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Abstract
Most contributions on Few-Shot Object Detection (FSOD) evaluate their methods on natural images
only, yet the transferability of the announced performance is not guaranteed for applications on
other kinds of images. We demonstrate this with an in-depth analysis of existing FSOD methods on
aerial images and observed a large performance gap compared to natural images. Small objects, more
numerous in aerial images, are the cause for the apparent performance gap between natural and
aerial images. As a consequence, we improve FSOD performance on small objects with a carefully
designed attention mechanism. In addition, we also propose a scale-adaptive box similarity criterion,
that improves the training and evaluation of FSOD methods, particularly for small objects. We
also contribute to generic FSOD with two distinct approaches based on metric learning and �ne-
tuning. Impressive results are achieved with the �ne-tuning method, which encourages tackling
more complex scenarios such as Cross-Domain FSOD. We conduct preliminary experiments in this
direction and obtain promising results. Finally, we address the deployment of the detection models
inside COSE’s systems. Detection must be done in real-time in extremely large images (more than
100 megapixels), with limited computation power. Leveraging existing optimization tools such as
TensorRT, we successfully tackle this engineering challenge.

Keywords—Object Detection, Few-Shot Learning, Few-Shot Object Detection, Cross-Domain Adap-
tation, Deep Learning, Computer Vision, Intersection over Union, Attention Mechanism, Di�usion,
Query-Support Alignment

Résumé
La plupart des contributions en Détection d’Objets Few-Shot (FSOD) évaluent leurs méthodes
uniquement sur des images naturelles, ne garantissant pas la transférabilité de leur performance
à d’autres types d’images. Nous démontrons ceci avec une analyse des méthodes FSOD existantes
sur des images aériennes et observons un large écart comparé aux images naturelles. Les petits
objets, plus nombreux dans les images aériennes, sont responsables de cet écart. Ainsi, nous pro-
posons d’améliorer la détection des petits objets avec un mécanisme d’attention dédié. En plus, nous
proposons un nouveau critère de similarité pour boîtes englobantes, adaptatif à la taille. Il améliore
l’entraînement et l’évaluation des modèles FSOD, en particulier pour les petits objets. Nous con-
tribuons aussi au FSOD classique avec deux approches distinctes basées sur le metric learning et
le �ne-tuning. Des résultats impressionnants sont obtenus avec cette dernière méthode, ce qui en-
courage son application à des scénarios plus complexes comme la détection Few-Shot Cross-Domain.
Finalement, nous abordons le déploiement de modèles de détection au sein des systèmes de COSE
qui doivent détecter les objets en temps réel sur de très grandes images (plus de 100 mégapixels),
avec des ressources de calcul limitées.

Mots-Clé— Détection d’objet, Apprentissage profond, Apprentissage frugal, Adaptation au do-
maine, Mécanisme d’attention, Di�usion, Intersection over Union, Alignement query-support
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Introduction

If a machine is expected to be infallible, it
cannot also be intelligent.

– Alan Turing

As an introduction to this thesis manuscript, we present the industrial context and the motivation
behind this project. First, we introduce the company COSE and the Laboratoire de Traitement et

Transport de l’Information (L2TI) that collaborated on this CIFRE PhD project. Then, we brie�y de-
scribe what object detection is and how the industrial constraints that weigh upon COSE in�uenced
our study toward low-data regimes and few-shot learning. Next, we carry out an overview of the
structure of the manuscript, with an individual summary describing each chapter. Finally, we gather
the contributions that came out of this project. This includes research articles, accepted or submitted
to peer review conferences and journals, as well as open-source code contributions.

1.1 Industrial Context, Motivation and Objectives
This PhD thesis originates from a collaboration between the L2TI laboratory from Université Sor-

bonne Paris Nord (USPN) and the company COSE. The L2TI was founded in 1998 and is a mem-
ber of the CNRS Research Federation MathSTIC (FR 3734) which includes the Laboratoire Analyse,

Géométrie et Applications (LAGA), UMR 7539 and the Laboratoire d’Informatique de Paris Nord (LIPN),
UMR 7030. Two main research teams coexist in the L2TI. The Multimedia team focuses on visual
information analysis and processing, while the Network team targets information transport and
network questions. This thesis falls within the scope of the Multimedia team.

COSE1 is a highly innovative SMB with around 20 employees. It is a �rst-tier government provider
in the aeronautic and defense sector. COSE was born from an INRIA start-up in the 1990s and has
integrated research excellence at the heart of its industrial process. While being relatively small,
COSE has multidisciplinary teams with expertise in various �elds such as mechanic, electronic,

1https://www.cose.fr/

1
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(a) GlobalScanner Camera and
Observation Unit.

(b) Strike stabilization arm
mounted on a Gazelle helicopter.

(c) POD Xplorer next to
SAFRAN’s Patroller at 2019
Paris Air Show.

Figure 1.1: Illustration of the three main products developed at COSE: GlobalScanner, Strike and
POD Xplorer.

navigation, automation and embedded software. Its size gives COSE remarkable agility and cost-
e�ectiveness in comparison to its main competitors. This competitive advantage has allowed COSE
to build strong partnerships with major actors in the aeronautic and defense areas.

COSE develops, produces and supports aerial observation camera systems and onboard equipment.
These products are mainly designed for military use and must therefore conform to strict quality
criteria. The relationship with military forces is handled by the Directorate General of Armaments
(DGA), which is one of the main clients of COSE. Among others, COSE currently relies on three
products that are in use by French military forces around the world (see Fig. 1.1):

- GlobalScanner: a high-resolution imaging embedded system that provides real-time and
georeferenced images. It consists of a high-resolution, stabilized linear sensor that can be
integrated into various carriers such as helicopters, aircraft or UAVs. It comes with powerful
software to operate the camera and manage image streams.

- Strike: a stabilization arm for helicopters to improve high-precision ri�e accuracy. It im-
proves shot accuracy and drastically reduces collateral damage.

- POD Xplorer: a multifunctional pod for various carriers. Its purpose is to embed various
types of payloads such as optical sensors, LIDAR, scienti�c equipment or inertial sensors.

Recently, COSE started the CAMELEON project to replace the decades-old GlobalScanner system.
Its objective is to improve GlobalScanner in every aspect. First, the linear sensor will be replaced by
high-resolution CMOS matrix sensors. With up to six sensors per system, CAMELON will be able
to cover extremely large areas with high resolution. The images will also largely overlap, enabling
precise 3D reconstruction of the �own-over areas, which is especially important for mission prepa-
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Figure 1.2: Description of Geospatial Intelligence (GEOINT).

ration and risk analysis. CAMELEON will also come with an improved software stack from mission
planning to image analysis and visualization. This PhD project is part of this software redesign.
The amount of image data acquired each second by the new system will be overwhelming for a sin-
gle photo interpreter as done with GlobalScanner. Furthermore, standard communication streams
will not be su�cient to send entire images in real-time. Therefore, relevant information must be
extracted from the images, automatically and on edge. To this end, CAMELEON must integrate
intelligent algorithms able to �nd relevant structures and information inside the mass of pixels ac-
quired each second. These pieces of information are often called Geospatial Intelligence (GEOINT).
They consist of evidence of human activity precisely georeferenced, with any kind of supplemen-
tary metadata (e.g., weather conditions or user annotation). Such evidence can be buildings, crop
�elds, vehicles, or even animals. It is illustrated in Fig. 1.2. In most cases, these are salient objects
and can be detected in the images. Once an object has been localized in an image, its precise location
can be derived from the carrier position, the direction of the camera and the digital elevation model
used, which produces a GEOINT. The GEOINT is then enriched with relevant information about
the object: what is the object? Is it dangerous? Is it moving? Even though this seems to require
a human appraisal, some of these questions can be answered automatically. The main objective of
this PhD project is to develop models that will be able to produce GEOINT automatically. It will
need to localize objects and infer relevant metadata about them. It should drastically increase the
e�ciency of photo-interpreters who will then be able to manage the ever-increasing amount of data
generated by aerial intelligence systems, in particular within the CAMELEON project.
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Object Detection (OD) is a crucial part of creating GEOINTs. In computer vision, object detection is
the task of localizing and classifying all objects visible in an image. Of course, the notion of an object
needs to be de�ned more precisely, otherwise anything in the image can be considered of interest.
A pre-de�ned set of semantic classes C is �xed so that a clear distinction can be made between
objects of interest (i.e., the ones we want to detect, also called foreground objects) and background
objects (i.e., those we are not interested in). Based on this distinction, the task of detecting objects
can be split into two sub-tasks. 1) Localizing all the objects (foreground and background): this
can be done by �nding the coordinates of the center of the objects, a rectangular bounding box or
even a precise segmentation mask for each object. In general, the object detection task in computer
vision is associated with bounding box localization. 2) Classifying the objects localized in step 1).
It consists in �rst �ltering out background objects and then, assigning a class label c ∈ C to each
foreground object. Research interest in the detection task dates back to the early 2000s when the
Viola-Jones object detector [2] was �rst introduced. Since then, plenty of algorithms have been
proposed to improve both the speed and quality of the detection. A breakthrough occurred in 2013
with the �rst uses of deep convolutional networks for detection, namely OverFeat [3] and R-CNN [4].
These methods paved the way for more elaborated deep-learning-based detectors. Deep-learning
detectors are often referred to as learning-based approaches as they mainly rely on the learning from
data paradigm and supervised learning. They contrast with earlier detection methods (also called
traditional methods) which often build upon hand-crafted features. A thorough review of both
traditional and learning-based object detectors is available in Sec. 2.1. Learning-based approaches
have now established complete dominance over traditional methods in terms of detection quality
while having reasonable speed performance. Therefore, most of this project will focus on learning-
based algorithms.

The choice of deep-learning-based detectors may seem puzzling for COSE on-edge applications.
Computing resources are limited inside the carrier. The payload must be as light as possible, so we
cannot a�ord to embed heavy Graphical Processing Units (GPU) enabled machines, designed to run
deep learning models. In addition, on-board power supplies cannot provide enough energy to run
such hardware. However, light-weight, energy-e�cient GPUs exist, such as the Nvidia Xavier and
Orin Series, which are perfectly suited for deep-learning inference. Nevertheless, another constraint
remains, images must be processed in real-time. The CAMELEON system is designed to take about
1 image every second. It is a rather low frame rate but due to the sensor size and the number of
cameras, this represents a data stream of several hundreds of megapixels per second. To process
such a massive amount of images every second, the detection models must be as light and e�cient
as possible. Fortunately, tools capable of optimizing the inference of deep learning models exist.
Chap. 9 will present these tools and how they can be leveraged to build detection models fast enough
for COSE’s applications. This solves the issues related to the deployment and inference of such
models; however, a major concern remains: how to train these object detectors?
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Learning-based methods and especially deep learning models heavily rely on data to be trained. In
general, the overall performance of a model highly depends on the amount and quality of annotated
data available during the training. For the detection task, collecting large annotated datasets is time-
consuming and expensive. In some cases, it is even impossible. In the medical domain, for instance,
privacy-preserving regulations often prevent the use of personal data. For military applications, this
is even harder as potential training data are classi�ed. This is problematic for the training of data-
hungry methods such as deep learning. Fortunately, there are some learning strategies much more
data-e�cient. These methods are usually referred to as few-shot or low-shot learning, and thorough
reviews of these methods will be presented in Sec. 2.2. While there are plenty of approaches to
Few-Shot Learning (FSL), all follow the same basic principle. First, learn generic knowledge about a
related task (source task), second, adapt to the target task. These two training phases are referred to
as base training and �ne-tuning. In the case of detection, a task can designate a set of classes to be
detected, this problem is then called Few-Shot Object Detection (FSOD). A large annotated dataset
containing annotations of objects belonging to Cbase is available. The source task is to detect these
objects. Then, the target task is to detect objects from the so-called novel classes, only provided
with a limited number of annotations. Chap. 3 provides an in-depth review of existing work in
this area. Generally, the target task is performed on similar images as the ones seen during base
training. However, the target task can also be done with di�erent kinds of images, e.g., the source
task can be learned from natural images while the target task on aerial or medical images. This
is called Cross-Domain Adaptation. It complexi�es signi�cantly the problem, but it is a much more
realistic scenario in the industry. Collected datasets can only approximate the real data distributions.
Discrepancies between the acquisition settings (i.e., camera, lights etc.) and the application settings
almost always produce a performance drop. In medical imagery, this is a typical issue as di�erent
scanners will not produce exactly similar images. This prevents training models on scan collection
from one hospital and deploying them in another. The military use case is another critical example.
The con�dentiality of the images, and the ever-changing environment and objects of interest make
it di�cult to build robust detection algorithms.

Given the constraints of COSE, the main objective of this project is to develop data-e�cient object
detection methods based on few-shot learning. We orient our research on the Few-Shot Object
Detection problem, i.e., the adaptation to novel classes. While a detailed overview of the thesis will
be presented in the next section, we outline here the main parts of this work. First, we conduct in
Part I a thorough review of the literature about object detection, few-shot learning and �nally few-
shot object detection. Then, we propose three distinct FSOD approaches in Part II. This part includes
experiments in the Cross-Domain setting, inside Chap. 7. Our experiments mainly focus on publicly
available aerial datasets due to the lack of private datasets inside the company. These datasets
contain detection annotations and will be presented in Chap. 2. Part III presents an alternative to
the Intersection over Union, a bounding box similarity measure extensively employed in Object
Detection. Its use for both model evaluation and training are discussed in Chap. 8. Finally, Chap. 9
provides details about the deployment of object detection models according to the needs of COSE.
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1.2 Overview of the thesis
This section outlines the content of each chapter of this thesis. This takes the form of a small abstract
per chapter. These abstracts will be repeated for convenience at the beginning of the corresponding
chapters.

Part I: Literature Review on Object Detection, Few-Shot Learning and Few-Shot
Object Detection
The �rst part of this thesis is composed of three chapters. The two �rst present the literature about
Object Detection, Few-Shot Learning and Few-Shot Object Detection. Then, the third chapter ex-
plores the challenges of applying Few-Shot Object Detection on aerial images and presents our �rst
contribution: an analysis of these di�culties.

Chap. 2: Object Detection, Few-Shot Learning and Cross-Domain Adaptation
Object Detection and Few-Shot Learning are two relevant sub�elds from the Computer Vision and
Machine Learning �elds. Both are necessary to build detection techniques able to generalize from
limited data. Hence, this chapter reviews both Object Detection and Few-Shot Learning. Both prob-
lems are de�ned, and detailed reviews of the respective literature are conducted.

Chap. 3: Few-Shot Object Detection
This chapter presents the task of detection in the few-shot regime and reviews the existing literature
about it. Few-Shot Object Detection (FSOD) is at the crossroads of Object Detection and Few-Shot
Learning, and therefore, extensively relies on these two �elds explored in Chap. 2. Just as for classi-
�cation, various directions are explored in the literature to tackle the detection task in the few-shot
regime which will be presented in detail. Finally, this chapter focuses on the aerial image application
of FSOD methods and extensions of the few-shot setting.

Chap. 4: Understanding the Challenges of Few-Shot Object Detection
The detection task becomes extremely challenging when limited annotated data is available. In this
chapter, we explore the reasons behind this di�culty. In particular, we focus on the case of aerial
images for which it is even harder to apply FSOD techniques. It turns out that small objects are
especially challenging for the FSOD task and are the main source of error in remote sensing images.

Chapter’s contributions:

q P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance Anal-
ysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference (EUSIPCO),
Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPCO55093.2022.9909878.

q P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot à travers une anal-
yse de performances sur des images aériennes et naturelles." GRETSI 2022, XXVIIIème Colloque
Francophone de Traitement du Signal et des Images, Nancy, France
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Part II: Improving Few-Shot Object Detection through Various Approaches
The second part of this thesis presents our main contributions to the Few-Shot Object Detection
(FSOD) �eld. Each chapter proposes a novel approach to addressing the FSOD problem and discusses
its pros and cons compared to existing methods. These contributions led to several accepted articles
in international and national conferences and journals.

Chap. 5: Experience Feedback about Metric Learning for FSOD
Prototypical Faster R-CNN (PFRCNN) is a novel approach for FSOD based on metric learning. It
embeds prototypical networks inside the Faster R-CNN detection framework, speci�cally in place of
the classi�cation layers in the RPN and the detection head. PFRCNN is applied to synthetic images
generated from the MNIST dataset and to real aerial images with DOTA dataset. The detection
performance of PFRCNN is slightly disappointing but sets a �rst baseline on DOTA. However, the
experiments conducted with PFRCNN provide relevant information about the design choices for
FSOD approaches.

Chapter’s contributions:

q P. L. Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representation
Learning for Few-Shot Object Detection on Aerial Images," 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp. 662-667, doi:
10.1109/ICMLA52953.2021.00110.

Chap. 6: Attention Framework for Fair FSOD Comparison
Fair comparison is extremely challenging in the Few-Shot Object Detection task as plenty of archi-
tectural choices di�er from one method to another. Attention-based approaches are no exception,
and it is di�cult to assess which mechanisms are the most e�cient for FSOD. In this chapter, we
propose a highly modular framework to implement existing techniques and design new ones. It
allows for �xing all hyperparameters except for the choice of the attention mechanism. Hence, a
fair comparison between various mechanisms can be made. Using the framework, we also propose
a novel attention mechanism speci�cally designed for small objects.

Chapter’s contributions:

? P. Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Object
Detection on Aerial Images", Submitted at the Elsevier Pattern Recognition journal.

q P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small Ob-
ject Detection in the Few-Shot Regime", Accepted at the IEEE International Conference on Image
Processing 2023 (ICIP).

Chap. 7: Few-Shot Di�usion Detector via Fine-Tuning
Previous chapters explore few-shot object detection with metric learning and attention-based tech-
niques. This chapter logically focuses on the last major approach for FSOD: �ne-tuning. Based on
Di�usionDet, a recent detection model leveraging di�usion models, we build a simple but e�cient
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�ne-tuning strategy. The resulting method, called FSDi�usionDet, achieves state-of-the-art FSOD
on aerial datasets and competitive performance on natural images. Extensive experimental stud-
ies explore the design choices of the �ne-tuning strategy to better understand the key components
required to achieve such quality. Finally, these impressive results allow considering more complex
settings such as cross-domain scenarios, which are especially relevant for COSE.

Chapter’s contributions: This chapter describes very recent work, and we plan to submit research

articles to present these results.

Part III: Rethinking Intersection Over Union
This part contains only one chapter which presents a contribution orthogonal to the approaches
proposed in Part II as it questions the relevance of the Intersection over Union, a key component of
object detection pipelines.

Chap. 8: Scale-Adaptative Intersection Over Union
Intersection over Union (IoU) is not an optimal box similarity measure for evaluating and training
object detectors. For evaluation, it is too strict with small objects and does not align well with
human perception. For training, it provides a poor balance between small and large objects to the
detriment of small ones. We propose Scale-adaptative Intersection over Union (SIoU), a parametric
alternative that solves the shortcomings of IoU. We provide empirical and theoretical arguments for
the superiority of SIoU through in-depth analysis of various criteria.

Chapter’s contributions:

? P. Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection in
Few-Shot Regime", Submitted at the International Conference on Computer Vision 2023 (ICCV).

q P. Le Jeune and A. Mokraoui, "Extension de l’Intersection over Union pour améliorer la détection
d’objets de petite taille en régime d’apprentissage few-shot", Accepted at GRETSI 2023.

Part IV: Prototyping and Industrial Application
Finally, the last part of this thesis presents our industrial contributions. This part is crucial for COSE
as it bridges the gap between research advancements and real-world applications. Therefore, the
only chapter of this part discusses the engineering aspects of object detection and is not associated
with any academic contribution.

Chap. 9: Integration in COSE Prototypes
Detection models are often heavy and are not well suited for COSE’s application. In this chapter,
we �rst present in detail the CAMELEON system and its constraints. Then, we study the in�uence
of the model size on the performance and present useful tools and tricks to accelerate the inference.
Finally, we explain how the detection models are deployed inside the CAMELEON prototype and
how they perform on aerial images.

8
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1.3 Summary of the Contributions
International Conference Articles

q P. Le Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representa-
tion Learning for Few-Shot Object Detection on Aerial Images," 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp.
662-667, doi: 10.1109/ICMLA52953.2021.00110.

q P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance
Analysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference
(EUSIPCO), Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPCO55093.2022.9909878.

q P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small
Object Detection in the Few-Shot Regime", Accepted at the IEEE International Conference on
Image Processing 2023 (ICIP).

National Conference Articles

q P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot à travers une
analyse de performances sur des images aériennes et naturelles." GRETSI 2022, XXVIIIème
Colloque Francophone de Traitement du Signal et des Images, Nancy, France.

q P. Le Jeune and A. Mokraoui, "Extension de l’Intersection over Union pour améliorer la dé-
tection d’objets de petite taille en régime d’apprentissage few-shot", GRETSI 2023, XXIXème
Colloque Francophone de Traitement du Signal et des Images, Grenoble, France.

Submitted Articles

? P. Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Ob-
ject Detection on Aerial Images", Submitted at the Elsevier Pattern Recognition journal.

? P. Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection
in Few-Shot Regime", Submitted at the International Conference on Computer Vision 2023
(ICCV).

Oral Presentations
During the PhD, I had the opportunity to give talks in various occasions listed below:

- L2TI’s scienti�c day (Dec. 2020).
- Prototypical Faster R-CNN for Few-Shot Object Detection on Aerial Images, DeepLearn Summer

School 2021, Las Palmas de Gran Canaria (Jul. 29, 2021).
- Prototypical Faster R-CNN for Few-Shot Object Detection on Aerial Images at a GDR-ISIS meet-

ing: Vers un apprentissage pragmatique dans un contexte de données visuelles labellisées limitées,
Paris, (Nov. 26, 2021).

- L2TI’s Doctoral seminar (Mar. 2022 and Feb. 2023).
- Few-Shot Object Detection on Aerial Images, Seminar at ETS Montreal (Sep. 28, 2022).
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Internships Supervision
I supervised four internships over the three years of this PhD, three inside the company and one at
within the L2TI:

- Conception et mise en oeuvre d’algorithmes de suivi d’objets dans des images aériennes
(March-August 2021 – COSE).

- Optimisation et intégration d’algorithmes de détection d’objets dans un système embarqué
(March-August 2022 – COSE).

- Self-supervised learning for Few-shot Object Detection (April-August 2022 – L2TI au travers
du LabCom IRISER).

- Détection d’objets few-shot par visual transformers sur des images Aériennes (March-August
2023 – COSE and L2TI through the LabCom IRISER).

In addition to the supervision of two internships, I am actively involved inside the LabCom IRISER2

which is a joint laboratory between COSE, the L2TI and the LIPN. It was created one year after the
beginning of my PhD at the instigation of my academic and industrial supervisors.

Open-source Software
In the course of the various project I conducted during this PhD, I wrote multiple open-source Python
packages that can be found on GitHub:

� Prototypical Faster R-CNN
� AAF framework
� Pycocosiou
� FSDi�usionDet

2Link to the LabCom IRISIER’s website
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Introduction (Français)

Si une machine doit être infaillible, alors elle
ne peut pas aussi être intelligente.

– Alan Turing

Pour introduire ce manuscrit de thèse, le contexte industriel et les motivations de ce projet sont
présentés. D’abord, sont introduits l’entreprise COSE et le Laboratoire de Traitement et Transport
de l’Information (L2TI) qui ont collaboré sur cette thèse CIFRE. Ensuite, nous décrivons ce qu’est la
détection d’objets dans le cadre de la vision par ordinateur et comment les contraintes industrielles
liées à COSE ont orienté la thèse vers l’apprentissage frugal (dit few-shot). Dans un second temps,
la structure de ce manuscrit est exposée en présentant un résumé individuel pour chaque chapitre.
En�n, une dernière partie liste les di�érentes contributions apportées au cours de ce projet, cela
inclut des articles de recherche publiés ou soumis dans des conférences nationales et internationales.

1.1 Contexte industriel, motivation et objectifs
Cette thèse a pour origine la collaboration entre le laboratoire L2TI de l’Université Sorbonne Paris
Nord (USPN) et la société COSE. Le L2TI a été fondé en 1998 et est un membre de la Fédération
de Recherche MathSTIC du CNRS (FR 3734) qui inclut également deux laboratoires CNRS: le Lab-
oratoire Analyse, Géométrie et Applications (LAGA), UMR 7539 et le Laboratoire d’Informatique
de Paris Nord (LIPN), UMR 7030. Ces laboratoires sont tous rattachés à l’Institut Galilée. Deux
équipes de recherche cohabitent dans le L2TI. D’abord, l’équipe Multimédia, qui se concentre sur le
traitement et l’analyse de l’information visuelle et audio. Ensuite, l’équipe Réseaux, qui travaille sur
le transport de l’information et les communications. Ce projet de thèse s’inscrit logiquement dans
l’équipe Multimédia.

COSE 1 est une PME innovante d’environ 20 salariés. C’est un fournisseur de rang 1 de l’état dans
le secteur de l’aéronautique et de la défense. COSE est né en tant que startup de l’INRIA dans

1https://www.cose.fr/
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les années 90 et la recherche est toujours au cœur de son processus industriel. Bien que relative-
ment petite, COSE possède des équipes pluridisciplinaires de haut niveau dans des domaines tels
que la mécanique, l’électronique, la navigation, l’automatique et les systèmes embarqués. La taille
de COSE lui confère une agilité et une e�cacité remarquable comparée à ces principaux compéti-
teurs. Cet avantage permet à l’entreprise de créer des partenariats forts avec les acteurs majeurs de
l’aéronautique et de la défense.

COSE développe, produit et maintient des systèmes de renseignements aéroportés et des
équipements embarqués en tout genre. Ces produits sont principalement destinés à un usage mili-
taire et sont donc soumis à des critères de qualité stricts. La relation entre les forces armées et COSE
est gérée par la Direction Générale de l’Armement (DGA) qui est de fait l’un des principaux clients
de COSE. COSE a pour l’instant trois produits principaux dans sa gamme que les forces françaises
utilisent pour di�érentes missions (voir Fig. 1.1) :

- GlobalScanner : un système de caméra embarquée qui produit des images haute résolution
et géoréférencées en temps réel. Le système est constitué d’un capteur linéaire de très grande
résolution. Ce capteur est stabilisé et intégré au sein d’une enceinte mécanique qui peut être
intégrée sous di�érents types d’aéronefs (hélicoptère, avion, drone, etc.). Le capteur est con-
necté à un poste de contrôle et une suite logicielle permettant de piloter la caméra et de gérer
les �ux d’images.

- Strike : un bras de stabilisation d’arme à feu pour hélicoptère. Il améliore sensiblement la
précision des tireurs et réduit les risques de dommages collatéraux.

- POD Xplorer : un pod multifonction pouvant être attaché en dessous de di�érents types de
porteurs. Il permet d’embarquer simplement des charges utiles variées comme des capteurs
optiques, des LIDARs, ou des équipements scienti�ques.

Récemment, COSE a lancé le projet CAMELEON a�n de remplacer GlobalScanner. Son objectif
premier est de surpasser GlobalScanner dans tous les aspects. Premièrement, le capteur linéaire
sera remplacé par un capteur matriciel CMOS de haute résolution. CAMELEON pourra embarquer
jusqu’à six capteurs avec des orientations di�érentes a�n de couvrir des très grandes zones au sol
tout en conservant une grande dé�nition. Les images ainsi acquises auront beaucoup de recou-
vrement a�n de permettre la reconstruction 3D des zones survolées. C’est un aspect extrêmement
important de la préparation de mission et la gestion des risques pour les forces armées. CAMELEON
proposera également une amélioration complète du logiciel d’observation et notamment en ce qui
concerne l’analyse et le traitement des images. La quantité d’images obtenues chaque seconde par le
système sera trop importante pour être analysée par un seul photo-interprète. De plus, les moyens
de communication standards n’ont pas un débit su�sant pour transmettre les images en temps réel.
Ainsi, il est nécessaire d’extraire les informations stratégiques des images, automatiquement et à
bord. CAMELEON doit donc être doté d’algorithmes intelligents et e�caces a�n d’extraire les in-
formations pertinentes en temps réel. Cette thèse s’inscrit dans la refonte logicielle de CAMELEON
et tente de répondre aux contraintes du projet. Les informations extraites des images sont sou-
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1.1 - Contexte industriel, motivation et objectifs

(a) Caméra GlobalScanner et son
poste d’observation.

(b) Le bras de stabilisation Strike
monté sur un hélicoptère Gazelle.

(c) Le Pod Xplorer à côté du futur
drone Patroller de SAFRAN au sa-
lon du Bourget 2019.

Figure 1.1: Illustration des trois produits phares de COSE: GlobalScanner, Strike et le POD Xplorer.

vent appelées GEOspaital INTelligence (GEOINT). Il s’agit principalement de preuve d’activité hu-
maine, précisément géoréférencées ainsi que de méta-données en tout genre (e.g., les conditions
météorologiques ou des annotations de l’interprète). Le concept de GEOINT est illustré dans la Fig-
ure 1.2. Il peut s’agir de bâtiments, de champs, de véhicules ou même d’animaux. Dans la plupart
des cas, ce sont des objets saillants qui sont visibles dans les images aériennes. Une fois qu’un objet
a été localisé dans l’image, sa géolocalisation précise peut être calculée en fonction de la position
du porteur, de l’angle de la caméra et du modèle numérique de terrain utilisé, cela produit ainsi
un GEOINT. Il peut ensuite être enrichi avec des informations supplémentaires, pertinentes pour
l’opération : quel est cet objet ? Est-ce une menace ? Est-il en mouvement ? Même si ces questions
semblent requérir le jugement humain, on peut en réalité souvent y répondre automatiquement.
L’objectif principal de cette thèse est de produire des modèles capables d’automatiser la création de
GEOINT. Pour cela, ces modèles devront localiser les objets d’intérêt et inférer les méta-données per-
tinentes en lien avec ces objets. Aidés par ces outils, les photo-interprètes seront bien plus e�caces
et pourront gérer des masses d’images toujours plus grandes.

La détection d’objets est une étape cruciale de la création de GEOINTs. En vision par ordinateur, la
détection d’objets consiste à localiser et classi�er tous les objets visibles dans une image. Bien sûr,
la notion d’objet doit être dé�nie de manière plus précise, sinon tout ce qui se trouve dans l’image
peut être considéré comme étant d’intérêt. Un ensemble prédé�ni de classes sémantiques C est �xé
a�n d’établir une distinction claire entre les objets d’intérêt (ceux que l’on souhaite détecter) et les
objets de l’arrière-plan (ceux qui ne nous intéressent pas). Sur la base de cette distinction, la tâche de
détection d’objets peut être divisée en deux sous-tâches. 1) Localiser tous les objets (objets d’intérêt
et objets de l’arrière-plan) : cela peut être fait en trouvant les coordonnées du centre des objets,
d’une boîte englobante rectangulaire ou même un masque de segmentation précis pour chaque ob-

13



Introduction

Figure 1.2: Illustration d’un renseignement géospatial (GEOINT).

jet. En général, la tâche de détection d’objets en vision par ordinateur est associée à la localisation
par boîte englobante. 2) Classer les objets localisés à l’étape 1). Il s’agit d’abord de �ltrer les ob-
jets de l’arrière-plan, puis d’attribuer une classe c ∈ C à chaque objet d’intérêt. La recherche sur
la détection d’objets a pour origine le début des années 2000, lorsque le détecteur d’objets Viola-
Jones [2] a été introduit pour la première fois. Depuis, de nombreux algorithmes ont été proposés
pour améliorer à la fois la vitesse et la qualité de la détection. Une avancée remarquable s’est pro-
duite en 2013 avec les premières utilisations de réseaux de neurones convolutifs pour la détection,
notamment avec OverFeat [3] et R-CNN [4]. Ces méthodes ont ouvert la voie à des détecteurs de
plus en plus élaborés basés sur l’apprentissage profond. Ces détecteurs reposent principalement sur
le paradigme de l’apprentissage machine et notamment l’apprentissage supervisé. Ils di�èrent des
méthodes de détection antérieures (appelées méthodes traditionnelles) qui s’appuient souvent sur
des caractéristiques manuelles. Une revue détaillée des détecteurs d’objets traditionnels et basés
sur l’apprentissage est disponible dans la section 2.1. Les approches basées sur l’apprentissage ont
désormais établi une domination complète sur les méthodes traditionnelles en termes de qualité de
détection, tout en o�rant des temps d’exécution plus rapides. Par conséquent, la majeure partie de
ce projet se concentrera sur les algorithmes basés sur l’apprentissage.

Le choix de détecteurs basés sur l’apprentissage profond peut sembler compliqué pour les appli-
cations embarquées telles que celles de COSE. Les ressources de calcul sont limitées une fois en
vol. La charge utile doit être aussi légère que possible, COSE ne peut donc pas nous permettre
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d’intégrer de lourdes machines dotées de cartes graphiques (GPU) conçues pour exécuter des mod-
èles d’apprentissage profond. De plus, les alimentations embarquées ne peuvent pas fournir su�-
isamment d’énergie pour faire fonctionner un tel matériel. Cependant, il existe des GPU légers et
économes en énergie, tels que les gammes Nvidia Xavier et Orin, qui conviennent parfaitement à
des systèmes embarqués. Néanmoins, une autre contrainte subsiste : les images doivent être traitées
en temps réel. Le système CAMELEON est conçu pour prendre environ une image par seconde. Il
s’agit d’une fréquence d’image assez faible, mais en raison de la taille du capteur et du nombre
de caméras, cela représente un �ux de données de plusieurs centaines de mégapixels par seconde.
Pour traiter une telle quantité d’images par seconde, les modèles de détection doivent être aussi
légers et e�caces que possible. Heureusement, il existe des outils capables d’optimiser l’inférence
des modèles d’apprentissage profond. Le chapitre 9 présentera ces outils et comment ils peuvent
être utilisés pour construire des modèles de détection su�samment rapides pour les applications de
COSE. Cela résout les problématiques liées au déploiement et à l’inférence des modèles, cependant,
une préoccupation majeure subsiste : comment entraîner ces détecteurs d’objets ?

Les méthodes basées sur l’apprentissage, et en particulier les modèles d’apprentissage profond,
reposent fortement sur les données pour leur entraînement. En général, les performances glob-
ales d’un modèle dépendent de la quantité et de la qualité des données annotées disponibles lors
de l’entraînement. Pour la détection, la collecte de grands ensembles de données annotées est
chronophage et coûteuse. Dans certains cas, il est même impossible de rassembler de tels ensem-
bles de données pour l’entraînement. Dans le domaine médical, par exemple, les réglementations
empêchent souvent l’utilisation de données personnelles. Dans le domaine militaire, cela est encore
plus di�cile car les données d’entraînement sont classi�ées et ne peuvent être divulguées en aucune
circonstance. Cela est problématique pour l’entraînement des méthodes d’apprentissage profond,
gourmandes en données. Heureusement, il existe des stratégies d’apprentissage beaucoup plus ef-
�caces en termes de données. Ces méthodes sont généralement désignées comme l’apprentissage
frugal (few-shot learning (FSL) en anglais). Une revue détaillée de ces méthodes sera présentée dans
la section 2.2. Bien qu’il existe de nombreuses approches di�érentes pour l’apprentissage few-shot,
elles suivent souvent le même principe de base. Premièrement, elles apprennent des connaissances
générales sur une tâche connexe (tâche source), puis elles s’adaptent à une tâche cible. Ces deux
phases d’entraînement sont appelées entraînement de base et �ne-tuning. Dans le cas de la détec-
tion, une tâche désigne un ensemble de classes à détecter, et ce problème est alors appelé détection
d’objets few-shot (FSOD en anglais). Un grand ensemble de données annotées contenant des anno-
tations d’objets appartenant à Cbase est disponible. La tâche source consiste à détecter ces objets.
Ensuite, la tâche cible consiste à détecter des objets des classes nouvelles, en disposant uniquement
d’un nombre limité d’annotations. Le chapitre 3 fournit une revue approfondie des travaux exis-
tants dans ce domaine. Dans le cas général, la tâche cible est réalisée sur des images similaires à
celles vues pendant l’entraînement de base. Cependant, la tâche cible peut aussi être réalisée avec
di�érents types d’images. Par exemple, la tâche source peut être apprise à partir d’images naturelles
tandis que la tâche cible porte sur des images aériennes ou médicales. On appelle cela l’adaptation au
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domaine. Cela complexi�e considérablement le problème, mais c’est un scénario beaucoup plus réal-
iste dans l’industrie. Les ensembles de données collectés ne peuvent qu’approximer la distribution
réelle des données pour un problème spéci�que. Les divergences entre les paramètres d’acquisition
(appareil photo, éclairage, etc.) et les conditions réelles entraînent presque toujours une baisse des
performances. En imagerie médicale, il s’agit d’un problème classique car di�érents scanners ne
produiront pas exactement les mêmes images. Cela empêche de former des modèles sur une collec-
tion d’images provenant d’un hôpital et de les déployer dans un autre. Le cas d’utilisation militaire
est un autre exemple critique. La con�dentialité des images, l’environnement et les objets d’intérêt
en constante évolution rendent di�cile la construction d’algorithmes de détection robustes.

Compte tenu des contraintes industrielles de COSE, l’objectif principal de ce projet de thèse est
de développer des méthodes de détection d’objets e�caces en termes de données, basées sur des
stratégies d’apprentissage few-shot. Nous avons choisi d’orienter nos recherches principalement sur
le problème de la détection d’objets few-shot, c’est-à-dire l’adaptation aux nouvelles classes. Bien
qu’un aperçu détaillé de la thèse soit présenté dans la prochaine section, ici les principales parties de
ce travail sont décrites. Tout d’abord, dans la partie I présente une revue approfondie de la littérature
sur la détection d’objets, l’apprentissage frugal et en�n la détection d’objets few-shot. Ensuite, trois
approches distinctes sont proposées pour la détection d’objets few-shot dans la partie II. Cette partie
comprend également des expériences dans le cadre de l’adaptation au domaine, principalement dans
la section 7.4. Nos expériences se concentrent principalement sur des jeux de données d’images
aériennes disponibles publiquement, faute d’ensembles de données privées disponibles au sein de
l’entreprise. Ces jeux de données contiennent des annotations de détection et seront présentés dans
le chapitre 2. La partie III présente une alternative à l’Intersection over Union (IoU), une mesure
de similarité des boîtes englobantes largement utilisée en détection d’objets. Son utilisation pour
l’évaluation et l’entraînement des modèles est discutée dans le chapitre 8. En�n, le chapitre 9 fournit
des détails sur le déploiement des modèles de détection d’objets en fonction des contraintes de COSE.

1.2 Plan de la thèse
Cette section présente un aperçu du contenu de chaque chapitre de cette thèse. Cela prend la forme
d’un court résumé par chapitre. Ces résumés seront répétés pour plus de commodité au début des
chapitres correspondants.

Partie I : Revue de la littérature sur la détection d’objets, l’apprentissage few-shot
et la détection few-shot
La première partie de cette thèse est composée de trois chapitres. Les deux premiers présentent la
littérature sur la détection d’objets, l’apprentissage few-shot et la détection d’objets à faible échan-
tillonnage. Le troisième chapitre, quant à lui, explore les dé�s liés à l’application de la détection
d’objets few-shot à des images aériennes et présente notre première contribution : une analyse dé-
taillée de ces di�cultés.
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Chap. 2 : Détection d’objets, apprentissage few-shot et adaptation aux domaines
La détection d’objets et l’apprentissage few-shot sont des sous-domaines de la vision par ordinateur
et de l’apprentissage automatique. Les deux sont nécessaires pour développer des techniques de
détection capables de généraliser à partir de données limitées. Par conséquent, ce chapitre passe en
revue à la fois la détection d’objets et l’apprentissage few-shot. Les deux problèmes sont dé�nis et
des revues détaillées des littératures respectives sont réalisées.

Chap. 3 : Détection d’objets few-shot
Ce chapitre présente la tâche de détection dans le régime few-shot et passe en revue la littérature
existante sur ce sujet. La détection d’objets few-shot (FSOD) se situe à l’intersection de la détection
d’objets et de l’apprentissage few-shot, et repose donc largement sur ces deux domaines explorés
dans le chapitre 2. Tout comme pour la classi�cation, di�érentes approches sont explorées dans la
littérature pour aborder la tâche de détection en régime few-shot. En�n, ce chapitre se concentre
sur l’application de la détection d’objets few-shot sur des images aériennes et sur les extensions du
régime few-shot.

Chap. 4 : Analyse des di�cultés liées à la détection few-shot
La tâche de détection devient extrêmement di�cile lorsque les données annotées sont limitées. Dans
ce chapitre, les raisons derrière ces di�cultés sont explorées. En particulier, nous nous concentrons
sur le cas des images aériennes pour lesquelles il est encore plus di�cile d’appliquer des techniques
de détection few-shot. Il s’avère que les petits objets sont particulièrement di�ciles à localiser en
régime few-shot et sont la principale source d’erreur dans les images aériennes.

Contributions liées à ce chapitre :

q P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance Anal-
ysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference (EUSIPCO),
Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPCO55093.2022.9909878.

q P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot à travers une anal-
yse de performances sur des images aériennes et naturelles." GRETSI 2022, XXVIIIème Colloque
Francophone de Traitement du Signal et des Images, Nancy, France.

Part II : Amélioration de la détection few-shot à travers plusieurs approches
La deuxième partie de cette thèse présente nos principales contributions dans le domaine de la dé-
tection d’objets few-shot (FSOD). Chaque chapitre propose une nouvelle approche pour aborder le
problème de FSOD et discute de ses avantages et inconvénients par rapport aux méthodes exis-
tantes. Ces contributions ont abouti à plusieurs articles acceptés et soumis dans des conférences et
des revues internationales et nationales.

Partie 5 : Retour d’expérience sur l’apprentissage de métrique pour FSOD
Prototypical Faster R-CNN (PFRCNN) est une approche innovante pour la détection d’objets few-shot
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(FSOD) basée sur l’apprentissage de métriques. Elle intègre des réseaux de prototypes (prototypical
networks) à l’intérieur de Faster R-CNN, plus précisément à la place des couches de classi�cation
dans le RPN et la tête de détection. PFRCNN est appliqué à des images synthétiques générées à
partir de l’ensemble de données MNIST et à des images aériennes réelles avec le jeu de données
DOTA. Les performances de détection de PFRCNN sont légèrement décevantes, mais elles établis-
sent un premier point de repère sur DOTA. Les expériences menées avec PFRCNN fournissent des
informations pertinentes sur les choix de conception pour les approches FSOD.

Contributions liées à ce chapitre :

q P. L. Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representation
Learning for Few-Shot Object Detection on Aerial Images," 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp. 662-667, doi:
10.1109/ICMLA52953.2021.00110.

Chap. 6 : Un environnement modulaire pour la détection few-shot basée sur des mécan-
ismes d’attention
Comparer de manière équitable di�érents modèles est extrêmement di�cile en détection d’objets
few-shot car de nombreuses options architecturales di�èrent d’une méthode à une autre. Les ap-
proches basées sur l’attention ne font pas exception, et il est di�cile d’évaluer quels mécanismes
sont les plus e�caces pour le FSOD. Ce chapitre présente un environnement modulaire pour réim-
plémenter les techniques existantes et concevoir de nouvelles approches. Il permet de �xer tous les
hyperparamètres à l’exception du mécanisme d’attention et de les comparer de manière équitable.
En utilisant cet environnement, nous proposons également un nouveau mécanisme d’attention spé-
ci�quement conçu pour les petits objets.

Contributions liées à ce chapitre :

? P. Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Object
Detection on Aerial Images", Soumis à Elsevier Pattern Recognition journal.

q P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small Ob-
ject Detection in the Few-Shot Regime", Accepté à the IEEE International Conference on Image
Processing 2023 (ICIP).

Chap. 7 : FSDi�usionDet: un détecteur few-shot basé sur les modèles de di�usion et une
stratégie de �ne-tuning
Les chapitres précédents explorent la détection d’objets few-shot en utilisant l’apprentissage
métrique et les techniques basées sur l’attention. Ce chapitre se concentre logiquement sur la
dernière grande approche pour le FSOD : le �ne-tuning. En nous basant sur Di�usionDet, un ré-
cent modèle de détection utilisant des modèles de di�usion, nous construisons une stratégie de �ne-
tuning simple et e�cace, baptisée FSDi�usionDet. FSDi�usionDet surpasse état de l’art en FSOD
sur des jeux de données aériens et obtient des performances compétitives sur les images naturelles.
Des études expérimentales approfondies explorent les choix de conception de la stratégie de �ne-
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tuning a�n de mieux comprendre les composantes clés nécessaires pour atteindre une telle qualité.
En�n, ces résultats impressionnants permettent de considérer des scénarios plus complexes comme
l’adaptation à de nouveaux domaines, ce qui est particulièrement pertinent pour COSE.

Contributions liées à ce chapitre : Ce chapitre décrit des travaux très récents et nous plani�ons de
soumettre des articles de recherche qui les présenterons.

Part III: Repenser l’Intersection over Union
Cette partie ne contient qu’un seul chapitre qui présente une contribution indépendante des ap-
proches proposées dans la partie précédente. Ce chapitre remet en question la pertinence de
l’Intersection sur Union (IoU), un élément clé des modèles de détection d’objets.

Partie 8: Intersection over Union adaptable à la taille des objets
L’Intersection sur Union (IoU) n’est pas une mesure de similarité de boîte englobante optimale pour
l’évaluation et l’entraînement des détecteurs d’objets. Pour l’évaluation, elle est trop stricte avec
les petits objets et ne correspond pas bien à la perception humaine. Pour l’entraînement, elle crée
un déséquilibre entre les petits et grands objets souvent au détriment des petits. Nous proposons
l’Intersection sur Union adaptative à l’échelle (appelée SIoU), une alternative paramétrable qui ré-
sout les lacunes de l’IoU. Des arguments empiriques et théoriques sont avancés pour démontrer la
supériorité de la SIoU grâce à une analyse approfondie de celle-ci et d’autres critères existants.

Contributions liées à ce chapitre :

? P. Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection in
Few-Shot Regime", Soumis à International Conference on Computer Vision 2023 (ICCV).

q P. Le Jeune and A. Mokraoui, "Extension de l’Intersection over Union pour améliorer la détection
d’objets de petite taille en régime d’apprentissage few-shot", GRETSI 2023, XXIXème Colloque
Francophone de Traitement du Signal et des Images, Grenoble, France.

Partie IV: Prototypage et déploiement industriel
En�n, la dernière partie de cette thèse présente nos contributions industrielles. Cette partie est
cruciale pour COSE car elle comble l’écart entre les avancées de la recherche et les applications
du monde réel. Par conséquent, le seul chapitre de cette partie aborde les aspects techniques de la
détection d’objets et n’est associé à aucune contribution académique.

Chap. 9: Intégration dans les prototypes de COSE
Les modèles de détection sont souvent lourds et ne conviennent pas bien à l’application de COSE. Ce
chapitre présente d’abord en détail le système CAMELEON et ses contraintes. Ensuite, nous étudions
l’in�uence de la taille du modèle sur ses performances et présentons des outils et des astuces utiles
pour accélérer l’inférence. En�n, nous expliquons comment les modèles de détection sont déployés
à l’intérieur du prototype CAMELEON et comment ils se comportent sur des images aériennes.
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1.3 Résumé des contributions
Articles de conférences internationales

q P. L. Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representa-
tion Learning for Few-Shot Object Detection on Aerial Images," 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp.
662-667, doi: 10.1109/ICMLA52953.2021.00110.

q P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance
Analysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference
(EUSIPCO), Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPCO55093.2022.9909878.

q P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small
Object Detection in the Few-Shot Regime", Accepté à the IEEE International Conference on
Image Processing 2023 (ICIP).

Articles de conférences nationales

q P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot à travers une
analyse de performances sur des images aériennes et naturelles." GRETSI 2022, XXVIIIème
Colloque Francophone de Traitement du Signal et des Images, Nancy, France.

q P. Le Jeune and A. Mokraoui, "Extension de l’Intersection over Union pour améliorer la dé-
tection d’objets de petite taille en régime d’apprentissage few-shot", GRETSI 2023, XXIXème
Colloque Francophone de Traitement du Signal et des Images, Grenoble, France.

Articles soumis

? P. Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Ob-
ject Detection on Aerial Images", Soumis à Elsevier Pattern Recognition journal.

? P. Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection
in Few-Shot Regime", Soumis à International Conference on Computer Vision 2023 (ICCV).

Présentations orales
Au cours de cette thèse, j’ai eu l’opportunité de donner plusieurs présentations orales :

- Journée scienti�que du L2TI (Déc. 2020).
- Prototypical Faster R-CNN for Few-Shot Object Detection on Aerial Images DeepLearn Summer

School 2021, Las Palmas de Gran Canaria (29 Juil. 2021).
- Prototypical Faster R-CNN for Few-Shot Object Detection on Aerial Images à la journée du

GDR-ISIS : Vers un apprentissage pragmatique dans un contexte de données visuelles labellisées

limitées, Paris, (26 Nov. 2021).
- Séminaires des doctorants (Mar. 2022 and Fév. 2023).
- Séminaire à l’ETS Montreal: Few-Shot Object Detection on Aerial Images (28 Sep. 2022).
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Supervision de stages
J’ai supervisé 4 stages au cours de ces trois ans de thèse, 3 au sein de l’entreprise et un au L2TI :

- Conception et mise en oeuvre d’algorithmes de suivi d’objets dans des images aériennes (Mars-
Août 2021 – COSE).

- Optimisation et intégration d’algorithmes de détection d’objets dans un système embarqué
(Mars-Août 2022 – COSE).

- Apprentissage auto-supervisée pour la détection d’objets few-shot (Avril-Août 2022 – L2TI au
travers du LabCom IRISER).

- Détection d’objets few-shot par visual transformers sur des images aériennes (Mars-Août 2023
– COSE et L2TI via le LabCom IRISER).

En plus des supervisions de deux stages, je suis activement impliqué dans le LabCom IRISER2, un
laboratoire commun entre COSE, le L2TI et le LIPN. Ce laboratoire commun a été crée un an environ
après le début de ma thèse sous l’impulsion de mes superviseurs académique et industriel.

Logiciels libres
Au travers des di�érents projets qui ont constitués cette thèse, j’ai développé plusieurs package
Python qui se trouvent en accès libre sur GitHub :

� Prototypical Faster R-CNN

� AAF framework

� Pycocosiou

� FSDi�usionDet

2Lien vers le site du LabCom IRISER
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Chapter 2

Object Detection, Few-Shot Learning and

Cross-Domain Adaptation

Abstract

Object Detection and Few-Shot Learning are two relevant challenges from the Computer
Vision and Machine Learning �elds. Both are necessary to build detection techniques able to
generalize from limited data. Hence, this chapter reviews both Object Detection and Few-Shot
Learning. The two problems are de�ned and detailed reviews of the respective literature are
conducted.

Contents

2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Evaluation of Object Detectors . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.3 Literature review about Object Detection . . . . . . . . . . . . . . . . . . 32

2.1.4 Datasets Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Few-Shot Learning: Learning with Limited Data . . . . . . . . . . . . . . . . . 44

2.2.1 Few-shot Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 Cross Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

As brie�y presented in the introduction, this PhD project lies at the intersection of three sub-domains
of Machine Learning: Object Detection (OD), Few-Shot Learning (FSL), and Cross-Domain Adapta-
tion (CDA). In this chapter, we de�ne more precisely what these three �elds are and outline the main
existing contributions in the literature. We start by introducing the main computer vision problems
these �elds address and the related notations adopted in this manuscript. Then, we provide a review
of existing works in each area, and �nally, we link them with the industrial needs of COSE.
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Chapter 2 - Object Detection, Few-Shot Learning and Cross-Domain Adaptation

2.1 Object Detection

2.1.1 Problem De�nition
Object detection consists in localizing and classifying all objects of interest visible in an image I .
There are multiple terms to explain this statement. First, the notion of the object of interest is
de�ned according to a �xed set of semantic classes C. The objects of interest are the ones that
belong to one class c ∈ C. Of course, one can question the belonging of an object to a class. A
class could be ambiguous for multiple reasons. Given the quality of the image, it can be di�cult
to determine the class of the object depicted. For instance, in a satellite photograph, a car could
be so small that it cannot be perceived by a human observer. Another issue is the slackness of our
concept of objects, one word can refer to multiple objects (e.g., spring, game, or chest), and our
vocabulary is organized hierarchically (e.g., the class vehicle contains many classes including car

and truck). One could go even further by questioning the very concept of objects in our mind (see
for instance exemplar-based vs. prototype-based concept theories), but it would have more to do
with cognitive science than computer vision. Generally, for object detection, these complications
are not considered. One object can only belong to one class and whether it belongs to the class or
not falls under the common sense of the observer. Most of the time, this is established with the
ground truth annotations of human experts. This explanation is rather obvious, but keep in mind
that this is a simpli�cation, this will be useful when the notion of an object gets blurrier in the case
of few-shot learning and few-shot object detection.

The detection task consists in �nding all occurrences of the objects of interest in the images, i.e., the
image coordinates of each object. This can be done in several ways, by locating a single pixel inside
each object, by drawing a rectangular bounding box, or by computing a precise mask around it.
The former setting is barely used as it can be quite ambiguous, all points in an object are equiva-
lent and no supplementary information (size and shape) can be inferred from this representation.
Traditionally, object detection leverages bounding boxes to localize the objects, and precise masks
are reserved for the Instance Segmentation task. A bounding box is generally determined by four
coordinates, it can be the coordinates of two diagonally opposed points on the box or the coordi-
nates of one point plus the width and height of the box, see Fig. 2.1 for more details about boxes
representations. In the following, we adopt the latter de�nition of a bounding box: the �rst two
coordinates denote the x and y image coordinates of the top-left corner of the box, while the last
two represent the width w and height h of the box. A bounding box b is then denoted as follows:

b = [x, y, w, h]T . (2.1)

As the goal of object detection is to localize and classify the objects of interest, each bounding box
must be associated with a class c ∈ C. Therefore, we de�ne the detection label as a tuple of a
bounding box and a class label:

y = (b, c). (2.2)
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2.1 - Object Detection

Figure 2.1: Three di�erent box representations: top-left and bottom-right points, top-left point,
width and height, and center point width and height. Many more representations exist but they
will not be presented here. In this manuscript, the second representation, top-left point width and
height, will be used exclusively.

An image may contain more than one object and therefore, each image I is associated with a set
of detection labels Y = {yi}

NI
i=1, where NI is the number of objects in image I . Hence, solving an

object detection task is to �nd a detector model F(·, θ) with parameters θ able to output a set of
predicted labels given an input image I :

F(I, θ) = Ŷ = {ŷi}
MI
i=1. (2.3)

We employ here a slight abuse of notation by calling the output of a detector y. Indeed, a de-
tector predicts a classi�cation score lc for each class c ∈ C. Therefore, ŷ = (b̂, {l̂c}c∈C) and
ĉ = arg maxc∈C l

c. For convenience, we denote l ∈ [0, 1]|C| the vector of classi�cation scores.
Hatted symbols represent the model’s outputs. Note that the number of detections found by the
model MI may not equal the number of objects present in the image as the detector can either
miss some objects or output false detections. The proximity between the predicted labels Ŷ and the
ground truth labels Y determines the performance of the model F(·, θ). Hence, �nding an opti-
mal detection model is to �nd a set of optimal parameters, which minimizes the distance between
predicted and ground truth labels:

θ∗ = arg min
θ

d(Ŷθ,Y), (2.4)

where d is a distance measure between Ŷθ , the labels predicted by F(·, θ) and the ground truth
labels Y . Of course, there are plenty of valid approaches to measure the proximity between two sets
of detection labels, some will be introduced in Sec. 2.1.2.

