitre 4 : Adaptive Changepoint Detection Method : Ce chapitre présente une
méthode de segmentation adaptative qui s’applique à des signaux transformés dans
le domaine temps-fréquence et qui s’appuie sur un apprentissage de pénalité.

• Chapitre 5 : Classification Method : Il s’agit d’une méthode de caractérisation des
régimes homgènes segmentés. Le mécanisme d’extraction des paramètres est dé-
taillé ainsi que celui de l’entraînement des classifieurs utilisés.

• Chapitre 6 : Visual Feedback Rendering : Score Generation, Features’ Robustness
Les étapes de la construction de l’outil graphique final à partager aux praticiens
sont décrites dans ce chapitre. L’extraction de paramètres associés à des critères de
marche et l’évaluation de leur pertinence pour caractériser un des critères de marche
sont détaillées ici. Des exemples de ces outils graphiques sont par ailleurs présentés
et discutés.

• Conclusion : Un rappel des conclusions de chaque chapitre est effectué dans cette
section. En outre, des pistes de recherche sont avancées.
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Introduction

1.1 Context of the thesis

1.1.1 General Context

Over the last few decades, the use of inertial sensors (Inertial Measurement Units (IMUs),
smartphones or simple accelerometers) to quantify physical activity and in particular the
locomotion of individuals has become widespread [116, 157]. Indeed, several commercial
solutions have emerged to provide users with the possibility of visualising the evolution
of their physical activity, notably via self-monitoring applications. In the research con-
text, the use of these light and inexpensive inertial sensors has also intensified: several
clinical studies rely on the measurements of acceleration and angular velocity on differ-
ent positions of the human body provided by these sensors in order, for example, to train
classification algorithms that will make it possible to evaluate more precisely the energy
expenditure of individuals over a given period of time. These sensors also make it possible
to identify fall markers [133] as well as to provide innovative monitoring of the influence
of a subject’s treatments on his movements for instance [23]. In addition, the use of these
sensors makes it possible to provide early diagnoses, to reduce the costs of health care, to
better define frailty markers, etc. The conditions of use for these sensors (data recovery,
filters, extraction of parameters) and their limits in clinical settings - i.e. in controlled en-
vironments (hospital, laboratory, etc.) - are now largely documented in the literature.

These analyses can also be applied in ambulatory settings (in free environments): such
an approach allows the quantification of an individual’s walking in a more representative
way since it avoids the Hawthorne or white coat syndrome [132]. This syndrome occurs
when the recorded participants become aware that they are being observed and measured
during an acquisition. Their approach to a protocol during a clinical test can thus be al-
tered and the reliability of the interpretation of parameters characterising their physical
activity can be reduced. An analysis in a free environment can therefore mitigate this clin-
ical effect. Nevertheless, ambulatory studies face several challenges: this type of study has
long been based on declarative questionnaires in which the subject lists his or her daily ac-
tivities, their duration and possibly some qualitative data (feelings, stress level)[45]. As for
the existing quantitative assessments, compromises between the precision of the methods,
the cost of calculation imposed by the use of long signals, the encumbrance of the sensors
over long periods of measurement, the complexity of the quantified feedback of the anal-
yses of signals are imposed on them.
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Before the inertial sensors described above can be used for ambulatory studies, an iter-
ative and coherent approach needs to be designed to retrieve the complex, non-stationary
signals produced by these studies and process them into a quantitative and interpretable
feedback of a subject’s physical activity. This transition from raw data to usable and in-
terpretable data is a crucial issue in medicine today.

Two cohorts of subjects are particularly studied in this manuscript: brain-injured pa-
tients and patients who have undergone orthopaedic surgery. Indeed, brain and spinal
cord injuries have serious consequences on a patient’s walking and cause unforeseen inci-
dents to take place in their natural environment. Furthermore, during their rehabilitation,
patients who have suffered strokes, for example, have a strong propensity to fall [121].
Studying the physical activity of a patient suffering from such a pathology by recording
several physiological signals and analysing them would allow a controlled monitoring of
the patient’s condition, complementing and refining the follow-ups already carried out
in clinical tests. In addition, stays in trauma and orthopaedic surgery have represented
an unprecedented expenditure of several billion euros in recent years. Orthopaedic and
traumatological surgery is also one of the largest areas of expenditure among the surgical
services [54] . The possibility of longitudinally following patients who have undergone
orthopaedic surgery is therefore of considerable importance. It could limit the costs de-
scribed above by making it possible to anticipate rehospitalisation in certain patients.

1.1.2 Collaboration with ENGIE Lab CRIGEN and ABILYCARE

During my thesis, I collaborated with the Nanotechnologies and Sensors NANO labora-
tory of ENGIE Lab CRIGEN (research, development and expertise centre of the ENGIE
Group dedicated to new uses of energy in cities). In a context where hospitals are opening
up to the city (ambulatory care, post-operative follow-up, etc.), ENGIE wishes to develop
innovative solutions in the e-health sector and to propose new services for patients, pro-
fessionals and operators. Indeed, the healthcare system is currently facing several major
difficulties, including the management of dependency, universal access to quality care and
the significant increase in expenditure. These difficulties can be partly overcome thanks
to the digital technologies that ENGIE wishes to put at the service of free-living moni-
toring and thus notably to the challenges that this monitoring entails as explained above.
Prior to this thesis, the NANO laboratory had already developed - in collaboration with
the BORELLI centre and the company ABILYCARE - a project for the dynamic and static
evaluation of the physical activity of individuals : the SMARTCHECK project. This project
is now commercialised by ABILYCARE. The aim of this assessment is to provide quantified
and visual feedbacks to clinicians who wish to assess the physical activity of their patients
in a controlled environment. It is based on a 10m forward and backward measurement
using several inertial units for the dynamic aspect. It uses a balance test on a force plat-
form for the static aspect. This project is part of an approach to expand the activities of
ENGIE Lab CRIGEN to general health issues, particularly aspects of workplace medicine.
This thesis is an extension of this approach and should enable ENGIE Lab CRIGEN to be-
come even more involved in innovative e-health methods. ENGIE is particularly keen to
make this monitoring possible for practitioners operating in hospitals by offering them
the possibility of identifying, for example, the risks of re-hospitalisation for their patients
following their stay in a health establishment.
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1.1.3 Collaboration with the Centre BORELLI

During my thesis, I collaborated with the Centre BORELLI, a laboratory including medical
researchers, applied mathematics researchers and health professionals such as neurolo-
gists, surgeons or anaesthetists. The fundamental mission of this laboratory is to combine
these different expertises in order to quantify human and animal behaviour using light sen-
sors, signal processing and statistical learning algorithms. To this end, Centre BORELLI
researchers are developing and implementing protocols in clinical settings using inertial
sensors and eye-tracking sensors. These protocols allow the recording of physiological
signals (univariate or multivariate) which are at the heart of the Centre BORELLI’s work.
A first challenge for the Centre is to extract relevant information allowing an analysis of
these physiological signals. The second challenge is to automate the processing of these
data in order to provide clinicians with innovative methods of longitudinal follow-ups and
with the possibility of carrying out inter-individual comparisons between subjects.

1.1.4 Collaboration with the Laboratoire du Traitement et du Transport
de l’Information L2TI

During my thesis, I also collaborated with the research teams of the Laboratory of Infor-
mation Processing and Transport (L2TI). This laboratory brings together research teams
on two main aspects: data processing and information transport, particularly within net-
works. One of the challenges of the research teams is to extend its expertise to several
existing fields, particularly in data processing.

1.2 Motivations and issues: scientific questions

1.2.1 How to set up protocols adapted to an open environment ?

Studies in free environments that are referenced in the literature are varied and present a
wide range of objectives. For example, the studies may differ in the instructions given to
the participants (complete freedom in carrying out the activities or imposed activities), in
the means of annotation (presence or absence of an examiner, use of an external or wear-
able camera, use of a diary that the subject must fill in himself), in the specificities of the
environments where the measurements are taken (complete free environment, university
campus, hospital) etc. Two types of environments commonly implemented in ambulatory
work stand out: the Semi-Free-Living Environments (semi-FLEs) where some measure-
ments’ conditions are controlled by an examiner and the Free-Living Environments (FLEs)
which are exclusively the natural environments of the measured subjects. In this thesis,
one of the first challenges was to bring together these observations made in the litera-
ture in a documented review in order to better define the semi-FLEs and the FLEs. This
bibliographical study made it possible to define the challenges of setting up measurement
mechanisms in free environments in order to be able to construct physical activity assess-
ment protocols that are valid in such conditions. This review also made it possible to better
identify the type of sensors to be used in a free environment (high data storage capacity
and autonomy).
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1.2.2 How to assess the signals retrieved from the protocols setup in a
free environment?

In the context of studies carried out in free environments, the recovered physiological
signals are complex: they are multivariate, longer than physiological signals recovered
in clinical and they are non-stationary. Figure 1.1 shows acceleration signals measured
in semi-FLEs: these signals are composed of a succession of homogeneous phases, cor-
responding to the different phases of the protocol. Signal segmentation or change point
detection is then an important step in order to identify homogeneous regimes in the phys-
iological signals that will allow a better analysis of the recorded physical activity. These
algorithms allow, based on a mathematical definition of the concept of change, to auto-
matically identify these changes in signals. One of the challenges of this thesis is to use
these approaches for the processing of signals recovered from protocols implemented in a
free environment. These methods allow to produce a relevant analysis of the information
carried by these signals. The segmentation could be performed by an expert: this is often
the case in clinical studies. Nevertheless, this manual annotation induces long and tedious
tasks that must be repeated on each recording, which is a hindrance to the deployment of
the methods. An automatic segmentation method therefore seems necessary to avoid this
major complexity in the context of this thesis.

Figure 1.1: Filtered signals recovered from the lower back of participants recorded in a
Semi-Free-Living Environment (semi-FLE): craniocaudal angular velocity and anteropos-
terior acceleration.

The conception of an automated change point detection method requires the specifi-
cation of the type of change we are looking for, and the expected level of granularity. One
of the challenges of this thesis is therefore to define the types of breaks that should be de-
tected by implementing a supervised approach. The approach used in this study makes it
possible to isolate specific regimes on the signals from a few annotated data. Unsupervised
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methods of detecting breaks are sometimes used. Nevertheless, in the context of this study
carried out in a free environment that is more chaotic than a controlled environment, a
prior definition of the types of change point makes it possible to target more efficiently
specific types of homogeneous regimes. The aim is therefore to develop this kind of adap-
tive segmentation method. The level of granularity of this detection is controlled so that
only annotated breaks are detected. Such a learning method that allows replicating an an-
notation strategy on new data is developed in this thesis. The evidence of this adaptability
to annotations is shown in Figure 1.2.

((a)) Annotation strategy 1

((b)) Annotation strategy 2

Figure 1.2: Evolution of change point detection results for a control participant as a function of
the input annotations. The vertical lines correspond to the moments when the method detects a
change point. The lower part of the visuals corresponds to the spectrogram constructed from the
physiological signals: the differences of the regimes in their spectral signature are visible

1.2.3 How to characterize segmented homogeneous regimes and
specifically walking regimes?

After applying our adaptive segmentation method on our signals, we recover segmented
homogeneous regimes to which we will give labels in order to characterize them (walking,
sedentary activity, non-sedentary activity regimes). In the literature, portions of physio-
logical signals can be classified according to specific predefined labels (portions of walking,
sedentary activity, running...). This characterisation allows several clinical interpretations.
Indeed, it allows the evaluation of, for instance, the rate of energy expended by a subject
in a day, the evolution of a patient’s physical activity after the administration of a treat-
ment, etc. Human Activity Recognition (HAR) methods allow the characterisation of all



40 CHAPTER 1. INTRODUCTION

segmented regimes and not only walking regimes. These approaches apply to sliding win-
dows which can induce a high computational cost when used on long signals such as those
recovered in a free environment. A challenge of the thesis is to provide an approach for
characterising isolated homogeneous regimes on long signals recovered from free envi-
ronments while avoiding the pitfalls described above. The originality of our classification
method lies in its condition of application to signals: it applies to pre-segmented regimes
and not to portions of signals selected by sliding windows as it is commonly used in the
literature. The method first classifies segmented regimes into walking or non-walking
regimes before classifying non-walking regimes into sedentary or non-sedentary regimes.

1.2.4 How to build an innovative graphical tool to provide quantified
monitoring of physical activity?

In almost all of the work cited above, the output measures provided to clinicians are often
generalized/aggregated using simple features adapted to the objectives of the studies (time
spent in various targeted activities, assessment of energy expenditure from time spent in
more or less energy-intensive activities, shadow of falls, fall time...). These aggregated and
averaged output measures may hide some relevant phenomena of interest. An alternative
approach would be to use features of finer granularity such as those used in clinical set-
tings. However, this would imply a greater computational cost (e.g. on detecting all steps,
strides...) and an excessive information flow that would overwhelm clinicians. This would
prevent them from obtaining a clear and quickly understandable assessment of the physi-
cal activity of their patients. Based on this observation, one of the challenges of this thesis
is to provide an alternative and intermediate solution allowing an accurate macro-analysis,
at a low computational cost, ergonomic for the clinicians and which preserves the tempo-
ral structure. One of the challenges of this thesis is therefore to extract for each identified
walking regime, consistent parameters allowing this macro-analysis. Thus, comparison
models can be built on healthy subjects in order to provide practitioners with a didactive
graphical feedback. An example of such a visual feedback computed with our processing
pipeline is presented Figure ??.

1.3 Contributions

A pipeline approach is implemented in this thesis. It allows to process the signals recov-
ered in a free environment to produce an innovative graphical tool for the evaluation of
physical activity. This approach is thus composed of several steps: an analysis of the exist-
ing literature on studies using inertial sensors in order to quantify physical activity in free
environments, the implementation of protocols for the recovery of signals in free environ-
ments, the segmentation of data, the classification of segmented regimes, the extraction of
features associated with walking categories (Stability, Steadiness, Sturdiness, Symmetry)
and the comparison of these parameters with the healthy models. Figure 1.3 summarizes
the successive steps from the raw data to the final graphical output.

The contributions of this thesis are therefore summarized as follows.

• Literature review : We conduct a comprehensive review of studies using inertial
sensors to assess subjects’ physical activity in free environments. Within this review,
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Figure 1.3: Etapes successives de la chaîne de traitement mise en place dans cette thèse.

we focus on identifying the various objectives of these studies, the activities per-
formed by their subjects, the types of sensors used, the instruction and annotation
methods. We detailed some section of this state of the art in a previous publication
[78].

• Free-living environments and semi free-living environments protocols : We
conceive and implement three protocols (two in semi-FLEs including 15 healthy par-
ticipants and one in Free-Living Environment (FLE) including 21 healthy subjects, 6
patients with an orthopedic pathology and 3 cerebro-injured patients) based on the
findings detailed in the literature review described before. We choose the sensors to
be used, the activities to be performed during the measurements, the transitions be-
tween activity regimes to be identified... We include and measure healthy subjects,
brain damaged patients and patients who have been or are about to be hospitalized
in the orthopedic department.

• Segmentation : We implement an adaptive change point detection algorithm to
process signals measured by the Inertial Measurement Unit (IMU). This method
looks for significant changes in the time-frequency space at a given scale, i.e., the
moments when the subject has modified his behavior/activity. Signals are thus seg-
mented into several homogeneous regimes that allow us to extract relevant informa-
tion from the experiments. We perform this segmentation via penalty learning on
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several annotated signals. The results of this method on two protocols are presented
(using several evaluation metrics) and discussed. The first details of this method
were described in a previous publication [79].

• Classification : Once the homogeneous regimes are segmented, we classify them
as walking phases or non-walking phases by using a supervised classification proce-
dure. A second algorithm identifies, within the non-walking phases, sedentary and
non-sedentary regimes, thus providing a complete classification of the regimes. For
each task, parameters are extracted on the walking regimes to train specific classi-
fiers (several classifiers are compared). The results of this method on two protocols
are presented (Confusion matrices, accuracy...) and discussed.

• Visual Feedback rendering : We select features to be extracted on segmented and
classified regimes in order to evaluate four criteria of walking (Stability, Steadiness,
Sturdiness and Symmetry). Furthermore, we check the relevance and robustness
of the choice of these features to characterize each gait evaluation criterion. Using
models built on these features and learned from healthy subjects, we associate to
each walking regime a score represented by a distinct color, allowing a visual and
intuitive feedback. An example of visual feedback computed with our processing
pipeline is shown in figure 1.4. We associate these graphical feedbacks with com-
ments from practitioners (a neurologist and an orthopedic surgeon). The details of
the classification method as well as the construction of the graphical tool are de-
scribed in a publication currently being submitted.
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Figure 1.4: Example of visual graphical feedback provided to practitioners after the imple-
mentation of the processing pipeline

1.4 Overview of the manuscript :

The rest of the manuscript is composed of six chapters:

• Chapter 2 : Selective Review of FLE/Semi-FLE Studies This chapter aims to provide
a selective but comprehensive overview of studies FLEs or semi-FLEs using inertial
sensors to assess physical activity, reviewing technical aspects related to the sensors
used, behavioral aspects such as protocols or instructions.

• Chapter 3 : Protocols’ Setups and Contexts This chapter describes the implemen-
tation of three protocols (two in semi-FLEs and one in FLE) based on the previous
literature review.

• Chapter 4 : Adaptive Changepoint Detection Method : This chapter presents an
adaptive segmentation method that applies to signals tranformed into the time-
frequency domain and which is based on penalty learning.

• Chapter 5 : Classification Method This is a method for characterizing segmented
homogenous regimes. Features extraction is detailed as well as method to train clas-
sifiers.

• Chapter 6 : Visual Feedback Rendering : Score Generation, Features’ Robustness The
steps involved in building the final graphical tool to be distributed to practitioners
are described in this chapter. The extraction of features associated with gait criteria
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and the evaluation of their relevance to characterize one of these gait criteria are
detailed here. Examples of these graphical tools are also presented and discussed.

• Conclusion : A review of the findings of each chapter is provided in this section. In
addition, suggestions for further research are provided.

1.5 Publications
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Sylvain Jung, Mona Michaud, Laurent Oudre, Eric Dorveaux, Louis Gorintin, Nicolas Vay-
atis, and Damien Ricard. The use of inertial measurement units for the study of free living
environment activity assessment: A literature review. Sensors, 20(19): 5625, 2020.

Nicolas de l’Escalopier, Cyril Voisard, Mona Michaud, Albane Moreau, Sylvain Jung, Brian
Tervil, Nicolas Vayatis, Laurent Oudre, and Damien Ricard. Evaluation methods to assess
the efficacy of equinovarus foot surgery on the gait of post-stroke hemiplegic patients: A
literature review. Frontiers in Neurology, 13, 2022.

Published international peer-reviewed conference paper :

Sylvain Jung, Laurent Oudre, Charles Truong, Eric Dorveaux, Louis Gorintin, Nicolas Vay-
atis, andDamien Ricard. Adaptive change-point detection for studying human locomotion.
In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), pages 2020–2024. IEEE, 2021.

Submitted to international journal :

Sylvain Jung, Laurent Oudre, Charles Truong, Eric Dorveaux, Louis Gorintin, Nicolas Vay-
atis, and Damien Ricard. A machine learning pipeline for gait analysis in a semi-free living
environment. Scientific Reports, 2023
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Selective Review of FLE/Semi-FLE Studies

2.1 Introduction

In the context detailed in Chapter 1, the goal of this chapter is to identify and describe
the uses of wearable inertial sensors in free environments that can be FLEs or semi-FLEs.
semi-FLEs studies are studies where some conditions are controlled by the experimenter
while FLEs studies are stricly restricted to the subjects’ natural environment. This chapter
specifically details research works that include phases of movement, particularly walking.
It aims at providing a selective yet complete overview on the topic, by reviewing technical
aspects linked to the used sensors, behavioral aspects such as protocols or instructions.
To that end, the ten most recent years of research on these themes from the early pioneer
works to the recent deep learning approaches have been analyzed.

2.1.1 Existing Reviews

Several reviews endeavour to identify the studies using motion sensors to analyse the
Physical Activity (PA) of subjects, taking into account at least partially if not exclusively
works carried out under free-living conditions. Gorman et al. [71] detail several methods
of Energy Expenditure (EE) assessment in free-living settings. De Bruin et al. [48], Byrom
and Rowe [30] (Chronic Obstructive Pulmonary Disease (COPD) patients), Tedesco et al.
[145], Murphy [108], de Oliveira Gondim et al. [49] and Frechette et al. [66] dwell upon the
use of wearable systems (accelerometers or other motion sensors) to monitor activities in
specifically targeted cohorts (Parkinson’s Disease (PD), Multiple Sclerosis (MS)). Vienne
et al. [157], Yang and Hsu [163] and Tedesco et al. [145] also focus on the use of wearable
sensors in clinical settings but consider any kind of cohort. Attal et al. [7] and Narayanan
et al. [109] analyze articles related to HAR algorithms and classifiers. Schwickert et al.
[135] and Henriksen et al. [72] focus on other kinds of studies (respectively studies based
on fall detection and studies using one specific brand of sensors). Table 2.1 summarizes
all reviews that address some of the pivotal topics of this chapter (motion sensors, free-
living settings...). It specifies how the referenced articles address the three main aspects
detailed in this chapter: sensors, protocols and algorithms. According to Table 2.1, the
majority of the reviews selected for this section generally include articles explaining the
various aspects of sensor implementation in a detailedmanner, whereas they tend to be less
detailed regarding the implementation of protocols (instructions, measurement durations,
etc.).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Specific Factors

Focused on
FLE/Semi-

FLE

√ √ √ √ √

Considering
all cohorts Elders

√ √ √ √ √
COPD Elders

√
Elders

√ √
MS PD

√ √
PD

√

Sensors

Types of
Sensors

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Number of
Sensors

√ √ √ √ √ √ √ √ √

Placements
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Technical
Characteris-

tics

√ √ √ √ √ √

Additional
Sensors

√ √ √ √

Protocols

Instructions’
Details

√ √ √

Measurement’s
Durations

√ √ √ √ √ √ √

Annotations
√ √ √ √

Algorithms
Features

√ √ √ √ √ √ √ √ √ √

Classifiers
√ √ √ √ √ √ √

Table 2.1: Comparison of our review to other existing reviews dealing with the use of
wearable motion sensors in free-living settings. 1 → De Bruin et al. [48] (2008), 2 →
Murphy [108] (2009), 3→ Yang and Hsu [163] (2010), 4→ Schwickert et al. [135] (2013), 5
→ Gorman et al. [71] (2014), 6→ Attal et al. [7] (2015), 7→ Byrom and Rowe [30] (2016),
8→ Tedesco et al. [145] (2008), 9→ Tedesco et al. [145], 10→Wang et al. [160] (2017), 11
→ Narayanan et al. [109] (2019), 12 → Henriksen et al. [72] (2020),13 → Frechette et al.
[66] (2019),14→ de Oliveira Gondim et al. [49] (2020),15→ Prasanth et al. [124] (2021),16
→ Benson et al. [21] (2022),17 → Sica et al. [139] (2021),18 → this chapter

2.1.2 Scope and limitations of the review

This chapter only includes articles related the assessment of PA of participants in free-
living settings and does not address locomotion tests implemented in controlled conditions
(such as the 6 MWT, 10m test...) or any other test that can be only performed in controlled
settings. Although a significant part of the articles concern pathologies, an in-depth study
of the differences between pathologies will not be carried out. In addition, acquisition
modes using a specific type of sensor are detailed : inertial motion sensors (gyroscopes,
accelerometers, IMUs). Articles focusing mainly on other types of sensors such as GPS,
pressure sensors or heart rate sensors are not included, which therefore constitutes a lim-
itation to this study. In addition, this state of the art does not perform a complete analysis
of all research detailing HAR processes. Indeed, the willingness to focus on papers that
include the use of inertial sensors as well as papers based on free environments does not
allow for such a thorough review. Besides, no conditions other than free-living conditions
are under consideration in this study, which deliberately limits the scope of this state of
the art. Finally, it is to be noted that Google Scholar articles whose duplicates were not
found in the PubMed library were not included in this state of the art (further details are



2.2. AIMS OF THE STUDIES 47

provided in Subsection 2.1.3.)

