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ABSTRACT

Most contributions on Few-Shot Object Detection (FSOD) evaluate their methods on natural images
only, yet the transferability of the announced performance is not guaranteed for applications on
other kinds of images. We demonstrate this with an in-depth analysis of existing FSOD methods on
aerial images and observed a large performance gap compared to natural images. Small objects, more
numerous in aerial images, are the cause for the apparent performance gap between natural and
aerial images. As a consequence, we improve FSOD performance on small objects with a carefully
designed attention mechanism. In addition, we also propose a scale-adaptive box similarity criterion,
that improves the training and evaluation of FSOD methods, particularly for small objects. We
also contribute to generic FSOD with two distinct approaches based on metric learning and fine-
tuning. Impressive results are achieved with the fine-tuning method, which encourages tackling
more complex scenarios such as Cross-Domain FSOD. We conduct preliminary experiments in this
direction and obtain promising results. Finally, we address the deployment of the detection models
inside COSE’s systems. Detection must be done in real-time in extremely large images (more than
100 megapixels), with limited computation power. Leveraging existing optimization tools such as

TensorRT, we successfully tackle this engineering challenge.

Keywords— Object Detection, Few-Shot Learning, Few-Shot Object Detection, Cross-Domain Adap-
tation, Deep Learning, Computer Vision, Intersection over Union, Attention Mechanism, Diffusion,

Query-Support Alignment

RESUME

La plupart des contributions en Détection d’Objets Few-Shot (FSOD) évaluent leurs méthodes
uniquement sur des images naturelles, ne garantissant pas la transférabilité de leur performance
a d’autres types d’images. Nous démontrons ceci avec une analyse des méthodes FSOD existantes
sur des images aériennes et observons un large écart comparé aux images naturelles. Les petits
objets, plus nombreux dans les images aériennes, sont responsables de cet écart. Ainsi, nous pro-
posons d’améliorer la détection des petits objets avec un mécanisme d’attention dédié. En plus, nous
proposons un nouveau critére de similarité pour boites englobantes, adaptatif a la taille. Il améliore
Pentrainement et ’évaluation des modéles FSOD, en particulier pour les petits objets. Nous con-
tribuons aussi au FSOD classique avec deux approches distinctes basées sur le metric learning et
le fine-tuning. Des résultats impressionnants sont obtenus avec cette derniere méthode, ce qui en-
courage son application a des scénarios plus complexes comme la détection Few-Shot Cross-Domain.
Finalement, nous abordons le déploiement de modéles de détection au sein des systémes de COSE
qui doivent détecter les objets en temps réel sur de trés grandes images (plus de 100 mégapixels),

avec des ressources de calcul limitées.

Mots-Clé— Détection d’objet, Apprentissage profond, Apprentissage frugal, Adaptation au do-

maine, Mécanisme d’attention, Diffusion, Intersection over Union, Alignement query-support
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INTRODUCTION

If a machine is expected to be infallible, it
cannot also be intelligent.

- Alan Turing

As an introduction to this thesis manuscript, we present the industrial context and the motivation
behind this project. First, we introduce the company COSE and the Laboratoire de Traitement et
Transport de U'Information (L2TI) that collaborated on this CIFRE PhD project. Then, we briefly de-
scribe what object detection is and how the industrial constraints that weigh upon COSE influenced
our study toward low-data regimes and few-shot learning. Next, we carry out an overview of the
structure of the manuscript, with an individual summary describing each chapter. Finally, we gather
the contributions that came out of this project. This includes research articles, accepted or submitted

to peer review conferences and journals, as well as open-source code contributions.

1.1 Industrial Context, Motivation and Objectives

This PhD thesis originates from a collaboration between the L2TI laboratory from Université Sor-
bonne Paris Nord (USPN) and the company COSE. The L2TI was founded in 1998 and is a mem-
ber of the CNRS Research Federation MathSTIC (FR 3734) which includes the Laboratoire Analyse,
Géométrie et Applications (LAGA), UMR 7539 and the Laboratoire d’Informatique de Paris Nord (LIPN),
UMR 7030. Two main research teams coexist in the L2TI. The Multimedia team focuses on visual
information analysis and processing, while the Network team targets information transport and

network questions. This thesis falls within the scope of the Multimedia team.

COSE! is a highly innovative SMB with around 20 employees. It is a first-tier government provider
in the aeronautic and defense sector. COSE was born from an INRIA start-up in the 1990s and has
integrated research excellence at the heart of its industrial process. While being relatively small,

COSE has multidisciplinary teams with expertise in various fields such as mechanic, electronic,

"https://www.cose.fr/
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(a) GlobalScanner Camera and (b) Strike stabilization arm (c) POD Xplorer next to
Observation Unit. mounted on a Gazelle helicopter. SAFRAN’s Patroller at 2019
Paris Air Show.

Figure 1.1: Illustration of the three main products developed at COSE: GlobalScanner, Strike and
POD Xplorer.

navigation, automation and embedded software. Its size gives COSE remarkable agility and cost-
effectiveness in comparison to its main competitors. This competitive advantage has allowed COSE

to build strong partnerships with major actors in the aeronautic and defense areas.

COSE develops, produces and supports aerial observation camera systems and onboard equipment.
These products are mainly designed for military use and must therefore conform to strict quality
criteria. The relationship with military forces is handled by the Directorate General of Armaments
(DGA), which is one of the main clients of COSE. Among others, COSE currently relies on three

products that are in use by French military forces around the world (see Fig. 1.1):

- GlobalScanner: a high-resolution imaging embedded system that provides real-time and
georeferenced images. It consists of a high-resolution, stabilized linear sensor that can be
integrated into various carriers such as helicopters, aircraft or UAVs. It comes with powerful
software to operate the camera and manage image streams.

- Strike: a stabilization arm for helicopters to improve high-precision rifle accuracy. It im-
proves shot accuracy and drastically reduces collateral damage.

- POD Xplorer: a multifunctional pod for various carriers. Its purpose is to embed various

types of payloads such as optical sensors, LIDAR, scientific equipment or inertial sensors.

Recently, COSE started the CAMELEON project to replace the decades-old GlobalScanner system.
Its objective is to improve GlobalScanner in every aspect. First, the linear sensor will be replaced by
high-resolution CMOS matrix sensors. With up to six sensors per system, CAMELON will be able
to cover extremely large areas with high resolution. The images will also largely overlap, enabling

precise 3D reconstruction of the flown-over areas, which is especially important for mission prepa-
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GEOINT 1:

Lat: 48.93°N
Lon: 2.54°E
Date: 2023-05-04
Time: 15:32:06
Class: Plane

\ Comment: Idle )
GEOINT 2:

Lat: 48.93°N

Lon: 2.54°E

Date: 2023-05-04
Time: 15:32:06
Class: Plane

\ Comment: Idle )

GEOINT N:
Lat: 48.93°N
Lon: 2.54°E
Date: 2023-05-04
Time: 15:32:06
Class: Roundabout
Comment: None

Figure 1.2: Description of Geospatial Intelligence (GEOINT).