For COSE, detecting the objects of interest in an image is a crucial step. This step is necessary
for the creation of GEOINTs. From the bounding boxes coordinates in the image, and the carrier
position (latitude, longitude, and altitude) and attitude (pitch, roll, and yawn), one can determine
the precise locations of the objects on Earth. These computations also involve camera properties
and orientations, but they will not be addressed in this manuscript.
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(a) Classi�cation confusion matrix and de�nition of the Precision, Recall and Ac-
curacy metrics.

(b) IoU for rectangu-
lar bounding boxes.

Figure 2.2: De�nition of the Precision, Recall and Accuracy metrics (a) as well as the box similarity
criterion Intersection over Union (b).

2.1.2 Evaluation of Object Detectors
Before jumping into the Object Detection literature, let’s introduce the most commonly used met-
rics employed to assess the quality of the detection models. As mentioned in the previous section
assessing the detection performance of a model consists in comparing the set of predicted detection
labels Ŷ with the set of ground truth labels Y (typically made by a human observer). In the previous
section, we de�ned the set of detection labels over an image. However, to better assess the gener-
alization capabilities of the detectors, their evaluation is always conducted on a relatively large test

set of images. Therefore, we extend the notation Ŷ and Y as the sets of predicted and ground truth
labels (respectively) over all test images.

2.1.2.1 Average Precision and mean Average Precision
The most commonly used metrics for Object Detection are the Average Precision (AP) and its ex-
tension in the multiclass setting, the mean Average Precision (mAP). The AP is formally de�ned as
the area under the precision-recall curve:

AP =

∫ 1

0
Prec(r) dr, (2.5)

where Prec denotes the Precision and r, the Recall. The Precision and Recall are two well-known
metrics often used to evaluate classi�cation problems. They are de�ned respectively as the ratio of
true positive labels over the positive predicted labels and the ratio of the positive labels over the
positive true labels. Figure 2.2a clearly illustrates these de�nitions with a classi�cation confusion
matrix. Note that the notion of True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN) introduced in the �gure will be leveraged throughout the manuscript.

For now, forget about the classi�cation part of the detection and consider only the localization
problem. How can we de�ne the four corners of the confusion matrix for bounding boxes? An
approach is to consider a detection as TP if the predicted bounding box has the same coordinates
as one true detection label. However, it is extremely challenging to get a perfect positioning of
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the predicted boxes. First, the detector generally leverages regression techniques to predict box
coordinates and outputs continuous box coordinates. This is incompatible with the annotated box
coordinates, which are usually discrete. Rounding errors can cause TP to become FP. Then, from
an application viewpoint, pixel-perfect bounding boxes are not necessary. Therefore, it is generally
admitted that a true positive detection is a box close enough to a ground truth box. The similarity
between two bounding boxes is almost always computed with the Intersection over Union (IoU).
Then, TPs are the boxes that have an IoU with a true box above a �xed threshold (typically 0.5).
However, the IoU may not be an optimal criterion in certain cases as we will discuss in Chap. 8.

The Intersection over Union, also known as the Jaccard index, is a well-known similarity measure
between sets A and B:

IoU(A,B) =
|A ∩B|
|A ∪B|

. (2.6)

Besides its application in statistics, the IoU is widely used in computer vision to assess the quality of
visual tasks such as detection and segmentation. The IoU can compute how close two sets of pixels
are and thus gives a similarity measure between ground truth and the model prediction. Here, we
focus on the detection task, therefore the IoU can be written in terms of coordinates of the boxes
b1 = [x1, y1, w1, h1]T and b2 = [x2, y2, w2, h2]T :

Ainter = max
(
0,max(x1, x2)−min(x1 + w1, x2 + w2)

)
∗max

(
0,max(y1, y2)−min(y1 + h1, y2 + h2)

)
,

(2.7)

IoU(b1, b2) =
Ainter

w1h1 + w2h2 −Ainter
. (2.8)

The IoU is, therefore, a crucial part of the evaluation protocol of the object detectors as it conditions
which predicted bounding boxes are TP, and which are FP. The IoU threshold limit determines
how close to the ground truth the predicted boxes must be to be considered TP. In the Pascal VOC
detection challenge [5], this threshold was set to 0.5, this has been the gold standard for a few years.
However, it changed when the more challenging Microsoft COCO dataset [6] was proposed. The
authors of the COCO challenge compute the AP at several thresholds (ranging from 0.5 to 0.95)
and average the values. While this is the current standard for object detection evaluation, the few-
shot object detection literature still uses the former Pascal VOC AP as it is an easier metric. Hence,
we will use both of these metrics in the manuscript. We will denote them as AP0.5 and AP0.5:0.95

respectively.

Before computing the precision-recall curve, the predicted labels must be ranked by con�dence
scores. It is usually possible to derive a con�dence score along with the bounding box coordinates
and labels from a detection model. This can be for instance the highest class probability score. Once
the detections are ranked according to con�dence scores, one can compute the running precision
Preck and recall rk by taking only the top-k bounding boxes. Then, it is possible to plot the precision
as a function of the recall by plotting the points (rk, Preck), for 1 ≤ k ≤ |Ŷ|. This generally gives
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a zig-zag shaped curve Prec(r) as visible in Fig. 2.3. Therefore, it may not be easy to compute the
area under the curve, i.e., the AP. A few tricks were introduced in [7], and later popularized with
the Pascal VOC challenge [5]. They consist in taking an interpolated precision-recall curve:

Precinterpolated(r) = max
r̃≥r

Prec(r̃), (2.9)

and discretize the area computation over 11 equally spaced points along the recall axis. Hence, the
original AP de�nition becomes:

AP =
1

11

10∑
i=0

Precinterpolated(0.1× i). (2.10)

So far, we only discuss the evaluation without taking into account the class of the bounding boxes.
In order to take this into account, the AP is computed independently for each class and noted APc.
The predicted boxes are now considered true positive only if they have a su�cient IoU with a ground
truth box and if they have the same class. The mean Average Precision is de�ned as follows:

mAP =
1

|C|
∑
c∈C

APc. (2.11)

The mAP is largely the most employed metric for object detection and most of our analysis will be
based on it. However, there exist complementary metrics that are worth presenting here.

2.1.2.2 mean Average Precision per object size
The AP and mAP can be computed only on certain object sizes. The principle is simple, simply �lter
the sets of predicted and true labels to keep boxes of a certain size before the AP computation. This
distinction was introduced in the COCO challenge [6], with three di�erent object sizes:

- Small: boxes with an area a = wh smaller than a ≤ 322 pixels.
- Medium: boxes with 322 < a ≤ 962.
- Large: boxes with a > 962.

This distinction is extremely relevant for COSE applications as the objects of interest in aerial im-
ages are often small and because most detectors struggle to detect them. Even worse, this issue is
reinforced in the few-shot regime as we will see in the following chapters. Therefore, mAPS , mAPM

and mAPL will be extensively employed in our analysis.

2.1.2.3 Average Recall
Similar to the average precision, the Average Recall (AR) is computed as the area under the Recall-
IoU curve:

AR = 2

∫ 1

0.5
Recall(υ) dυ, (2.12)
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Figure 2.3: Example of a Precision-Recall curve and its interpolated variant.

where υ denotes the IoU threshold (ranging from 0.5 to 1) for the recall computation. Similarly
to the AP for di�erent object sizes, the average recall can be declined according to the maximum
number of detection allowed. Basically, this controls the size of Ŷ , the more detection the model
can output, the less likely it is to miss an object of interest. Although it can be a critical metric in
some applications (e.g., lesion detection), this is not essential for COSE’s applications.

2.1.2.4 Average Precision shortcomings and Alternative
Even though AP is widely used in the computer vision community, it has several shortcomings.
Similar values of AP can be obtained from very di�erent precision-recall curves, hiding di�erent
detectors’ behavior. The ranking of the con�dence scores makes the AP sensitive to the prediction
con�dence. Finally, the interpolation trick from [7] may cause large errors when the number of
instances of the class is small. These drawbacks were highlighted in [8], which proposes an alterna-
tive metric, the Localization-Recall-Precision (LRP). This metric is an aggregation of three metrics
based on the box regression error, the precision, and the recall, under a certain con�dence threshold.
Hence, LRP �xes some of the AP’s shortcomings.

More recently, [9] also outlined two detection issues that are not spotted by AP, namely spatial

hedging and category hedging. Spatial hedging comes from the fact that low-con�dence duplicates
(slightly perturbated spatially) of a box do not degrade the AP value, instead having a lot of these
duplicates generally improves the AP. However, these duplicates are mostly burdensome from an
application viewpoint. The authors even highlight some tricks in recent object detectors that boost
AP while increasing the number of duplicates. Category hedging comes from duplicated boxes
with di�erent classes. Consequently, the authors proposed two novel metrics to speci�cally assess
spatial and category hedging: Duplicate Confusion (DC) and Naming Error (NE). Note that LRP
partly assesses spatial hedging as well.
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2.1.3 Literature review about Object Detection
In this section, we review the Object Detection literature but only present the most ground-breaking
works. For an exhaustive review of object detection, we defer the reader to two popular surveys
[10, 11]. This section is divided into three parts, traditional object detection, CNN-based OD and
Transformer based OD. These correspond to three phases in the development of object detection
techniques. This is highlighted by the timeline in Fig. 2.4, which summarizes the history of the
object detection �eld.

Figure 2.4: Timeline of the Object Detection literature, it includes some of the most relevant works
in the �eld of Object Detection. Papers marked with a �ag are the most ground-breaking works,
some will be detailed in Sec. 2.1.3

2.1.3.1 Traditional Object Detection Approaches
The very beginnings of the object detection �eld date back to the early 1990s. It began with an
easier one-class problem: face detection. Of course, there were prior works addressing this task, but
they mainly focused on face recognition and not detection. The di�erence is slight, the recognition
task only asks whether there is a face or not in an image. This �eld gained substantial interest
over the 1970s and 1980s with seminal works such as [12, 13, 14, 15]. However, it was only in 1991
that the detection task was �rst tackled by EigenFaces [16]. In this work, the authors perform a
Principal Component Analysis (PCA) on a set of face images. The PCA returns a set of eigenvectors
(denoted as EigenFaces) that span the face space. Applying the EigenFaces on a sliding window
over the images allows creating faceness maps and therefore localizing faces. Following this pioneer
contribution, many face detectors were proposed in the 1990s, for instance [17, 18, 19, 20]. We
called this section "Traditional Object Detection Approaches" in contrast with the two following
sections that are deep learning-based approaches. However, note that a signi�cant proportion of
the methods developed during the 1990s actually leverage neural networks. In EigenFaces [16], for
instance, the authors discuss an implementation of their system using Multi-Layer Perceptron (MLP)
for fast parallel computation. Similarly, [19, 20] exploit and train neural networks for the task of
face detection. We will see in the next section that plenty of these ideas will be re-used 20 years later
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by current deep-learning-based detectors. The missing pieces in these early days of object detection
were large annotated datasets and dedicated hardware such as Graphical Processing Units (GPUs).

In the late 1990s, the object detection task as we know it today with multiple classes of interest
was still far o�, but some research groups began to apply it to objects other than faces. As an
example, [21] introduced a general probabilistic model for the object of interest used for the vi-
sual search of faces and hands. Later, [22] stepped aside from the PCA-like object representations
and proposed generic learnable features based on Haar wavelets transform. This was successfully
applied to pedestrian detection. An extension with slightly more elaborated features proposed the
Viola-Jones detector [2]. But it mainly provided several tricks for fast computation, achieving robust
real-time detection.

In the 2000s, plenty of works shared the same strategy as the Viola-Jones detector: learning a set
of elaborated features and classifying regions in the input images by comparison with the set of
features. Improvements were made using more and more complex feature sets [23, 24] and the
popularization of Support Vector Machines (SVM) classi�ers[25]. This strategy led to the well-
known Histogram of Orient Gradient (HOG) [26], which was �rst applied to pedestrian detection.
However, this method was one of the �rst to tackle multi-class object detection in the �rst Pascal
VOC challenge [5] in 2005.

The Pascal VOC challenge quickly became a reference in the Object Detection �eld, with increasing
di�culty over the years (more classes and more images). The winners of the following editions
2006, 2007 and 2008 all took inspiration from the HOG features. In particular, [27] employs several
tricks to improve the detection quality based on HOG features. Among those, Deformable Part
Models (DPM), i.e., representing each object as a set of its parts provide signi�cant improvements.
It also leverages pyramid features and hard examples mining which are common components of
recent object detectors. DPM were then re�ned with for instance the Grammar Models [28] and
Star Models [28].

2.1.3.2 Object Detection in the Deep Learning Era
While there were a few attempts to solve object detection with neural networks during the 1990s, all
were limited to single-class problems and lagged behind state-of-the-art in terms of detection quality
and speed. However, this changed with the popularization of fast parallel processing units (GPUs)
and the creation of large image datasets. In 2012, AlexNet [29] was introduced for image classi�-
cation with deep convolutional networks (CNNs). Since AlexNet, deep learning was successfully
applied to most tasks in computer vision including Object Detection.

From the beginning of the deep object detection era, two schools of thought emerged: one-stage
detectors and two-stage detectors. As two-stage detectors were proposed �rst, we will present them
�rst here.
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Two-Stage Detectors
Regions with CNN features or R-CNN [4] is one of the �rst attempts to tackle the task of Object
Detection with CNNs. This marks a signi�cant performance improvement over the previous meth-
ods (about 20% mAP improvement over the best DPMs on the 2010 Pascal VOC challenge). The idea
behind R-CNN is to leverage the classi�cation power of CNNs such as AlexNet for the detection
task. It �rst employs Selective Search [30], a class-agnostic object locator, to generate region pro-
posals. For each region proposal, the corresponding part in the input image is cropped and fed to a
CNN pre-trained on ImageNet. The CNN outputs high-dimensional feature vectors which are then
classi�ed by an SVM for each class. The CNN is �ne-tuned for the detection task by replacing its
�nal classi�cation layer with N+1 class logits (one additional class for the background) and training
with a Cross-Entropy (CE) loss function. Proposal regions with an IoU of 0.5 with a ground truth
box are selected as positive proposals and the model is trained to classify these regions with the label
of their corresponding ground truth. The other proposals (denoted negative proposals) are selected
as background examples. The authors train classi�cation SVMs instead of using the classi�cation
outputs of the CNN as they observe higher performance with SVMs. In addition, they train a linear
bounding box regressor to re�ne the coordinates of each region of interest, following the most re-
cent advances with DPM. OverFeat [3] was another attempt to solve detection with CNN. Although
it did win the ImageNet Detection Challenge in 2013, it is largely outperformed by R-CNN and the
corresponding paper was never published. Following R-CNN, the �rst author Ross Girscick pro-
posed two successive extensions. Firstly, Fast R-CNN [31], mainly improves over R-CNN in terms
of speed. It introduces a Region of Interest (RoI) Pooling layer which extracts RoI features directly
from the features maps of the entire image. This is largely inspired by Spatial Pyramid Pooling [32]
which consists in pooling the features of an RoI with multiple binning resolutions and concatenat-
ing the outputs. RoI Pooling saves a lot of unnecessary forward passes through the CNN (R-CNN
performs a forward pass for each RoI). Then, they dropped the SVM classi�ers for the CNN outputs
and integrated a bounding box regressor at the end of the CNN as a parallel branch to the classi�-
cation layer. The training is done in a similar fashion as in R-CNN, they simply added a regression
loss function, computed only on the positive proposals to train the bounding box regression branch.
Secondly, Faster R-CNN [33] introduced the Region Proposal Network (RPN) to replace Selective
Search as the proposal generation algorithm. Selective Search provides almost exhaustive propos-
als but is slow. The RPN is a lightweight CNN that densely predicts proposal coordinates and an
objectness score at each position in the feature map. The box predictions are done as coordinate
shifts from a set of pre-de�ned anchor boxes. After objectness �ltering, this produces a reasonable
number of proposals that can be processed with Fast R-CNN. The RPN is trained like Fast R-CNN
with a similar loss function. A binary classi�cation loss as the RPN classi�es each location between
objects or background (with the objectness score), and a regression loss. Example selection remains
unchanged compared to Fast R-CNN. The training of both the RPN and Fast R-CNN is done in an
end-to-end manner. Faster R-CNN achieves superior performance compared to its predecessors, but
most importantly, it unlocks real-time detection with deep learning-based two-stage approaches.
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One-Stage Detectors
One-stage detectors appeared slightly later than two-stage ones. The reason for this is probably
because two-stage models were the logical continuity of the sliding-window-based older detectors.
These approaches are highly ine�cient as they process parts of the input images many times. While
this is reduced in modern two-stage detectors, they still have redundancies that limit their inference
speed. In 2015, Redmon et al. proposed You Only Look Once (YOLO) [34], a �rst detector to avoid
all redundancy as it only needs to look once at each part of the image. The main idea behind YOLO
is to reformulate OD as a regression problem and not a classi�cation one. Prior detectors solve OD
by classifying regions of the input image, i.e., classifying given a region of interest. YOLO instead
regresses the box coordinates and classi�es the object jointly.

The main principle of YOLO is to split the input image into an S × S grid and predict bounding
boxes, con�dence scores and class probabilities for each cell in the grid. Each cell is "in charge" of
detecting objects that are located within its boundaries. To deal with cases where more than one
object is visible in one cell,B bounding boxes and con�dence scores are predicted per cell (B = 2 in
the original paper). To keep model size constrained, the class probabilities are predicted only once
per cell. This assumption limits the model to predict boxes of one class only per cell. The YOLO
architecture is based on a deep CNN followed by two fully connected layers. The grid separation
is directly implemented inside the architecture since the input size is �xed. YOLO is trained in an
end-to-end fashion with a typical detection loss function. This loss function includes a regression
part for box coordinates and a classi�cation part, both implemented as L2 loss functions. Just like
other object detectors, YOLO has an example selection strategy to compute its loss. Each ground
truth box is attributed to the cell where its center is located and then to the box with the highest
IoU. Thus, YOLO is extremely fast compared to the two-stage approaches (50 to 100 fps depending
on the con�guration for YOLO compared to less than 15 fps for Faster R-CNN). However, this speed
improvement comes at the cost of slightly lower detection quality.

Just like the R-CNN family, YOLO was extended several times by its original authors and even later
perpetuated by other research groups. In YOLOv2 [35], several improvements are introduced, in-
cluding a lighter and fully convolutional architecture, decoupled class probabilities for each box,
anchors boxes as in Faster R-CNN and a hierarchical word structure for re�ned classi�cation. It also
proposes several tricks and loss function adjustments to stabilize training. YOLOv2 hence achieves
both higher detection performance and speed. YOLOv3 [36] is then introduced in an unpublished
paper by the same authors, presenting several incremental improvements. Again, it outperforms its
previous version both in quality and speed. After YOLOv3, its authors decided to quit the Object
Detection research for ethical reasons, but many other groups continued to re�ne the YOLO frame-
work. The race for the best performance and speed includes numerous versions of YOLO: YOLOv4
[37], PP-YOLO [38], YOLOX [39], YOLOv6 [40], YOLOR [41] and YOLOv7 [42]. Each of these works
has its share of marginal changes involving elaborated loss design, structure change, augmentation
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techniques and re�ned anchors generation. Note that YOLOv5 1 and YOLOv82 also exist but only
as popular code repositories on GitHub, without any detailed report about their contributions.

YOLO models have a rich development history but are now reduced to marginal changes and im-
plementation tricks. This is extremely useful from an engineering view, but it is less relevant from
a research perspective. Nevertheless, the YOLO framework inspired plenty of other one-stage de-
tectors. In particular, some detectors drop the use of anchors boxes and instead detect objects with
keypoints. CornerNet [43] for instance produces heatmaps to determine the position of two corner
points for each object, preventing the use of boxes at all. CenterNet [44] is a re�nement of Corner-
Net that only outputs a center point and infer the box dimensions from the keypoint features. Both
CornerNet and CenterNet output a keypoint heatmap for each class and involve sophisticated post-
processing to obtain the predicted bounding boxes. FCOS [45] simpli�es this by directly predicting
boxes from each feature location.

It is also worth mentioning Single Shot Detector (SSD) [46], which was proposed slightly after YOLO.
It is also a one-stage detector, but unlike the �rst YOLO version, it is fully convolutional. This has
several advantages as it predicts boxes densely on the images (higher recall, better detection of small
objects) and it adapts better to di�erent input image sizes. But most importantly, SSD leverages
features from various scales for the predictions which dramatically improves the detection of small
targets. Although this idea was introduced by SSD, it was popularized later with Feature Pyramid
Networks (FPN) [1]. We will discuss these advancements in the following section as well as the
choice of the CNN architecture choice.

One-stage object detectors were at �rst lagging behind two-stage detectors in terms of detection
performance. However, the recent progress tends to close this gap, making the one-stage detectors
the standard choice in the industry as they o�er the best speed/performance tradeo�.

Backbone network choice
In the OD literature, it is common to denote the main features’ extractor CNN as the backbone of the
network. Then, the lightweight module designed for classi�cation and box regression on top of the
backbone is logically called the detection head. What is placed between the backbone and the head
(e.g., FPN and RPN) are sometimes referred to as the neck. Fig. 2.5 highlights these three main com-
ponents of the object detector structure and outlines some design choices for each component. The
backbone has an extremely important role in object detection as it extracts the features on which
the classi�cation and regression modules work. The choice of the backbone has been driven by the
advances in classi�cation, speci�cally the most common backbones have largely proven their capac-
ities on ImageNet. First AlexNet [29] was used by R-CNN, then VGG networks [47] for Fast R-CNN,
Faster R-CNN, YOLO, SSD and many others. These were quickly replaced by Residual Networks
(ResNets) [48] which provide a large improvement in ImageNet classi�cation, and consequently in

1https://github.com/ultralytics/yolov5
2https://github.com/ultralytics/ultralytics
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the detection task. Following the extensions upon ResNets, object detectors successfully adopted
WideResNet [49], ResNext [50] or E�cientNet [51]. More recently, the backbone network shifted
from CNN to visual transformers, but this review will be conducted in Sec. 2.1.3.3.

Now, the backbones alone are not su�cient to extract relevant features for Object Detection. Back-
bone networks are originally designed to deal with curated images where one main object is visible
and often located at the center of the image. Thus, backbones are not well-suited to deal with objects
of various sizes and locations. An alternative to this issue is to leverage pyramidal features. This is
not a very innovative idea as this was largely employed by face detectors during the 1990s and HOG
models later (see Sec. 2.1.3.1). The actual innovation is to integrate this inside the CNN architecture.
This was introduced �rst in SSD [46], but it was popularized with Feature Pyramid Networks (FPN)
[1]. FPNs combine features with various resolutions from the input image at a single resolution
(i.e., it is not necessary to perform the forward pass on multiple rescaled versions of the same im-
age). FPNs extract intermediate feature maps in the backbone and aggregate them in a bottom-up
manner (in contrast to the top-down processing of the forward pass). This bottom-up computation
path is generally implemented with deconvolution layers, such as in Deconvolution SSD [52]. FPNs
are plug-and-play modules that can be attached to most backbone networks and signi�cantly im-
proves the detection performance, especially for small objects. In two-stage detectors, FPN are often
combined with Region of Interest Alignment Layer (RoI Align) to extract RoI features from the most
relevant feature level (i.e., according to the RoI size). RoI Align was introduced in Mask R-CNN [53],
an extension of Faster R-CNN for Instance Segmentation, that uses a FPN. In one-stage detectors,
the detection is carried out on all feature levels output by the FPN, deeper levels are responsible for
detecting larger objects.

Of course, plenty of contributions were proposed to improve upon FPNs. Path Aggregation Net
(PANet) [54] for instance adds another top-down path before aggregating features from multiple
levels with an Adaptive Feature Pooling layer. However, the design of the FPN architecture is not
trivial and requires lots of trial and error. To �nd optimal FPN designs, NAS-FPN [55] proposed
to apply principles of Neural Architecture Search for the design of FPNs and achieved superior
detection performance. However, these questions are not so relevant to us as they mainly focus on
Auto-ML problematics.

Non-Maximal Suppression
Note that these methods often output numerous detections and require elaborated �ltering schemes
to prevent duplicates. Among others the Non-Maximal Suppression (NMS) became quite popular.
In the case of largely overlapping boxes (i.e., when the IoU is above a �xed threshold), NMS keeps
only the most con�dent box to prevent duplicates. This is done separately for each class so that
objects from di�erent classes may overlap. It improves the visual quality of the detection, but it can
slightly degrade the detection performance when dealing with crowded scenes. For instance, Faster
R-CNN employs the NMS both on the outputs of the RPN and on the �nal set of bounding boxes.

37



Chapter 2 - Object Detection, Few-Shot Learning and Cross-Domain Adaptation

Figure 2.5: Possible architectural choices for Object Detector design.

2.1.3.3 Recent Advances in Object Detection
A Transformer is a network architecture based on a multi-head self-attention mechanism. It was
proposed in the context of Natural Language Processing (NLP) in 2017 by Vaswani et al. [56]. Since
then, it became an essential component of most NLP applications. The original idea behind trans-
formers is to represent the relations between di�erent words in a sentence. For instance, the subject
and a pronoun in a phrase must be strongly connected as they designate the same object. The
self-attention mechanism from the Transformers is speci�cally built to adaptively compute these
relations between words. As Transformers reformed the entire NLP �eld, vision models started to
embed similar mechanisms to model long-range dependencies between parts of an image. Vision
Transformers (ViT) [57] and Image Transformers [58] are one of the �rst attempts to solve image
classi�cation with Transformers and achieve considerable improvements over CNN baselines. They
achieve this by dividing an input image into several patches that they treat just like words in a
sentence.

Consequently, most vision tasks were quickly in�uenced by this new architecture. Object detec-
tion is no exception and in 2020, DEtection with TRansformers (DETR) [59] is introduced as a �rst
attempt to solve object detection using visual Transformers. Due to the time complexity of the trans-
formers blocks (O(H2W 2), where H and W are the height and width of the image respectively),
it is unreasonable to directly apply ViT for OD as input images are generally quite large. Instead,
DETR leverages a ResNet backbone to extract relevant features but implements the detection head
with transformers blocks. The head is divided into two parts, an encoder and a decoder. The encoder
combines backbone features with positional encodings (i.e., �xed vector whose role is to keep track
of the location of the patch processed). The decoder takes as input a set of object queries, learn-
able vectors that represent various positions in the images (similarly to positional encodings). Their
role is to condition the detection toward a speci�c part of the image. Encoded image features are
integrated inside the decoder through cross-attention layers. Finally, a light MLP predicts the box
coordinates and class for each object query. The training of DETR is similar to prior object detectors
(i.e., a classi�cation and a regression loss function). However, the matching between predicted and
ground truth boxes di�ers. DETR tackles OD as a set prediction problem, i.e., it predicts a set of
bounding boxes as a whole and compares it with the set of ground truth boxes. This di�ers from
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prior detectors which often employ box-to-box matching. In DETR, the matching is done by �nding
an optimal permutation of the sets (with the Hungarian algorithm) according to a cost involving
boxes’ positions and class labels.

Although DETR is a signi�cant milestone in the detection landscape, it does not yield impressive
performance gains over existing work. It even has considerable drawbacks, its inference is slow,
it struggles with small objects and its training is one order of magnitude slower than prior detec-
tors. Fortunately, several extensions mitigate these issues. First Deformable DETR [60], reduces
the convergence time and improves detection performance with a deformable attention module.
Deformable attention drastically reduces the amount of computation required and can process im-
ages with higher resolution. Deformable Attention Module is the twin of Deformable Convolutions
[61] but for transformers. Similarly, H-Deformable-DETR [62] builds upon Deformable DETR with
improved matching techniques which accelerate training further.

While the previous methods leverage transformers to make detections, they still rely on large CNN
models as the backbone. This choice is also questioned by recent advances in visual transformer
architectures. On the one hand, Data-e�cient image Transformers DeiT [63] and Bidirectional En-
coder representation from Image Transformers (BEiT) [64] both improve ViT’s accuracy and training
strategy. Both DeiT and BEiT show similar �ne-tuning properties as CNNs, unlocking their appli-
cation for various downstream tasks including object detection. On the other hand, ConViTs [65]
and Swin Transformers [66, 67] make the attention computation much faster with spatial inductive
bias and hierarchical structure respectively.

Another source of improvement for the detection backbones comes from self-supervised training.
Recent advances in large-scale self-supervised training for classi�cation are now being adapted to
other visual tasks. DINO [68, 69] pre-trains both CNN and Transformer based backbones in a con-
trastive way with carefully designed augmentation schemes to obtain more robust visual features.
Using these pre-trained backbones generally boosts the performance on many visual tasks, at least
when applied to su�ciently similar images. The very recent Segment Anything Model (SAM) [70]
also falls under the same category called foundation models. Even though no derivative work has
been published yet, the capacities of SAM are promising for object detection.

Thanks to this progress, transformers-based backbones are about to replace CNN in most computer
vision applications, including Object Detection. Nevertheless, some CNNs backbones are still pro-
posed and seem to keep up with the rapid progress of transformers-based backbones. Among these
works, ConvNeXt [71] brings several improvements over the original ResNet architecture to out-
perform Swin Transformer backbones. Closely related, InternImage [72] proposes an extension of
Deformable Convolution to scale CNNs architectures as much as transformers (which was limited
before). Even if the current hype is directed toward Transformers-based backbones, CNNs are not
defeated yet. As an example, DynamicHeads [73] is a recent object detector based on a ResNext back-
bone achieving very competitive results on the COCO dataset. It leverages attention mechanisms
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inside the detection head, but not Transformers modules as in DETR. Another recent detector based
on a CNN backbone is Di�usionDet [74]. It adapts the di�usion models (currently very popular for
image generation) to box prediction and obtains convincing performance as well.

To summarize, recent advances in Object Detection have largely followed the Transformer "revolu-
tion". First, with improved detection heads (the DETR family), and then, with improved backbones,
based on Transformers but also revamped CNNs.

2.1.3.4 Object Detection on Aerial Images
Most of the works presented in the above sections focus on the object detection task applied to
natural images. Aerial images di�er signi�cantly from natural images, they do not contain any
perspective, objects can be arbitrarily rotated, and they have a greater object size variance. Given
this, it seems obvious that some adjustments are required to adapt popular detectors to aerial images.

Oriented Bounding Boxes
As objects can be oriented in any direction, some aerial object detection datasets give annotations
as oriented bounding boxes. This slightly changes the problem, but most detectors can easily be
extended to deal with rotated boxes. The bounding box formulation can be extended so that it is
rotated, the regression layer must then be adapted to predict a rotation angle [75, 76], more than
four coordinates [77, 78], or to use rotated RoI, for instance with RoI Transform [79].

Small Object Detection
Aerial images contain objects with great size variance due to discrepancies in the shot conditions
(altitude, sensor resolution, camera focal length, etc.). In addition, they also have smaller objects
than natural images. To deal with the object size variance, it is possible to leverage supplementary
information such as the ground sample distance (GSD). The ground sample distance represents the
size of one pixel on the ground. Based on GSD, a model can infer the size of the RoI and therefore
re�ne its predictions, as done by GSDet [80]. However, object size variance is generally a limited
issue compared to detecting small objects, which remains an open challenge in object detection.
Many attempts were made to solve this issue using speci�c architecture design [81], multiscale
training [82, 83], data-augmentation [84] or super-resolution [85, 86, 87]. Additionally, Normalized
Wasserstein Distance (NWD) [88] proposes an alternative to the IoU loss speci�cally designed for
detecting small objects. It consists in computing the Wasserstein distance between two Gaussian
distributions �tted on the two bounding boxes compared. Moreover, NWD is not only used as a loss
function but also as an example selection criterion.

2.1.3.5 Training Object Detectors
While we brie�y presented how object detectors are trained in the previous sections, we did not
give much detail about the loss functions and the optimization process. We remedy this here by
reviewing the loss functions of several popular object detection benchmarks.
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Loss functions for Object Detection
As object detectors must solve both classi�cation and regression tasks, most detection loss functions
are divided into two components, a classi�cation loss and a regression loss. Plenty of choices exist
for both components. For the classi�cation loss, the most common choice is the Cross-Entropy loss:

Lcls
CE(ŷi,yi) = − log(l̂cii ), (2.13)

where l̂cii is the predicted probability that the box i contains an object of class ci, ci being the true la-
bel (yi = (bi, ci)). However, some alternatives such as the L1 or L2 losses over the class probabilities
are also employed:

Lcls
L1(ŷi,yi) = ‖l̂i − li‖22, (2.14)

where l̂i denotes the class probability vector (l̂i = {l̂ci}c∈C) and li is the one-hot encoded true
probability vector of box i. Another very common classi�cation loss function in recent detector is
the Focal Loss (FL) function [89], which was introduced with the RetinaNet object detector. Focal
loss is designed to address the class imbalance issue that is inherent to dense object detectors (the
background class is much more represented than other classes). Focal loss reduces the relative loss
of well-classi�ed examples so that the learning process focuses on misclassi�ed objects. It is de�ned
as follows:

Lcls
FL(ŷi,yi) = −αci(1− l̂

ci
i )γ log(l̂cii ), (2.15)

whereαci is an inverse class-frequency parameter and γ controls how much FL reduces the contribu-
tion of well-classi�ed examples to the loss. In RetinaNet, the authors leverage only a binary version
of FL as they tackle the multi-class classi�cation problem as |C| binary classi�cation problems. They
replaced the Softmax activation function on the classi�cation layer with a Sigmoid activation and
classi�ed the box as either background or foreground for each class independently. This binary
formulation of the classi�cation task will be extensively re-used by derivative detectors.

For the regression part, a greater variety of loss functions exists in the literature. L1 and L2 losses
are common in early CNN-based detectors. The Smooth L1 (or Huber Loss [90]) is a variant of the
L1 loss leveraged by the Faster R-CNN family of detectors. It combines the L1 and L2 norms to get
a smooth loss function around 0. Next, UnitBox [91] introduced the IoU loss function as the new
standard for box regression training:

Lreg
IoU(ŷi,yi) = − log(IoU(b̂i, bi)), Log version (2.16)

Lreg
IoU(ŷi,yi) = 1− IoU(b̂i, bi). Linear version (2.17)

Following the IoU loss, several extensions were proposed, e.g., Generalized IoU [92], Distance-IoU
[93], or α-IoU [94], these will be reviewed later in Chap. 8. To summarize, Tab. 2.1 gives an overview
of the loss functions used by common object detectors.
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Classi�cation Regression

Faster R-CNN [33] Cross-Entropy for the detection head
Binary Cross Entropy for the RPN SmoothL1 Loss for head and RPN

YOLO [34] L2 Loss on class probability vector (for grid cell containing an object)
L2 Loss on true class probability (for all cells)

L2 Loss on box center
L2 Loss on square root of box dimensions

RetinaNet [89] Binary Focal Loss SmoothL1 Loss

UnitBox [91] Binary Cross Entropy IoU Loss (log)

FCOS [45] Binary Focal Loss GIoU Loss (linear)

DETR [59] Cross Entropy L1 Loss and GIoU Loss

Di�usionDet [74] Binary Focal Loss L1 Loss and GIoU Loss

Table 2.1: Summary of the loss functions used in several object detection frameworks.

Example selection strategy
In the previous paragraph, we presented the various loss functions employed in the Object Detection
literature. For simplicity, we de�ned these losses for a couple of predicted and ground truth detection
labels (ŷi,yi). In reality, the losses are computed as the sum of all such couples (over one or multiple
images). However, it is not straightforward to build these couples as there may be more predictions
than ground truths, missed objects, or false detection. Each detector has its own strategy to operate
the matching between prediction and ground truth. These strategies were brie�y presented in the
previous sections, but we regrouped them inside Tab. 2.2 for clarity.

Matching Strategy

Faster R-CNN [33]

- Select RoI with at least 0.5 IoU with a GT as Positive Samples (PS) and RoI with low IoU (< 0.1)
as Negative Samples (NS).

- Classi�cation loss is computed on all selected samples
(PS with the corresponding GT class and NS with the background class).

- Regression Loss is only computed with PS.

YOLO [34]

- Select PS as grid cells in which there is a GT center point and assign the highest IoU boxes in
case of multiple GT in one cell.
All others are NS.

- Classi�cation done separately on PS and NS.
-Regression loss with PS only.

FCOS [45]

- Select PS as feature map locations that fall inside a GT, all others are NS.
If multiple GT for the same location take the smallest one.

- Classi�cation on PS and NS.
- Regression on PS only.

DETR [59]

- 1-to-1 optimal prediction and GT assignment according to localization and classi�cation cost.
- No-object are added to the GT set when the predictions are more numerous.
- Classi�cation loss is computed for all matched couples.
- Regression loss only for couples with an actual GT.

H-DETR [62] - DETR matching.
- Supplementary 1-to-many matching with duplicated and augmented GT for training.

Di�usionDet [74] - DETR matching

Table 2.2: Brief description of some existing prediction ground truth matching strategy in existing
object detectors.
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2.1.4 Datasets Presentation
There exist numerous object detection datasets in the literature. We present in this section four of
them in detail as they will be extensively used in this manuscript. These datasets are Pascal VOC
[5], MS COCO [6], DOTA [77] and DIOR [95]. We choose these datasets because they were the most
relevant and widespread datasets of natural (Pascal VOC and COCO) and aerial (DOTA and DIOR)
images at the beginning of this project. Some other datasets will be punctually used, especially for
the cross-domain experiments in Chap. 7, they will be presented in detail there. However, we draw
up a non-exhaustive list in Tab. 2.3 of the most well-known object detection datasets in the literature.

Image Type / Application Dataset Name # Classes # Images # Instances

Natural

Pascal VOC [5] 20 11.5k 27k
COCO [6] 80 117k 1.5M
LVIS [96] 1203 100k 1.3M

Object365 [97] 365 2M 30M

Autonomous Vehicle KITTI [98] 11 7k 80k
BDD100k [99] 10 400k 3M

Pedestrian
CityPerson [100] 1 3k 19k
TinyPerson [101] 1 1610 72k

CrowdHuman [102] 1 15k 340k

Aerial

COWC [103] 1 33k
DOTA [77] 16 2.8k (megapixels) 220k
DIOR [95] 20 23k 190k

xView [104] 60 1.1k (megapixels) 1M
FAIR -1M [105] 37 15k (megapixels) 1M

Agricultural / Food DeepFruits 7 457 2.5k
Oktobeerfest [106] 15 1k 2.5k

Other Modalities

ClipArt [107] 32 5k 13k
LogoDet [108] 3000 159k 194k
SIXray [109] 6 9k 1M

DroneVehicle [110] 5 56k 191k

Table 2.3: Overview of existing detection datasets

2.1.4.1 Natural Images
Natural images are the kind of image humans are the most familiar with, therefore it is logically the
most common application in Computer Vision. Object detection is no exception and most proposed
detectors are developed to process natural images. Hence, our analysis must be conducted as well
on natural images even though the industrial interest of COSE is more towards aerial imagery. To
this end, we choose Pascal VOC and MS COCO as our main sources of natural images.

Pascal VOC [5] – The Pascal VOC challenge took place every year between 2005 and 2012. This
competition de�ned the object detection problem as we know it today. The last version of the dataset
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Pascal VOC 2012 includes images of various sizes and aspect ratios. Each image is annotated with
horizontal bounding boxes around objects belonging to 20 classes. Examples of images and a list of
classes, ordered by the number of occurrences, are available in Fig. 2.6a.

MS COCO [6] – MS COCO is an extension of Pascal VOC which includes much more images and
classes. The set of images is completely distinct from Pascal VOC, but all classes in Pascal VOC are
included in COCO. Similarly, Fig. 2.6b presents image examples and a list of COCO classes.

2.1.4.2 Aerial Images
The overall goal of this project is to detect objects from aerial images. Aerial images are sometimes
associated with low-altitude drone images. These images are halfway between natural and aerial
images as they often preserve some perspective. Remote Sensing Images (RSI), i.e., acquired from
planes or satellites with nadir-oriented cameras are much closer to COSE’s application. In this
manuscript, we refer to this kind of image both as aerial or RSI images. There exist a few publicly
available datasets of such images. We have chosen two of them based on the ground resolution of
the images (in agreement with COSE systems) and their availability at the beginning of this project.

DOTA [77] – DOTA contains images coming from Google Earth and distinct satellites Jilin-1 and
Gaofen-2 (with roughly 1m spatial resolution GSD). Images from DOTA are large, ranging from
800 to 4000 pixels in width and objects are annotated with oriented bounding boxes. To ease the
handling of the images, we prepared DOTA by tiling all images into 512× 512 patches with a 50%
overlap and converted the annotations to horizontal bounding boxes. Fig. 2.7a presents images and
the class list for DOTA.

DIOR [95] – DIOR is very similar to DOTA. It contains only images scrapped from Google Earth
and has slightly more classes than DOTA. The images are already tiled at 800×800 pixels and boxes
are horizontal. Fig. 2.7b presents images from DIOR and the list of classes.

2.2 Few-Shot Learning: Learning with Limited Data
As presented in the introduction, COSE faces a substantial challenge in the design of its imaging
systems: the lack of real-case images and unknown objects of interest. All methods described in
Sec. 2.1 require large annotated training sets to achieve reasonable detection performance, which is
misaligned with COSE’s constraints. This issue is common in the industry, most computer vision
problems lack large annotated datasets, and therefore the direct application of research contribu-
tions is often challenging. Fortunately, there exists an entire research �eld dedicated to learning
with limited annotated data. The main paradigm in this �eld is to learn a closely related task with
su�cient data and adapt to the real task with limited annotations. Two kinds of adaptation can be
considered: class adaptation and domain adaptation. Given a computer vision task such as classi�-
cation, the former consists in learning to classify objects or images among a set of classes and then
adapt to another set of classes. This is usually called Few-Shot Classi�cation (FSC). While classi�ca-
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tion is not the primary interest of COSE, it is worth exploring the FSC literature as it is an older �eld,
much more developed than FSOD and because FSC lays the foundation for tackling more complex
tasks in the few-shot regime. On the other hand, domain adaptation consists in adapting to di�er-
ent kinds of images, e.g., di�erent seasons, weather conditions, general environments, etc. In the
strict de�nition of domain adaptation, the classes of interest remain the same. However, the setting
when both the classes and the domain change is also studied in the literature. It is more challenging,
but it better re�ects the industrial needs such as COSE’s. In this section, we review both kinds of
adaptations for the classi�cation problem. Even though it is not a task of interest for COSE, under-
standing few-shot adaptation strategies is crucial before addressing the more challenging problem
of Few-Shot Object Detection which we reserve for Chap. 3.

2.2.1 Few-shot Classi�cation

2.2.1.1 Problem De�nition
Classi�cation is a simpler problem than detection. Given a set of classes C and an input image
I , one wants to �nd the class c ∈ C that is depicted by I . Of course, the higher considerations
brie�y presented in Sec. 2.1.1 about how to properly de�ne the membership of an image to a class
still holds. For classi�cation as well, the class membership is determined by human appraisal and
common sense. Solving a classi�cation task is to �nd a model F(·, θ) that outputs a class label for
a given input image I :

F(I, θ) = ĉ ∈ C. (2.18)

Deep Learning based models proved to be particularly adapted to the classi�cation task in a fully
supervised setting (i.e., provided with su�ciently large annotated datasets). This was supported
amongst others by LeNet [111] for digit classi�cation, and by AlexNet [29] and ResNet [48] for
ImageNet classi�cation. However, the classi�cation task in this form is not a topic for this section,
and we refer to [112] for a complete review of existing works in this �eld.

In the few-shot setting, the classi�cation goal remains the same, predicting the class of an image.
The input image to an FSL model is usually denoted as a query image, and therefore, the test set
is called the query set. What changes between the few-shot and regular settings is the amount
of annotated images available to train the model. In the literature, the expression N -way K-shot
classi�cation designates the task of classifying images amongst N di�erent classes only provided
with K annotated examples per class. The NK images constitute the novel dataset, in contrast to
the base dataset which contains an arbitrary number of annotations for another set of classes. In
the few-shot literature, the novel dataset is often called the support set, and its elements support

examples. Similarly, the sets of classes of the base and novel datasets are called the base classes set
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(a) Examples of Pascal VOC images and class repartition on the training split.

(b) Examples of MS COCO images and class repartition on the training split.

Figure 2.6: Image examples for the Natural images dataset Pascal VOC and MS COCO.
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(a) Examples of DOTA images and class repartition on the training split.

(b) Examples of DIOR images and class repartition on the training split.

Figure 2.7: Image examples for the Aerial images dataset DOTA and DIOR.
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(noted Cbase) and novel classes set (noted Cnovel) respectively. Speci�cally, we have:

Dbase = {(Ii, ci)}1≤i≤|Dbase| ci ∈ Cbase, (2.19)

Dnovel =
⋃

c∈Cnovel

{(Ick, c)}1≤k≤K . (2.20)

As mentioned above,Dbase is used to train the model during a �rst phase called base training. During
this phase, the model has access to plenty of annotated data and is trained in a supervised manner
to classify images within Cbase. It is noteworthy to point out that this supervised base training is
not the only possible choice. Recent advances in Self-Supervised Learning (SSL) [113, 114, 115, 116]
proved that SSL is a competitive alternative to supervised base training.

After base training, the novel dataset is leveraged to adapt the model to classify the novel classes.
Hence, the few-shot classi�cation task can be seen as predicting the class label from the input image
and the novel dataset:

F(I,Dnovel) = ĉ ∈ C. (2.21)

The model adaptation generally starts with small architectural modi�cations, such as replacing the
�nal classi�cation layer with a novel layer randomly initialized and with the right number of outputs
(e.g., if the numbers of base and novel classes di�er). Then, several approaches exist for adjusting
the model to the novel classes given the novel dataset. We identify here four di�erent adaptation
strategies and will present each of them in the next sections. These strategies are: �ne-tuning,
metric-learning, meta-learning and attention-mechanisms. However, there are no clear boundaries
between these four areas, Fig. 2.8 illustrates the interactions between the various strategies and gives
a few examples for each category. We propose this taxonomy as it suits well the few-shot object
detection �eld. Hence, reviewing FSC through this lens helps to understand how these techniques
could be extended for detection. However, there exist much more detailed taxonomies and reviews
about FSC in the literature, [117, 118] are worthy examples. Note that the novel dataset can also be
used during inference, so that adaptation is done "on the �y". This is called transductive inference

and will be presented in Sec. 2.2.1.6.

In the most common few-shot setting, we have Cbase∩Cnovel = ∅, meaning that there are no common
classes between the base and novel sets. Of course, some works focus on relaxing these assumptions,
we will outline some of them in Sec. 2.2.1.7

2.2.1.2 Fine-tuning
Probably the most straightforward way to tackle the FSC task is to employ �ne-tuning or transfer
learning. This method trains the model on Dbase and then the model weights are �ne-tuned using
Dnovel with only the few examples available. It works well but the �ne-tuned models are prone to
strong over�tting and catastrophic forgetting [119]. Over�tting on the novel set is problematic as
it means that the �ne-tuned model will have poor generalization capabilities, i.e., its performance
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Figure 2.8: Taxonomy of the Few-Shot Classi�cation literature. To illustrate each category of the
taxonomy, a few papers are selected as representatives among others. Papers marked with a * are
not solving the FSC task but are included in this �gure as no contribution in the literature tackles
classi�cation from this perspective.

will be way lower on the test set than on the training set. Catastrophic forgetting is a more subtle
issue. It happens when the performance of the �ne-tuned model on the base classes drops. In the
case of the simple FSC it is a subtle issue, but it becomes more challenging when dealing with
extended setups such as generalized FSL and Continual Learning (see Sec. 2.2.1.7 for more details).
However, the authors of [119] propose regularization penalties to be applied during �ne-tuning that
alleviate both the over�tting and catastrophic forgetting. Speci�cally, the penalty prevents the �ne-
tuned weights from being too far from the pre-trained weights. Similarly, [120] proposes several
regularization loss functions and a grouped parameter update during �ne-tuning to overcome the
over�tting. Closely related, [121] leverages Direct Loss Minimization’s theorem [122] to optimize
the model’s weights with an Information Retrieval Loss at inference. Although �ne-tuning is a
relatively simple approach for FSL, it was not much explored in the case of classi�cation. We will
see in Chap. 3 that it has gained more attention recently for more complex tasks.

2.2.1.3 Metric Learning
Metric learning is a branch of deep learning which consists of learning self-organized representation
spaces, i.e., similar inputs should have similar representation in the embedding space. It was �rst
introduced with Siamese Networks for signature veri�cation [123] and later for face identi�cation
[124]. The idea behind the Siamese Networks is to leverage two copies of the same model and
feed them two di�erent images. The output of the two networks should be similar if the input
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images look similar as well. Siamese networks were then applied for one-shot image classi�cation
by [125]. It was one of the �rst attempts to solve this task using deep neural networks. Features
from the query and support images are extracted by the siamese nets and then compared by a �nal
prediction layer. This �nal layer takes as input the di�erence between the features of the query
and support images. Its role is to assess whether the features are similar enough so that the two
images belong to the same class. Following Siamese Networks, a series of works was proposed
based on the same principle. These contributions are embodied by Prototypical Networks [126].
ProtoNets replace the �nal prediction layer of the siamese networks with a linear classi�er and
extend the metric learning framework for multi-class and increased number of shots. Speci�cally,
the features of all support examples of one class are aggregated to form class prototypes and query
features are classi�ed according to the class of the closest prototype. Many variants of the ProtoNets
were then proposed. Inspired by Siamese Networks, Relation Networks [127] replace the linear
classi�er of the Prototypical Network with a small MLP trained to predict a similarity score based
on the query features and a prototype. The di�erence with Siamese Networks is that this is done
with each class prototype allowing Relation Nets to address multi-class problems. Other extensions
include prototypes recti�cation for intra and extra-class variance [128], semi-supervised prototypes
re�nement [129] and multiple prototypes per class [130]. It is essential to note that Prototypical
Networks and their extensions leverage episodic training strategies borrowed to meta-learning. This
strategy consists in dividing the training into shorter episodes. During each episode, the model is
trained for a random task, generally a subset of the novel classes (only theDnovel dataset is considered
by these approaches). The episodic strategy follows the "learning to learn" paradigm and mimics
the adaptation process the model will undergo at test time.

The episodic strategy in the context of metric learning is �rst used in Matching Networks [131],
an earlier work than Prototypical Network. Matching Networks are more inspired by the meta-
learning techniques, hence the episodic strategy. Two networks are trained jointly, one to extract the
support features and one for the query features. However, the way query and support features are
combined di�ers from other metric-learning methods. The authors leverage an attention mechanism
to compute the predicted class probabilities as a similarity-aware weighting of the support examples
labels. Closely related, Task Dependent Adaptive Metric (TADAM) [132] learns a task representation
and adapts its embedding network through a task-conditioning layer which resembles an attention
mechanism. The class prototypes are then task-dependent and an image is classi�ed according to
the most similar prototype. Matching Network and TADAM are therefore at the intersection of three
approaches for FSL: metric-learning, meta-learning and attention mechanism. These are reviewed
in the two following sections.

2.2.1.4 Meta-Learning
As hinted at the end of the previous section, meta-learning’s paradigm is "learning to learn”. This
was the main motivation for the episodic training strategy described there. Each episode forces
the model to adapt to new classes, repeating these episodes should overall increase the adaptation
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capacities of the model. However, the concept of meta-learning goes even further.

This concept was introduced and popularized during the 1990s [133, 134]. At the time, meta-learning
was mostly applied in the context of policy learning, with evolutionary or reinforcement learn-
ing methods. It was brought up-to-date for the few-shot classi�cation by Model-Agnostic Meta-
Learning (MAML) [135] which proposes to directly train the initial weights of a classi�er so that
it will quickly adapt to a given task. The optimization is done in a nested manner. At the inner
level, a task is sampled (like with the episodic training strategy) and the classi�er is initialized with
the current initial weights. A few gradient steps are performed on the classi�er with respect to the
task objective function. Then, at the outer level, the initial weights are updated through gradient
descent on the task loss value computed with the trained classi�er. The meta-update converges to
a set of initial weights that make the classi�er "easy to train" on any task. However, MAML does
not take task information into account for the weight initialization, and it is unrealistic to �nd truly
task-agnostic initializations. Therefore, [136] extends MAML to only choose a subset of the optimal
initial parameters to initialize the classi�er based on task information. Orthogonally, some contri-
butions integrate uncertainty in the weight initialization [137, 138], others make the training easier
[139, 140] or provide a theoretical framework and guarantees [141].

Similarly, some meta-learning techniques propose learning the optimization process instead of the
weight initialization. This is the case of Optimization as a Model [142] which trains a LSTM meta-
learner to output gradient updates for the classi�er network. The meta-learner takes as input the
weights of the classi�er and the gradients computed on a given task. The recurrent nature of the
meta-learner helps to keep track of the previous error signals and update consequently the weights
of the classi�er. Close to MAML, the meta-learner is updated after several weight updates (with
di�erent tasks) based on the loss values of the classi�er on a test set.

Another meta-learning direction is introduced with Ridge Regression Di�erentiable Discriminator
(R2D2) [143]. It consists in teaching a model “to use” standard machine learning tools such as Ridge
or Lasso Regression. These techniques often have closed-form solutions and are fast to compute
when few data are available. In R2D2, a CNN is trained as a feature extractor as a meta-learner,
while the classi�er’s weights are computed with a ridge regression from the support set. The meta-
learner CNN is trained to extract features that will generate optimal classi�er weights through ridge
regression.

2.2.1.5 Attention-Based methods
As an alternative to the rather complex and heavy meta-learning methods, a line of work followed
the MAML principle but focused only on some layers rather than on the complete classi�er. This
originates with LearNets [144] that are trained to output the weights of a convolution kernel from a
support example. The kernel is then used in a Dynamic Convolution Layer (DCL) inside the classi�er,
which in the end predicts a class-membership score (according to the class of the support example).
When multiple classes are available in the support set, the DCL is applied with each class features
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independently and the classi�cations are done in a binary fashion. This can be understood as an
attention mechanism between the query and support features. The dynamic convolution acts as a
�lter responsive to the support features. To put it another way, the locations in the query feature
map that are similar to the support features will be highlighted. The dynamic convolution sets the
focus of the classi�er on features from the support class. Self-Attention (SA) is probably the most
common form of attention mechanism used in the current deep learning literature. It highlights sim-
ilarity links between subparts of the input (e.g., di�erent locations in an image, or two words in a
sentence). Here, with DCL, this is done with two distinct images: a query and a support image. Sev-
eral other works build upon this idea. Simple Neural Attentive Learner (SNAIL) [145] designs more
complex attention blocks, based on transformers, to perform the classi�er’s adaptation. Although
their primary goal is to tackle few-shot reinforcement learning with temporal convolutional layers
(to deal with causality), they apply it successfully to FSC as well. The NK images in the support
set are fed in random order and the query image is given last. Very similar to SNAIL, CrossTrans-
formers [146] assemble an attention module to combine query and support features. The crucial
di�erence with SNAIL is the preservation of the spatiality of the features. Most previous works
aggregate the support features to perform the adaptation, losing the spatial information of the sup-
port image. Inspired by the recent progress of ViT, CrossTransformers manage to adapt the classi�er
while preserving spatial information. Just like many metric learning methods presented in the pre-
vious section, some of the attention-based techniques discussed above borrow an episodic training
strategy from meta-learning.