2.1.3 Methodology

This scoping selective review has been conducted by searching MEDLINE via PubMed,
Cochrane and Google Scholar electronic databases to identify articles published from Jan-
uary 1, 2010 to October 20, 2022whosemethodswere including the use of wearable sensors
such as IMUs, accelerometers or gyroscopes in order to perform an analysis on participants
gait and PA in FLEs. Articles that were not directly exploiting output data from these sen-
sors, or that were not performing their protocols in FLEs or at least in semi-FLEs were
excluded from the review. According to the scope detailed in section 2.1.2, the following
terms were looked after in titles, keywords, abstracts : (((IMU OR accelerometer OR gyro-
scope OR inertial sensor) AND (free-living OR outpatient OR real life OR out-of-laboratory
OR unsupervised )) AND (walk OR gait).

This selective reviewwas conducted by using Preferred Reporting Items for Systematic
Review and Meta-Analyses PRISMA guidelines to select articles as detailed in 2.1. Poten-
tially eligible studies were screened individually by 3 authors MM SJ LO on the basis of
abstract and title for FLEs and wearable sensors criterion and of the full text for other cri-
teria. In total, 83 articles meeting the search criteria detailed above were finally selected
for this chapter.

2.1.4 Results of screening

As a conclusion, 83 articles were kept for a further analysis. The selection process put in
place in regards to the PRISMA flowchart is detailed in 2.1.

2.2 Aims of the Studies

In this chapter, 83 studies linked to the use of IMUs in the context of FLEs were included.
However, these studies have various objectives. Out of the 83 articles, six main categories
of objectives are put in place and are detailed in Figure 2.2. These categories are obvi-
ously subjective and it is to be noted that some of the reviewed studies can have different
purposes and thus belong to several categories.

The first main category gathers articles that intend to test a newHARmethod by devel-
oping an algorithm and/or a measurement device specific to their work [110, 32]. Authors
of these studies set up algorithms that allow, from previous annotated observations of par-
ticipants performing activities (labeled training data), to determine which type of activity
is performed during an analysis of a signal section and notably walking bouts which are
stationary walking regimes [50, 159]. Some of these studies point towards the study of
Machine Learning systems [154, 112, 42] while others focus on other factors such as sen-
sor implementation [46]. This is the group of aims that contains the greatest number of
studies (40 papers). Performing HAR allows for providing general metrics about activities
durations in order to enable a quantified follow-up of patients’ physical activity. This can
also be the first step in estimating a patient’s EE over long periods.

Some papers use IMUs as a quantification tool for the study of specific cohorts [2, 51,
138] and constitute the second category (32 studies). Some of those studies aim at quantify-
ing patient’s pathology ([126, 142, 60, 122, 113], while others quantify the therapeutic effect
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Figure 2.1: PRISMA Flow Chart illustrating the selection process resulting in a list of 83
studies.
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on the patient’s condition ([77, 138]) or develop algorithms to detect frailty in recorded par-
ticipants [1]. One large group of these studies intend to detect falls or evaluate falls’ risk
[81] by relying on methods that have been developed in clinical studies [133, 114]. Some
trials focus on healthy participants, others compare the patients included with healthy
participants [98, 50, 141, 162], while others dwell specifically upon cohorts with a medical
condition. Perriot et al. [122] intended to improve posture detection in COPD participants
for instance and Nguyen et al. [112] dwelled upon HAR in patients with PD. In such works,
the aim is either to compare the results obtained on certain patients with specific patholo-
gies to control patients or to evaluate the impact that changes in instrumentation (position
of sensors, etc.) can have on the results observed in participants with pathologies.

The third group (19 studies) includes works focusing on the analysis of the differ-
ent characteristics of implanted portable sensors (feasibility, placements, comparisons be-
tween types of sensors or between sensors’ locations) [136, 99, 61, 55, 38, 164]. Ellis et al.
[57] compared the results of HAR depending on the placement of the used sensors (hip or
wrist) for instance.
The fourth group of works is dedicated specifically to the evaluation of EE related fea-
tures (16 studies) [57, 2, 104, 122, 60, 142, 126]. Some of these studies intend to detect the
amount of time spent in activities that require a greater or lesser expenditure of energy
when carried out (sedentary activities for instance that is to say activities with a Metabolic
Equivalent of Task (MET) is below 1.5. MET is the objective measure of the rate a partici-
pant expends energy depending on his mass).

Finally, papers comparing the conditions and results in free-living conditions with
those obtained in controlled environments [27, 120, 99, 50, 33] and papers dealing with the
detection of ancillary parameters (such as wear-time [8, 88], strides or steps [33, 159, 98],
...) constitute the fifth and sixth groups of respectively 14 studies and 6 studies. Wear-time
corresponds to the time a participant wear the sensors that he was provided with before
the recording of his activities.

0 4 8 12 16 20 24 28 32 36

Compare Labs’ and free-living acquisitions

Detection of various ancillary parameters : Wear-Time/Strides

Energy Expenditure Related Studies

Sensors Oriented Objectives : Feasibility/Locations/Comparisons
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Figure 2.2: Change of the distribution of studies according to their aims over time.



50 CHAPTER 2. SELECTIVE REVIEW OF FLE/SEMI-FLE STUDIES

2.3 Sensors

In this section, the first question raised by this chapter will be answered : what are the
characteristics in terms of sensors configurations of the main methods for the study of PA
in FLEs ? Types, numbers, placements of sensors, their technical characteristics as well as
additional sensors’ details will be screened in this section.

2.3.1 Type of Sensors

All studies included in this chapter use accelerometers, gyroscope, IMUs [33, 141, 17] or
a combination of these three types of sensors. A referencing of the inertial sensors’ types
among the 83 studies considered in the review is available in Figure 2.3. The devices’
brands for sensors that are used more than in one study are shown in Table 2.2.

It appears from Figure 2.3 that the two types of the inertial sensor most used for free-
living applications are accelerometers (in particular the Actigraph accelerometers - see
Table 2.2) and IMUs : 38.6 % of accelerometers and 39.5 % of IMUs. On the other hand,
gyroscopes are rarely used solely (3.5 % of the studies). Table 2.2 also shows that the
devices used have smiliar storage and battery capacities. Those technical characteristics
are higher for such sensors than XSens sensors’ characteristics for example which are
often used for gait and locomotion analysis in controlled environments [56]. For the sake
of comparison, Shimmer IMUs which are the most used IMUs in the reviewed studies have
8GB of internal storage and between 39h and 69h of battery autonomywhile the Actigraph
GT3Xs have an autonomy of 25 days and a 4GB intern storage capacity whereas the XSens
have a maximum autonomy of 8h and have no internal storage. Some recent studies use
smartphones to retrieve details of the same parameters measured by the other types of
motion sensors mentioned above. Three of these studies are included in this state of the
art [51, 146, 77].

Accelerometer

IMU

gyroscope

Others

GPS

HeartRate Monitors

Figure 2.3: Proportions of the use of each kind of sensor in FLEs and semi-FLEs
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Device
Names

Type of
Sensors

Battery
Life Storage Nb of

Studies
Accelerometer
Range

gyroscope
Range

Sampling
Fre-

quency

Actigraph (*:
GT3X) [88] Accelerometers 25 days 4GB 14 ±8 g NC 30 - 100

HZ

Shimmer (*:
Shimmer3) IMUs 39 hrs - 69

hrs 8GB 7 ±2 g (to
±16 g)

±250 dps
(to

±2000 dps)
512 Hz

ActivPal (*) Accelerometers 10+ Days NC 5 ±2 g NC 20 Hz

Physilog
GaitUp

(*Physilog 4)
IMUs 23 hrs 8 GB 3 ±2 g (to

±16 g)

±250 dps
(to

±2000 dps)
1 - 500 Hz

AX3 Accelerometers 14 days at
100Hz 512 MB 3 ±2 g (to

±16 g) NC 12.5 -
3000Hz

GENEActiv Accelerometers 30 Days 0.5 GB 3 ±8 g NC 10 - 100
Hz

IGS-180 Suit
(Xsens) IMUs 6 hrs None 3 ±16 g ±2000 dps 100 Hz

Dynaport (*
MoveMoni-

tor)
Accelerometers 14 Days 1GB 2 ±2 g (to

±8 g) NC 50 - 200Hz

Sensewear
[60] Accelerometers 14 days 20 days 2 ±2 g NC 50 - 60Hz

Hookie
AM20 Accelerometers NC NC 2 ±16 g NC 100Hz

Actiwatch
(Actiwatch 2) Accelerometers 30 Days 1MB 2 ±0.5−

±2 g
NC 32 Hz

Actical Accelerometers 194 days 32 MB 2 ±0.025−
±2 g

NC 32 Hz

Empatica E4 Accelerometers 1 Day - 2
Days 60+ hrs 2 ±2 g (to

±8 g) NC 32 Hz

Table 2.2: Details of used inertial sensors. dps : degrees per second

2.3.2 Number of Sensors

In some articles, protocols include the use of several sensors positioned on different loca-
tions on the body [33, 61, 154]. Figure 2.4 details the distribution of the studies according
to the number of inertial sensors associated with them [57, 84, 83, 88, 154, 104, 136, 2, 120].
It shows that the majority of studies in FLEs or semi FLEs - even when using several IMUs,
accelerometers or gyroscopes - limit the number of the latter. Of all studies using more
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than one sensor, 67% use four or less sensors [142, 158, 32, 46, 109, 99, 69]. Moreover, only
three studies use more than ten IMUs - these studies use the IGS-180 suit consisting of
seventeen IMUs [113, 112, 12]. Besides, 41 % of the studies use only one sensor for all of
their acquisitions [8, 42, 50, 141]. This low number of sensors used in FLEs’/semi-FLEs’
studies may appear surprising since the cost of inertial sensors has decreased and their
dimensions have reduced in the last ten years. Yet, this could be explained by the fact
that reducing the bulkiness due to inertial sensors is helpful in FLEs. With such a reduc-
tion, wearing sensors is less likely to serve as a reminder that ameasurement is being taken
which avoids therefore Hawthorne syndromes [132]. This syndrome affects measurements
in clinical/controlled environments and reduces the spontaneous nature of movements ob-
served during these measurements. In particular, although the figures do not allow for a
definite conclusion, it seems that the higher the degree of freedom of the environment is,
the lower the number of used sensors is. A reasonable explanation is that a too impor-
tant bulkiness in complete FLEs paradigm is more complicated to manage (installation,
charging of the sensors...).
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Figure 2.4: Distribution of studies according to the number of sensors associated with
them: distinction between FLEs’ Studies and semi-FLEs’ Studies.

2.3.3 Placement of Sensors

The locations of the sensors is also important as it conditions the types of results that can
be obtained in a study. A mapping of the major placements for inertial sensors is available
in Figure 2.5.

It appears that the sensor placements in FLEs are homogeneous, including both lower
and upper body parts. A clear trend does not emerge even if the wrist and Lower-Back
(L3-L5 vertebrae) positions seem to be predominant (50 iterations in reviewedworks [8, 42,
119, 146, 100, 126, 52, 53, 123]). Several inertial sensors are sensors implanted on a watch
(ActiWatch, GENEActiv...) hence the high proportion of sensors placed on the wrist. In
addition to this, it is reported in one study [136] that the participants tend to prefer this
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Figure 2.5: Sensors (IMUs, Accelerometers, gyroscopes + other kind of sensors : GPS,
HeartRate Monitors) placements. Each circle displayed on the graph shows the proportion
of use of the location (its radius is matched with the number of times that location is used
in relation to the total number of locations used). Within these circles, another light-
coloured circle can be displayed : it corresponds to the proportion of the number of times
the sensors placed on the location of the circle are placed on both sides of the participant.
The remaining darker part represents the proportion of the number of times the sensors
placed on the same location are placed on only one side of the participant. The average
position of the other sensors (GPS, HeartRate Monitors) are also indicated by crosses.

configuration since sensors are more comfortable and less cumbersome to wear on the
wrist. However, another study [140] has shown that 15.6% of their participants who wore
accelerometers on the wrist violated the protocol for one or more days : sensors were worn
on the wrong hand during 6.9% of the days. During the periods of discrepancies, the daily
PA was miscalculated by more than 20%. It therefore appears that behind the expected
sensor locations, the correct placement of the device also has a significant effect on the
results. Works using lower-back location usually place sensors thanks to velcro straps or
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other mechanisms preventing sensors’ undesired displacements. It seems that few studies
conducted in open environments use portable sensors attached to the feet of participants.
This can be explained by the fact that in unsupervised conditions, the use of a sensor on
this location can present a detrimental congestion for the smooth running of the activities
to be performed by the observed subject. These results clearly demonstrate the constraints
and compromises that any protocol in FLEs relies on: getting the cleanest signals while
still achieving a good acceptability for participants.

2.3.4 Technical Characteristics

As displayed on Table 2.2, sensors used in FLEs can be chosen according to several tech-
nical characteristics such as storage, battery life or range of measurements. One of these
important characteristics is the sampling frequency. This parameter influences both the
level of precision of the processing and some practical considerations such as storage, size,
or energy consumption. It is therefore important to locate and identify possible trends on
the chosen value of this parameter according to the type of study and its associated objec-
tives. The evaluation of daily PA by IMUs requires the selection of an adequate sampling
frequency. The choice of this frequency must be based on the acceleration power of the
human movement in order to be able to acquire all the data relating to it. In 1997, Bouten
et al. [24] studied the acceleration power of human motion by distinguishing the upper
body parts from the lower body parts. It was observed that the acceleration power in the
upper body varies from 0.5 to 5 Hz. In the lower body, the heel strike can however pro-
duce acceleration frequencies up to 60 Hz. Knowing that, and depending on the sensors
locations, sampling frequencies ranging from 10 Hz [67, 99] to more than 200 Hz [100, 68]
have been used in the literature. As can be seen in 2.6, there is large variety of sampling
frequencies used articles. In several articles, the choice of the sampling frequencies is jus-
tified by considerations similar to those of Bouten et al. [24], and it is accepted in several
publications that a sampling frequency greater than 20 Hz is an acceptable choice to cap-
ture most every day activities [101, 146, 110]. Indeed, according to Karantonis et al. [80],
Bianchi et al. [22] and Khusainov et al. [86], all human body movements are within the
range of 0 to 20Hz hence the importance of having sensors with sampling frequencies at
least above 40 Hz (Nyquist criterion).
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Figure 2.6: Distribution of sampling frequency among all articles. Note that three articles
use sampling rates increasing from 10Hz to 200 Hz in 10 Hz increments. They are thus
counted in each corresponding slice of the pie chart.

2.3.5 Additional Sensors

Although our review is not focused on non-inertial sensors, several studies use inertial
sensors associated with an additional sensor such as a GPS or heart rate monitors [60, 63].
Some of them heavily rely on these sensors (GPS for instance) [107, 138, 63, 44, 76, 4]. As
far as GPS are concerned, they can enable trajectory reconstruction [107, 138, 44, 76] hence
their usefulness in some cases (to correlate the data measured by the inertial sensors with
the mapping of the movement of the participants in their environment). Tedesco et al.
[145]’s review identifies some GPS sensors that can be found in studies tracking activ-
ity but mixes up free environments (semi-FLEs and FLEs) with controlled environments.
GPS tracking is sometimes used in studies in order to visualise walking bouts or walking
habits of participants. Nevertheless, accuracy of GPS is greatly degraded indoors, hence
the almost unique use of these sensors in outdoor environments. Moreover, GPS do not
provide valid data for vertical position. In some cases, GPS can also act as a good reference
to correct the absolute positions of inertial sensors during horizontal movement phases.
Indeed, they can be used to correct the drift errors of an algorithm named pedestrian-
dead-reckoning (with a Kalman smoother filter) intended to reconstruct the trajectory of
participants and thus to be able to look for stationary walking phases [159].

2.3.6 Impact of Sensors’ Setup

The variation in the types of sensors used, their numbers, their placement on the partici-
pants, as well as their technical characteristics are significant. This variation implies dif-
ferences in signal retrievals, in their processing, and therefore in the accuracy of the HAR
calculation. Indeed, several articles detail in particular the impact of different types of sen-
sors by comparing, for example, different models of accelerometers used within the same
protocols and on the same locations [61, 99]. Comparisons can be made on the accuracy of
the calculation of certain features or on the accuracy of HAR. Furthermore, based on the
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analysis of these same types of results, some studies highlight the impact of differences
in motion sensors’ placements on the retrieval and the use of data [57]. Depending on
the way the sensors are set up, different features can also be computed. For instance, one
acquisition performed with one sensor located on the lower back does not enable the same
features’ retrieval than one acquisition with a sensor placed on the wrist. Researchers also
have shown that sensor positioning errors could lead to variations (displacement within a
body part due to insufficiently reinforced sensor mounting for instance). These variations
can lead to a loss of orientation information that significantly affect the raw data [91].
Corrections (such as the use of orientation-robust features) to avoid these changes can be
implemented when designing the measurement setup.

2.4 Protocols

In this section, insights on the different protocols used in the studies are provided. In-
structions to perform activities, activities’ and environments’ details as well as inclusion
criteria and annotations’ trends are presented. As previously mentioned, one difficulty in
the analysis of humanmovement is to reach a satisfactory balance in the experimental con-
ditions. Indeed, although the goal is to record a movement as natural as possible, studies
also aim at reaching the greatest possible accuracy. This forms a gradient of experimental
condition more or less “natural” to which each experimenter sets the parameters. In the
introduction of this chapter, we defined FLEs as environments that are not controlled by
the experimenter. The participant thus has no indication of the environment, and complete
freedom of movement. On the opposite, environments established by research teams are
considered as semi-FLEs. It includes laboratory, indoors or outdoors space, even replica of
apartments. As it will be detailed in this section, it should be noted that these definitions
are strictly based on the environment, but that there is also a gradient of freedom in the
activities according to the instructions given.

2.4.1 Instructions

Communicating the protocol to participants influences the way they perform the activ-
ities. For each protocol it is necessary to be consistent with the walking variable to be
measured and the environmental conditions. Sustakoski et al. [143] notice a difference in
walking speed on various protocols performed by the same participants. Overall, the paper
prompts discussion on the notion that slight changes, such as walking on a computerize
walkway or on the ground, can influence walking speed. Rehman et al. [128] compare the
impact of walking protocols and gait assessment systems on patients with Parkinson’s dis-
ease, and underline the impact of the protocol on the activities performed. They observe at
the level of two different walking protocols a difference in the participants’ performance
(pace, rhythm, variability, asymmetry). Thus, the format in which instructions are com-
municated is an important parameter to fix in a protocol. In the literature, different types
of instructions are observed, which leave more or less freedom of interpretation as dis-
played in Figure 2.7. There is a continuum of situations between semi-FLEs’ studies that
still include precise instructions in the way of laboratory settings and FLEs’ studies where
the subjects are completely free.

One type of instruction regularly found in semi-FLEs [83, 120, 164, 77, 98, 52, 9, 110,
43, 17, 101] is the presentation of the activities to be performed : how to perform them
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and for how long. These instructions are classified as “Imposed Activities with specific In-
structions". In this case, participants have rigorous instructions and therefore no freedom
of interpretation and completion of the activities. Other ways of instructing often found
in semi-FLEs [51, 105, 2, 100] are "Imposed activities without any instructions". In those
conditions, participants are told which activities to perform but there is no precision on
how to perform them. This type of protocol allows more freedom as to how perform the
activities which makes them more natural. A third level of instruction used in articles is
the suggestion of activities : some activities are suggested to the participants but without
any additional instructions on how to perform them. In addition, the configuration of the
environment itself can contribute to the suggestion (letting a pen on the floor which will
imply that the participant leans forward to pick it up [134, 33, 44, 27, 63, 67, 112, 12]). In this
case, it gets closer to FLEs’ situations where participants have complete freedomwhen per-
forming activities. The last case observed mostly in FLEs’ situations is "complete freedom".
Participants are thus equipped with one or more IMUs and continue their daily activities
at home (including going to work, hobbies, home activities) without any instruction or
suggestion [141, 50, 55, 76, 88, 61, 99, 136, 57, 140, 104, 122, 126, 60, 142, 52, 9, 110]. In the
latter case participants are in the most natural conditions possible (both environment and
activity). A major aspect of the instructions are sometimes modified according to studies
: exceptions in which the sensors must be removed (shower [88], sleep [76]...) according
to the experts who set up the measurement protocols. This modification of the wear-time
(which is a parameter measured as precisely as possible by certain research teams) has a
direct impact on the total recording time on a typical day. Participants from one study
were even asked to remove their sensors whenever they felt skin irritation around the lat-
ter [46]. These requests for sensor removal may exist even when the instructions on the
activities to be carried out are free: these two aspects are distinct.