ration and risk analysis. CAMELEON will also come with an improved software stack from mission
planning to image analysis and visualization. This PhD project is part of this software redesign.
The amount of image data acquired each second by the new system will be overwhelming for a sin-
gle photo interpreter as done with GlobalScanner. Furthermore, standard communication streams
will not be sufficient to send entire images in real-time. Therefore, relevant information must be
extracted from the images, automatically and on edge. To this end, CAMELEON must integrate
intelligent algorithms able to find relevant structures and information inside the mass of pixels ac-
quired each second. These pieces of information are often called Geospatial Intelligence (GEOINT).
They consist of evidence of human activity precisely georeferenced, with any kind of supplemen-
tary metadata (e.g., weather conditions or user annotation). Such evidence can be buildings, crop
fields, vehicles, or even animals. It is illustrated in Fig. 1.2. In most cases, these are salient objects
and can be detected in the images. Once an object has been localized in an image, its precise location
can be derived from the carrier position, the direction of the camera and the digital elevation model
used, which produces a GEOINT. The GEOINT is then enriched with relevant information about
the object: what is the object? Is it dangerous? Is it moving? Even though this seems to require
a human appraisal, some of these questions can be answered automatically. The main objective of
this PhD project is to develop models that will be able to produce GEOINT automatically. It will
need to localize objects and infer relevant metadata about them. It should drastically increase the
efficiency of photo-interpreters who will then be able to manage the ever-increasing amount of data

generated by aerial intelligence systems, in particular within the CAMELEON project.
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Object Detection (OD) is a crucial part of creating GEOINTs. In computer vision, object detection is
the task of localizing and classifying all objects visible in an image. Of course, the notion of an object
needs to be defined more precisely, otherwise anything in the image can be considered of interest.
A pre-defined set of semantic classes C is fixed so that a clear distinction can be made between
objects of interest (i.e., the ones we want to detect, also called foreground objects) and background
objects (i.e., those we are not interested in). Based on this distinction, the task of detecting objects
can be split into two sub-tasks. 1) Localizing all the objects (foreground and background): this
can be done by finding the coordinates of the center of the objects, a rectangular bounding box or
even a precise segmentation mask for each object. In general, the object detection task in computer
vision is associated with bounding box localization. 2) Classifying the objects localized in step 1).
It consists in first filtering out background objects and then, assigning a class label ¢ € C to each
foreground object. Research interest in the detection task dates back to the early 2000s when the
Viola-Jones object detector [2] was first introduced. Since then, plenty of algorithms have been
proposed to improve both the speed and quality of the detection. A breakthrough occurred in 2013
with the first uses of deep convolutional networks for detection, namely OverFeat [3] and R-CNN [4].
These methods paved the way for more elaborated deep-learning-based detectors. Deep-learning
detectors are often referred to as learning-based approaches as they mainly rely on the learning from
data paradigm and supervised learning. They contrast with earlier detection methods (also called
traditional methods) which often build upon hand-crafted features. A thorough review of both
traditional and learning-based object detectors is available in Sec. 2.1. Learning-based approaches
have now established complete dominance over traditional methods in terms of detection quality
while having reasonable speed performance. Therefore, most of this project will focus on learning-

based algorithms.

The choice of deep-learning-based detectors may seem puzzling for COSE on-edge applications.
Computing resources are limited inside the carrier. The payload must be as light as possible, so we
cannot afford to embed heavy Graphical Processing Units (GPU) enabled machines, designed to run
deep learning models. In addition, on-board power supplies cannot provide enough energy to run
such hardware. However, light-weight, energy-efficient GPUs exist, such as the Nvidia Xavier and
Orin Series, which are perfectly suited for deep-learning inference. Nevertheless, another constraint
remains, images must be processed in real-time. The CAMELEON system is designed to take about
1 image every second. It is a rather low frame rate but due to the sensor size and the number of
cameras, this represents a data stream of several hundreds of megapixels per second. To process
such a massive amount of images every second, the detection models must be as light and efficient
as possible. Fortunately, tools capable of optimizing the inference of deep learning models exist.
Chap. 9 will present these tools and how they can be leveraged to build detection models fast enough
for COSE’s applications. This solves the issues related to the deployment and inference of such

models; however, a major concern remains: how to train these object detectors?
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Learning-based methods and especially deep learning models heavily rely on data to be trained. In
general, the overall performance of a model highly depends on the amount and quality of annotated
data available during the training. For the detection task, collecting large annotated datasets is time-
consuming and expensive. In some cases, it is even impossible. In the medical domain, for instance,
privacy-preserving regulations often prevent the use of personal data. For military applications, this
is even harder as potential training data are classified. This is problematic for the training of data-
hungry methods such as deep learning. Fortunately, there are some learning strategies much more
data-efficient. These methods are usually referred to as few-shot or low-shot learning, and thorough
reviews of these methods will be presented in Sec. 2.2. While there are plenty of approaches to
Few-Shot Learning (FSL), all follow the same basic principle. First, learn generic knowledge about a
related task (source task), second, adapt to the target task. These two training phases are referred to
as base training and fine-tuning. In the case of detection, a task can designate a set of classes to be
detected, this problem is then called Few-Shot Object Detection (FSOD). A large annotated dataset
containing annotations of objects belonging to Cp,se is available. The source task is to detect these
objects. Then, the target task is to detect objects from the so-called novel classes, only provided
with a limited number of annotations. Chap. 3 provides an in-depth review of existing work in
this area. Generally, the target task is performed on similar images as the ones seen during base
training. However, the target task can also be done with different kinds of images, e.g., the source
task can be learned from natural images while the target task on aerial or medical images. This
is called Cross-Domain Adaptation. It complexifies significantly the problem, but it is a much more
realistic scenario in the industry. Collected datasets can only approximate the real data distributions.
Discrepancies between the acquisition settings (i.e., camera, lights etc.) and the application settings
almost always produce a performance drop. In medical imagery, this is a typical issue as different
scanners will not produce exactly similar images. This prevents training models on scan collection
from one hospital and deploying them in another. The military use case is another critical example.
The confidentiality of the images, and the ever-changing environment and objects of interest make

it difficult to build robust detection algorithms.

Given the constraints of COSE, the main objective of this project is to develop data-efficient object
detection methods based on few-shot learning. We orient our research on the Few-Shot Object
Detection problem, i.e., the adaptation to novel classes. While a detailed overview of the thesis will
be presented in the next section, we outline here the main parts of this work. First, we conduct in
Part I a thorough review of the literature about object detection, few-shot learning and finally few-
shot object detection. Then, we propose three distinct FSOD approaches in Part II. This part includes
experiments in the Cross-Domain setting, inside Chap. 7. Our experiments mainly focus on publicly
available aerial datasets due to the lack of private datasets inside the company. These datasets
contain detection annotations and will be presented in Chap. 2. Part III presents an alternative to
the Intersection over Union, a bounding box similarity measure extensively employed in Object
Detection. Its use for both model evaluation and training are discussed in Chap. 8. Finally, Chap. 9

provides details about the deployment of object detection models according to the needs of COSE.
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1.2 Overview of the thesis

This section outlines the content of each chapter of this thesis. This takes the form of a small abstract
per chapter. These abstracts will be repeated for convenience at the beginning of the corresponding

chapters.

Part I: Literature Review on Object Detection, Few-Shot Learning and Few-Shot
Object Detection

The first part of this thesis is composed of three chapters. The two first present the literature about
Object Detection, Few-Shot Learning and Few-Shot Object Detection. Then, the third chapter ex-
plores the challenges of applying Few-Shot Object Detection on aerial images and presents our first

contribution: an analysis of these difficulties.

Chap. 2: Object Detection, Few-Shot Learning and Cross-Domain Adaptation

Object Detection and Few-Shot Learning are two relevant subfields from the Computer Vision and
Machine Learning fields. Both are necessary to build detection techniques able to generalize from
limited data. Hence, this chapter reviews both Object Detection and Few-Shot Learning. Both prob-

lems are defined, and detailed reviews of the respective literature are conducted.

Chap. 3: Few-Shot Object Detection

This chapter presents the task of detection in the few-shot regime and reviews the existing literature
about it. Few-Shot Object Detection (FSOD) is at the crossroads of Object Detection and Few-Shot
Learning, and therefore, extensively relies on these two fields explored in Chap. 2. Just as for classi-
fication, various directions are explored in the literature to tackle the detection task in the few-shot
regime which will be presented in detail. Finally, this chapter focuses on the aerial image application

of FSOD methods and extensions of the few-shot setting.