The query-support attention mechanism can also be interpreted as a conditioning of the classi�er’s
input based on the support features. That is the view adopted by Dynamic Conditional Network
[147]. The general idea is very similar to LearNet except for the training which is not done in an
episodic manner. Conditionally Shifted Neurons (CSN) [148] see the adaptation as the condition-
ing of the classi�er activations. The meta-learner outputs shift values that are added to the pre- or
post-activation values in the network. The shifts are computed from a task description stored in a
memory. The task description regroups the activation of all the layers of the classi�er fed with the
support images. The use of a memory bank is widespread along with attention-based mechanisms
for FSC. Memory Augmented Neural Network (MANN) [149] epitomizes this line of work. It lever-
ages a controller (i.e., a small network) to read and write in the memory. The controller generates
a key from an input, which is then used to either add a new entry in the memory or retrieve al-
ready stored information. The retrieval is done through an attention-like mechanism. The memory
is built throughout a task episode adaptively. When a new memory is added, if a similar memory
is already stored, the new memory re�nes the existing one to build more relevant representations.
Plenty of contributions took inspiration from MANN. Adaptive Posterior Learning (APL) [150] re-
�nes the memory writing process to store only "surprising" memories. Meta Networks [151] also
leverage external memory only accessible to the meta-learner in charge of adapting the classi�er.
[152] proposes a second abstract memory which stores re�ned information relevant for the current
task. All these memories are generally wiped when the task is modi�ed. However, life-long memory
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[153] also bene�ts the FSC even though it is mostly exploited for slightly more challenging tasks
such as Generalized FSL or Continual Learning (see Sec. 2.2.1.7).

2.2.1.6 Transductive Inference
A recent line of work tackles the few-shot classi�cation problem with transductive inference. Trans-
ductive inference, in contrast to inductive inference, consists of leveraging labeled and unlabeled im-
ages and classifying all unlabeled data points at the same time. Conversely, inductive inference deals
with each data point independently. Of course, deploying such methods in an industrial scenario
requires having multiple data points available at test time. For real-time applications, it is generally
not practical. However, in the case of COSE and the detection task, this is largely applicable. Very
large images cannot be processed as a whole, they must be divided into smaller images. In addition,
for the detection task, an image is often seen as a collection of objects or regions of interest. COSE’s
use case is therefore rather well-suited for transductive inference. Therefore, we brie�y review the
recent advances of transductive learning for FSC in this section.

Transductive inference is an old concept of statistical learning that was popularized under this name
and for machine learning applications by Vladimir Vapnik in the 1990s [154]. As mentioned above,
in the transductive setting, an entire unlabeled dataset (e.g., a test dataset or a query set in the few-
shot context) is available at test time. Transductive methods leverage information contained both in
the support and query set to make predictions. Before application on FSC, transduction was applied
to regular classi�cation on small-size datasets, yielding signi�cant improvements over inductive
methods. Amongst them, Transductive Support Vector Machines [155] extends the well-known SVM
[156] to make use of unlabeled information to re�ne the class separation margins. Another direction
is taken by [157] which derives an iterative method that propagates known labels to unlabeled data
points according to their similarity. Recently, TransBoost [158] even applied transduction to the
entire ImageNet dataset with signi�cant accuracy gain over inductive methods. The authors propose
a �ne-tuning approach to re�ne trained neural networks to perform better on a speci�c test set. It
takes both the training set and the unlabeled test set to compute a regularization loss function that
penalizes similar images to be classi�ed di�erently by the network.

Transductive inference is especially e�ective in the few-shot context as the limited labeled data is
often not enough to provide su�cient supervision. Leveraging additional unlabeled data is therefore
highly bene�cial. Various approaches were proposed to make use of this supplementary information
within the already existing few-shot frameworks. Probably the most straightforward approach is to
�ne-tune pre-trained models with additional regularization loss based on the labeled and unlabeled
data. This is the direction taken by [159] which compares the few-shot performance of several
methods against a simple transductive �ne-tuned baseline. Similarly, Transductive Episodic-wise
Adaptive Metric (TEAM) [160] and Transductive Information Maximization with Gradient Descent
(TIM-GD) [161] also both leverage �ne-tuning objectives to re�ne the model before transductive
inference. This resembles semi-supervised learning which �ne-tunes models with additional unla-
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beled data, i.e., di�erent from the training and test set. However, the essence of transductive learning
lies more in adapting the inference based on the additional information rather than �ne-tuning the
model. This can be done by direct optimization of an objective function with regularization as in
LaplacianShot [162], TIM [161] or Cross-Attention Networks [163]. Many propositions iteratively
propagate the known labels to unlabeled data points within a graph structure [164, 165, 166, 167,
168]. But there also exist contributions that exploit transductive inference through metric learning
with e.g., Prototype Recti�cation[128] or Meta-Con�dence Transduction [169], which meta-learn a
distance metric. Meta-learning based methods also get their transductive extension, such as Reptile
[170] which extends MAML to perform transductive inference by leveraging information shared by
test samples through the batch normalization layers.

2.2.1.7 Extending the Few-Shot Setting
The few-shot setup that we described in previous sections is limited and makes a few assumptions:

1. The set of base and novel classes are known in advance.
2. At test time, only the performance on novel classes matters.
3. Novel classes are only added once and all at the same time.

These assumptions signi�cantly simplify the problem, but these are relaxed by di�erent sub-�elds
of few-shot learning. In some aspects, the few-shot detection can be seen as a relaxation of these
assumptions. Various tasks, similar to few-shot classi�cation, exist in the literature. [171] provides
a comprehensive taxonomy of these tasks. We will brie�y present in this section some relevant
extensions of the few-shot classi�cation for COSE’s application and the detection task. Tab. 2.4
provides an overview of these tasks and their di�erences in terms of goal and available data.

Few-shot Open-set Recognition
Open-set classi�cation assumes that some classes are unknown during training (i.e., the training
dataset is incomplete) and deals with these classes. Instances of unknown classes can be rejected
or identi�ed as unknown classes. It models real use cases better as test data can be contaminated
by classes not included in the training set. Object detection can be assimilated as an open-set prob-
lem as objects belonging to a �xed set of classes must be localized while rejecting everything else
as background. The training set can only contain a limited variety of background examples and
new instances of background will be presented to the model at test time. There are plenty of ap-
proaches for Open-set Recognition, but we will not review them here in detail and refer the reader
to a complete survey [171] about it. Instead, we simply outline the general principle behind algo-
rithms that tackle this problem. Two main approaches coexist in the literature, discriminative and
generative approaches. The former ones propose techniques to distinguish between known and un-
known classes using discriminative information, e.g., distance to class representations [172]. The
latter leverage generating models to hallucinate negative examples as additional training data [173].
Of course, transduction also helps in this case and outlierness score [174] can be computed using the
unlabelled examples available at test time.
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Task Classes of interest Novel supervision Query-support interaction

Regular Classi�cation Cbase None None

Few-shot Classi�cation Cnovel K examples per novel class Cquery = Csupport

Zero-shot Classi�cation Cnovel External information (e.g., class labels) None

Generalized FSC Cbase ∪ Cnovel K examples per novel class Cquery = Csupport

FS Open-set Recognition Cnovel ∪ Cunknown
K examples per novel class
None for unknown classes Cquery ⊂ Csupport or Cquery ⊃ Csupport

Continual Learning Cbase ∪
(⋃

i Cinovel
)

K examples per novel class None

Few-Shot Object Detection Cnovel\Cbackground K annotated images per novel class Cquery = Csupport

Table 2.4: Summary of the various �avors of classi�cation tasks existing in the literature. The second
column, classes of interest, denotes what is the overall goal of the task. The last column presents
the possible class setup encountered both in the query and support set (Cquery and Csupport respec-
tively.). Cunknown represents additional classes that should be identi�ed in the open-set setting. In
the detection task, Cbackground denotes all object classes that can be present in the background and
that should not be detected.

This holds for open-set recognition, but in few-shot there are additional complexities. Not only
the classes from the query set may be unknown (i.e., not even in the support set), but the support
set could provide irrelevant information for the current task. This setup, introduced in [175], is
not common in the FSL literature even if it is of great interest from an industrial perspective. It is
also quite relevant from the few-shot detection point of view as the detection support examples can
embed irrelevant information for the task.

Generalized Few-Shot Classi�cation
Up to now, we presented the few-shot classi�cation problem as only adapting a model to classify
novel classes. However, it can sometimes be relevant to keep the possibility of classifying classes
from the base dataset. Often the adaptation signi�cantly reduces the performance on base classes,
this phenomenon is known as the catastrophic forgetting [119]. When both base and novel classes
are of interest, the task is called generalized few-shot learning. This can be achieved with several
tricks such as doing the inference with both base-trained and �ne-tuned models. But it is also
possible with careful extension and �ne-tuning of the model, e.g., via disentangling base and novel
class predictions [176].

Continual Learning
Generalized few-shot is an intermediary step toward continual or life-long learning which consists
in continuously adapting the model with novel classes. This is way more challenging but also re-
sembles the industrial setting better. While extremely relevant from COSE’s perspective, we choose
not to tackle this problem in this PhD project as it seems more sensible to address �rst the already
challenging few-shot setting for the detection. In addition, continual learning often leverages com-
plex learning scheme such as task rehearsal [177] or adaptive model architectures [178] to prevent
forgetting classes or tasks.
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2.2.2 Cross Domain Adaptation
Sometimes, there are signi�cant discrepancies between images from train and test datasets. We
discussed in the previous section the discrepancies in terms of classes: classes encountered at test
time may di�er from annotated training classes. However, training and test images can also have
di�erent aspects. For instance, autonomous vehicle perception systems could be trained only with
daylight images and encounter nighttime images once deployed. The train and test image spaces
are denoted as source domain and target domain in the Cross-Domain Adaptation (CDA) literature.
Speci�cally, a domain consists in an image space I and a marginal probability distribution p(I) over
it:

M = {I, p(I)} , I ∈ I. (2.22)

CDA aims at adapting a model trained for a speci�c task on a source domain Msource =

{Isource, psource(I)} to perform the same (or another) task on the target domain Mtarget ={
Itarget, ptarget(I)

}
. For simplicity, we restrain the scope of this section to the classi�cation task.

Hence, when the task changes from source and target, the set of classes changes as well. We denote
these sets as Csource and Ctarget to comply with the CDA notations. Note that these sets of classes
correspond to the base and novel classes in the FSC context. Generally, in the CDA literature, a lim-
ited amount of annotated data is available for the target domain which prevents direct supervised
training. However, if a closely related source domain with su�cient available data is available,
adaptation to the target domain is possible with limited data. Accordingly, cross-domain adapta-
tion and few-shot learning are closely related problems. In this section, we review the two kinds of
CDA, with and without label shift. COSE’s industrial application contains CDA’s problematics as
the imaging systems can be deployed to di�erent theaters of operations for which no images were
available during training.

2.2.2.1 Domain Adaptation without class shift
There exists a slight di�erence between Domain Adaptation (DA) and what is sometimes called Few-
shot Domain Adaptation (FSDA) in the literature. This di�erence lies in the amount of available
data in the target domain. FSDA methods have access to fewer target examples than regular DA.
This distinction is not relevant as in both cases, there is not enough target data to perform directly
supervised training (although additional unlabeled target data is often leveraged). Therefore, we
choose to review both DA and FSDA at once. This review is not exhaustive, and we refer the reader
to [179] for a more complete overview of Domain Adaptation. Following this survey, we divide our
review into two parts, discrepancy-based adaptation and generative modeling approaches.

Discrepancy-based Adaptation
The simplest way to adapt a model to a target domain is to �ne-tune it on the few available target
data. The model is �rst trained on the source domain to learn the task. Then, �ne-tuning is done on
the target domain with some tricks to avoid over�tting. These tricks consist in reducing the discrep-
ancies between source and target features. For instance, [180] �ne-tunes on the target domain with
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a regular cross-entropy loss but leverages additional loss functions to minimize domain confusion
with additional unlabeled target images. Similarly, [180] has been extended with semi-supervised
consistency [181] and contrastive [182] losses. Following the same principle, a number of works
[183, 184, 185, 186] leverage additional losses based on the Maximum Mean Discrepancy (MMD) or
close extensions. MMD is a distance measure between probability distributions. In the context of
DA, it can be leveraged to assess the shift from source to target domain for a given class. Employing
MMD-based loss functions allows these methods to learn domain invariant features and therefore
improve cross-domain generalization. As an example, Central Moment Discrepancy (CMD) [187]
proposes an approximation of MMD to derive a discrepancy regularizer. This regularization is com-
puted over all layers of the model to enforce features from all levels to be domain invariant. Other
contributions developed relatively similar techniques based on other criteria such as Kullback-Leiber
divergence [188], or correlation alignment [189].

The methods presented above all �ne-tune the models from feature discrepancies. However, as the
task remains the same, it is reasonable to assume that optimal weights for the source and target
domains are related. Following this idea, [190] proposes a weight regularization to prevent �ne-
tuning to �nd weights too di�erent from source weights. Closely related, [191] proposes to only
change Batch Normalization’s statistics to adapt to the target domain.

Finally, advances in adversarial learning provided new ways to address DA by minimizing source
and target discrepancies in an adversarial setup. This is embodied by [192] and [193] which both
jointly train a domain discriminator along with the target feature extractor in an adversarial fashion.
The trained extractor embeds images in a shared source-target feature space on which the source
classi�er can perform well.

Generative Modeling
Another approach to domain adaptation is to arti�cially generate target data. This is particularly
easy with discriminative approaches based on Generative Adversarial Networks [194]. GANs were
extended to perform domain translation with CoGAN [195], Pix-2-Pix [196] and CycleGAN [197].
The source domain images can then be converted into source-target image pairs which greatly fa-
cilitate domain adaptation with methods similar to the ones described in the previous paragraph.
This is done for instance in CyCADA [198]. Of course, GANs are not the only available generative
models suitable for this task. Recent advances in image generation leveraging Di�usion Processes
[199, 200] unveil new possibilities for domain adaptation following existing work about generative
domain adaptation as done very recently by [201].

Closely related, Deep Reconstruction Networks (DRCN) [202] jointly learn to classify and recon-
struct images from multiple domains. The model is trained to classify source images and recon-
struct target images. This strategy enforces the learning of domain-invariant features and largely
improves domain adaptation. Similar approaches have been proposed with disentangled domain-
invariant and domain-speci�c representations [203], or adversarial reconstruction [204].
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2.2.2.2 Cross-Domain Adaptation with class shift
Cross-Domain Few-Shot Classi�cation (CD-FSC) designates problems where both classes and do-
main change at the same time. This complexi�es further the learning, but it is closer to real-case
scenarios and developing such techniques will ease the deployment of classi�cation techniques. It is
particularly interesting for COSE as it solves two major issues regarding training visual recognition
systems for surveillance applications: unde�ned objects of interest and changing image appearance.
This setting is relatively new in the few-shot literature and has been popularized in particular by
the creation of Meta-Dataset [205]. Meta-Dataset is a benchmark for CD-FSC. It gathers 10 existing
classi�cation datasets and proposes a simple testing scenario: pre-train on ImageNet then �ne-tune
on each dataset individually with limited annotations.

Most of the proposed techniques for solving CD-FSC borrow from both the few-shot learning and
domain adaptation �elds. Plenty of approaches are then based on the meta-learning strategy, pre-
training on the source dataset and �ne-tuning episodically on the target domain and novel classes.
Meta-FDMixup [206] for instance trains episodically a classi�er with additional domain discrimi-
nant losses computed on an augmented query set (mixing-up source and target domain – MixUp
[207] is a well-known augmentation technique). Meta-FDMixup, is later extended with a dynamic
mixup strategy by Target Guided Dynamic Mixup (TGDM) [208]. Another merger of FSL and DA
techniques is Domain-Adaptive Prototypical Networks (DAPN) [209], which extends prototypical
networks with a domain adaptation module for prototype alignment, trained in an adversarial fash-
ion. Closely related, [210] proposes a bi-directional prototype alignment. Another line of work
tackles CD-FSC through the prism of distillation, for instance, [211] �rst trains two "experts" net-
works to perform the FSC task on both domains independently. Then, a student network is trained to
match the output of both teachers using distillation techniques. It results in a student network able
to deal with both domains identically. Similarly, Universal Representation Learning (URL) [212] dis-
tills knowledge learned fromK classi�ers trained onK distinct domains into a single cross-domain
model. This is achieved by adding lightweight domain adaptation modules between the feature ex-
traction module and the classi�cation layer. Overall these techniques all involve complex training
strategies and architectural designs which are not very convenient for industrial deployment, repli-
cation, or future extensions. To counter this, ReFine [213] proposes a simple �ne-tuning strategy
that only re-initializes the last layers of the model before �ne-tuning to facilitate domain adaptation.
Much simpler than concurrent approaches, it yields competitive results.

Finally, some other works [214, 215, 216] study an even harder task when target domain data are
completely unlabeled. We will not review this kind of approach as it is out of the industrial scope
of COSE.
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2.3 Conclusion

This chapter presents the object detection and few-shot learning �elds, both necessary to the con-
ception of few-shot object detectors. For object detection, notations and problem de�nitions are
given in detail, as well as a list of popular evaluation metrics and datasets. A thorough review of
existing works redraws decades of progress in this �eld and helps understand how state-of-the-art
detection has been achieved. Similarly, for Few-Shot Learning, this chapter gives the key de�ni-
tions to understand the stakes of the few-shot problem. An overview of the few-shot literature
also provides relevant insights about how to adapt perception models in low-data regimes. This
prospecting work greatly helps in understanding what is relevant from a research perspective and
what directions to follow according to the industrial needs of COSE.
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Chapter 3

Few-Shot Object Detection

Abstract

This chapter presents the task of detection in the few-shot regime and reviews the existing
literature about it. Few-Shot Object Detection (FSOD) is at the crossroads of Object Detection
and Few-Shot Learning, and therefore, extensively relies on these two �elds explored in Chap. 2.
Just as for classi�cation, various directions are explored in the literature to tackle the detection
task in the few-shot regime which will be presented in detail. Finally, this chapter focuses on
the aerial image application of FSOD methods and extensions of the few-shot setting.
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The company COSE is developing CAMELEON, an intelligent airborne surveillance system to au-
tomatically detect objects of interest. The detection algorithm must be adaptative as the objects
can change from one operation to another. Therefore, the most relevant direction to explore is the
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Few-Shot Object Detection (FSOD) task. In this chapter, we properly de�ne the FSOD setting and
present an exhaustive review of the current literature. We also explain how detection datasets can
be leveraged for FSOD and how the proposed methods are evaluated.

3.1 Problem de�nition
Unsurprisingly, the Few-shot Object Detection task aims to detect objects just as regular object
detection but under the few-shot constraints. Speci�cally, given an input image I , FSOD’s goal is
to learn a detection model F(·, θ), with parameters θ, able to adapt to new classes (Cnovel) from
only a limited number of examples. Just as for the few-shot classi�cation problem, two datasets
are available, a base dataset with plenty on annotations of base classes instances Cbase and a novel
dataset (also called support set) with K annotated images for each novel class:

Dbase = {(Icii ,Y
ci
i )}1≤i≤|Dbase| ci ∈ Cbase, (3.1)

Dnovel =
⋃

c∈Cnovel

{(Ick,Yci )}1≤k≤K , (3.2)

where Ick is an image containing at least one instance of the class c, and Yck is the corresponding
annotation set (bounding box and label) for the image Ick, �ltered to contain only class c instances.
Note that there could be more thanK annotations per class as multiple objects of the same class can
be visible on one image. This setting is commonly used in the FSOD literature and called N -ways
K-shots object detection. Conversely, keeping only one annotation to comply with the few-shot
classi�cation setting can be problematic as it provides wrong supervision to the model. This issue
will be elaborated further in Chap. 4. Hence, based on the input image and the support set, the few-
shot detection model F(·, θ) should predict bounding boxes and labels for all instances of classes
Cnovel:

F(I,Dnovel) = Ŷ = {ŷi}
MI
i=1 = {(b̂i, ĉi)}MI

i=1, with ĉi ∈ Cnovel. (3.3)

This setup resembles the FSC setting described in Chap. 2, but brings some complications. While
the sets of base and novel classes are disjoint, FSOD must deal with the background. Any object
that does not belong to either the base or novel class sets is considered background. Therefore, an
object detector can encounter unknown classes at test time and must be able to ignore them. No
information about the background classes is available which makes it even more di�cult to dis-
criminate between classes of interest and background. From this perspective, FSOD is closer to the
few-shot open-set recognition problem than FSC. In addition, multiple di�erent classes of interest
can be depicted within a single image. Distinct objects can overlap in the image and their features
(potentially from di�erent classes) can blend, making recognition challenging. This is reinforced as
the objects get smaller, their features get noisier and can be misclassi�ed more easily. This stands
for the query images but also for support images which increases the di�culty compared to FSC.
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Figure 3.1: Timeline of the FSOD literature, several works are included as milestones for each of
the four kinds of approaches to FSOD: Fine-tuning, Metric Learning, Meta-Learning and Attention-
based approaches. The yellow hatched rectangle represents the duration of this PhD project.

3.2 Review of the Few-Shot Object Detection Literature
Even though FSOD is a natural extension of FSC, the di�culties mentioned above prevent the direct
use of FSC techniques, just as classi�cation techniques may be extended for detection. Of course,
the main principles for adapting classi�cation models to the few-shot setting can be reused, but
they need to be carefully adjusted to take care of the supplementary challenges of the detection
task. Hence, as for FSC, the detection models are �rst trained on the base dataset and then adapted
to novel classes with the support set. This adaptation can be done in many ways, often based on
FSC approaches. Therefore, we adopt the same organization as for Sec. 2.2 and divide our review
into four distinct parts: �ne-tuning, metric learning, meta-learning and attention-based approaches.
Fig. 3.1 outlines the organization and the temporality of the FSOD �eld. FSOD is a relatively new
challenge and only started 2 years before this PhD project. Tab. 3.1 provides an almost exhaustive
overview of the literature about FSOD. The reader can refer to several surveys [217, 218, 219] about
FSOD for more thorough reviews. However, note that these surveys are already a few years old,
which is already a lot compared to the recency of the �eld.

3.2.1 Fine-tuning
Fine-tuning is the simplest approach to tackle FSOD, the principle is quite straightforward and sim-
ilar to FSC: train a detection model to detect base classes on a large dataset and then �ne-tune it
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Approach Abbreviation Venue Date Detection Framework Multiscale Datasets Aerial / Natural
Images

FRW [220] ICCV 2019 YOLO No Pascal / COCO Natural
OSOD-CACE [221] NEURIPS 2019 Faster RCNN Yes Pascal / COCO Natural
Meta R-CNN [222] ICCV 2019 Faster RCNN No Pascal / COCO Natural

FSOD-RSI [223] TGRS 2020 YOLO Yes DIOR / NWPU VHR Aerial
ARPN [224] CVPR 2020 Faster RCNN Yes COCO Natural
VEOW [225] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural

KT [226] SMC 2020 Faster RCNN Yes Pascal Natural
OSOD-WFT [227] Preprint 2020 FCOS Yes Pascal / COCO / ImageNet Loc Natural

ONCE [228]‡ CVPR 2020 Center Net No Pascal / COCO / Deepfashion Natural
WSAAN [229] TAEORS 2021 Faster RCNN Yes RSOD / NWPU VHR Aerial

FSOD-FPDI [230] MDPI 2021 FCOS Yes DOTA / NWPU VHR Aerial
Meta-FRCNN [231] AAAI 2022 Faster RCNN Yes Pascal / COCO Natural
Meta-DETR [232] TPAMI 2021 DETR No Pascal / COCO Natural

DRL [233] Preprint 2021 Faster RCNN Yes Pascal / COCO Natural
DANA [234] TM 2021 Faster RCNN Yes Pascal / COCO Natural

SP [235] Access 2021 Faster RCNN Yes Pascal / COCO Natural
JCACR [236] ICIP 2021 YOLO Yes Pascal / COCO Natural

TI-FSOD [237] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
SAM [238] MDPI 2021 Faster RCNN No NWPU VHR-10 / DIOR Aerial

FSOD-FCT [239] CVPR 2022 Faster RCNN No Pascal / COCO Natural
SAR-DRM [240] TGRS 2022 Faster RCNN No FUSAR-GEN Aerial §
FSOD-PSI [241] JDT 2022 YOLO Yes Pascal / COCO Natural

SAFT [242] CVPR 2022 FCOS Yes Pascal / COCO Natural
APSP [243] WACV 2022 Faster RCNN No Pascal / COCO Natural

KFSOD [244] CVPR 2022 Faster RCNN Yes Pascal / COCO Natural
FSODS [245] TGRS 2022 YOLO Yes SMCDD-FS Aerial §

TIN-FSOD [246] Arxiv 2023 Faster RCNN Yes NWPU VHR/ DIOR / HRRSD Aerial

Attention

FSOD-ICF [247] WACV 2023 Faster RCNN Yes Pascal / COCO Natural
PNPDet [248] WACV 2021 Center Net No Pascal / COCO Natural

UPE [249] ICCV 2021 Faster RCNN Yes Pascal / COCO NaturalAttention /
Metric Learning GenDet [250] NNLS 2021 FCOS Yes Pascal / COCO Natural

RepMet [251] CVPR 2018 Faster RCNN Yes Pascal / ImageNet Loc Natural
RN-FSOD [252] NEURIPS 2020 Faster RCNN Yes Pascal / ImageNet Loc Natural
MDODD [253]† ICCV 2021 Faster RCNN No Pascal / COCO Natural

FSCE [254] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
Metric learning

GD-FSOD [255] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural
LSTD [256] AAAI 2018 Faster RCNN Yes Pascal / COCO / ImageNet Loc Natural

MSPSR [257] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural
TFA [258] ICML 2020 Faster RCNN Yes Pascal / COCO / LVIS Natural

WOFG [259]† CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
Hallu-FSOD [260] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural

DHP [261] ICCVW 2021 Faster RCNN Yes iSAID / NWPU VHR Aerial
LVC [262] CVPR 2021 Faster RCNN No Pascal / COCO Natural

FSCN [263] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
FADI [264] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural

DeFRCN [265] ICCV 2021 Faster RCNN Yes Pascal / COCO Natural
SIMPL [266] TAEORS 2022 YOLO No xView (plane only) Aerial

DETReg [267] CVPR 2022 Deformable DETR Yes COCO Natural
CFA [268]† CVPRW 2022 Faster RCNN No Pascal / COCO Natural
CIR [269] TGRS 2022 Faster RCNN Yes NWPU VHR-10 / DIOR Aerial

NIMPE [270] ICASSP 2022 Faster RCNN Yes COCO Natural
HDA [271] IROS 2022 Faster RCNN Yes COCO Natural
MDB [272] LNCS 2022 Faster RCNN No Pascal / COCO Natural
DCB [273]† NEURIPS 2022 Faster RCNN Yes Pascal / COCO Natural

CPP-FSOD [274] Preprint 2023 Faster RCNN Yes Pascal / COCO Natural

Fine-tuning
Strategy

I-DETR [275]‡ AAAI 2023 Deformable DETR No Pascal / COCO Natural
MetaDet [276] ICCV 2019 Faster RCNN No Pascal / COCO NaturalMeta-Learning Sylph [277]‡ CVPR 2022 Faster RCNN No COCO / LVIS Natural
TL-ZSOD [278] ICCV 2019 RetinaNet Yes COCO NaturalZero-shot

Object Detection ML-CMP [279] Preprint 2022 Faster RCNN No Pascal / COCO Natural
OA-FSUI2IT [280] AAAI 2022 Faster RCNN Yes Multiple datasets Natural
Acro FOD [281] ECCV 2022 YOLO Yes Multiple datasets Natural

CD-CutMix [282] ACCV 2022 Faster RCNN No Multiple datasets Natural
CD-FSOD [283] Preprint 2022 Faster RCNN Yes Multiple datasets Aerial

Cross-domain

CD-MDB [284] ECCV 2022 Faster RCNN Yes Multiple datasets Aerial

Table 3.1: List of the most relevant contributions to the Few-Shot Object Detection �eld. These works
are grouped according to the general approach employed to tackle FSOD and sorted by their year
of publication. Green rows signify that the methods were applied to aerial images and § indicates
that these images are SAR images. † signals that it was applied to generalized FSOD while ‡ means
that it was developed in an incremental setting.

64



3.2 - Review of the Few-Shot Object Detection Literature

on novel classes with the few available annotations. This is leveraged by Low Shot Transfer De-
tector (LSTD) [256], a pioneer work on FSOD. It �rst trains a Faster R-CNN on a base dataset and
�ne-tunes it on a support set containing only some examples of the novel classes. Regularization
losses are introduced to prevent over�tting. Before �ne-tuning, the last layer of the classi�er branch
is replaced with a randomly initialized layer with the right number of outputs (i.e., the number of
novel classes |Cnovel|). Closely related, [258] leverages the same idea without any additional loss.
Instead, they propose a Two-stage Fine-tuning Approach (TFA), which freezes most of the network
after base training. TFA is then extended by Constraint-based Fine-tuning Approach (CFA) [268]
which leverages a technique borrowed from Continual Learning: Average Gradient Episodic Mem-
ory. It applies orthogonality constraints to the gradient during �ne-tuning to prevent forgetting
base knowledge. This mostly helps for the generalized FSOD setting, but it is also bene�cial for
regular FSOD. Another extension on top of the basic �ne-tuning approaches is to add a re�nement
step to �lter the bounding boxes predicted by the �ne-tuned network. For instance, [263] proposes
a Few-Shot Correction Network (FSCN) whose goal is to assist the detector classi�cation branch. It
is trained directly on the false positive of the detector to speci�cally target challenging situations.
Similarly, [262] leverages a kNN classi�er to “verify” the predicted labels and lightweight bounding
regressors to “correct” the predicted localizations. Multi-scale Positive Sample Re�nement (MSPSR)
[257] also proposes a proposal re�nement strategy by leveraging a multiscale re�nement branch. It
provides a better balance between positive and negative samples and makes both base training and
�ne-tuning more e�cient.

Another line of work addresses the FSOD problem through an augmentation perspective. It circum-
vents the low few-annotated examples and the over�tting risk by enriching the support set with
more or less elaborated augmentations. An easy and e�ective solution is to crop and paste novel
instances directly inside base images [274]. During �ne-tuning, images from the base dataset and
support examples are randomly sampled. The support examples are cropped and pasted into the
base images. This signi�cantly boosts the �ne-tuning procedure and improves FSOD performance.
Similarly, Synthetic object IMPLantation (SIMPL) [266] leverages 3D models for each novel class
to generate high-quality augmented images. SIMPL completely blends the augmented object inside
the image, whereas [274] pastes some background around the novel object as well. SIMPL leverages
external information about the classes and requires access to 3D models of the classes which is not
always possible. However, this opens an opportunity for addressing the even more challenging zero-
shot setting. Pushing even further, [260] proposes a generative model to enrich the support set and
improve detection quality. The hallucinator model is trained jointly with the detector in an EM-like
procedure. First, the hallucinator is trained with the detector classi�cation loss (the detector is kept
frozen). Then, the detector is trained while the hallucinator provides more support examples (with
the hallucinator now frozen).

Finally, some other works leverage the �ne-tuning strategy with other tricks. Novel Instances Min-
ing with Pseudo-Margin Evaluation (NIMPE) [270] build a mining network to extract pseudo-labels
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from the base dataset. Reference [272] �ne-tunes both the classi�er and the regressor of Faster R-
CNN with an additional distillation loss based on pseudo-labels. Pseudo-labels are computed in a
metric learning fashion between the query feature and the prototype features stored in a memory
bank. Few-shot object detection via Association and DIscrimination (FADI) [264] splits the �ne-
tuning step into association and discrimination steps. During the association step, the network is
�ne-tuned to map novel classes onto base classes. It leverages the well-structured base class repre-
sentation space learned during base training and separates novel classes. Then, the discrimination
step disentangles base and novel class representations with a dedicated margin loss.

Considering FSOD as a hierarchical re�nement [271] is also a viable option as it breaks down base
classes into novel classes. While this setup is certainly relevant for many applications, it di�ers from
the commonly adopted FSOD setting.

3.2.2 Metric-learning based methods
Metric-learning-based methods are extensively employed for few-shot classi�cation. Metric learn-
ing is designed especially for classi�cation and cannot handle bounding box regression. Thus, it
cannot be directly applied to object detection. However, several attempts were made to tackle FSOD
with metric-learning techniques, mostly replacing the classi�cation branch of the model with pro-
totypical networks or closely related variants and keeping the regression branch unchanged. Of
course, even the classi�cation adaptation is not straightforward as object detection includes a spe-
cial background class that should be processed with care. Among these attempts, RepMet [251]
learns class representative vectors to classify Regions of Interest (RoI) in Faster R-CNN according
to their distance to the closest class prototype. Class vectors are initialized with support image rep-
resentations and then �ne-tuned via backpropagation. The �ne-tuning is based on a cross-entropy
loss and a margin metric loss which favors tight clusters in the embedding space. The background
class probability is computed as the complementary probability of the most probable class. Closely
related, Plug-and-Play Detectors (PNPDet) [248] learns prototype vectors as well as scale factors. In
addition, they replace the Euclidean distance from RepMet with a Cosine similarity measure. Sim-
ilarly, FSCE [254] adds a contrastive head on top of a pre-trained detector during �ne-tuning. This
head outputs embedding for each RoI. A contrastive loss is optimized to bring closer the represen-
tations of same-class RoI and repel RoI with no objects. Likewise, [253] leverages prototypes as well
but deals with the background class separately with a learnable binary classi�er.

Plenty of other works leverage class prototypes for the classi�cation part of the detector. However,
various tricks are proposed in the literature to improve the quality and use of the prototypes. For
instance, Universal Prototype Enhancement (UPE) [249] re�nes prototypes with a�ne transforma-
tion to convert image-level representations into object-level prototypes much more adapted to the
detection task. Also, it does not leverage the prototypes directly as a classi�er but rather uses them
to adapt query features before classi�cation and regression. Similarly, GenDet (Generate Detectors
from Few Shots) [250] combines the technique from RepMet and UPE, i.e., learnable prototypes to
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adapt the query features. Negative prototypes can also be learned to better deal with the back-
ground class [252]. Finally, some contributions manage two sets of prototypes, arguing that one
set is not optimal for adapting features for both the classi�cation and the regression. Decoupled
Metric Network [285] introduces a decoupled representation transformation to adapt class proto-
types for either classi�cation or regression. Likewise, [255] splits the representations using Singular
Value Decomposition. Eigenvectors corresponding to the largest singular values represent the main
source of variance. The authors argue that this accounts for the general adaptation between base
and novel classes. They are leveraged for adapting query features both for regression and classi�ca-
tion. Other eigenvectors only represent the inter-class variance and therefore, are only used in the
classi�cation branch. The methods described in this paragraph are slightly di�erent from the ones
at the beginning of this section. They all use their representation vectors to update query features
before a learnable classi�cation and regression module, instead of using them for direct classi�ca-
tion (e.g., distance to the closest prototype). They highly resemble some attention-based methods
that will be presented in the next section.

3.2.3 Attention-based methods
As we brie�y broached at the end of the previous section, a common technique for FSOD is to adapt
the features from the query image based on the support images. This can be understood as an at-
tention mechanism between the query and support features as it highlights locations in the query
feature map that are similar to the support images. Another way to see this is to think of the at-
tention mechanism as an adaptive �ltering layer. It �lters the query features map according to the
support features. Highlighted locations in the query map show features similar to the support im-
ages. Following the attention module, the regression and classi�cation are performed independently
per class, often using a shared, class-agnostic detection head (see Fig. 3.2). The query-support com-
bination module takes the query feature maps and the features from all novel classes as input and
outputs class-speci�c query feature maps. This will be explained in more detail in Chap. 6 which
presents a general framework to subsume existing attention mechanisms for FSOD. To summarize,
what we call here attention-based FSOD methods are techniques that leverage support information
to adapt query features before the classi�cation and regression branches. Following this de�nition
the methods presented at the end of Sec. 3.2.2 can be interpreted as attention methods. However,
they are presented from a metric learning perspective which is why they are not discussed in the
current section (they will be classi�ed as "Attention/Metric Learning” methods in Tab. 3.1).

A seminal work in this �eld introduces Feature ReWeighting (FRW ) [220], which trains a reweight-
ing module along with a YOLO detector. The reweighting module produces class-speci�c feature
vectors with a Global Pooling layer (GP) applied on the support feature maps. These are then
channel-wise multiplied by the query features extracted by the backbone. Hence, class-speci�c
query features are generated, and the detection head computes predictions for each class separately.
This technique has been widely re-used in the following literature, with other detection frameworks:
Faster R-CNN [286, 287, 229, 225, 226, 221], CenterNet [228, 248] or FCOS [227]. The class reweight-
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Figure 3.2: Attention-based FSOD principle

ing vectors can be enriched by several tricks to improve feature �ltering. A few works [226, 229,
233] employ Graph Convolutional Networks (GCNs) to combine and re�ne the reweighting vectors
before the combination modules. [230] �nds optimal vectors through iterative optimization. Others
leverage multi-scale features to enrich class representation [223, 230].

This channel-wise multiplication between query and support features is a simple form of attention.
It can be thought of as an adaptive convolution layer, whose weights depend on the support fea-
tures. Incidentally, it is often interpreted and implemented as such by existing works, approaching
the meta-learning paradigm. However, more complex attention mechanisms have been leveraged
in the literature. The incentive behind this improvement was the loss of spatial support informa-
tion and background feature contamination with the GP layer. First, [235] proposes a self-attention
module to better highlight the support object features and prevent background contamination. Very
similar, Dual AwareNess Attention (DANA) [234] introduces a background attenuation block for the
same reason. However, DANA also leverages an alignment mechanism to combine query and sup-
port features without losing spatial information. This alignment module is quite close to the visual
transformers’ attention. It encodes the features from the query images as queries and the features
from a support image as keys and values. Queries here refer to the query-key-value (QKV) formu-
lation of the transformers, the correspondence with the query features is fortuitous. Queries and
keys are combined to form an attention map, which represents the similarity between the query
and support image patches. Then, the dot product between the attention map and the values pro-
duces the aligned support features. It can be understood as an alignment as it re-organizes spatially
the support features to match the spatial dimension of the query map, according to the similarity
between query and support. The underlying idea is that the same class objects in the query and
support images will likely have di�erent aspects or poses. Therefore, a direct comparison between
the feature maps is often irrelevant. The alignment procedure moves support features to similar
locations in the query map. This is illustrated in Fig. 3.3, but more details will be given in Chap. 6.
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Figure 3.3: Spatial alignment between query and support feature maps. Similarity matrix is com-
puted as an outer product between the feature maps. For sake of clarity, maps are reshaped as 2-D
matrix where the �rst dimension controls the spatial position in the map: nq positions for the query
and ns for the support. d is the number of channels. Similar colors mean that features are similar.

Hence, this alignment mechanism combines query and support features, highlighting their simi-
larity without losing spatial information. The same technique is leveraged by several works [286,
231, 239, 242] with slight variations. Similarly, [243] uses QKV attention with globally pooled sup-
port features. Instead, the authors propose to compute attention between the query images and all
support images for a class at once. In other works, the attention is generally aggregated per class.
Following the same idea, Meta-DETR [232] computes attention between a query image and all sup-
port images at once. However, the authors do this for all classes at the same time and replace the
binary classi�cation with a multi-class classi�cation layer (unlike most methods discussed above).
To achieve this, a task encoding module adapts the features for a speci�c task (i.e., to the classes of
interest) before the classi�cation head.

Of course, these are not the only attention mechanisms existing in the FSOD literature. Some works
derive other kinds of attention achieving competitive results. Kernelized FSOD (KFSOD) [244] pro-
poses elaborated kernel functions to combine query and support features in various ways, which
can be interpreted as attention. Di�erently, [287] trains three distinct branches that combine query
and support in di�erent fashions, globally, locally, and patch-to-patch. Dynamic Relevance Learning
(DRL) [233] proposes a simpler way to combine query and support features by simple point-wise
operations (concatenation, multiplication, and subtraction) after global pooling.

In addition to these attention mechanisms, some works also propose additional loss functions to
improve the quality of the extracted features (query and support). As an example, Transformation
Invariant FSOD (TI-FSOD) [237] leverages two losses to enforce robust feature extraction. These
losses are implemented as a distance between original and augmented query or support features.
The same principle is also proposed for application on remote sensing images by [246]. Another
technique is proposed by [247], which computes a regularization loss between two randomly sam-
pled subsets of an RoI feature. This regularization enforces consistency and robustness in the feature
space making the detection easier. Likewise, [236] derives a reconstruction loss function by com-
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puting a low-rank matrix and reconstructing the extracted query and support features. It enforces
relevant latent structure and alignment between query and support features. Finally, [241] intro-
duces a loss function to promote orthogonality between classes in the feature space.

3.2.4 Meta-Learning
While Meta-Learning methods are very common for FSC, they are much rarer in the FSOD lit-
erature. It is explained easily by the di�culty of the task and the complexity of meta-learning
approaches. They often require training a meta-learner model for generating weights or gradient
updates to a smaller classi�cation network. However, detection models are much larger than the
classi�cation ones, which makes the meta-learning approaches impractical for FSOD. Nevertheless,
the FSOD literature borrows some techniques from the meta-learning �eld. In particular, most at-
tention and metric-learning-based methods for FSOD are trained using an episodic training strategy
(see Tab. 3.1). In addition, many works are presented within the meta-learning perspective because
of the episodic training, here are some examples: Meta Faster R-CNN [231], Meta R-CNN [288],
Meta-DETR [232], and GenDet [250].

Yet, there are a few attempts at solving FSOD with meta-learning approaches. MetaDet [276] extends
Faster R-CNN with the MAML framework. Speci�cally, they choose to generate weights only for the
detection head of Faster R-CNN, considering that the feature extractor and RPN are class-agnostic
and do not need adaptation. This signi�cantly reduces the size of the generated weights and makes
it possible to use MAML. During base training, only the detector is trained on the base dataset.
Then a �ne-tuning phase occurs, the meta-learner is trained to predict the weight of the detection
head only provided with support examples for the novel classes. At the same time, the detector is
�ne-tuned on the support set, with all class-agnostic parts frozen. At test time, the meta-learner
predicts weights for the novel classes to extend the detector’s head and the detector can be used as
a regular detector. Similarly, Sylph [277] applies the same idea but only to the classi�cation branch
of the detector, assuming that the regression is also class-agnostic.

This section draws an almost exhaustive list of the contributions to the FSOD �eld (see Tab. 3.1). As
for FSC, several research tracks explore FSOD. However, meta-learning is a lot less popular approach
for detection compared to classi�cation. Instead, attention-based methods (often trained with an
episodic strategy) are the mainstream approaches. Nevertheless, there is no consensus about the
best way to tackle FSOD, and �ne-tuning or metric-learning contributions are often simpler and
still competitive.

3.3 Few-Shot Object Detection on Remote Sensing Images
Few-Shot Object Detection is a relatively recent �eld in computer vision and so far, it has been
applied mostly to natural images and in particular on Pascal VOC and MS COCO datasets (Sec. 3.5
explains how they are prepared for the few-shot setting). However, there are a few contributions that
apply FSOD techniques on Remote Sensing Images (RSI), these are highlighted in green in Tab. 3.1.
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RSI are notoriously more challenging than natural images for the detection task. Objects are smaller
and more numerous, they can be arbitrarily oriented, and the background is often more complex.
Therefore, object detection methods applied to RSI often comprise some tricks to better deal with the
speci�cities of RSI. FSOD techniques applied to RSI follow the same trend. Among these tricks, the
use of multiscale features is certainly the most common. For instance, FSOD-RSI [223] extends FRW
with three levels features map to better deal with small objects. Similarly, [230, 245, 269] leverage
multiscale features for either the query image, support images or both. FSOD applied to RSI is based
on attention-mechanisms [223, 230, 245, 238, 240, 246] or �ne-tuning strategies [261, 266, 269, 289],
but to our knowledge, there is no FSOD method based completely on a metric-learning approach.

Among these contributions, some tackle the detection problem with other modalities than visible
light. Indeed, this is a problem of interest as earth observation is often conducted with non-visible
light. Image quality is highly dependent on the weather conditions, and half the earth at night is
unobservable with visible light. Therefore, a lot of applications rather use infrared light or Synthetic-
Aperture Radar (SAR). Two articles tackle few-shot detection in SAR images [240, 245], yet without
any notable adjustment to account for the modality change.

These contributions are of particular interest for COSE as the goal is to design e�cient detec-
tion methods for high-resolution images. Some extensions for the CAMELEON project are already
planned with multi-spectral images and LIDAR. Hence, methods able to adapt from one modality to
another are especially valuable.

3.4 Extension of the Few-Shot Object Detection Setting
As for Few-Shot Classi�cation, the Few-Shot Object Detection setup has several extensions. These
settings are more challenging but re�ect better real-life use cases.

One-shot and Zero-shot Object Detection
First, in the case of extremely limited annotations, object detection is still achievable. One-Shot
OD has been addressed by several works [227, 221, 236, 242] that we present in the above section.
These approaches are not di�erent from the few-shot setting, it simply is more di�cult. However,
in the zero-shot setting, it becomes even more challenging as no image example is available for
the novel classes. The common approach in this setting is to leverage semantic representations
from the class labels and condition the detection on this information [290]. Recently introduced
large language-visual models such as CLIP [291] provide strong improvements for various zero-
shot tasks and object detection is no exception. For instance, [279] trains a prompt generator in
a meta-learning fashion to condition the detection on novel classes. Alternatively, DINO [68] and
DETReg [267] conceive strong self-supervised pre-training schemes speci�cally adapted for object
detection, which translate into impressive performance in a low shot setting. Finally, [278] leverage
a transductive pseudo-labeling approach to improving zero-shot detection. To our knowledge, this
is the only transductive method applied to few-shot detection.
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Generalized and Incremental FSOD
The goal of FSOD is to adapt to novel classes; however, in many cases, the performance on base
classes matters as well. This is the case in the Generalized FSOD (G-FSOD) setting where we are
interested in detecting both base and novel classes. The incremental setting extends G-FSOD with
several adaptations to novel classes without forgetting the previously seen classes. For G-FSOD, a
naive approach is to train two detectors: one on base classes and one on all classes (base and novel),
as a �ne-tuned version of the �rst one. Outputs from both detectors are combined at test time to
achieve better performance on base and novel classes. This is adopted by [259] with two Faster R-
CNN. However, other contributions propose more sophisticated methods. CFA [268], for instance,
proposes a regularization loss to prevent forgetting base classes. Alternatively, [273] duplicates the
detection head to process separately the foreground and background samples and prevents classi�-
cation bias toward base classes. In the incremental setting, the naive approach from [259] does not
scale as it would require duplicating the detector each time novel classes are added. Instead, [228,
277] train a meta-network to generate classi�er weights for novel classes on-the-�y unlocking con-
venient adaptation. Incremental DETR [275] adopts a di�erent strategy based on �ne-tuning and
distillation to prevent forgetting previously seen classes.

Cross-domain Few-Shot Object Detection
Last but not least, Cross-Domain FSOD (CD-FSOD) tackles the few-shot object detection task in the
context of domain adaptation. CD-FSOD aims at designing methods able to generalize to new kinds
of images. Just as for classi�cation, two sub-tasks have been explored in the literature: CD-FSOD
with and without class shift. For COSE, both tasks are relevant but CD-FSOD with class shift pre-
cisely corresponds to their application. Indeed, once a system is in operation, it will likely encounter
new objects and domains. While the images will always be taken from above, their general aspect
may change a lot due to weather conditions, di�erent landscapes or carrier altitude. Therefore,
solving CD-FSOD with class shift is crucial for the CAMELEON system.

However, this �eld remains barely untouched. To our knowledge, only a few contributions tackle
CD-FSOD. First, without class shift, several works address this problem with augmentation-based
approaches. The idea is to leverage the few target examples to augment the source images so that
they become plausible samples from the target domain. For instance, [281] proposes a directive
data augmentation procedure that optimally augments the source examples, so their features are
close to the features of the target examples. The detector is then trained as a regular detector
on the augmented examples. Likewise, [292, 280] propose source-to-target translation networks
that convert source images into target images. These networks are trained adversarially with a
discriminator that aims to distinguish between domains. Closely related, Cross-Domain CutMix
[282] crafts an augmentation technique that mixes two domains by cropping and pasting objects
from the target domain into source images and vice-versa.
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The methods discussed above assume that the source and target domains share the same label space,
i.e., they have the same classes. This assumption allows for building simple domain augmentation
approaches as once the source images are translated into the target domain, their annotations can be
directly used for training. When classes shift between source and target domains, this is no longer
an option. In this very challenging setting, most FSOD methods showcase poor results and adap-
tation capabilities. Naive �ne-tuning is often the best alternative in this case. To our knowledge,
there are still no contributions that tackle this task. Only two articles [283, 284] pave the way for
future research in this direction with dedicated benchmarks and baselines. Both propose to study
the generalization capabilities of FSOD methods on various datasets after a large base training on
COCO dataset. First, [283] combines three datasets: 1) ArTaxOr [293], a close-up insect images
dataset, 2) UODD [294], an underwater image dataset, and 3) DIOR. The authors propose a sim-
ple self-distillation strategy, similar to self-supervised approaches, during the �ne-tuning on the
new domains. Second, [284] builds a more complete benchmark called Multi-dOmain FSOD (MoF-
SOD) with 10 di�erent target domains. However, the authors study the in�uence of two di�erent
source datasets COCO and LVIS [96]. They also provide a domain distance measure that assesses the
similarity between a dataset and COCO. This measure is the recall of a detector trained on COCO
applied to a dataset in a class-agnostic manner. Intuitively, if a dataset is close to COCO (in terms of
classes and aspects), the trained detector will detect a lot of objects (even if the classes are wrong)
and will have a high recall. Based on this similarity measure they study the impact of freezing
some layers of the detector during the �ne-tuning. Previous works recommend only �ne-tuning
the detection head while keeping the backbone frozen. However, [284] shows that this is true only
for su�ciently similar datasets. In other words, when the source-target gap is large, it is better to
�ne-tune the model entirely for better adaptation. Unfortunately, the authors did not provide an
easy-to-use meta-dataset for future research and addressing CD-FSOD remains challenging due to
complex initial data processing.

3.5 Dataset preparation and evaluation in the Few-Shot setting

3.5.1 Adapting detection datasets in the Few-Shot setting
There are no speci�c datasets for Few-Shot Object Detection. Instead, regular detection datasets
can be adapted to the few-shot setting. In this section, we describe this process in the case of the
four datasets on which this PhD project mainly focuses: DOTA [77], DIOR [95], Pascal VOC [5] and
COCO [6].

The conversion of a dataset for the N -ways K-shots setting is straightforward. First, the set of
classes is divided into two sets: the base and novel class sets (with |Cnovel| = N ). The class split
for each dataset is �xed by common practices (for Pascal VOC and COCO) or taken at random (for
DOTA and DIOR) when no convention is set in the literature. Tab. 3.2 gives the class split that will
be used throughout this PhD thesis. Then, the instances of the novel classes are �ltered from the
dataset to keep only K images per novel class. This �ltering operation is performed in two steps:
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1. for each novel class c ∈ Cnovel,K images containing at least one instance of class c are selected
as the support examples. They constitute the support set.

2. the instances of the novel classes are removed from all other images in the dataset.

This choice is motivated by the presence of distractors. This concept and further explanations about
how they in�uence the few-shot training in detection will be presented in Sec. 4.1. It is important to
note that as FSOD is a recent �eld, several preparation techniques coexist in the literature. However,
the one described above seems the most reasonable and common in current FSOD works.

Nevertheless, the existence of various preparation settings makes the comparison with existing
methods di�cult as this choice is rarely discussed in the articles. It may be challenging to �g-
ure out precisely how the datasets were prepared, not to mention the choice of the training strategy
(i.e., episodic or direct �ne-tuning). The reported FSOD performance in the literature should then
be regarded with a critical eye.

3.5.2 Evaluation protocol for Few-Shot Object Detection
The common practice in FSC is to randomly sample a support set from the training split of the
whole dataset, adapt the model with it (through �ne-tuning or direct adaptation), and �nally, make
the predictions and compute the relevant metrics on the test split. This is repeated many times
with di�erent support sets and the scores are �nally averaged to give a robust evaluation of the
generalization capabilities of the models.

For detection, the same principle should be applied to get a robust assessment of the models’ per-
formance. However, the adaptation of such models is often quite long compared to classi�cation
models. Indeed, detection models are much larger than classi�cation ones, thus they take more
time to adapt to novel classes. Before going further, we need to distinguish two approaches, on the
one hand, the �ne-tuning strategy and on the other hand all other strategies (i.e., metric learning,
meta-learning and attention-based methods). The main distinction is that the latter use the support
set during inference whereas �ne-tuning approaches only leverage it during the second phase of
training. Fig. 3.4 illustrates the two di�erent approaches for FSOD model evaluation and exhibits a
time estimation for training and evaluating one model, following the general recommendations of
FSC (i.e., at least 100 repetitions with various support sets).

Evaluation of �ne-tuning FSOD approaches
Repeated evaluation requires �ne-tuning the base model (i.e., the model after base training) with
various support sets. Fine-tuning FSOD methods can take up to a few hours and repeated evaluation
may take days 1, which is not practical. A reasonable compromise is to perform a limited number of
runs (between 10 and 30), which is su�cient according to empirical studies in [258]. Even though,
robust evaluation is still an intensive process in this setting.

1a typical setup in FSC is to repeat 100 times the adaptation, even if an FSOD model takes only 30 minutes to adapt
to the novel classes through �ne-tuning, the robust evaluation would take almost 2 days.
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Novel classes Base classes

Pascal VOC bird, bus, cow, motorbike, sofa

aeroplane, bicycle, boat, bottle, car,
cat, chair, diningtable, dog, horse,
person, pottedplant, sheep, train,

tvmonitor

MS COCO

person, bicycle, car, motorcycle,
airplane, bus, train, boat, bird, cat,

dog, horse, sheep, cow, bottle, chair,
couch, potted plant, dining table, tv

truck, tra�c light, �re hydrant, stop
sign, parking meter, bench, elephant,

bear, zebra, gira�e, backpack,
umbrella, handbag, tie, suitcase,

frisbee, skis, snowboard, sports ball,
kite, baseball bat, baseball glove,

skateboard, surfboard, tennis racket,
wine glass, cup, fork, knife, spoon,

bowl, banana, apple, sandwich,
orange, broccoli, carrot, hot dog,

pizza, donut, cake, bed, toilet, laptop,
mouse, remote, keyboard, cell phone,

microwave, oven, toaster, sink,
refrigerator, book, clock, vase,
scissors, teddy bear, hair drier,

toothbrush

DOTA storage-tank, tennis-court,
soccer-ball-�eld

plane, ship, baseball-diamond,
basketball-court, ground-track-�eld,

harbor, bridge, small-vehicle,
large-vehicle, roundabout,
swimming-pool, helicopter,

container-crane

DIOR airplane, baseball �eld, tennis court,
train station, wind mill

airport, basketball court, bridge,
chimney, dam, expressway service
area, expressway toll station, golf
course, ground track �eld, harbor,

overpass, ship, stadium, storage tank,
vehicle

Table 3.2: Base / Novel class splits for the di�erent datasets used throughout this thesis. The novel
classes in the COCO dataset correspond to all classes in Pascal VOC.
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Figure 3.4: Illustration of two evaluation processes existing in the literature. One for �ne-tuning
methods (left) and one available for all other methods (right).