Imposed Activities with specific Instructions

Imposed activities without any instructions

Suggested activities

Complete Freedom in FLEs

Nguyen et al. [112]

Brodie et al. [27]

Pavey et al. [120]

Zhang et al. [164]

Ahmadi et al. [2]

Del Rosario et al. [51]

Doherty et al. [55]

Del Din et al. [50]

Figure 2.7: Frieze detailing the different types of instruction given to participants during
FLEs’ and semi-FLEs’ studies. Citations colored in red are citations of semi-FLEs’ studies.
Citations colored in blue are citations of FLEs’ studies.

2.4.2 Environments

In addition to instructions, environments also play a part in the definition of FLEs/semi-
FLEs conditions. The repartition of studies included in this state of the art according to
these categories is displayed on Figure 2.8. It appears that the majority of the reviewed
acquisitions are performed in FLEs (among all reviewed acquisitions, 60.8% are in FLEs and
39.2% are in semi-FLEs ). Acquisitions are specific recordings and several acquisitions can
be put in place in one study. Several studies include both FLEs and semi-FLEs acquisitions
(15.5% of the reviewed studies).
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Within FLEs studies, a distinction is made between certain papers depending on partic-
ipants’ environment. Indeed, there are two types of environments: those that are familiar
to the subject and those that are unfamiliar. Concerning articles using familiar environ-
ments, some studies in FLEs are limited to the habitats of the participants[140, 57, 88, 136,
50, 104, 142, 60, 126, 84, 146, 4, 10, 8] while others include all the environments daily fre-
quented by the participant like library, gym, university daily commute [83, 104].

semi-FLEs studies can be divided into two categories: indoor and outdoor studies. In-
door movements can be carried out on conveyor belts, on a 10m path (or another defined
distance) previously traced in a controlled environment (laboratory). Some studies take
place in a reconstruction of an appartement: these environnements are simulated FLEs
[63, 12, 105, 113]. Others take place inside the laboratory and, or in infrastructures next to
it to be able to perform some activities : inside university campus [17, 101] for instance.
In those studies, participants are asked to perform a course that includes several activities
that can not be performed only in a laboratory. Some studies imply indoor and outdoor
parts [159].

FLEs studies don’t seem to substitute for other experimental conditions, but provide
access to other data that complement those obtained under semi-controlled conditions.
semi-FLEs, FLEs and controlled conditions thus appear to be complementing each other
to provide the most complete study of human activity.

Figure 2.8: Number of studies focusing on Free-Living Environments (FLEs), semi-Free-
Living Environments (Semi-FLEs), or both of them. The proportion of FLEs’ Studies per-
formed in Familiar, Unfamiliar or both types of environments and the proportion ofsemi-
FLEs’ Studies performed in outdoor, indoor or both types of locations are also detailed.

Figure 2.9 displays a detailed list of the environmental categories used in FLEs and
semi-FLEs studies. This figure also shows the number of times the measures are imple-
mented in these types of environments. It can be noticed that most of the protocols are
implemented in environments which are familiar to the participants (homes, offices, etc.)
but that some other arrangements are possible and quite frequently encountered (hospi-
tals, rehabilitation centers, etc.).
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Figure 2.9: Details of the used Environments

2.4.3 Activities

In this section, the most frequently studied activities in free-living settings are presented.
This section is organized in two parts, the first one being dedicated to full FLEs and the
second one to semi-FLEs. Figure 2.10 shows the distribution of the studied activities for
both FLEs and semi-FLEs.
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Figure 2.10: Details of the distribution of the studied activity types into FLEs andsemi-FLEs.
Total Number of Activities performed an studied in FLEs = 96. Total Number of Activities
performed and studied in Semi-FLEs = 108.

It appears that out of the 96 activities in FLEs, three activities stand out as the most
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analyzed : standing, sitting and walking. Several articles simultaneously study these three
activities [122, 68, 51, 57, 10]. Participants of these studies had to perform all of these
three activities. A second slice of activities also seems to emerge and is composed of the
following movements: running [57, 120, 67], lying down [154, 109, 51, 68], going up and
down a staircase[53, 46]. Several studies are also interested in the detection of postural
transitions (sit-to-stand, stand-to-lie ...) [51, 120].

semi-FLEs enable a better control of performed activities and allow for more accurate
annotations of these activities. It results in an optimised computation of HAR classifiers’
accuracies for instance. As seen in Figure 2.10, the same initial conclusions as for the
FLEs studies can be drawn. The majority of the activities measured are: standing, sitting,
walking, with a slight increase in the percentage of studies analysing walking and running.
Some new activities to be detected are also referenced in the semi-FLEs studies: turning
and reaching [113]. semi-FLEs’ studies focusmore on household activities [164, 100] which
are simpler to put in place and to annotate in such an environment. Besides, outdoor
activities such as vehicle travels are less frequent (two semi-FLEs’ [67] vs. four FLEs’
[76, 57]), probably because they are more difficult to setup in this kind of environment.

It should be noted that some studies try to detect groups of activities (sedentary ac-
tivities [154, 104, 55], stationary activities [67, 120, 69]...) which included several specific
activities (standing, sitting, lying down for the group of so-called stationary activities for
instance), etc.

2.4.4 Measurements’ Durations

Durations of recordings are also an important characteristic of referenced studies. Figure
2.11 displays the distribution of measurements’ durations for both FLEs and semi-FLEs
studies. Strong differences between the two experimental conditions can be observed.
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Figure 2.11: Measurements’ Durations in in FLEs’ andsemi-FLEs’ Studies

FLEs studies mostly consider durations greater than 1 hour and even 3 days in some
cases. Indeed, of all listed durations (one duration is not available in one article), 57.8% of
the studies measure participants over seven days or more [57, 84, 46], 75.6% percent of the
studies measure subjects over three days or more [33, 88, 55], 91.1% percent of the studies
measure subjects over one hour or more [123]. This corresponds to recurrent objectives in
FLEs studies: to work on extensive databases mimicking the participants’ physical activity
as closely as possible. These long acquisitions allow to observe movements as spontaneous
as possible, which is the interest of free-living studies.

The vast majority of recordings in semi-FLEs’ studies are completed in less than one
day (87.2 %). This is consistent with the observation that in semi-FLEs, deconstruction of
motion phases is more easily feasible since the environment is controlled. A clear sepa-
ration between studies in semi-FLEs is observed around one parameter: the continuity or
not in the measurements made. Some research groups measure all movements by having
them all performed in one single recording [44, 100, 38, 164], while other teams measure
movements one after the other with a separation between each [162, 105, 27]. There are
more studies that evaluate their subjects continuously than non-continuously. This corre-
sponds to the desire of these studies towork on databases specific to the field of Free-Living
(long and extensive). Besides, semi-FLEs’ studies record their participants on short periods
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(19 semi-FLEs’ studies record less than 30 minutes). It adds up to the control such stud-
ies already have by constraining the space in which subjects perform activities. There is
a significant number of studies that measure their participants over several days though
[154, 42].

2.4.5 Inclusion and Exclusion criteria

One of the advantages of ambulatory studies is that they allow longitudinal follow-up of
participants varying from a few hours to several days. It is especially interesting for study-
ing pathological patients without being limited to a one-off test of a few minutes during
the hospital visit. This explains why a large proportion of pathological case studies are
conducted in FLEs [8, 52, 57, 60, 84, 122, 126, 141, 142, 158]. The definition of inclusion and
exclusion criteria determines the part of the population targeted by the study and therefore
the precision of the study. Participants’ characteristics can sometimes affect their motor
skills (taking medication that mimics the symptoms of another disease, co-morbidity of
pathologies. . . ) hence the importance to describe the latter. Those characteristics (healthy
or with specific diseases) are described in Figure 2.12 and further detailed in Figure 2.13.

In studies including only healthy participants (the majority of studies in this chapter),
age is a recurring inclusion or exclusion criteria. Some studies focus on elderly popula-
tions, aged 65 and over [27, 4, 9, 12, 38, 107, 119, 51]. Others record younger cohorts, with
participants between adolescence and under 30 years of age [67, 76, 88, 99, 120, 136, 104, 63].
The remaining studies use the age, gender and BMI of the participants as a criterion
[154, 46, 164, 100, 44], or only the average age of included participants [85, 110, 109, 101].
One study in particular includes only breast cancer survivors [83].

In the group of studies focusing on specific cohorts, a substantial part of studies dwell
upon neurological pathologies as PD [77, 98, 17, 113, 112, 50], cerebral palsy [33, 2], acci-
dental brain injuries (strokes) [146, 52, 53, 52, 53] and traumatic brain injuries [141]. There
is also a significant part of non neurological pathologies such as COPD [142, 60, 126, 122]
and obesity [57] where locomotion is affected. All these pathologies have in common lo-
comotion as biomarker which makes them a coherent choice of study.

For all above-mentioned studies, a mandatory inclusion criterion is the official diagno-
sis of the disease under study [50, 33, 112, 17, 84, 52, 53, 142, 57, 77, 98, 141]. Disease scaling
questionnaires are sometimes necessary to include patients in the study like Parkinson
pathology severity degree Hoehn and Yahr scale [50, 77, 98, 17, 113]. Functional tests can
also be used as inclusion criteria as found in studies with COPD participants for instance
for whom a functional lung test is necessary as a diagnosis [122, 126, 142, 60, 158]. A recur-
ring exclusion criterion is the co-morbidity of the studied pathology with another pathol-
ogy that might have the same motor symptoms[50, 141] and the treatment that could also
interfere with motor symptoms [50].

Finally, some inclusion and exclusion criteria are common to both study groups. Whether
participants are pathological or not, general health information such as Body Mass Index
are collected [164, 44, 63, 33]. Furthermore, in all studies, physical (orthopedic or muscular)
and cognitive impairments often are exclusion criteria [61, 50, 33, 104, 12, 46] which are
detected by questionnaires: Montreal Cognitive Assessment (MOCA)[50, 113], Mini Men-
tal State Exam (MMSE)[50, 77], Geriatric Depression Scale (GDS)[4, 50] for mental state.
It is thus notable that inclusion and exclusion criteria are grouped around age, health and
BMI. These 3 characteristics allow for a precise selection of participants.
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Figure 2.12: Distribution of studies according to participants state of health of participants.
In shades of blue are represented the proportion of studieswith non-ill participants (in light
blue those with young participants, in intermediate blue those with elderly participants).
The proportion of studies with ill participants is shown in shades of red. A distinction is
made between neurological (dark red) and non-neurological (light red) diseases.

Participant Characteristics Nb of Studies

Healthy participant
No age specification 26

Elderly participant (>65 years old) 1
Youth participant (<30 years old) 11

Pathological participant
Parkinson Disease 15

Traumatic Brain Injuria, Stroke, Hemiparetic patients 8
Chronic Obstructive Pulmonary Disease 7

Cancer 2
Cerebral Palsy 2

Obesity 1
Others (Heart Failures, Fallers, Other Neurological Disorders 9

No participant information 2

Figure 2.13: Detail of the number of studies according to the characteristics of included
participants. Studies containing healthy participants are divided into three categories.

2.4.6 Annotations and Meta Data

The analysis of referenced articles shows that the "annotation of activities" aspect is es-
sential in several studies, in particular in order to provide verification data and to compute
accuracy values for the classifiers used for HAR. Sensors such as cameras, audio recorders,
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GPS, force plates, etc. can be used to annotate the timings of activities and compare them
with those detected by the classifiers chosen by the investigators. Annotations are not only
chosen to give an accuracy score for HAR but also to evaluate the number of Moderate
Vigorous Physical Activities MVPA : high energy level activities [55, 136, 99]. Annota-
tions allow to evaluate the number of movements performed with a specific score of MET
[104, 142, 158].

As for the cameras, one study investigated how both inertial and vision sensors can
simultaneously be used to enable human HAR [35]. According to Figure 2.14, most com-
mon devices for annotation are video cameras that are widely used in FLEs [27, 51, 55, 104,
67, 9, 4, 10] and semi-FLEs [41, 105, 17, 101]).

Instead of additional sensors, some studies use directmanual annotations by experimenters[164,
61, 33, 134, 77, 52, 112, 53, 43, 100, 113]. Of course, those types of annotations are only rel-
evant in studies that take place in laboratories (semi-FLEs). In FLEs, participants have to
take notes into a diary that is given back to the experimenters at the end of the proto-
col or when the subjects take off the wearable sensor [88, 76, 98, 122, 77, 85]. In specific
studies focused on the evaluation of EE, ground truth annotations can be provided by ad-
ditional clinical exams. For instance, in [126, 60] the analysis of urine samples is used to
track the subject’s EE. The patient is asked to collect urine samples at a fixed time which
is subsequently analyzed.
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Figure 2.14: Distribution of the different kinds of activities/physical behaviors/stationary
phases annotations depending on environments

Observations from examiners to annotate are more used in semi-FLEs than in FLEs
where it is more complex to implement. Wearable or fixed cameras and GPS are used at
a similar rate between FLEs and semi-FLEs studies. semi-FLEs enable a better control of
performed activities and allow for more accurate annotations of these activities. It results
in an optimised computation of classifiers’ accuracies for HAR. GPS are sometimes used to
detect stationary walking phases using trajectory reconstructions (using a standard iner-
tial navigation algorithm termed pedestrian dead-reckoning (PDR) on a study [159]). This
allows for the study of the PA of a subject on these phases and to compare the results
obtained in FLEs with those obtained in fully controlled environments.

Similarly, some questionnaires are also found to assess fatigue and ability to perform
some physical activities and then study the physical capacity of a subject : Multidimen-
sional Fatigue Inventory (MFI)[50], Nottingham Activity of Daily Living Scale[112], Phys-
ical Activity Readiness Questionnaire (PAR-Q) [43, 100]. These questionnaires are means
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of completing annotations because it enables to assess as good as possible the physical
performance of patients.

2.5 Discussion and conclusion

IMUs and accelerometers stand out as the most commonly used sensors in this overview
of studies in free environments. One of their main locations are the wrist and the lower-
back since this is convenient to use thanks to the development of watch sensors or velcro
straps. The characteristics of the free environments in which the studies take place is also a
major factor of distinction between the reviewed works. Two types of such environments
emerge: FLEs (environments that are not controlled by the experimenter) and semi-FLEs
(environments established by research teams : laboratories, indoors out outdoors space...).
semi-FLEs’ conditions provide a smooth transition from controlled to full ambulatory set-
tings i.e FLEs’ conditions. Within those environments, the three most common types of
activity studied in the reviewed works are walking, standing and sitting. According to the
studies referenced in this state of the art, the instructions given to participants to carry out
these activities vary in their degree of explicitness (some impose activities, others suggest
them, while others leave the subjects complete freedom in their natural environment).
In addition, the recording times for taking measurements via motion sensors vary from
one research team to another. The short recording durations (less than five hours) are of-
ten conducted in semi-FLEs’ studies while the FLEs’ studies setup longer recording times
(three days or more). In all FLEs studies, annotation has a decisive role in data collection.
The quantity, quality and accuracy of the data thus depend on new ways of annotating,
hence the diversity of it : diary, video or tape recording. As soon as the implementation
of sensors and the setup of the protocols are put in place and enable measurements, the
computed data are to be processed. In several contexts, HAR is a crucial step for the study
of PA. Finally, the majority of studies in free-living conditions use protocols with a wide
variety of implementations. Nevertheless, studies in FLEs conditions are completely stan-
dard yet while semi-FLEs conditions are more commonly used. With regard to protocols’
characteristics such as instructions, measurement times or annotations, some trends are
emerging (in FLEs conditions: longer measurement times, annotations by the participants
themselves or by monitoring systems other than examiners are becoming more popular,
etc...).

Thus, within studies evaluating the physical activity of participants in free environ-
ments, some clear tendencies emerge : the massive use of accelerometers and IMUs com-
pared to gyroscopes, the fact that these sensors are mainly positioned on the wrist, lower
back or waist, the predominance of activities such as walking, standing, sitting in the
protocols. These few observations, which make it possible to identify choices that are
generally shared between studies concerning the implementation of devices and protocols
in particular, may prove to be the main recommendations for future studies. Nevertheless,
the differences between the studies are still notable and numerous, which prevents from
bringing out a standard approach to assess physical activity in free environments.

One recurring question in this chapter is linked to the notion of environment and to
the distinction between semi-FLEs and FLEs. As a matter of fact, a shared feature of this
continuum of protocols is the psychological dimension of the participants and its impact
on their behaviour. The white coat effect (or Hawthorne effect), for example, is caused by
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the presence of medical personnel and influences the physiological measurements of the
participants by altering their behaviour [156]. Likewise, under experimental conditions,
the presence of an experimenter indeed influences the participant’s performance [115].
Thus, the "artificial" side of a study is to be taken into account in the analysis of results,
even in FLEs environments. Whether it is through social interaction or by knowing that
we are part of a test, a psychological effect affects our behaviour. Other psychological ten-
dencies should be taken into account in the analysis of human physical activity. The trend
to compare themselves to others illustrated by the "better than average" can also induce
differences between participants’ physical activities. There is also a current trend towards
self-evaluation with the development of self-tracking applications and increasingly con-
nected objects.

Throughout this chapter, the diversity of the studies included is noteworthy. In spite of
the search filters, studies are very disparate, at protocols level, where we have shown the
diversity of experimental conditions established. There is a splintering of studies according
to the sensors brand used which implies a lack of the same sensors configuration (axis
definition, accuracy, sampling frequency...). Each brand has its own software and therefore
of handling by scientists. This diversity is also found in the dataset used by each study. A
largemajority of studies record their own datawith recruitment and testing of participants.
This makes it possible to have customized data very specific to each study. Very few studies
included in this state of the art use already existing dataset [42, 160, 84], and even fewer
aim at creating an open access dataset. There is no standardization of dataset between
the different articles. The diversity and lack of standardization of studies contribute to
a compartmentalization of human activity research. This disparity may be a hindrance
to research, which justifies the need for unification. One way to unify the studies would
be the creation of a public and universally accessible dataset, as in the recent study by
Garcia et al [69]. Additional ways to unify the studies could be to work on a common goal
such as the challenges (see for instance created by [149] for example), to have a shared
aim for the whole community [149]. Although progress has been made in the detection
of physical activity using inertial motion sensors, longer, larger and more accurate studies
are needed in order to be able to track patients longitudinally. Nevertheless, this state of
the art provides further studies intending to develop protocol in free-living environments
with clear possible choices concerning sensors’ characteristics, placements, number or
performed activities, measurements’ durations that depend on studies’ aims and setup
environments.







3
Protocols’ Setups and Contexts

3.1 Introduction

The first challenge of this thesis was to set up protocols to record long signals in semi-
FLEs and FLEs. These protocols are based on the tools listed in the literature as detailed
in Chapter 2 for such environments. Measurements were carried out as follows : the first
protocol took place in a semi-FLE, the second protocol in a semi-FLE with freer conditions
and finally the last one in a complete FLE.

3.2 Protocols Purposes

Three new semi-FLEs and FLEs protocol were built in collaboration with clinical experts
(neurologists, orthopaedic surgeons) in order to perform longitudinal follow-ups, inter-
individual comparisons on included cohorts as well as to assess effects of neurological
disorders and orthopedic defects on physical activity in free environments.

Protocol 1 aims to be an intermediary between the controlled conditions of clinical
protocols and the freer conditions of FLEs protocols. The duration of this protocol has
been chosen to be identified with the 6 Min Walking Test (6MWT). In this test, partic-
ipants are asked to walk as much distance as possible over 6 minutes by walking back
and forth along a 30m corridor with instructions from an examiner. In our study, only
the 6 minutes duration is retained since it corresponds to average figures used for stan-
dard semi-FLEs studies in the literature as presented in Figure 2.11. Indeed, 19 studies in
semi-FLEs’ conditions (48.7% of studies) were carried out in less than 30 minutes. Our new
protocol also includes only a limited number of instructions to preserve the spontaneous
behaviors found in ambulatory phases. Participants are not restricted to a 30m corridor
and are not needed to walk as far as possible as in the 6MWT for instance. They are nev-
ertheless instructed to perform specific activities : leaning, sitting, standing, climbing up
and down stairs, U-turns which are commonly performed by subjects in the literature in
FLEs as presented in Chapter 2 as well as in controlled conditions. These activities were
also chosen according to the needs of the clinical experts in order to efficiently compare
included cohorts.

Protocol 2 was implemented to test whether changes could occur with less supervision
and therefore more freedom for participants. Instructions were indeed modified to get
closer to FLEs’ conditions. The aim was to let participants entirely free to perform their
PA by using wearable cameras to annotate transitions. Using a camera so that annotations
could be more precise notably between end-of-lap activities. Besides, less activities were
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asked to be performed and no specific sequence of activities were instructed as in Protocol
1 in order to add degrees of freedom for participants. By doing so, we gradually come
closer to FLEs conditions as depicted in Figure 2.7.

Protocol 3 was built to address identical biomedical purposes but in new FLEs’ con-
ditions. As 91% of the studies measure subjects over one hour in FLEs: it was decided to
set this protocol’s duration to 90 minutes. Besides, almost no instructions were given ex-
cept to perform a minimum walking duration (10 minutes). Annotations were performed
thanks to a wearable camera as in Protocol 2. As such, this protocol is found to be on the
far right side from the instructions’ frieze presented in 2.7.

3.3 Participants

The ID-RCB number of the committee for the protection of individuals (Comité de Protec-
tion des Personnes) in which this study is included is : 2021-A00087-34.