Chap. 4: Understanding the Challenges of Few-Shot Object Detection

The detection task becomes extremely challenging when limited annotated data is available. In this
chapter, we explore the reasons behind this difficulty. In particular, we focus on the case of aerial
images for which it is even harder to apply FSOD techniques. It turns out that small objects are

especially challenging for the FSOD task and are the main source of error in remote sensing images.

Chapter’s contributions:

[ P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance Anal-
ysis on Aerial and Natural Images,” 2022 30th European Signal Processing Conference (EUSIPCO),
Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPC0O55093.2022.9909878.

3 P Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot a travers une anal-
yse de performances sur des images aériennes et naturelles."” GRETSI 2022, XXVIlléme Colloque
Francophone de Traitement du Signal et des Images, Nancy, France
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Part II: Improving Few-Shot Object Detection through Various Approaches

The second part of this thesis presents our main contributions to the Few-Shot Object Detection
(FSOD) field. Each chapter proposes a novel approach to addressing the FSOD problem and discusses
its pros and cons compared to existing methods. These contributions led to several accepted articles

in international and national conferences and journals.

Chap. 5: Experience Feedback about Metric Learning for FSOD

Prototypical Faster R-CNN (PFRCNN) is a novel approach for FSOD based on metric learning. It
embeds prototypical networks inside the Faster R-CNN detection framework, specifically in place of
the classification layers in the RPN and the detection head. PFRCNN is applied to synthetic images
generated from the MNIST dataset and to real aerial images with DOTA dataset. The detection
performance of PFRCNN is slightly disappointing but sets a first baseline on DOTA. However, the
experiments conducted with PFRCNN provide relevant information about the design choices for

FSOD approaches.

Chapter’s contributions:

[ P. L. Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representation
Learning for Few-Shot Object Detection on Aerial Images,” 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp. 662-667, doi:
10.1109/ICMLA52953.2021.00110.

Chap. 6: Attention Framework for Fair FSOD Comparison

Fair comparison is extremely challenging in the Few-Shot Object Detection task as plenty of archi-
tectural choices differ from one method to another. Attention-based approaches are no exception,
and it is difficult to assess which mechanisms are the most efficient for FSOD. In this chapter, we
propose a highly modular framework to implement existing techniques and design new ones. It
allows for fixing all hyperparameters except for the choice of the attention mechanism. Hence, a
fair comparison between various mechanisms can be made. Using the framework, we also propose

a novel attention mechanism specifically designed for small objects.

Chapter’s contributions:

4 P. Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Object
Detection on Aerial Images", Submitted at the Elsevier Pattern Recognition journal.

[ P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small Ob-
Jject Detection in the Few-Shot Regime", Accepted at the IEEE International Conference on Image
Processing 2023 (ICIP).

Chap. 7: Few-Shot Diffusion Detector via Fine-Tuning
Previous chapters explore few-shot object detection with metric learning and attention-based tech-
niques. This chapter logically focuses on the last major approach for FSOD: fine-tuning. Based on

DiffusionDet, a recent detection model leveraging diffusion models, we build a simple but efficient



INTRODUCTION

fine-tuning strategy. The resulting method, called FSDiffusionDet, achieves state-of-the-art FSOD
on aerial datasets and competitive performance on natural images. Extensive experimental stud-
ies explore the design choices of the fine-tuning strategy to better understand the key components
required to achieve such quality. Finally, these impressive results allow considering more complex

settings such as cross-domain scenarios, which are especially relevant for COSE.

Chapter’s contributions: This chapter describes very recent work, and we plan to submit research

articles to present these results.

Part III: Rethinking Intersection Over Union
This part contains only one chapter which presents a contribution orthogonal to the approaches
proposed in Part I as it questions the relevance of the Intersection over Union, a key component of

object detection pipelines.

Chap. 8: Scale-Adaptative Intersection Over Union

Intersection over Union (IoU) is not an optimal box similarity measure for evaluating and training
object detectors. For evaluation, it is too strict with small objects and does not align well with
human perception. For training, it provides a poor balance between small and large objects to the
detriment of small ones. We propose Scale-adaptative Intersection over Union (SIoU), a parametric
alternative that solves the shortcomings of IoU. We provide empirical and theoretical arguments for

the superiority of SIoU through in-depth analysis of various criteria.

Chapter’s contributions:

4l P. Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection in
Few-Shot Regime", Submitted at the International Conference on Computer Vision 2023 (ICCV).

) P Le FJeune and A. Mokraoui, "Extension de I'Intersection over Union pour améliorer la détection
d’objets de petite taille en régime d’apprentissage few-shot", Accepted at GRETSI 2023.

Part IV: Prototyping and Industrial Application

Finally, the last part of this thesis presents our industrial contributions. This part is crucial for COSE
as it bridges the gap between research advancements and real-world applications. Therefore, the
only chapter of this part discusses the engineering aspects of object detection and is not associated

with any academic contribution.

Chap. 9: Integration in COSE Prototypes

Detection models are often heavy and are not well suited for COSE’s application. In this chapter,
we first present in detail the CAMELEON system and its constraints. Then, we study the influence
of the model size on the performance and present useful tools and tricks to accelerate the inference.
Finally, we explain how the detection models are deployed inside the CAMELEON prototype and

how they perform on aerial images.
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1.3 Summary of the Contributions

International Conference Articles

[2) P. Le Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representa-
tion Learning for Few-Shot Object Detection on Aerial Images,’ 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp.
662-667, doi: 10.1109/ICMLA52953.2021.00110.

[ P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance
Analysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference
(EUSIPCO), Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPC055093.2022.9909878.

[ P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small
Object Detection in the Few-Shot Regime", Accepted at the IEEE International Conference on
Image Processing 2023 (ICIP).

National Conference Articles

[ P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot a travers une
analyse de performances sur des images aériennes et naturelles" GRETSI 2022, XX VIIléme
Colloque Francophone de Traitement du Signal et des Images, Nancy, France.

3 P. Le Jeune and A. Mokraoui, "Extension de |’Intersection over Union pour améliorer la dé-
tection d’objets de petite taille en régime d’apprentissage few-shot", GRETSI 2023, XXIXéme

Colloque Francophone de Traitement du Signal et des Images, Grenoble, France.
Submitted Articles

4 P.Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Ob-
ject Detection on Aerial Images”, Submitted at the Elsevier Pattern Recognition journal.

4 P.Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection
in Few-Shot Regime", Submitted at the International Conference on Computer Vision 2023
(Icev).

Oral Presentations

During the PhD, I had the opportunity to give talks in various occasions listed below:

- L2TT’s scientific day (Dec. 2020).

- Prototypical Faster R-CNN for Few-Shot Object Detection on Aerial Images, DeepLearn Summer
School 2021, Las Palmas de Gran Canaria (Jul. 29, 2021).

- Prototypical Faster R-CNN for Few-Shot Object Detection on Aerial Images at a GDR-ISIS meet-
ing: Vers un apprentissage pragmatique dans un contexte de données visuelles labellisées limitées,
Paris, (Nov. 26, 2021).

- L2TI’s Doctoral seminar (Mar. 2022 and Feb. 2023).

- Few-Shot Object Detection on Aerial Images, Seminar at ETS Montreal (Sep. 28, 2022).
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Internships Supervision
I supervised four internships over the three years of this PhD, three inside the company and one at
within the L2TT:

- Conception et mise en oeuvre d’algorithmes de suivi d’objets dans des images aériennes
(March-August 2021 — COSE).

- Optimisation et intégration d’algorithmes de détection d’objets dans un systéme embarqué
(March-August 2022 - COSE).

- Self-supervised learning for Few-shot Object Detection (April-August 2022 — L2TT au travers
du LabCom IRISER).