Evaluation of other FSOD approaches
Other methods adapt to novel classes at inference time given a support set. Therefore, they can be
more robustly evaluated (in a reasonable time) than their �ne-tuning counterparts. Adaptation is
often fast compared to the �ne-tuning phase and can be more easily repeated. However, detection
models that are based on metric learning or attention still require a �ne-tuning phase at least for
the regression branch. A support set must be used for this as well and its choice in�uences the
performance of the model, even if adaptation is repeated multiple times after the �ne-tuning. Yet
this �ne-tuning step is often even more time-consuming than basic �ne-tuning approaches as the
models are augmented with costly adaptation modules. In this case, the common setting is to repeat
the adaptation at inference multiple times after only a single �ne-tuning of the model. These settings
provide a sweet spot between evaluation robustness and computation time. They will be employed
in our all experiments unless speci�ed, both for �ne-tuning, metric learning and attention-based
approaches.

3.6 Conclusion
In this chapter, we reviewed the FSOD literature. This �eld is relatively recent and fastly growing.
It has signi�cantly evolved since the beginning of this project. In 2020, most FSOD works were
based on attention-based approaches, yet �ne-tuning techniques are now getting more and more
interest. This review helps to understand the main directions that have already been explored and
the relevant tracks that need to be pursued.
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Chapter 4

Understanding the Challenges of Few-

Shot Object Detection

Abstract

The detection task becomes extremely challenging when limited annotated data is available.
In this chapter, we explore the reasons behind this di�culty. In particular, we focus on the
case of aerial images for which it is even harder to apply FSOD techniques. It turns out that
small objects are especially challenging for the FSOD task and are the main source of poor
performance in remote sensing images.

q P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance Anal-
ysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference (EUSIPCO),
Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPCO55093.2022.9909878.

q P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot à travers une anal-
yse de performances sur des images aériennes et naturelles." GRETSI 2022, XXVIIIème Colloque
Francophone de Traitement du Signal et des Images, Nancy, France
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In this chapter, we present our �rst contribution to the FSOD �eld. Speci�cally, this section presents
an analysis of the di�culties of going from a regular to a few-shot data regime for the detection task,
especially for aerial images.
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4.1 Distractors in the Few-Shot Data Regime
First, changing the set of classes of interest during the training procedure (i.e., between base training
and �ne-tuning) is problematic. Classes considered as background can become objects of interest,
which goes against the knowledge acquired during the base training phase. This is embodied by
the concept of distractors, introduced in [263]. It refers to examples that provide wrong supervision
to a model during training. We choose to re�ne this concept in two categories: self-distractors and
co-occurrence distractors. Self-distraction occurs when annotated and non-annotated instances of a
class are visible in the same image. The non-annotated instances are called self-distractors. This
can happen when there are annotation mistakes in a dataset, but it can also happen in the few-
shot settings. For instance, if annotations of support examples are �ltered (e.g., to keep only one
annotation per support image), all the �ltered instances will become self-distractors during �ne-
tuning. When �ne-tuning on the support examples, the annotated instances of the novel classes will
provide correct supervision to the model. However, the non-annotated instances will be considered
as background and wrong supervision will be propagated in the model. This explains why it is
more sensible to keep all annotations of the novel classes in the support set even though it does
not fully comply with the original N -ways K-shots setting. In the literature, this choice is barely
discussed and early works in the �eld employ either the strict one annotation per image sampling
or the self-distractor-free sampling described above. Using self-distractor-free sampling often results
in improved performance; however, no analysis was conducted to explain the origins of these gains
(either coming from more examples or thanks to more coherent supervision). In our experiments,
both setups were used as this issue was encountered in the middle of this project. We will clearly
specify what setting is used for all our experiments.

The second type of distraction, co-occurrence distraction, happens when novel class instances are
visible in images during base training. Their annotations have been �ltered out, therefore they are
considered as background. Of course, this makes sense during base training as the novel classes
are by de�nition unknown at this point. However, in this setup, the model is speci�cally trained to
consider these objects as background, whereas if no co-occurrences of the novel and base classes
were allowed, no background supervision would be given to novel class instances. This could be
achieved by removing all images containing such co-occurrences from the dataset. However, this
type of distractor is much less frequent than the self-distractors (see Fig. 4.1). In addition, these
mostly occur during the base training phase, and even if they provide incorrect supervision, �ne-
tuning will rectify it. Therefore, we choose to keep images with co-occurrence distractors during
base training.

4.2 The Increased Challenge of Aerial Images
The di�culties described in the previous section are not speci�c to any kind of image. However,
it appears from the scarce literature and our experiments that applying FSOD on aerial images is
much more di�cult than on natural ones.
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Figure 4.1: Co-occurrences between the classes of the four datasets of interest DOTA, DIOR, Pascal
VOC and MS COCO. Novel classes are highlighted in red. For MS COCO only novel class labels are
shown for clarity.
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DOTA DIOR Pascal VOC

Base Classes mAP Novel mAP Base mAP Novel mAP Base mAP Novel mAP
60.87 69.69 72.82 81.48 65.47 68.02

Table 4.1: Regular baseline performance (mAP with a 0.5 IoU threshold) on DOTA, DIOR and Pas-
cal VOC datasets (i.e., trained with all annotations). The baseline model is FCOS [45], trained on
all classes (base and novel) and with all available annotations in each dataset. Then the mAP is
computed on base and novel classes separately.

At the beginning of this PhD, only very few works addressed FSOD in aerial images. Among those,
Few-Shot Object Detection via Feature Re-Weighting (FRW) [225] and Few-Shot Object Detection With

Self-Adaptive Attention Network for Remote Sensing Images (WSAAN) [223] were the most popular.
These two works were not evaluated on the same datasets, preventing any useful comparison. In
addition, many architectural choices di�er from one another, for instance, the underlying detec-
tion frameworks and the backbones. Therefore, we choose to implement these methods within a
single framework, preventing most architectural discrepancies. Our proposed framework will be
described thoroughly in Chap. 6. We also re-implemented Dual AwareNess Attention (DANA) [234]
as it was one of the best-performing methods on COCO dataset at that time. We analyze here the
behaviors of these three FSOD techniques both on natural and aerial images. The main idea is to
compare the performance of the three methods in regular and few-shot data regimes. The regular
data regime corresponds to the vanilla detector (i.e., without any modi�cation for the few-shot set-
ting) and with full access to the novel class annotations in the dataset (i.e., no annotation �ltering).
In our re-implementation of FRW, WSAAN and DANA, the underlying detector is FCOS [45]. Thus,
the regular baseline is an FCOS detector trained on the full datasets. To conduct this experiment, we
only select DOTA, DIOR and Pascal VOC as they have roughly the same number of classes. COCO
however has 4 times more classes which brings additional complexities. The performance results
of the regular baseline are available in Tab. 4.1. Speci�cally, FCOS is trained on each dataset with
full access to the annotations for both base and novel classes. Then the mAP is computed on each
class individually and averaged on base and novel classes separately. This gives an overview of the
performance of the model respectively on base and novel classes in a regular data regime.

It seems tempting here to extrapolate the FSOD performance on DOTA and DIOR from the per-
formance on Pascal VOC. The regular baseline (FCOS) achieves similar performance on these two
datasets, which contain the same number of classes and roughly the same number of images. Thus,
one could have expected close FSOD performance on these datasets. This is quite di�erent from
the actual results reported in Tab. 4.2. The FSOD performance on DOTA and DIOR is signi�cantly
lower compared with the results on Pascal VOC. To better visualize this �nding, Fig. 4.2 represents
the few-shot performance as dark bars while regular baseline performance as lighter rectangles.
The height of the rectangle is set as the mAP on either the base or novel classes (in blue and red
respectively). This clearly illustrates the di�erent behaviors of FSOD methods applied on aerial or
natural images.
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DOTA DIOR Pascal VOC

FRW WSAAN DANA FRW WSAAN DANA FRW WSAAN DANA

K Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel
1 47.24 13.35 45.55 12.19 49.78 12.52 56.67 16.92 56.41 15.48 58.78 20.64 59.92 28.22 61.70 30.94 62.58 32.82
3 46.50 25.32 44.18 24.42 49.67 20.70 58.05 25.08 51.72 13.84 59.14 27.26 63.34 31.12 63.52 42.19 64.18 33.95
5 48.60 29.57 47.56 31.44 53.49 24.96 60.75 32.58 60.79 30.32 62.12 34.16 64.35 46.33 64.68 46.16 65.20 42.59
10 48.52 37.10 46.72 35.12 53.25 34.39 61.47 35.56 61.88 33.41 62.49 36.43 63.16 48.71 65.27 51.70 65.03 50.30

Table 4.2: Comparison of mAP0.5 of several methods on DOTA, DIOR and Pascal VOC datasets. For
each method, mAP is reported for di�erent numbers of shots K ∈ {1, 3, 5, 10} and separately for
base and novel classes. Blue and red values represent the best performance on base and novel classes
respectively, for each dataset.

Figure 4.2: Performance comparison between FCOS trained in a regular data regime versus three
few-shot baselines, FRW, WSAAN and DANA (all based on FCOS as well) on three datasets: DOTA,
DIOR and Pascal VOC.

It is generally irrelevant to compare the performance of a method from one dataset to another,
especially with images of di�erent natures. Each dataset has its own characteristics (resolution,
intra-class variety, color range, etc.) and therefore a given model will not perform equally well on
two distinct datasets according to a pre-de�ned performance metric. Hence, we cannot compare the
absolute performance of a FSOD method on Pascal VOC and DOTA and the previous extrapolation
is not valid. Nevertheless, there is a pattern: FSOD methods work consistently better on natural
images compared to aerial images. To understand this phenomenon, we need a way to fairly com-
pare the FSOD performance across several datasets. To this end, we propose to look at the relative
performance of the FSOD methods against the regular baseline (i.e. FCOS in our case) using the
following metric:

RmAP =
mAPFSOD −mAPBaseline

mAPBaseline
. (4.1)
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RmAP assesses how well a FSOD method is performing on di�erent datasets compared with the
regular detection performance. Hence, it represents how much performance is lost when switching
from the regular to the few-shot regime. This is exactly what is illustrated in Fig. 4.2, white percent-
ages are RmAP values. RmAP is signi�cantly lower on DOTA and DIOR compared to Pascal VOC,
both for base and novel classes. This way, we can quantitatively con�rm the intuition emerging
from Tab. 4.2: FSOD works better on natural images.

We hypothesize that this performance gap is mainly due to di�erences in the object sizes within the
datasets. In aerial images, objects are much smaller on average. This is already an issue for object
detection: small objects are challenging to �nd. The paradigm of current vision models is to have
deep feature representations with increasing �elds of view. The Field of View (FoV) of a speci�c
layer is the area in the input image that in�uences the value of one location in the feature map of
that layer. In deeper layers, the FoV is often quite large compared to small objects’ size and object
features are diluted with their irrelevant and noisy surroundings. Thus, it reduces the activation
strength at the object location, and the object can easily be missed. Feature Pyramidal Networks [1]
and various other tricks were introduced to solve this issue, as discussed in Sec. 2.1.3.4. However,
this problem is largely ampli�ed for FSOD. It is still di�cult to detect small objects, but in addition,
they are poor examples for adapting the model (either through �ne-tuning or direct adaptation).

Figure 4.3: Box plot of objects size in DOTA, DIOR and Pascal VOC and MS COCO. On the left side,
boxes represent the overall size distribution in each dataset. On the right side, the distributions
are split by class and ordered by average size. As MS COCO contains 80 classes, we choose not to
include the per class box plots for it in this plot.
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To support this hypothesis, we �rst conduct a brief size analysis of the four datasets DOTA, DIOR,
Pascal VOC and MS COCO (see Fig. 4.3). Aerial datasets contain far smaller objects than natural
ones. Plus, in aerial datasets, the size of objects in di�erent classes di�ers a lot. Some classes contain
only small objects, while others only large objects. In Pascal VOC, this class’ size variance is limited.
We argue that it is more di�cult for the model to extract relevant information from small support
examples but also to learn more diverse features to deal with greater objects’ size variance. Inci-
dentally, this partly explains the greater di�culty of MS COCO. To support this claim, we conduct
a per-class performance analysis on DOTA, DIOR and Pascal VOC. The results of this comparison
are available in Fig. 4.4. In this �gure, the performance is reported per class against the average
size of the class. The �rst row reports absolute mAP values (with 0.5 IoU threshold) both for FRW
and FCOS (baseline). In the second row, the mAP gap between the FRW and the baseline is plotted
against the objects’ size. We did not report RmAP values for the sake of visualization. RmAP can
take large values (e.g. when the regular baseline mAP is low) and this squeezes the interesting part
of the plot in a narrow band around 0. Larger objects are easier to detect. It is true in both data
regimes, but this trend is reinforced in the few-shot regime (in the �rst row, the blue trend lines
are steeper than the black ones). This is observed for base classes but not always for novel classes,
probably because the trends on novel classes are not reliable due to the limited number of points.
Fig. 4.5 shows a more reliable trend for novel classes when the results from the three datasets are
aggregated. Finally, the few-shot methods, which leverage support information to condition the
detection can surpass the baseline in some cases. All three methods here are attention-based, and
therefore, bene�t from having support examples available during inference to condition the detec-
tion. This would not be the case with �ne-tuning approaches. However, this seems advantageous
only when the objects are large. On the contrary, when the objects are small, the performance is
degraded. It con�rms that small objects are poor examples to condition the detection on. For novel
classes; however, the performance is always below the baseline, even if the gap shrinks with larger
objects. This is expected as the network only received weak supervision for these classes. This com-
parative analysis con�rms that detecting small objects is a very di�cult task in the few-shot regime.
It is hard to extract useful information from small support objects. Even worse, this information
can be detrimental for the detection. Existing FSOD methods are not designed to deal with small
objects, hence the application of these methods on aerial images does not yield satisfactory results.
It is therefore crucial to develop FSOD techniques that target speci�cally small objects. Incidentally,
we will address this point in Sec. 6.3 and in Chap. 8.

4.3 Conclusion
In this chapter, we presented our �rst contribution to the FSOD �eld with an analysis of the chal-
lenges raised by the few-shot regime for the detection task. These di�culties are reinforced when
FSOD is applied to aerial images as they contain smaller objects. This gives a clear direction for this
PhD project: improving the handling of small objects in FSOD methods. To this end, we dedicate
Sec. 6.3 and the entire Part III of this thesis.
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Figure 4.4: Performance comparison between FRW baseline – with 10 shots – (blue and red dots) and
regular baseline (black stars) on three di�erent datasets: DOTA, DIOR and Pascal VOC. (top) Mean
average performance of the two methods plotted per class against average object size. (bottom) gap
between FRW baseline and regular baseline, per class. Positive values indicate better performance
than the regular baseline.
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Figure 4.5: Comparison of FRW (FSOD) and FCOS (baseline) performance against object size on
the three datasets DOTA, DIOR and Pascal VOC together. (top) absolute mAP0.5 values. (bottom)
RmAP computed against the regular baseline. The RmAP plot has been cropped for visualization
reasons. Only the class container-crane from DOTA dataset is not visible (with a RmAP of 150%).
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Part II

Improving Few-Shot Object Detection

through Various Approaches
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Chapter 5

Experience Feedback aboutMetric Learn-

ing for FSOD

Abstract

Prototypical Faster R-CNN (PFRCNN) is a novel approach for FSOD based on metric learning.
It embeds prototypical networks inside the Faster R-CNN detection framework, speci�cally
in place of the classi�cation layers in the RPN and the detection head. PFRCNN is applied
to synthetic images generated from the MNIST dataset and to real aerial images with DOTA
dataset. The detection performance of PFRCNN is slightly disappointing but sets a �rst baseline
on DOTA. However, the experiments conducted with PFRCNN provide relevant information
about the design choices for FSOD approaches.

q P. L. Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representation
Learning for Few-Shot Object Detection on Aerial Images," 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp. 662-667, doi:
10.1109/ICMLA52953.2021.00110.
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Chapter 5 - Experience Feedback about Metric Learning for FSOD

As a �rst step into the Few-Shot Object Detection �eld, we proposed a naive approach to solve the
detection task in the few-shot regime. To give some context, at the beginning of this project, FSOD
was a very recent domain and very few articles tackled this challenging task, especially applied to
aerial images. Therefore, we took inspiration from the Object Detection and Few-Shot Classi�cation
literature embodied respectively by Faster R-CNN [33] and Prototypical Networks [126]. This chap-
ter presents Prototypical Faster R-CNN, our �rst attempt at solving FSOD. We begin by presenting
the motivation behind this contribution and its main principle. Then, the training procedure and
several tricks are proposed to improve training stability and detection quality. Finally, Prototypical
Faster R-CNN is applied to synthetic and aerial images to assess its generalization capabilities and
understand its limitations.

5.1 Motivation and Principle
In 2020, most of the FSOD literature was focused on attention-based approaches (see Tab. 3.1); how-
ever, the simplicity and success of the metric learning classi�cation models was tempting. Thus,
we proposed Prototypical Faster R-CNN (PFRCNN), an extension of Faster R-CNN based on metric
learning. The key idea is to replace the classi�cation layers from Faster R-CNN (i.e., in the Region
Proposal Network (RPN) and in the Classi�cation head) with prototypical networks. It is similar to
RepMet [251] that leverages class-representative vectors in the classi�cation head. However, there
are two major di�erences with PFRCNN. First, RepMet only replaces the classi�cation layer in the
second stage of Faster R-CNN, not in the RPN. Hence, the adaptation to novel classes is only done
in the second stage. Even if the RPN is presented as a class-agnostic detector, it specializes in the
classes seen during training. As only base classes are annotated during the �rst phase of training,
objects from novel classes will be �ltered out by the RPN, leaving no chance for the second stage
to detect them. Even if it is trained to have a high recall, the RPN will mostly generate proposals
on base classes, which is harmful in a few-shot regime. Second, RepMet learns the class-generative
vectors from �ne-tuning on the few available examples of the novel classes. Instead, a prototypi-
cal network computes its prototypes directly from the few available examples. Finally, Prototypical
Networks can adapt to novel classes without any �ne-tuning. Hopefully, this property would trans-
fer to Faster R-CNN by replacing its classi�cation layer with such malleable modules. For COSE’s
application, this would be ideal as the detection model could adapt “on the �y“ at a low cost.

5.2 Prototypical Faster R-CNN for FSOD
Before explaining in detail how the prototypical networks can be embedded into Faster R-CNN,
let us de�ne a few notations and detail the functioning of Faster R-CNN. The backbone, RPN and
detection head are respectively denoted as f , g, and h. The backbone extracts feature Fq from the
input – or query – image Iq :

f(Iq) = Fq. (5.1)
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The backbone extracts features at multiple scales using an FPN, but for simplicity, we regroup all
these features into one notation: Fq . The backbone is a ResNet-50, the FPN extracts features from 3
di�erent levels with respective strides 8, 16, and 32. The RPN takes Fq as input and computes both
proposals boxes b̄i and objectness scores oi for all locations in the feature maps:

g(Fq) =
{

(b̄i, oi)
}M
i=1

, (5.2)

where M is the number of generated boxes. It changes with the number of anchor boxes de�ned
per location, in our case, it is set to 3. Hence, M is three times the number of locations in the
feature map. Then, the top 1000 boxes with the highest objectness scores are selected to extract the
proposals features ξi with the RoI Align layer:

RoIAlign(Fq, b̄i) = ξi. (5.3)

Finally, the detection head h outputs classi�cation scores for each proposal from its features and
re�nes its box coordinates:

h(ξi) = ŷi = (b̂i, l̂i), (5.4)

where li ∈ [0, 1]|C|+1 is a vector of classi�cation scores. There is one more element in li than in C
because Faster R-CNN deals with background as a class.

5.2.1 Extending Faster R-CNN with Prototypical Networks
To replace the classi�cation layer in Faster R-CNN by prototypical networks, we propose to change
the output dimension of the last layer in the classi�cation branches of both the RPN and the head.
That way, instead of producing a classi�cation (or objectness) score per box, these networks output
embedding vectors. Each vector represents the information contained inside the corresponding
box. We denote these embedding vectors of the RPN and the classi�cation head zRPN

i and zhead
i

respectively. Their dimension is set to 128 (z·i ∈ R128) and is kept �xed in all our experiments.
Hence, the outputs of the RPN and the detection head become:

g(Fq) =
{

(b̄i, z
RPN
i )

}
, (5.5)

h(ξi) = (b̂i, z
head
i ). (5.6)

Then, the objectness and classi�cation scores for each proposal are computed with prototypical
networks based on class prototypes computed from support examples. Prototypes are computed
from the support set {(Ick, bck)}1≤k≤K

c∈Cnovel

. Speci�cally, each support image is fed into the backbone to
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Figure 5.1: Illustration of the architecture of Prototypical Faster R-CNN.

extract its features F ck and then the example features are extracted with RoI Align:

zRPN
k,c = g(F ck), (5.7)

Φc
k = RoIAlign(zRPN

k,c , b
c
k), (5.8)

zhead
k,c = h(F ck), (5.9)

Ψc
k = RoIAlign(zhead

k,c , b
c
k). (5.10)

This gives RPN features and classi�cation features for each support image, denoted Φc
k and Ψc

k

respectively. Note a slight abuse of notation here, when only the embedding part of g and h is
used to project the features extracted by the backbone (i.e., not the regression part). When multiple
examples are available for a class (i.e., K ≥ 1), their embeddings are averaged to get one prototype
per class:

Φc =
1

K

K∑
k=1

Φc
k, (5.11)

Ψc =
1

K

K∑
k=1

Ψc
k. (5.12)
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For each proposal, we compute the classi�cation score for class c as the likelihood of the region in
the input image representing an object of class c. To do so, we suppose that the class distributions
over the embedding space are Gaussian distributions centered on the class prototypes. Hence, the
classi�cation score of the proposal i for class c is:

l̂ci = p(zhead
i |c) = exp

(−d(zhead
i ,Ψc)2

2σ2

)
, (5.13)

where d is a distance measure over the representation space, in our experiments, d is the Euclidean
distance. Note that in our case, the embeddings are normalized after their computation, therefore
the Euclidean distance is equivalent to the Cosine Similarity. σ is the standard deviation of the
distribution and is set to 0.5 in our experiments. In Faster R-CNN, the background is considered as
a class as well, the corresponding score can be derived from the other class scores as follows:

l̂∅i = p(zhead
i |∅) = 1−max

c∈C
l̂ci , (5.14)

where ∅ denotes the background class.

In the RPN the objectness computation is very similar to the classi�cation score in the head. How-
ever, only two classes are considered: foreground and background. The foreground class is seen as a
mixture of Gaussians (i.e., a mixture of all foreground classes) and is approximated as the maximum
score among all classes for stability reasons:

ôi = max
c∈C

l̂ci . (5.15)

These modi�cations make Faster R-CNN able to adapt to novel classes. Computing prototypes for
novel classes allows direct adaptation of the whole detection model and not simply the detection
head as in RepMet. However, with these changes, the model also requires a di�erent training scheme
to ensure that the prototypes are properly leveraged and classes are not only memorized.

5.2.2 Training Procedure
Before presenting the changes with the Faster R-CNN training procedure, we present here what
remains unchanged: the loss functions and the example selection. Faster R-CNN is trained using
four distinct loss functions, two for the RPN and two for the detection head:

LRPN
reg (bRPN

i , b̄RPN
i ) = SmoothL1Loss(bRPN

i , b̄RPN
i ), (5.16)

LRPN
obj (oi, ôi) = ôi log(oi) + (1− ôi) log(1− oi), (5.17)

Lhead
reg (bhead

i , b̂head
i ) = SmoothL1Loss(bhead

j , b̂head
j ), (5.18)

Lhead
cls (ci, ĉi) = − log(lci ), (5.19)
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where bRPN
i and oi are the ground truth targets for the regression and classi�cation branches of the

RPN. Similarly, bhead
i and ci are the target for the detection head. During training, not all boxes are

selected for computing the losses. The generated boxes (or proposals for the RPN) are separated
into two groups: positive examples, i.e. boxes with an overlap of at least 0.7 with a ground truth
annotation, and negative examples which represent the background class. The classi�cation losses
are computed over all examples, while the regression losses only take into account the positive
boxes. This remains unchanged for Prototypical Faster R-CNN.

However, the training of PFRCNN is done episodically, following the Meta-Learning paradigm and
the training scheme proposed in Prototypical Networks [126]. The motivation behind such training
is to mimic the setup that will be encountered at test time and prevent base classes memorization.
Indeed, during base training, only annotations from the base classes are available. Training the
model with all base classes at the same time could lead to over�t the base class set, at the cost of
adaptation. The episodic training consists in sampling a subset of classes Cep ⊂ Cbase and train the
model to detect only these classes for a few training steps. Such a training phase is called an episode.
The episodes are then repeated over and over until convergence. During each episode, a query set

and a support set are sampled from the original dataset. The support set contains the examples that
will be leveraged for the prototypes computation. On the other hand, the query set is exploited as a
small training set. The loss is computed on the query set and between each update of the model, the
prototypes are re-computed from the same support set. The update of the prototype is not necessary
between each training step, but since the model’s weights are updated, the class representations also
change. Additionally, the episodic strategy allows for mimicking the test time setting. If there areN
novel classes with K support images at test time, the episodes can reproduce this even though the
dataset has a lot more classes and data. Episode after episode, the model will encounter new class
combinations and support examples, in the end, it should learn to generalize to novel classes from
a few examples, according to Meta-Learning claims.

To build the support set, for each class c ∈ Cep, we select images containing objects of class c and
disregard all other objects (i.e. their annotations are not included in the support set but the image
is not masked, so they are still visible). If there is more than one object c in the image, only one is
selected randomly as the annotated example. This prevents having more thanK examples per class.
The query set contains Kquery images for each of its N classes, this means at least Kquery examples
for each class, but this number can be larger as more than one object is present in the images. As for
the support set, the annotations with class labels not in Cep are discarded. This sampling procedure
prevents the occurrence of self-distractors but not co-occurrence distractors (see Sec. 4.1).

Once the base training is done, the network can directly be applied to novel classes through direct
adaptation from the prototypes (see Fig. 3.4). However, the adaptation is only performed in the
classi�cation parts of the model, regression branches are not modi�ed. This is certainly sub-optimal
and therefore, we provide a �ne-tuning scheme to remedy this. This �ne-tuning is done exactly
as the base training phase, in an episodic manner except that the episode classes are sampled from
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both base and novel class sets: Cep ⊂ (Cbase ∪ Cnovel). In this case, the examples of novel classes are
the same in the query and support sets so that the total number of support examples remains �xed.

5.2.3 Iterative improvements
PFRCNN, as described in the previous section, denoted the baseline, does not perform well on aerial
images (see Tab. 5.1). Therefore, we introduce a series of improvements to improve the performance
of the model.

In this section, we propose a series of improvements on top of the PFRCNN baseline described
above. Indeed, when tested on aerial images, vanilla PFRCNN yields relatively poor performance
(see baseline performance in Tab. 5.1). To remedy this, we introduce several training tricks.

Hard negative example mining
One issue encountered with the baseline is the detection of the base classes regardless of support
examples. Basically, it detects base classes even though no prototypes are provided for these classes:
this is base class memorization. Although this improves performance when base class prototypes
are provided, it produces lots of false positive detections when novel classes are wanted. To address
this, we propose to sample hard negative examples to encourage the model to detect support classes
only. The main idea is to take advantage of the annotations for classes not selected in the current task
to �nd hard negative examples, i.e. classes that the network could have memorized from previous
tasks but should not be detected during this episode. When starting a new episode, it is likely
that the model still produces detection for objects annotated in one of the previous episodes if it
does not rely on the support information. Even though these objects are not annotated in the new
task, their annotations are available in the dataset (because they belong to base classes). Therefore,
these annotations can be used to �nd examples that should be considered as background for the
current task. They are di�erent from the background examples that do not contain any class of the
dataset, which are referred to as easy negative examples and are much more numerous. Explicitly
sampling these hard negative examples encourages the network to detect only objects annotated in
the support set.

Moving average prototypes
Another issue with the baseline is that the prototypes can change abruptly, either when the network
is updated or when the support set changes. We argue that this causes some training instabilities.
To prevent such rapid modi�cation of the prototypes, an exponential moving average is introduced
to smooth the disruption. Hence, Φ̄c

t+1 = αΦc
t + (1 − α)Φ̄c

t . α is set to 0.1 in our experiments.
Φ̄c
t is the averaged prototype for class c at iteration t, while Φc

t is the prototype computed from the
support set, for class c at iteration t.

Background clustering
Lastly, the baseline shows a poor separation of novel class representations (see Fig. 5.5). This leads
to poor performance with novel classes at test time. In order to solve this, inspiration is drawn from
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[295]. At each iteration, they �t a K-means on the learned representations. This gives pseudo-labels
to train the network for classi�cation in a self-supervised manner. Similarly, we propose to �t a K-
means on the negative embeddings (i.e. representing boxes not matched by any ground truth object).
From the resulting pseudo-labels a contrastive loss function (Triplet Loss [296]) is computed. The
triplets are formed with embeddings labeled identically by the K-means. It encourages the network
to organize the negative examples into tight and separated clusters. This will eventually discover
semantic clusters that represent novel objects.

Ablation study
In order to assess the relevance of the tricks formulated in previous paragraphs, a small ablation
study is conducted on DOTA dataset. The results of this analysis can be found in Tab. 5.1. On the
one hand, the introduction of hard examples mining and moving average prototypes improves con-
sistently the novel classes mAP in the one-shot setting. On the other hand, background clustering
greatly reduces the performance on base classes, while achieving similar results on novel classes.
According to this analysis, we chose to keep only hard example mining and the moving average as
it combines the best base and novel classes performance.

PFRCNN Baseline +HEM +MA +BC

K Base Novel Base Novel Base Novel Base Novel

1 35.5 2.1 31.2 4 26.5 6.9 13.3 4.3
3 35.9 2.7 35.6 2.3 33.9 3.5 14.5 4.1
5 34.3 3.8 41.2 3.3 37 4.2 18.2 4.7
10 30.4 4.1 34.3 2.6 35.1 5.9 14.8 2.6

Table 5.1: Ablation study about the training tricks described in section 5.2.3. Each column cor-
responds to the addition of each trick on top of the previous one. HEM, MA and BC correspond
respectively to Hard Example Mining (HEM), Moving Average (MA) prototypes and Background
Clustering (BC). Detection performance is reported as mAP with a 0.5 IoU threshold. Blue and red
values represent the best performance on base and novel classes respectively.

5.3 Performance on Arti�cial Data
Before applying PFRCNN on aerial images, we test it on an arti�cial dataset with reduced di�culty.
This gives a hint about the capacities of the model on real data.

5.3.1 MNIST-LOC Dataset
As an arti�cial dataset, we leveraged MNIST-LOC. This dataset is not a published work but rather a
toy example sometimes mentioned in the literature. It consists in creating arti�cial images with the
handwritten digit images from the original MNIST dataset [297]. For each image in MNIST-LOC, a
random number of MNIST digits are sampled and placed randomly in the image with a random scale.
This creates a potentially in�nite dataset but with limited variability. For our experiments, we build
a dataset with 20k images in the training split and 2k images both for the test and validation splits.
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Figure 5.2: Images of MNIST-LOC dataset and classes repartition.

The dataset has around 120k annotated objects, which translates to approximately 12k instances per
class. An overview of the dataset is provided in Fig. 5.2.

Compared to a real dataset, MNIST-LOC is far more simple. The background is uniform which
simpli�es the localization of the objects. Then, the class occurrences are uniformly distributed. And
�nally, the intra-class variance is reduced as MNIST is an easy dataset for the classi�cation task.

5.3.2 Implementation details
We provide here some of the implementation details for training Prototypical Faster R-CNN, but a
complete list of the hyperparameters and their values is available in our GitHub1. The optimization
is done with Adam optimizer [298] and a learning rate of 1e−4. The backbone network is pre-trained
on ImageNet and its �rst two layers are kept frozen during training. Three classes are selected as
novel classes and are reserved for evaluation, the 7 others are kept as base classes. Each episode is
constituted of Kquery = 5 images per class, i.e., 15 images per episode.

5.3.3 Detection performance on MNIST-LOC
We present the performance results on MNIST-LOC in Tab. 5.2. This table reports the mean Average
Precision (mAP) with an IoU threshold of 0.5 (see Sec. 2.1.2 for more details about mAP). The results
are given with multiple values of K , the number of support examples, and two distinct splits of
the base and novel classes. The evaluation is done on an unseen test set, from which the support
examples are sampled as well. The table provides the mAP both for base and novel classes separately
as we do not consider the generalized few-shot setting.

1Link to Prototypical Faster R-CNN repository.
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Split 1: [0, 1, 4] Split 2: [3, 5, 8]

Data regime Base Classes Novel Classes Base Classes Novel Classes

1 shot 94.86 21.86 92.46 19.43
3 shots 95.70 20.39 94.82 21.22
5 shots 95.10 24.34 94.95 21.73
10 shots 95.86 23.19 93.11 20.17

Faster R-CNN 76.86 96.33 84.29 79.01

Table 5.2: PFRCNN performance on MNIST-LOC dataset with two distinct class splits. On the left,
novel classes are 0, 1 and 4, while on the right novel classes are 3, 5, and 8. In both cases, all
other classes belong to the base class set. Performance is reported as mAP0.5. The last row reports
the performance of a vanilla Faster R-CNN trained in a regular data regime, i.e., with all available
annotations in the dataset. For Faster R-CNN, per-class performance is averaged over base and novel
classes separately to compare with the few-shot techniques.

First, it can be seen from this table that the performance in a regular data regime (i.e., vanilla Faster
R-CNN with all annotations) is high. This con�rms that MNIST-LOC is a fairly simple dataset and
that the detection task is way easier on this dataset than on real ones. It is important to note that
these values cannot be directly compared with the performance values in the few-shot regime as
the number of classes is di�erent. In the regular regime, the classi�cation problem has 10 classes
whereas, in the few-shot regime, it only has three (3-ways K shots setting, even for base classes).
Then, the few-shot performance of PFRCNN on base classes is also quite high, approaching one as
the number of shots grows. However, for novel classes, this is di�erent, the mAP values are way
lower in this case and fall below an acceptable threshold for any industrial use case. To get a better
grasp on these results, Fig. 5.3 gives detection examples on MNIST-LOC dataset for base and novel
classes. For base classes, two distinct support sets are leveraged between rows 1 and 2 (with di�erent
classes, i.e., C1

ep 6= C2
ep). For base classes, the detection is almost perfect, which represents well the

scores from Tab. 5.2. However, for novel classes, there are undesired detections of base classes and
a lot of confusion between novel classes.

5.4 Di�culties on Aerial Images
While the Prototypical Faster R-CNN is challenged on synthetic images, it has more serious di�cul-
ties with real images. In this section, we present the detection result of PFRCNN applied on aerial
images, speci�cally on DOTA and DIOR datasets.

First, Tab. 5.3 gathers the performance results of PFRCNN on DOTA dataset for base and novel
classes. As for MNIST-LOC, two distinct class splits are experimented: Split A with plane, ship and
tennis-court and Split B with harbor, roundabout and helicopter. Following the same con�guration as
in the previous section, we report the performance with mAP0.5 for base and novel classes indepen-
dently. The results on base classes are much lower than with MNIST-LOC, but it makes sense as the
detection task in DOTA is also much more di�cult. Nevertheless, the base classes’ performance is
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Figure 5.3: Prototypical Faster R-CNN qualitative detection results on MNIST-LOC dataset, on base
and novel classes. Predictions are done without �ne-tuning and with K = 1.
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Split A Split B
K shots Base classes Novel Classes Base classes Novel Classes

1 27.5 ± 1.0 4.7 ± 2.0 41.5 ± 3.0 8.0 ± 1.0
3 35.2 ± 2.0 2.4 ± 1.0 39.2 ± 3.0 10.1 ± 2.0
5 39.0 ± 1.0 3.8 ± 1.0 43.4 ± 2.0 12.1 ± 1.0
10 38.4 ± 2.0 4.1 ± 1.0 41.4 ± 3.0 10.1 ± 2.0

Faster R-CNN 65.62 90.96 73.21 69.77

Table 5.3: PFRCNN performance on DOTA dataset with two distinct class splits. Split A has classes
plane, ship and tennis-court and Split B has harbor, roundabout and helicopter. In both cases, all
other classes belong to the base class set. Performance is reported as mAP0.5. The last row reports
the performance of a vanilla Faster R-CNN trained in a regular data regime, i.e., with all available
annotations in the dataset. For Faster R-CNN, per-class performance is averaged over base and novel
classes separately to compare with the few-shot techniques.

much lower than the regular setup (i.e., Faster R-CNN trained on the whole DOTA). For novel classes,
a similar performance drop is observed, making PFRCNN un�t for any industrial application.

Nonetheless, these experiments are not useless and provide relevant insights about the FSOD task
and its di�culties. For instance, with the MNIST-LOC dataset, almost no di�erence could be seen
between splits. With DOTA, much better performance is achieved on Split B than Split A. It indi-
cates some interactions between classes, some combinations are more di�cult than others. These
considerations were not taken into account in the design of PFRCNN and should be overcome to
achieve reasonable few-shot detection.

Despite its limited performance, Prototypical Faster R-CNN is one of the �rst approaches to tackle
FSOD on remote sensing images from a metric learning perspective. In addition, this method does
not need any �ne-tuning. All previous results were given from a simple adaptation to the novel
classes at inference time with novel prototypes. We also experimented with an additional �ne-
tuning step, especially to re�ne the regression branches of the model. This was performed on DOTA
with Split A and the results are available in Tab. 5.4. Fine-tuning with the few available support ex-
amples helps signi�cantly to boost the detection quality on novel classes, but it remains insu�cient
for COSE’s application. Interestingly, after �ne-tuning a common property of few-shot methods
emerges: the more examples are provided, the higher the performance. It was not the case without
�ne-tuning. With Split A, the best performance is achieved with K = 1, with Split B, it increases
until K = 5 and then decreases with K = 10. This indicates that the management of more shots is
di�cult within PFRCNN. It suggests that support examples features may not be trivially aggregated
as it can produce irrelevant prototypes. This can happen when a class has a great variety and thus
a multimodal distribution in the embedding space.

Just as for MNIST-LOC, we provide qualitative results of the FSOD on DOTA with PFRCNN. These
are available in Fig. 5.4. The detection is satisfactory (but not perfect) on the base classes. How-
ever, the bounding boxes and labels for novel classes (bottom 2 rows) are mostly incorrect. Some
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Without �ne-tuning With �ne-tuning

K shots Base classes Novel Classes Novel Classes

1 27.5 4.7 7.5
3 35.2 2.4 9.3
5 39.0 3.8 11.3
10 38.4 4.1 11.6

Table 5.4: PFRCNN performance comparison with and without �ne-tuning.

Figure 5.4: Prototypical Faster R-CNN qualitative detection results on DOTA dataset, on base and
novel classes. Predictions are done without �ne-tuning and with K = 1.
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Figure 5.5: TSNE visualization of the trained embedding space of PFRCNN on DOTA. Each point
represents the projection of RoI in the embedding space. Large circles and squares respectively
denote the prototypes of base and novel classes. Black points denote background proposals.

confusion between base and novel classes occurs. For instance, in the left-most image in the third
row, water tanks are mistaken as roundabouts. Of course, these two classes look similar in practice
and that makes them di�cult to distinguish. To better understand why this confusion happens, we
investigate the embedding space of PFRCNN through TSNE visualization (see Fig. 5.5). This �gure
is made by collecting the embedding vectors of all proposals over an entire query set, and then by
reducing their dimension using the TSNE algorithm [299]. Class-speci�c clusters are well-formed in
the representation space, but some classes overlap which explains the confusion. Representations of
these classes may be close to another class prototype and get misclassi�ed. This is especially true for
novel classes which overlap over base classes, explaining their poor performance. For the example
above, the misclassi�cation of the two water tanks is easily understood from the TSNE plot as these
two classes almost perfectly overlap (class storage-tank in dark green and roundabout in pink).

5.5 Insights and conclusion
From the results presented above, one question arises: is representation learning a suitable choice
for few-shot object detection? Metric-learning methods are competitive with state-of-the-art for
few-shot classi�cation but seem less appropriate for FSOD. Prototypical Faster R-CNN is a �rst
attempt to apply prototypical networks to FSOD. The very few FSOD approaches based on Metric-
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Learning often leverage other tricks such as carefully designed �ne-tuning or attention mechanisms.
Furthermore, at the beginning of this PhD, there were only two contributions solving FSOD with
metric learning: RepMet [251] and RN-FSOD [252]. More investigation was therefore needed in
this direction. Of course, the poor results of PFRCNN alone are not enough to conclude that all
metric-learning-based approaches are inappropriate. Nevertheless, metric-learning FSOD methods
are now in the minority in the current literature, which indirectly con�rms their inadequacy.

Despite the relatively poor performance of PFRCNN, our experiments provide useful insights for
future designs of FSOD methods. First �ne-tuning is crucial for FSOD. It yields signi�cant perfor-
mance gains compared to models only trained on base classes. This makes sense as the adaptation
of the model with the prototypes is only performed in the classi�cation branches. The regression
branches are therefore unprepared for the localization of novel classes. Of course, having a method
that does not require any �ne-tuning is highly desirable from an industrial perspective, but that
should not come at the cost of poor performance. Then, Faster R-CNN may not be the best detector
choice for few-shot extensions. Indeed, its two-stage structure duplicates the number of modi�-
cations required for the adaptation to novel classes. Even if some works argue that the RPN is
class-agnostic, it is still trained to only detect base classes while discarding everything else, includ-
ing potential novel classes. The RPN must then be adapted to novel classes as well. It makes the
few-shot extension more cumbersome, with more parameters and more causes for failure. One-stage
detectors certainly are a more sensible choice. Finally, the episodic training strategy may also be
inadequate for detection. It complexi�es greatly the training and introduces distractors (this con-
cept is explained in Sec. 4.1). At the beginning of each episode, a subset of classes (either base or
novel depending on the training phase) is sampled. Annotations from all other classes are discarded
during the episode, yet the training images still contain instances of other classes. These distractors
are confusing for the model. Of course, for classi�cation, the episodic strategy forces the model to
establish connections between support examples and the query images. But it is much simpler as
the query images only contain one object belonging to one of the episode classes. The presence of
already-seen classes (and potential future classes) inside query images certainly makes the episodic
training strategy suboptimal for the detection task.

The latter paragraph formulates a few assumptions based on our observations of the design and
training of PFRCNN. Of course, it would be wise to conduct dedicated experiments to con�rm these
hypotheses. For instance, carefully designed synthetic images could help to experiment with the
distractors’ in�uence in a controlled way.

To conclude, this chapter presents Prototypical Faster R-CNN, a fully metric-learning-based ap-
proach for the Few-Shot Object Detection task. This is one of the �rst methods proposed in this
category. Despite its relatively poor performance on real images, it can adapt to novel classes with-
out any �ne-tuning, which is still a rare property in the current literature. Finally, the experiments
conducted with PFRCNN provide relevant insights about the FSOD task and will help in the design
of future approaches.
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Chapter 6

Attention Framework for Fair FSOD

Comparison

Abstract

Fair comparison is extremely challenging in the Few-Shot Object Detection task as plenty of
architectural choices di�er from one method to another. Attention-based approaches are no
exception, and it is di�cult to assess which mechanisms are the most e�cient for FSOD. In
this chapter, we propose a highly modular framework to implement existing techniques and
design new ones. It allows for �xing all hyperparameters except for the choice of the attention
mechanism. Hence, a fair comparison between various mechanisms can be made. Using
the framework, we also propose a novel attention mechanism speci�cally designed for small
objects.

? P. Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Object
Detection on Aerial Images", Submitted at the Elsevier Pattern Recognition journal.

q P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small Ob-
ject Detection in the Few-Shot Regime", Accepted at the IEEE International Conference on Image
Processing 2023 (ICIP).
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6.1 Framework Presentation and Motivation
As seen in Chap. 5, metric-learning approaches are not the optimal choice for the FSOD task. The
early FSOD literature has been dominated by attention-based methods, which probably are a more
sensible alternative. Plenty of contributions in this domain leverage attention mechanisms for solv-
ing the detection task. However, it is di�cult to make fair comparisons between the various mech-
anisms. Each method is proposed with its own choice of detection framework, backbone, hyper-
parameters, loss function, augmentations and training strategy. Thus, it is di�cult to demonstrate
the superiority of one attention mechanism over others. Furthermore, there is no consensus in the
FSOD �eld about a proper way to evaluate the models. This can change from one work to another
and is also a source of variance preventing fair comparison in the literature. To this end, we pro-
pose a modular framework called the Alignment-Attention-Fusion (AAF) framework. The goal of
this framework is to allow the implementation of various attention mechanisms while keeping all
other parameters �xed. Looking closely at the existing attention-based method in the literature (see
Sec. 3.2.3), three main types of attention mechanisms can be observed: Spatial Alignment, Global
Attention and Direct Feature Fusion. Therefore the AAF framework is structured around these three
components. The framework proposes �rst a mathematical formalism to present and de�ne exist-
ing and future mechanisms. Second, a modular Python package1 allows easy implementation of
attention-based methods inside a controlled detection environment to ensure fair comparisons. In
the following sections, we will present the framework in detail and conduct fair comparison exper-
iments with it. Finally, a novel attention mechanism will be presented, it is designed through the
AAF framework and speci�cally tackles the small objects to improve the detection performance on
aerial images.

1https://github.com/pierlj/aaf_framework
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Figure 6.1: Attention-based Few-Shot Object Detection principle. Query and support images are
processed by the backbone before being fed to the query-support combination block. Detection is
then performed independently on each class.

6.2 Alignment Attention Fusion Framework
In Sec. 3.2.3, three main components of attention mechanisms for FSOD have been identi�ed: Spatial
Alignment, Global Attention and Direct Feature Fusion. Most attention-based FSOD methods rely
on one or more of these components. Thi section will cover the Alignment, Attention and Fusion
(AAF) framework, whose purpose is to provide a �exible environment to implement attention-based
FSOD methods. Before jumping into the de�nition of the AAF framework, let’s recall brie�y the
main principle of attention-based FSOD, illustrated by Fig. 6.1. The goal of the attention module is
to combine the information from the query image and the support examples. Speci�cally, the query
features are compared with class-speci�c features computed from the support set. This comparison
highlights similar parts in the query image and the support examples, yielding class-speci�c query
features. The detection is then performed separately for each class.

The AAF framework takes as input the features from the query image Fq as well as the features
extracted from every support image F cs for c ∈ C (if more than one example is available per class
– K > 1 –, their features are averaged). It outputs class-speci�c query features M c

q in which
features relative to class c are highlighted. The framework is divided into three parts as shown
in Fig. 6.2, which provides an overview of the framework. Each component is described below
in dedicated sections with examples of possible design choices. Even though this framework is
presented from the perspective of object detection, it could be applied to any kind of few-shot visual
tasks (e.g., classi�cation or segmentation).

6.2.1 Query-Support Alignment
The alignment module, denoted Λ, spatially aligns the features from the query and the support.
It is unlikely that objects of the same class appear at the same position inside query and support
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Figure 6.2: The Alignment Attention Fusion (AAF) framework is composed of three components:
spatial alignment Λ, global attention Γ and a fusion layer Ω. Examples for each module are depicted,
these come from FSOD methods in the literature. Ex. A is presented in [222], Ex. B in [220] and Ex.
C in [233]. The colors chosen in this diagram match the colors used in Eqs. (6.1) to (6.5).

images (in comparison to the classi�cation task where objects to classify are in the center of the
image). This issue is commonly avoided by pooling the support map and using it as a class-speci�c
reweighting vector. But as discussed in Sec. 3.2.3, this trick loses the spatial information about the
support object, which can be detrimental for detection. Instead, an alignment based on similarity
can be done between query and support feature maps. The idea is to re-organize one feature map
by comparing it with the other so that similar features are spatially close in the maps (see Fig. 3.3).
The alignment module is de�ned as follows:

Acq = λq(Fq, F
c
s ) Fq , (6.1)

Acs = λs(Fq, F
c
s ) F cs . (6.2)

Query Features
∈Rn×d

Support Features for class c
∈Rm×d

A�nity matrices
∈Rn×m

Aligned features

The de�nition of the matrices λq and λs determines how features are aligned. They are mostly
derived from a similarity measure between query and support features. This formulation is close to
the non-local blocks described in [300] and is at the heart of visual transformers [56]. Transformers
attention can be understood as an alignment of the value to match the query-key similarity. This
formulation allows easy implementation of di�erent feature alignments by changing the expression
of the a�nity matrices. As an example, Meta Faster R-CNN [222] leverages an alignment module
with a�nity matrices λs(Fq, F cs ) = Fq ·(F qs )T and λq(Fq, F cs ) = I (see Example A in Fig. 6.2). Only
the support features are aligned so that they match query features. It is important to mention that
alignment alone does not combine query and support features. It rather reorganizes spatially the
query or support features. However, once the features are aligned, their sizes match, which allows
direct comparison through element-wise operations (within the fusion layer).
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6.2.2 Global Attention
The global attention module, denoted Γ, combines global information of the supports and the query.
It highlights class-speci�c features and softens irrelevant information for the task. This module is
de�ned as follows:

Hc
q = γq (Acq, A

c
s), (6.3)

Hc
s = γs (Acq, A

c
s). (6.4)

Global attention operatorsHighlighted features

The global attention operators γq and γs combine the global information from their inputs and
highlight features accordingly. This is generally done through channel-wise multiplication. In this
way, class-speci�c features are highlighted, while features not relevant to the class are softened.
Changing the de�nition of γq and γs allows the implementation of a wide variety of global attention
mechanisms. This technique largely resembles the principle of the Learnet [144] introduced for
FSC. For instance, reference [220] pools the support maps with a global max pooling operation (GP)
into a reweighting vector and reweights the query features through channel-wise multiplication:
γq(A

c
q, A

c
s) = Acq ~GP (Acs) and γs(Acq, Acs) = Acs (see Example B in Fig. 6.2).

6.2.3 Fusion Layer
The purpose of the fusion component is to combine highlighted query and support maps. This is
only applicable when the maps have the same spatial dimension. It is mostly used alongside the
alignment module as it does not combine the information from the support and the query but only
reorganizes the maps. In particular, when support and query maps do not have the same spatial
dimension, aligning support maps with query maps �xes the size discrepancy. The fusion module
is then de�ned as follows:

M c
q = Ω (Hc

q , H
c
s). (6.5)

Fusion operatorMerged query features

The highlighted maps can be combined through any point-wise operation, addition ⊕, multiplica-
tion �, subtraction 	, concatenation [·, ·] or more sophisticated ones. An example of such a fusion
module is presented in [233]. The fusion operator concatenates the results of the addition and the
subtraction of the highlighted features: Ω(Hc

q , H
c
s) = [Hc

q ⊕ Hc
s , H

c
q 	 Hc

s ] (see Example C in
Fig. 6.2). The point-wise operators can also contain small trainable models such as in [222], where
small CNNs (e.g., ψdot, ψsub, and ψcat) are applied after the point-wise operators, but before the
concatenation: Ω(Hc

q , H
c
s) = [ψdot(H

c
q �Hc

s), ψsub(H
c
q 	Hc

s), ψcat([H
c
q , H

c
s ])].

Except for the fusion layer which must be applied last, spatial alignment and global attention can be
applied in any order. This �exibility is required to cover methods that apply global attention before
alignment, such as DANA [234]. The whole architecture of the AAF framework is illustrated in
Fig. 6.2, in which examples from the previous sections are also depicted. The modular structure of
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the framework enables the implementation of a wide variety of attention mechanisms while keeping
all other hyperparameters �xed. In this way, it is a useful tool for FSOD methods comparison.

6.2.4 Implementation details
Before presenting the results of a fair comparison between several FSOD approaches re-implemented
in the AAF framework, we must review its implementation. To make the comparisons fair, some
design choices are kept �xed in the framework. The backbone is a ResNet-50 with a 3-layers Feature
Pyramid Network on top. It extracts features at 3 di�erent levels, which helps the network to detect
objects of various sizes. The detection head is based on FCOS [45], a one-stage detector (a choice
motivated by insights from Chap. 5). The head is composed of a few convolutional layers with
ReLU activations followed by two branches (convolutional as well) for classi�cation and regression
respectively. The AAF framework is applied between the backbone and the detection head. As
features are extracted at multiple levels, attention mechanisms are also implemented to work at
di�erent scales. This may di�er from the original implementations, but most methods are already
designed to work at multiscale (see Tab. 3.1). The model is trained in an episodic manner. During
each episode, a subset Cep ⊂ C of the classes is randomly sampled. A query set is sampled for
each episode, containing 100 images per class. This set only contains annotations of the episode
classes and is leveraged for the loss computation and the optimization of the model. A support
set is also sampled at the beginning of each episode containing K examples for each episode class.
The support examples are used through the attention mechanisms to condition the detection on the
episode classes.

The training is divided into two phases base training and �ne-tuning. During base training, only
base classes can be sampled (Cep ⊂ Cbase) and one image per class is drawn for the support set
(K = 1). The optimization is done with SGD and a learning rate of 1× 10−3 for 1000 episodes.
During �ne-tuning, the backbone is frozen, the learning rate is divided by 10, and the episode classes
can be sampled from Cbase ∪ Cnovel, with at least one novel class per episode. Examples from novel
classes are selected among the K examples sampled once before �ne-tuning. Each model is �ne-
tuned separately for di�erent values of K ∈ 1, 3, 5, 10. During both training phases, the same loss
function is optimized, as de�ned in FCOS (see Tab. 2.1).

6.2.4.1 Augmentations and Cropping Strategies
Some existing works leverage sophisticated training strategies (e.g. auxiliary loss functions [224],
hard examples mining [260] or multiscale training [223]). While this certainly improves the quality
of the detections, it introduces new parameters to tune and makes the comparison with other works
di�cult. As the focus of this study is on attention mechanisms, we choose not to reimplement
all these improvements. However, to remain competitive with existing works, we propose a novel
augmentation pipeline speci�cally designed for object detection. It is de�ned in the next paragraph
which includes a cumulative study of its di�erent components on DOTA. In addition, we discuss
the choice of the support extraction strategy. Basically, this refers to how the support examples are
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extracted from the support images since most parts of these images are irrelevant for the task. From
our analysis, it seems that this design choice signi�cantly in�uences the model performance (see
Tab. 6.2). However, it is barely discussed in the FSOD literature. We �nd that the best strategy is to
crop the support example and resize it to a �xed-size patch. This strategy is thus �xed for all our
experiments.

Augmentations
To improve the performance of the methods implemented in the AAF framework and be competi-
tive with existing works, we propose an augmentation pipeline speci�cally designed for detection.
Some regular augmentation techniques cannot be directly applied for object detection as they can
completely mask objects from the image. This deteriorates the training as the model will not be able
to detect hidden objects, but it will be penalized anyway.

First, we apply random horizontal and vertical �ips (only for aerial images) and color jitter. As it does
not remove entire objects, these can be applied directly to the images. However, some other classical
techniques such as random crop-resize and random cut-out cannot be applied directly. Therefore,
we developed object-preserving random crop-resize and cut-out. The main idea is to apply these
transformations at the object level and not at the image level. This ensures that objects of interest
are still visible in the transformed image. For crop-resize, a non-empty subset of the objects in the
image is randomly sampled. An overall bounding box is computed around all these objects and
the cropped area is randomly drawn between this box and the image borders. Hence, it guarantees
the presence of at least one object inside the cropped image. For cut-out, the principle is similar,
instead of cutting out a random part of the image, the cut is applied at the object level so that it
does not hide out entire objects. Fig. 6.3 compares the two proposed augmentations with their naive
implementations.