3.3.1 Protocol 1

Fifteen healthy subjects (27.13±4.35 year-old, 7 men and 8 women) and one pathological
patient (suffering from normal pressure hydrocephalus NPH) were measured on a semi-
controlled protocol.

3.3.2 Protocol 2

Twenty-one healthy subjects (33.4 ±14.42 year-old, 10 men and 11 women), 6 patients
having undergone or about to undergo an orthopedical surgery (43.83±19.39 year-old, 1
man and 5 women) and 3 patients suffering from a neurological pathology due to a cerebral
lesion (72.6 ±4.03 year-old, 1 man and 2 women) were measured on a semi-controlled
protocol. Characteristics of participants with neurological or orthopedical affections are
presented in Tables 3.1 and 3.2.

3.3.3 Protocol 3

Six healthy subjects (26.17 ±1.46 year-old, 4 men and 2 women) were measured on an
unsupervised protocol.

3.4 Sensors

Subjects were equipped with a Shimmer3 IMU (with sampling frequency Fs=100 Hz, bat-
tery life = 39-69hrs, storage = 8GB, ±2 g (to ±16 g) for the accelerometer, ±250 dps (to
±2000 dps) for the gyroscope) [78] presented in Figure 3.1 on their lower back L5 as dis-
played in Figure 3.3 in every protocol. This sensor stands out as one of the most used
in unsupervised environments as stated in Chapter 2 (used in 7 studies). Its autonomy,
internal storage and high sampling frequency allow for valuable recordings in semi-FLEs
and FLEs. Indeed, the sampling frequency can reach values close to values used in clinical
studies (>100Hz) which enables precise analysis of the PA. As displayed in Figure 2.6, the
Shimmer3 IMU is one of the 6% of sensors referenced in our state of the art studies that
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Detailed Affection Sex Age Size Weight
Walking
Speed
(m/s)

Observed
Walking

Difficulty (from +
to +++)

immediate preoperative phase
of a knee ligamentoplasty F 25 164 70 1.16 +

immediate preoperative phase
of an ACL ligamentoplasty

and meniscal tears
M 25 187 92 1.27 +

one day after a total hip
replacement F 70 168 79 1.05 +++

rehabilitation after a knee
sprain with ACL rupture F 51 165 53 1.32 +

multiple right hip surgeries
resulting in chronic gluteus
medius insufficiency causing
Trendelenburg type lameness

F 66 163 73 1.38 ++

immediate postoperative
phase of an ACL

ligamentoplasty and meniscal
tears

F 25 164 70 1.25 +

Table 3.1: Characteristics of participants with orthopedical affection in Protocol 2

Detailed Affection Sex Age Size Weight
Walking
Speed
(m/s)

Observed
Walking

Difficulty (from +
to +++)

Affection of the cranial pairs and neck
muscles after radiotherapy treatment of a
Chordoma without locomotion disorder

F 76 157 47 1.22 +

Post-radiation left brachial plexitis that
occurred 20 years after radiation

treatment for breast cancer. Complete
paralysis of the entire left upper limb

F 75 158 69 1.17 +++

Post-radiation leukopathy after treatment
of a left temporal glioma F 67 144 54 1.09 ++

Table 3.2: Characteristics of participants with neurological affection in Protocol 2

provides the ability to set the frequency to over 100Hz. It is noteworthy that using Shim-
mer3 IMUs at high sampling frequencies does not induce a loss in battery capacity which
is crucial in free environments. Besides, it can easily be attached to the lower-back thanks
to a belt strap.
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Figure 3.1: Shimmer 3 IMU and associated axis

Figure 3.2: Description of axis on which raw signals are recorded from the lower back
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Figure 3.3: Inertial sensor location used for implemented protocols

3.5 Pathway, Activities, Transitions, Instructions

3.5.1 Protocol 1

Subjects were asked to complete several laps of the Neurophysiology Department at Percy
Hospital (a semi-controlled environment) for a total protocol duration of precisely 6 min-
utes. All activities were chosen according to the most performed movements in the lit-
erature as detailed in Chapter 2. The protocol, illustrated on Figure 3.4, contains several
regimes that are either walking phases (denoted W•) or activities (denoted A•) as dis-
played in Table 3.3.

Transitions between two walking periods correspond to 90° Turn (as opposed to activ-
ities A1 which involves a door opening during the 90° turn) : they will be grouped in the
same transition category since they are very similar. At the end of each lap, after having
climbed down the stairs, subjects perform three activities in the same order : leaning (A5),
standing still (A3) and sitting still (A4) before resuming walking.
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Table 3.3: Details of annotated phases.

Activities/Walking Phases Details

W0 Walk (Start → 1)

W1 Walk (1 → 2)

A1 Door Opening and 90 degrees Turn

W2 Walk (2 → 3)

W3 Walk (3 → 4)

A2 Going up 3 steps stairs U-turn and
going down 3 steps stairs

A3 Standing Still

A4 Sitting Still

A5 Leaning

W4 Walk (5 → 6)

W5 Walk (6 → 1)

Figure 3.4: Description of the semi-controlled protocol. Numbers displayed indicate the
position of the subject during his/her path.
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During each experiment, an examiner (an expert able to identify change points) has an-
notated all change points described above that correspond to transitions between walking
phases/activities, activities/walking phases, activities/activities or walking phases/walk-
ing phases. These annotations consist in precise timestamps and will be used as ground
truth change points’ labels for training the supervised segmentation algorithms presented
in Chapter 4.

3.5.2 Protocol 2

Figure 3.5: Description of the semi-controlled protocol. Numbers displayed indicate the
position of the subject during his/her path.

In Protocol 2, subjects were asked to complete several laps of the Neurophysiology
Department at Percy Hospital (a semi-controlled environment) and to perform activities
at the end of each lap (climbing up and down some stairs, leaning, sitting, standing) for a
total protocol duration of precisely 6 minutes.

The protocol, illustrated on Figure 3.5, contains several regimes that are either walking
phases (denoted W•) or activities (denoted A•). During each experiment, change points
were better identified than for Protocol 1 thanks to a camera carried by the subject who
was let alone to perform the protocol. These annotations were performed in collaboration
by one expert and consist in precise timestamps that will be used as ground truth change
points’ labels. Characteristics of these transitions are displayed in Table 3.3. Participants
were only instructed to perform one end-of-lap activity among leaning (A5), standing still
(A3) , sitting still (A4) and not to successively perform them all as in Protocol 1 to improve
annotations. This changewas implemented to improve annotations quality. Illustrations of
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transitions recorded by the wearable camera used for annotations are presented in Figure
3.6.

3.5.3 Protocol 3

Subjects were measured in their offices’ environment (Université de Paris’ offices contain-
ing stairs, corridors, elevators...) for 90 mins in a complete unsupervised manner. They
were only asked beforehand to perform a short list of activities (leaning, sitting, standing)
when they wanted during the experiment. They were also instructed to perform walking
for at least 10 minutes whenever they felt to during the experiment. Participants were
carrying a wearable camera so that further applied methods’ results could be compared
to ground truth observations. The short list of activities to perform was suggested as pre-
sented in Figure 3.7.

Figure 3.7: Protocol 3 activities’ instructions

3.6 Recorded signals

Three linear accelerations signals (m/s2) and three angular velocities signals (deg/s) from
the lower back (corresponding to three specific axes : craniocaudal CC axis, mediolateral
ML axis and anteroposterior AP axis as detailed in Figure 3.2 ) are recorded in every pro-
tocol. Raw signals are filtered between 0.5 and 5 Hz to remove the noise [144, 20, 150] with
a Butterworth bandpass filter (4th order).

Two examples from pre-processed signals (craniocaudal angular velocity and antero-
posterior acceleration) recorded from one complete experiment performed on Protocol 2
are displayed in Figure 3.8. Those same signals taken from homogeneous walking regimes
in an healthy participant from Protocol 2 are presented in Figure 3.9. In this figure, sig-
nals seem non-stationary depending on the performed activities. This implies the need for
segmentation in order to characterise stationary regimes within the signal. Figure 3.10 dis-
plays the same filtered signals during one transition separating the walking phase between
corner 1 and corner 2 (W1) and the (A1) activity (opening a fire door and performing a 90°
turn) phases. A black line corresponding to the beginning of (A1) activity and to the ending
of the walking phase has been added. Both signals appear to differ between (W1) and (A1)
portions : anteroposterior acceleration displays higher values on the walking phase and
craniocaudal angular velocity displays higher amplitudes in steps’ patterns in the activity
portion. Steps’ patterns also vary in the activity phase compared to the walking phase.
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((a)) Start ((b)) W0 → W1

((c)) W1 → A1 ((d)) A1 → W2

((e)) W2 → W3 ((f)) W3 → A2

((g)) A2 → A4 ((h)) A4 → W4

((i)) W4 → W5 ((j)) End of the lap

Figure 3.6: Screenshots of performed transitions in Protocol 2 from a wearable camera
used for annotations
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Figure 3.8: Filtered signals retrieved from the lower back : craniocaudal angular velocity
and anteroposterior acceleration. A complete healthy participant’s recording from Proto-
col 2 is displayed.

Figure 3.9: Filtered signals retrieved from the lower back : anteroposterior acceleration and
craniocaudal angular velocity. Signals are taken from one homogeneous walking regime
of one healthy participant from Protocol 2. Two strides (four steps) are included in those
examples. Dotted lines correspond to initial feet contacts.
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Figure 3.10: Filtered signals retrieved from the lower back of one healthy participant in
Protocol 2 : craniocaudal angular velocity and anteroposterior acceleration. Black line
corresponds to the beginning of (A1) activity (opening a fire door and performing a 90°
turn) and to the ending of the walking phase between corner 1 and corner 2 (W1) for one
healthy participant from Protocol 2.





4
Adaptive Change Point Detection Method

4.1 Introduction

In the previous chapter, we described several protocols enabling to respond to identified
biomedical issues (longitudinal follow-up, inter-individual comparisons, etc.). These pro-
tocols are composed of several homogeneous activities and walking phases that we want
to isolate in order to characterize them. One of our first tasks is therefore to segment the
signals recovered during the measurements in order to identify these protocols’ phases.
Once these homogeneous and stationary regimes are segmented, they can be characterized
according to their nature, compared with each other and evaluated according to healthy
subject standards as presented in Chapter 6.

Intuitively, this segmentation depends on the meaning given to the notion of change
and homogeneity that we seek to detect. In order to adapt the strategy to the signals of
interest, we propose to use a supervised approach that learns from annotated data the
type of changes that are meaningful in our context and thus the adequate scale for the
segmentation algorithm. The objective is to find as precisely as possible the instants of
change points that are similar to the annotated change points provided by experts.

Several change point detection methods exist in the literature and apply to various
study conditions. These methods are developed to meet specific needs: the nature of the
signals to be segmented (multimodal or one-dimensional), the annotation strategy, the
number of change points. Before being able to choose an approach, a first review of their
uses in the literature as well as their associated evaluation metrics is performed. Then,
characteristics of our method chosen according to this state of the art, their implemen-
tation on our signals, step by step results and a discussion on annotations’ strategy are
presented.

4.2 State of the art

Notations : In this section, we use the following notations. Let y = {y0,y1, . . . ,yT} denote
a Rd-valued signal with d ≥ 1. {yt}t=T

t=0 is denoted y0..T . A (b− a) long sub signal {yt}b
a+1

between samples a and b (0 < a < b) is denoted ya..b. A set of K indexes (or a partition of
K indexes) is denoted T = {t1, t2, ..., tK} ⊂ {0, ..., T}.

4.2.1 Quantitative criterion and problem statement

In this chapter, we consider a Rd-valued multidimensional non stationary random signal
y = y0, ...yT . This signal is assumed to be piecewise stationary meaning that some of
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its characteristics abruptly change at some unknown instants t∗1 , ....t∗K . The objective of
change point detection methods is to estimate indexes of those instants t∗K . The number
of change points K∗ to find may or may not be known.

Our segmentation approach is meant to be offline, meaning that it detects change
points after the data has been collected. With regard to these features, a common solu-
tion is to define the best partition T̂ (list of detected change point instants) on a signal as
the partition that minimizes a previously defined quantitative criterion V . Assumption is
made that V is of sum of costs computed on segmented regimes. The choice of these costs
is entirely based on the conditions of application of the change point detection method
(number of change points, annotation strategy...).

Let T = {t1, t2, . . . , tK} be a tested partition with K change points for T and c(•) the
cost function that evaluates the goodness-of-fit of regimes from T :

V(T ,y) =
K

∑
k=0

c(ytk ...ytk+1),

T̂ := argmin
T

V(T ,y)
(4.1)

All segmentation approaches that are to be applied rely then on three specific param-
eters :

• the definition the cost used for the assessment of the quantitative criterion : the
cost function is an evaluation of segmented regimes’ homogeneity. Cost values are
expected to be low when associated to homogeneous regimes.

• the search method : the procedure that seeks for the optimal partition according to
the chosen cost that is to say the lowest possible value of the sum of the costs on all
segmented regimes.

• the constraint on the number of change points : a complexity penalty is added if the
number of change points to detect is unknown to balance V(T ,y). The choice of
this complexity penalty relies on the amplitude of changes to detect : if the value of
the chosen penalty is high, only most significant change points will be detected and
inversely if the value of the chosen penalty is low.

4.2.2 Costs

Several types of costs can be used to define V . Let ya..b be values of y within a regime
delimited between a and b instants, ȳa..b the empirical mean of y on this regime and Σ̂a..b
the empirical covariance matrix of this regime. Cost functions are defined as follows :

• The cost related to the mean-shift model cL2 also called the quadratic error loss
[39, 102, 117] which is the most used in the literature. cL2 is used for a Gaussian
distribution with fixed variance. When using this cost, only mean changes within y
are detected.. cL2 can be applied to multidimensional signals.

cL2(ya..yb) =
b

∑
t=a+1

∥yt..ȳa..b)∥2
2 , (4.2)
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• The cΣ cost function detects changes in mean and variance. It is used for stock
market situations [95] or for biomedical applications [37] for instance :

cΣ(ya..b) = (b − a)log(det(Σ̂a..b)) +
b

∑
t=a+1

(yt − ȳa..b)
′Σ̂−1

a..b ∗ (yt − ȳa..b), (4.3)

• Several other cost functions are used to a lesser extent andwill not be further detailed
here: the cost function related to a Poisson distribution [40, 89], the cost function
adapted to signals with heavy noise tails, the cost function adapted to autoregressive
signals (notably ECG/EEG signals) [125] or speech recognition tasks [6].

Instead of using a complex cost function, signals can be transformed so that the changes
manifest themselves as changes in the mean for example, in order to use a simpler cost
function. It is possible for instance to first transform signals into adequate domains (such
as the time-frequency domain) and then detect mean-shifts [151].

4.2.3 Search methods and constraint

There are two types of searchmethods that can be applied to perform segmentations : opti-
mal methods (Pruned Exact Linear Time (PELT), Optimal Partitioning Method (OPT)) and
approximate methods (window sliding [28, 59], binary segmentation [15, 36], bottom-up
segmentation [82]) which are not explored further here. Indeed, the considered approach
for our study being offline (applied after the data recording) and not requiring fast pro-
cessing, optimal methods with interesting accuracy results represent the most valuable
choice.

These optimal methods are setup to find the optimal partition T̂ whose change points
minimize V . They apply to two different conditions: OPT if the number of change points
to detect is known [94, 96, 34, 131] and PELT if the number of change points to detect is
unknown.

Known number of change points: Optimal Partitioning

This solution based on dynamic programming applies to situations where the number of
change points K > 1 to find is known. Optimal partitions are searched as follows :

T̂ := argmin
T

V(T ,y) (4.4)

OPT first determines the last change point prior to T by defining the index tK−1 that
displays the lowest c(ytK−1 ..yT) value. It then relies on following observations to itera-
tively define t1, ...., tK−2 with t0 = 0 and tK+1 = T :

min
|T |=K

V(T ,y0...T) = min
t0=0,t1,...,tK ,tK+1=T

K

∑
k=0

c(ytk...k+1)

= min
t≤T−K

[
c(y0..t) + min

t0=t,t1,...tK−1,tK=T

K−1

∑
k=0

c(ytk...k+1)

]

= min
t≤T−K

[
c(y0..t) + min

|T |=K−1
V(T ,yt...T)

] (4.5)



84 CHAPTER 4. ADAPTIVE CHANGE POINT DETECTION METHOD

Equation (4.5) shows how to intuitively define the first change point t1 when optimal
partition is already known for previous K-1 change points. OPT displays a complexity of
the order O(Kn2) and is used for several purposes as DNA sequences [34] or financing
[95]...

Unknown number of change points: PELT

PELT method identifies change point instants when the number of change points to find
is unknown. Let |T | be the number of change points, PELT method integrates a linear
penalty β|T | which allows to balance out the goodness-of-fit of term V(T ,y). Optimal
partitions are searched as follows :

T̂ := ˆ|T |, t̂1, . . . , ˆt|T | := argmin
K,t1,...,t|T |

(
|T |+1

∑
k=0

c(y,{tk}
|T |
k=1) + β|T |

)
with t0 := 0 and t|T |+1 := T by convention.

(4.6)

β is the smoothing parameter that must be adapted accordingly to the number of
change points finally detected. β allows for a trade-off between a sufficient complexity
for a satisfactory accuracy and a low computational cost. This β value is critical, as it
controls the sensitivity of the algorithm: large β will only detect strong breaks (change of
activity for instance) while low β will also detect small breaks (change within the walking
phases).

(Note that ˆ|T |, t̂1, . . . , ˆt|T | depend on β and y.) For a fixed β, this discrete optimization
problem is solved efficiently in linear time O(n) [87] thanks to the PELT method. This
pruning method iteratively discards indexes from the list of possible last change points to
find the latter. In this approach, each sample is considered separately and iteratively. It can
be rejected or not from a list of possible change points according to the following explicit
pruning rule for two indexes t and s (t < s < T) :

if
[

min
T

V(T ,y0...t) + β|T |
]
+ c(yt...s) ≥

[
min
T

V(T ,y0...s) + β|T |
]
with t<s<T

holds, then t cannot be the last change point prior to T
(4.7)

If (4.7) holds, for any T > s, the optimal partition with the last change point prior to T
being s will be better than any partition with the last change point prior to T being t. As
such, a list of optimal change points can be found iteratively by searching change points
with indexes that have not been discarded. PELT has been used in several application
sectors, notably for oceanographic data [87] and DNA data [73, 103].

4.2.4 Evaluation Metrics

Existing evaluation metrics used to compare predicted segmentations and true segmenta-
tions are presented here. Let T = t1, ..., tK be a computed partition with K change points
and T ∗ = t∗1 , ..., t∗K a true partition with K∗ change points.
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Usual metrics: F1usual , Recallusual , Precisionusual

A predicted change point is a True Positive (TP) if it is close to a true change point (within
a specific positive temporal margin). This margin corresponds to the maximum accepted
error for a change point. It must be less equal to the minimum temporal distance between
two true change points. Recall which corresponds to the proportion of true change points
that are correctly predicted is the ratio of the number of TPs to the number of true change
points. Precision corresponds to the proportion of predicted change points that are linked
with true change points is the ratio of the number of TPs to the number of predicted change
points.

Precisionusual =
TP
K

Recallusual =
TP
K∗

F1usual = 2
Precisionusual Recallusual

Precisionusual + Recallusual

(4.8)

Best values for Precision, Recall and F1-Scores are 1 while poorest values are 0.

Intersection over Union Metrics: F1ScoreIoU , PrecisionIoU , and RecallIoU

Another set of metrics similar to Usual Metrics is computed. It is an extension of the basic
metrics that allows not to use a fixed tolerance (imposed margin). The segmentation pro-
cedure is also assessed with 3 standard evaluation metrics: precision, recall and F1-score.
These metrics are computed by using the Intersection Over Union (IOU) index (also known
as Jaccard index) [97] between detected and real regimes. IOU quantifies the overlapping
degree between ground truth and predicted regimes. It is obtained by dividing the value in
samples of the full overlap between two regimes by the total number of samples covered
by both evaluated regimes. For each predicted regime, when compared to all annotated
regimes, if the IOU score is above a specific threshold for one specific regime, the predicted
regime is considered as a True Positive (TP). If there is more than one annotated regime as-
sociated to a predicted regime, only one annotated regime (with the highest value of IOU)
is definitively associated to this predicted regime. Then, precision, recalls and F1-scores
are computed according to Equation (4.9). Small temporal shifts between predicted and
real change points that may be due to annotation approximations are not penalized.

PrecisionIoU =
TP
K

RecallIoU =
TP
K∗

F1ScoreIoU = 2
PrecisionIoU RecallIoU

PrecisionIoU + RecallIoU

(4.9)

Best values for PrecisionIoU , RecallIoU and F1ScoreIoU are 1 while poorest values are
0.

Delta Time Error

Delta Time Error ∆TE computes the difference between the instant of a predicted TP and
its associated annotation (groundtruth change point). It enables to evaluate the average
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offset obtained when trying to predict a specific type of change point for instance. Let t∗k
and tk respectively denote the sample of an annotated change point and the sample of its
associated predicted change point.

∆TE(T ,T ∗) = |t∗k − tk| (4.10)

Annotation Error

Annotation error AE [152] corresponds to the difference between the number of predicted
change points K and the number of true change points K∗. This metric penalizes both
oversegmentation and undersegmentation. An annotation error percentage AE% is also
computed in order to compare the value of the annotation error with the total number of
true regimes.

AE(T ,T ∗) = |K∗ − K|,

AE%(T ,T ∗) =
AE
K∗

(4.11)

Haussdorf metric

Haussdorf metric HM [25] evaluates the worst error made when predicted change points
over all listed change points. It measures the greatest temporal distance between either
one predicted change point from any true change points or between one true change point
from any predicted change point. HM is expressed in number of samples :

HM(T ,T ∗) = max
[

max
t∗∈T ∗

(
min
t∈T

(|t∗ − t|)
)

; max
t∈T

(
min

t∗∈T ∗
(|t∗ − t|)

)]
(4.12)

It also penalizes both oversegmentation and undersegmentation. When using the
Haussdorf metric on long signals, one single poorly evaluated change point can lead to
poor results.