- Détection d’objets few-shot par visual transformers sur des images Aériennes (March-August
2023 — COSE and L2TI through the LabCom IRISER).

In addition to the supervision of two internships, I am actively involved inside the LabCom IRISER?
which is a joint laboratory between COSE, the L2TI and the LIPN. It was created one year after the

beginning of my PhD at the instigation of my academic and industrial supervisors.

Open-source Software
In the course of the various project I conducted during this PhD, I wrote multiple open-source Python

packages that can be found on GitHub:

€) Prototypical Faster R-CNN
© AAF framework

© Pycocosiou

© FSDiffusionDet

Link to the LabCom IRISIER’s website
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https://github.com/pierlj/proto_faster_rcnn
https://github.com/pierlj/aaf_framework
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https://www-l2ti.univ-paris13.fr/iriser/

INTRODUCTION (FRANCALIS)

Si une machine doit étre infaillible, alors elle
ne peut pas aussi étre intelligente.

— Alan Turing

Pour introduire ce manuscrit de thése, le contexte industriel et les motivations de ce projet sont
présentés. D’abord, sont introduits 'entreprise COSE et le Laboratoire de Traitement et Transport
de I'Information (L2TI) qui ont collaboré sur cette thése CIFRE. Ensuite, nous décrivons ce qu’est la
détection d’objets dans le cadre de la vision par ordinateur et comment les contraintes industrielles
liées a COSE ont orienté la these vers I'apprentissage frugal (dit few-shot). Dans un second temps,
la structure de ce manuscrit est exposée en présentant un résumé individuel pour chaque chapitre.
Enfin, une derniére partie liste les différentes contributions apportées au cours de ce projet, cela

inclut des articles de recherche publiés ou soumis dans des conférences nationales et internationales.

1.1 Contexte industriel, motivation et objectifs

Cette thése a pour origine la collaboration entre le laboratoire L2TT de I’'Université Sorbonne Paris
Nord (USPN) et la société COSE. Le L2TI a été fondé en 1998 et est un membre de la Fédération
de Recherche MathSTIC du CNRS (FR 3734) qui inclut également deux laboratoires CNRS: le Lab-
oratoire Analyse, Géométrie et Applications (LAGA), UMR 7539 et le Laboratoire d’Informatique
de Paris Nord (LIPN), UMR 7030. Ces laboratoires sont tous rattachés a I'Institut Galilée. Deux
équipes de recherche cohabitent dans le L2TI. D’abord, I'équipe Multimédia, qui se concentre sur le
traitement et ’analyse de I'information visuelle et audio. Ensuite, ’équipe Réseaux, qui travaille sur
le transport de I'information et les communications. Ce projet de these s’inscrit logiquement dans

I’équipe Multimédia.

COSE ! est une PME innovante d’environ 20 salariés. C’est un fournisseur de rang 1 de 1’état dans

le secteur de aéronautique et de la défense. COSE est né en tant que startup de 'INRIA dans

'https://www.cose.ft/
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les années 90 et la recherche est toujours au cceur de son processus industriel. Bien que relative-
ment petite, COSE posséde des équipes pluridisciplinaires de haut niveau dans des domaines tels
que la mécanique, I’électronique, la navigation, ’automatique et les systémes embarqués. La taille
de COSE lui confére une agilité et une efficacité remarquable comparée a ces principaux compéti-
teurs. Cet avantage permet a ’entreprise de créer des partenariats forts avec les acteurs majeurs de

l'aéronautique et de la défense.

COSE développe, produit et maintient des systémes de renseignements aéroportés et des
équipements embarqués en tout genre. Ces produits sont principalement destinés a un usage mili-
taire et sont donc soumis a des critéres de qualité stricts. La relation entre les forces armées et COSE
est gérée par la Direction Générale de ’Armement (DGA) qui est de fait 'un des principaux clients
de COSE. COSE a pour l'instant trois produits principaux dans sa gamme que les forces francaises

utilisent pour différentes missions (voir Fig. 1.1) :

- GlobalScanner : un systéme de caméra embarquée qui produit des images haute résolution
et géoréférencées en temps réel. Le systéme est constitué d’un capteur linéaire de trés grande
résolution. Ce capteur est stabilisé et intégré au sein d’une enceinte mécanique qui peut étre
intégrée sous différents types d’aéronefs (hélicoptére, avion, drone, etc.). Le capteur est con-
necté a un poste de controle et une suite logicielle permettant de piloter la caméra et de gérer
les flux d’images.

- Strike : un bras de stabilisation d’arme a feu pour hélicoptére. Il améliore sensiblement la
précision des tireurs et réduit les risques de dommages collatéraux.

- POD Xplorer : un pod multifonction pouvant étre attaché en dessous de différents types de
porteurs. Il permet d’embarquer simplement des charges utiles variées comme des capteurs

optiques, des LIDARSs, ou des équipements scientifiques.

Récemment, COSE a lancé le projet CAMELEON afin de remplacer GlobalScanner. Son objectif
premier est de surpasser GlobalScanner dans tous les aspects. Premiérement, le capteur linéaire
sera remplacé par un capteur matriciel CMOS de haute résolution. CAMELEON pourra embarquer
jusqu’a six capteurs avec des orientations différentes afin de couvrir des trés grandes zones au sol
tout en conservant une grande définition. Les images ainsi acquises auront beaucoup de recou-
vrement afin de permettre la reconstruction 3D des zones survolées. C’est un aspect extrémement
important de la préparation de mission et la gestion des risques pour les forces armées. CAMELEON
proposera également une amélioration complete du logiciel d’observation et notamment en ce qui
concerne I’analyse et le traitement des images. La quantité d’images obtenues chaque seconde par le
systéme sera trop importante pour étre analysée par un seul photo-interpréte. De plus, les moyens
de communication standards n’ont pas un débit suffisant pour transmettre les images en temps réel.
Ainsi, il est nécessaire d’extraire les informations stratégiques des images, automatiquement et a
bord. CAMELEON doit donc étre doté d’algorithmes intelligents et efficaces afin d’extraire les in-
formations pertinentes en temps réel. Cette these s’inscrit dans la refonte logicielle de CAMELEON

et tente de répondre aux contraintes du projet. Les informations extraites des images sont sou-
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(a) Caméra GlobalScanner et son  (b) Le bras de stabilisation Strike ~ (c) Le Pod Xplorer a c6té du futur
poste d’observation. monté sur un hélicoptére Gazelle. ~ drone Patroller de SAFRAN au sa-
lon du Bourget 2019.

Figure 1.1: Illustration des trois produits phares de COSE: GlobalScanner, Strike et le POD Xplorer.

vent appelées GEOspaital INTelligence (GEOINT). Il s’agit principalement de preuve d’activité hu-
maine, précisément géoréférencées ainsi que de méta-données en tout genre (e.g., les conditions
météorologiques ou des annotations de I'interpréete). Le concept de GEOINT est illustré dans la Fig-
ure 1.2. 1l peut s’agir de batiments, de champs, de véhicules ou méme d’animaux. Dans la plupart
des cas, ce sont des objets saillants qui sont visibles dans les images aériennes. Une fois qu’un objet
a été localisé dans I'image, sa géolocalisation précise peut étre calculée en fonction de la position
du porteur, de 'angle de la caméra et du modeéle numérique de terrain utilisé, cela produit ainsi
un GEOINT. 1l peut ensuite étre enrichi avec des informations supplémentaires, pertinentes pour
Popération : quel est cet objet ? Est-ce une menace ? Est-il en mouvement ? Méme si ces questions
semblent requérir le jugement humain, on peut en réalité souvent y répondre automatiquement.
L’objectif principal de cette thése est de produire des modéles capables d’automatiser la création de
GEOINT. Pour cela, ces modéles devront localiser les objets d’intérét et inférer les méta-données per-
tinentes en lien avec ces objets. Aidés par ces outils, les photo-interprétes seront bien plus efficaces

et pourront gérer des masses d’images toujours plus grandes.