We performed a cumulative study to assess the bene�ts of each component of the augmentation
pipeline. To do so, we implemented Feature ReWeighting (FRW) [220], a well-known FSOD tech-
nique, within the AAF framework. FRW is then trained on DOTA dataset. This experiment is
summarized in Tab. 6.1. It shows that the augmentation is bene�cial for the performance on novel
classes but detrimental for base classes. Surprisingly, performance drops on base classes with aug-
mentation. More speci�cally, it seems that image �ips are responsible for the performance loss on
base classes (see �rst and second columns in Tab. 6.1). Base classes performance drops when adding
�ips but remains mostly constant when adding other types of augmentations. One crucial di�erence
between �ips and other augmentations is that we choose to apply �ips also on support examples.
This choice was made to increase the diversity of the support set during �ne-tuning. For novel
classes, only a few images are available as support during �ne-tuning, and we want to avoid over�t-
ting these examples. Although other types of augmentations could have been employed for this, we
wanted to avoid disrupting too much of the information in the support. This choice may be the cause
of the performance drop on base classes. To verify this hypothesis, we conduct a few more experi-

111



Chapter 6 - Attention Framework for Fair FSOD Comparison

Figure 6.3: Di�erence between naive augmentation techniques (left) and our adaptation to object
detection (right). The proposed transformations are applied at the object-level to preserve objects
integrity.

ments disabling the �ip in the support set. With the default cropping strategy (see next paragraph),
the experiments con�rm the hypothesis: no performance drop is observed when supports are not
�ipped. However, support augmentation certainly interacts with the support cropping strategy, thus
we also tried with the same-size cropping strategy. Surprisingly, it does not produce similar results,
and in this case, �ipping support examples is actually bene�cial for base classes performance. This
suggests a complex interaction between augmentation on the support set and the cropping strategy.
The choice made in our experiments may not be optimal in this regard, and a deeper analysis of this
interaction should be conducted in future work (e.g., studying the e�ect of various augmentations
on a synthetic dataset to have better control over the images). Finally, the base class performance
loss is compensated by clear improvements on novel classes. As this is the main goal of FSOD, we
choose to adopt the original augmentation pipeline, including �ips in the support set, for all our
experiments. Other augmentations are not applied to the support set to prevent disrupting their
representations and therefore the conditioning of the model.
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# Shots Baseline + Flip + Color + Cutout + Crop

1 Base 48.83 45.80 45.96 47.20 45.68
Novel 6.15 5.25 6.92 6.44 10.03

3 Base 51.06 47.70 47.03 46.10 45.22
Novel 14.41 18.59 18.59 19.74 21.95

5 Base 52.66 49.38 50.09 50.28 48.74
Novel 19.25 23.71 25.08 25.01 25.95

10 Base 53.84 50.80 50.77 50.41 50.27
Novel 28.56 31.23 28.08 34.13 35.95

Table 6.1: Cumulative study of the proposed augmentation techniques on DOTA using FRW [220].
mAP0.5 is reported for di�erent number of shots.

Support example cropping strategy
The support information is only located inside the example bounding box. The remaining part of
the support image mostly contains irrelevant information concerning the object class. Therefore,
extracting features from the whole support images is not necessary. But features contained only
inside the object’s bounding box might not be su�cient as well. Context can be extremely valuable
in certain cases, especially for small objects. For instance, a car and a small boat could easily be
mistaken without context. Close surroundings of the objects can help for recognition.

A common strategy for support information extraction is proposed by [220]. They concatenate in the
channel direction the support image with the support object’s binary mask (rectangular, computed
from the bounding box) and pass this to an extractor network. This has two main drawbacks. First, it
is necessary to compute features from the entire support image, which is a loss of resources. Second,
the same network cannot be used for extracting features in query and support images as it needs an
additional input channel to process the mask. Hence, the network cannot be pretrained beforehand.
This design choice is rarely discussed, if ever mentioned, in the literature.

In this section, we explore this design choice by implementing several extraction strategies. We
did not reimplement the technique from [220] as it requires to have two di�erent networks for
support and query feature extraction. However, some of our techniques are quite close to what they
proposed. These techniques are described below and Fig. 6.4 illustrates most of them:

- Default: the most naive extraction technique. It consists in cropping the support image
around the support object at a �xed size (e.g. 128× 128). Objects larger than this are simply
resized to �t in the patch.

- Context-padding: the cropping occurs exactly as with the default strategy, but areas around
the objects are masked out. This is close to what was proposed by [220].

- Re�ection: context is replaced by re�ection of the object. In the case of small objects, the
support patch can easily be dominated either by irrelevant information or by zeros when using
the latter two extraction methods.

113



Chapter 6 - Attention Framework for Fair FSOD Comparison

Figure 6.4: Illustration of the di�erent cropping strategies tested. The mixed strategy is not illus-
trated as it is a combination of default and same-size.

- Same-size: all objects are resized to �ll the support patch entirely (preserving the aspect
ratio). It does not change the process for large objects, but it prevents smaller objects from
being dominated by irrelevant information.

- Multi-scale: the object is resized and cropped at 3 di�erent scales. Each scale is responsible
for matching small, medium and large objects in query images.

- Mixed: it is a combination of the default strategy and same-size. Small objects (i.e.
√
wh < 32)

are extracted using the default strategy. Larger objects (
√
wh ≥ 32) are resized into a patch

of 128× 128 pixels. Therefore, small objects are not upscaled more than 4 times, as they are
using the resize strategy.

These strategies are compared in Table 6.2. Even though same-size gets the best overall results on
novel classes (regardless of object sizes), there is no clear conclusion. It is outperformed by both
re�ection and mixed for base classes. No method outperforms the others on all object sizes, not
even the ones designed to be more robust to size (multiscale and mixed). The latter two techniques
introduce discrepancies in the features: objects of similar size (e.g., from both sides of the size limit)
are processed di�erently, resulting in really di�erent features. As same-size gives the best results
on novel classes, we choose to use this strategy for all our experiments. Yet, in the light of our
performance analysis in Chap. 4, we can understand some results from Tab. 6.2. The multiscale
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Cropping Strategy Base classes Novel classes

All S M L All S M L

Default 49.80 24.26 57.36 63.90 24.97 7.66 24.31 34.48
Context padding 50.03 24.96 59.72 63.03 29.60 10.71 26.76 50.91
Same-size 50.63 30.83 59.44 62.47 32.19 8.32 33.21 56.54
Multiscale 51.44 29.03 59.78 63.27 26.95 8.44 33.48 45.63
Re�ection 50.28 26.05 59.36 62.49 25.50 7.22 20.66 44.29
Mixed 50.95 27.16 60.48 60.67 27.96 9.51 26.52 48.89

Table 6.2: Comparison of support extraction strategies on base and novel classes with DOTA dataset
and FRW method with 10 shots. mAP0.5 is reported on all objects and separately on objects of
di�erent sizes: small (S), medium (M) and large (L).

strategy does not perform very well as it introduces small objects features which seems detrimental
for the good conditioning of the network. On the contrary, same-size only generates large objects
as support which is a better strategy. Finally, re�ection performs surprisingly well for small objects
while preserving their small size. The redundancy generated by the re�ection of such small objects
certainly reinforces the object’s features.

6.2.5 Fair comparison of Few-Shot Object Detection Methods with AAF
To showcase the �exibility of the proposed AAF framework, we reimplement and compare multi-
ple existing works. Some methods described in Chap. 3 are selected: FRW [220], WSAAN [229],
DANA [234], Meta R-CNN [222] and DRL [233] (see Tab. 3.1). They have been chosen because
they represent well the variety of attention mechanisms available in the literature and according
to their popularity. FRW is based on class-speci�c reweighting vectors, WSAAN has a more so-
phisticated global attention and computes reweighting vectors inside a graph structure. DANA and
Meta R-CNN leverage query-support alignment in di�erent manners and DRL only uses a sophisti-
cated fusion layer. Each of these methods has been reimplemented within the AAF framework. Of
course, some details di�er from the original implementations, but the purpose of this comparison is
to compare only the query-support combination module. In particular, the backbone and the train-
ing strategy (losses and episode tasks) may di�er. We �rst conduct such a comparative experiment
on Pascal VOC [5] and MS COCO [6] datasets. On these datasets, the performance achieved by
our implementations is close (i.e., within 2 points of mAP0.5) to the values reported in the original
papers. Then, we use the framework to compare the performance of some methods on two aerial
datasets: DOTA [77] and DIOR [95].

6.2.5.1 Evaluation protocol
The evaluation is also conducted in an episodic manner, following recommendations from [217].
The performance is averaged over multiple episodes, each containing 500 examples for each class
and this operation is repeated multiple times with randomly sampled support sets. The query and
support examples are drawn from the test set, thus the support examples are di�erent from the ones
used during �ne-tuning. This prevents overestimations of the performance due to over�tting on
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FRW [220] WSAAN [229] DANA [234] Meta R-CNN [222] DRL [233] FCOS Baseline
K Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel
1 59.92 28.22 61.70 30.95 62.58 32.82 57.85 30.16 64.18 27.05

65.47 68.02
3 63.33 31.12 63.52 42.19 64.18 33.95 58.70 36.79 61.74 29.64
5 64.35 46.33 64.68 46.16 65.20 42.58 62.14 40.75 66.45 37.34
10 63.16 48.71 65.27 51.70 65.03 50.30 63.38 49.45 66.98 47.99

Table 6.3: Performance comparison between �ve selected methods on Pascal VOC. All are reimple-
mented with the proposed AAF framework. Mean average precision is reported for each method on
base and novel classes separately and for various numbers of shots (K ∈ {1, 3, 5, 10}).

the support examples. To ensure a fair comparison between the various methods, the same random
seed is used for all evaluations, thus the support and query examples are the same.

6.2.5.2 Natural images
Tab. 6.3 gather the results on Pascal VOC. First, compared to the FCOS baseline, a slight performance
drop on base classes is observed. This is expected, even if the model has seen a lot of examples of
these classes during training, its predictions are still conditioned on a few examples, which can
sometimes be misleading. On the other hand, performance on novel classes is signi�cantly lower
than the FCOS baseline, especially for low numbers of shots. The number of shots is crucial for
performance on novel classes. The higher the number of shots, the better the network performs. On
average, with 10 examples per class, the network achieves 0.2 higher mAP0.5 than with 1 example.
More examples provide more precise and robust class representations, improving the detection. The
same phenomenon is observed with base classes to a lesser extent (+0.04 mAP from 1 to 10 shots).
Fig. 6.5 displays these trends clearly, both for base and novel classes. In addition, Fig. 6.6 provides the
same results split by class. An interesting observation from this last �gure is the very good detection
performance for the novel class sheep. This can be explained easily from the presence of the class
horse in the base set. The model has seen a lot of examples of horses during base training, which
makes it learn visual attributes common with a sheep (e.g., four legs, hair and grassy background).
Such a class similarity makes the novel class detection much easier. Some authors do leverage this
fact, as for instance [264] which �rst associates a base class to each novel class before learning to
discriminate between them.

The behavior just described is expected from any few-shot object detection method. Moreover, per-
formance values are close to what is reported in the original papers of the reimplemented methods.
These results are not the same as many architectural choices di�er from the proposed methods (e.g.
backbone, class splits, etc.). Nevertheless, it con�rms that the proposed AAF framework is �exible
enough to implement a wide variety of attention mechanisms. It is therefore an appropriate tool to
compare and design query-support attention mechanisms.

DRL is arguably the simplest method among the �ve selected as it leverages only a fusion layer.
It combines query features with the features of each support image through concatenation and
point-wise operations, creating class-speci�c query features. It is therefore the closest to the regular
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Figure 6.5: Evolution of mAP0.5 with the number of shots averaged on base and novel classes sepa-
rately. Each line represents one of the reimplemented methods.

FCOS functioning. This explains the very good performance on base classes and lower mAP on
novel classes, compared to the baseline. Regarding the other methods, FRW and WSAAN can be
easily compared as both are based on global attention. The only di�erence is how the class-speci�c
vectors are computed. In FRW, they are globally pooled from the support feature map. However,
WSAAN combines the same vectors with query features in a graph. This certainly provides better
class-speci�c features and in the end, better results both on base and novel sets. The remaining
methods, DANA and Meta R-CNN both leverage spatial alignment. While it seems to bring quite an
improvement for DANA over FRW and DRL, the gain is smaller for Meta R-CNN. In both methods,
spatial alignment is not used alone. It is combined with other attention mechanisms. In DANA,
a Background Attenuation block (i.e. a global self-attention mechanism) is applied to the support
features to highlight class-relevant features and soften background ones. In Meta R-CNN, aligned
features are reweighted with global vectors computed from the similarity matrix between query
and support features. This last operation may be redundant as the similarity information is already
embedded into the aligned features, whereas background attenuation leverages new information.

From this comparison, one can conclude that both global attention and spatial alignment are ben-
e�cial for FSOD. However, these improvements may not always be compatible, as shown by the
results of Meta R-CNN. Hence, the design of each component must be done carefully so that spatial
alignment, global attention, and fusion work in unison.

Another set of experiments is conducted on MS COCO dataset. Only the two best-performing meth-
ods on Pascal VOC are selected and trained on MS COCO following the same experimental setup.
The results are summarized in Tab. 6.4. The mAP values are reported following standards from Pas-
cal VOC (mAP0.5 with one IoU threshold), and MS COCO (mAP0.5:0.95 with several thresholds). MS
COCO is a much more di�cult detection benchmark; therefore the numbers of shots is adjusted to 1,
5, 10, and 30 shots. These results comfort the conclusion obtained on Pascal VOC: the framework is
�exible enough to implement various FSOD techniques that achieve competitive results with state-
of-the-art. As for Pascal VOC the models achieve better performance with more shots. However,
unlike on Pascal VOC, base classes also bene�t signi�cantly from a larger number of examples on
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Figure 6.6: mAP0.5 on Pascal VOC against the number of shots for each class and each method.
Dashed lines represent average performance on all classes, either base classes (top) or novel classes
(bottom).

WSAAN [229] DANA [234]
mAP0.5 mAP0.5:0.95 mAP0.5 mAP0.5:0.95

K Base Novel Base Novel Base Novel Base Novel
1 33.51 11.97 20.12 6.57 35.52 14.54 21.30 7.77
5 39.88 19.86 23.62 10.54 42.79 22.17 25.19 11.90
10 40.87 21.42 24.38 11.49 43.00 23.70 25.57 12.89
30 41.54 22.21 24.74 12.08 43.54 24.36 25.96 13.35

Table 6.4: Performance comparison between WSAAN [229] and DANA [234] on MS COCO.
mAP0.5:0.95 (MS COCO mAP, with IoU thresholds ranging from 0.5 to 0.95) and mAP0.5 values are
reported for base and novel classes separately and for di�erent numbers of shots: K ∈ {1, 5, 10, 30}.

MS COCO. MS COCO is more di�cult, therefore, the information extracted from the supports better
helps the models. Finally, WSAAN outperforms DANA on Pascal VOC but performs slightly worse
on MS COCO. It can be noted that the results obtained on a dataset cannot be extrapolated to another
without taking into account the characteristics of the datasets. A method that performs best on a
dataset is not guaranteed to do so on another dataset. This reinforces the need of a �exible frame-
work that allows fair and easy comparison between FSOD methods. That way, the best-performing
method can be easily selected for a given problem. Without such a framework, it is di�cult to �nd
out from the literature which method is the most promising for a given application as most FSOD
works focus on natural images. For COSE, this framework is highly valuable as it will serve as an
objective comparison tool for attention-based FSOD methods.

From these experiments on natural images, it seems clear that DANA performs best. Therefore, it
highlights the importance of feature alignment for query-support matching. Global attention loses
spatial information in support features which is detrimental to detection. However, global attention
methods should not be overlooked. WSAAN shows impressive performance and even outperforms
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DOTA DIOR

FRW WSAAN DANA PFRCN FRW WSAAN DANA PFRCN WSAAN†

K Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel
1 47.24 13.35 45.55 12.19 49.38 12.52 34.98 7.51 56.67 16.92 56.41 15.48 58.78 20.64 40.66 6.07 - -
3 46.50 25.32 44.18 24.42 49.67 20.70 34.58 9.33 58.05 25.08 51.72 13.84 59.14 27.26 40.48 7.51 - -
5 48.60 29.57 47.56 31.44 52.49 24.96 36.09 11.33 60.75 32.58 60.79 30.38 62.12 34.16 41.97 8.55 - 0.25
10 49.04 35.29 46.72 35.12 53.99 36.50 36.32 11.55 61.30 37.29 62.79 32.38 62.71 38.18 42.37 9.16 0.54 0.32

Table 6.5: Comparison of mAP0.5 of several methods on DOTA and DIOR datasets. For each method,
mAP is reported for di�erent number of shots K ∈ {1, 3, 5, 10} and separately for base and novel
classes. Blue and red values represent the best performance on base and novel classes respectively,
for each dataset. † denotes results taken directly from the original papers.

slightly DANA on Pascal VOC. It could be interesting to combine both methods, but this does not
seem to be trivial as demonstrated by the results of Meta R-CNN, which leverages the alignment
from DANA and the attention from FRW, but does not yield better results.

6.2.5.3 Aerial images
To our knowledge, very few works evaluate FSOD methods on aerial images at the time we proposed
the AAF framework. Among those we select FSOD-RSI [225], which simply applies FRW to aerial
images (we will refer to it as FRW), WSAAN [223] and our PFRCNN. In addition, we include DANA
inside this comparison as it was the best-performing technique on natural images. All these meth-
ods are evaluated on di�erent datasets, making their performance comparison challenging. Using
the proposed AAF framework, we compare the performance of these methods on both DOTA and
DIOR. These methods are reimplemented inside the framework and all other design choices are �xed
during the experiments (as described in Sec. 6.2.4). Tab. 6.5 regroups the results of the comparison.
These results show a slight improvement over the state-of-the-art on DIOR (WSAAN [223]). Our
implementation of WSAAN outperforms (8 mAP0.5 points on base classes and 0.4 on novel classes)
the result reported in the original paper. However, the attention mechanism employed in WSAAN
is not optimal for aerial images. WSAAN is outperformed by both FRW and DANA. While this was
expected for DANA in the light of results from Sec. 6.2.5.2, it was not for FRW. The superiority of
DANA over the other methods on DOTA and DIOR is clear and coherent with the results on natural
images. The more sophisticated attention mechanism, in particular the alignment, from DANA is
better at extracting and leveraging the information from the support examples. Hence, the detec-
tion performance is higher. It is particularly bene�cial for small numbers of shots: the extracted
information is semantically robust.

These results con�rm the analysis conducted in Chap. 4, the performance gap between the classical
baseline (i.e. FCOS) and the few-shot approaches is larger on aerial images. On natural images, the
performance drop between the few-shot approach and the regular baseline is nearly inexistent for
base classes and around 25% for novel classes. On aerial images these drops are largely increased:
∼ 15% and ∼ 50% for base and novel classes respectively. This can be guessed from Tabs. 6.3
and 6.5, but detailed gaps are provided in Tab. 6.6. Following the analysis from Chap. 4, the main
reason behind this performance gap between natural and aerial images is the size of the objects in
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the image. Small objects are much more di�cult to detect and also are poor representatives of a
semantic class as they contain little information. Therefore, the most sensible direction to pursue is
to design new attention mechanisms speci�cally built for small objects. As it happens, this will be
discussed in the next section.

DOTA DIOR Pascal VOC
Base Novel Base Novel Base Novel

m
A
P 0

.5

FCOS baseline 60.87 69.69 72.82 81.48 65.47 68.02

FRW 49.04 35.29 61.30 37.29 63.16 48.71
WSAAN 46.72 35.12 62.79 32.38 65.27 51.70
DANA 53.99 36.50 62.71 38.18 65.17 52.26

R
m
A
P
(%
)

FRW -19.43 -49.36 -15.83 -54.23 -3.52 -28.39
WSAAN -23.24 -49.60 -13.78 -60.26 -0.30 -24.00
DANA -11.30 -47.63 -13.88 -53.14 -0.46 -23.17

Table 6.6: mAP0.5 and RmAP values for some reimplemented methods and XQSA with K = 10
shots.

6.3 Cross-Scales Query-Support Alignment for Small FSOD
From the analysis in Chap. 4 and the previous section, it is clear that a new attention mechanism
speci�cally designed for small objects is required to get reasonable performance on aerial images.
To this end, we propose a novel alignment method that combines information from multiple scales:
Cross-Scales Query-Support Alignment (XQSA). This di�ers from existing methods which often
work independently at di�erent scales. Conversely, XQSA combines the information from various
scales and sources (i.e., query and support images). Its original motivation is to unlock matching
support examples with query objects belonging to the same class even though their sizes di�er. With
existing methods, this was prohibited as same-class objects with di�erent sizes have non-similar
features and are not matched by similarity-based attention mechanisms.

6.3.1 XQSA de�nition
In this section, we detail the functioning of our proposed Cross-Scales Query-Support Alignment
module. First, features are extracted from the query and support images with a backbone network
f . In our implementation, f is a ResNet-50 with an FPN attached. It outputs feature maps at three
distinct resolution levels:

{Fq,0, Fq,1, Fq,2} = f(Iq), (6.6)

{F cs,0, F cs,1, F cs,2} = f(Ics). (6.7)

All query features Fq,i ∈ Rwq,i×hq,i×d, for i ∈ {0, 1, 2} (i.e. from di�erent levels) are �attened and
concatenated into a unique representation Fq ∈ Rnq×d, with nq =

∑
iwq,ihq,i. Here, wq,i and hq,i
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denote the size of the query feature map at level i, this size depends on the query image size and the
stride of the corresponding level in the backbone. The same operation is performed for all support
features F cs,i. When more than one shot is available per class, support features are average at each
level i:

F cs,i =
1

K

K∑
k=1

F c,ks,i . (6.8)

Then, following the ViT paradigm, the support and query features are linearly projected into the
queries, keys and values matrices Q, K and V . Speci�cally, the query features are used to produce
the queries while keys and values are computed from the support features:

Q = Fq WQ = [ Fq,0, Fq,1, Fq,2 ] WQ , (6.9)

Kc = F cs WK = [ F cs,0, F
c
s,1, F

c
s,2 ] WK , (6.10)

V c = F cs WV = [ F cs,0, F
c
s,1, F

c
s,2 ] WV , (6.11)

Per level features

Concatenated

multiscale features

Learned projection matrices

where WQ, WK and WV are learnable projection matrices, which are implemented as linear layers
in practice. From this, an a�nity matrix is computed between the queries and the keys, and then
the aligned support features Acs are computed as:

λcs = Softmax(
QKcT

√
d

), (6.12)

Acs = λcsV
c. (6.13)

For completeness with the de�nition of the AAF framework, λq = I, meaning that the query fea-
tures are not modi�ed. The aligned features are �nally processed by a two-layer MLP with skip
connections. LayerNorm [301] is applied before alignment and the MLP. These supplementary com-
putations can be seen as fusion operations in the AAF framework, similar to what was proposed in
[227, 222, 249]. This resembles the ViT attention, but with a major di�erence, it combines features
from di�erent images and di�erent levels (see Fig. 6.7). This allows better object matching when
there are size discrepancies between support and query images.

Small objects have a limited footprint in feature maps which make them hard to detect but also hard
to match with support examples. XQSA’s multiscale alignment enhances the chances of matching as
each query feature is compared with support features at all scales. Finally, in order to fairly compare
XQSA with DANA, we leverage their BackGround Attenuation block (BGA) on the support features
before alignment. They conduct a thorough ablation study which shows the positive impact of BGA
on the few-shot performance of their method. We also carry out an ablation study about our cross-
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Figure 6.7: Diagram illustrating the proposed cross-scales query-support alignment method. Fea-
tures are extracted from the query and support images at multiple scales and combined to form an
a�nity matrix. For each query feature position, the a�nity is computed with any position in the
support features. This allows object matching across di�erent feature levels.

scales method (see Tab. 6.7) and �nd that BGA also improves performance in this case. XQSA is
implemented inside the AAF framework, split into three modules: alignment, attention and fusion,
following the description from Sec. 6.2. BGA is implemented within the global attention block,
which can handle as well self-attention module as well and is applied before alignment.

6.3.2 Ablation study XQSA
To con�rm the bene�ts of each component of our attention methods, we conduct a brief ablation
experiment, adding separately the di�erent modules of our proposed attention mechanism. The
ablation is conducted on DOTA and the results are available in Tab. 6.7. From this table, it is clear
that each component plays a role in the improved performance of our method. Both the fusion (with
the MLP) and the skip connections around fusion and alignment are bene�cial for the performance
on novel classes. It is worth noting that Background Attenuation proposed by [234] helps both for
base and novel classes, which con�rms the experiments conducted by the authors of this work.

Baseline X X X X
Cross-scale Alignment X X X
Fusion Layer X X
Query-Support Self-Attention X

Base classes 49.20 49.46 49.13 51.11
Novel classes 36.52 38.84 40.31 41.01

Table 6.7: Ablation study of the XQSA attention method on DOTA dataset. mAP0.5 scores are re-
ported for base and novel classes with K = 10 shots.
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DOTA DIOR Pascal VOC MS COCO

All S M L All S M L All S M L All S M L

Base
Classes

FRW 49.04 25.48 59.17 63.37 62.20 8.21 48.66 80.67 63.21 15.67 47.94 81.73 29.03 13.08 35.87 48.00
DANA 53.99 36.98 62.33 70.39 62.71 10.92 49.34 83.17 65.17 18.14 50.58 80.11 38.14 23.30 51.85 56.38
XQSA 51.11 26.10 59.41 64.30 59.88 10.64 45.69 82.34 62.13 15.60 48.64 75.94 31.56 16.13 40.13 49.83

Novel
Classes

FRW 35.29 13.99 34.11 59.31 37.29 2.48 33.74 59.38 48.72 16.44 26.71 68.27 24.09 11.53 22.45 38.69
DANA 36.58 14.32 40.28 64.65 38.18 3.21 34.91 60.99 52.26 10.05 24.67 67.23 24.75 12.01 29.40 37.95
XQSA 41.00 17.84 44.57 54.46 41.51 4.12 40.69 58.21 53.94 19.46 34.86 66.14 25.03 12.57 26.05 38.55

Table 6.8: Performance comparison between XQSA, FRW, and DANA. mAP0.5 values are reported
separately for base (top) and novel (bottom) classes on DOTA, DIOR, Pascal VOC, and MS COCO
withK = 10 shots. mAP values are reported for All, Small (

√
wh < 32), Medium (32 ≤

√
wh < 96)

and Large (
√
wh ≥ 96) objects.

6.3.3 Application to aerial and natural images
To assess the capabilities of the proposed method, we compare it with the best methods from
Sec. 6.2.5: FRW and DANA on DOTA, DIOR, Pascal VOC and MS COCO. The results of these ex-
periments are available in Tab. 6.8. The mAP values are reported separately for small (

√
wh < 32),

medium (32 ≤
√
wh < 96) and large (

√
wh ≥ 96) objects. Hence, the methods can be com-

pared speci�cally on small objects. XQSA performs consistently better on small and medium novel
objects, compared with FRW and DANA. This performance gain comes at the expense of slightly
lower detection quality for larger objects. In XQSA, the shallow query features are compared to all
support features (i.e., not only shallow support maps). As deeper maps are smaller, this increases
moderately the number of potential detections for small objects. However, for large objects, the
deep query feature map is compared with all support maps, including the shallow ones. It increases
a lot the number of potential matches between query and support features (see an illustration of this
phenomenon in Fig. 6.8). For large objects that are already well detected, this mostly adds wrong
matches and deteriorates the performance. For small objects, however, this is useful as very few
correct matches are found by current FSOD methods. A potential solution for this issue would be to
down-weight the contributions of shallower features in the a�nity matrix’s bottom rows (i.e., the
left and bottom blocks of the matrix). The a�nity matrix could even be made upper triangular to
avoid taking into account the contributions of shallower levels at all. For similar reasons, XQSA
demonstrates a slight drop in base classes performance. However, the actual goal of few-shot learn-
ing is to maximize performance on novel classes. The large number of available examples during
base training is enough to learn robust query-support matching even for small objects. However,
our goal here is to improve the generalization capabilities of the model on novel objects. The perfor-
mance on base classes is simply a safety check and relates more to the Generalized FSOD problem
(see Sec. 3.4).

Looking at the performance on all objects, disregarding their size, the proposed alignment technique
signi�cantly improves the detection quality for aerial images. Using XQSA in the AAF framework
increased novel class mAP by 5 and 4 points on DOTA and DIOR, respectively. As it works better on
small objects but worse on large objects, it is less appropriate for natural images. As a consequence,
it shows lower improvements for Pascal VOC and MS COCO. Overall, XQSA largely improves on
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Figure 6.8: XQSA small and large objects matching asymmetry.

DOTA DIOR Pascal VOC MS COCO

All S M L All S M L All S M L All S M L

Base
Classes

FRW 23.18 8.60 27.84 32.22 35.60 2.60 23.04 50.82 37.93 6.54 22.84 50.49 15.60 5.47 18.84 27.83
DANA 26.63 11.43 30.73 37.62 36.39 3.48 24.93 52.31 39.12 7.28 25.37 51.39 22.46 10.22 29.72 36.51
XQSA 25.30 8.85 28.78 34.64 34.80 3.54 22.90 51.47 27.45 3.18 16.60 36.76 11.37 4.44 14.18 31.97

Novel
Classes

FRW 15.99 4.25 14.09 29.65 20.00 0.48 17.00 33.30 29.09 5.64 12.21 40.03 12.41 4.84 10.90 20.82
DANA 17.17 5.60 20.44 32.40 20.35 0.78 17.49 34.01 31.75 5.23 11.09 43.38 13.44 5.30 15.03 21.47
XQSA 21.04 7.91 25.18 26.49 22.78 0.97 20.97 34.78 25.07 6.40 12.74 35.15 10.33 4.87 10.04 16.72

Table 6.9: Performance comparison between XQSA, FRW, and DANA. mAP0.5:0.95 values are re-
ported separately for base (top) and novel (bottom) classes on DOTA, DIOR, Pascal VOC, and
MS COCO with K = 10 shots. mAP values are reported for All, Small (

√
wh < 32), Medium

(32 ≤
√
wh < 96) and Large (

√
wh ≥ 96) objects.
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Figure 6.9: mAP0.5 and corresponding RmAP values of the four best performing methods from all our
experiments. All methods are trained within our proposed AAF framework with data augmentation
which explains slightly higher performance for FRW and WSA. 10 shots are available for each class
at inference time.

existing works for aerial images. On DIOR, this corresponds to a 10 mAP point increase compared
to previous state-of-the-art [223]. However, this is not su�cient to �ll the performance gap with
natural images as presented in Fig. 6.9. This �gure extends Fig. 4.2 with XQSA results. While XQSA
improves upon other methods on aerial images, it is still far behind the performance of the regular
baseline. XQSA is better for small and medium objects but at the cost of lower performance on
large objects and base classes. Progress is still required to get more versatile FSOD solutions able to
handle small, medium, and large objects at the same time.

In complement to Tab. 6.8, we also provide the comparison between XQSA, DANA and FRW with
mAP0.5:0.95 metric and on the four datasets. These results are provided in Tab. 6.9. mAP0.5:0.95 is a
more demanding metric for object detection. It is especially hard for small objects as a few pixels
shift from ground truth can greatly reduce the IoU and therefore lead to a missed detection. This
intensi�es as the IoU threshold increases in the mAP computation.

For DOTA and DIOR, results with mAP0.5:0.95 are in agreement with results from Tab. 6.8 (i.e. with
mAP0.5). However, XQSA does not perform better than DANA on Pascal VOC and MS COCO novel
classes with mAP0.5:0.95. This is mainly due to the metric being too strict on small objects. This
questions the soundness of these metrics for FSOD, especially when dealing with small objects. We
will tackle this question in Chap. 8.
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6.3.4 XQSA Implementation Challenges and Extensions
XQSA is inspired by the ViT and resembles some FSOD techniques that leverage transformer atten-
tion as well. It is well-known that these mechanisms are computationally heavy and scale quadrat-
ically in terms of the number of locations in the feature maps. Here, it is slightly di�erent as we
combine the features from the support and query images. Support images are 4× smaller than query
images (see Sec. 6.2.4.1), therefore the complexity of the attention module is greatly reduced. Ac-
cording to the notations introduced in Sec. 6.3.1, the complexity of the XQSA alignment block is
O(nqns). As ns is way smaller than nq (roughly 16 times), this is way better than a self-attention
mechanism which would be O(n2

q). However, with XQSA, as features from all scales are concate-
nated, this remains computationally heavy, especially as this process must be repeated for each
support image. Unfortunately, this does not scale well as we increase the number of support exam-
ples. Time complexity rapidly becomes prohibitive, but memory complexity is more limiting. The
gradients of the Softmax used for the computation of the similarity matrices are extremely large
(O(nqn

2
s)) and do not �t on GPU memory when the number of support examples increases. To

bypass these limitations, we propose several tricks.

- Pytorchmanual gradient computation: automatic di�erentiation in Pytorch is not always
optimal. When successive computations involve the same gradients, Pytorch often computes
and stores them separately, wasting precious resources. To this end, we re-implemented the
XQSA block as a self-contained operation, with custom gradients computation to prevent
duplicated gradients. This results in slight memory and performance gains, but it is still not
enough to scale e�ciently with the number of support examples.

- Pytorch gradient checkpointing: Pytorch has an API to checkpoint the gradients during
the backward pass. It copies back the gradients on the CPU memory to prevent over�owing
the GPU memory. It solves the out-of-memory issues, but makes the training much slower.

- Deformable XQSA block: The alignment block is expensive due to the comparison between
all query feature locations and all support locations. Thus, we extend the XQSA block with
a deformable attention mechanism, inspired from ConViT [65]. Speci�cally, we introduce an
inductive bias inside the attention module by adding a layer that selects the locations that will
be compared between support and query feature maps. This resembles Deformable Convolu-
tions [61] and Deformable-DETR [60]. While this was solving both the memory over�ow and
training slowness, we were not able to achieve reasonable detection performance with it.

- Support class averaging: while this solution seems sub-optimal, it saves a lot of time and
memory by avoiding a lot of computation. Of course, it does not completely solve the scaling
issues (e.g., as the number of support classes increases). However, it allows adding a large
number of support images per class without any issues and performs well on the FSOD task.

Finally, we only keep the support class averaging as it is the simplest and best-performing alternative
tested.
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Figure 6.10: Support examples for base classes (K = 10). These are the examples used during the
detection inference that produced results from Fig. 6.13.

6.4 Qualitative Comparison within the AAF framework
In this section, we provide a qualitative comparison of the four attention-based methods that we
compared previously in Fig. 6.9: FRW, WSAAN, DANA and ours XQSA. To get a fair comparison,
we sampled the same support examples for each method and performed the detection on the same
query images. For convenience, we split the comparison in two, �rst on base classes and then on
novel classes. In both cases, we provide the support examples used for the detection in the �rst
�gure and the detection on a handful of images in the second �gure. These comparisons are visible
in Figs. 6.10 and 6.11 for base classes and in Figs. 6.12 and 6.13 for novel classes.

6.4.1 Base Classes Detection Quality
From Fig. 6.11, it is quite di�cult to assess which method is superior to the other. It seems quite
obvious that DANA and XQSA perform slightly better than FRW and WSAAN. However, there are
cases where neither DANA nor XQSA is the best (see the second row for instance). This is in line
with the quantitative results from the previous sections. The gap between these methods on base
classes is tight, it is therefore quite di�cult to correctly assess the quality of these methods from
only a handful of examples. It is worth noting that these techniques work quite well on the base
classes. Of course, there are some false positives, but the number of false negatives is limited, which
is quite important for intelligence applications.

6.4.2 Novel Classes Detection Quality
With novel classes, the performance di�erences are more visible than with base classes. First, it can
be seen that XQSA produces less false positives which indicates a higher accuracy. Then, XQSA also
provides more small detection than other methods. It sometimes gives false positives, but overall
it improves the detection of small targets (see the last row for instance). Interestingly, XQSA and
DANA are less sensitive to partial objects in the images (see �rst row). This may be explained by the
spatial information kept in the query-support combination compared to FRW and WSAAN. As the
whole object is available in the support examples, DANA and XQSA match all parts of the support
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Figure 6.11: Qualitative assessment of the detection quality of FRW, WSAAN, DANA and XQSA on
DOTA with K = 10 shots on base classes.
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features with the query features and detect only entire objects. It seems that this kind of matching
is much more robust than the global attention alone (FRW and WSAAN) as they showcase many
more false positives overall. Of course, the detection of small objects is still very challenging in the
FSOD setting which explains the relatively poor detection quality in these images. It is not easy
to objectively determine which method is the best at this, but a slight advantage seems in favor of
XQSA, con�rming quantitative results.

6.5 Conclusion
In this chapter, we have introduced a highly modular framework for implementing attention-based
FSOD methods. First, this framework allows fair comparison between the various attention mech-
anisms proposed in the literature. From our analysis, it seems that spatial alignment is crucial to
achieving high-quality FSOD, mostly because it does not lose the spatial information contained in
the support examples. Secondly, the AAF framework is a practical tool to design new attention
mechanisms. For that matter, we developed a novel cross-scales alignment layer within the frame-
work to speci�cally increase the detection performance on the small objects. The so-called XQSA
alignment allows us to achieve large improvements compared to the contemporary literature on
several datasets. It works especially well on aerial images as they contain smaller and more ob-
jects than natural images. Speci�cally, XQSA outperforms the state-of-the-art on DOTA and DIOR
datasets at that time.

Nevertheless, the attention-based methods are not completely satisfactory from an industrial per-
spective. While they achieve reasonable performance on aerial images, they have some disadvan-
tages. First, even if they can adapt to novel classes from a few support examples at test time, they still
require extensive �ne-tuning to perform correctly. This �ne-tuning can take up to several hours,
which is not convenient for "on-the-�y" adaptation. Then, the episodic training strategy is some-
what cumbersome and generates unrealistic scenarios. Indeed, during each episode, query images
are sampled so that they contain at least one instance of one of the episode classes. In real-case
applications, no object of interest can be visible in an image which makes the detection task more
challenging. But most importantly, only the episode classes are detected during the episode, the
detection task is, therefore, simpler as it only classi�es objects among a smaller number of classes.
Given these drawbacks, we investigate in the next chapter FSOD methods that do not employ the
episodic training strategy and therefore solely rely on a �ne-tuning scheme.
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Figure 6.12: Support examples for novel classes (K = 10). These are the examples used during the
detection inference that produced results from Fig. 6.13.
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Figure 6.13: Qualitative assessment of the detection quality of FRW, WSAAN, DANA and XQSA on
DOTA with K = 10 shots on novel classes.
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Chapter 7

Few-Shot Diffusion Detector via Fine-

Tuning

Abstract

Previous chapters explore few-shot object detection with metric learning and attention-based
techniques. This chapter focuses on the last major approach for FSOD: �ne-tuning. Based on
Di�usionDet, a recent detection framework leveraging di�usion models, we build a simple
but e�cient �ne-tuning strategy. The resulting method, called FSDi�usionDet, achieves
state-of-the-art FSOD on aerial datasets and competitive performance on natural images.
Extensive experimental studies explore the design choices of the �ne-tuning strategy to better
understand the key components required to achieve such quality. Finally, these impressive
results allow considering more complex settings such as cross-domain scenarios, which are
especially relevant for COSE.
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In Chaps. 5 and 6 we have proposed respectively metric-learning and attention-based approaches
to tackle the FSOD problem. Both of these directions were sensible choices given the state of the
FSOD literature at the beginning of this project. Since then, however, �ne-tuning approaches have
gained a lot of interest with competitive performance and reduced complexity. Following this trend,
we explore in this chapter a simple �ne-tuning strategy for FSOD. Based on the recent Di�usionDet
[74] model, we propose an e�ective �ne-tuning scheme for FSOD which outperforms all previous
methods on DOTA and DIOR datasets while being competitive with state-of-the-art on natural im-
ages. We begin with a brief presentation of the Di�usion Probabilistic Models (DPM) and their
recent progress in various generative tasks. Then we present in detail Di�usionDet, which tack-
les OD with a refreshing perspective, as a box-denoising problem. Following this, we present our
�ne-tuning strategy called Few-Shot Di�usionDet (FSDi�usionDet) and the results of multiple ex-
periments conducted to improve our strategy. Given the impressive performance of FSDi�usion-
Det in the few-shot regime, we broaden the scope of our analysis and study the more challenging
Cross-Domain FSOD task. We emphasize that the �rst two sections of this chapter present existing
works in the literature, while the last three sections discuss our contributions: the FSDi�usionDet
strategy, thorough experimental analysis of the strategy on several datasets, and its application in
Cross-Domain scenarios.

7.1 Di�usion Probabilistic Models Principle
Di�usion Probabilistic Models have been introduced in 2015 by Sohl-Dickstein et al. [199]. Their
principle is simple, to approximate a complex and intractable probability distribution, they model a
di�usion process from the original distribution to a normal distribution as gradual Gaussian noise
addition. Then, the goal is to �nd the reverse process to approximate the original distribution by
iterative denoising. In this section, we present the main concepts of the DPM [199] and their recent
advances in generative tasks, mostly led by Denoising Di�usion Probabilistic Models (DDPM) [200].

7.1.1 Forward and Reverse Di�usion Processes
First, let’s introduce a few notations. Our objective is to be able to e�ciently sample elements x
from a distribution P . When P is an arbitrary distribution, its Probability Density Function (PDF) is
intractable and sampling often relies on expensive Monte Carlo techniques. Here, we suppose that
there exists a random process q that transforms P into a normal distribution:

q(x) ∼ N (0, I). (7.1)

This is called the Di�usion Process and refers to the eponym physical phenomenon. The main
hypothesis is to assume that this process is a Markov Chain that adds Gaussian noise progressively:

xT = q(x1:T |x0), (7.2)
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where x0 ∼ P is an element sampled from the original distribution and xT ∼ N (0, I) is sampled
from a normal distribution. T denotes here the number of steps in the Markov chain and q(x1:T )

represents the joint distribution of variables x1 to xT . The di�usion process adds Gaussian noise
iteratively and therefore is de�ned as:

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1) with q(xt|xt−1) := N (
√

1− βtxt, βtI). (7.3)

The βt denote the variance schedule, i.e., the amount of gaussian noise added at each step. For
convenience, we also de�ne αt and ᾱt:

αt = 1− βt, (7.4)

ᾱt =
t∏

s=1

αs. (7.5)

q is called the forward di�usion process as it transforms x0 into noise (this is true only asymptotically
when T →∞). Thus, we can write for 1 ≤ t ≤ T :

xt =
√
αtxt−1 +

√
1− αtεt−1, (7.6)

=
√
αtαt−1xt−2 +

√
1− αtαt−1εt−2, (7.7)

= . . .

=
√
ᾱtx0 +

√
1− ᾱtε0, (7.8)

where the εi (0 ≤ i ≤ t− 1) are sampled from a normal distribution.

The reverse process instead transforms Gaussian noise into elements sampled from P . It is also a
Markov chain with Gaussian transitions (this is ensured for su�ciently small βt):

q(x0:T ) :=
T∏
t=1

q(xt−1|xt) with q(xt−1|xt) := N (µt,Σt). (7.9)

Unfortunately, the reverse process, or rather µt and Σt, are highly intractable and cannot be easily
estimated. However, we can approximate this process with a parametrized model pθ:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt|xt−1) with pθ(xt|xt−1) := N (µθ(xt, t),Σθ(xt, t)). (7.10)

Hence, if we �nd an optimal set of parameters θ so that the model is able to approximate the reverse
process expectation µt and variance Σt from variable xt and timestep t, then the reverse process
can be computed. Now, we must derive e�cient ways to estimate the reverse process.
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One solution is to leverage deep neural networks which are well suited for these kinds of tasks.
We will explain how such models can be trained to approximate the reverse process conditional
probabilities q(xt−1|xt). Note that the reverse process is initialized with a normal distribution:
p(xT ) = N (0, I). The forward and reverse di�usion processes are illustrated in Fig. 7.1, in the
context of image denoising. Before jumping to the next section to see how we can estimate such
models, we can observe that the reverse process distribution is tractable when conditioned on x0, it
will be useful for training:

q(xt−1| xt, x0) := N (µ̃t(xt, x0), β̃tI), (7.11)

with µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, (7.12)

and β̃t =
1− α̂t−1

1− α̂t
βt. (7.13)

Figure 7.1: Di�usion Processes illustration in the context of image denoising. Image taken from
[200, 302].

7.1.2 DDPM Training and Sampling
Now that we have introduced the forward and reverse di�usion processes, we can dive into the core
of DDPM and see how we can train models to approximate the reverse process. The overall goal is
to maximize the log-likelihood of the modeled data distribution pθ(x0):

θ∗ = arg max
θ

log(pθ(x0)). (7.14)

Unfortunately, the log-likelihood is not easily optimizable and several tricks are required to get a
more tractable objective. First, [199] makes use of the well-known Evidence Lower BOund [303]
(ELBO), which is lower bound to log-likelihood objective and more easily computable. In practice,
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we minimize the negative log-likelihood and leverage the evidence upper bound:

− log(pθ(x1:T )) = − log

(∫
pθ(x0:T )dx1:T

)
, (7.15)

= − log

(∫
pθ(x0:T )

q(x1:T |x0)

q(x1:T |x0)
dx1:T

)
, (7.16)

= − logEq
[
pθ(x0:T )

q(x1:T |x0)

]
, (7.17)

≤ Eq
[
− log

pθ(x0:T )

q(x1:T |x0)

]
= LELBO. (7.18)

Now, using the de�nition of the process pθ(x0:T ) and q(x1:T |x0), and Bayes’ rule, we can split the
objective for each timestep t and make it tractable:

LELBO = Eq

[
− log p(xT )

q(xT |x0) +
∑
t>1

− log pθ(xt−1|xt)
q(xt|xt−1,x0) − log pθ(x0|x1)

]
. (7.19)

Objective for timestep T , LT

Objective for timestep t− 1, Lt−1

L0

The previous equation is only valid because q(x0:T ) if a Markov chain and because the Markov Prop-
erty states that q(xt|xt−1, x0) = q(xt|xt−1). This is crucial, otherwise, the Bayes’ rule introduces
intractable terms (q(xt) and q(xt−1)). We refer the reader to Appendix A from [200] and Appendix
B from [199] for the detailed derivation of Eq. (7.19). Finally, the terms highlighted in gray and blue
in the above Eq. (7.19) can be interpreted as Kullback-Leiber Divergence terms:

LELBO = DKL (q(xT |x0)||p(xT )) +
∑
t>1

DKL (q(xt|xt−1, x0)||pθ(xt−1|xt))

+ Eq [− log pθ(x0|x1)] .

(7.20)
LT Lt−1

L0

These KL divergence terms are easy to compute as they compare only Gaussian distributions. This
gives an easy-to-optimize upper bound to train the di�usion models. Di�usion models are meant
to approximate the reverse di�usion process. One way to achieve this with neural network models
is to use the reparametrization trick introduced in [303]. The idea is to train a neural network to
output the mean and variance parameters of a Gaussian distribution and sample elements from the
estimated distribution. That way, the gradients can be computed through the stochastic sampling
operation. Here, we speci�cally learn two models able to predict the mean and variance parameters
µθ(xt, t) and Σθ(xt, t) conditioned on xt and timestep t. These two estimators are trained following
the ELBO objective which compares the estimated and reverse process distributions at each timestep.
In practice, this is achieved by randomly sampling a timestep and optimizing the model with the
corresponding loss function.
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To stabilize the training, authors from [200] propose to �x Σθ(xt, t) = β2
t I and introduce a few

simpli�cations in the loss. First, as the loss only involve KL divergence between Gaussians, it can
be written analytically:

Lt = Et,x0,ε
[

1

2‖Σθ‖22
‖µ̃t(xt, x0)− µθ(xt, t)‖2

]
. (7.21)

Another simpli�cation follows from observing that µ̃t(xt, x0) and µθ(xt, t) can be re-written as:

µ̃t(xt, x0) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εt

)
, (7.22)

µθ(xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
. (7.23)

This follows from Eqs. (7.8) and (7.11). Given this expression of µθ(xt, t), it is only necessary for the
model to estimate εθ(xt, t), the amount of gaussian noise added to xt−1 to produce xt. This explains
why di�usion models are especially well suited for denoising applications. Therefore, the loss can
be further simpli�ed as (using Eq. (7.8)):

Lsimple
t = Et,x0,ε

[
‖εt − εθ(xt, t)‖2

]
, (7.24)

= Et,x0,ε
[
‖εt − εθ(

√
ᾱtx0 +

√
1− ᾱtεt, t)‖2

]
. (7.25)

Note that the scaling term has been omitted from the last equation as the authors from [200] obtained
better results without it. The training procedure can be summarized in Algorithm 1. Finally, once
the model is trained, the sampling can be done from random noise and repeatedly applying the
reverse process. Using the model to estimate the noise added at each time step, we have:

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
. (7.26)

The sampling procedure is then de�ned in Algorithm 2. Please note that the formalism employed in
this section is identical to the one used in [200]. We could have referred the reader directly to this
article, but it seemed essential to recall the basic principles of di�usion models. For completeness,
we also cite the excellent blogpost [302] from which we drew some inspiration for the two previous
sections.

Algorithm 1 Di�usion Training procedure
while not converged do

x0 ∼ q(x0)
t ∼ Uniform({1, ..., T})
ε ∼ N (0, I) Take a gradient descent step on ∇θ‖ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)‖2

end while
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Algorithm 2 Di�usion Sampling Procedure
xT ∼ N (0, I)
for t = T, ..., 1 do

z ∼ N (0, I)

xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
εθ(xt, t)

)
+ β2

t z

end for
return x0

7.1.3 Recent Advances with Di�usion Models
In the previous sections, we have presented the di�usion models and how they can be trained to
learn complex data distributions. It was originally leveraged for image generation in [200], which
samples 2D random noise and progressively generates a sensible image. Plenty of consecutive works
have done the same with various improvements. In DDPM, the authors employ a denoising U-Net
to estimate the noise at each time step. This U-Net is replaced with visual transformers in recent
di�usion models [304]. With the above formulation, the sampling is expensive as it requires iterative
application of the denoising model to the whole image. Instead, Latent Di�usion Models (LDM)
[304] proposes to apply the di�usion process to the latent space to greatly reduce sampling time.
The authors leverage an encoder-decoder scheme to map the image space onto the latent space
and back. In addition, their formulation is well suited for latent manipulation and conditioning
the generation process with additional information such as text, other images, layout, etc. Other
approaches speed-up DMs with improved sampling such as strided sampling schedule [305], ODE-
based sampling [306, 307], and careful variance scheduling [308]. Alternatively, some contributions
reconsider the denoising di�usion process and leverage other corruption processes such as blurring
[309] or masking [310]. Another approach is to leverage non-Markovian di�usion process with
for instance Denoising Di�usion Implicit Models (DDIM) [311]. Similarly to LDM, [312] derives a
cascaded framework to scale up the generated image size. With these iterative improvements, DMs
largely outperform the state-of-the-art image generation in terms of quality. Up to now, this �eld
was mostly dominated by GANs (e.g., [313, 314]). GANs run faster, but the gap is getting smaller
and DMs overcome the GANs main issues: lack of diversity, training instabilities and mode collapse.

These techniques recently got a lot of attention out of the computer vision �eld with their associa-
tion with Large-Language-Models (LLMs) (e.g., CLIP [291], GPT [315] or T5 [316]). These models are
referred to as Visual Language Models (VLM), and combine the rich semantic latent space of LLMs
with image representation to perform text-to-image generation. They are embodied by Dall-E [317],
Flamingo [318] and Imagen [319], among others. These models are able to generate almost indistin-
guishable images (at least for the human eye) in an extremely controllable way. It is great for plenty
of applications, including for creative purposes. However, it also has a large societal impact as such
models can easily be misused (e.g., for deepfake generation) and are subject to questionable biases.
As an example for the previous claims, Fig. 7.2 provides a few examples of real and fake images
generated with various VLMs, guessing correctly which pictures are fake is quite challenging.
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Figure 7.2: Examples of real and fake images generated with di�usion approaches. We encourage
the reader to guess which images are real and which are fake. We provide the list of answers in a
footnote1on the next page to prevent any con�rmation bias.
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Of course, image generation is not the only task that can be handled with di�usion models. Gen-
eration of all kinds of modalities can be performed with DMs: music [320, 321], voice [322], text
[323], time series [324] or graphs [325]. In addition, DMs can also be leveraged for non-generative
tasks, such as image translation [326], inverse image problems [304] (application to inpainting), 3D
modelling [327]. Last but not least, they can also be used for predictive tasks such as segmentation
[328], and, of course, detection with Di�usionDet [74]. Thus, the next section will be dedicated to
explaining the principle behind Di�usionDet.

7.2 Di�usionDet for Object Detection
Di�usionDet [74] is a recently proposed model for object detection. It tackles the OD task using a
generative approach instead of seeing it as a regression task. The latter predicts the box coordinates
from the input image while the former generates the box coordinates conditioned on the image.
The di�erence is subtle, but not seeing the detection as a regression problem unlocks new designs.
The main idea of Di�usionDet is to apply the di�usion principle to the box generation. Random
boxes are �rst sampled, and a model is trained to re�ne iteratively the size and position of the boxes
so that they localize the objects in the input image, this is illustrated in Fig. 7.3. Speci�cally, the
boxes are iteratively denoised by the model. The di�usion process considered here is the same as
in Denoising Di�usion Implicit Models (DDIM) [311], which as mentioned in the previous section,
proposes a non-Markovian forward process that leads to the same objective as DDPM. The non-
Markovian property of the novel di�usion allows for much faster denoising. DDIM sampling is
then leveraged in Di�usionDet to iteratively denoise the boxes.

Speci�cally, the denoising part of Di�usionDet is a lightweight hybrid network, it consists of a
self-attention layer (transformer-like) followed by a dynamic layer (called an Instance Interaction
layer). The di�usion/detection head is �nally split into two branches, one for classi�cation and one
for regression. Both branches are implemented as small MLPs. The input to the head is computed
from the input images features extracted with a backbone network. The backbone is a ResNet-50
with a three level FPN attached on top. Before being fed to the detection head, object features are
pooled from the entire feature map with RoI Align module. The detection head processes object
features independently, but the Instance Interaction layer enables interactions between instances.
The detection head is applied iteratively to re�ne the bounding boxes. The initial bounding boxes
are sampled randomly from a normal distribution. The regression branch of the head is trained to
predict the noise between the true boxes and the current boxes. After each iteration, the boxes are
updated following the DDIM sampling strategy. Only a small number of iterations is required to
get satisfactory boxes (the original paper provides experiments with between 1 and 8 iterations).
A renewal process also replaces boxes with small con�dence scores with random ones after each
iteration to prevent duplicated or erroneous boxes. The dynamic layer injects features from the
previous iteration into the computation of the adjusted boxes. The current time step is encoded

1Real images are images: A, B, G, H, L and N, others have been generated with Midjourney or Dall-E.
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Figure 7.3: Illustration of Di�usionDet principle, �gure taken from [74]. (a) di�usion process, (b)
di�usion process for image generation with DDPM and (c) Di�usionDet principle, random boxes
are denoised to locate objects in the image.

into a time embedding using a lightweight MLP. These embeddings are then used to compute scale
and shift vectors to transform the object features and condition the model. We provide a detailed
architecture diagram in Fig. 7.4.