Rand index metric

Rand index RI(T ,T ∗)[93] evaluates the total number of agreements between a true par-
tition T and its associated predicted partition T ∗. Each sample from T ∗ is compared to
all other samples from T ∗ to define which couples of samples belong to the same regimes :
gr(T ) and which couples of samples do not belong the same regime : ngr(T ) . The same
procedure is performed for samples from T ∗ : gr(T ∗) and ngr(T ∗).

gr(T ) = {(s, t),1 ≤ s ≤ t ≤ T s.t s and t belong to the same regime according to T },
ngr(T ) = {(s, t),1 ≤ s ≤ t ≤ Ts.t s and t belong to different regimes according to T }.

(4.13)
The number of samples’ couples to belong both to gr(T ∗) and gr(T ) is computed :

|gr(T ∗) ∪ gr(T )| as well as the number of samples’ couples to belong both to ngr(T ∗)
and ngr(T ) : |ngr(T ∗) ∪ ngr(T )|.
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RI(T ,T ∗) can then be calculated :

RI(T ,T ∗) =
|gr(T ∗) ∪ gr(T )|+ |ngr(T ∗) ∪ ngr(T ∗)|

T(T − 1)
(4.14)

RI(T ,T ∗) is normalized between 0 (both partitions display a total disagreement)
and 1 (both partitions display a total agreement). The Rand Index can provide a detailed
evaluation but the associated computational cost when it is computed on long signals is
extremely high. Besides, RI(T ,T ∗) can display high values on long signals since the
|gr(T ∗) ∪ gr(T )| + |ngr(T ∗) ∪ ngr(T ∗)| term can display higher values when com-
pared to short signals which are not sufficiently attenuated by T(T − 1).

4.3 Proposed Method

4.3.1 Introduction

Our retrieved signals present several different types of changes, which makes it complex
to define an adapted cost function. It was therefore decided to transform our data into
time-frequency domain where variations become mean variations. The cL2 cost is thus
chosen to be further used in our method. This simple cost also enables to reduce com-
putational heaviness. PELT method is chosen because of its enhanced computational cost
when compared to OPT method. A linear penalty constraint is implemented to use the
PELT method.

4.3.2 Data Transformation

As detailed in Chapter 3, three linear accelerations signals (m/s2) and three angular veloci-
ties signals (deg/s) from the lower back are recorded throughout the protocol. As explained
in the introduction, these signals do not have significant mean-shifts and must be modified
in order to be able to detect changes. A new domain other than time domain is thus in-
troduced : signals are transformed in the time-frequency domain which enables to better
identify these mean-shifts. Indeed, in recorded signals, an alternation of regular periodic
regimes with easily noticeable harmonic frequency structures is identifiable which implies
obvious mean shifts on investigated spectrograms.

More specifically, two signals of interest are extracted from the raw data (IMU record-
ings): the craniocaudal angular velocity (gCC) and the anteroposterior acceleration (aAP).
These signals are chosen as they are directly influenced by the changes that can be ob-
served during the execution of the protocol (beginning and end of gait, short activities,
half turns and turns...). Some studies already use these signals to meet objectives similar
to ours (turn detection, detection of activities of daily life...) [129, 111]. These signals are
normalized (zero mean and unit variance) before being transformed in the time-frequency
domain through Short Term Fourier Transform (STFT) (3 second window length and 0.1s
hop length). Only the 0.5 - 5 Hz frequency band, where phenomena of interest are con-
tained, is kept [150]. The norms of the STFT coefficients of each aAP and gCC signals are
computed and concatenated, providing d = 28 frequency bins per frame (14 per signal).
The output data is considered by the segmentation algorithm as a d-dimensional multivari-
ate signal. Output spectrograms for protocols 1 and 2 are displayed in Figure 4.1. In both
spectrograms, differences in spectral signatures are visually noticeable between walking
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((a)) STFT Spectrogram Protocol 1

((b)) STFT Spectrogram Protocol 2

Figure 4.1: Example of concatenated Spectrograms of STFTs from Craniocaudal Angular
Velocity and Anteroposterior Acceleration from protocols 1 and 2. White lines correspond
to transitions between activities.

phases and activity phases and notably (A1) (fire door and turn) and (A2) (stairs). Indeed,
mean shifts from walking phases and (A1) or (A2) are apparent to the naked eye. Never-
theless, mean shifts between two walking phases are less visible which indicates possible
difficulties to detect those transitions.

4.3.3 Annotations and change points

Transitions and Activity/Walking phases

Protocols illustrated in Chapter 3 contain several regimes that are either walking phases
(denoted W•) or activities (denoted A•). During each recording, change points are iden-
tified thanks to an examiner that follows participants during recordings in Protocol 1 and
thanks to a camera carried by the subject who is let alone to perform his deambulation
in Protocol 2. These change points correspond to transitions between walking regimes
and activities’ regimes, activities’ regimes and walking regimes, activities’ regimes and
other activities’ regimes or walking regimes and other walking regimes. Characteristics
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of the phases that start and end to these transitions from the two semi-FLEs protocols are
displayed in Table 3.3.

Normalized Mean Shift Amplitudes

Intuitively, annotated change points are of various nature, and in order to investigate their
properties, we propose to use ametric called normalizedmean-shift amplitude ∆̂ computed
for each type of change point [147]. This quantity allows to investigate to what extend an
annotated change point separating two regimes left/right is hard to detect. Given a multi-
variate signal with d dimensions and an annotated change point, the squared normalized
mean-shift amplitude ∆̂2 is defined as :

∆̂2 =
1
d

d

∑
i=1

(µle f t,i − µright,i)
2

σ2
le f t,i

nle f t
+

σ2
right,i

nright

, (4.15)

where µle f t/right,i and σ2
le f t/right,i are respectively the mean and variance of the signal on

the left/right regime and dimension i, and nle f t/right the number of samples of left/right
regimes. The higher ∆̂k is, the more different the two regimes are and the easier the change
points are to detect. As some regimes are significantly longer than the average regime
length, ∆̂k computations can show excessive values for some transitions. An additional δ̂k
metric based on ∆̂ calculation (4.15) is also introduced to mitigate this excessive influence
of regime length. If nright or nle f t exceed 100 frames (i.e. 10s ), these numbers are fixed at
100.

δ̂2 =
1
d

d

∑
i=1

(µle f t,i − µright,i)
2

σ2
le f t,i

nle f t
+

σ2
right,i

nright

,with nle f t = min(nle f t,100) and nright = min(nright,100)

(4.16)
Table 4.1 displays the normalized mean-shift amplitude as well as additional informa-

tion on all change points from Protocol 1 considered in the article (type of regimes and
regimes’ length). Table 4.2 displays the same characteristics for transitions from Protocol
2. It appears that transitions separating static phases from others tend to have high ∆̂ val-
ues (> 10). Change points separating slow medium phases from motion long phases also
display high ∆̂ values. Transitions separating slow short phases from motion long phases
present lower ∆̂ values (<9) as well as transitions dividing motion phases. On the other
hand, lowest ∆̂ values are found for transitions separating two static phases (i.e. are the
most difficult to detect) : transitions 6 and 7 from Table 4.1.

Transitions of type 1 display the biggest drop of value between ∆ and δ which indicates
they are to be also much more difficult to detect than other transitions. It correlates with
the observation that mean shifts in spectrograms between two walking phases are less
visible than for other transitions (between motion and static phases for instance).

4.3.4 Algorithms

In this study’s context, the changes to detect are transitions between activities of the proto-
col and it is assumed that those transitions correspond to mean shifts in the concatenated
spectrograms (see Section 4.3.2). Formally, let y = {y1,y2, . . . ,yn} denote a Rd-valued
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Transition
number

Type of change
points

change points characteristics

∆̂ δ̂ Types of regimes Regimes’ length

1 W0→W1
W2→W3
W4→W5
W5→W1

6.63 5.45 Movement/Movement Long/Long or
Medium/Long

2 W1→A1 7.09 7.03 Movement/Slow Long/Short

3 A1→W2 7.55 7.21 Slow/Movement Short/Long

4 W3→A2 11.11 9.58 Movement/Slow Long/Medium

5 A2 → A5 10.03 10.02 Slow/Static Medium/Short

6 A5 → A4 4.88 4.91 Static/Static Short/Short

7 A4 → A3 4.79 4.81 Static/Static Short/Short

8 A3 → W4 13.11 12.76 Static/Movement Short/Long or
Short/Medium

Table 4.1: Details of change point’s categories from Protocol 1. The length of the regimes
segmented by each kind of change point is provided (short < 5s,5s < medium < 10s and
long > 10s) as well as the type of these regimes and the average number of times they
occur in a lap.

Transition
number

Type of change
points

change points characteristics

∆̂ δ̂ Types of regimes Regimes’ length

1 W2→W3
W4→W5
W5→W1

6.69 5.33 Movement/Movement Long/Long or
Medium/Long

2 W1→A1 7.62 7.44 Movement/Slow Long/Short

3 A1→W2 8.13 7.30 Slow/Movement Short/Long

4 W3→A2 11.34 10.13 Movement/Slow Long/Medium

5 A2 → A3 12.69 11.96 Slow/Static Medium/Medium

6 A2 → A4 12.36 12.25 Slow/Static Medium/Medium

7 A2 → A5 13.31 12.12 Slow/Static Medium/Medium

8 A3 → W4 17.60 17.00 Static/Movement Medium/Long or
Medium/Medium

9 A4 → W4 17.82 16.36 Static/Movement Medium/Long or
Medium/Medium

10 A5 → W4 18.15 17.25 Static/Movement Medium/Long or
Medium/Medium

Table 4.2: Details of change point’s categories from Protocol 2. The length of the regimes
segmented by each kind of change point is provided (short < 5s,5s < medium < 10s and
long > 10s) as well as the type of these regimes and the average number of times they
occur in a lap.

signal with n samples associated to a spectrogram’s signal. For K change point indexes
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tk (T = 1 < t1 < t2 < · · · < tK < T), a common measure of approximation quality is
the empirical quadratic risk that uses the chosen cost cL2 for our segmentation method as
detailed in Section 4.2. When using cL2 , the quantitative criterion V to minimize is defined
as :

V(T ,y) :=
K+1

∑
k=0

(
tk+1−1

∑
t=tk

∥yt − ȳtk ..tk+1∥2

)
(4.17)

where ȳtk ..tk+1 is the empirical mean of ytk , . . . ,ytk+1−1 and t0 := 1 and tK+1 := n by con-
vention. The risk (4.17) is simply the error when approximating y by a piecewise constant
signal. The objective is to find the change points tk that minimize this risk. When the
number of breaks K is not known (which is the case here), the empirical quadratic risk is
penalized with a linear penalty and the optimal change points are :

T̂ := argmin
T

V(T ,y) + βK︸             ︷︷             ︸
Rβ(T ,y)

 (4.18)

This optimal partition is found by using PELT as detailed in Section 4.2.

Calibration of β

Instead of manually calibrating this β parameter by trial and error, a supervised approach
described in [148] is used in this study to learn the optimal parameter to detect the changes
we are interested in. In a nutshell, this procedure takes as input a collection of N labeled
signals y(1), ...,y(N), meaning that for each y(i), an expert manually provided the set of true
change point indexes T ∗(i). The optimal smoothing parameter, denoted β̂opt, is such that
the risk of true expert segmentation is closest to the one of the predicted segmentation,
denoted ˆT (i):

ˆβopt := argmin
β>0

1
N

N
∑

i=1
ε(y(i), β). (4.19)

ε(y(i), β) = (Rβ

(
T ∗(i),y(i)

)
− Rβ

(
ˆT (i),y(i)

)
. (4.20)

Intuitively, the algorithm searches for the penalty β that allows to reproduce the an-
notations, by forcing the β−optimal solution ˆT (i) to be as close as possible to the ground
truth partition T ∗(i). This optimization is performed byminimizing the average excess pe-
nalized risk ε(y,β) (4.19) which is the average difference between risks from true expert seg-
mentations and predicted segmentations as detailed in Equation (4.20). The excess penal-
ized risk is by definition a convex function w.r.t. β. Indeed, since function β → Rβ(y,T ∗)

is affine and function β → Rβ(y, T̂ ) is a concave function (pointwise minimum of a set of
affine functions as detailed in Figure 4.2), ε(y, β) which is the difference of those functions
is convex.

We therefore use Brent’s method [26] as a convex optimization tool to minimize this
component for each training signal. This approach uses two bound values of β (βa and
βb). The minimum of a simplified parabola exactly containing three points : {βa, ε(y, βa)},
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{βb, ε(y, βb)} and {βc, ε(y, βc)} with βc =
βa+βb

2 is computed and replaces the previous
βb value. This "bound" method is then repeated : several minima of iterative parabolas be-
tween two specific provided beta bound values are found the same way to finally converge
towards the optimal β value : ˆβopt. A visualization of this method is detailed in Figure 4.3.

Figure 4.2: Excess penalized risk ε displayed as a convex function in green. Dashed lines
correspond to penalized empirical risks obtained for some specific segmentations. These
dashed lines are a set of affine functions whose components are fixed risks and the number
of change points of each tested segmentation. The higher the number of these change
points, the lesser is the value of fixed risks and inversely hence the displayed shapes of
these dashed lines. Red line corresponds to Rβ(y, T̂ ) which is the pointwise minimum of
this set of affine functions.

Figure 4.3: Brent’s methods for convex minimization

4.4 Results

In the next section, we conduct an assessment of our supervised segmentation method
with adapted metrics. All simulations are run with 3-fold cross-validation for Protocol 1
as well as for Protocol 2. To that aim we split the data set into 3 balanced sets (two training
sets and one validation set) of 5 healthy participants in Protocol 1 and into 3 balanced
sets (two training sets and one validation set) of 7 healthy subjects and 3 pathological
subjects (2 participants having undergone or about to undergo orthopedical surgery and 1
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neurological patient). This cross-validation allows to verify that the algorithm developed
in this study can be used on new unseen data to apply the desired segmentation.

4.4.1 Evaluation metrics

Global metrics

IOUmetrics (F1IoU , RecallIoU , PrecisionIoU), usualmetrics F1usual , Recallusual , Precisionusual
Haussdorf, Annotation Error, Rand Index can be used to assess segmentations on all identi-
fied change points : they are defined as global metrics as opposed to change points’ metrics
that assess segmentation only for a specific type of change point.

Concerning usual metrics, a predicted change point is a True Positive (TP) if it is within
a margin of 3.5 seconds to a true change point. This margin corresponds to the maximum
error for a transition observed in a human being from the recordings in this study.

Three IOU’s threshold values (0.3, 0.4 and 0.5) which correspond to general thresholds
used in other segmentation studies [97, 130] are tested. These thresholds allow for one
predicted regime to be correctly associated to a true regime even if all samples from the
predicted regime are not contained in the true regime and inversely.

Change points’ metrics

In both Protocol 1 and Protocol 2, change points’ categories can be evaluated separately by
computing associated recall values from usual metrics. We have already noted in Section
4.3.3 that considered change points may not have the same degree of detection’s complex-
ity. We therefore perform an evaluation considering only one type of change points at
a time. Only recall values can be computed to render metrics associated to specific cat-
egories of transitions since precision implies the use of the number of predicted change
points which is bound to produce insignificant results. When a TP is detected, the differ-
ence in seconds between the calculated change point and the associated annotation can
be computed: this corresponds to the ∆TE metric which is computed and detailed in this
section. Change points metrics’ computations are displayed on Table 4.4 for Protocol 1
and on Table 4.6 for Protocol 2.

4.4.2 Protocol 1

Usual and IoU Metrics

Averaged usual metrics and IOU metrics for Protocol 1 are displayed in Table 4.3. Both
usual and IOU metrics are satisfactory and indicate that this study’s change point detec-
tion procedure is accurate for most change points, and also that there is no oversegmen-
tation. Besides, IOU metrics’ values obtained with the chosen overlap threshold (0.4) are
close to usual metrics’ values which indicates that regimes analysis (IOUmetrics) provides
the same interpretation outputs that a more specific analysis of the change points (usual
metrics) offers.

It is noteworthy that as the overlap thresholds increase (i.e. the importance given to
the intersection of the compared regimes in relation to their union increases), IOU metrics
are likely to decrease. Moreover, for a tenth increase in threshold value (from 0.4 to 0.5),
results that are similar to the usual metrics results at 0.4 (f1=0.75) differ quite significantly
for the threshold set at 0.5 (f1=0.63). This indicates the difficulty in accurately estimating
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change points. A threshold set below 0.5 allows predicted regimes to be associated with an
annotated regime even if a turn transition, for example, has not been correctly predicted.
Otherwise, with a higher threshold value, there would be an over-penalisation of slight
undersegmentations for instance.

Usual Metrics

F1usual 0.75 ± 0.02

PrecisionUsual 0.73 ± 0.09

RecallUsual 0.79 ± 0.04

IoU Metrics : Overlap = 0.3

F1IoU 0.80 ± 0.03

PrecisionIoU 0.77 ± 0.09

RecallIoU 0.84 ± 0.04

IoU Metrics : Overlap = 0.4

F1IoU 0.75 ± 0.05

PrecisionIoU 0.73 ± 0.10

RecallIoU 0.79 ± 0.03

IoU Metrics : Overlap = 0.5

F1IoU 0.63 ± 0.07

PrecisionIoU 0.62 ± 0.11

RecallIoU 0.66 ± 0.03

Other Metrics

Haussdorf 1472.07 ±
213.00

Rand Index 0.97± 0.001

AE 7.60 ± 2.12

AE% 22.61 %

Additional Characteristic Number of true regimes 33.6 ± 1.7

Table 4.3: Change point detection results for Protocol 1.

Haussdorf, Randindex, AE, AE%

The value of the Haussdorf metric is high (14.72s) which is explained by the observation
made in Section 4.2.4 : a single faulty detection of one change point on long regime portions
(walking phases in the long corridors separated by turns in particular) could have induced
this important deviation.

The percentage error annotation AE% shows that the differences between the number
of predicted and actual change points is around 20%. This difference is probably due to the
difficulty of detecting one type of break by our segmentation method (especially turns as
it is presented in Subsection 4.4.2). In one acquisition, an average of 12 turns are made by a
participant: if the segmentation method fails to detect half of these turns for instance and
assuming that there is no over-segmentation, the difference measured by AE% is reached.
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As for the Rand Index, the value obtained is extremely high (0.97) but this is due to the
observations made in Section 4.2.4 which explain that this parameter is very sensitive to
the length of our signals (here the number of samples is 36000).

Change points’ Metrics

Transitions Type of change
points

change points characteristics Accuracy results

∆̂ δ̂ Types of regimes Regimes’ length Recallusual ∆TE(s)

1 W2→W3
W4→W5
W5→W1

6.63 5.45 Movement/Movement Long/Long or
Medium/Long

0.71
±0.07

1.92 ±
0.14

2 W1→A1 7.09 7.03 Movement/Slow Long/Short 0.98
±0.02

0.56
±0.07

3 A1→W2 7.55 7.21 Slow/Movement Short/Long 0.99
±0.01

0.60
±0.07

4 W3→A2 11.11 9.58 Movement/Slow Long/Medium 0.98
±0.02

1.70
±0.32

5 A2 → A3 10.03 10.02 Slow/Static Medium/Short 0.88
±0.07

1.02
±0.18

6 A3 → A4 4.88 4.91 Static/Static Short/Short 0.30
±0.21

0.96
±0.65

7 A4 → A5 4.79 4.81 Static/Static Short/Short 0.81
±0.08

0.91
±0.20

8 A5 → W4 13.11 12.76 Static/Movement Short/Long or
Short/Medium

0.93
±0.01

1.48
±0.28

Table 4.4: Details of change point’s categories and recall results for PROTOCOL 1.

In protocol 1, change points associated to transitions between walking phases and ac-
tivities are especially well detected (transition types 2, 3, 4 and 8) with recalls above 0.9.
Turns between two walking phases (transition type 1) are less precisely detected (recall
0.71). The poorest results are obtained for transitions 6 and 7 dividing the static activities
(leaning, sitting, standing). This result is probably due to the fact that these transitions
occur between two short regimes: transitions 6 and 7 are within two seconds from each
other on average. Therefore, when a change point is computed in their proximity, it is
very challenging to define for which transition specifically it is computed and to precisely
assess overlaps’ influence. That is why their recall results can therefore not be considered
separately but jointly. Besides, these transitions separate two sedentary regimes with sim-
ilar spectral signatures hence the difficulty to perform an efficient segmentation for this
category of change points. These results emphasize the correlation between the obser-
vations made on ∆̂ values (made in Subsection 4.3.3) and the difficulty of detecting these
particular change points.

One of the largest ∆TE is obtained for Transition 4 (between the Walking phase (W3)
and the Stairs activity (A2)). This is due to the fact that the deceleration phase of the
participants before the stairs appears well upstream of the stairs whereas the manual an-
notations often indicate them very close to the stairs. Nevertheless, it appears that these
errors are quite limited (<2s when the imposed margin to find a True Positive is fixed at
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3.5s). The largest ∆TE value is obtained for Transition 1 (turns). This type of transitions is
among the hardest transitions to detect as ∆̂ values suggested it hence this important ∆TE
value.

4.4.3 Protocol 2

Usual and IoU Metrics

Averaged usual metrics and IOU metrics for Protocol 2 are displayed in Table 4.5. Both
usual and IOU metrics are satisfactory (respectively 0.76 and above 0.72 for all thresholds)
and indicate that this study’s change point detection procedure is accurate for most change
points, and also that there is no oversegmentation.

The segmentation is currently performed using spectrograms whose hop size are 0.1
second, thus limiting the temporal resolution that can be achieved. In case we would like
to lower it and to possibly increase segmentation accuracy, it is possible to do so, but at
the expense of the computation time.