La détection d’objets est une étape cruciale de la création de GEOINTs. En vision par ordinateur, la
détection d’objets consiste a localiser et classifier tous les objets visibles dans une image. Bien sir,
la notion d’objet doit étre définie de maniere plus précise, sinon tout ce qui se trouve dans I'image
peut étre considéré comme étant d’intérét. Un ensemble prédéfini de classes sémantiques C est fixé
afin d’établir une distinction claire entre les objets d’intérét (ceux que 'on souhaite détecter) et les
objets de l’arriére-plan (ceux qui ne nous intéressent pas). Sur la base de cette distinction, la tache de
détection d’objets peut étre divisée en deux sous-tiches. 1) Localiser tous les objets (objets d’intérét
et objets de larriére-plan) : cela peut étre fait en trouvant les coordonnées du centre des objets,

d’une boite englobante rectangulaire ou méme un masque de segmentation précis pour chaque ob-
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GEOINT 1:

Lat: 48.93°N
Lon: 2.54°E
Date: 2023-05-04
Time: 15:32:06
Class: Plane

\ Comment: Idle
GEOINT 2:

Lat: 48.93°N
Lon: 2.54°E
Date: 2023-05-04
Time: 15:32:06
Class: Plane

\ Comment: Idle

GEOINT N:
Lat: 48.93°N
Lon: 2.54°E
Date: 2023-05-04
Time: 15:32:06
Class: Roundabout
Comment: None

Figure 1.2: llustration d’un renseignement géospatial (GEOINT).

jet. En général, la tache de détection d’objets en vision par ordinateur est associée a la localisation
par boite englobante. 2) Classer les objets localisés a Iétape 1). Il s’agit d’abord de filtrer les ob-
jets de l'arriére-plan, puis d’attribuer une classe ¢ € C a chaque objet d’intérét. La recherche sur
la détection d’objets a pour origine le début des années 2000, lorsque le détecteur d’objets Viola-
Jones [2] a été introduit pour la premiére fois. Depuis, de nombreux algorithmes ont été proposés
pour améliorer a la fois la vitesse et la qualité de la détection. Une avancée remarquable s’est pro-
duite en 2013 avec les premiéres utilisations de réseaux de neurones convolutifs pour la détection,
notamment avec OverFeat [3] et R-CNN [4]. Ces méthodes ont ouvert la voie a des détecteurs de
plus en plus élaborés basés sur ’apprentissage profond. Ces détecteurs reposent principalement sur
le paradigme de I'apprentissage machine et notamment I’apprentissage supervisé. Ils différent des
méthodes de détection antérieures (appelées méthodes traditionnelles) qui s’appuient souvent sur
des caractéristiques manuelles. Une revue détaillée des détecteurs d’objets traditionnels et basés
sur 'apprentissage est disponible dans la section 2.1. Les approches basées sur 'apprentissage ont
désormais établi une domination compléte sur les méthodes traditionnelles en termes de qualité de
détection, tout en offrant des temps d’exécution plus rapides. Par conséquent, la majeure partie de

ce projet se concentrera sur les algorithmes basés sur ’apprentissage.

Le choix de détecteurs basés sur 'apprentissage profond peut sembler compliqué pour les appli-
cations embarquées telles que celles de COSE. Les ressources de calcul sont limitées une fois en

vol. La charge utile doit étre aussi légére que possible, COSE ne peut donc pas nous permettre
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d’intégrer de lourdes machines dotées de cartes graphiques (GPU) concues pour exécuter des mod-
éles d’apprentissage profond. De plus, les alimentations embarquées ne peuvent pas fournir suff-
isamment d’énergie pour faire fonctionner un tel matériel. Cependant, il existe des GPU légers et
économes en énergie, tels que les gammes Nvidia Xavier et Orin, qui conviennent parfaitement a
des systemes embarqués. Néanmoins, une autre contrainte subsiste : les images doivent étre traitées
en temps réel. Le systétme CAMELEON est concu pour prendre environ une image par seconde. 11
s’agit d’'une fréquence d’image assez faible, mais en raison de la taille du capteur et du nombre
de caméras, cela représente un flux de données de plusieurs centaines de mégapixels par seconde.
Pour traiter une telle quantité d’images par seconde, les modeles de détection doivent étre aussi
légers et efficaces que possible. Heureusement, il existe des outils capables d’optimiser I'inférence
des modéles d’apprentissage profond. Le chapitre 9 présentera ces outils et comment ils peuvent
étre utilisés pour construire des modeles de détection suffisamment rapides pour les applications de
COSE. Cela résout les problématiques liées au déploiement et a I'inférence des modéles, cependant,

une préoccupation majeure subsiste : comment entrainer ces détecteurs d’objets ?

Les méthodes basées sur I'apprentissage, et en particulier les modeles d’apprentissage profond,
reposent fortement sur les données pour leur entrainement. En général, les performances glob-
ales d’'un modele dépendent de la quantité et de la qualité des données annotées disponibles lors
de I'entrainement. Pour la détection, la collecte de grands ensembles de données annotées est
chronophage et coliteuse. Dans certains cas, il est méme impossible de rassembler de tels ensem-
bles de données pour I'entrainement. Dans le domaine médical, par exemple, les réglementations
empéchent souvent |'utilisation de données personnelles. Dans le domaine militaire, cela est encore
plus difficile car les données d’entrainement sont classifiées et ne peuvent étre divulguées en aucune
circonstance. Cela est problématique pour 'entrainement des méthodes d’apprentissage profond,
gourmandes en données. Heureusement, il existe des stratégies d’apprentissage beaucoup plus ef-
ficaces en termes de données. Ces méthodes sont généralement désignées comme 'apprentissage
frugal (few-shot learning (FSL) en anglais). Une revue détaillée de ces méthodes sera présentée dans
la section 2.2. Bien qu’il existe de nombreuses approches différentes pour ’apprentissage few-shot,
elles suivent souvent le méme principe de base. Premierement, elles apprennent des connaissances
générales sur une tache connexe (tiche source), puis elles s’adaptent a une tache cible. Ces deux
phases d’entrainement sont appelées entrainement de base et fine-tuning. Dans le cas de la détec-
tion, une tdche désigne un ensemble de classes a détecter, et ce probleme est alors appelé détection
d’objets few-shot (FSOD en anglais). Un grand ensemble de données annotées contenant des anno-
tations d’objets appartenant a Cpase est disponible. La tache source consiste a détecter ces objets.
Ensuite, la tache cible consiste a détecter des objets des classes nouvelles, en disposant uniquement
d’un nombre limité d’annotations. Le chapitre 3 fournit une revue approfondie des travaux exis-
tants dans ce domaine. Dans le cas général, la tache cible est réalisée sur des images similaires a
celles vues pendant 'entrainement de base. Cependant, la tache cible peut aussi étre réalisée avec
différents types d’images. Par exemple, la tAche source peut étre apprise a partir d’images naturelles

tandis que la tache cible porte sur des images aériennes ou médicales. On appelle cela I’adaptation au
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domaine. Cela complexifie considérablement le probléme, mais c’est un scénario beaucoup plus réal-
iste dans I'industrie. Les ensembles de données collectés ne peuvent qu’approximer la distribution
réelle des données pour un probléme spécifique. Les divergences entre les parametres d’acquisition
(appareil photo, éclairage, etc.) et les conditions réelles entrainent presque toujours une baisse des
performances. En imagerie médicale, il s’agit d’'un probléme classique car différents scanners ne
produiront pas exactement les mémes images. Cela empéche de former des modéles sur une collec-
tion d’images provenant d’un hopital et de les déployer dans un autre. Le cas d’utilisation militaire
est un autre exemple critique. La confidentialité des images, I’environnement et les objets d’intérét

en constante évolution rendent difficile la construction d’algorithmes de détection robustes.