The training is done in a similar fashion as in DDIM, except for the loss function which is designed
for object detection. First, a timestep is sampled randomly, then the right amount of noise is added
to the ground truth boxes and the model is optimized using a classical loss function for detection
(a combination of Generalized IoU, L1 loss on box coordinates and cross-entropy for the labels). As
the number of predicted boxes is �xed, a set-to-set matcher is employed to build target-prediction
pairs with similar functioning as in DETR [59]. The loss is then computed on the selected pairs as
done in any detection framework.

Figure 7.4: Di�usionDet architecture and detailed detection head design.
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Di�usionDet has a hybrid structure, it only has one stage, yet it does not predict boxes and labels
densely as common one-stage detectors. The box denoising formulation allows for replacing the
�rst stage (i.e., the RPN) with a much more naive approach: random box sampling. The iterative re-
�nement of the boxes is able to compensate for the poor initial positioning of the boxes. In a sense,
Di�usionDet resembles two-stage detection frameworks that leverage iterative bounding box re-
gression such as CRAFT [329], Object Detection via Multi-region model [330], or Cascade R-CNN
[331]. The main di�erence between these models and Di�usionDet is the direct box prediction.
Instead of outputting re�ned box location, Di�usionDet is trained to predict the shift between the
current boxes and the corresponding ground truth. This does not seem signi�cant, but it is much
more adapted to the iterative regression procedure. First iterative methods propose using the same
detection head repeatedly to get better and better boxes. However, the head is trained directly to out-
put correct boxes, no matter how o� they are in the �rst place. Di�usionDet instead conditions the
model with the timestep embedding so that it knows how much noise should be removed from the
boxes. With this trick, it can reuse the same head without any issues. Conversely, Cascade R-CNN
makes use of decoupled heads for each iteration to account for di�erent re�nement magnitudes;
however, it signi�cantly increases the model size.

7.3 Few-Shot Di�usionDet
Now that we have reviewed the basic principles of di�usion models and presented Di�usionDet we
can see how it can be leveraged for FSOD. In this chapter, we propose an adaptation of Di�usion-
Det in the few-shot setting, based on �ne-tuning. Fine-tuning has become increasingly popular in
FSOD throughout the last two years (see Tab. 3.1). Simple �ne-tuning strategies are now competi-
tive with elaborated attention mechanisms. Another motivation for trying a �ne-tuning approach
is to study techniques from the three main directions in FSOD. Chaps. 5 and 6 respectively focus
on metric-learning and attention-based methods. The last kind of FSOD approach in the literature
relies on �ne-tuning. While such a strategy is not very innovative, this is one of the �rst appli-
cations of a di�usion-based approach to a few-shot predictive task. In addition to the �ne-tuning
strategy, we propose a transductive inference scheme to boost the performance of the �ne-tuned
model. However, these are only preliminary work and do not yield the expected results yet. Fi-
nally, we also investigate an attention-based extension of Di�usionDet, while promising on paper
the experimental study demonstrates poor results.

7.3.1 Fine-tuning Strategy for Few-Shot Di�usionDet
We present in this section the �ne-tuning strategy that we propose to adapt Di�usionDet to the
few-shot regime:

1. Train Di�usionDet in a regular fashion on a dataset containing only examples of the base
classes.

2. Once base training is done, replace the classi�cation layer with a randomly initialized layer
with as many output neurons as the number of novel classes.
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3. Freeze the entire backbone and let only the detection head be updatable. This choice is not
optimal and will be discussed in the next section, however, we present here the baseline con-
�guration.

4. Reset the learning rate scheduler, so it goes again through a warmup phase. The scheduling is
a simple linear warmup starting at 1

1000 of the base Learning Rate (LR) and linearly increasing
up to the base LR value during 1000 iterations.

5. Fine-tune the model withK images for each novel class. All instances of the novel classes are
kept while instances from other classes are discarded. This corresponds to the distractor-free
sampling scheme discussed in Sec. 4.1.

As our goal is not to tackle the Generalized Few-Shot setting, we are mostly interested in the per-
formance on novel classes. Of course, one might want to detect base classes as well, in this case, it is
possible to keep a version of the model after base training and leverage it for base classes detection.
Of course, it would require twice as much time to perform the inference to detect both base and
novel classes, but this is a mild compromise compared to common issues raised by G-FSOD.

Fine-tuning is part of most FSOD methods as the adaptation of the regression part of the mod-
els cannot be easily done on the �y (conversely to the classi�cation part). However, �ne-tuning
attention-based or metric learning models is often quite long in comparison with "simple" �ne-
tuning strategies which directly �ne-tune object detectors on the support set without expensive
additional components (e.g., a query-support attention block). This makes the �ne-tuning faster
and unlocks much quicker iterations and experiments. Nevertheless, �ne-tuning approaches can-
not be adapted at inference time and therefore, it is di�cult to measure the robustness to various
support examples. Thus, multiple �ne-tunings are required to get a relevant evaluation of a model,
otherwise, the randomness of the support set can introduce some variance and the comparison is
less reliable. In practice, �ne-tuning with di�erent support does not signi�cantly change the per-
formance of FSDi�usionDet.

While the proposed strategy is fairly simple, it yields impressive results. We provide in Tab. 7.1 a
comparison between the FSDi�usionDet baseline and the discussed methods from previous chapters.
It outperforms largely the metric-learning and attention-based methods on aerial images. On natural
images, the gains are reduced but FSDi�usionDet is still superior (especially for MS COCO where
the problem is now a 20-ways detection problem and not a 5-ways task as in previous chapters). A
detailed analysis is conducted in the next section to understand why it performs so well and how it
can be improved further.

Another advantage of FSDi�usionDet compared with attention methods is its memory e�ciency.
Indeed, query-support combination blocks and support embedding models require a lot of memory
while training and often scale linearly with the number of classes (N ) and the number of shots K .
FSDi�usionDet is not limited by the number of shots and therefore, we can explore much higher shot
settings than with metric-learning or attention-based methods. Tab. 7.2 provides the novel classes
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DOTA DIOR Pascal VOC MS COCO

Method Base Novel Base Novel Base Novel Base Novel

FRW 49.04 35.29 61.30 37.29 63.21 48.72 29.03 24.09
DANA 53.99 36.50 62.71 38.18 65.17 52.26 38.14 24.75

WSAAN 46.72 35.12 62.79 32.38 65.27 51.70 40.87 21.42
PFRCNN 36.32 11.55 42.37 9.16 - - - -

XQSA 51.11 41.00 59.88 41.51 62.13 53.94 31.56 25.03

FSDi�Det 69.58 52.05 81.71 54.32 74.63 52.64 51.91 24.99

Table 7.1: FSDi�usionDet baseline compared with other FSOD methods. mAP is reported with a 0.5
IoU threshold and all methods leverage 10 shots.

K DOTA DIOR Pascal VOC MS COCO

1 4.19 27.17 22.24 7.43
2 9.83 40.31 31.98 12.45
3 27.61 43.54 29.52 15.75
5 39.00 46.92 38.08 19.33
10 52.05 54.32 52.64 24.99
20 62.79 60.24 59.26 28.76
30 67.32 65.28 64.19 31.19
50 71.91 71.21 67.81 34.64
100 72.27 77.05 71.31 38.77

Table 7.2: In�uence of the number of shots on the few-shot object detection performance of FSDif-
fusionDet on DOTA, DIOR, Pascal VOC and MS COCO. Performance is reported with mAP0.5.

performance on our four datasets of interest. The base class performance is not reported here as they
do not depend on the number of shots, they can be found in the last row of Tab. 7.1. One can observe
a smooth increase in performance with the number of shots with a plateau above 50 shots. To better
visualize this trend and compare it with attention-based methods studied in Chap. 6, we plot in
Fig. 7.5 the performance against the number of shots. From this, it can be seen that the performance
is much lower in the one-shot setting with FSDi�usionDet compared to attention-based approaches.
However, FSDi�usionDet quickly catches up and outperforms largely other methods in higher shots
settings. In addition, we can observe a much quicker increase in performance as the number of
shots increases with FSDi�usionDet. This is a highly desirable property in an industrial application
because this means that the model has more potential for improvements. On the contrary, attention-
based approaches do not display such a strong trend, they are better suited for extremely low-shot
regimes, but become less e�ective with higher shots.

7.3.2 Experimental Study of FSDi�usionDet
In the previous section, we have presented an e�cient �ne-tuning strategy for Di�usionDet along
with an analysis of its few-shot performance on several datasets. However, this is only a baseline
for FSDi�usionDet and its performance can be improved further. Its fast training time allows for
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Figure 7.5: Performance of FSDi�usionDet, XQSA, FRW, DANA and WSAAN on DOTA, DIOR, Pas-
cal VOC and MS COCO against the number of shots. Performance is reported with mAP0.5.
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Backbones DOTA DIOR Pascal VOC MS COCO

Scratch 7.28 8.72 13.72 0.38
ImageNet 52.05 54.32 52.64 24.99

DINO 46.84 55.88 54.58 23.94
CLIP 40.36 51.61 49.81 19.83

Table 7.3: Study of the in�uence of the backbone pre-training. mAP0.5 is provided only for base
classes, therefore the blue and red colors to distinguish between base and novel classes are no longer
required.

conducting more experiments, which was too expensive with metric-learning and attention-based
methods. Thus, we present in this section a series of experiments that we conducted to explore the
capabilities of FSDi�usionDet but also to answer more general questions about FSOD.

7.3.2.1 Backbone Weights Initialization
First, in classi�cation, it is now well-known that using self-supervised pre-trained backbones often
boost a lot the few-shot performance of a method [113, 332, 68, 291]. While plenty of studies show
this for classi�cation, for detection, the transferability of the learned features is not so evident. As
a matter of fact, a few contributions actually show that using such backbones is sub-optimal. For
instance, InsLoc [333] and SoCO [334] propose object-level self-supervised techniques and prove
empirically that image-level SSL is not optimal and in some cases can even be detrimental to the
detection task. In this section, we study empirically the in�uence of using SSL pre-trained weights
for the backbone initialization, before base training and �ne-tuning. We do not consider the recent
object-level techniques and instead leverage four di�erent initialization strategies for the backbone
weights:

- Scratch: weights are randomly initialized.
- ImageNet: weights are initialized from a ResNet-50 trained in a supervised manner for Ima-

geNet classi�cation.
- DINO: weights from the DINO [68] pretraining on ImageNet.
- CLIP: weights taken from the CLIP [291] model, trained in a contrastive way on a 400 million

image-text pairs dataset.

Then, FSDi�usionDet is trained following our two steps training scheme (base training and �ne-
tuning). The results are available in Tab. 7.3. From this, it is quite clear that training from scratch is
not a sensible option, even though base training is correct, the �ne-tuning on base classes provides
really poor detection performance. Then, between Imagenet, DINO and CLIP the di�erences are
tight. Of course, CLIP’s weights are slightly worse than ImageNet and DINO, but it is still a strong
baseline. Between ImageNet and DINO, however, it is di�cult to conclude as both achieve the
best performance on one aerial and one natural dataset. As the performance gap is thin between
ImageNet and DINO, we choose to conduct our next experiments with ImageNet weights which
have stood the test of time and are now the default choice in computer vision.
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7.3.2.2 Plasticity Analysis
The number of parameters frozen in the model is sometimes called the plasticity of the model in the
continual learning �eld, but this concept may also be useful in the few-shot setting. For simplicity,
we measure the plasticity of the model as the ratio between the number of trainable parameters over
the total number of parameters. Plasticity close to 1 means that the model is malleable and could
learn new complex tasks. However, when it is close to 0, the model can barely change and learning
new tasks may be di�cult.

The plasticity is commonly explored in �ne-tuning strategies for few-shot tasks. The underlying
principle is that the task is learned during base training, and �ne-tuning is only used to adapt the task
to novel classes. Hence, the behavior of the entire model should not change dramatically. Therefore,
the plasticity of the models is often quite low in the FS literature. In practice, the early stages of the
model are kept frozen while only the deeper layers are trained. This trick is well-motivated as it
drastically reduces the capacity of the model and thus prevents over�tting, which is particularly
severe in low-shot regimes. In addition, it also reduces catastrophic forgetting, which can be quite
a challenge in G-FSOD.

However, this may be inadequate for the detection task. As the detection is primarily a problem
of �nding what is and what is not an object of interest, the backbone is trained as a feature �lter.
Features from classes of interest are highlighted while others are faded out. Conversely, for classi�-
cation, backbones are not required to learn such a �ltering process as all classes are "of interest", and
there is always one object of interest in the image. In addition, some recent experiments [284] about
freezing settings in cross-domain scenarios show that improved performance is achieved with in-
creased plasticity. In this work, the authors only study three freezing settings: �ne-tuning only the
last layer (as proposed in TFA [258]), �ne-tuning only the detection head (proposed in FSCE [254]),
and �ne-tuning the whole model (their proposition). Here, we investigate the freezing setting in a
more detailed manner with several intermediary setups, but the main di�erence is that we conduct
this analysis on the same image domain:

- Fine-Tune last layer only: �ne-tune only the last regression and classi�cation layers.
- Fine-Tune head only: �ne-tune only the detection head.
- Up to stage i: Freeze backbone up to stage number i (i ∈ J1, 5K as ResNets have 5 stages).
- Fine-Tune whole: �ne-tune the whole model.
- Bias only: �ne-tune only the backbone biases.
- BatchNorm only: �ne-tune only the backbone BatchNorm parameters.

The results of this comparison can be found in Tab. 7.4. It reports the mAP with di�erent freezing
strategies on DOTA, DIOR, Pascal VOC and MS COCO. Additionally, the plasticity rate is reported
for each freezing strategy. Two distinct behaviors are observed here. First, on DOTA, as the plastic-
ity increases, the FSOD performance increases as well. On DIOR, Pascal VOC and MS COCO, lower
plasticity is optimal (�ne-tuning the detection head and the last stage of the backbone). Therefore,
the �ne-tuning strategy cannot be set once for all datasets. It is therefore crucial to understand what
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Freezing point Plasticity rate DOTA DIOR Pascal VOC MS COCO

FT whole 100.00 % 60.09 52.17 43.10 17.15
Bias only 35.98 % 60.45 55.12 49.90 20.19
BatchNorm only 35.97 % 59.35 55.63 51.96 19.70
Up to stage 1 99.98 % 58.85 53.37 43.81 17.72
Up to stage 2 99.47 % 57.41 53.21 41.23 17.73
Up to stage 3 96.57 % 59.88 54.36 47.57 19.49
Up to stage 4 79.66 % 56.13 57.51 53.72 21.88
FT head only 35.97 % 51.82 55.70 51.72 19.96
FT last layer only 0.03 % 0.05 0.11 0.53 0.01

Table 7.4: In�uence of the amount of plasticity on the FS performance on DOTA, DIOR, Pascal VOC
and MS COCO. mAP is reported with a 0.5 IoU threshold.

di�ers in DOTA from the other datasets. As the task and the images remain similar between base
training and �ne-tuning, the only source of variability comes from the class splits. Our hypothesis
here is that base and novel classes in DOTA are less compatible (i.e., less alike) than in the other
datasets. For Pascal VOC, we brie�y discuss this aspect in Sec. 6.2.5.2, where we observed surpris-
ingly high mAP for the novel class sheep as the class horse was in the base set. A more quantitative
way of measuring the compatibility between the base and novel class sets would be required to draw
reliable conclusions about this. We are currently working on this.

In addition, we observe that �ne-tuning the backbone entirely is often a sub-optimal choice. In-
stead, higher (or at least competitive) results are achieved by �ne-tuning only the biases or the
batch normalization parameters of the backbone. Fine-tuning only the biases or the batch normal-
ization parameters in the backbone does not change much the plasticity as only a few parameters
are concerned, yet it seems to provide a bene�cial adaptability to the entire backbone. On DIOR,
Pascal VOC and MS COCO, it provides very high mAP compared to other settings with similar plas-
ticity. Finally, �ne-tuning only the very last layer of the classi�cation and regression branches is
completely sub-optimal. Strangely, this contradicts some FSOD models that adopt this strategy and
achieve reasonable performance (e.g., TFA [258]). With FSDi�usionDet, this strategy achieves ex-
tremely poor detection, having too small plasticity must be avoided. Thus, a plasticity compromise
must be found depending on the dataset and its split compatibility.

7.3.2.3 Number of Proposals
Another set of experiments explores the in�uence of the number of proposals for FSOD. The pro-
posals are the boxes sampled at the beginning of the di�usion process. The number of proposalsNp

represents the maximum number of objects that the model can detect in one image. This number is
chosen large compared to the average number of objects in the images. Intuitively, sampling more
random boxes reduces the chances of missing an object. However, having a higher number of pro-
posals generates more duplicates which can be detrimental as well. More proposals also lead to a
higher training time and memory usage as the denoising process is applied on all boxes. The critical
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# of Proposals DOTA DIOR Pascal VOC MS COCO

200 41.57 52.92 52.86 23.24
250 47.97 47.62 52.28 22.61
300 55.76 51.77 51.81 22.46
350 52.27 50.41 50.63 22.13
400 46.49 49.98 50.55 20.04
450 53.11 53.07 51.06 20.48
500 52.03 55.31 51.44 20.25

Table 7.5: Analysis of FSDi�usionDet performance (mAP0.5) against the number of proposals on
DOTA, DIOR, Pascal VOC and MS COCO datasets.

parts are the self-attention layers that scale in O(N2
p ). Thus, we investigate the few-shot perfor-

mance of FSDi�usionDet with various numbers of proposals. The results of these experiments are
available in Tab. 7.5. We notice two di�erent behaviors between natural and aerial images. For nat-
ural images (Pascal VOC and MS COCO), it seems better to set the number of proposals relatively
low compared to aerial images. This makes sense as there are more objects in aerial images. For
natural images, the detection quality increases as the number of proposals is reduced, and it may
be relevant to test what happens with even fewer proposals. However, with aerial images, the per-
formance does not seem to correlate well with the number of proposals. It is relevant to mention
that the results on MS COCO are opposite to what the authors of Di�usionDet found in the regular
data regime (increasing the number of proposals increases the mAP). This could be explained by
the reduced number of objects in the images, as in the few-shot regime we consider only the novel
classes, many instances are discarded and fewer proposals are required to detect the objects.

7.3.2.4 Other Experiments and Future Directions
In addition to the previous experiments, we conduct several other studies to further improve the
detection capabilities of FSDi�usionDet. However, some of these studies did not yield very rele-
vant insights, some others were not explored deeply enough due to the time constraint of this PhD
project. We brie�y present these experiments that will pave the way for future improvements of
FSDi�usionDet.

Learning Rate Sweeping.
First, just as proposals, freezing sweet spot and backbone pre-training, we studied the in�uence of
the Learning Rate (LR) and its schedule on the FSOD performance. Indeed, the choice of the LR
value during the �ne-tuning is not trivial. Therefore, to make sure we get a good �t for our experi-
ments we conduct a LR sweeping, i.e., we try several di�erent values for the LR. This experiment is
conducted only on DOTA withK = 10 for simplicity, but in theory, it should be done for every new
experiment. Indeed, following the nomenclature from the recent Deep Learning Tuning Playbook
[335], the learning rate is a nuisance parameter, meaning that to make a fair comparison between
various settings, the optimal LR should be found for all runs individually. As we change some hy-
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Learning rate Constant Schedule Cosine Annealing

1e−6 39.04 29.45
5e−6 49.06 45.32
1e−5 52.31 49.33
5e−5 53.46 52.99
1e−4 53.25 51.96
5e−4 49.33 52.51
1e−3 47.45 47.82

Table 7.6: Learning rate sweeping on DOTA dataset with K = 10 shots. Two distinct schedulers
are considered: constant and cosine annealing. Performance is reported with mAP0.5.

perparameters, it is likely that the optimal learning rate changes as well, therefore fair comparison
can only be achieved if the LR is optimal for all runs, e.g., the optimal learning rate for K = 1 or
K = 100 shots may not be the same. Even though �ne-tuning methods are fast to adapt, running
such an LR analysis is very expensive. Nevertheless, running an LR sweeping on DOTA provides
insights into how it in�uences the FSOD performance. The results can be found in Tab. 7.6, and
show an optimal value around 5e−5. But most importantly, it shows a relatively large area where
performance is satisfactory. This comforts us in our choice of �xing the LR for all our experiments.
While this is probably not the optimal choice, it is reasonable. We also tried a cosine annealing
scheduler, but it yields consistently inferior results and was then rejected. Its only advantage is that
it seems to deal better with higher LR, which makes the training slightly faster.

Proposal Prior Distribution.
In Di�usionDet, the coordinates of the proposals are sampled randomly following a normal distri-
bution. The coordinates of the boxes are clamped with a scale parameter ς to make sure the center
of each box remains within the image limits. Speci�cally, we have:

w = (clamp(εw,−ς, ς)/ς + 1) /2, (7.27)

h = (clamp(εh,−ς, ς)/ς + 1) /2, (7.28)

x = (clamp(εx,−ς, ς)/ς + 1) /2− w

2
, (7.29)

y = (clamp(εy,−ς, ς)/ς + 1) /2− h

2
, (7.30)

with εx, εy, εw, εh ∼ N (0, 1). (7.31)

By default, ς is set to 2, but it would be interesting to explore how it changes the FSOD performance.
Indeed, as ς → 0 the boxes are more and more identical and their centers tend to approach the image
corners, as ς → ∞, the boxes are more and more aligned with the image center. It could also be
relevant to explore the use of a uniform sampling instead of a Gaussian distribution. This would
prevent having a bias toward the image center as it happens with high values of ς . In fact, the use
of ς close to 1, is relatively close to a uniform distribution. This is illustrated in Fig. 7.6.
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The setting of ς slightly changes the di�usion process as the boxes are generated from clamped
Gaussian distributions and not regular Gaussians. Most of the derivations detailed in Sec. 7.1 hold
only for gaussian distributions and therefore using small values of ς or uniform prior may disrupt
the di�usion process. We did not have time to conduct these experiments yet, but this is planned
as future work. Another consideration is the size of the generated boxes. In the above, the size of
the proposal is randomly sampled and has an expected value of half the image size. This may not
be optimal, especially when applying FSDi�usionDet on aerial images with small objects. Hence,
we propose to introduce a proposal scaling parameter $ that divides the width and height of the
proposals:

w′ =
w

$
, (7.32)

h′ =
h

$
, (7.33)

where w′ and h′ are the scaled width and height of the sampled boxes. Of course, as small proposals
may not cover the whole image, their number must be increased to prevent missing objects. Going
further, we can also imagine a mixture of width and height distribution to sample proposals with
signi�cant size di�erences, which is not achieved in practice yet as shown in Fig. 7.6. Fig. 7.7 shows
how the proposals would change with $, with ς = 2 �xed.

Transductive Inference.
To further improve the FSOD performance of FSDi�usionDet, we also consider designing a trans-
ductive inference scheme inside the detection framework. To our knowledge, this would be a �rst
in the FSOD domain. Of course, the transductive setting is slightly di�erent from the regular few-
shot inference as it requires access to a large set of query images during the inference. The goal
is to detect objects in these images, but these unlabelled images can be leveraged to improve the
detection on the entire set. This setup makes a lot of sense for COSE’s application. Indeed, the very
large images of COSE cannot be processed as a whole, instead, they must be cropped into smaller
patches. This means that a relatively large number of images are to be processed at the same time
(11600× 8700 pixels images can be cropped into roughly 400 patches of 512× 512 pixels). Hence,
studying transductive inference is of particular interest to the company.

First of all, in classi�cation, the transductive inference is often used in replacement of a �ne-tuning
step and allows for direct adaptation of a model to a new task or domain (see Sec. 2.2.1.6 for more
details). This is prohibited in the detection context as the regression branch must be �ne-tuned
anyway. Thus, our goal is to improve the classi�cation part once the model has been �ne-tuned. To
this end, we propose to adapt LaplacianShot [162] to work with representations of objects instead
of representations of entire images. Speci�cally, the Laplacian Shot Module (LSM) replaces the
classi�cation layer of the model. As input, LSM receives a set of all objects representation detected
in the query set (using the boxes produced by the regression branch) and the representation of the
annotated support examples. Then, LSM optimizes an objective function to �nd an optimal label
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Figure 7.6: Di�usionDet initial random boxes with various values of ς , the parameter that controls
the spread over the images. 75 proposals are sampled per image.

Figure 7.7: In�uence of $ on the size of the proposals. Note that here 200 proposals are sampled,
for visualization purposes.
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assignment Y of all query examples (in our case all objects found in the query set):

LLSM(Y) =

|Q|∑
i=1

|Cnovel|∑
c=1

lcid(zi,mc) +
1

2

∑
i,j

η(zi, zj)l
T
i lj , (7.34)

where zq and lq are the extracted features and classi�cation score vector for object q, respectively. Q
represents the set of object representations in the whole query set, d is a distance measure (e.g., the
euclidean distance between objects representations), and η is a similarity function in the embedding
space (in practice, it is chosen as a binary k-NN, i.e., a vector has a similarity of 1 with its k nearest
neighbors and 0 with all others). Finally, mc is the representation of class c, it is computed as the
average over the support representations of that class. Intuitively, this objective function �nds a
compromise between assigning to an unlabelled object the label of the closest support example and
assigning the same label as its neighbors.

As a �rst comparison, we leverage four distinct inference setups for detection:

- Fine-tuning Inference (FI): boxes and classi�cation scores output by the �ne-tuned model.
- Transductive Inference (TI): boxes from �ne-tuned model and classi�cation score from the

Laplacian Shot Module.
- Hybrid Transductive Inference (HTI): boxes from �ne-tuned model and classi�cation

scores as a combination (e.g., element-wise multiplication) of LSM and �ne-tuned model.
- Optimal Classi�cation (OC): boxes from the model and optimally matched labels from the

ground truth. It can be seen as an oracle, it is a performance upper-bound given the quality
of the regression.

We assume above that for the detection task, the regression branch must be �ne-tuned otherwise
performance is highly degraded. To con�rm this assumption, we compare the four inference settings
described above using a model that has only been base-trained against a model that was �ne-tuned
on the novel classes. This is done on DOTA withK = 10 shots. The results are available in Tab. 7.7.
From that table, it is clear that the �ne-tuning of the regression branch is crucial to achieving rea-
sonable performance. In particular, the oracle (OC) is highly degraded when the regression branch
is not �ne-tuned. Interestingly, in this case, TI achieves higher mAP than the non-�ne-tuned clas-
si�cation branch of the model. It makes sense as this layer is only initialized with random weights.
However, one can see that the TI is largely under the FI when using the �ne-tuned regression branch.
The classi�cation made by the LSM is therefore worse than the �ne-tuned classi�cation branch. A
quick investigation of the classi�cation scores shows that the scores output by TI di�er signi�cantly
from FI (see Fig. 7.9). The �ne-tuned model outputs a large number of very small classi�cation scores
which mostly correspond to background objects. Hence, they are �ltered out by the post-processing
(score thresholding and NMS), and the remaining ones will have a negligible impact on the mAP
computation. TI, however, outputs much higher scores, with a greater variance. It struggles to dis-
tinguish foreground and background objects, and for good reason, it was designed for classi�cation
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and not detection. To this end, we propose HTI, a hybrid classi�cation inference that leverages
both the score from the �ne-tuned model and the transductive inference. Hopefully, it will �x the
mistakes from the �ne-tuned classi�cation layer while avoiding the TI’s pitfall. To do so, we simply
multiply the scores from FI and TI together. Thus, the good foreground/background distinction from
FI is embedded in the new score distribution. This helps a lot for the classi�cation; however, it is
still under the FI performance. From this, it seems that TI is only detrimental to classi�cation. TSNE
representations of the embedding space help to make sense of these results. These can be found in
Fig. 7.8 for FI, TI and HTI, and the Oracle.

One can see large patches of the cluster representing the class 2 misclassi�ed as class 14 by both
TI and HTI. The prototype of class 2 seems closer to these misclassi�ed points in the TSNE vi-
sualizations, but the distances must be interpreted carefully as two dimensions are not enough to
represent the entire complexity of the representation space (dimension 256). Yet, it seems that the
distributions of the classes in the embedding space are multimodal, therefore it may be impossible
to accurately classify the objects with only one prototype per class. Leveraging multiple prototypes
per class should be investigated in future work.

In addition to HTI, we also tried to �lter the objects with low FI scores (with a threshold at 0.05),
this greatly helps for the transductive inference although it reduces slightly the performance of FI
(some objects are correctly detected but have a low score but are �ltered anyway). With �ltering
and HTI, we almost reach the same performance as the FI which is encouraging. However, the goal
is to bene�t from the transductive inference and this is not achieved yet. More analysis needs to
be conducted to better understand the reason behind the poor classi�cation score of TI. In addition,
the transductive inference should be extended to account for the detection challenges: a great fore-
ground/background imbalance and an increased intra-class diversity. To this end, we have a few
ideas that we did not have time to explore yet:

- Geometric priors: leverage the geometrical features of the objects (e.g., size, aspect ratio,
etc) to �nd outliers and exclude them without using a hard score thresholding. This could
signi�cantly reduce the number of objects and help to �lter ill-formed boxes.

- Multiple prototypes per class: instead of aggregating all support examples of one class as
one prototype, use multiple prototypes per class and extend LSM as a mixture model.

- Background class: Introduce a background class within the LSM module to prevent the poor
foreground/background distinction.

These tracks will be explored during the last months of this PhD project and will hopefully improve
further the detection capabilities of FSDi�usionDet. In addition, we plan to apply the transductive
inference in Cross-Domain scenarios, as it could help against the performance drop in these settings.

Support Attention.
Finally, we also try to extend FSDi�usionDet with an attention mechanism (e.g., XQSA). The main
motivation is to be able to compare the in�uence of the detection framework on attention-based
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Figure 7.8: Comparisons of the TSNE visualizations of the �ne-tuned model predictions (FI), trans-
ductive inference (TI), hybrid inference (HTI) and the oracle. Note that background predictions are
only available for the oracle as the models’ inferences only provide class scores.
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Figure 7.9: Comparisons of the scores histograms of �ne-tuned model predictions (FI), transductive
inference (TI), and hybrid inference (HTI).

Training Strategy FI TI HTI OC

Base training only 0.04 3.79 2.56 25.42
Base training + FT 58.98 33.61 53.90 67.35

Base training + FT + Filtering 57.95 43.63 57.00 67.35

Table 7.7: Naive comparison between a model only trained on base classes against a model that
has been �ne-tuned as well. All 4 inference setups are compared as well. Bold values represent the
best-performing method between FI, TI and HTI, the Oracle (OC) is not included. Performance is
reported as the mAP0.5

FSOD methods (in Chap. 6, we studied the in�uence of the attention mechanism with a �xed detec-
tion framework). Given the impressive results of FSDi�usionDet with a simple �ne-tuning strategy,
this is promising.

Thus, we extend the detection head with a query-support block which is meant to incorporate the
support features within the detection head. The head is then split and boxes are produced for each
class independently (following the attention-based FSOD principle, see Fig. 6.1). Unfortunately, this
does not yield satisfactory results and slows down the training a lot. Considering the time already
spent on attention mechanisms since the beginning of the project and the very good performance of
FSDi�usionDet with the �ne-tuning, we decided not to explore this direction further. Nonetheless,
this remains an interesting direction for future work.

7.3.3 Comparison with existing FSOD Methods
In the previous section, we explored several design choices for FSDi�usionDet and analyzed how
they in�uence the detection performance on novel classes. We compare here the best settings for
FSDi�usionDet according to our experiments conducted in the previous section. These experiments
are averaged over 5 distinct seeds to get more reliable results. This contrasts with the above experi-
ments which are mostly done with one seed only. However, the limited variance observed over the
multiple runs con�rms that previous results are reliable as well. FSDi�usionDet is compared with
PFRCNN and XQSA that we proposed in Chaps. 5 and 6 and some relevant works from the literature.
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DOTA DIOR Pascal VOC MS COCO
All S M L All S M L All S M L All S M L

FRW 35.29 13.99 34.11 59.31 37.29 2.48 33.74 59.38 48.72 16.44 26.71 68.27 24.09 11.53 22.45 38.69
DANA 36.50 14.32 40.28 64.65 38.18 3.21 34.91 60.99 52.26 10.05 24.67 67.23 24.75 12.01 29.40 37.95
WSAAN 35.12 - - - 32.38 - - - 51.70 - - - 21.42 - - -

PFRCNN 11.55 - - - 9.16 - - - - - - - - – - -
XQSA 41.00 17.84 44.57 54.46 41.51 4.12 40.69 58.21 53.94 19.46 34.86 66.14 25.03 12.57 26.05 38.55
FSDi�usionDet 57.93 45.99 61.33 53.25 55.80 14.66 54.14 72.82 55.80 15.05 30.20 69.64 24.03 5.17 19.23 38.62

Table 7.8: Detection results of FSDi�usionDet on DOTA, DIOR, Pascal VOC and MS COCO datasets.
The models employed to produce this �gure have been �netuned with K = 10 shots and following
the best �ne-tuning strategy found in Sec. 7.3.2.4 for each dataset. The mAP0.5 is reported as an
average of over 5 distinct runs. The top rows include methods from the literature while the bottom
rows designate our proposed methods.

This comparison can be found in Tab. 7.8. This table also includes the Small, Medium, and Large
size distinctions from the previous chapters. FSDi�usionDet largely outperforms other methods dis-
regarding the object sizes. For small objects, FSDi�usionDet achieves impressive performance on
aerial images but lags slightly behind XQSA on natural images. It is particularly noteworthy as it
was not designed speci�cally for small object detection. Another surprising result can be observed
on DOTA where medium size objects are better detected than large ones, which is not the case for
other datasets. This is unusual compared to all our previous experiments, including attention-based
methods. It might result from having too few proposals boxes (Np = 300 in Tab. 7.8 for DOTA),
then the model can only focus on small and medium objects as they are more numerous than larger
ones. Given the size distribution in DOTA, this is a better compromise as it yields higher over-
all mAP. From Tab. 7.8, it seems that FSDi�usionDet performs slightly worse than XQSA, DANA
and FRW on MS COCO. This is not true as FSDi�usionDet tackles MS COCO as a 20-ways detec-
tion problem whereas other approaches only consider an easier 5-ways problem. It is not possible
to perform 5-ways episodic evaluation with FSDi�usionDet as all classes must be included during
�ne-tuning. However, it could be interesting to observe how well attention-based methods perform
in the 20-ways settings (it is often challenging to do so with attention-based methods due to memory
constraints and long inference time).

Finally, we also provide a qualitative assessment of the performance of FSDi�usionDet on DOTA,
DIOR, Pascal VOC and MS COCO in Fig. 7.10. This �gure presents novel class detection results on 5
images from each dataset. It is certainly stronger than all previously studied methods (see Fig. 6.13).
However, it is not perfect. Some objects are misclassi�ed (see the third row in MS COCO column),
some are not detected (DOTA, �rst row), and there are still false detections (Pascal VOC, 4th row).
Nonetheless, these qualitative results are much better than our other approaches and can be consid-
ered for actual industrial applications. It strengthens the need for more elaborate �ne-tuning strate-
gies and insight into how to design them without too much trial and error. FSDi�usionDet achieves
impressive FSOD results, especially on DOTA and DIOR, but this performance was achieved through
expensive exploration. It would be of great help to know in advance how a strategy will perform on
a given dataset. We started some investigation in this direction with the design of a compatibility
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Figure 7.10: Qualitative detection results of FSDi�usionDet on DOTA, DIOR, Pascal VOC and MS
COCO datasets. The models employed to produce this �gure have been �ne-tuned with K = 10
shots and following the best �ne-tuning strategy found in Sec. 7.3.2.4 for each dataset.
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score between base and novel classes, taking into account both the overall shift and discrepancies
in the class structures. Lastly, FSDi�usionDet’s results are strong enough to tackle more complex
scenarios such as Few-Shot Cross-Domain Adaptation. This will be explored in Sec. 7.4 and should
be continued in future work as well.

7.4 Application to Cross-Domain FSOD
Given the impressive performance of FSDi�usionDet on DOTA and DIOR, it seems tempting to
try more di�cult setups. Up to now, the methods studied in this project were barely reaching a
satisfactory point from an applicative perspective. With FSDi�usionDet, we are past that, and can
now consider the Cross-Domain setting. Cross-Domain is especially important for COSE, given the
prohibited access to test-time images. The ability to adapt to new domains would be an extremely
valuable property for a surveillance system such as CAMELEON. Of course, the domain change
would be limited in COSE’s applications as the only change between two missions would be the
general aspect of the image (i.e., weather, GSD, luminosity, etc.). However, the images will always
be aerial taken pointing nadir.

In this section, we tackle the challenging Cross-Domain Few-Shot Object Detection (CD-FSOD)
task which is barely untouched in the literature. To this end, we focus on two distinct scenarios,
one introduced by [284] with a �rst training on MS COCO and one speci�cally designed for COSE’s
applications where both the source and target domains are aerial datasets. For both scenarios, we
�rst present the dataset used as source and target domains and the experimental setup. Then we
provide some experimental results with the FSDi�usionDet baseline. These results are preliminary
and promising, further experimentation in this direction is required to better understand this task
and further improve FSDi�usionDet in this context. Therefore, we end this section with a summary
of the future work that is planned.

7.4.1 MS COCO→ Anything
First, we study a general Cross-Domain (CD) setting introduced in the literature by [284]. It consists
of training �rst on MS COCO and then �ne-tuning on another dataset with a restricted number of
shots. Unlike in the FSOD setting, there is no separation between base and novel classes in CD,
all classes of the target domain are considered novel. The benchmark introduced by [284] contains
a list of 10 datasets (VisDrone2019 [336], DeepFruits, iWildCam [337], SIXray [109], Fashionpedia
[338], Oktoberfest [106], LogoDet-3K [108], CrowdHuman [102], ClipArt [107], KITTI [98]).

7.4.1.1 Cross-Domain Scenarios
The pool of datasets proposed by [284] has a large variety of images, therefore it constitutes a
relevant benchmark for CD-FSOD. However, it does not contain any aerial dataset. VisDrone is
an aerial image dataset but di�ers greatly from DOTA or DIOR as its images are taken from a much
lower altitude and contain perspective. In addition, 10 datasets make the experiments expensive to
run. Thus, we propose a lighter benchmark using VisDrone2019, DeepFruits, SixRay, DOTA, DIOR
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Figure 7.11: Presentation of the datasets used in our Cross-Domain benchmark: VisDrone2019,
DeepFruits, SixRay, and ClipArt.

and ClipArt. We emphasize that dealing with that many datasets is quite challenging as almost every
dataset has its own annotation format and data structure. When [284] proposed this benchmark,
the authors only provided the list of datasets, without any information about their preparation and
split, which makes their experiments very hard to reproduce. On the contrary, we propose for the
convenience of future research on CD-FSOD a prepared version of this "meta-dataset”2 under the
same format (the MS COCO format, which is relatively common in the OD community). In addition
to the prepared meta-dataset, we also extend the popular Python package pycocotools to help load
and explore the datasets.

As mentioned above, we study here 6 cross-domain scenarios with a common base training on
MS-COCO. Every scenario has a di�erent target domain represented with one of the following
datasets. Fig. 7.11 provides some image examples (without annotations) for VisDrone2019, Deep-
Fruits, SixRay, and ClipArt. We refer the reader to Fig. 2.7 for a presentation of DOTA and DIOR.
For convenience, we denote these 6 scenarios as COCO→ X scenarios.

2Link to the Meta-Dataset and Python API package
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7.4.1.2 Experimental Results
We only experimented with the CD scenario with the baseline of FSDi�usionDet. Speci�cally, only
the detection head is �ne-tuned, with 500 proposals. The weights of the model are initialized using
the pre-trained weights available on the Di�usionDet repository, except for the last layer of the
classi�cation branch which is initialized randomly with the right number of outputs. While this
is certainly not optimal for every scenario, this gives a strong baseline to compare with in future
experiments.

The results of our experimentation with the cross-domain scenarios can be found in Tab. 7.9 and
Fig. 7.12. As for the regular FS experiments, a clear pattern is visible as the number of shots in-
creases. Obviously, the more shots, the better the detection. However, this pattern di�ers from one
scenario to another. For instance, COCO→ ClipArt scenario sees very little improvements as the
number of shots increases unlike COCO→ DOTA and COCO→ SIXRay. It is also noteworthy to
observe the di�erent behaviors between DOTA and DIOR. Even if DIOR is an "easier" dataset than
DOTA (in the sense that higher performance is achieved on DIOR in a regular detection setting),
there is a larger di�erence in the COCO→ X cross-domain scenario. Relatively low performance
is observed for ClipArt and VisDrone, this is probably due to di�erences in data preparation com-
pared with [284]. As the author did not provide any information about all the datasets’ splits and
preparation, we can only guess what they did. For ClipArt, it is slightly di�erent as they leveraged
a GAN-augmented version of the dataset which might sensibly boost the detection performance.
Finally, for each scenario 5 distinct training were done with varying seeds to check the consistency
of our results. Tab. 7.9 gives the average over the 5 runs and a 95% con�dence interval. A limited
variance between di�erent runs is observed, this means that FSDi�usionDet is not very sensitive to
the examples chosen in the support set. This is a crucial property as some few-shot methods de-
pend a lot on the choice of the support set. Of course, most of our experiments should be repeated
the same way to strengthen the results, but this quickly becomes expensive in terms of computing
resources.

These preliminary results are promising, FSDi�usionDet achieves satisfactory performance with
only a few-annotated examples on various datasets. These datasets are constituted of various kinds
of images, therefore it demonstrates well the adaptation capabilities of FSDi�usionDet. Now for
COSE’s application, these results on aerial datasets are particularly encouraging. FSDi�usionDet
achieves impressive performance with only a base training on MS COCO and few examples of either
DOTA or DIOR. Thus, this model could be rapidly �ne-tuned for a speci�c mission by the forces
without declassifying any image. Of course, this is only a baseline and FSDi�usionDet can surely
be improved further. In addition, this scenario starts with a base training on natural images, which
is probably not optimal, instead, we could leverage an aerial dataset as a source model as well.
Incidentally, this will be the subject of the next section.
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K Shots DIOR DOTA DeepFruits SIXRay ClipArt VisDrone

1 11.10 ± 0.32 4.03 ± 0.26 38.47 ± 1.42 4.80 ± 0.87 2.09± 0.19 2.83± 0.17
5 30.42 ± 0.69 14.45 ± 0.43 55.58 ± 1.36 13.25 ±1.14 5.26 ± 0.15 5.74± 0.22
10 38.73 ± 0.65 25.02 ± 0.65 68.37 ± 2.01 21.26 ±1.33 5.69 ± 0.10 7.50± 0.10
20 48.23 ± 0.33 33.31 ± 0.46 73.95 ± 0.53 30.06 ±1.09 6.10 ± 0.22 9.14± 0.35
50 56.97 ± 0.60 43.23 ± 0.68 76.65 ± 0.78 41.93 ±1.02 6.44 ± 0.16 11.47± 0.27

Table 7.9: Cross-domain performance results on 6 scenarios COCO→ DIOR / DOTA / DeepFruits
/ SIXRay / ClipArt / VisDrone. Results are given for di�erent numbers of shots. Experiments are
repeated 5 times for each scenario and shot setting. The average mAP0.5 is reported with a 95%
con�dence interval.

Figure 7.12: Cross-domain performance of FSDi�usionDet on multiple scenarios with MS COCO
as the source domain. Light areas denote the 95% con�dence interval. Concentric circles indicate
mAP0.5 levels.
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DIOR→ DOTA
Backbone frozen Fully �ne-tuned

K shots All S M L All S M L

1 5.41 2.72 6.28 4.51 5.09 3.08 6.72 4.07
5 25.88 16.99 31.47 22.50 24.90 15.85 29.67 22.27
10 31.99 17.64 36.90 31.23 33.30 15.97 37.13 32.45
20 38.77 21.68 46.49 34.79 41.30 21.97 45.90 41.08
50 44.07 29.22 52.66 41.00 49.22 29.41 55.94 52.82

Table 7.10: FSDi�usionDet Cross-domain results on the scenario DIOR→ DOTA. Two settings are
compared: with the backbone frozen (left) and the backbone fully �ne-tuned (right). Bold values
denote the best setting for overall performance on novel classes. Performance is reported with
mAP0.5 values.

7.4.2 Aerial Cross-Domain
Besides experimenting with COCO→ X scenario, we propose another setting speci�cally designed
for aerial images and COSE’s application. The idea is to leverage two distinct aerial datasets as source
and target domains. In particular, we use DOTA and DIOR to get two scenarios: DOTA → DIOR
and DIOR→ DOTA. Of course, it would be interesting to leverage other kinds of datasets as well
(e.g., xView, VisDrone, etc.), especially as DOTA and DIOR are very similar (mostly overhead urban
images and shared classes). Yet, this gives insights into how FSDi�usionDet behaves in fairly simple
cross-domain scenarios. We report experiments with these two scenarios in Tabs. 7.10 and 7.11. The
results are given for multiple numbers of shots ranging from 1 to 50. In addition, we studied two
freezing strategies by �ne-tuning only the detection head (i.e., frozen backbone) or the whole model
(fully �ne-tuned).

The key takeaway from this experiment is that higher performance is achieved in the aerial cross-
domain scenarios than with the COCO → X scenario. It seems more pro�table to perform base
training on a source domain that is similar to the target domain. Of course, compared to the FS per-
formance on DOTA and DIOR, lower quality is achieved in cross-domain scenarios. This is explained
�rst because the images from the two datasets di�er, but also because the task is now slightly more
complex as all classes of the target dataset are novel. The detection task becomes a 16-way K-shots
problem in DIOR→ DOTA scenario for instance. In the regular FS setting studied throughout this
project, only three classes were selected as novel classes for DOTA, making the classi�cation much
easier. Then, from Tabs. 7.10 and 7.11, a contradiction arises, in DIOR→ DOTA scenario, the fully
�ne-tuned model outperforms the model with the backbone frozen, which agrees with the exper-
iments from Sec. 7.3.2.4. However, in the DOTA → DIOR scenario, the inverse is observed. This
clearly shows that the freezing sweet spot depends on the source and target domains and cannot be
set once and for all. It works in the case of regular few-shot when the source and target domains are
identical. So, one could expect the same behavior in cross-domain scenarios with similar source and
target domains as it is with DOTA and DIOR. However, in the regular few-shot setting, the number
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DOTA→ DIOR
Backbone frozen Fully �ne-tuned

K shots All S M L All S M L

1 20.18 5.53 16.96 23.43 9.40 3.86 9.15 8.95
5 34.43 9.99 31.12 47.03 29.57 8.70 25.80 35.76
10 41.48 12.85 36.62 53.85 38.44 10.50 32.58 47.27
20 49.00 16.39 40.23 62.79 45.36 15.29 36.51 55.05
50 54.07 18.70 43.83 67.58 53.51 19.49 41.27 63.04

Table 7.11: FSDi�usionDet Cross-domain results on the scenario DOTA→ DIOR. Two settings are
compared: with the backbone frozen (left) and the backbone fully �ne-tuned (right). Bold values
denote the best setting for overall performance on novel classes. Performance is reported with
mAP0.5 values.

of classes in the source domain (i.e., the base classes) is always larger than the number of classes
in the target domain (i.e., the novel classes). Here, DIOR has more classes than DOTA and this dif-
ference may explain the opposite results between the two CD scenarios. Speci�cally, �ne-tuning
the model entirely may be bene�cial only when the target domain contains fewer classes than the
source domain. It could also be caused by di�erent class separations between the datasets. If classes
are easily di�erentiable in DIOR but not in DOTA, it might be di�cult to transfer from DIOR to
DOTA. These are only conjectures, and they should be taken carefully especially as complex inter-
actions between source and target classes may also cause such behavior. More experiments would
be required to analyze and understand this surprising result.

7.4.3 Cross-Domain Perspectives
The previous sections have been devoted to cross-domain experiments. These are preliminary but
interesting results. They give insight into how di�cult this setup is and how �ne-tuning strategies
can perform. However, plenty of experiments are still necessary. We detail here some of the most
relevant perspectives for future CD-FSOD research that we brie�y hinted in the previous sections:

1. Comparison with other FSODmethods: it would be interesting to compare with other ex-
isting FSOD methods, in particular, with attention-based techniques that we studied in depth
in Chap. 6. In addition, studying other �ne-tuning approaches is required to validate the re-
sults found in our experiments.

2. Transductive inference: Even though our naive transductive detection did not outperform
the �ne-tuning strategy in FSOD, it could help in cross-domain scenarios. Indeed, leveraging
query images during inference can reduce the discrepancies between source and target do-
mains and improve performance. This has been empirically shown for the classi�cation task,
but it remains to be adapted for detection.

3. Source-target domain compatibility score: [284] proposes to choose the �ne-tuning sweet
spot according to the distance between the source and target domains. Speci�cally, more plas-
ticity is required when domains are farther apart. They compute such distance as the recall of
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a pre-trained detection model on MS COCO, applied to the target dataset in a class-agnostic
manner. This could be generalized to any source and target domains with a detection model
trained on the source domain. However, we would like to emphasize that this should not be
called a distance measure between domains as it does not satisfy the symmetry property. In-
stead, it is a compatibility measure as it evaluates how bene�cial the source domain is for the
adaptation to the target domain. Our cross-domain scenarios on aerial images clearly demon-
strate this, as we obtain contradictory conclusions for DOTA → DIOR and DIOR → DOTA
scenarios. More plasticity is required for DIOR→ DOTA than for DOTA→ DIOR, hence, the
compatibility measure cannot be the same for these two scenarios. In addition, this distance
is highly in�uenced by the detector chosen in the �rst place, in particular, some models are
known to output a lot of duplicate boxes which often boost the recall signi�cantly (see such
an analysis in [9]). It would be helpful to come up with a properly de�ned compatibility mea-
sure for a given scenario that does not rely on a detection model and gives coherent hints to
obtain an optimal �ne-tuning strategy. This measure should also be able to assess the com-
patibility of the base and novel class set in the regular FSOD setting, as a special case of the
cross-domain scenario (source and target domains are identical but the classes change). We
are currently working on such a compatibility score based on an overall discrepancy measure
between source and target domains and a source-target classes compatibility score.

7.5 Conclusion
In this chapter, we have presented thoroughly the basic principle of di�usion models and how they
can be leveraged for detection. Then, we proposed a simple �ne-tuning strategy to apply Di�usion-
Det in the few-shot setting. FSDi�usionDet achieves sensibly higher performance than all previous
methods studied in this PhD on aerial images. To understand why, we conducted extensive ex-
perimental studies on crucial design choices of our strategy. It highlighted a strong but complex
connection between the plasticity of the model and the detection performance. Finally, we ap-
plied FSDi�usionDet in several cross-domain scenarios and observed promising results. Again, the
plasticity has a great in�uence on the performance and more experiments must be conducted to un-
derstand this relation completely. A possible direction would be to design a compatibility measure
between domains and between sets of classes to determine the optimal amount of plasticity required
for a given scenario.

166



Part III

Rethinking Intersection Over Union
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Chapter 8

Scale-Adaptative Intersection Over Union

Abstract

Intersection over Union (IoU) is not an optimal box similarity measure for evaluating and
training object detectors. For evaluation, it is too strict with small objects and does not align
well with human perception. For training, it provides a poor balance between small and large
objects to the detriment of small ones. We propose Scale-adaptative Intersection over Union
(SIoU), a parametric alternative that solves the shortcomings of IoU. We provide empirical and
theoretical arguments for the superiority of SIoU through in-depth analysis of various criteria.

? P. Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection in
Few-Shot Regime", Submitted at the International Conference on Computer Vision 2023 (ICCV).

q P. Le Jeune and A. Mokraoui, "Extension de l’Intersection over Union pour améliorer la détection
d’objets de petite taille en régime d’apprentissage few-shot", GRETSI 2023, XXIXème Colloque
Francophone de Traitement du Signal et des Images, Grenoble, France.
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Intersection over Union (IoU) is a box similarity criterion, it measures how well two bounding boxes
overlap each other. We already de�ned it in Chap. 2, but in this chapter we explore its properties
thoroughly and highlight some of its �aws when employed as a loss function or as a cornerstone
of the evaluation process of detection models. These �aws mainly concern small objects for which
IoU is too strict. Therefore, it is particularly relevant to tackle these issues for aerial images and
COSE’s applications. To address these weaknesses, we propose Scale-Adaptive Intersection over
Union (SIoU), a parameterizable criterion that can be set to favor small objects as needed. We start
by de�ning and analyzing the IoU and its variants. Then, we propose our novel criterion SIoU and
its properties. Sec. 8.3 presents an original empirical and theoretical study of several box similarity
criteria and argues for the superiority of SIoU. Finally, we conduct a user study and experimental
analysis to further consolidate the advantages of SIoU over IoU.

8.1 Analysis of Intersection over Union
In this section, we �rst review the de�nition of IoU and present some of its variants that are available
in the literature. Then, we analyze why IoU is not optimal for small objects.

8.1.1 Intersection over Union and its Variants
To begin, let us review the de�nition of existing criteria for box similarity. Originally, the IoU is
de�ned as the intersection area of two sets divided by the area of their union:

IoU(A,B) =
|A ∩B|
|A ∪B|

, (8.1)

where A and B are two sets. Even if there are plenty of applications where IoU is useful (e.g., in
statistics where IoU is better known as the Jaccard index), we are mostly interested here in its ap-
plication in computer vision. In this case, A and B are sets of pixels, and the IoU measures how
close they are. When A and B are rectangular boxes, IoU can be computed easily with simple op-
erations on box coordinates (see Eq. (2.7)). This explains why IoU is such a widespread criterion for
object detection. It is used as a loss function (Lreg = 1− IoU) by several well established detection
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frameworks (e.g., [91, 45]). IoU is also involved in the process of example selection during training
of most detection methods, i.e., all the ones inspired either by Faster R-CNN [33] or YOLO [34]. In
these frameworks, regression loss is computed from the coordinates of proposed boxes and ground
truth. Not all pairs of proposals and ground truth are kept for the computation. Only proposals with
a su�cient IoU with a ground truth box are selected. Finally, IoU is also used at the heart of the
evaluation process. A proposed box is considered a positive detection if it meets two conditions: 1)
an IoU greater than a given threshold with a ground truth box, and 2) the same label as this ground
truth (see Sec. 2.1.2).

Several attempts were made to improve IoU but existing works mostly focus on the regression loss
part, disregarding the other IoU uses in the detection task. First, [92] proposed a generalized version
of IoU which yields negative values when boxes do not overlap:

GIoU(A,B) = IoU(A,B)− |C\(A ∪B)|
|C|

, (8.2)

where C is the convex hull aroundA andB. This criterion is employed as a loss function by several
detection frameworks [45, 37, 339]. It is sometimes also combined with other regression loss as in
[340, 59], which both combine it with an L1 regression on box coordinates. Combining IoU loss with
other regression terms was also proposed by [93]. They introduce two losses Distance-IoU (DIoU)
and Complete-IoU which respectively add an L2 regression term and an aspect ratio penalty to the
IoU loss. Recently, α-IoU [94] extends DIoU [93] by proposing a family of losses following the same
structure as DIoU with the IoU term raised to the power α:

α-IoU(A,B) = IoU(A,B)α. (8.3)

Balanced IoU (BIoU) also extends upon DIoU by measuring shifts between the corners of the boxes
instead of their centers. Alternatively, Bounded IoU [341] computes an IoU upper bound between
a proposal and a ground truth. Other approaches, such as Scale Balanced Loss [342], try to design
distance-based loss functions which share properties with IoU, especially its scale-invariance.

All these IoU variants are proposed to improve the regression part of the models. However, IoU is
involved in other parts of the framework including example selection, Non-Maximal Suppression,
and evaluation. A recent user study [343] indicates that IoU does not completely align with human
perception. Humans have strong positional and size preferences based on conceptual information
contained in the boxes. It suggests that IoU is not an optimal choice either for example selection or
for evaluation as it will lead to detections that do not satisfy human users.