Usual Metrics

F1usual 0.76 ± 0.01

PrecisionUsual 0.74 ± 0.02

RecallUsual 0.79 ± 0.02

IoU Metrics : Overlap = 0.3

F1IoU 0.83 ± 0.02

PrecisionIoU 0.88 ± 0.04

RecallIoU 0.82 ± 0.01

IoU Metrics : Overlap = 0.4

F1IoU 0.80 ± 0.02

PrecisionIoU 0.85 ± 0.03

RecallIoU 0.79 ± 0.01

IoU Metrics : Overlap = 0.5

F1IoU 0.73 ± 0.02

PrecisionIoU 0.78 ± 0.04

RecallIoU 0.72 ± 0.01

Other Metrics

Haussdorf 1934.44 ±
64.25

Rand Index 0.96± 0.002

AE 5.72 ± 0.95

AE% 20.78 %

Additional Characteristic Number of true regimes 27.62± 0.25

Table 4.5: Change point detection results for Protocol 2.
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Change points’ Metrics

Transitions Type of change
points

change points characteristics Accuracy results

∆̂ δ̂ Types of regimes Regimes’ length Recallusual ∆TE (s)

1 W2→W3
W4→W5
W5→W1

6.69 5.33 Movement/Movement Long/Long or
Medium/Long

0.33
±0.11

2.01
±0.12

2 W1→A1 7.62 7.44 Movement/Slow Long/Short 0.90
±0.06

0.82
±0.05

3 A1→W2 8.13 7.30 Slow/Movement Short/Long 0.94
±0.05

0.92
±0.03

4 W3→A2 11.34 10.13 Movement/Slow Long/Medium 0.95
±0.05

1.08
±0.17

5 A2 → A3 12.69 11.96 Slow/Static Medium/Medium 0.99
±0.05

1.12
±0.07

6 A2 → A4 12.36 12.25 Slow/Static Medium/Medium 0.99
±0.01

1.45
±0.46

7 A2 → A5 13.31 12.12 Slow/Static Medium/Medium 0.99
±0.01

1.44
±0.03

8 A3 → W4 17.60 17.00 Static/Movement Medium/Long or
Medium/Medium

0.99
±0.01

0.73±
0.12

9 A4 → W4 17.82 16.36 Static/Movement Medium/Long or
Medium/Medium

0.99
±0.01

1.30
±0.15

10 A5 → W4 18.15 17.25 Static/Movement Medium/Long or
Medium/Medium

0.99
±0.01

1.10
±0.14

Table 4.6: Details of change point’s categories and recall results for Protocol 2.

In Protocol 2, transitions between end-of-lap activity phases (A3,A4,A5) and walking
phases as well as transitions between (A2) activity (climbing up and down stairs) and end-
of-lap activities are especially well detected with recall values close to 1. Those values
are high since these transitions separate static and movement phases or slow phases that
present highly different spectral signatures. As a matter of fact, these figures indicate that
improved annotations enabled by the use of a wearable camera led to better learning data
and thus to a better detection of those transitions that occur at the end of laps. The poor-
est results are obtained for transition 1 dividing two motion phases. It relates to previous
observations on low δ values which correlates with the lack of clear mean-shifts in spectro-
grams at turns’ true change points. Intermediary recall results are obtained for transitions
between walking phases and (A1) (opening a fire door and performing a 90° turn). These
transitions separatemotion and slow phaseswith significantly different spectral signatures
but (A1) (opening a fire door and performing a 90° turn) regimes are short which may in-
duce observed errors. In a nutshell, these results are correlated with observations made on
∆̂ values in Subsection 4.3.3) and the difficulty of detecting these particular change points.
Transitions with ∆̂>10 are perfectly detected, transitions with 7<∆̂<10 can be less well
detected and transitions with ∆̂<7 and notably δ̂<6 display the poorest recall values.

∆TE values are limited as for Protocol 1 (<2s). Some of the largest ∆TE values (>1s) are
obtained for transitions 9 and 10 (separating sitting and leaning activities from walking
phases). This is due to the fact that pathological subjects included in training and val-
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idation sets tended to be slower to end their activities and resume walking with a more
graduate way to perform this transition compared to healthy subjects. It induced disparity
in annotations of true change points : transitions were slower to be performed by patho-
logical subjects compared to annotations. The same observation is made for transitions
5,6 and 7 separating stairs activity (A2) from sitting, leaning standing activities with high
∆TE values (>1s) : included pathological participants were slow to initiate these activities
hence the observed time margins in detection. Transitions 8 separating standing phases
do not display high ∆TE values since annotations could be performed more efficiently for
true change points : if the subject completely resumed his gait, a change point is anno-
tated. Highest ∆TE values are obtained for transitions 1 between two motion phases and
are related to detection issues for this specific type of transition as mentioned above.

4.4.4 Comparison between protocols

IOU and usual metrics

Both usual and IOU metrics are satisfactory and indicate that this study’s change point
detection procedure is accurate for most change points, and also that there is no overseg-
mentation. IOU metrics have been improved overall for Protocol 2. This is probably due
to the changes in the end-of-lap activities to be performed. The annotated change points
corresponding to transitions between sedentary activity phases are indeed close to each
other in Protocol 1. If a segmentation error occurs for these change points (which hap-
pens for transitions between standing still (A3) and sitting still (A4) and between sitting
still (A4) and leaning (A5) as displayed in Table 4.4), predicted regimes may bemuch longer
than the annotated regimes and therefore induce lower IOU metric values. Changes made
to the instructions to perform these end-of-lap activities therefore increase IOU metrics
values in Protocol 2.

Haussdorf, Randindex, AE, AE%

In both protocols, the value of the Haussdorf metric is high (respectively 13.98s and 19.34)
which is explained by the observation made in Section 4.2.4 : a single faulty detection of
one change point on long regime portions (walking phases in the long corridors separated
by turns in particular) could have induced this important deviation.

The percentage error annotation AE% shows that the differences between the number
of predicted and actual change points is around 20% for both protocols. This difference is
probably due to the difficulty of detecting one type of break by our segmentation method
(especially turns). In one acquisition, an average of 12 turns are made by a participant: if
the segmentation method fails to detect half of these turns for instance and assuming that
there is no over-segmentation, the difference measured by AE% is reached.

As for the Rand Index, the value obtained is extremely high in both protocols (re-
spectively 0.97 and 0.96) but this is due to the observations made in Section 4.2.4 which
explain that this parameter is very sensitive to the length of our signals (here the number
of samples is 36000).
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((a)) Turns’ type 1 : W0 to W1 turns

((c)) Turns’ type 2 : W2 to W3 turns

((e)) Turns’ type 3 : W4 to W5 turns

Figure 4.4: Screenshots of different types of performed turns in Protocol 2.Their locations
on protocol’s laps are also displayed.

Annotations and instructions

Annotations issues from Protocol 1 inducing high ∆TE values for transitions between
walking phases and A2 are corrected thanks to the use of the wearable camera and thanks
to changes in protocols’ structurations (∆TE valueswent from 1.60s in Protocol 1 to 1.13 s in
Protocol 2). Annotations could be performed more accurately and lead to better segmenta-
tions’ performances. Indeed, by providing precise annotations for transitions, algorithms
are able to more efficiently perform change point detection and evaluation metrics (espe-
cially ∆TE values) display better figures. Other ∆TE values were not modified by protocols’
changes which indicates that annotations were not highly influential on segmentations’
algorithms for these specific transitions.

Besides, end-of-lap activities that were close one to another as end-of-lap activities
(A3, A4 and A5) in Protocol 1 were better detected in Protocol 2. Indeed, changes in in-
structions (participants did not have to perform all these activities in a row in Protocol
2) induced better segmentation performances. Overlaps’ issues in evaluation metrics be-
tween activities in Protocol 1were removed thanks to this new way of annotating. In the
future, the minimum size enforced to the algorithm can be increased to reduce overlaps’
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((a)) Start Turn Healthy ((b)) Start Turn Pathological

((c)) Mid Turn Healthy ((d)) Mid Turn Pathological

((e)) End Turn Healthy ((f)) End Turn Pathological

Figure 4.5: Screenshots of performed turns in Protocol 2 and of their timings. Healthy
subject’s turn is performed faster than pathological subject’s (post-hip prothesis surgery)
turn. Besides, the healthy subject performs a sharper turn by performing an important
rotation mid-turn while the pathological subject performs a more "linear" turn.

influences.

Turns detection

In both protocols, recall values for turn transitions (between two walking phases) are poor
compared to other transitions. As detailed in Subsection 4.3.2, mean-shifts in spectrograms
between those walking phases are not as evident as for other transitions. This detection
difficulty was correctly predicted by the low δ (< 5.5) values displayed in Tables 4.1 and
4.2. Detections of turns occur at the end of annotated turns or at their beginnings : changes
in turns impacts the means within signals of the walking regime predating or following
the turn. Sometimes, when turns are long enough, change points can be found both at the
beginning and at the end of turns.

This turn detection issue could be solved by using two segmentations relying on two
annotations schemes that will be aggregated. Annotations for the first segmentationwould
be solely for starts and endings of turns with a reduced enforced minimum size while
annotations for the second segmentation would be unchanged for all other transitions. As
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((a)) Scenario 1 : F1=1.00

((b)) Scenario 2 : F1=0.85

Figure 4.6: Evolution of the change point’s detection results depending on the annotations given as
input for a control participant in Protocol 1. Displayed spectrograms are the concatenation of aAP
and gCC spectrograms. White vertical lines correspond to themoments when the algorithm detects
a change point. Annotations given as input are displayed above each spectrogram (alternating
colors).

such, mean-shifts associated to turns could be more reliably detected.
Configurations of turns influence the way they are performed by the participants and

therefore impact segmentations’ results. As presented in Figure 4.4, turns’ type 3 that sep-
aratesW4 andW5 phases are structurally different from turns’ types 1 and 2. Indeed, turns
from type 3 occur around a 90°wall anglewhich leads participants to perform sharper turns
while turns from type 1 and 2 occur around a 45° wall angle. Turns of type 3 were isolated
and their detection was evaluated to assess the influence of these different configurations.
In protocols 1 and 2, their averaged recall values are respectively 0.82 ± 0.03 and 0.54 ±
0.11 which are significantly higher than recall values computed for all types of turns (0.74
in Protocol 1and 0.32 in Protocol 2). It indicates that these various configurations indeed
impacted change points’ detection.

As displayed in Tables 4.4 and 4.6, adding signals from pathological subjects into cross-
validation training folds induced higher confusion to detect turns in Protocol 2 than in Pro-
tocol 1which only includes healthy participants. In training folds for the cross validation
from Protocol 2, pathological subjects were indeed included and mixed with healthy sub-
jects with different ways of performing turns as displayed in Figure 4.5. Healthy subjects
were indeed prone to perform sharper turns than pathological participants who turned
more gradually due to their lower speed. Including those participants in training folds
then induced poorer segmentation results for turn transitions. Indeed, signals at turns’
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annotated change points differed and the calibration of β was thus altered. Besides, in
protocol 1, participants that were followed by an examiner were more prone to perform
sharp turns notably for turns’ types 1 and 2 in order to accurately follow instructions. It
led to more significant changes in signals retrieved at these turns’ time samples and to an
enhanced segmentation.

4.4.5 Influence of the Annotations

((a)) Scenario 1 : F1=0.94

((b)) Scenario 2 : F1=0.84

Figure 4.7: Evolution of the change point’s detection results depending on the annotations given as
input for a control participant in Protocol 2. Displayed spectrograms are the concatenation of aAP
and gCC spectrograms. White vertical lines correspond to themoments when the algorithm detects
a change point. Annotations given as input are displayed above each spectrogram (alternating
colors).

To understand the influence of the annotations on the segmentation results, two sce-
narios are imagined where the method is fed with different labels in both protocols. These
scenarios are as follows:

• Scenario 1: only label transitions with a ∆̂ above 10;

• Scenario 2: label all transitions

In each protocol, our algorithm is fed with annotations that only displays the intended
type of change points according to the scenario and the β value is calibrated on all included
participants but one using the PELT approach as explained in Section 4.3.4. The remaining
participant’s signal is segmented using this β value. In Scenario 1, only the largest changes
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(with respect to ∆̂) are provided by the expert. In Scenario 2, all transitions are labelled
by the expert. This corresponds to the setting of the previous section. Results of segmen-
tations depending on these scenarios for one tested control participant are illustrated in
Figure 4.6 for Protocol 1 and in Figure 4.7 for Protocol 2.

These figures clearly show that the algorithm adapts well to the different scenarios
and to the experimenters’ annotations . Indeed, each time the annotations are reinforced
with a new type of label, changes are induced on the detection of change points and those
changes fit to these input modifications (associated F1 scores in any tested protocol and
scenarii is above 0.80). Moreover, it appears that this approach manages to adapt to the
levels of granularity presented by the annotations structuring the scenarios. Thanks to
this adaptability, the algorithm can reproduce the annotation strategy.

4.5 Conclusion

This method relying on an adapted learning of a penalty parameter through an optimiza-
tion process enables a precise change points’ detection in acquisitions performed in semi-
FLEs. By optimizing β which defines a penalty feature, new acquisitions can be segmented
to get partitions that are as close as possible to the strategy of annotation without knowing
the number of change points to detect. This adaptive approach is based on a structured
functioning that first enforces the detection of large change points before detecting smaller
change points. This approach is a preamble to an innovative analysis of movements in
FLEs and semi-FLEs. Homogeneous regimes are identified and can now be characterized
as detailed in Chapter 5.





5
Classification Method

5.1 Context

The supervised change point detectionmethod described in Chapter 4 allows to extract ho-
mogeneous regimes from raw data. Once these homogeneous regimes are delimited, they
can be characterized and this characterization enables the evaluation of these regimes.
Our first goal is therefore to define whether these regimes are walking regimes or regimes
belonging to another activity. This task of defining walking regimes is known in the litera-
ture as Walking Bout (WB) detection. A first review of existing methods to detect Walking
Bouts (WBs) with wearable sensors is performed here. Regimes belonging to other activ-
ities will also be characterized (sedentary or non-sedentary regimes). The results of this
classification procedure are presented and discussed.

5.2 literature review of classification methods for walking
bouts’ detection

5.2.1 Rule-based, steps detection and wavelets decomposition methods

There are several approaches to performWB detection. The first type of methods extracts
some quantities of interest and rely on threshold-based detection methods : these are rule-
based methods [124]. More specifically, recordings are analyzed frame-by-frame using
sliding windows. Then, a quantity of interest is computed on each frame, such as the sig-
nal magnitude area performed on the normalized squared average of the 3 accelerations
axes [161], the craniocaudal accelerations [157] or the magnitude of angular velocities.
Finally, the WB detection is performed through thresholding : if a portion of the record-
ings exceeds a given threshold this portion is considered as belonging to a walking phase.
Thresholds can be set arbitrarily or it can be adaptive relying on methods that update the
value of the threshold depending on average values from linear accelerations and angular
velocities [155]. These rule-based methods are widely used in the literature thanks to their
intuitiveness and their simplicity.

The second type of methods detects successive steps and groups them to define WBs
[127]. Steps can be detected by rule-based methods searching for thresholds in craniocau-
dal acceleration signals for instance. An other way to detect steps and associated WBs
is to compare detected patterns with pre-existing templates via Dynamic Time Warping
[18] or by performing cross-correlation [62]. WBs can also be detected by using the in-
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verted pendulum model-based algorithm developed by [166] or by zero-crossing methods
as detailed in [70].

Other methods use wavelet transform to perform automatic WB detection [64]. These
are time-frequency domainmethods that decompose signals by using basis functionswhich
are wavelets (in contrary of sinusoids for Fourier Transform). Wavelets differ in both
frequency and time domains while sinusoids are strictly frequency domain functions.
Wavelet transforms rely therefore onwindowswhose sizes vary in time-frequency domain
: time resolution decreases with low-frequency signals and inversely. Threshold-based de-
tection is performed on discrete wavelet transforms for instance by relying on the ratio
between the power of detail coefficients in specific chosen levels over the total power of
detail coefficients [16].

5.2.2 Human Activity Recognition Methods

Another set of methods are HAR methods that rely on machine learning methods to clas-
sify signals’ portions and to notably detect walking regimes.

Introduction to Human Activity Recognition methods

The HAR methods rely on features extracted from annotated signal portions in order to
train classifiers that can associate new signal portions with specific output classes. Such
classifications are performed for instance to assess the physical activity of specific patients
with diseases in a detailed manner [112] (by evaluating the amount of time spent by a
participant performing a specific activity associated to a high energy expenditure value
for instance). It can also be used to compare efficiently laboratory acquisitions and FLEs’
acquisitions [27] and to compare the impact of the placement or of the types of wearable
sensors [154, 57]. It can validate the feasibility of a specific sensor to assess PA in free-
living settings [104]. HAR methods are also valuable since they enable precise walking
bouts’ detection that can be characterized afterwards.

The aim of this subsection is to focus on HAR studies in free environments and to pro-
vide an overview of the current state-of-the-art performances. Table 5.1 displays the main
features retained in specific subcategories (described in 5.2.2) while Table 5.2 summarizes
characteristics of these studies. In the following subsections, features that are computed
from raw signals will be detailed and insights on the classifiers used for activities’ clas-
sification will be provided. Figure 5.1 summarises the different stages that HAR methods
implement to classify portions of raw data.
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Figure 5.1: Description of axis on which raw signals are recorded from the lower back

Features

When portable sensors are attached to participants during their physical activity in free-
living conditions, research teams recover raw signals whose nature differs according to the
type of sensors implanted (linear accelerations for accelerometers, angular velocities for
gyroscopes or both for IMUs for example). From these raw data, it is possible to compute
numerous parameters that allow for a quantitative PA’s analysis. These parameters can
be basic statistics (mean or standard deviation of accelerations over a certain duration for
example) or derived from advanced algorithms (step lengths, average swing time...). In the
clinical field, it has been shown that those features can sometimes be used to define the
quality of a walking category (rhythm, stability, springiness..) of a participant [157].

Those features are also extracted and used to train classifiers allowing to performHAR.
Most simple features are time domain features, that are only based on the timings of rele-
vant gait events for instance. Time domain features are the parameters related to a notion
of evolution in time of certain particularities of the obtained signal (standard deviation,
means...). More sophisticated features can be computed in the frequency domain, by fo-
cusing for example on some relevant frequency bands: those are the frequency domain
features. Frequency domain analysis dwells upon the number of times some events occur
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in the recorded signals and to the notion of periodicity. From Table 5.2, it appears that
the majority of the features retained for the classification of activities are time domain
features (31 studies use time domain features [162, 44, 122, 105] while only 19 studies use
frequency domain features [57, 27, 4, 120]). Table 5.1 details the most used parameters for
each of these feature categories (time domain features, frequency domain features, derived
parameters) retained to set up the activity classifiers.

In addition, some specific parameters are used by several studies (Vector Magnitude
(VM) [38, 105], Signal Magnitude Area (SMA)[10, 85] ...). It is also to be noted that the
sizes of the sample windows on which signals are analyzed are various (from 1s [104] to 5
mins [162]) but are often non-overlapping (only one study uses overlappingwindows [51]).
Using sliding windows to perform features’ extraction can be restricting for computational
costs when working in free environments at high frequencies (around 100Hz) since it can
induce long retrieved signals.

time domain Features frequency domain Features Derived Parameters
Mean

Coefficient of Variation
Standard Deviation

Variance
Min, Max
Median

Autocorrelation Coefficients
25th and 75th percentile

Dominant Frequency
Dominant Frequency Magnitude

Spectral Power
Spectral Energy

Speed
Step/Stride Time

Step/Stride Velocity

Table 5.1: Details of the features mostly selected to feed activity classifiers according to
their associated categories (time domain Features, frequency domain Features, derived
parameters)

Algorithms

When these parameters are calculated, they can be used as variables for each observed
activity in order to train classifiers. Redundant features or irrelevant features can be dis-
carded to perform the classification through a feature selection step. Almost half of the
studies classifying activities (18 of them) used feature selection or dimensionality reduc-
tion methods such as Principal Component Analysis (PCA) [44, 4] or others [146, 67, 109])
before setting up their classification system. The vast majority of these studies obtained
classification accuracies (accuracy or sensitivity) above 85%. All algorithms referenced in
Table 5.2 are supervised learning systems. This corresponds to a learningwhere the inputs,
i.e. features, and the outputs, i.e the associated types of activity, are known when data is
processed. Unsupervised learning is much less predominant than supervised learning [3]
for HAR methods. The fact that the labelling of activities can be carried out through an-
notations whose implementation is increasingly becoming more practical over the years
(better quality cameras, use of trajectory reconstruction, etc.) may explain this difference.

Depending on studies, classifications are carried out on a different number of activities
carried out under conditions that sometimes differ drastically from one study to another
(instructions, sensors ...). All these factors, added to others (positioning of sensors, cohorts,
etc.) do not allow entirely valid comparisons to be made between studies with regard to
their classifiers and their associated algorithms.
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It appears that the majority of the studies have an interesting average rate of clas-
sification precision (31 analyses obtain a precision or sensitivity higher than 85 percent
[100, 68, 27, 120]). It should also be noted that certain types of classifiers are recurrent,
notably Random Forest (RF) (12 studies [146, 76, 83]) and Decision Trees (DT) (8 studies
[104, 32]), SVM (13 studies [164, 68, 84, 63]), Bayesian approaches (Naive Bayes (NB)) (3
studies [42, 164, 68]), K-Nearest Neighbor (KNN) (5 studies [146, 67, 68, 84]) and Neural
Network (NN) (6 studies [85, 63, 164, 38] with notably Multi-Layer Perceptron (MLP)).
Some teams decided to compare or test several types of already known classifiers such as
those cited above [51], while other teams combined some of these classifiers with other
algorithms specific to their work in order to set up custom classification systems [100, 104].
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5.3 Proposed Method

We will now present the classification method we will be using : a method derived from
HAR studies. However, contrary to state-of-the-art methods used for HAR, instead of
using (possibly overlapping) frames, it is proposed to perform this classification at the
regimes level. The advantages are twofold : first, because of the segmentation procedure
: each regime is stationary, which is a valuable theoretical property for computing robust
features. Second, the average length of the regimes is often longer than typical frame
durations, which provides more data for computing features.

Before applying classifiers to our gathered data, the latter are filtered and features are
extracted from annotated regimes as presented in Subsection 5.3.1. Then, these features
are standardized to apply PCA as presented in Subsection 5.3.2.