Compte tenu des contraintes industrielles de COSE, 1'objectif principal de ce projet de thése est
de développer des méthodes de détection d’objets efficaces en termes de données, basées sur des
stratégies d’apprentissage few-shot. Nous avons choisi d’orienter nos recherches principalement sur
le probléme de la détection d’objets few-shot, c’est-a-dire ’adaptation aux nouvelles classes. Bien
qu’un apercu détaillé de la thése soit présenté dans la prochaine section, ici les principales parties de
ce travail sont décrites. Tout d’abord, dans la partie I présente une revue approfondie de la littérature
sur la détection d’objets, I'apprentissage frugal et enfin la détection d’objets few-shot. Ensuite, trois
approches distinctes sont proposées pour la détection d’objets few-shot dans la partie II. Cette partie
comprend également des expériences dans le cadre de ’adaptation au domaine, principalement dans
la section 7.4. Nos expériences se concentrent principalement sur des jeux de données d’images
aériennes disponibles publiquement, faute d’ensembles de données privées disponibles au sein de
Pentreprise. Ces jeux de données contiennent des annotations de détection et seront présentés dans
le chapitre 2. La partie III présente une alternative a 1'Intersection over Union (IoU), une mesure
de similarité des boites englobantes largement utilisée en détection d’objets. Son utilisation pour
I’évaluation et entrainement des modeles est discutée dans le chapitre 8. Enfin, le chapitre 9 fournit

des détails sur le déploiement des modeles de détection d’objets en fonction des contraintes de COSE.

1.2 Plan de la these

Cette section présente un apercu du contenu de chaque chapitre de cette theése. Cela prend la forme
d’un court résumé par chapitre. Ces résumés seront répétés pour plus de commodité au début des

chapitres correspondants.

Partie I : Revue de la littérature sur la détection d’objets, 'apprentissage few-shot
et la détection few-shot

La premiére partie de cette thése est composée de trois chapitres. Les deux premiers présentent la
littérature sur la détection d’objets, I'apprentissage few-shot et la détection d’objets a faible échan-
tillonnage. Le troisieme chapitre, quant a lui, explore les défis liés a 'application de la détection
d’objets few-shot a des images aériennes et présente notre premiére contribution : une analyse dé-

taillée de ces difficultés.
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Chap. 2 : Détection d’objets, apprentissage few-shot et adaptation aux domaines

La détection d’objets et apprentissage few-shot sont des sous-domaines de la vision par ordinateur
et de l'apprentissage automatique. Les deux sont nécessaires pour développer des techniques de
détection capables de généraliser a partir de données limitées. Par conséquent, ce chapitre passe en
revue a la fois la détection d’objets et I’apprentissage few-shot. Les deux problemes sont définis et

des revues détaillées des littératures respectives sont réalisées.

Chap. 3 : Détection d’objets few-shot

Ce chapitre présente la tache de détection dans le régime few-shot et passe en revue la littérature
existante sur ce sujet. La détection d’objets few-shot (FSOD) se situe a I'intersection de la détection
d’objets et de 'apprentissage few-shot, et repose donc largement sur ces deux domaines explorés
dans le chapitre 2. Tout comme pour la classification, différentes approches sont explorées dans la
littérature pour aborder la tache de détection en régime few-shot. Enfin, ce chapitre se concentre
sur 'application de la détection d’objets few-shot sur des images aériennes et sur les extensions du

régime few-shot.

Chap. 4 : Analyse des difficultés liées a la détection few-shot

La tache de détection devient extrémement difficile lorsque les données annotées sont limitées. Dans
ce chapitre, les raisons derriére ces difficultés sont explorées. En particulier, nous nous concentrons
sur le cas des images aériennes pour lesquelles il est encore plus difficile d’appliquer des techniques
de détection few-shot. 1l s’avére que les petits objets sont particulierement difficiles a localiser en

régime few-shot et sont la principale source d’erreur dans les images aériennes.

Contributions liées a ce chapitre :

[ P.Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance Anal-
ysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference (EUSIPCO),
Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPC0O55093.2022.9909878.

[ P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot d travers une anal-
yse de performances sur des images aériennes et naturelles."” GRETSI 2022, XXVIlléme Colloque
Francophone de Traitement du Signal et des Images, Nancy, France.

Part I : Amélioration de la détection few-shot a travers plusieurs approches

La deuxiéme partie de cette thése présente nos principales contributions dans le domaine de la dé-
tection d’objets few-shot (FSOD). Chaque chapitre propose une nouvelle approche pour aborder le
probléme de FSOD et discute de ses avantages et inconvénients par rapport aux méthodes exis-
tantes. Ces contributions ont abouti a plusieurs articles acceptés et soumis dans des conférences et

des revues internationales et nationales.

Partie 5 : Retour d’expérience sur ’apprentissage de métrique pour FSOD

Prototypical Faster R-CNN (PFRCNN) est une approche innovante pour la détection d’objets few-shot
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(FSOD) basée sur I’apprentissage de métriques. Elle intégre des réseaux de prototypes (prototypical
networks) a 'intérieur de Faster R-CNN, plus précisément a la place des couches de classification
dans le RPN et la téte de détection. PFRCNN est appliqué a des images synthétiques générées a
partir de 'ensemble de données MNIST et a des images aériennes réelles avec le jeu de données
DOTA. Les performances de détection de PFRCNN sont légérement décevantes, mais elles établis-
sent un premier point de repére sur DOTA. Les expériences menées avec PFRCNN fournissent des

informations pertinentes sur les choix de conception pour les approches FSOD.

Contributions liées a ce chapitre :

[ P. L. Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representation
Learning for Few-Shot Object Detection on Aerial Images,” 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp. 662-667, doi:
10.1109/ICMLA52953.2021.00110.

Chap. 6 : Un environnement modulaire pour la détection few-shot basée sur des mécan-
ismes d’attention

Comparer de maniere équitable différents modeéles est extrémement difficile en détection d’objets
few-shot car de nombreuses options architecturales différent d'une méthode a une autre. Les ap-
proches basées sur I’attention ne font pas exception, et il est difficile d’évaluer quels mécanismes
sont les plus efficaces pour le FSOD. Ce chapitre présente un environnement modulaire pour réim-
plémenter les techniques existantes et concevoir de nouvelles approches. Il permet de fixer tous les
hyperparametres a 'exception du mécanisme d’attention et de les comparer de maniére équitable.
En utilisant cet environnement, nous proposons également un nouveau mécanisme d’attention spé-

cifiquement congu pour les petits objets.

Contributions liées a ce chapitre :

4l P. Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Object
Detection on Aerial Images", Soumis a Elsevier Pattern Recognition journal.

[ P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small Ob-
Jject Detection in the Few-Shot Regime", Accepté a the IEEE International Conference on Image
Processing 2023 (ICIP).

Chap. 7 : FSDiffusionDet: un détecteur few-shot basé sur les modéles de diffusion et une
stratégie de fine-tuning

Les chapitres précédents explorent la détection d’objets few-shot en utilisant 'apprentissage
métrique et les techniques basées sur I'attention. Ce chapitre se concentre logiquement sur la
derniére grande approche pour le FSOD : le fine-tuning. En nous basant sur DiffusionDet, un ré-
cent modeéle de détection utilisant des modéles de diffusion, nous construisons une stratégie de fine-
tuning simple et efficace, baptisée FSDiffusionDet. FSDiffusionDet surpasse état de ’art en FSOD
sur des jeux de données aériens et obtient des performances compétitives sur les images naturelles.