8.1.2 Inadequation of IoU for Small Objects and Few-Shot Regime
Object detection is a fundamental task in industry and has applications in many domains such as
medical imaging, agriculture, or autonomous driving. However, it is often impracticable or too
expensive to build su�ciently large annotated datasets to train detection models. It is therefore
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Figure 8.1: (Left) Evolution of IoU, NWD [88], the proposed SIoU and α-IoU [94] when a box is
shifted from the ground truth box by εloc pixels, for various box width ω ∈ {4, 16, 64, 128} (boxes
are squares). (Right) Ratio between pixel localization error εloc and object size ω for a trained
detection model on DOTA dataset. Each point represents the localization error of one object in
DOTA test set.

crucial to improve data-e�cient approaches and particularly Few-Shot Object Detection (FSOD)
methods. However, the limited number of examples provides poor supervision and prevents the
model to learn accurate localization, which is especially problematic for small objects. This di�culty
greatly intensi�es in the few-shot regime as shown by Chap. 4. Designing FSOD methods speci�cally
for the detection of small objects partially solves this issue (see Sec. 6.3.1), but is not enough. One of
the reasons for the poor FSOD performance on small objects is the extensive use of the IoU. Just as
for detection, most FSOD pipelines employ IoU as a regression loss [91, 45]; for example selection
[33, 34, 46]; or as an evaluation criterion, but IoU is not an optimal choice when dealing with small
objects.

IoU has a remarkable property: scale invariance. It means that scaling all coordinates of two bound-
ing boxes by the same amount will not change their IoU. At �rst glance, this seems a desirable prop-
erty as all objects will be treated identically no matter their size. In practice, it has a fundamental
drawback: small boxes are prone to large IoU changes from only small position or size modi�cations.
To clarify, let us consider a simple example. Two square boxes of width ω are shifted diagonally by
εloc pixels. In this setup, a 1-pixel shift leads to a larger decrease in IoU when boxes are smaller. This
comes from the scale invariance property, IoU stays constant as the ratio εloc

ω remains �xed. How-
ever, this ratio is not constant for trained detection models, it increases as objects get smaller (see
Fig. 8.1, right), leading to lower IoU values for smaller objects. Hence, small objects are much more
likely to fall under the IoU thresholds which decide if a box is a true or false detection, even though
being satisfactory from a human perspective (see the user study in Sec. 8.4). In addition, Secs. 8.3.1
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and 8.3.2 explore the resilience of various criteria to localization inaccuracies and con�rm that IoU
is not an optimal box similarity measure.

Only a handful of works question the adequation of IoU for object detection. Among those, [92]
proposed a generalization of IoU when boxes do not overlap, [88] introduced a novel loss function
to target small objects, and [344] proposed a Scale-Sensitive IoU which extended CIoU with an area
regulatory factor. In addition, [343] showed that human perception and IoU are not fully aligned.
This lack of interest in new criterion design is explained by the great detection performance in
the regular setting (i.e., natural images with su�cient annotations). In the few-shot regime, and
when targets are small, the �aws of IoU become critical. Therefore, we revisit IoU to improve FSOD
methods and focus on aerial images which mostly contain small objects. We propose Scale-adaptive
Intersection over Union (SIoU), a novel criterion that can replace IoU for training and evaluating
detection models. However, for training we mostly aim at few-shot detection models as small objects
are particularly di�cult for them. To demonstrate the superiority of the proposed SIoU, Sec. 8.3
compares it with various existing criteria. This section analyzes criteria distributions when exposed
to randomly shifted boxes. To our knowledge, this is the �rst attempt to empirically and theoretically
study the distributions of these criteria. The conclusions of this analysis are then compared with
human perception through a user study which shows that SIoU aligns better with human appraisal
than IoU (see Sec. 8.4). The comparison of these criteria also highlights that SIoU as a loss function
can guide training towards small objects better than other criteria and in a more controlled fashion.
SIoU loss can be tuned to improve the detection of small objects just as it can be tuned to align with
human perception. Finally, these analyses are con�rmed by extensive experiments on both aerial
images (DOTA and DIOR datasets) and natural images (Pascal VOC and COCO datasets).

8.2 Scale-Adaptive Intersection over Union

8.2.1 De�nition of the novel box similarity criterion
Before introducing the proposed criterion, let us de�ne two bounding boxes b1 = [x1, y1, w1, h1]T

and b2 = [x2, y2, w2, h2]T (the prediction box and ground truth respectively), following the box
de�nition from Chap. 2. Similarly, the adjectives small, medium, and large keep the same meaning
as in previous chapters: the box bi is small if

√
wihi ≤ 32 pixels, medium if 32 <

√
wihi ≤ 96, and

large if
√
wihi > 96.

IoU is scale-invariant, hence if IoU(b1, b2) = u, scaling all coordinates of both boxes by the same
factor k will produce the same IoU:

IoU(b1, b2) = IoU(kb1, kb2) = u. (8.4)

However, detection models are not scale-invariant, they do not localize equally well small and large
objects. Fig. 8.1 (right) clearly shows that the ratio between the localization error (εloc = ‖b1−b2‖1)
and the object size (ω =

√
w2h2) increases as the object becomes smaller. This �gure is made with a
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detection model trained on DOTA with all annotations. Each point represents the ratio εloc
ω for one

object in the test set. If the detection model was indeed scale-invariant, the ratio should not change
signi�cantly with the object sizes. Hence, because of the scale-invariance property, IoU scores are
lower for small objects. It then has several consequences:

1. Bounding boxes output by the model are not considered positive examples during evaluation.
2. Bounding boxes are not selected as positive examples for loss computation, which biases the

training towards larger objects.
3. NMS does not �lter duplicates of small boxes as their overlap is not high enough.

A way to alleviate these issues is to relax the invariance property of the IoU so it favors more small
objects without penalizing large ones. To this end, we propose a novel criterion called Scale-adaptive
Intersection over Union (SIoU):

SIoU(b1, b2) = IoU(b1, b2)p

with p = 1− γ exp

(
−
√
w1h1 + w2h2√

2κ

)
,

(8.5)

where p is a function of the object sizes. Thus, the scores are rescaled according to the object size.
γ ∈]−∞, 1] and κ > 0 are two parameters that control the strength and direction of the rescaling
(hence, p ≥ 0). γ governs the scaling for small objects while κ controls how fast the behavior of
regular IoU is recovered for large objects. Fig. 8.5 (left) in Sec. 8.3.4 shows the evolution of p with
object size for various γ and κ. For convenience, we will denote the average object size i.e., , the
average size of boxes b1 and b2, by τ = w1h1+w2h2

2 .

Of course, there are many valid choices for the exponent p. However, we want to ensure some
properties for SIoU, which translate into constraints for p:

- SIoU should either be higher or lower than IoU when objects are small, but should remain
�nite, so p(0) ∈ R∗+.

- For large objects, SIoU should behave like IoU, lim
τ→∞

p(τ) = 1.
- To prevent complete inversion of the order and smooth changes, p should be positive, contin-

uous, and monotonic.

Thus, an exponential response is a natural choice for the design of p. Similar forms could be achieved
with hyperbolic functions. For instance, p(τ) = 1 − γ

1+κτ would be a sensible alternative. An
inconvenient of these designs is the possibility to only focus on either small or large objects. This is
mainly due to the monotonicity of p. It can be relaxed to unlock the possibility of targeting objects
of a speci�c size, for instance, with a bell-shaped exponent e.g., p(τ) = 1− γ exp(−κ(τ − τtarget)

2).
Where κ could be understood as a bandwidth parameter around objects of size τtarget. We did not
investigate the design of p, but experimenting with it would be relevant to better understand the
balance between small and large objects during training.
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8.2.2 SIoU Properties
This new criterion follows the same structure as α-IoU [94], but di�ers greatly as it sets di�erent
powers for di�erent object sizes. SIoU provides a solution for small object detection in the few-shot
regime whileα-IoU only aims to improve general detection. However, SIoU inherits a few properties
from α-IoU.

Property 1 (SIoU Relaxation)
Let b1 and b2 be two bounding boxes and introduce τ = w1h1+w2h2

2 their average area. SIoU preserves
the behavior of IoU in certain cases such as:

- IoU(b1, b2) = 0⇒ SIoU(b1, b2) = IoU(b1, b2) = 0

- IoU(b1, b2) = 1⇒ SIoU(b1, b2) = IoU(b1, b2) = 1

- lim
τ→+∞

SIoU(b1, b2) = IoU(b1, b2)

- lim
κ→0

SIoU(b1, b2) = IoU(b1, b2)

Property 1 shows that SIoU is sound: it equals IoU when boxes have no intersection and when
they perfectly overlap. Therefore, the associated loss function (see Property 2) will take maximal
values for boxes that do not overlap and minimum values for identical boxes. In addition, SIoU
behaves similarly to IoU when dealing with large objects (i.e., when τ →∞). When boxes are large,
the power p that rescales the IoU is close to 1. Hence, this change of criterion only impacts small
objects. However, when discussing the properties of SIoU, the limit between small/medium/large
objects is relative to the choice of κ. If κ �

√
wh, even large objects will be rescaled. On the

contrary, when κ −→ 0, all objects are treated as large and are not rescaled. In practice, κ and γ are
chosen empirically, but Sec. 8.3 provides useful insights for the choice of these parameters.

Property 2 (Loss and gradients reweighting)
LetLIoU(b1, b2) = 1− IoU(b1, b2) andLSIoU(b1, b2) = 1−SIoU(b1, b2) be the loss functions associated
respectively with IoU and SIoU. Let us denote the ratio between SIoU and IoU losses byWL(b1, b2) =
LSIoU(b1,b2)
LIoU(b1,b2) . Similarly,W∇(b1, b2) = |∇LSIoU(b1,b2)|

|∇LIoU(b1,b2)| denotes the ratio of gradients generated from SIoU
and IoU losses:

WL(b1, b2) =
1− IoU(b1, b2)p

1− IoU(b1, b2)
, (8.6)

W∇(b1, b2) = pIoU(b1, b2)p−1, (8.7)

WL and W∇ are increasing (resp. decreasing) functions of IoU when p ≥ 1 (resp. p < 1) which is
satis�ed when γ ≤ 0 (resp. γ > 0). As the IoU goes to 1,WL andW∇ approaches p:

lim
IoU(b1,b2)→1

WL(b1, b2) = p, (8.8)

lim
IoU(b1,b2)→1

W∇(b1, b2) = p. (8.9)

We employ the same tools as in [94] to analyze how SIoU a�ects the losses and associated gradients.
We show in property 2 that their results hold for a non-constant power p as well. From this, it can
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be observed that when IoU is close to 1, losses and gradients are both rescaled by p. Hence, the
gradients coming from objects of di�erent sizes will be rescaled di�erently. The setting of γ and
κ allows to balance the training towards speci�c object sizes. Experimental results are provided in
Sec. 8.5 to support these �ndings. Proofs for properties 1 and 2 are available in App. A.

However, order preservingness is not satis�ed by using power value changing with the size of the
objects. This property ensures that the order given by the IoU is preserved with the novel criterion,
e.g., IoU(b1, b2) < IoU(b1, b3) ⇒ α-IoU(b1, b2) < α-IoU(b1, b3). α-IoU preserves the order of IoU,
but SIoU does not. We show in App. A that even though this property is not always satis�ed, a
large proportion of boxes meet the conditions for the order to hold.

8.2.3 Extensions and Generalization of SIoU
Finally, SIoU can very well be extended as IoU was with GIoU or DIoU. Note that we only focus on
GIoU extension here as DIoU and its variants are composite loss (i.e., sum of multiple loss functions).
We provide here an extension following GIoU as it appears especially well-designed for small object
detection. When detecting small targets, it is easier for a model to completely miss the object,
producing an IoU of 0 no matter how far the predicted box is. On the contrary, GIoU yields negative
values for non-intersecting boxes. This produces more relevant guidance during the early phase of
training when the model outputs poorly located boxes. Therefore, we extend SIoU by raising GIoU
to the same power p as in Eq. (8.5):

GSIoU(b1, b2) =

GIoU(b1, b2)p if GIoU(b1, b2) ≥ 0

−|GIoU(b1, b2)|p if GIoU(b1, b2) < 0
. (8.10)

8.3 Scale-Adaptive Criteria Analysis
This section analyzes both empirically and theoretically the behaviors of IoU, GIoU [92], α-IoU
[94], NWD [88], SIoU and GSIoU. We investigate the desirable properties of such criteria for model
training and performance evaluation.

8.3.1 Response Analysis to Box Shifting
As mentioned in Sec. 8.2, IoU drops dramatically when the localization error increases for small
objects. Shifting a box a few pixels o� the ground truth can result in a large decrease in IoU, without
diminishing the quality of the detection from a human perspective. This is depicted in Fig. 8.1 (left),
where plain lines represent the evolution of IoU for various object sizes. These curves are generated
by diagonally shifting a box away from the ground truth. Boxes are squares, but similar curves would
be observed otherwise. In this plot, boxes have the same size, so when there is no shift in between
(εloc = 0), IoU equals 1. However, if the sizes of the boxes di�er by a ratio r, IoU would peak at
1/r2. Other line types represent other criteria. SIoU decreases slower than IoU when εloc increases
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and this is especially true when boxes are small. This holds because γ > 0, if it was negative, SIoU
would adopt the opposite behavior. In addition, the gap between IoU and SIoU is larger when objects
are small. Only NWD shares this property, but it only appears when boxes have di�erent sizes (all
lines coincide for NWD). Hence, SIoU is the only criterion that allows controlling its decreasing rate,
i.e., how much SIoU is lost for a 1-pixel shift. As GIoU and GSIoU values range in [−1, 1], they were
not included in Fig. 8.1, but for completeness, they are plotted in Fig. 8.2 along with other criteria.

Figure 8.2: Evolution of various criteria (IoU, GIoU, and GSIoU) when a box is shifted from the
ground truth box by ρ pixels for various box sizes ω ∈ {4, 16, 64, 128}. With boxes of the same size
(left) and di�erent sizes (right).

8.3.2 Resilience Analysis to Detector Inaccuracy
Knowing how a criterion responds to shifts and size variations is important to understand what
makes a sensible box similarity measure. Pushing beyond the shift analysis, we study empirically
and theoretically the criteria’s distributions when exposed to detector inaccuracies, i.e., randomly
shifted boxes. This setting mimics the inaccuracy of the model either during training or at test time.

8.3.2.1 Empirical Protocol
To simplify, let us suppose that all boxes are squares of the same size ω and can be shifted only
horizontally. Similar results are observed by relaxing these constraints, see Sec. 8.3.2.4. A box is
then entirely de�ned by its horizontal position x and its width ω. If a detector is not perfect, it will
produce bounding boxes slightly shifted horizontally from the ground truth. To model the detec-
tor’s inaccuracy, we suppose that the predicted box position is randomly sampled from a Gaussian
distribution centered on the ground truth location (which is chosen as 0 without loss of generality):
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Figure 8.3: Analysis of the distribution of IoU, SIoU, GIoU, GSIoU and α-IoU when computed on
inaccurately positioned boxes. This is done by observing the probability distribution functions for
various ω values (left), the expectation (middle) and standard deviation (right) for all criteria. For
SIoU and GSIoU, we �xed γ = 0.5 and κ = 64, for α-IoU, α = 3 (as recommended in the original
paper [94]). The inaccuracy of the detector is set to σ = 16. Note that the empirical pdfs were
smoothed using a Kernel Density Estimator method. This a�ects particularly IoU, SIoU , and α-IoU
for which the actual pdf is de�ned only on [0, 1]. For the sake of visualization, GIoU and GSIoU were
rescaled between 0 and 1 for the expectation and standard deviation plots.

X ∼ N (0, σ2) where σ controls how inaccurate the model is. We are interested in the distribu-
tion of C ∈ {IoU,GIoU, SIoU,GSIoU, α-IoU,NWD} and how it changes with ω. To this end, let
Z = C(X). More precisely, we are interested in the Probability Density Function (PDF) of Z and its
two �rst moments (which exist because C is continuous and bounded).

Fig. 8.3 gathers the results of this analysis. It shows the pdf of each criterion for various box sizes
(left) along with the evolution of the expectation and standard deviation of Z against ω (middle and
right). Speci�cally, we randomly sample a large number of boxes and compute the associated criteria
values for all C and boxes. Then, the average and standard deviation are computed to estimate the
moment of the criteria’ pdfs. This process is repeated for various box sizes ω to understand how it
changes the behaviors of the criteria. From this, it can be noted that the size of the boxes has a large
in�uence on the distributions of all criteria. The expected values of all criteria are monotonically
increasing with object size. In particular, small objects have lower expected IoU values than larger
ones. This is consistent with the initial assessment from Fig. 8.1 (right) and it validates the choice
of σ constant for this study (although Sec. 8.3.2 discusses this assumption).

When building detection models, we hope to detect equally well objects of all sizes, this means
having a constant expected IoU, no matter the objects’ size. This would require the localization
error to be an a�ne function of ω. Of course, the localization error of the detector is likely to
depend on ω. However, it cannot be an a�ne function, otherwise, small objects would be perfectly
detected, which is not observed (see Fig. 8.1, right). As SIoU has larger expected values than IoU for
small objects, it can compensate for their larger localization errors. The setting of γ and κ allows
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controlling how much small objects are favored (see Fig. 8.5). NWD is not included in these plots as
its expected value and variance are constant when dealing with same-size boxes.

8.3.2.2 In�uence Analysis on the Performance Evaluation
If the expected value of a criterion is too small, it is likely that the boxes will be considered negative
detections during evaluation and therefore reduce the performance. Therefore, having a criterion
with larger expected values for small objects would better re�ect the true performance of a detector.
One might think that it would be equivalent to scale-adaptive IoU thresholds during the evaluation,
but this is not completely true as the variance of the criteria also di�ers.

Having an accurate criterion (i.e., with low variance) is crucial for evaluation. Let us take a detector
that produces well-localized boxes on average, i.e., on average the criterion computed between the
boxes and their corresponding ground truths is above a certain threshold. As the detector is not per-
fect, it will randomly produce boxes slightly better or slightly worse than the average. If the criterion
has a high variance, it will be more likely that poor boxes get scores below the criterion threshold
and therefore will be considered negative detections. This will reduce the performance of the de-
tector even though on average, it meets the localization requirements. In addition, a criterion with
a higher variance will be less reliable and would produce more inconsistent evaluations of a model.
The fact that the IoU variance is high for small objects partly explains why detectors have much
lower performance on these objects. Hence, SIoU seems more adapted for evaluation. Of course,
using this criterion for evaluation will attribute higher scores for less precise localization of small
objects. However, this aligns better with human perception as demonstrated in Sec. 8.4. Employing
SIoU in the evaluation process also allows tweaking it for the needs of a speci�c application.

8.3.2.3 In�uence Analysis on Training
All criteria discussed above are employed as regression losses in the literature. The loss associated
with each criterion C is LC(b1, b2) = 1 − C(b1, b2). Therefore, the expected value of the criterion
determines the expected value of the loss and thus the magnitude of the gradients. Large values of
the criterion give low values for the loss. Now, as the expected values of the criteria change with
the object size, the expected values of the losses also change. Small objects generate greater loss
values than larger ones on average. However, this is balanced by the fact that fewer small objects
are selected as positive examples because the IoU is involved in the selection process. To achieve
better detection, training must focus more on small objects. One way to ensure this is to set larger
loss values for small objects. Thus, the equilibrium is shifted toward smaller objects and gradients
will point to regions where the loss of small objects is lower. As shown in Fig. 8.6 (Sec. 8.3.4), with
the right parameters, SIoU can do that. It attributes lower values for small objects while keeping
similar values for large ones. The contrast between small and large objects is accentuated and op-
timization naturally focuses on smaller objects. SIoU’s parameters control which object size gets
more emphasis. This is closely linked to Property 2 which states that employing SIoU (compared to
IoU) reweights the loss and the gradient by p. If γ < 0, p decreases with the size of the objects and
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thus the optimization focuses on small objects. This also explains why generalizations of existing
criteria (i.e., with negative values for non-overlapping boxes) often outperform their vanilla version.
Taking IoU and GIoU as examples, the gap between their expected values for small and large objects
is greater with GIoU. It nudges the optimization towards small objects.

8.3.2.4 Inaccuracy Tolerance Assumptions
Several assumptions were made in Sec. 8.3.2 to analyze the criteria for box similarity:

1. Boxes are shifted only horizontally.
2. Boxes have the same size.
3. The detector’s inaccuracy is �xed and does not depend on the object size.

The �rst two assumptions are relatively harmless. Allowing diagonal shifts simply accelerates the
IoU drop rate. A 1-pixel diagonal shift is equivalent to a vertical and a horizontal shift. Intuitively,
this is similar to a 2-pixels horizontal shift. However, this is not true because, with a 1-pixel diagonal
shift, the area of intersection decreases slower than with a 2-pixels horizontal shift. Following the
notations from Sec. 8.3.2, the intersection between two boxes of width ω diagonally shifted by ρ
pixels is (ω− ρ)2 = ω2− 2ωρ+ ρ2 while the intersection between same boxes horizontally shifted
by 2ρ pixels is ω(ω − 2ρ) = ω2 − 2ωρ. To ensure that this does not question the conclusions of
Sec. 8.3.2.1, Fig. 8.4a compares the expected values and variances of IoU and GIoU with horizontal
and diagonal shifts. Similar behaviors are observed with and without diagonal shifting. The only
di�erence is that the expected values of the criteria for diagonally shifted boxes are lower as the
shifts get larger. It also increases the variances as the distributions are more spread. Then, relaxing
the second constraint results in slightly di�erent distributions, but with similar behavior. Having
boxes of di�erent sizes only changes the maximum value of the criteria. If boxes have di�erent sizes,
the maximum value must be smaller than 1. Therefore, the expected values approach smaller values
than 1 as objects get larger. The variance is reduced as the range of criteria values is smaller (see
Fig. 8.4b).

It is less straightforward that the conclusions hold without the last assumption. In the analysis from
Sec. 8.3.2.1, we assume that the inaccuracy of the detector is �xed. This means that the detector
generates randomly shifted boxes by the same number of pixels on average no matter the size of
the object. This is certainly false, in practice, in terms of absolute distance, detectors are better with
smaller objects. However, the inaccuracy cannot simply be proportional to object sizes because small
objects would then be perfectly detected. Thus, we tried to change the inaccuracy of the detector
as an a�ne function of the box width: σ(ω) = σ0 + λω. We choose to set σ0 to the �xed value
of σ used in Sec. 8.3.2.1 and λ = 1/4. This setting re�ects better the inaccuracy of a true detector.
The expected values and standard deviations of IoU, SIoU, GIoU, and GSIoU with this inaccuracy
setting are plotted in Fig. 8.4c. The main di�erence with �xed inaccuracy is that expected values
do not approach 1 as object size gets larger, instead they tend towards lower values. It also leads to
non-zero variance for large objects. However, for small objects, the curves of the di�erent criteria
are mostly unchanged, and the conclusions formulated in Sec. 8.3.2.1 are still valid.
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(a) IoU and GIoU expected values and standard deviation with horizontally
and diagonally shifted boxes.

(b) IoU and GIoU expected values and standard deviation with and without
boxes of the same size.

(c) IoU, SIoU, GIoU, and GSIoU expected values and standard deviation with
the detector’s inaccuracy modeled as an a�ne function, σ(ω) = σ0 + λω
(σ0 = 16, λ = 1

4 ).

Figure 8.4: Relaxing the constraints for criteria’ distribution analysis.
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8.3.3 Theoretical study of GIoU
In the previous section, we derived the statistics of several box similarity criteria from empirical
simulations. However, the criteria probability distribution functions and �rst moments can also be
derived theoretically. We provide such results for GIoU in Proposition 1.

Proposition 1 (GIoU’s distribution)
Let b1 = (0, y1, w1, h1) be a bounding box horizontally centered and b2 = (X, y2, w2, h2) another
bounding box randomly positioned, withX ∼ N (0, σ2) and σ ∈ R∗+. Let’s suppose that the boxes are
identical squares, shifted only horizontally ( i.e., w1 = w2 = h1 = h2 and y1 = y2). Let Z = C(X),
where C is the generalized intersection over union. The probability density function of Z is given by:

dZ(z) =
2ω

(1 + z)2
√

2πσ
exp

(
−1

2

[
ω(1− z)
σ(1 + z)

]2
)
. (8.11)

The two �rst moments of Z exist and are given by:

E[Z] =
2

π3/2
G2,3

3,2

(
2a2

∣∣∣∣0 1
2

1
2

1
2 0

)
, (8.12)

E[Z2] = 1− 8a√
2π

+
16a2

π3/2
G2,3

3,2

(
2a2

∣∣∣∣−1 1
2 −1

2
1
2 0

)
, (8.13)

where G is the Meijer G-function [345] (see its de�nition in Eq. (B.4), App. B) and a = σ
ω .

The proof of this proposition and derivations for other criteria are available in App. B. The theo-
retical expressions completely agree with empirical results, which con�rms the soundness of our
simulations.

Other criteria do not have closed forms for their �rst and second moments. Nonetheless, we provide
in Tab. 8.1 their expressions keeping the integrals as simple as possible, which allows relatively easy
evaluation. In addition, we provide the expression of the pdf for each criterion. The setup remains
identical as in Proposition 1, the boxes are only horizontally shifted and have the same width ω. For
clarity, we also give simple expressions of each criterion in such a setup (see Tab. 8.1).

8.3.4 In�uence of γ and κ on SIoU and GSIoU
In the previous discussion, SIoU and GSIoU are parametrized with γ = 0.5 and κ = 64; how-
ever, these two parameters have an in�uence on the distribution and moments of SIoU and GSIoU.
First, following the analysis from Sec. 8.3.2.1, Fig. 8.5 investigates the in�uence of γ and κ on SIoU
behavior. Fig. 8.5a shows the value of p, the expectation and variance of SIoU against object size
for γ ∈ {1.0, 0.75, 0.5, 0.1, 0.0,−0.25,−2,−4}. p is a function of the average area of the boxes
(τ = w1h1+w2h2

2 ) and for simplicity we suppose here that the boxes are squares of the same width
ω, hence

√
τ = ω. Then p can be viewed as a function of ω: p(ω) = 1− γ exp(−ω/κ). For negative

values of γ, p decreases from p(0) = 1 − γ to 1, small objects get higher exponents in comparison
with larger objects. On the contrary, when γ > 0, p increases from p(0) = 1− γ to 1. Changing γ
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(a) γ’s in�uence, with κ = 64

(b) κ’s in�uence, with γ = −3

Figure 8.5: In�uence of γ and κ on the expected value and standard deviation of SIoU.

also in�uences the distribution of SIoU. As γ increases, the expected value for small objects increases
as well, while the variance decreases.

Fig. 8.5b shows the same curves for κ ∈ {8, 16, 32, 64, 256}. κ controls how fast p approaches 1
and therefore, changing κ simply shifts the curves of expectation and variance accordingly. As κ
increases, IoU’s behavior is retrieved for larger objects reducing the expected value of SIoU. The
variance is not changed much by κ, but it slightly shifts the maximum of the curve, i.e., the object
size for which SIoU’s variance is maximum.

Fig. 8.6 also provides pdfs plots for various object sizes for SIoU and GSIoU, in addition to expectation
and variance comparison between existing criteria. For this �gure, γ = −3 and κ = 16. This �gure
echoes Fig. 8.3 which plots the same curves but with γ = 0.5 and κ = 64.
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Figure 8.6: Analysis of the distribution of IoU, SIoU, GIoU, GSIoU and α-IoU when computed on
inaccurately positioned boxes. This is done by observing the probability distribution functions (pdfs)
for various ω values (left), the expectation (middle) and standard deviation (right) for all criteria.
For SIoU and GSIoU, we �xed γ = −4 and κ = 16, for α-IoU, α = 3 (as recommended in the
original paper [94]). The inaccuracy of the detector is set to σ = 16. Note that the empirical pdfs
were smoothed using a Kernel Density Estimator method. This a�ects particularly IoU, SIoU and
α-IoU as the actual PDF is de�ned only on [0, 1]. For the sake of visualization, GIoU and GSIoU were
rescaled between 0 and 1 for the expectation and standard deviation plots.

8.4 SIoU Alignment with Human Perception
As discussed in Sec. 8.3.2.1, having an accurate criterion i.e., one with low variance, is crucial for
evaluation. However, such a criterion must also align with human perception. Most image process-
ing models are destined to assist human users. Thus, to maximize the usefulness of such models, the
evaluation process should align as closely as possible with human perception. To assess the agree-
ment between the criteria and human perception, we conducted a user study in which participants
had to rate on a 1 to 5 scale (i.e., from very poor to very good) how a bounding box localizes an object.
Speci�cally, an object is designated by a green ground truth box and a red box is randomly sampled
around the object (i.e., with random IoU with the ground truth). Then, the participants rate how well
the red box localizes the object within the green one. The study gathered 75 di�erent participants
and more than 3000 individual answers. We present here the main conclusion of this study.

8.4.1 User Study Presentation
8.4.1.1 Experimental Protocol
To carry out the user study about detection preferences, we developed a Web App1 to gather partic-
ipants’ answers. Each participant had to sign in with a brief form. They are asked about their age
and whether they are familiar with image analysis. This information is only meant to detect rating
di�erences between di�erent population groups (see Fig. 8.11, last two rows). After completing the
form, participants are brought to the rating page (see Fig. 8.8). On this page, one image is visible

1The web app is available here.
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with two bounding boxes drawn on it. A green one, which represents the ground truth annotation
of an object, and a red one randomly shifted and deformed. Each participant must rate how well
the red box is detecting the object inside the green box. The rating is done on a 5-levels scale, going
from very poor to very good. A set of 50 di�erent images is shown to each participant. After 25
images, the experiment changes slightly: the background image is replaced by a completely black
image. This would remove any contextual bias coming from the variety of objects inside the green
box. We refer to the two phases of the experiment as respectively, the phases with and without
context. The red boxes are sampled around the green box, but to enforce a uniform distribution of
the IoU with the green box, a random IoU value u is �rst uniformly sampled between 0 and 1. Then,
we randomly generate a red box that has an IoU u with the green box (direct box sampling does not
produce uniformly distributed IoU values). Participants are instructed to answer quickly and are
provided with examples for each possible rating (see Fig. 8.8). The images and the annotations are
randomly picked from the DOTA dataset.

8.4.1.2 General Statistics about Participants
The study gathered 75 participants and a total of 3136 individual answers (because some participants
did not complete the entire experiment). The age of the participants ranges from 21 to 64 years old
with an average of 31. Approximately half (37) of the participants are versed in computer vision or
image analysis, we will refer to this group as the expert group. On average, the response time is 10.3s
per evaluated image during the �rst phase of the experiment (when a background image is visible).
It drops to 7.2s when the image is replaced with a uniform background during the second phase.
This time di�erence suggests that humans do take into account the contextual information of the
image inside their decision-making process, which agrees with the �ndings of [343].

8.4.2 User Study Insights
Human perception does not fully align with IoU. People tend to be more lenient than IoU towards
small objects. Speci�cally, comparing a small and a large box with the same IoU with respect to
their own ground truth, people will rate the small one better. This suggests that IoU is too strict for
small objects in comparison with human perception. From a human perspective, precise localization
seems less important for small objects. Fig. 8.9 represents the relative gap of IoU (left) and SIoU
(right) values for each object size and rating. The relative di�erences cs,r are computed against the
average IoU (or SIoU) value per rating:

cs,r =

Cs,r −
∑
s
Cs,r∑

s
Cs,r

, (8.14)

where Cs,r is the average criterion value (C ∈ {IoU, SIoU}) for objects of size s and rating r. IoU
values for small objects (in orange) are lower than for large objects (in red) for all rating r. For a
human to give a rating r to a box, it requires that a box overlaps less with the ground truth (according
to IoU) if the boxes are small. SIoU compensates for this trend (see Fig. 8.9).
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Figure 8.7: Rating page of the Web App with an example of an image and two rectangular bounding
boxes. The user is asked to rate the quality of the red box compared to the green one on a 5-levels
scale going from very poor to very good.

Figure 8.8: Examples given to the participants of the user study. The IoU between the green and red
boxes are 0.1, 0.25, 0.5, 0.75, and 0.9 for the ratings from very poor to very good respectively.
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r IoU SIoU α-IoU NWD
r 1.000 0.674 0.701 0.674 0.550

IoU 0.674 1.000 0.892 0.997 0.474
SIoU 0.701 0.892 1.000 0.892 0.576
α-IoU 0.674 0.997 0.892 1.000 0.472
NWD 0.550 0.474 0.576 0.472 1.000

Table 8.2: Kendall’s τ correlation between various criteria and human rating r. For SIoU, γ = 0.2
and κ = 64, for α-IoU, α = 3.

However, according to SIoU, the same overlapping value triggers the same human rating no matter
the object sizes (see Fig. 8.9). Or at least the required criterion value gap between small and large
objects is reduced. We can observe that it is more di�cult to compensate the gaps for higher rating
values (especially with r = 4). This means that human appraisal is not identically in favor of small
objects. Instead, it seems more and more in favor of the small objects until the boxes are nearly
identical (rating r = 5). It would be relevant to extend SIoU further to take this into account and
achieve even better alignment with human perception. Anyway, SIoU is much better aligned than
IoU with the human rating as for a rating r, the di�erence of SIoU for small and large objects is below
5% while with IoU, it is always above 15%. This means that with IoU, if we have two predicted boxes
for one ground truth, the IoUs of the predicted boxes with the ground truth can vary from about
15% without changing the human rating. Such a di�erence in SIoU would result in di�erent human
ratings for the two predicted boxes. This phenomenon is much more problematic with α-IoU and
NWD. This makes them poor choices for the evaluation process as they are poorly aligned with
human perception.

Similar charts are available in Fig. 8.10, only with SIoU but with various values of γ. In the previous
paragraph, we set γ = 0.2. Choosing higher γ values would reverse the trend and produce a criterion
even more lenient than humans for small objects. It will also decrease further SIoU’s variance.
However, this setting has been chosen to maximize the alignment with human perception. SIoU
with γ = 0.2 correlates better with human rating compared with other criteria. As the rating is
an ordered categorical variable, we use the Kendall rank correlation to make the comparison. The
correlation between the human rating r and each criterion can be found in Tab. 8.2. SIoU with
γ = 0.2 and κ = 64 aligns best with human perception and has a low variance (see Sec. 8.3.4). This
showcases the superiority of SIoU over existing criteria. It should be preferred over IoU to assess
the performance of models on all visual tasks that employ IoU within their evaluation process. It
supports recent �ndings that show misalignment between IoU and human preference [343].

8.4.2.1 Factor Analysis
To validate our previous experiments, we investigate the potential in�uence of external factors on
human ratings which could bias the results. Speci�cally, we are interested here in several variables:
the object size, the presence of contextual information, the expertise, and the age of the participants.
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Figure 8.9: Criteria’ scores for di�erent object sizes and human ratings r ∈ {1, 2, 3, 4, 5} (top).
Relative gap with the criterion value averaged over the object sizes (cr = 1/3(cS,r + cM,r + cL,r))
(bottom).

Figure 8.10: Relative gap with the SIoU values averaged over the object sizes, for various γ values.

Of course, the object size seems to have an in�uence on the human rating (according to the previous
section), but the idea is to show it quantitatively. To this end, Tab. 8.3 gathers the average rating r
under di�erent groupings (by object size, presence of contextual information, the expertise of the
participants, and age of the participants). In addition, the average value for each criterion is given
for each group. IoU value is close to 0.5 for every group as expected (boxes were chosen to have a
uniform IoU distribution). However, values of other criteria vary from one group to another. This
is especially true for scale-dependent criteria (SIoU and NWD) on di�erent object size groups. To
check whether the di�erent groups are statistically di�erent, we conducted one-way ANOVA tests
on the four variables from Tab. 8.3. The results con�rm that the mean ratings for various object
sizes are statistically di�erent (p < 8.4 × 10−26 2). The tests �nd no statistical di�erences for the
participant expertise (p < 0.47), and the presence of contextual information (p < 0.28). However,
there is a signi�cant di�erence between age groups (p < 0.02), but its in�uence on the ratings is

2p stands here for the p-value of the statistical test here, not the exponent from SIoU’s de�nition.
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r IoU SIoU NWD α-IoU

Object size
Small 3.406 0.507 0.550 0.610 0.203

Medium 3.158 0.502 0.532 0.424 0.199
Large 2.824 0.491 0.500 0.151 0.189

Context w/o context 3.144 0.504 0.531 0.397 0.197
w/ context 3.112 0.496 0.523 0.390 0.197

Expertise Inexperienced 3.104 0.493 0.520 0.392 0.194
Expert 3.152 0.507 0.535 0.395 0.200

Age
(10, 25] 3.215 0.504 0.531 0.397 0.196
(25, 40] 3.078 0.496 0.524 0.390 0.198
(40, 65] 3.085 0.501 0.529 0.394 0.197

Table 8.3: Average rating and criteria values for di�erent groupings of the variables of interest (object
size, presence of contextual information, expertise and age of the participants).

limited compared to object sizes. This con�rms values inside Tab. 8.3 as the older age groups tend
to give lower ratings. Our goal here is not to infer anything about the reasons for this di�erence,
but this fact should be kept in mind before drawing any conclusion. In addition, this suggests the
need of distinct alignments given what population group is the end user of a system. Having a
parameterizable evaluation process (e.g., with SIoU) could help design models that better satisfy
their users.

To visualize better the alignment of the various criteria with the human perception, Fig. 8.11 plots
the rating values against the criteria value. For clarity, random vertical shifts are added to rating
values to distinguish between the values of each variable and data points. From this �gure, it is clear
that the IoU is not a perfect criterion as a wide range of IoU values is attributed to the same rating
value. It seems also clear that contextual information and participant expertise do not introduce
much change in the human rating. However, age does have a small in�uence on the rating, but this
is more blatant with the object size: the average IoU value for a rating r decreases with the object
size (this is visible with the black vertical lines in Fig. 8.9). This completely agrees with the statistical
test results. SIoU compensates for this trend and produces more aligned averages for the di�erent
object sizes. NWD has the same e�ect but largely reverses the trend in the other direction.

8.5 Experimental Results
To support our analysis from Sec. 8.3, we conduct various experiments, mainly on aerial images with
DOTA and DIOR datasets. To showcase the versatility of SIoU, we also experiment with natural im-
ages on Pascal VOC and COCO datasets. We would like to emphasize that the goal of SIoU, as a loss,
is primarily to improve the performance of FSOD and not regular object detection. While SIoU is
bene�cial for any detection task for evaluation purposes, it is designed to address the extreme chal-
lenge of detecting small objects in the few-shot regime. Therefore, most of our experiments focus
on the few-shot setting. However, we also report results in regular object detection to display the
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Figure 8.11: Rating against IoU, SIoU (γ = 0.2, κ = 64), NWD and α-IoU (α = 3) values, overall and
for di�erent groupings of the variables of interest (object size, presence of contextual information,
expertise and age of the participants). Colors represent di�erent values for each variable. A legend
for each row is included in the right-most column of the �gure. For the Age variable, the participants
have been separated into three groups of the same size.
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r IoU SIoU NWD α-IoU

Small
Objects

1 0.214 0.262 0.346 0.013
2 0.279 0.330 0.415 0.035
3 0.449 0.498 0.551 0.108
4 0.584 0.627 0.683 0.234
5 0.746 0.776 0.822 0.435

Medium
Objects

1 0.223 0.257 0.160 0.016
2 0.299 0.335 0.230 0.039
3 0.474 0.506 0.361 0.127
4 0.651 0.677 0.575 0.306
5 0.771 0.791 0.716 0.470

Large
Objects

1 0.245 0.258 0.015 0.025
2 0.322 0.334 0.036 0.051
3 0.517 0.527 0.121 0.168
4 0.713 0.720 0.318 0.383
5 0.766 0.772 0.422 0.480

Table 8.4: Average criteria (IoU, SIoU, NWD and α-IoU) values for di�erent object sizes and ratings.

potential of SIoU. For the few-shot experiments, we choose Cross-Scale Query Support Alignment
(XQSA) (see Sec. 6.3) as a baseline, but a comparison with the other attention methods from Chap. 6
is available in Sec. 8.5.4.1.

8.5.1 Comparison with Existing Criteria
To begin, we compare the few-shot performance on DOTA with various loss functions based on the
criteria discussed in Sec. 8.3. The result of these experiments is available in Tab. 8.5. The criteria
are divided into two groups, generalized (i.e., which is not 0 when boxes do not overlap; it therefore
includes NWD) and vanilla criteria. As discussed in Sec. 8.3.2.1, the generalized versions of the
criteria outperform their original counterparts and therefore should be compared separately. Scale-
adaptive criteria (SIoU and GSIoU) largely outperform other losses on novel classes and especially
on small objects. For SIoU and GSIoU, we choose γ = −3 and κ = 16 according to a series of
experiments conducted on DOTA to determine their optimal values (see Sec. 8.3.4). It is important to
point out the relatively good performance of NWD despite not checking all the desirable properties
highlighted in Sec. 8.3.

8.5.2 Application on Aerial and Natural Images
As the previous set of experiments was only carried out on DOTA, we showcase the versatility of
GSIoU on three other datasets: DIOR, Pascal VOC and COCO. As it is clear that generalized criteria
achieve higher performance, the comparison here is only done between GIoU and GSIoU. The results
of this comparison are available in Tab. 8.6.

The large improvements found for DOTA translate to DIOR as well, especially for small objects.
For Pascal VOC and COCO, similar gains are observed for small objects, but the improvement is
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Base classes Novel Classes
Loss All S M L All S M L

IoU 50.67 25.83 57.49 68.24 32.41 10.06 47.87 67.09
α-IoU 46.72 13.24 55.21 69.94 33.95 12.58 46.58 74.50
SIoU 53.62 24.07 61.91 67.34 39.05 16.59 54.42 74.49

NWD 50.79 19.19 58.90 67.90 41.65 28.26 50.16 65.06
GIoU 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78
GSIoU 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78

Table 8.5: Few-shot performance comparison between several criteria: IoU, α-IoU, SIoU, NWD,
GIoU, and GSIoU trained on DOTA. mAP is reported with a 0.5 IoU threshold for small (S), medium
(M), large (L), and all objects.

Base classes Novel Classes
XQSA All S M L All S M L

DOTA w/ GIoU 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78
w/ GSIoU 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78

DIOR w/ GIoU 58.90 10.38 40.76 80.44 47.93 9.85 47.61 68.40
w/ GSIoU 60.29 11.28 43.24 81.63 52.85 13.78 53.73 71.22

Pascal w/ GIoU 51.09 13.93 40.26 62.01 48.42 18.44 36.06 59.99
w/ GSIoU 54.47 13.88 40.13 66.82 55.16 22.94 36.24 67.40

COCO w/ GIoU 19.15 8.72 22.50 30.59 26.25 11.96 23.95 38.60
w/ GSIoU 19.57 8.41 23.02 31.07 27.11 12.81 26.02 39.20

Table 8.6: Few-shot performance on four datasets: DOTA, DIOR, Pascal VOC and COCO. GIoU and
GSIoU losses are compared. mAP is reported with a 0.5 IoU threshold and for all object sizes.

limited overall (i.e., disregarding the object size) as natural datasets contain larger objects. It is
worth mentioning that these improvements on Pascal VOC and COCO require a di�erent tuning of
SIoU. γ = −3 and κ = 16 produce mitigated results with these datasets, and γ = −1 and κ = 64 is a
more sensible choice. This was predictable as the objects in Pascal VOC and COCO are substantially
larger than in DOTA and DIOR. This can also explain the slightly smaller gains on DIOR compared
to DOTA. Finding optimal values of γ and κ could yield slightly better performance on DIOR. The
right balance depends on the proportion of small, medium and large objects in the datasets. With
natural images which contain fewer small objects, the training balance does not need to be shifted
as much as for aerial images.

Obviously, one may see this as a constraint: SIoU introduces two novel hyper-parameters and their
values change depending on which dataset is used. However, the tuning of SIoU is straightforward,
as lower values of γ and κ skew the training towards smaller objects, and in practice few experiments
are enough to �nd near-optimal values. Given the impressive gains obtained on small objects in
the few-shot regime, it is certainly worth it. Clearly, it would be even better to extend SIoU to be
parameter-free or to have a pre-de�ned way of setting γ and κ, for instance, based on the object size
distribution inside a dataset.
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8.5.3 γ and κ in�uence on FSOD Performance
As discussed above, the setting of γ and κ is crucial for training. Therefore, we conducted various
experiments on DOTA to �nd the best parameters for GSIoU loss. We intentionally include extreme
values of γ and κ to demonstrate the behavior of SIoU. The results can be found in Tabs. 8.7 and 8.8.
This shows that the optimal values for DOTA dataset are γ = −3 and κ = 8. However, κ = 16 is also
a good choice and is more consistent across datasets. Thus, we choose to keep γ = −3 and κ = 16

for other experiments. An exhaustive grid search should be done to �nd even better settings. Our
search was sparse and a better combination of γ and κ probably exists, yet our sub-optimal setup
already yields signi�cant improvement for small object detection in the FS regime.

Base classes Novel Classes

γ All S M L All S M L
0.5 47.09 21.29 54.67 65.48 30.50 8.83 44.97 65.89
0.25 45.94 21.60 54.39 63.40 30.96 12.53 42.37 64.14
0 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78

-0.5 52.80 27.16 61.19 64.61 41.06 25.20 50.18 72.04
-1 53.03 23.20 61.53 66.68 42.77 27.55 52.01 70.76
-2 54.06 23.68 62.69 66.62 43.67 30.04 51.69 69.66
-3 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78
-4 53.59 22.50 62.48 66.18 42.43 27.56 51.79 68.70
-9 53.11 20.98 62.13 67.00 42.63 30.53 48.89 68.62

Table 8.7: Evolution of the few-shot performance (XQSA with GSIoU loss) on DOTA for various
values of γ (κ = 16 is �xed). mAP is reported with a 0.5 IoU threshold and for all object sizes.

Base classes Novel Classes

κ All S M L All S M L
4 51.65 21.50 59.76 65.85 42.98 30.33 48.57 73.41
8 52.70 21.96 61.49 66.43 44.16 31.35 50.70 71.99
16 54.06 23.68 62.69 66.62 43.67 30.04 51.69 69.66
32 53.88 22.33 63.00 67.35 37.36 23.65 44.60 66.29
64 52.82 21.79 61.46 66.77 43.68 29.43 52.47 69.46
128 53.42 21.73 62.90 66.75 41.32 26.85 49.40 70.38

Table 8.8: Evolution of the few-shot performance (XQSA with GSIoU loss) for various values of κ
(γ = −2 is �xed).

In�uence of γ and κ on FSOD performance on Pascal VOC dataset
The search conducted above was carried out on DOTA dataset. It transposes nicely on DIOR dataset
as well. Yet, these two datasets are similar. They both contain aerial images with some classes in
common, but most importantly, the size of their objects are highly similar. When applied to di�erent
datasets, these results may not hold. For instance, Pascal VOC requires other combinations of γ and
κ to outperform the training with GIoU. This is shown in Tab. 8.9.

194



8.5 - Experimental Results

Base Classes Novel Classes

Loss function All S M L All S M L
GIoU 51.09 13.93 40.26 62.01 48.42 18.44 36.06 59.99

GSIoU γ = −3, κ = 16 45.22 10.06 34.85 57.10 43.16 14.89 33.92 54.16
GSIoU γ = −1, κ = 64 54.47 13.88 40.13 66.82 55.16 22.94 36.24 67.40
GSIoU γ = 0.5, κ = 64 56.97 13.88 40.75 70.31 55.36 20.25 36.85 68.05

Table 8.9: Few-shot performance on Pascal VOC dataset with di�erent values of γ and κ.

8.5.4 Additional Experiments with GSIoU Loss
8.5.4.1 Changing the Few-Shot Approach
To support the versatility of GSIoU, we also experiment with several few-shot approaches. We se-
lected three FSOD techniques that we implemented within the AAF framework: Feature Reweight-
ing [220] (FRW), Dual-Awareness Atention [234] (DANA) and our Cross-scale Query-Support Align-
ment (XQSA). We train all of them with GIoU and GSIoU as regression losses and provide the results
in Tab. 8.10. Except for DANA, GSIoU sensibly improves detection performance, especially for small
objects. The results with DANA are surprising, and it would be of great interest to investigate the
reasons behind this below-par performance.

Base classes Novel Classes
XQSA All S M L All S M L

FRW w/ GIoU 34.60 16.15 48.61 59.00 32.00 15.29 44.50 54.77
w/ GSIoU 30.36 11.94 44.30 54.87 32.94 16.69 42.87 62.64

DANA w/ GIoU 48.09 27.34 66.06 68.00 44.49 30.10 52.24 74.40
w/ GSIoU 50.10 32.19 65.46 67.77 41.40 21.07 54.80 75.23

XQSA w/ GIoU 45.30 26.94 61.17 63.00 41.03 24.01 52.13 69.78
w/ GSIoU 43.42 22.14 61.19 66.02 45.88 34.83 51.26 70.78

Table 8.10: Performance comparison with three di�erent FSOD methods: Feature Reweighting [220]
(FRW), Dual Awareness Attention [234] (DANA) and our Cross-scale Query-Support Alignment
(XQSA), trained with GIoU and GSIoU. mAP is reported with a 0.5 IoU threshold for small (S),
medium (M), large (L) and all objects.

8.5.4.2 Regular Object Detection on DOTA and DIOR
GSIoU is not only bene�cial for FSOD, but it also improves the performance of regular object detec-
tion methods. Tab. 8.11 compares the performance of FCOS [45] trained on DOTA and DIOR with
GIoU and GSIoU. The same pattern is visible as we get better performance with GSIoU. However, the
gain for small objects is not as large as for FSOD. Nevertheless, it suggests that other tasks relying
on IoU could also bene�t from GSIoU.

Obviously, further experiments are required to showcase the superiority of SIoU/GSIoU in regular
data settings, especially with other detection frameworks and datasets. We did investigate with
YOLO and Di�usionDet, but we only achieved mitigated results, even sometimes in favor of GIoU.
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DOTA DIOR
FCOS All S M L All S M L

w/ GIoU 34.9 17.4 36.6 43.3 48.1 10.1 40.3 63.2
w/ GSIoU 36.8 17.5 40.4 45.2 49.2 11.0 41.2 66.1

Table 8.11: Regular Object Detection performance on DOTA and DIOR datasets with GIoU and
GSIoU (γ = −3 and κ = 16) losses. mAP is computed with several IoU thresholds (0.5 to 0.95) as it
is commonly done in regular detection.

One possibility for this is the use of IoU in the example selection process. In most detection frame-
works, only the best predicted bounding boxes, according to the IoU, are selected to compute the
loss (this is detailed in Sec. 2.1.3.5 and especially Tab. 2.2). As mentioned previously, it would be
relevant to study the impact of SIoU on this process as well. However, FCOS, on which the AAF
framework is based, does not rely on IoU for the example selection. Instead, it selects as positive ex-
amples all predicted boxes whose center falls into a ground truth box. Hence, an IoU-based example
selector probably hinders the bene�ts of SIoU while the FCOS’s selection is likely a better match.
This should be investigated in depth in future work.

8.5.5 Evaluation with SIoU
In this section, we present some of the results reported in previous section using SIoU as the eval-
uation criterion. Speci�cally, instead of choosing an IoU threshold to decide if a box is a positive or
negative detection, an SIoU threshold is employed. For the sake of comparison, we kept the same
thresholds as in Tabs. 8.5, 8.6 and 8.11, i.e., 0.5 for Few-Shot methods and 0.5:0.95 for regular object
detection. The results are available in Tabs. 8.12 to 8.14. The conclusions from Sec. 8.5 still hold, and
the superiority of GSIoU over other criteria is clear. However, a few changes are noticeable. First,
SIoU loss seems to perform better than IoU. This is expected since the model is directly optimized
to satisfy this criterion. Then, when evaluated with SIoU, models trained with NWD perform well.
Indeed, NWD puts a lot of emphasis on size matching during training, and less on position. There-
fore, it is logical to observe better performance compared to other losses when using SIoU as the
evaluation criterion.

One crucial point is that SIoU evaluation mostly changes the score for small objects. SIoU behaves
like IoU for large objects, therefore relatively small changes are visible for medium and large objects.
Overall, the scores are higher than with IoU as the expected value of SIoU is higher than IoU. The
important point to note is that the gap between small and large objects performance is reduced and
aligns better with human perception.

8.5.6 Discussions and Limitations
As mentioned in Sec. 8.3.2.1 SIoU is a better choice for performance analysis. However, as IoU is
almost the only choice in literature for evaluation, we must use it as well for a fair comparison with
existing works. Nonetheless, Tabs. 8.12 to 8.14 provide results from Tabs. 8.5, 8.6 and 8.11 using
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Base classes Novel Classes
Loss All S M L All S M L

IoU 55.81 35.03 62.57 70.05 39.10 18.58 53.93 68.83
α-IoU 53.05 20.60 61.05 72.41 41.93 20.99 55.74 76.79
SIoU 59.77 36.38 67.29 70.06 49.51 31.06 62.53 77.24

NWD 58.80 34.16 66.81 70.05 53.66 42.02 62.53 68.92
GIoU 59.27 44.07 66.91 65.46 49.02 35.10 57.58 74.30
GSIoU 59.32 35.32 66.29 69.03 57.70 46.77 65.56 73.67

Table 8.12: Few-shot performance comparison between several criteria: IoU, α-IoU, SIoU, NWD,
GIoU and GSIoU trained on DOTA. mAP is reported with a 0.5 SIoU threshold for small (S), medium
(M), large (L), and all objects.

DOTA DIOR

FCOS All S M L All S M L
w/ GIoU 43.9 27.4 46.5 47.2 54.5 17.6 49.8 66.4
w/ GSIoU 45.4 27.7 50.2 49.2 55.4 18.0 50.1 69.2

Table 8.13: Regular Object Detection performance on DOTA and DIOR datasets with GIoU and
GSIoU (γ = −3 and κ = 16) losses. mAP is computed with several SIoU thresholds (0.5 to 0.95)
as it is commonly done in regular detection.

Base classes Novel Classes
XQSA All S M L All S M L

DOTA w/ GIoU 59.27 44.07 66.91 65.46 49.02 35.10 57.58 74.30
w/ GSIoU 59.32 35.32 66.29 69.03 57.70 46.77 65.56 73.67

DIOR w/ GIoU 62.06 17.49 45.55 82.22 53.81 23.79 53.46 71.63
w/ GSIoU 63.81 17.77 49.62 82.53 58.79 25.60 59.28 73.78

Pascal w/ GIoU 55.51 26.10 46.82 64.31 52.43 28.97 40.73 62.58
w/ GSIoU 58.74 27.47 46.56 68.93 58.92 31.36 41.65 69.71

COCO w/ GIoU 21.46 12.77 24.79 31.86 29.21 17.36 27.62 40.05
w/ GSIoU 21.97 12.80 25.72 32.35 29.94 18.87 29.93 40.47

Table 8.14: Few-shot performance on three datasets: DOTA, DIOR, Pascal VOC and COCO. GIoU
and GSIoU losses are compared. mAP is reported with a 0.5 SIoU threshold and for various object
sizes.
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SIoU as the evaluation criterion in Sec. 8.5.5. They agree with the IoU evaluation and strengthen
the conclusions of our experiments. While these results are promising, we must emphasize a few
limitations of SIoU and our study. First, SIoU requires a slight tuning to get the best performance,
even if that tuning is quite straightforward and mostly depends on the size distribution in the target
images. SIoU allows being more lenient with small objects for evaluation (γ ≥ 0), and stricter for
training (γ ≤ 0) to prioritize the detection of small targets. However, this is a small price to pay com-
pared to the performance gains obtained on aerial datasets and especially on small objects. Second,
another limitation is its application to regular object detection. While this works relatively well with
FCOS, it does not show consistent results with other frameworks. It could likely be explained as,
in these frameworks, IoU plays a crucial role in the example selection and loss computation. More
investigation is required to answer this question. Similarly, Non-Maximal Suppression leveraged
IoU as well, and therefore, an implementation of NMS with SIoU instead could also help greatly for
the detection task, especially for small objects. Finally, we discussed the alignment of SIoU with
human perception for evaluation, i.e., inside the computation of the mAP. However, recent works
[8, 9] question the soundness of this metric and propose alternatives that are not necessarily based
on IoU. It would be relevant to study them as well and understand how well they align with human
perception in order to design more user-oriented detection models.