5.3.1 Features extraction

First, for each annotated regime an extensive list of both temporal and frequency features
(displayed in Table 5.3) such as variances, means, dominant frequencies, power at domi-
nant frequencies is extracted : features are computed on pre-filtered signals as presented
in Section 3.6. Features used to train classifiers have been selected in accordance with
the performed state-of-the-art dedicated to activity classification from IMU signals. These
135 features are retained because their computation is convenient for long FLEs signals as
they do not require any detection of events (heel strikes, toe strikes...). The features list
is presented in 5.1. Formulas to compute all features are also explained. In the classifica-
tion process, regimes are defined as observations delimited by expert’s annotations and
features correspond to variables.

5.3.2 Standard scaling and Features Dimensionality Reduction

Beforehand, standardization on data features’ vectors is performed to apply PCA. Indeed
since PCA is sensitive to variables’ variances, standardization enables to efficiently com-
pare features’ vectors which can be originally expressed in various units and in various
orders of magnitude.

PCA is then applied to transform the high-dimensional data into lower dimensions
while keeping as much information as possible. Principal components are linear com-
binations of the initial variables values in training data and are computed so that they
are uncorrelated and that most information within initial variables values are compressed
within the first components. In this study with 135 variables, 135 components are ren-
dered. Each component causes a specific amount of variance : the explained variance.
Thus, each component is associated to a specific value of explained variance ratio : the
ratio of its induced explained variance to the total value of explained variance induced by
all components.

In this study, where the classification is intended to be as accurate as possible, the prin-
cipal components causing 99% of the cumulative explained variance (an explained variance
ratio of 0.99) are retained for the PCA. Figures 5.2 and 5.3 illustrate the value of this cumu-
lative explained variance for the set of data used to train our classifiers in both Protocol
1 and Protocol 2. Data sets are composed of all segmented regimes from the associated
protocol as observations which are labeled as walking or non walking regimes. According
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Table 5.3: Details of features used for classification. For each formula, X = [x1, x2..., xn]
is assumed to be one of the 6 dimensions (3 linear accelerations and 3 angular velocities)
from the IMU signal. In total, 135 features are used. Notations: x is the empirical mean of
X, σ̂ is the empirical unbiased standard deviation of X, FFT(X) is the Fourier transform of
X, ConjFFT(X) denotes the complex conjugate of FFT(X).

Features Description Domain Formulas

mean_signal Mean Time x

std_signal Standard Deviation Time σ̂

var_signal Variance Time σ̂2

min_signal Minimum Time min(x)

max_signal Maximum Time max(x)

PD0_signal Power at the first dominant
frequency

Frequency max( FFT(X)ConjFFT(X)
N )

F0_signal First Dominant frequency Frequency argmax( FFT(X)ConjFFT(X)
N )

PD2_signal Power at the second dominant
frequency

Frequency max2nd(
FFT(X)ConjFFT(X)

N )

F2_signal Second dominant frequency Frequency argmax2nd(
FFT(X)ConjFFT(X)

N )

Ent Spectral Entropy Frequency Let P(ωi) be coefficients of PSD :
Ent = −∑n

i=1 pi ln(pi) with pi =
P(ωi)

∑i P(ωi)

CV_signal Coefficient of variation Time σ̂/x

p75_signal 75th percentile (on absolute values) Time Let R be the 75th percentile rank : R = 75∗n
100 , p75

corresponds to the Rth value on the sorted X array

p25_signal 25th percentile (on absolute values) Time Let R be the 25th percentile rank : R = 25∗n
100 , p25

corresponds to the Rth value on the sorted X array

p85_signal 85th percentile (on absolute values) Time Let R be the 85th percentile rank : R = 85∗n
100 , p85

corresponds to the Rth value on the sorted X array

p15_signal 15th percentile (on absolute values) Time Let R be the 15th percentile rank : R = 15∗n
100 , p15

corresponds to the Rth value on the sorted X array

p95_signal 95th percentile (on absolute values) Time Let R be the 95th percentile rank : R = 95∗n
100 , p95

corresponds to the Rth value on the sorted X array

p5_signal 5th percentile (on absolute values) Time Let R be the 5th percentile rank : R = 5∗n
100 , p5

corresponds to the Rth value on the sorted X array

p75m_signal 75th percentile at the middle of the
signal (2/3 of the signal) (on

absolute values)

Time Let R be the 75th percentile rank : R = 75∗n
100 , p75

corresponds to the Rth value on the sorted X array

p25m_signal 25th percentile at the middle of the
signal (2/3 of the signal) (on

absolute values)

Time Let R be the 25th percentile rank : R = 25∗n
100 , p25

corresponds to the Rth value on the sorted X array

p85m_signal 85th percentile at the middle of the
signal (2/3 of the signal) (on

absolute values)

Time Let R be the 85th percentile rank : R = 85∗n
100 , p85

corresponds to the Rth value on the sorted X array

p15m_signal 15th percentile at the middle of the
signal (2/3 of the signal) (on

absolute values)

Time Let R be the 15th percentile rank : R = 15∗n
100 , p15

corresponds to the Rth value on the sorted X array

RMSR_signal Root Mean Square Ratios Time RMSaAP =
√

1
n (∑

n
i=1 xAP2

i ) and

RMSRaAP =
RMSaAP√

RMS2
aAP+RMS2

aCC+RMS2
aML

P1CC First peak of autocorrelation
coefficients for CranioCaudal

Acceleration

Time ACF = iFFT[FFT(X)ConjFFT(X)] , P1 is the first
peak of ACF

P2CC Second peak of autocorrelation
coefficients for CranioCaudal

Acceleration

Time ACF = iFFT[FFT(X)ConjFFT(X)] , P2 is the
second peak of ACF

VM Vector magnitude of all
accelerations (CranioCaudal aCC,

MedioLateral aML and
Anteroposterior aAP)

Time VM =
√

aCC2 + aAP2 + aML2
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to the fixed threshold and to this figure, it is possible to define the number of components
to be used in the study : 60.

Figure 5.2: Evolution of the explained variance ratio in Protocol 1 according to the individual
principal components’ associated explained variance on the training data set

Figure 5.3: Evolution of the explained variance ratio in Protocol 2 according to the individual
principal components’ associated explained variance on the training data set

5.3.3 Proposed pipeline method

In our pipeline two tasks are performed and used in cascade. Details of this pipeline are
presented in Figure 5.4. In task 1, we perform a walking/non-walking binary classifica-
tion, while only non-walking phases detected in the first task are considered in Task 2. In
this task, we classify non walking regimes as sedentary or non sedentary regimes. Per-
forming these two tasks successively was motivated by the imbalance in observations (one
observation is one segmented regime) classes used for the training sets in both protocols.
Indeed 77% of the total regimes correspond to walking regimes, 12% are associated with
non-sedentary regimes and 11% to sedentary regimes in Protocol 1. In Protocol 2, 79% of
the total regimes correspond to walking regimes, 11% are associated with non-sedentary
regimes and 10% to sedentary regimes Thus, by performing Task 1 to classify walking
and non walking regimes, regimes’ classes are automatically rebalanced. Regimes’ classes
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Number of annotated regimes (observations)
Data sets used Task 1 Task 2
Protocol 1 489 242
Protocol 2 742 254

Table 5.4: Details for observations number (annotated regimes’ number) in data sets used
to train classifiers in both protocols

used to perform Task 2 are already properly balanced (as many sedentary regimes as non
sedentary regimes). In both protocols, Task 1 and Task 2 are performed by using the same
kind of classifiers (two linear SVM, two Gaussian kernel SVM...) : this is a cascade clas-
sifier. Details for observations number (annotated regimes’ number) in data sets used to
train classifiers in both protocols are displayed in Table 5.4.

Figure 5.4: Pipeline method used to classify new segmented data

5.4 Results

5.4.1 Introduction

Performances of several classifiers among the most used in the state of the art as displayed
in Table 5.2 are compared when applied to our signals. Retained classifiers for evaluation
are :

• Linear kernel Support VectorMachine SVM : a generalized linear classifier that relies
on the hypermarginal hyperplane to classify data.

• 3rd degree polynomial kernel SVM : this kernel function can separate non linearly
separable data by mapping the into higher-dimensional space using a polynomial
function
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• Gaussian kernel SVM : this kernel function can separate non linearly separable data
by mapping the input vector to Hilbert space.

• k Nearest Neighbours kNN : find the nearest neighbour of one input data point to
label it. The number of nearest neighbours to use is fixed at 3.

• Decision Tree DT : such a classifier relies on an algorithmic flow chart to perform
decisions according to specific criteria values and to label data points

• Random Forest RF : an ensemble learning method for classification using 100 deci-
sion trees.

5.4.2 Evaluation metrics

In both protocols, we evaluate classifiers’ performances by performing a 3-fold cross-
validationwith the same participants’ distribution as for the cross-validation used in Chap-
ter 4. Data sets are split into three sub data sets which correspond to training and testing
folds (all sets are built with annotated regimes as observations).

Receiver operating characteristic Curve

Classifiers are trained on two data folds and applied to the third data fold with annotated
regimes whose targeted labels are known. The Receiver Operation characteristic ROC
curve can therefore be plotted for each classifier and for each tested fold. The higher the
average Area Under Curve AUC of these curves is for a classifier on the 3 testing data sets,
the more successful this classifier is in classifying the regimes correctly according to the
labels used. ROC curve plots the True Positive Rate TPR against the False Positive Rate
FPR defined in (5.1). This evaluation method is presented in Figure 5.5.

TPR(Recall) =
TP

TP + FN

Speci f icity =
TN

TN + FP
FPR = 1 − Speci f icity

(5.1)
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Figure 5.5: Evaluation method to render ROC Curves

Joint Evaluation of Segmentation and Classification Steps

Intuitively, the regime-scale classification performances depend both on the segmentation
step and on the regime classification step hence the need to jointly evaluate these two
methods. The performances of the cascade classifiers from both tasks are tested when
applied to regimes predicted by our segmentation method. The optimal β values learned
in Chapter 4 for each testing fold are used again here to segment participants’ signals.
Once the regimes are segmented, the classifiers trained as explained above on the training
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data sets with annotated regimes are applied to these segmented regimes.

After the segmentation and classification tasks, each data sample is labelled as Walk-
ing, Non-walking/Non-sedentary or Sedentary for all participants : all signals from the
testing fold are segmented and all associated regimes are classified. More precisely, all
individual samples from these regimes are associated to one of the three types of samples
so that they can be compared to "real" individual annotated samples.

To jointly evaluate classification and segmentation, we compute the confusion matrix
between all 3 labels. Each coefficient of the matrix represents the percentages of samples
annotated as belonging to the row activity, that have been classified as the column activity.
Perfect performances would correspond to a diagonal matrix. Classifiers’ accuracy are
also computed. The higher accuracy’s figures are, the more efficient are the associated
classifiers. This evaluation method is presented in Figure 5.6.

Figure 5.6: Evaluation method to assess both segmentation and classification

5.4.3 Protocol 1

ROC Curve and AUC

ROCCurves for each performed task (Task 1 and Task 2) and for each tested fold are plotted
in Figure 5.7. AUC values are satisfactory for all types of classifier : the lowest values are
found when using the Decision Tree classifers (notably for the first task : AUC=0.81).
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((a)) Task 1 ((b)) Task 2

Figure 5.7: ROC curves plotted for each classifier applied to all testing folds in Protocol 1

Joint Evaluation of Segmentation and Classification Steps

Table 5.5 displays accuracy’s values for each tested cascade classifier. Accuracy results are
satisfactory for all types of classifiers (>0.80). Linear SVM and kNN classifiers are partic-
ularly accurate (accuracy >0.90). Accuracy results are difficult to compare considering the
imbalance between actual samples in different classes: there are many more samples of
walking than samples of sedentary or non-sedentary activity for example.

Type of Classifiers Linear
Kernel SVM

Polynomial
Kernel SVM

Gaussian
Kernel SVM

kNN Decision
Tree

Random
Forest

Accuracy 0.90 ± 0.06 0.85 ± 0.17 0.86 ± 0.09 0.91 ± 0.06 0.78 ± 0.11 0.84 ± 0.14

Table 5.5: Accuracy values for each tested cascade classifier in Protocol 1

Confusion matrices for each type of classifier are shown in Figure 5.8. In all confu-
sion matrices, walking phases are well predicted (>79%). Sedentary phases are also well
discriminated for all classifiers (>89%). Non-sedentary phases are well discriminated for
almost all classifiers (>75%). Only Decision Tree (60.03%) and Polynomial SVM classifiers
(57.32%) display poorer results. Imprecision margins are consequences of errors in the
segmentation. In addition to segmentation error, inaccuracy can be introduced by the cas-
cade classifiers. Walking regimes are well detected because this activity is structured and
made up of repetitive and precise patterns that therefore manifest themselves with intense
spectral signatures. Since a significant proportion of the features used for classification are
spectral features, this probably facilitates the classification process. Sedentary and non-
sedentary activities are inherently more difficult to differentiate. For example, activities
where subjects open fire doors (A1) include movements similar to those observed during
walking (stomping and some slow steps) that have spectral signatures closer to those of
walking activities. As a result, non-sedentary activities are often mistaken for walking
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regimes as displayed in all presented confusion matrices and especially in the one associ-
ated to Decision Tree classifiers (27.65 % of non sedentary real samples are misclassified as
walking samples). On the contrary, the intensity of sedentary activities tends to be very
low, which may lead to confusions with some low-energy non-sedentary activities as it is
shown in the confusion matrix associated to Random Forest classifiers (around 10% of real
sedentary regimes are misclassified as non sedentary regimes). All of these confusions are
often encountered in other studies aimed at classifying activities and especially walking
activities [5].
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((a)) Linear SVM ((b)) Polynomial SVM

((c)) Gaussian SVM ((d)) kNN

((e)) Decision Tree ((f)) Random Forest

Figure 5.8: Confusion matrices for each tested cascade classifier in Protocol 1
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5.4.4 Protocol 2

As detailed in Chapter 3, end-of-lap activities from Protocol 1 were changed to build Pro-
tocol 2 and participants’ transitions between activity and walking phases were annotated
with a wearable camera. Pathological participants were also included.

ROC Curve and AUC

ROC Curves for each type of classifier and for each tested fold are plotted in Figure 5.9.
AUC values are satisfactory for all types of classifier but are significantly lower when
testing Decision Tree classifier on Task 1 and Task 2) : AUC<0.9 on both tasks.

((a)) Task 1 ((b)) Task 2

Figure 5.9: ROC curves plotted for each classifier applied to all testing folds in Protocol 2

Joint Evaluation of Segmentation and Classification Steps

Table 5.6 displays accuracy’s values for each tested cascade classifier. Accuracy results are
satisfactory for all types of classifiers (>0.70). Linear SVM, Gaussian kernel SVM and kNN
classifiers are particularly accurate (around 0.90).

Type of Classifiers Linear
Kernel SVM

Polynomial
Kernel SVM

Gaussian
Kernel SVM

kNN Decision
Tree

Random
Forest

Accuracy 0.88 ± 0.14 0.86 ± 0.05 0.88 ± 0.15 0.89 ± 0.06 0.77 ± 0.17 0.85 ± 0.16

Table 5.6: Accuracy values for each tested cascade classifier in Protocol 2

Confusion matrices for each type of classifier are shown in Figure 5.10. Non-sedentary
phases are less well discriminated for all classifiers than for Protocol 1 (only three classi-
fiers discriminate correctly around 75% of sedentary samples : Linear SVM, Gaussian SVM
and Random Forest). Misclassifications are more numerous than for Protocol 1 and are
prohibitive in several cases : respectively 69.87% and 38.05% of non sedentary samples are
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((a)) Linear SVM ((b)) Polynomial SVM

((c)) Gaussian SVM ((d)) kNN

((e)) Decision Tree ((f)) Random Forest

Figure 5.10: Confusion matrices for each tested cascade classifier in Protocol 2
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misclassified as walking samples when testing polynomial SVM and Decision Tree clas-
sifiers. These increased imprecision margins compared to Protocol 1 can be explained by
segmentation errors in Protocol 2 detailed in Chapter 4. Besides, pathological participants
from Protocol 2 showed smaller differences in spectral signatures, for example between
walking and non-sedentary activities or between non-sedentary and sedentary activities
which led to classification errors.

5.5 Conclusion

By comparing the results of the comparison of the classifiers obtained for both protocols,
two types of classifiers stand out to be selected in order to characterize the regimes seg-
mented by the method described in Chapter 4 : linear SVM and gaussian kernel SVM.
Indeed, these two classifiers present similar AUC values, accuracy values close to 0.90 on
both protocols and their matrix confusion presents satisfactory values on both protocols
on all classes. Nevertheless, linear SVM induces lower computational costs and is therefore
selected to characterize segmented regimes.

Based on the segmentation procedure that Chapter 4’smethod uses, we have developed
a HAR approach that makes it possible to characterise segmented regimes. This method
works directly at the regime scale by relying on a feature extraction built from a state of
the art, a dimensionality reduction method (PCA) and on a linear SVM cascade classifier to
perform accurate classifications of segmented regimes. These two tasks allow for the clas-
sification of regimes into three different types of labels : walking regimes, non-sedentary
regimes and sedentary regimes. This characterisation of regimes then allows them to be
compared with each other and to be evaluated according to healthy subject standards as
it is presented in Chapter 6.







6
Visual Feedback Rendering

6.1 Introduction

Once the regimes within recorded signals have been segmented and characterised as de-
scribed in Chapters 4 and 5, it is then possible to provide a quantitative and qualitative
assessment of the detected walking regimes. In this chapter we describe the method lead-
ing to an intuitive, didactic and innovative visual feedback of participants’ physical activity
based on these segmented and characterised regimes. This graphical output is a detailed,
adaptive and structured visualization which helps better understand the salient events in a
complex gait protocol. Besides, it constitutes a novel tool for clinicians to assess the phys-
ical activity of their patients in a different context from their usual medical consultations.

A quick review of existing approaches that have built visual graphical tools for the
assessment of physical activity of subjects in free environments using inertial sensors will
first be conducted. Then, we will detail scores generation for several gait categories. We
need these scores to be able to evaluate the walking regimes according to healthy stan-
dards. Then, examples of our visual feedback will be detailed and discussed (with detailed
inputs from the clinicians who take care of the pathological participants included in the
study).

6.2 Review of visual feedback methods for physical
activity’s assessment

Several approaches have been used in the literature to display the output of physical ac-
tivity assessment algorithms.

A first group of studies (which involves the vast majority of the methods listed in
this section) lists their aggregated final computed parameters. These features can be of
various nature: number of walking regimes in a day [123], time spent in each activity,
the proportion of activities associated with ranges of METs that were achieved by the
participants [53], accuracy of the classifiers tested for themethods of HAR [65]. This listing
is done in order to compare results on different cohorts or to evaluate data processing
approaches. A second group of studies plots graphs to analyse the evolution of a specific
parameter over time and notably the previously detailed aggregated features. For instance,
expenditure rates over a defined period of time can be plotted by assessing the time spent
in activities associated with specific Metabolic Equivalent Task MET values [118]. Other
methods can display the evolution of more precise metrics such as feet angles [13] over
time. In HAR studies, plots can allow users to quickly identify the types of activity carried
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out by participants, notably on timelines [111]. A final group of studies set up advanced
diagrams to provide a general interpretation of their subjects’ physical activity : these can
be histograms assessing the quality of walking regimes according to specific parameters
such as the variability of signals within a step [123]. These methods can be online and
allow immediate monitoring of the participants’ physical activities [58].

6.3 Proposed Method

6.3.1 Introduction

It appears that few studies based on the use of IMUs in FLEs have endeavored to pro-
vide a macro-analysis displayed in the form of an easy-to-understand visual legend that
fully assesses the entire timeline of FLEs signals. The studies reviewed in the previous
section provide visual summaries that either focus on metrics that are too specific, which
prevents clear and didactive visual feedback, or on metrics that are too general, which
prevent a complete assessment of a subject’s physical activity in free environments. In
this kind of studies, the influence of time is often erased by computing features that are
often agglomerated over the whole of the measurements as explained above. Rather than
knowing the percentage of time spent in each activity, we can for example be interested
in the impact of transitions between activities on the quality of walking regimes, on the
evolution of this quality over several consecutive regimes. In this section, we develop a
graphical tool by circumventing these pitfalls of physical activity assessment. Our visual
summary is built as follows:

• Features characterizing four categories of walking (Stability, Steadiness, Sturdiness,
Symmetry) are extracted from the segmented walking regimes (see Section 6.3.2)

• A normalised score is set up in order to be able to compare the evolution of a gait
regime on the four categories with a model built on data from healthy subjects (see
Section 6.3.4)

• A final graphical tool linking these scores to pre-defined colour codes is produced
as output (see Section 6.3.5)

6.3.2 Features extraction

In our visual summary, a walking regime is assessed according to four standard crite-
ria : stability, steadiness, sturdiness and symmetry. The four features to be extracted for
regimes’ evaluation, detailed in Table 6.1, are chosen because of their ability to accurately
characterize the gait, their recurrent use in the literature and ease of computation. All four
criteria have been defined by the literature :

Stability [75, 137]: criterion evaluating postural balance used to prevent falls for
instance [14]. Stable walking can be defined as gait that does not lead to falls despite per-
turbations [29]. This aspect is evaluated by using the Root Mean Square Ratio computed
on the mediolateral acceleration RMSRML. It corresponds to the ratio of the Root Mean
Square of the mediolateral accelerations RMSML to the Root Mean Square vector mag-
nitude computed on all axes RMSA as displayed in (6.1). RMS evaluates the magnitude
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of the acceleration on one specific axis. The higher RMSRML is, the higher the values of
mediolateral accelerations tend to be compared to other accelerations. This indicates an
instability on the mediolateral axis and therefore a postural instability. Thus RMSRML
is selected for our study since it has been proven to be uncorrelated with walking speed
[137].