Des études expérimentales approfondies explorent les choix de conception de la stratégie de fine-
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tuning afin de mieux comprendre les composantes clés nécessaires pour atteindre une telle qualité.
Enfin, ces résultats impressionnants permettent de considérer des scénarios plus complexes comme

l’adaptation a de nouveaux domaines, ce qui est particuliérement pertinent pour COSE.

Contributions liées a ce chapitre : Ce chapitre décrit des travaux trés récents et nous planifions de

soumettre des articles de recherche qui les présenterons.

Part III: Repenser I’Intersection over Union
Cette partie ne contient qu’un seul chapitre qui présente une contribution indépendante des ap-
proches proposées dans la partie précédente. Ce chapitre remet en question la pertinence de

I Intersection sur Union (IoU), un élément clé des modéles de détection d’objets.

Partie 8: Intersection over Union adaptable a la taille des objets

L’Intersection sur Union (IoU) n’est pas une mesure de similarité de boite englobante optimale pour
I’évaluation et entrainement des détecteurs d’objets. Pour I’évaluation, elle est trop stricte avec
les petits objets et ne correspond pas bien a la perception humaine. Pour 'entrainement, elle crée
un déséquilibre entre les petits et grands objets souvent au détriment des petits. Nous proposons
I'Intersection sur Union adaptative a I’échelle (appelée SIoU), une alternative paramétrable qui ré-
sout les lacunes de I'loU. Des arguments empiriques et théoriques sont avancés pour démontrer la

supériorité de la SIoU grace a une analyse approfondie de celle-ci et d’autres critéres existants.

Contributions liées a ce chapitre :

4 P. Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection in
Few-Shot Regime", Soumis a International Conference on Computer Vision 2023 (ICCV).

3 P Le Jeune and A. Mokraoui, "Extension de I’Intersection over Union pour améliorer la détection
d’objets de petite taille en régime d’apprentissage few-shot", GRETSI 2023, XXIXéme Colloque
Francophone de Traitement du Signal et des Images, Grenoble, France.

Partie IV: Prototypage et déploiement industriel

Enfin, la derniére partie de cette thése présente nos contributions industrielles. Cette partie est
cruciale pour COSE car elle comble I’écart entre les avancées de la recherche et les applications
du monde réel. Par conséquent, le seul chapitre de cette partie aborde les aspects techniques de la

détection d’objets et n’est associé a aucune contribution académique.

Chap. 9: Intégration dans les prototypes de COSE

Les modéles de détection sont souvent lourds et ne conviennent pas bien a I’application de COSE. Ce
chapitre présente d’abord en détail le systéeme CAMELEON et ses contraintes. Ensuite, nous étudions
Pinfluence de la taille du modéle sur ses performances et présentons des outils et des astuces utiles
pour accélérer I'inférence. Enfin, nous expliquons comment les modéles de détection sont déployés

a I'intérieur du prototype CAMELEON et comment ils se comportent sur des images aériennes.
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1.3 Résumé des contributions

Articles de conférences internationales

[ P. L. Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representa-
tion Learning for Few-Shot Object Detection on Aerial Images,’ 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp.
662-667, doi: 10.1109/ICMLA52953.2021.00110.

[ P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance
Analysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference
(EUSIPCO), Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPC055093.2022.9909878.

[ P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small
Object Detection in the Few-Shot Regime", Accepté a the IEEE International Conference on
Image Processing 2023 (ICIP).

Articles de conférences nationales

[2) P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot a travers une
analyse de performances sur des images aériennes et naturelles" GRETSI 2022, XX VIIIeme
Colloque Francophone de Traitement du Signal et des Images, Nancy, France.

3 P. Le Jeune and A. Mokraoui, "Extension de |’Intersection over Union pour améliorer la dé-
tection d’objets de petite taille en régime d’apprentissage few-shot", GRETSI 2023, XXIXéme

Colloque Francophone de Traitement du Signal et des Images, Grenoble, France.
Articles soumis

4 P.Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Ob-
ject Detection on Aerial Images”, Soumis a Elsevier Pattern Recognition journal.
4 P.Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection

in Few-Shot Regime", Soumis a International Conference on Computer Vision 2023 (ICCV).

Présentations orales

Au cours de cette thése, j’ai eu I'opportunité de donner plusieurs présentations orales :

- Journée scientifique du L2TI (Déc. 2020).

- Prototypical Faster R-CNN for Few-Shot Object Detection on Aerial Images DeepLearn Summer
School 2021, Las Palmas de Gran Canaria (29 Juil. 2021).

- Prototypical Faster R-CNN for Few-Shot Object Detection on Aerial Images a la journée du
GDR-ISIS : Vers un apprentissage pragmatique dans un contexte de données visuelles labellisées
limitées, Paris, (26 Nov. 2021).

- Séminaires des doctorants (Mar. 2022 and Fév. 2023).

- Séminaire a ’'ETS Montreal: Few-Shot Object Detection on Aerial Images (28 Sep. 2022).
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Supervision de stages

J’ai supervisé 4 stages au cours de ces trois ans de thése, 3 au sein de I’entreprise et un au L2TI :

- Conception et mise en oeuvre d’algorithmes de suivi d’objets dans des images aériennes (Mars-
Aotit 2021 — COSE).

- Optimisation et intégration d’algorithmes de détection d’objets dans un systéme embarqué
(Mars-Aott 2022 — COSE).

- Apprentissage auto-supervisée pour la détection d’objets few-shot (Avril-Aotit 2022 — L2TI au
travers du LabCom IRISER).

- Détection d’objets few-shot par visual transformers sur des images aériennes (Mars-Aot 2023
— COSE et L2TI via le LabCom IRISER).

En plus des supervisions de deux stages, je suis activement impliqué dans le LabCom IRISER?, un
laboratoire commun entre COSE, le L2TI et le LIPN. Ce laboratoire commun a été crée un an environ

apres le début de ma thése sous I'impulsion de mes superviseurs académique et industriel.

Logiciels libres
Au travers des différents projets qui ont constitués cette thése, j’ai développé plusieurs package

Python qui se trouvent en accés libre sur GitHub :

© Prototypical Faster R-CNN
© AAF framework
© Pycocosiou

© FSDiffusionDet

“Lien vers le site du LabCom IRISER
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https://github.com/pierlj/proto_faster_rcnn
https://github.com/pierlj/aaf_framework
https://github.com/pierlj/pycocosiou
https://github.com/pierlj/fs_diffusiondet
https://www-l2ti.univ-paris13.fr/iriser/
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CHAPTER

OBJECT DETECTION, FEW-SHOT LEARNING AND
CR0OSS-DOMAIN ADAPTATION

ABSTRACT

Object Detection and Few-Shot Learning are two relevant challenges from the Computer
Vision and Machine Learning fields. Both are necessary to build detection techniques able to
generalize from limited data. Hence, this chapter reviews both Object Detection and Few-Shot
Learning. The two problems are defined and detailed reviews of the respective literature are

conducted.
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As briefly presented in the introduction, this PhD project lies at the intersection of three sub-domains
of Machine Learning: Object Detection (OD), Few-Shot Learning (FSL), and Cross-Domain Adapta-
tion (CDA). In this chapter, we define more precisely what these three fields are and outline the main
existing contributions in the literature. We start by introducing the main computer vision problems
these fields address and the related notations adopted in this manuscript. Then, we provide a review

of existing works in each area, and finally, we link them with the industrial needs of COSE.
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2.1 Object Detection

2.1.1 Problem Definition

Object detection consists in localizing and classifying all objects of interest visible in an image I.
There are multiple terms to explain this statement. First, the notion of the object of interest is
defined according to a fixed set of semantic classes C. The objects of interest are the ones that
belong to one class ¢ € C. Of course, one can question the belonging of an object to a class. A
class could be ambiguous for multiple reasons. Given the quality of the image, it can be difficult
to determine the class of the object depicted. For instance, in a satellite photograph, a car could
be so small that it cannot be perceived by a human observer. Another issue is the slackness of our
concept of objects, one word can refer to multiple objects (e.g., spring, game, or chest), and our
vocabulary is organized hierarchically (e.g., the class vehicle contains many classes including car
and truck). One could go even further by questioning the very concept of objects in our mind (see
for instance exemplar-based vs. prototype-based concept theories), but it would have more to do
with cognitive science than computer vision. Generally, for object detection, these complications
are not considered. One object can only belong to one class and whether it belongs to the class or
not falls under the common sense of the observer. Most of the time, this is established with the
ground truth annotations of human experts. This explanation is rather obvious, but keep in mind
that this is a simplification, this will be useful when the notion of an object gets blurrier in the case

of few-shot learning and few-shot object detection.