8.6 Conclusion
In this chapter, we highlighted the weaknesses of Intersection over Union both for training and
evaluating few-shot object detection models. As an alternative, we proposed Scale-adaptative Inter-
section over Union (SIoU), a criterion that changes with the object size. We performed an in-depth
empirical and theoretical study of several criteria and showed that SIoU has desirable properties for
model evaluation that other criteria have not. This is con�rmed by a user study that shows a better
alignment of SIoU with human appreciation. In addition, we experimented thoroughly with SIoU as
a loss function and obtained impressive performance gains on small object detection in the few-shot
regime. This is particularly helpful for applications on aerial images, especially as it is compatible
with the attention mechanism that we presented in Chap. 6 to improve small object detection in the
few-shot regime.
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Chapter 9

Integration in COSE Prototypes

Abstract

Detection models are often heavy and are not well suited for COSE’s application. In this
chapter, we �rst present in detail the CAMELEON system and its constraints. Then, we study
the in�uence of the model size on the performance and present useful tools and tricks to
accelerate the inference. Finally, we explain how the detection models are deployed inside the
CAMELEON prototype and how they perform on aerial images.
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Up to this point, the contributions of this project have been mostly research-oriented and a sig-
ni�cant amount of work is still required to apply the developed techniques on real-case scenarios.
Therefore, in this chapter, we present the engineering part of this project, which focuses on applying
object detection algorithms inside the CAMELEON system. In particular, we detail the architecture
of the CAMELEON system and the constraints associated. In light of these constraints, we can adapt
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object detection algorithms for COSE’s applications. This mainly involves reducing the size of the
models and their inference speed while preserving their detection quality. Of course, this is no easy
task, but fortunately, there exist tools to help with this process. We present these tools and their
principle brie�y, before explaining how they can be leveraged for deploying object detection mod-
els on edge devices within the CAMELEON system. Finally, we provide some guidelines for future
improvements of optimized detection models and how to deploy few-shot models as well.

9.1 CAMELEON Aerial Intelligence System

9.1.1 Presentation of the system
CAMELEON is a high-resolution aerial camera system that aims to be embedded on various types
of carriers such as tactical helicopters (e.g., Airbus H215), patrol or intelligence aircraft (e.g., Airbus
A400M or ATL-2), and tactical drones (e.g., Safran’s Patroller). Its main objectives are to provide pre-
cise 2D and 3D models of geographical areas at needs. Often, satellite imagery is insu�cient as it has
a low ground resolution, can be outdated, or simply unavailable (e.g., due to weather conditions). In
such situations, airborne reconnaissance systems are vital. In practice, these kinds of systems have
military applications (theater cartography, tactical intelligence, etc.) but also civil and commercial
(maritime surveillance, search and rescue, �re monitoring, etc.). Such aerial surveillance systems
already exist (e.g., GlobalScanner product by COSE as well). However, their speci�cations are often
limited in light of the recent progress in sensor resolution and quality. As an example, optronics
systems often provide extreme ground resolution but are limited to a small area. CAMELEON aims
at improving the compromise between the swath and ground resolution. Speci�cally, CAMELEON
will embed up to 6 camera sensors (each producing∼ 100M pixels images). This allows for an extra
wide �eld of view and signi�cant overlapping between images (which is crucial for 3D modeliza-
tion). This involves dealing with huge amounts of data, which requires carefully designed hardware
and software. The CAMELEON system is constituted of two major components, the on-board com-
ponents and the ground component. Both will be presented in the following sections.

The on-board segment of CAMELEON is the heart of the system, it includes a sensor block, a dedi-
cated computer and a user interface:

- Sensor Block: this unit gathers all the sensors of the system along with the mechanical parts
and motors used for controlling their orientations. All the sensors are attached at the core
of a 3-axis gimbal suspension. These three axes are controlled by motors to compensate for
parasite motions (low and high frequencies) of the carrier and to be able to orient the sensors
in any direction. In addition, a forward motion compensation module equips each sensor
to improve image quality. Without this, the image quality is degraded due to motion blur
induced by the displacement of the carrier during the exposition of the sensor. The Sensor
Block also contains an Inertial Navigation System (i.e., an Inertial Measurement Unit coupled
with a GNSS sensor), whose goal is to precisely measure the position and orientation of the
camera to determine accurately the position of pointed objects on the ground.
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Figure 9.1: Simpli�ed illustration of the on-board computer architecture in CAMELEON.

- On-board Computer: it manages the data stream from the sensors to the User Interface and
memory storage. Speci�cally, it consists of an host system that controls an FPGA programmed
to read into the camera memory bu�er and retrieves the images in the host memory. The host
is then in charge of storing the images and their associated metadata in a geospatial database.
It also feeds the user interface with the latest image for visualization. Finally, it also controls a
set of lightweight GPUs (Nvidia Xavier or Orin) to execute complex treatments such as object
detection. A special memory allocation allows for fast data transfer from the host to the kernel
to process the image from the system in real-time. This is illustrated in Fig. 9.1, which depicts
a simpli�ed overview of the system’s architecture.

- User Interface: it is an application that displays the images and metadata acquired by the
system to the user. It also monitors a set of variables about the �ight and the mission.

The Graphical Processing Units (GPUs) selected to be part of the system are the Nvidia edge com-
puting devices Xavier and Orin (see Fig. 9.2). These are lightweight and power-e�cient GPUs that
can be used as an independent device or as an end-point within a more elaborate system. These
GPUs have the computation capacity of mid-range commercial GPU (e.g., Nvidia RTX 3060) while
consuming less than 50W, which is roughly four times as e�cient. That makes them particularly
well-suited for COSE application as only limited resources are available inside the carrier but a
strong computation power is still required. Nevertheless, such an e�ciency is not enough to run
regular detection models in real-time on 100 of megapixels images. Thus, a lot of e�ort is required
to adapt the models and their inference, we will elaborate this in Sec. 9.2.
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Figure 9.2: Nvidia AGX Orin, development kit (left) and production (right) GPUs.

The second component of the CAMELEON system is mainly constituted of the ground station. It is
a high-power workstation, and its goal is to store and process data between missions. The low re-
sources available during the �ight are not su�cient for heavy treatments such as 3D modelization of
the over�own areas. Mission disks �lled during the �ight inside the on-board segment can be trans-
ferred to the ground station for further analysis of the collected data. The ground station can also be
used to execute more demanding detection algorithms or advanced treatments (e.g., segmentation,
change detection, etc.).

9.1.2 CAMELEON Image Speci�cations and Constraints
In addition to the limited computation resource available on-board, CAMELEON has requirements
that make object detection even more challenging. To assist the operators on-board e�ciently, ob-
jects must be detected in real-time. The cameras are set to acquire at least one image every second,
and each image is 11600× 8700. These images are 16-bit Bayer matrices, which amount to roughly
192 megabytes per image. This means that more than 1 GB of data is produced every second in the
system when all the cameras are used. However, the current prototype is designed with only one
camera, which makes the real-time detection a little less challenging. Aside from the model infer-
ence, dealing with such a large amount of data requires carefully designed datastreams between the
various parts of the system to retrieve, store and display the images produced by the cameras. This
is what motivated the use of a Field Programmable Gate Array (FPGA) to orchestrate the transfer
between the camera and the host.

Now, achieving real-time detection, i.e., processing one image per second, under such constraint
is challenging and cannot be done with regular-size detection models (e.g., with ResNet backbone)
implemented in Python. The fastest implementations in Pytorch (e.g., YOLOv5 [346]) are able to
process one 640 × 640 pixels image in about 20ms on a high-end server GPU (Nvidia V100), with
a backbone comparable in size to a ResNet-50. One image of CAMELEON is equivalent to 250
images640× 640 pixels, which would require about 5s to process. Besides, this does not count data
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transfer time, pre- and post-processing which must also �t under the one-second time limit. Fur-
thermore, the high-end GPU used for these benchmarks (available on YOLOv5’s repository1 ) have
much more computing power than the Nvidia Xavier selected for CAMELEON (10 times more ac-
cording to the theoretical capabilities on Nvidia’s website). Therefore, one must adapt the detection
models signi�cantly to ful�ll CAMELEON’s requirements. This can be done in two di�erent ways:
�rst reducing the model size and second accelerating the inference. Both approaches are employed
in CAMELEON’s prototype, and they will be discussed in the following two sections.

9.2 Reducing Object Detection Model Size for Edge Computing
The most straightforward way to increase the throughput of a detection model is to reduce its size.
However, this often comes at the cost of lower accuracy. In this section, we analyze to �nd the
speed/accuracy tradeo� of YOLOv5 [346] on aerial images. Then we propose a simple knowledge
distillation approach to improve this tradeo� and achieve higher detection quality at a �xed size.

9.2.1 Object Detection Accuracy/Speed Tradeo�
First, we compare the speed/accuracy tradeo� for multiple detection frameworks on natural im-
ages. The results of this comparison can be found in Fig. 9.3. To make this �gure, we collected the
performance metrics and model size information directly from the articles presenting the various
detection methods. We select the mAP with various IoU thresholds on MS COCO. This is rather
simple as this is the most common evaluation benchmark in the detection literature. Then, the most
relevant way to assess the speed of the models is to measure the latency (in ms) which represents the
time required to process one image. However there are multiple complications with this measure:
it depends greatly on the hardware used, the size of the input images and even the version of the
library used during inference (in a less pronounced manner). In addition, the latency is not always
reported in the articles which makes the task even more di�cult. Thus, we leverage a surrogate for
the latency: the total number of parameters in the model. Of course, it does not correlate fully with
the latency, but it is a sound approximation, and it is easier to collect. In Fig. 9.3, we plot the per-
formance against the number of parameters (left) and against the latency (right). There are missing
values in the latency plot as this measure was not reported in the original articles. We compare 8
distinct detection frameworks: YOLOv5 [346], CornerNet [43], CenterNet [44], Mask R-CNN [53],
DETR [59], FCOS [45], SwinTransformers [66] (based on Cascade R-CNN), DynamicHeads [73],
and Di�usionDet [74]. The conclusion of this comparison is blatant: YOLOv5 has a much better
speed/accuracy tradeo� than other detection frameworks. Of course, our comparison is not exhaus-
tive, yet it includes recent one-stage detectors that are fast and perform well. We are aware that
very recent developments in the YOLO family outperform YOLOv5 (e.g., YOLOv8 2); however, we
could not include them in our comparison.

1https://github.com/ultralytics/yolov5
2Link to YOLOv8 repository
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Figure 9.3: Inference speed / detection accuracy tradeo�s comparison for multiple detection frame-
works on MS COCO. Latency, i.e., wall-clock time for inference of one image is directly used (right)
but this measure is not always reported in the literature. As a surrogate, the number of parameters
is used to have a more thorough overview (left). N, S, M, L and X designate the various model sizes.

Another reason that nudges our choice toward YOLOv5 is the greater variety of model sizes that they
propose. Most detection models are proposed with two di�erent sizes, usually by employing two dis-
tinct backbones (e.g., ResNet-50 and ResNet-101), but keeping the detection head unchanged. With
YOLOv5, the whole network is modi�ed accordingly, including the head. This provides smoother
model size modi�cations and greater �exibility.

The comparison from Fig. 9.3 demonstrates the superiority of YOLOv5 over other approaches on
MS COCO. However, it is necessary to con�rm that the same behavior is observed on aerial images
as well. To this end, we train the di�erent versions of YOLOv5 on DOTA and DIOR datasets and
plot similar curves as in Fig. 9.3. The resulting plots are available in Fig. 9.4. In this analysis, we
include even smaller models than the nano version of YOLOv5 (YOLOv5-N). We call these models
YOLOv5-P and YOLOv5-F (for Pico and Femto following the nomenclature from YOLOv5). These
models have respectively 0.68 and 0.32 millions of parameters which is much lower compared to
traditional detection models. Nevertheless, strong performance is achieved on DOTA and DIOR
datasets (see Tab. 9.1). Also, YOLOv5-X is not included in the analysis as it is too large for COSE’s
application.

From Fig. 9.4 and Tab. 9.1, it is clear that the detection performance is strongly correlated with the
number of parameters of the model and that this connection holds also for very small models (<
1M parameters). However, it seems that the performance drops faster under a certain model size.
This is observed both for DOTA and DIOR, even though it is more pronounced with DIOR. We also
observed that the latency plot does not follow identically the parameters plot. For instance, with
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Model # params Latency (ms) mAP DOTA mAP DIOR

YOLOv5-F 3.19e+5 5.2 42.8 41.4
YOLOv5-P 6.75e+5 5.4 49.1 63.2
YOLOv5-N 1.78e+6 6.0 68.5 80.3
YOLOv5-S 7.05e+6 6.6 72.7 85.2
YOLOv5-M 2.09e+7 8.7 74.6 88.1
YOLOv5-L 4.62e+7 11.1 75.4 89.1

Table 9.1: Performance (mAP0.5) on DOTA and DIOR for various YOLOv5 sizes. Numbers of pa-
rameters and latency are provided along with the performance measures. Latency is computed with
512× 512 images on a RTX 3090.

Figure 9.4: YOLOv5 tradeo� between model size and performance (left). Between latency and per-
formance (right). 6 model sizes are compared: Femto, Pico, Nano, Small, Medium and Large on
DOTA and DIOR. The horizontal axis of the left plot is in log-scale to better distinguish between the
smallest models. Latency is computed with 512× 512 images on a RTX 3090.
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YOLOv5-P, the latency does not follow the scaling down of the model size exactly. This is probably
due to computation overhead and synchronization inside the model which prevents faster inference.
Given these tradeo� curves, YOLOv5-N is the most promising model as it is closest to the top-left
corner of the plots. However, it is relevant to investigate other model sizes and verify how well they
comply with COSE’s constraints.

9.2.2 Knowledge Distillation
Of course, the smaller the models, the lower the detection performance. However, there exist tech-
niques to boost the performance of any network when we have access to a similar but larger model
with increased performance. This is called Knowledge Distillation (KD). The main principle behind
this technique is to train a student model to mimic a teacher which is often larger and has better
performance. It was �rst introduced by Hinton et al. [347] in 2015. Originally, it consisted in train-
ing the student model with an additional loss measuring how close the logits from the student and
the teacher are. Then, it was extended multiple times, with for instance intermediary layer activa-
tion distillation [348], relational distillation [349], adversarial distillation [350] or multiple teachers
[351]. Most of these techniques are designed for classi�cation applications and provide limited
performance boosts for detection models. Fortunately, knowledge distillation can be extended for
�ne-grained tasks and in particular for object detection [352, 353, 354, 355, 356]. For more details
about existing knowledge distillation methods, we defer the reader to this complete survey [357].

As a �rst try with KD, we applied Fine-grained Feature Imitation (FFI) [352] to improve the training
of YOLOv5-P and YOLOv5-N with larger teachers trained on DOTA and DIOR. FFI proposes an
additional loss function that measures the disparity between the teacher and student feature maps,
but the computation only includes regions close to a ground truth annotation:

LFFI =
1

2m

W∑
i=1

H∑
j=1

Mi,j‖fadapt(si,j)− ti,j‖22, where m =

W∑
i=1

H∑
j=1

Mi,j . (9.1)

Here,M is the imitation mask which is 1 where in neighboring regions of each ground truth anno-
tation and 0 elsewhere. H and W represent the height and width of the feature map respectively.
fadapt is a mapping function that converts the feature of the student, denoted si,j , to the same size
as the teacher’s ones (in terms of the number of channels), denoted ti,j . Indeed, features maps of
the student often have fewer channel, which prevents direct comparison. The intuition behind this
loss is that student outputs should only match teacher outputs in regions where there is an object
of interest. The background is too noisy and the student model may not have the capacity to mimic
the teacher everywhere, it should focus only in relevant regions.

The results obtained with aerial images do not agree with the performance gains reported in the
original paper [352] for natural images (see Tab. 9.2). Signi�cant performance drops are observed
with distillation on aerial images. Similar drops are observed for YOLOv5-P and YOLOv5-N both
on DOTA and DIOR datasets. KD methods designed for natural images may not be well adapted
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DOTA DIOR

All S M L All S M L

YOLOv5-P w/o KD 49.1 30.8 53.8 48.9 63.2 21.3 50.0 76.6
w/ KD 46.4 27.9 51.7 45.9 48.5 17.5 43.0 56.4

YOLOv5-N w/o KD 67.9 51.0 70.9 69.8 80.6 35.9 69.2 90.8
w/ KD 47.5 30.3 52.4 45.5 55.9 22.0 51.4 65.3

Table 9.2: Detection performance (mAP0.5) comparison with and without Knowledge Distillation
(KD). Performance is reported for di�erent objects sizes and on two datasets, DOTA and DIOR.
Both YOLOv5-P and YOLOv5-N are compared.

for aerial images, one reason for this could be the presence of much smaller objects which have
smaller and noisier representations inside the feature maps. In a sense, that could be linked to
the di�culty of applying FSOD methods on aerial images, as described in Chap. 4. These results
deserve to be investigated further in future work as distillation is a promising direction for detection
improvements.

9.3 Inference Acceleration with TensorRT
TensorRT is a tool provided by Nvidia to optimize the inference of deep learning models on Nvidia’s
hardware. Recent Nvidia GPUs have dedicated modules for deep learning inference, called Tensor

Cores. They contrast fromCUDA cores, which are principally made for parallel computing. TensorRT
unlocks the potential of the tensor cores by generating an engine that can be run most e�ciently on
a speci�c GPU. This di�ers from the vanilla Python inference (i.e., with any deep learning library),
which calls CUDA kernels that are executed on the CUDA cores of the GPU. TensorRT also leverages
the CUDA cores and thus leverages the maximum GPU capabilities. In addition, TensorRT proposes
several optimization tricks for increasing the inference speed even more. We detail such tricks in
the following paragraphs and explain how they can be used for object detection models.

Speci�cally, TensorRT takes as input a neural network model from any common library in a suit-
able format such as Open Neural Network Exchange (ONNX) and converts it into an engine. This
engine contains the initial network along with speci�c instructions about how to run inference in
an e�cient way given the available hardware. TensorRT provides APIs for various programming
languages (e.g., Python and C++) to run the engine directly from any application.

Operation Fusion and Scheduling
TensorRT merges di�erent layers and re-organizes the forward pass of the model. Speci�cally, the
forward pass of a model can be represented as a computation graph (see Fig. 9.5). Each node rep-
resents a layer and the edges represent the data stream between layers. One of the objectives of
TensorRT is to optimize the computation graph of the model. First, when several consecutive layers
are composed (i.e., the output of the �rst layer is the only input of the second layer), they can be
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Figure 9.5: Illustration of a computation graph and its optimization by TensorRT. Figure taken from
an Nvidia technical blog post.

fused vertically. Instead of creating distinct CUDA kernels for each layer, only one kernel is created,
saving a lot of time, particularly in data transfer. This is illustrated in Fig. 9.5 (right) where, con-
volution, bias, and activation layers are merged as "CBR" blocks. Then, layers can also be merged
horizontally. Horizontal fusion happens when similar operations are in parallel and have the same
input (e.g., three distinct parallel 1×1 convolutions as illustrated in Fig. 9.5, right). This also reduces
the creation of unnecessary CUDA kernels and maximizes the utilization of the resources. Finally,
when there are parallel paths in the computation graph, the order in which the di�erent branches
can be irrelevant. In this case, some clever scheduling can maximize the utilization of the GPU and
speed-up inference. This scheduling is not trivial as it is subject to the memory constraint of the
hardware, and all parallel operations cannot be done at once.

TensorRT searches for optimal scheduling and fusion according to the available hardware and the
input size that will be used at inference (e.g., batch size and image size). This implies that the input
size is �xed for a given engine, but it is a small price compared to the bene�ts of the TensorRT
conversion. TensorRT does have a variable size option, but it does not seem to be compatible with
the reduced precision that we will detail in the following paragraphs.

Floating point precision
Then, TensorRT reduces the precision of the model’s weights and activations. In Python, common
libraries store models and images as �oat numbers which take 4 bytes of memory (i.e., 32 bits,
denoted F32). TensorRT can convert a model with half-precision �oats (denoted F16), which only
take 16 bits of memory. This reduces the size of the model by a factor of two, but most importantly
it reduces the computation power required to perform a forward pass as well. Indeed, arithmetic
operations are faster with half-precision numbers as they require fewer basic operations. Thus, it
sensibly reduces the overall inference time. This trick is becoming quite common as well for training
neural networks; however, mixed precision (i.e., keeping some parts of the models as regular �oats)
is required to prevent convergence issues [358]. TensorRT instead converts the whole model into
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half-precision. In practice, this loss of information is not an issue for inference and performance is
almost unchanged.

Integer Quantization and Calibration
Pushing even further, TensorRT enables the conversion of the model in 8-bit integers. This again
reduces the amount of memory and computation power required to store the model and perform
inference. However, the model’s weights and intermediary computation can only take 256 di�erent
values with integer precision. This is certainly not enough to represent the entire range of values
found in a model. A solution for this is to map the weights and activations of the model into the
J−2b−1, 2b−1−1K interval, where b is the number of bits used for the quantization (generally b = 8).
If the dynamic range of the weights is [α, β], this can be achieved with a linear transformation:

S(x) = ax+ b, with a =
2b − 1

β − α
, and b = −α(2b − 1)

β − α
− 2b−1. (9.2)

Hence, the quantization and dequantization functions can be written as:

x̄ = Q(x) = bS(x)c = bax+ bc , (9.3)

x ≈ S−1(x̄) =
1

a
(x̄− b). (9.4)

This can be further simpli�ed when both the weights interval and the quantized interval are centered
(e.g., α = β): S−1(x̄) = 1

a x̄. In this case, one can easily see that the matrix multiplication, the basic
operation of neural networks’ forward pass can be computed using mostly integer multiplications
and additions. If we de�ne three matrices X ∈ Rn×p, Y ∈ Rp×m, and Z ∈ Rn×m, such that
Z = XY , then we have:

zi,j =
∑
k

xi,kyk,j ≈
∑
k

S−1
x (x̄i,k)S

−1
y (ȳk,j) =

1

axay

∑
k

¯xi,k ¯yk,j , (9.5)

where ax and ay are the quantization scale parameters for the respective quantization of matrices
X and Y . As hinted in the previous equation, di�erent quantization functions are necessary to
keep the �exibility of the model. The number of parameters inside a model is large compared to the
number of quantized values (256 for integer quantization). Quantizing all weights of the model at
once would result in a much looser approximation of the actual weight values. Instead, quantization
is performed at the layer-level or even lower (at the column or channel level).

Similarly, activations of the model are also quantized per layer. However, the range of the activation
highly depends on the input of the model and cannot be known in advance. To alleviate this, a
calibration cache can be computed from a calibration set. TensorRT automatically builds this cache
by running a forward pass on all images of the calibration set. Of course, this set must contain
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images that are similar to the images on which the model will be deployed. Concerning COSE, this
complexi�es the domain adaptation problem as the calibration of the model should be adapted to
the domain. Even if it only requires non-annotated images to compute the calibration cache, it can
sometimes be challenging to obtain an appropriate calibration set due to con�dentiality constraints.
The resulting calibration cache gathers information about the quantization of the activation of the
di�erent layers of the model. It is then used during inference, which slightly increases memory
usage during inference.

We brie�y presented the linear quantization technique, yet TensorRT also provides more elaborated
quantization to minimize the loss of information. For instance, it has an Entropy Calibration tech-
nique that adapts the density of bins according to the density of weights values. It is very similar to
entropy coding techniques that assign smaller code to the most frequent symbols.

C++ Implementation
Finally, the TensorRT conversion allows for using C++ as a backend instead of Python. This is not
strictly speaking a TensorRT trick, but it signi�cantly reduces the inference time. As TensorRT
provides a C++ API, the whole inference pipeline can be written in C++ as well. C++ is known to
be much faster than Python and implementing pre- and post-processing in this language can speed
up the inference.

9.4 Object Detection Pipeline for CAMELEON Prototype
Now that we have discussed various improvements for accelerating the inference time of the detec-
tion model, we present how we make use of them speci�cally for COSE application. First, we select
the most interesting models from our analysis in Sec. 9.2: YOLOv5-N and YOLOv5-P. Both achieve
fast inference while preserving high detection performance. We then perform the conversion in a
TensorRT engine to speed up the inference. This was done only for the model trained with DOTA
dataset, but it would be identical with DIOR.

9.4.1 Deployment with TensorRT
We started with the nano version as the goal is to satisfy the time constraint of processing one image
per second. If it does not �t under the time constraint, we would do the same with the pico version.
With the help of TensorRT, we reduce the precision of the model into 8-bits integers. The calibration
is performed with DOTA validation images. However, to �nd the most e�cient utilization of the
GPUs, it was necessary to explore what were the best combinations of batch size and input image
size. CAMELEON’s images have 11600 × 8700 pixels and doing the inference on the entire image
at once demands too much GPU memory, even with our smallest models. The images must be tiled
before being fed to the model. The tiling has a major downside: it can cut object in half which make
them more di�cult to detect. Adding some overlapping between tiles can prevent this but it also
increases exponentially the amount of data to process (see Fig. 9.6). In addition, having to many tiles
requires processing multiple batches. This is equivalent to performing the inference multiple times
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Figure 9.6: Show the number of tiles against the overlap, for di�erent tile size (left) and the ratio of
pixels that need to be processed given the overlap (right). As an example, choosing an overlap of 0.7
will produce 10 times more data to process compared with the original image. The computations
were done with CAMELEON image size (11600 × 8700 pixels).

adding a small overhead at each iteration. Thus, we want to minimize the overlap and have tiles as
large as possible.

We tried several combinations of batch size and tile size, but this is a tedious task as an entire engine
must be created for each setting. We did not mention it before, but the engine generation is a heavy
optimization process that requires several hours on the Xavier GPUs. Based on these insights and
multiple practical trials, we set the tile size to half the height of a CAMELEON image: 4350, with a
batch size of 1. This maximizes the utilization of the GPU, requires few inferences and limits object
splitting. This results in 6 tiles organized as shown in Fig. 9.7 with slight horizontal overlap.

Overlapping also induces the need for NMS after the detection. Indeed, in areas that will be pro-
cessed multiple times, detections can be duplicated. To remove these undesired boxes, an NMS
operation must be performed at the whole image level. As it scales in O(M2) with M the number
of detected boxes, it can become expensive. In addition, it depends on the number of detected ob-
jects in the image, which can be considerable in CAMELEON-size images. Fortunately, there exist
fast GPU implementations of the NMS that can be leveraged easily. It could be further optimized
by �rst performing the NMS on each tile individually and then only in the overlapping areas to
drastically reduce the number of boxes. Nonetheless, the NMS computation time is not prohibitive
as it is and the test images contain far more objects than what will be encountered in real-case
applications. Therefore, we choose not to spend e�ort on improving the NMS process. The pre-
and post-processing are less expensive than the inference itself, but they still consume a signi�cant
amount of time. To accelerate them, we choose to implement them in C++ as it is much faster than
Python, especially for data management and transfer.
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Figure 9.7: Illustration of the tiling implemented in our prototype, the background image is a test
image, it is constituted of DOTA images pasted together to get the right dimensions. Green squares
represent the tiles.
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Processing step Time (ms)

CPU to GPU copy 87 ± 0.5
Tiling 1 ± 0.1

Inference per tile
×6

Pre-processing 24 ± 3
Inference 73 ± 1
GPU to CPU copy 10 ± 0.5
Subtotal 642

Post-processing 16 ± 1

Total 745 ± 10

Table 9.3: Pro�ling for the inference of YOLOv5-N engine with integer precision on one CAMELEON
image. Timings are measured on a Nvidia AGX Xavier.

9.4.2 Detection Performance Evaluation and Pro�ling
Now that we have a TensorRT engine, we must validate its capacity, both in terms of inference
speed and detection quality. Indeed, the precision reduction of the model often leads to reduced
performance.

First, we check if the inference is fast enough to comply with COSE’s constraints. To this end,
a simple pro�ling of the various steps of the execution is realized. Speci�cally, we isolate the data
copy, tiling, pre-processing, inference and post-processing. The results of this pro�ling can be found
in Tab. 9.3. The timings are averaged over 100 runs on an Nvidia AGX Xavier in high consumption
mode (30W + overclocking). It results in the overall processing of one image in roughly 750ms. This
falls under the 1s barrier and thus ful�lls the application constraints. Larger versions of YOLOv5 do
not respect this constraint. However, it would be relevant to investigate smaller ones to get degraded
performance mode to process more than one image per second. The current prototype has only one
sensor, but the �nal system will �y with 6 identical cameras. While it may not be realistic to process
all these images in real-time it might be useful to have access to faster models able to manage the
image from more than one sensor. We also experiment with a new generation of embedded GPU:
the Nvidia AGX Orin, which recently replaced the Xavier. Compatibility issues between TensorRT
and the new GPU prevent us from experimenting more with it, but we were able to create a similar
engine for the Orin. This produces signi�cant inference speed gains as we process an entire image
in a little less than 500ms. Yet, the Orin consumes more power than the Xavier (50W).

To assess how the precision reduction changes both the inference speed and detection performance,
we compare multiple deployment strategies with the YOLOv5-N model. Speci�cally, we compare
the inference speed of the Pytorch model (with F32 and F16 precisions) with the TensorRT engines
(F32, F16 and INT8 precisions). The inference times are measured both on an RTX 3090 and an
Nvidia AGX Xavier, with distinct image widths: 512 and 4096 pixels. The results of this comparison
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RTX 3090 Latency AGX Xavier Latency

Image Size (pixels) 512 4096 512 4096 mAP0.5

Pytorch F32 6 36.3 87.5 2638.6 0.679
Pytorch F16 8.3 20.4 90.7 2616.5 0.679

TensorRT F32 0.75 17.16 4.65 199.22 0.565
TensorRT F16 0.44 7.22 4.64 106.2 0.565

TensorRT INT8 0.43 5.77 2.48 68.65 0.523

Table 9.4: Inference speed comparison (in ms) between various deployment strategies and precisions
for YOLOv5-N. Inference times are measured with two image widths and on two GPUs. A high-end
desktop GPU: RTX 3090, and an embedded GPU: AGX Xavier. mAP with a 0.5 IoU threshold is also
reported on DOTA.

are available in Tab. 9.4. First, there is an impressive speed gap between the TensorRT engines and
Pytorch models: TensorRT engines are much faster. This is expected given all the optimizations
conducted and the relative slowness of Python. However, it is worth noting di�erent behaviors
between the two GPUs. Of course, the RTX 3090 is faster, but changing the engine precision from
F32 to F16 does not produce similar gains for the AGX Xavier. This is explained by the change of
microarchitecture between these two GPUs. The AGX Xavier is based on the Volta architecture
while the RTX 3090 leverages the newer Ampere architecture. In particular, Ampere introduces a
new generation of Tensor core, speci�cally designed for F32 computations. Reducing the precision
of the models generates a slight overhead and higher gains are observed when the GPU utilization
is higher, i.e., when using larger images or increased batch size. This is why we report the results
both for 512 and 4096 image widths. Inference gains are more important with larger image sizes,
fortunately for our application. Then, we also report the mAP for each model. We observe no
performance drop when switching from F32 to F16. But, there is a slight decrease of mAP with the
quantization in INT8. This is expected as a lot of approximations are made in the computations. On
the other hand, we also observe a performance drop with the TensorRT conversion, with the F32
engine this is not expected as no approximation should be done. While the drop is acceptable, it
should be investigated in depth to better understand its origin. Finally, we report some qualitative
results of the INT8 inference on a CAMELEON-size image in Fig. 9.8. The inference on the whole
image was performed in less than a second on an AGX Xavier.

More experiments are planned in future work to �nd an even better compromise between inference
speed and detection quality, especially with the Orin GPUs. However, the compromise attained with
YOLOv5-N is already satisfactory from an industrial perspective and will be integrated into the �rst
CAMELEON prototype. The connection with the CAMELEON user interface Fig. 9.9 has already
been done and the models wait for the �rst �ight to be tested on real images.
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Figure 9.8: Qualitative detection performance on CAMELEON-size image with YOLOv5-N INT8
engine.

Figure 9.9: CAMELEON user interface.
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9.5 Conclusion
In this chapter, we have presented some tools and tricks that are leveraged to greatly accelerate
the inference of neural networks. Thanks to these tools, we are able to achieve real-time detection
on images of hundreds of megapixels, embedded on a low-consumption GPU. Of course, better
compromises could be found with a more complete study of the YOLOv5 framework and especially
by exploring the in�uence of the model size on the performance with greater granularity. Aside from
�nding a better compromise, it would be relevant to investigate deeper knowledge distillation and
unlock its full potential for object detection. It is also required to explore new detection frameworks
(e.g., YOLOv8), in particular with the recent AGX Orin. Its improved computation power could
allow for larger model sizes and increased performance while satisfying the time constraint. Finally,
this deployment has been conducted for regular detection models, it should be done as well for Few-
Shot detection models, even though it complexi�es greatly the analysis and the creation of TensorRT
engines. While it is unrealistic to deploy attention-based models in this manner (due to increased
inference time), �ne-tuned models are much more adapted. It would increase the adaptation time
by adding the engine creation after �ne-tuning, but the inference will remain unchanged. Of course,
it would be necessary to study the in�uence of the model size on the performance and see if that is
compatible with CAMELEON’s requirements.
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Conclusion and Perspectives

In a nutshell, we �rst summarize the various contributions made to the Few-Shot Object Detection
�eld. Then, we take a step back from these contributions and discuss what are the most promising
research directions that should be followed in future work. Finally, we present the remaining in-
dustrial challenges that COSE will face before achieving robust and adaptable object detection in an
embedded environment.

Contribution Summary
In the �rst part of the manuscript we have reviewed thoroughly the literature about Object De-
tection, Few-Shot Learning and especially Few-Shot Object Detection. These three domains are
the foundations of this PhD project. The knowledge presented in the corresponding chapters is
crucial for the development of future FSOD algorithms and to meet the industrial needs of COSE.
These three �elds are growing rapidly and it is necessary to remain up-to-date with state-of-the-art
both for academic and industrial research. It is especially important for FSOD as it is a very recent
problem and lacks consensus on how to address it. Even if the FSOD literature is growing, it is
still a small �eld and most contributions are primarily designed for natural images. However, it is
not guaranteed that such techniques will perform well on other kinds of images. In Chap. 4, we
highlight especially that with an in-depth analysis of the FSOD performance on aerial images, the
performance drops signi�cantly when the methods are applied to these kinds of images. The main
reason behind this phenomenon is the smaller object size in aerial images. Even if small objects are
already di�cult for regular object detection, the challenge is much greater in the few-shot regime.
In addition, Part I highlights the organization of the FSOD literature into three kinds of approaches.
We divided Part II into three chapters accordingly, each focusing on a di�erent FSOD approach:
metric learning, attention-based methods and �ne-tuning strategies. Speci�cally, in Chap. 5, we
have proposed an original FSOD method entirely based on metric learning. It embeds prototyp-
ical networks into the well-known Faster R-CNN detection model. This naive approach achieves
mitigated results but is highly adaptable, it can adapt to novel classes without �ne-tuning or heavy
computation. The experiments conducted with this model are instructive for the development of fu-
ture FSOD methods. Then, in Chap. 6, we focused on the attention-based mechanisms for FSOD. We
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proposed a modular framework to implement and compare existing attention-based FSOD methods.
Thorough experiments on both aerial and natural images showed the superiority of local attention
mechanisms, called alignment. To reduce the performance gap between natural and aerial images, a
novel alignment technique is developed within the framework to speci�cally address the detection
of small objects. The resulting FSOD approach outperforms existing work in the literature on aerial
image datasets as it improves largely the detection of small targets. Finally, Chap. 7 studied the
last FSOD approach: the �ne-tuning strategy. Leveraging the recent Di�usionDet detector based on
di�usion models, we propose a simple �ne-tuning approach that outperforms signi�cantly previous
techniques. The simplicity of this approach and its impressive detection quality allows for tackling
more di�cult scenarios such as Cross-Domain FSOD. Fine-tuning based FSOD is also better suited
for transductive inference than metric-learning or attention approaches as it does not change the
detection model much. Both transductive inference and Cross-Domain scenarios are of particular
interest to COSE as they match better the real application. Our experiments in these directions show
promising results and should be extended in future work. All detection models heavily rely on the
Intersection over Union (IoU) for training and evaluation. However, we showed in Chap. 8 that it is
not an optimal choice, especially when dealing with small objects. Thus, it becomes critical when
applying FSOD to aerial images. Therefore, we proposed Scale-adaptative Intersection over Union
to replace IoU. It signi�cantly improves the training of few-shot object detectors, as it allows for
a better balance between small and large objects. In addition, it aligns better with human percep-
tion and is then a better choice for the evaluation of object detectors. Then, with a more industrial
mindset, we optimized and deployed several object detectors inside the CAMELEON prototype. We
explained our process, the tools leveraged, and the compromises made in Chap. 9. This chapter
focuses only on regular object detection as it is a �rst step before deploying more complex models
able to generalize either to new classes or new domains.

Finally, we take a step back and compare the three approaches that we proposed in this thesis: Pro-
totypical Faster R-CNN, XQSA and FSDi�usionDet. Each has its pros and cons, even if PFRCNN
does not perform well it can be adapted at test time which is a highly desirable property. On the
contrary, FSDi�usionDet is less �exible but achieves signi�cantly higher performance. This com-
parison is available in Tab. 10.1, it compares the three methods on various criteria, grouped into
four categories: Performance, Flexibility, Training and Deployment. These categories encompass
the desired capabilities for a detector model inside the CAMELEON system.

Future Research Tracks
In this PhD, various directions have been explored for improving Few-Shot Object Detection. We
believe that we have provided signi�cant contributions and answered relevant questions in the FSOD
�eld. However, our analysis raises new questions and problems. First, we have proposed several
improvements toward the detection of small objects in the few-shot regime. Nonetheless, there is
still a signi�cant performance gap between small and large objects and more e�ort should be put
in this direction. To this end, we have explored the attention mechanisms and loss function design,
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Prototypical Faster R-CNN XQSA FSDi�usionDet

Approach Metric-Learning Attention Fine-tuning

Performance

Novel classes performance �� � ��
Base classes performance � � ��

Extremely low-shot
performance � � �

Inference speed � � �

Flexibility

Class scalability � � �
Shot scalability � � ��

Fixed class number No No Yes
Test-time adaptation Yes No No

Cross Domain Adaptation
Capabilities Not tested Not tested Promising

results

Training

Base training time � � �
Fine-tuning required No Yes Yes

Fine-tuning time � �� �
Episodic training∗ Yes Yes No

Deployment Technical complexity? � � ��
TensorRT optimization† � �� �

Table 10.1: Comparison table between the three proposed approaches in this thesis: Prototypical
Faster R-CNN, XQSA and FSDi�usionDet. The ratings are given according to the experiments con-
ducted throughout this project and the insights generated. Green and red colors denote pros and
cons, respectively, best viewed in colors. ∗Episodic training is more complex and often subject to
instabilities. ?Technical complexity of the methods is a subjective criterion that measures how in-
tricate a method is. †TensorRT optimization is not compatible with custom layers or complex data
streams which greatly complexi�es the optimization of more elaborated methods such as attention-
based approaches.

but we have not looked into the training examples selection strategy even though it may have a
signi�cant in�uence on the small and large objects’ balance during training. Incidentally, it would
be relevant to replace IoU inside the example selection process with SIoU. This would favor smaller
objects and certainly improves overall performance on aerial images. At least, it would o�er more
control over the training balance between small and large objects. SIoU is a controllable criterion,
but it has a drawback, it requires the setting of two parameters and their optimal choices require
some trials and errors. It would be of great use to come up with an automatic strategy that could
provide the optimal parameters for a given problem or dataset.

The main motivation of Few-Shot Learning is to mimic the human ability to learn from very few
examples. Of course, we are still far from solving FSOD, and a lot of e�orts are still needed to close
the gap with fully supervised learning, not to mention human-level perception. Nevertheless, the
improvements made through this project encourage the study of more complex yet more realistic
settings. One is particularly relevant for COSE’s use case: Cross-Domain FSOD. This problem is
still mostly untouched in the literature. We conducted some early experiments in this direction in
Chap. 7 and demonstrated promising results. However, dedicated designs are required to get real
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improvements as applying FSOD methods directly on this task is certainly not optimal. Many di-
rections are worth a try, taking inspiration from classi�cation methods, e.g., generative modeling or
discrepancy-based adaptation. The transductive inference is another promising approach, it makes
some additional assumptions, but it is still realistic at least from COSE’s perspective The transduc-
tive approach has not been explored for detection and could bring desirable properties to the FSOD
�eld, especially test-time adaptability which is still very challenging.

Remaining Industrial Challenges
Now from COSE’s perspective, plenty of challenges are still to be addressed. First, the current
CAMELEON prototype only has a single camera but the �nal product is meant to have �ve more. It
would probably be quite di�cult to achieve real-time detection on all images. Of course, we could
continue optimizing the models and �nd better speed/accuracy tradeo�s. The recent advances in
the YOLO family are promising, and substantial gains are achieved with newer GPUs. However,
it may not be su�cient to multiply the throughput of the detection pipeline by six. Fortunately,
as there is some overlapping between the images, it is not required to process all six data streams
independently. Instead, we could determine the overlapping areas to avoid processing them multiple
times. But that is not trivial and requires image registration techniques which are also expensive,
especially at the size of CAMELEON’s images.

While the current prototype achieves satisfactory detection performance, there is still room for im-
provement. Our attempt to apply Knowledge Distillation (KD) to aerial images has been fruitless.
Nevertheless, distillation is a promising direction to improve detection performance while main-
taining a �xed computation budget. Some e�ort should be spent on developing novel KD methods
that are also bene�cial with aerial images and small objects.

Currently, only regular object detection algorithms have been deployed inside the prototype. While
this is certainly a major step, it is still limited by the training classes and domain. As it is not possible
to know in advance the kind of images that will be encountered during missions, mainly because of
con�dentiality constraints, we cannot guarantee the quality of the detections in operation. It would
be extremely valuable to achieve real-time class and domain adaptation from a few examples. It
would result in a single model that could be adapted on-the-�y (literally) according to the operation’s
needs. However, state-of-the-art FSOD is still far from this and COSE should probably not invest
in this direction in the short run, especially as such adaptative methods will probably come at the
cost of lower detection quality and slower inference. Instead, COSE should focus on developing an
e�cient �ne-tuning platform that could be used by the forces to train their own models for speci�c
missions. It could not be done during a mission, but afterward using the images collected and a
few annotations. It would help to analyze the mission data faster and could produce new real-time
models for subsequent similar missions. The key would be to conceive a unique application that can
handle image annotation, model �ne-tuning and deployment, all at once.
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Appendix A

Proofs of SIoU’s Properties

In this appendix, we provide the proofs for Properties 1 and 2, and discuss the order-preservigness of
SIoU.

Property 1 (SIoU Relaxation)
Let b1 and b2 be two bounding boxes and introduce τ = w1h1+w2h2

2 their average area. SIoU preserves
the behavior of IoU in certain cases such as:

- IoU(b1, b2) = 0⇒ SIoU(b1, b2) = IoU(b1, b2) = 0

- IoU(b1, b2) = 1⇒ SIoU(b1, b2) = IoU(b1, b2) = 1

- lim
τ→+∞

SIoU(b1, b2) = IoU(b1, b2)

- lim
κ→0

SIoU(b1, b2) = IoU(b1, b2)

Proof First let recall the expression of SIoU, SIoU(b1, b2) = IoU(b1, b2)p with p = 1− γ exp
(
−
√
τ
κ

)
.

τ > 0 because boxes cannot be empty and as γ ∈]−∞, 1] and κ ∈ R∗+, we have p > 0.

From this, the �rst two items of Property 1 follow clearly.

The two other points hold because the function f : x 7→ IoU(b1, b2)x is continuous on R for any couple
of boxes b1 and b2 (IoU(b1, b2) ∈ [0, 1]) and lim

τ→∞
p = lim

κ→0
p = 1.
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Property 2 (Loss and gradients reweighting)
LetLIoU(b1, b2) = 1− IoU(b1, b2) andLSIoU(b1, b2) = 1−SIoU(b1, b2) be the loss functions associated
respectively with IoU and SIoU. Let denote the ratio between SIoU and IoU losses by WL(b1, b2) =
LSIoU(b1,b2)
LIoU(b1,b2) . Similarly,W∇(b1, b2) = |∇LSIoU(b1,b2)|

|∇LIoU(b1,b2)| denotes the ratio of gradients generated from SIoU
and IoU losses:

WL(b1, b2) =
1− IoU(b1, b2)p

1− IoU(b1, b2)
, (A.1)

W∇(b1, b2) = pIoU(b1, b2)p−1, (A.2)

WL and W∇ are increasing (resp. decreasing) functions of IoU when p ≥ 1 (resp. p < 1) which is
satis�ed when γ ≤ 0 (resp. γ > 0). As the IoU goes to 1,WL andW∇ approaches p:

lim
IoU(b1,b2)→1

WL(b1, b2) = p, (A.3)

lim
IoU(b1,b2)→1

W∇(b1, b2) = p. (A.4)

Proof Let denote the IoU(b1, b2) by µ, and de�ne two functions f : µ 7→ 1 − µ = LIoU(b1, b2) and
g : µ 7→ 1− µp = LSIoU(b1, b2).

f and g are di�erentiable on [0, 1] and lim
µ→1

f(µ) = lim
µ→1

g(µ) = 0. This holds because p is independent

of the IoU ( i.e., µ).

Therefore L’Hôpital’s rule can be applied:
lim
µ→1
WL = lim

µ→1

g(µ)
f(µ) = lim

µ→1

g′(µ)
f ′(µ) = lim

µ→1
pµp−1 = p.

The expression of the second ratio W∇(b1, b2) follows directly as |∇LSIoU(b1, b2)| = g′(µ) and
|∇LIoU(b1, b2)| = f ′(µ), hence lim

µ→1
W∇ = lim

µ→1
pµp−1 = p.

Order-preservigness
Let us take three boxes b1, b2, and b3. Order-preservigness does not hold for SIoU. Therefore
IoU(b1, b2) ≤ IoU(b1, b3) does not imply SIoU(b1, b2) ≤ SIoU(b1, b3). However, this property is
often true in practice. Denoting by τi,j the average area between boxes i and j, we can study the
conditions for the order to hold. We will also note pi,j = 1− γ exp

(
−
√
τi,j
κ

)

Let’s suppose, without loss of generality, that τ1,2 ≤ τ1,3. Otherwise, cases 1 and 2 would be
swapped.

Case 1: γ ≤ 0

We have p1,2 > p1,3 as τ1,2 ≤ τ1,3 and γ ≤ 0. Therefore, p1,2 = p1,3 + ε, with ε > 0.
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Then,
IoU(b1, b2)p1,2 = IoU(b1, b2)p1,3+ε

= IoU(b1, b2)p1,3 IoU(b1, b2)ε

≤ IoU(b1, b2)p1,3

≤ IoU(b1, b3)p1,3

Line 3 holds because 0 < IoU(b1, b2)ε ≤ 1. Line 4 is true because IoU(b1, b2) ≤ IoU(b1, b3) and the
function h : x 7→ xp1,3 is monotonically increasing. Hence, when γ ≤ 0 the order is preserved.

Case 2: γ > 0

We have p1,3 > p1,2 as τ1,3 ≤ τ1,2 and γ > 0. Therefore, p1,3 = p1,2 + ε, with ε > 0.

In this case, the order does not always hold, counter-examples can be found. However, it is useful
to study the conditions for it to hold:

IoU(b1, b2)p1,2 ≤ IoU(b1, b3)p1,3 ⇔
ln
(
IoU(b1, b2)

)
ln
(
IoU(b1, b3)

) ≥ p1,3

p1,2

In practice, the right condition is often true as p1,2 and p1,3 are close due to scale matching, a trick
present in most detection frameworks to prevent comparison of proposals and ground truth of
very di�erent sizes. In addition, the ratio of log values gets large rapidly, even if the gap between

IoU(b1, b2) and IoU(b1, b3) is small, the ratio
ln
(

IoU(b1,b2)
)

ln
(

IoU(b1,b3)
) can be large.

The order-preservigness property holds in many cases. This is sensible as IoU is still a reliable
metric that has been used extensively for the training and evaluation of detection models. However,
in the rare cases where this order is broken, the IoU(b1, b2) and IoU(b1, b3) are close, so IoU does
not discriminate much between the boxes. On the contrary, SIoU prefers the smallest one (or largest
one, according to the choice of γ). This stronger discrimination is probably bene�cial for training
and evaluation.
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Appendix B

Theoretical GIoU’s Distribution Analysis

In this appendix, we give a proof of the formulas of the probability density function, expected value,
and variance of GIoU. We also provide some non-closed-form expressions for other criteria.

Proposition 1 (GIoU’s distribution)
Let b1 = (0, y1, w1, h1) be a bounding box horizontally centered and b2 = (X, y2, w2, h2) another
bounding box randomly positioned, withX ∼ N (0, σ2) and σ ∈ R∗+. Let’s suppose that the boxes are
identical squares, shifted only horizontally ( i.e., w1 = w2 = h1 = h2 and y1 = y2).
Let Z = C(X), where C is the generalized intersection over union. The probability density function of
Z is given by:

dZ(z) =
4ω

(1 + z)2
√

2πσ
exp

(
−1

2

[
ω(1− z)
σ(1 + z)

]2
)
. (B.1)

The two �rst moments of Z exist and are given by:

E[Z] =
2

π3/2
G2,3

3,2

(
2a2

∣∣∣∣0 1
2

1
2

1
2 0

)
, (B.2)

E[Z2] = 1− 8a√
2π

+
16a2

π3/2
G2,3

3,2

(
2a2

∣∣∣∣−1 1
2 −1

2
1
2 0

)
, (B.3)

where G is the Meijer G-function [345] and a = σ
ω .

Proof First, in the setup described in Proposition 1, GIoU can be expressed in terms of the width of the
boxes ω and the shift in between x. Let’s call this function C:

C : R→ [−1, 1]

x 7→ ω − |x|
ω + |x|

The shifts are sampled from a Gaussian distribution: X ∼ N (0, σ2), therefore we are interested in the
distribution of the variable Z = C(X).
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The cumulative density function of Z is given by:

FZ(z) = P (Z ≤ z) = P (
ω − |X|
ω + |X|

≤ y)

= P (ω
1− z
1 + z

≤ |X|)

= 2P (ω
1− z
1 + z

≤ X)

= 2(1− FX(ω
1− z
1 + z

))

= 2(1− FX(g(z)))

With g(z) = ω(1−z
1+z ). Hence, the density function of Z can be derived by taking the derivative of FZ :

dZ(z) =
d

dz
FZ(z)

= −2g′(z)F ′X(g(y))

=
4ω

(1 + z)2
√

2πσ
exp

(
−1

2

[
ω(1− z)
σ(1 + z)

]2
)

To determine the �rst and second moments of Z , we make use of the change of variable formula:

E[Z] = E[C(X)] =

∫ +∞

−∞
C(x)dX(x) dx

E[Z2] = E[C(X)2] =

∫ +∞

−∞
C(x)2dX(x) dx

Let’s start with E[Z]:

E[Z] =

∫ +∞

−∞
C(x)dX(x) dx

=

∫ +∞

−∞

1√
2πσ

ω − |x|
ω + |x|

e−
x2

2σ2 dx

=
2√
2πσ

∫ +∞

0

ω − x
ω + x

e−
x2

2σ2 dx

=
2√
2πσ

∫ +∞

0

2ω − (ω + x)

ω + x
e−

x2

2σ2 dx

=
2√
2πσ

[
2

∫ +∞

0

ω

ω + x
e−

x2

2σ2 dx−
∫ +∞

0
e−

x2

2σ2 dx

]
=

4√
2πσ

∫ +∞

0

ω

ω + x
e−

x2

2σ2 dx− 1

=
4√
2πa

∫ +∞

0

1

1 + u
e−

u2

2a2 du− 1
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=
4√
2πa

√
2a

2π
G2,3

3,2

(
2a2

∣∣∣∣0 1
2

1
2

1
2 0

)
− 1

=
2

π3/2
G2,3

3,2

(
2a2

∣∣∣∣0 1
2

1
2

1
2 0

)
− 1

From line 2 to 3, we used the parity of function C, between 6 and 7, a change of variable u = x/ω is done
and a is set to σ/ω. Finally, in the second-to-last line, we identify a Meijer-G function [345] evaluated

at 2a2. Unfortunately, there exist no closed-form of the integral
∫ +∞

0
1

1+ue
− u2

2a2 dx. In this case, a
Mellin transform of this integral allows recognizing a Meijer-G function. For other criteria, their �rst
two moments cannot be expressed in a similar closed form. That is why we only provide the theoretical
expressions of the expectation and variance of GIoU.

A similar derivation leads to the expression of the second moment of Z :

E[Z2] =

∫ +∞

−∞
C(x)2dX(x) dx

=

∫ +∞

−∞

1√
2πσ

(ω − |x|
ω + |x|

)2
e−

x2

2σ2 dx

=
2√
2πσ

∫ +∞

0

(ω − x
ω + x

)2
e−

x2

2σ2 dx

= 1− 8ω√
2πσ

∫ +∞

0

x

(ω + x)2
e−

x2

2σ2 dx

= 1− 8√
2πa

[
a2 − 2σ2

∫ +∞

0

1

(ω + x)3
e−

x2

2σ2 dx

]
= 1− 8√

2πa

[
a2 − 2a2

∫ +∞

0

1

(1 + u)3
e−

u2

2a2 du

]
= 1− 8a√

2π
+

16a2

π3/2
G2,3

3,2

(
2a2

∣∣∣∣−1 1
2 −1

2
1
2 0

)

From line 2 to 3, we again use the parity of C, from 4 to 5, an integration by parts is done, and �nally,
from 5 to 6, we apply the change of variable u = x/ω. Once again, we get an integral that does not
have any closed form but can be expressed by another Meijer-G function.

For completeness, we recall here the de�nition of the Meijer-G function:

Gm,np,q

(
z

∣∣∣∣a1 ... ap
b1 ... bq

)
=

1

2πi

∫
L

m∏
j=1

Γ(bj − s)
n∏
j=1

Γ(1− aj + s)

q∏
j=m+1

Γ(1− bj + s)
p∏

j=n+1
Γ(aj − s)

zs ds, (B.4)

where L is the integration path and Γ is the gamma function. m, n, p and q are integers while aj and
bj are real or complex numbers. There are some constraints on these parameters, but we do not detail
them here, they can be found in [345].
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