RMSA =
√

RMS2
ML + RMS2

CC + RMS2
AP,

RMSRML =
RMSML

RMSA

(6.1)

Sturdiness [19, 157]: criterion evaluating gait amplitude [157]. For instance, sturdi-
ness can be assessed to quantify observed defects in patients with Parkinson’s disease with
low amplitude movements [92]. This category is evaluated by using the Root Mean Square
Ratio computed on the anteroposterior acceleration RMSRAP whose computation is done
the same way it is performed for RMSRML. The higher it is, the higher the anteropos-
terior accelerations’ values compared to other accelerations and the higher the sturdiness
is. Indeed, high anteroposterior acceleration values mean that steps impulsions are vigor-
ously performed by the participant. RMSRAP is used instead of RMSAP in order to limit
the influence of the walking speed.

RMSRAP =
RMSAP

RMSA
(6.2)

Steadiness [90, 106] : criterion evaluating step regularity : regularity is related to
similarity of consecutive strides [153]. This category can be analyzed in order to quantify
locomotion flaws in targeted cohorts with lower limbs defects (such as transfemoral am-
putees). This category is evaluated by using the second peak of the autocorrelation coef-
ficients calculated on craniocaudal accelerations via the Wiener-Khinchin theorem P2CC.
This unbiased autocorrelation function uses both Fast Fourier Transform FFT and inverse
Fast Fourier Transform iFFT as detailed in Table 6.1. This feature compares similarity be-
tween strides within a walking regime since it occurs with a time lag of two steps. The
higher P2CC is, the more similar the performed strides are. Let aCC be the associated
craniocaudal acceleration signal, ConjFFT(aCC) the complex conjugate of FFT(aCC) and
ACF the autocorrelation coefficients : P2CC is defined as detailed in Table 6.1. Figure 6.1
shows a craniocaudal acceleration signal associated to its autocorrelation : P1CC and P2CC
locations are presented.

ACF = iFFT[FFT(aCC)ConjFFT(aCC)] (6.3)
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Figure 6.1: One aCC signal and its associated unbiased autocorrelation. Definition of P1CC
(blue dot) and P2CC features (red dot)

Symmetry [90, 106] : criterion evaluating step symmetry : A symmetric gait pattern
for humans is characterized by the almost identical behavior of bilateral limbs during a gait
cycle [31]. This category is evaluated by using the first peak of the autocorrelation coef-
ficients calculated on craniocaudal accelerations via the Wiener-Khinchin theorem P1CC.
It compares similarity between steps within a walking regime since it occurs with a time
lag of one step. P1CC evaluates the ability to maintain vertical correspondence between
right and left hemi-bodies during walking regimes. The higher it is, the more similar steps
from both sides are.

6.3.3 Features robustness

In the final graphical feedback, four features are used to characterize the gait activity. The
robustness of the feedback depends mainly on the robustness of those features, especially
when confronted with segmentation errors. To investigate this issue, we conducted an
additional experiment where we intentionally degrade the segmentation process (e.g., by
voluntary lowering the number of samples for feature computation), in order to assess the
robustness of the features. In total, 10 degraded configurations are tested, as described in
Table 6.2. Figure 6.2 shows the distribution of features in all categories over the 10 config-
urations in walking sections of one healthy subject (HSU ) and two pathological subjects:



6.3. PROPOSED METHOD 133

Table 6.1: Features used to establish scores for the graphical feedback. In total, 4 features
are used. ConjFFT(X) denotes the complex conjugate of FFT(X).

Categories Features Description Mathematical Computation

Steadiness P2CC The second peak of the autocorrelation
coefficients calculated on Craniocaudal

accelerations via the Wiener-Khinchin theorem:
the higher it is, the more similar the steps are

ACF =
iFFT[FFT(X)ConjFFT(X)]
, P1 is the first peak of ACF
while P2 is the second peak

Symmetry P1CC The first peak of the autocorrelation coefficients
calculated on Craniocaudal accelerations via the
Wiener-Khinchin theorem: the higher it is, the

more similar the strides are

P1 is the first peak of ACF
while P2 is the second peak

Sturdiness RMSRAP Root Mean Square Ratio on anteroposterior
acceleration. The higher it is, the higher the

sturdiness is.

RMSA =√
RMS2

ML + RMS2
CC + RMS2

AP ,

RMSRAP = RMSAP
RMSA

Stability RMSRML Root Mean Square Ratio on mediolateral
acceleration. The lower it is, the higher the

stability is.

RMSA =√
RMS2

ML + RMS2
CC + RMS2

AP ,

RMSRML = RMSML
RMSA

Configurations

All the regime is used (normal configuration)
Only the first 3 seconds of the regime are used
Only the first 3.5 seconds of the regime are used
Only the first 4 seconds of the regime are used
Only the first 5 seconds of the regime are used

Only the first 40% of the regime are used
Only 40% of the regime is used (with start at 20% of the total duration)
Only 40% of the regime is used (with start at 30% of the total duration)
Only 40% of the regime is used (with start at 40% of the total duration)

Only the last 40% of the regime are used

Table 6.2: Degraded configurations for the computation of the features

PSU1 (gluteus medius deficiency) and PSU2 (Post-radiation left brachial plexitis). PSU1
has shown the highest instability and lack of symmetry in his deambulation, PSU2 has
shown degraded sturdiness. For each subject, we have extracted all walking regimes, and
computed the features according to the different configurations. Each box contains the
distribution of the different values of this feature on all 10 tested configuration in a given
walking regime. The walking regimes for HSU are displayed in blue, and the ones of the
first, second and third pathological subject respectively in red and green.
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((a)) Symmetry P1CC

((b)) Steadiness P2CC

((c)) Stability RMSRML

((d)) Sturdiness RMSRML

Figure 6.2: Evaluation of the robustness of selected features. Features with low dispersion and high discrimination between classes.
The blue horizontal line shows the average value of the feature for all healthy subjects, the red horizontal line shows the median value of the
feature for all healthy subjects and the dotted lines correspond to the 75th/25th percentiles. Each boxplot corresponds to 10 computations of
the feature on a walking regime on 10 degraded ranges. Boxplots are displayed with specific colors depending on their associated subject:
blue for an healthy subject, red for PSU1 and green for PSU2.
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One first observation is that all boxes display little spread over all recorded subjects,
which suggests that the computation process is robust. The blue horizontal line shows
the average value of the feature for all walking regimes from healthy subjects and the
dotted lines correspond to the 75th/25th percentiles. It is interesting to note that the dif-
ferences between the three subjects are clearly visible for all walking regimes in all cate-
gories but steadiness (no recorded participants displayed an affected regularity). Moreover,
the patient with the most impact on his stability (PSU1) displays boxes associated to the
RMSRML feature that are even more detached than PSU2 from the figures of the healthy
subjects, which confirms the different visual impacts observed on the gait of each patholog-
ical subject. This feature thus presents satisfactory robustness’ results in terms of disper-
sion on the degradation ranges as well as in terms of discrimination between subjects. This
confirms the relevance of using this feature to evaluate the stability of walking regimes.
The calculation of this feature remains indeed constant on all the ranges presented in Table
6.2, which allows our method to be correctly applied despite eventual segmentation errors
that may occur. No patient presented a continuous affection in steadiness and it was thus
difficult to estimate the discrimination power from P2CC : it must be evaluated in further
works. Other figures and additional experiments show that all other features listed in 6.1
display the same consistency and robustness, which is an important asset of our proposed
approach.

6.3.4 Scores’ generation with healthy models

Using a database of healthy walking phases taken from the healthy subjects from Protocol
1 and Protocol 2, statistics for the different features are computed (means, percentiles).
These models are then used to assess each novel walking phase with the scoring procedure
described as follows.

Considering a feature with mean µ and standard deviation σ on all walking regimes
from healthy subjects, we compute the z-score normalized feature

z =
x − µ

σ
. (6.4)

The z-score normalized features are then displayed with a color bar of boundaries
[xmin, xmax] where xmin and xmax are respectively the 10% and 90% percentiles of the nor-
malized features on the healthy subjects. This score is used to build evaluation of walking
regimes which are displayed in our visual feedbacks.

6.3.5 Visual feedback

Graphical outputs based on scores generation (examples are shown in the following sec-
tion) display the evaluation of the whole protocol segmented in regimes in a clockwise
manner. The first outer circle specifies the nature of the segmented regimes: dark blue for
non-sedentary activities, standard blue for sedentary activities and light blue for walking
regimes. The four next inner concentric circles are each associated with a gait criterion:
stability, steadiness, sturdiness and symmetry. Each portion of these circles delimited by
black lines corresponds to a segmented regime, whose length is proportional to the dura-
tion of the regime. For a given evaluation criterion, each walking regime is then assigned a
color from dark red to dark green. This color depends on the comparison of this regime to
the average on healthy walking regimes. Non-walking regimes are not evaluated and are
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displayed in dark blue for non-sedentary activities and light blue for sedentary activities
(as in the first outer circle).

6.4 Results

Graphical outputs are plotted for 2 healthy subjects in Protocol 1, 2 healthy subjects in
Protocol 2 and for all included pathological subjects in Protocol 2 as detailed in Chapter
3. Visual summary for one specific participant was built by training methods on all other
included participants (penalty learning, classifers training...). For neurological patients,
figures are provided with comments from a neurologist (Hopital d’Instruction des Armées
HIA de Percy, Service de Santé des Armées SSA). For orthopedical patients, figures are
provided with comments from an orthopedical surgeon (Hopital d’Instruction des Armées
HIA de Percy, Service de Santé des Armées SSA). Both clinicians were asked to assess the
reliability between rendered visual feedbacks and the actual condition of the patients they
follow on a daily basis.

6.4.1 Examples of visual feedbacks from Protocol 1

Figure 6.3 shows graphical outputs rendered for healthy participants from Protocol 1.
Walking regimes from all participants are deemed to be of satisfactory quality according
to all evaluated criteria. These graphical tools make it possible to see the course of the en-
tire protocol, with alternating periods of walking, sedentary activities, and non-sedentary
activities. It can also show how many times the subject has completed an entire lap of
the protocol (three times for the healthy subjects presented here), and differences in the
chronology between each performed activity.

((a)) Healthy subject 1 ((b)) Healthy subject 2

Figure 6.3: Visual Feedbacks from Healthy Subjects in Protocol 1
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6.4.2 Examples of visual feedbacks from Protocol 2

Healthy subjects

Figure 6.4 shows graphical outputs rendered for healthy participants from Protocol 2.
Walking regimes from all participants are deemed to be of satisfactory quality according
to all evaluated criteria.

((a)) Healthy subject 1 ((b)) Healthy subject 2

Figure 6.4: Visual Feedbacks from Healthy Subjects in Protocol 2

Neurological patients

Figures 6.5, 6.6, 6.7 and 6.8 show graphical output rendered for neurological patients from
Protocol 2. All visual feedbacks from participants included to train segmentation and
classification methods are displayed. One additional visual feedback taken from a newly
recorded neurological participant (Post Radiation Leukopathy after treatment of a cerebral
recurrence of lymphoma) is also displayed.
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Figure 6.5: Visual feedback from Neurological Subject 1 : patient with post-radiation
leukopathy after treatment of a left temporal glioma

Comment from the neurologist : "This is a patient with post-radiation leukopathy
after treatment of a left temporal glioma. The patient presents a dysexecutive cognitive
impairment with difficulties in controlling her behavior : loss of planning, attention, and of
high-level control of her behavior. What is observed by the study of walking in this visual
feedback reflects the disorder of planning and control of behavior with distractibility."

Additional comment: The observation from the neurologist correlates with the ren-
dered graphical output : there are numerous detected change points within the signal
which shows erratic walking. Besides, walking evaluations are slightly degraded.
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Figure 6.6: Visual feedback from Neurological Patient 2 : patient with post-radiation left
brachial plexitis 20 years after radiation treatment for breast cancer

Comment from the neurologist : "The patient suffered frompost-radiation left brachial
plexitis 20 years after radiation treatment for breast cancer. Complete paralysis of the en-
tire left upper limb was observed. The patient’s stability and sturdiness are affected. The
impairment of balance may be due to the imbalance related to the dead weight of her left
arm, which hangs from the shoulder and weighs at least 10 kg."

Additional comment: The observation from the neurologist correlates with the ren-
dered graphical output which displays a degraded sturdiness (patients performed steps
with little amplitude) and a slightly degraded stability.
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Figure 6.7: Visual feedback from Neurological Patient 3 : patient with damage to the cranial
pairs and neck muscles after radiotherapy of a Chordoma

Comment from the neurologist : "The patient has damage to the cranial pairs and
neck muscles after radiotherapy of a Chordoma (tumor of the sphenoid bone which is the
bone of the skull behind the visage) without locomotor affection: this is verified on this
graph with notably a good walking sturdiness."

Additional comment: The observation from the neurologist correlates with the ren-
dered graphical output except for a lack of stability and steadiness in few regimes.
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Figure 6.8: Visual feedback fromNeurological Patient 4 : patient with Post Radic Leukopathy
after treatment of a cerebral recurrence of a lymphoma

Comment from the neurologist : "Post Radic Leukopathy after treatment of a cere-
bral recurrence of a lymphoma. In addition to the loss of behavioral control identical to
that of patient 1, he presents a severe balance control disorder: affection of all the cate-
gories of walking."

Additional comment: The observation from the neurologist correlates with the ren-
dered graphical output : all categories are affected on at least one regime.

Orthopedical patients

Figures 6.9, 6.10, 6.11, 6.12, 6.13 and 6.14 show graphical output rendered for orthopedical
patients from Protocol 2. All visual feedbacks from participants included to train segmen-
tation and classification methods are displayed.
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Figure 6.9: Visual feedback from Orthopedical Subject 1 : patient in immediate preoperative
phase of a knee ligamentoplasty

Comment from the orthopedical surgeon : "This patient was examined in the im-
mediate preoperative phase of a knee ligamentoplasty. Clinically, she presented with a
flexible, mobile, painless knee and an overall normal gait. However, she had knee instabil-
ity, which justified the operation and could explain the poorer results on certain parame-
ters."

Additional comment: The observation from the orthopedical surgeon correlateswith
the rendered graphical output : categories’ evaluations are satisfactory even if they display
low healthy standards
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Figure 6.10: Visual feedback from Orthopedical Subject 2 : patient is in the immediate
postoperative period of a knee ligamentoplasty

Comment from the orthopedical surgeon : "This is the same patient recorded as
the one in the previous Figure 6.9. Here, the patient is in the immediate postoperative
period. At this time, there was significant quadricipital sideration which fully explains the
alteration in stability and symmetry."

Additional comment: The observation from the orthopedical surgeon correlateswith
the rendered graphical output : stability and symmetry are affected especially in the last
regime : patient displayed highly irregular foot placements in this last regime. Besides,
sturdiness results are changing depending on the regimes. This succession of figure shows
how efficient this graphical tool is to follow-up longitudinally patients.
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Figure 6.11: Visual feedback from Orthopedical Subject 3 : patient in the immediate preop-
erative phase of an Antero Cruciate Ligaments ACL ligamentoplasty

Comment from the orthopedical surgeon : "This patient was also examined in the
immediate preoperative phase of an Antero Cruciate Ligaments ACL ligamentoplasty.
However, he had two associated meniscal tears that caused pain and minimal joint limi-
tation, which could explain this slightly degraded gait despite the preoperative rehabilita-
tion."

Additional comment: The observation from the neurologist correlates with the ren-
dered graphical output : stability was degraded. It could be added that the patient was
using his smartphone during the whole acquisition which could have affected his stability.
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Figure 6.12: Visual feedback from Orthopedical Subject 4 : patient examined the day after
a total hip replacement

Comment from the orthopedical surgeon : "This is a patient examined the day af-
ter a total hip replacement. There is a lameness linked to a moderate pain and a transient
muscular deficit."

Additional comment: The observation from the neurologist correlates with the ren-
dered graphical output : symmetry is degraded as well as stability and steadiness.
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Figure 6.13: Visual feedback from Orthopedical Subject 5 : the patient has a history of
multiple right hip surgeries resulting in chronic gluteus medius insufficiency

Comment from the orthopedical surgeon : "This patient has a history of multiple
right hip surgeries resulting in chronic gluteus medius insufficiency causing Trendelen-
burg type lameness. This explains the low scores for symmetry and stability despite a
preserved speed."

Additional comment: The observation from the neurologist correlates with the ren-
dered graphical output : highly affected symmetry and stability.
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Figure 6.14: Visual feedback from Orthopedical Subject 6 : the patient was undergoing
rehabilitation after a knee sprain with ACL rupture

Comment from the orthopedical surgeon : "The patient was undergoing rehabil-
itation after a knee sprain with ACL rupture. She had no clinical instability and did not
require surgical treatment. The slightly low results are explained by her post-traumatic
condition, which caused moderate pain and minimal muscle weakness, which was in the
process of recovery."

Additional comment: The observation from the neurologist correlates with the ren-
dered graphical output : all categories display average to good evaluations.

6.5 Conclusion

The method presented in this chapter leads to a reliable, innovative and didactic graphical
tool for assessing the physical activity of subjects. We believe that such a visualization
will help clinicians to perform more accurate and comprehensive longitudinal tracking of
locomotion in the natural environment of their patients. This could for instance allow to
evaluate rehabilitation procedures or treatment choices for specific diseases and to assess
the impact of treatments on pathologies such as musculoskeletal tumors of the lower limbs
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or neurological disorders (Parkinson’s disease...). The current monitoring of the effects of
these FLEs treatments is only carried out via calculations of general (steps/day, ambulatory
bouts/day...) or specific metrics (variations withing steps, angles...) when our graphical
tool will enable a refined follow up displaying an enhanced macro analysis of gait phases.





Conclusion and Perspectives

In this thesis, several contributions were proposed in order to provide practitioners
with a didactic graphical tool for an innovative assessment of physical activity and in
particular walking in free environments. The primary motivation of this study was to
address the difficulties of constructing interpretation tools in such environments. Indeed,
the existing evaluation methods aggregate the evaluation features or compute excessively
precise metrics, which prevents the macro-analysis that we wish to implement with our
new visual feedback.

In Chapter 3, we conceive and implement three protocols in collaboration with clinical
experts (two in semi-FLEs including 15 healthy participants and one in FLE including 21
healthy subjects, 9 patients with an orthopedic pathology and 3 patients with cerebral le-
sions) based on the findings detailed in the literature review detailed in Chapter 2. In every
measurement, IMUs are attached to participants while they perform several activity and
walking phases. These protocols allow to perform longitudinal follow-ups and interindi-
vidual comparisons on included cohorts. New data need to be recorded in order to, for
example, support our methods of longitudinal follow-up before and after surgery.

In Chapter 4, we develop an adaptive change point detection algorithm to process
signals measured by the IMUs. This method looks for significant changes in the time-
frequency space at a given scale, i.e., the moments when the subject has modified his
behavior/activity. This method relying on an adapted learning of a penalty parameter
through an optimization process enables a precise change point detection in acquisitions
performed in semi-FLEs. By optimizing β which defines a penalty feature, new acqui-
sitions can be segmented to get partitions that are as close as possible to the strategy
of annotation without knowing the number of change points to detect. This adaptive
approach is based on a structured functioning that first enforces the detection of large
change points before detecting smaller change points. Signals are thus segmented into
several homogeneous regimes that allow us to extract relevant information from the ex-
periments. Obtained results are competitive when themethod is applied to both semi-FLEs
protocols. Inaccuracies observed in the results of our segmentation method, especially for
turns, could be corrected by changing the annotation strategy. Indeed, we could for exam-
ple label these turns as an additional type of activity by annotating the beginning and end
of these regimes. Furthermore, in our method, signals must be fully annotated in order to
obtain satisfactory results. This process can be time consuming if it has to be performed on
even longer signals often found in FLEs and semi-FLEs. An interesting research direction
would be to extend the experts’ annotation mechanisms on portions of signals (containing
the targeted change points) in order to automatically reproduce this annotation strategy
to segment longer signals. In addition, we could reinforce representation learning: we
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could learn, for example, which lines of the spectrograms are the most relevant in our
segmentation methods.

In Chapter 5, we conceive a HAR approach that enables to characterise segmented
regimes. This method works directly at the regime scale by relying on a feature extraction
process built from a selective review, a dimensionality reduction method (PCA) and on
a linear SVM cascade classifier to perform accurate classifications of segmented regimes.
These two tasks allow for the classification of regimes into three different types of labels
: walking regimes, non-sedentary regimes and sedentary regimes. One possibility for im-
proving the study would be to compare additional classifiers and other tuning parameters
in order to provide even more reliable interpretations as for the final choice of the cascade
classifier.

In Chapter 6, we build a reliable, innovative and didactic graphical tool for assessing the
physical activity of subjects and especially their walking phases. This visual output relies
on four walking regimes’ evaluation critera : Stability, Steadiness, Sturdiness, Symmetry.
Features associated to each criterion are extracted within walking regimes and models
are built from healthy standards computed on those features. New walking regimes’ as-
sessments can then be compared to these pre-defined scores. Such a visual summary will
help practitioners to perform more accurate and comprehensive longitudinal tracking of
locomotion in free environments. This could for instance allow to evaluate rehabilitation
procedures or treatment choices for specific diseases and to assess the impact of treat-
ments on pathologies such as musculoskeletal tumors of the lower limbs or neurological
disorders (Parkinson’s disease...). The current monitoring of the effects of these FLEs treat-
ments is only carried out via calculations of general (steps/day, ambulatory bouts/day...)
or specific metrics (variations withing steps, angles...) when our graphical tool will enable
a refined follow up displaying an enhanced macro analysis of gait phases. New walking
criteria could be added to our graphical feedback as well as assessments on regimes other
than walking regimes (non-sedentary activities for instance). Another possible research
direction would be to measure more healthy subjects in order to refine the comparison
models. Furthermore, the colour codes of the colormap used for the final visual summary
could be modified by including more pathological subjects. Indeed, adding extreme values
in the range of possible values would help to refine the comparison results. In addition, in-
cluding more subjects with conditions would allow them to be clustered together to build
pathology-specific comparison models. Besides, a distance parameter between two graph-
ical feedbacks could be introduced. It could enable a reliable quantified inter-individual
comparison in addition to the visual comparison allowed by the graphical tools. Finally, a
new training of our processing pipeline must be launched on new data acquired from long
signals. Protocol 3 has enabled us to acquire some data, but the data sets need to be larger
in order to refine our methods on annotation strategies that can be different because of
the length of the signals.
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