The detection task consists in finding all occurrences of the objects of interest in the images, i.e., the
image coordinates of each object. This can be done in several ways, by locating a single pixel inside
each object, by drawing a rectangular bounding box, or by computing a precise mask around it.
The former setting is barely used as it can be quite ambiguous, all points in an object are equiva-
lent and no supplementary information (size and shape) can be inferred from this representation.
Traditionally, object detection leverages bounding boxes to localize the objects, and precise masks
are reserved for the Instance Segmentation task. A bounding box is generally determined by four
coordinates, it can be the coordinates of two diagonally opposed points on the box or the coordi-
nates of one point plus the width and height of the box, see Fig. 2.1 for more details about boxes
representations. In the following, we adopt the latter definition of a bounding box: the first two
coordinates denote the x and y image coordinates of the top-left corner of the box, while the last

two represent the width w and height h of the box. A bounding box b is then denoted as follows:
b=[z,y,w, h]". (2.1)

As the goal of object detection is to localize and classify the objects of interest, each bounding box
must be associated with a class ¢ € C. Therefore, we define the detection label as a tuple of a

bounding box and a class label:

y = (b,c). (2.2)
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Figure 2.1: Three different box representations: top-left and bottom-right points, top-left point,
width and height, and center point width and height. Many more representations exist but they
will not be presented here. In this manuscript, the second representation, top-left point width and
height, will be used exclusively.

An image may contain more than one object and therefore, each image I is associated with a set
of detection labels ) = {yi}i\gl, where Ny is the number of objects in image I. Hence, solving an
object detection task is to find a detector model F (-, ) with parameters 6 able to output a set of

predicted labels given an input image I:
F(LO) =Y = {3} (23)

We employ here a slight abuse of notation by calling the output of a detector y. Indeed, a de-
tector predicts a classification score ¢ for each class ¢ € C. Therefore, y = (b, {l°}ecc) and
¢ = argmax,cc [°. For convenience, we denote [ € [0, 1]/l the vector of classification scores.
Hatted symbols represent the model’s outputs. Note that the number of detections found by the
model M may not equal the number of objects present in the image as the detector can either
miss some objects or output false detections. The proximity between the predicted labels Y and the
ground truth labels ) determines the performance of the model F(-,#). Hence, finding an opti-
mal detection model is to find a set of optimal parameters, which minimizes the distance between

predicted and ground truth labels:
0* = arg min d(j}g, V), (2.4)
6

where d is a distance measure between )y, the labels predicted by F(-,6) and the ground truth
labels ). Of course, there are plenty of valid approaches to measure the proximity between two sets

of detection labels, some will be introduced in Sec. 2.1.2.

For COSE, detecting the objects of interest in an image is a crucial step. This step is necessary
for the creation of GEOINTs. From the bounding boxes coordinates in the image, and the carrier
position (latitude, longitude, and altitude) and attitude (pitch, roll, and yawn), one can determine
the precise locations of the objects on Earth. These computations also involve camera properties

and orientations, but they will not be addressed in this manuscript.
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Figure 2.2: Definition of the Precision, Recall and Accuracy metrics (a) as well as the box similarity
criterion Intersection over Union (b).

2.1.2 Evaluation of Object Detectors

Before jumping into the Object Detection literature, let’s introduce the most commonly used met-
rics employed to assess the quality of the detection models. As mentioned in the previous section
assessing the detection performance of a model consists in comparing the set of predicted detection
labels ) with the set of ground truth labels ) (typically made by a human observer). In the previous
section, we defined the set of detection labels over an image. However, to better assess the gener-
alization capabilities of the detectors, their evaluation is always conducted on a relatively large test
set of images. Therefore, we extend the notation Y and Y as the sets of predicted and ground truth

labels (respectively) over all test images.

2.1.2.1 Average Precision and mean Average Precision
The most commonly used metrics for Object Detection are the Average Precision (AP) and its ex-
tension in the multiclass setting, the mean Average Precision (mAP). The AP is formally defined as

the area under the precision-recall curve:

1
AP:/ Prec(r) dr, (2.5)
0

where Prec denotes the Precision and 7, the Recall. The Precision and Recall are two well-known
metrics often used to evaluate classification problems. They are defined respectively as the ratio of
true positive labels over the positive predicted labels and the ratio of the positive labels over the
positive true labels. Figure 2.2a clearly illustrates these definitions with a classification confusion
matrix. Note that the notion of True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN) introduced in the figure will be leveraged throughout the manuscript.

For now, forget about the classification part of the detection and consider only the localization
problem. How can we define the four corners of the confusion matrix for bounding boxes? An
approach is to consider a detection as TP if the predicted bounding box has the same coordinates

as one true detection label. However, it is extremely challenging to get a perfect positioning of
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the predicted boxes. First, the detector generally leverages regression techniques to predict box
coordinates and outputs continuous box coordinates. This is incompatible with the annotated box
coordinates, which are usually discrete. Rounding errors can cause TP to become FP. Then, from
an application viewpoint, pixel-perfect bounding boxes are not necessary. Therefore, it is generally
admitted that a true positive detection is a box close enough to a ground truth box. The similarity
between two bounding boxes is almost always computed with the Intersection over Union (IoU).
Then, TPs are the boxes that have an IoU with a true box above a fixed threshold (typically 0.5).

However, the IoU may not be an optimal criterion in certain cases as we will discuss in Chap. 8.

The Intersection over Union, also known as the Jaccard index, is a well-known similarity measure

between sets A and B:
AN B|

- |AuB|

Besides its application in statistics, the IoU is widely used in computer vision to assess the quality of

IoU(A, B) (2.6)

visual tasks such as detection and segmentation. The IoU can compute how close two sets of pixels
are and thus gives a similarity measure between ground truth and the model prediction. Here, we
focus on the detection task, therefore the IoU can be written in terms of coordinates of the boxes

b1 = [x1,y1, w1, h]T and by = [x9, y2, wa, ho]T:

Ainter = max (0, max(z1,x2) — min(z + wy, x2 + wg))

+ max (0, max(y1,y2) — min(yy + h1,y2 + ha)),
Ainter

TIoU(by, by) = .
oU(b1,b2) wihy + wahg — Ainter

The IoU is, therefore, a crucial part of the evaluation protocol of the object detectors as it conditions
which predicted bounding boxes are TP, and which are FP. The IoU threshold limit determines
how close to the ground truth the predicted boxes must be to be considered TP. In the Pascal VOC
detection challenge [5], this threshold was set to 0.5, this has been the gold standard for a few years.
However, it changed when the more challenging Microsoft COCO dataset [6] was proposed. The
authors of the COCO challenge compute the AP at several thresholds (ranging from 0.5 to 0.95)
and average the values. While this is the current standard for object detection evaluation, the few-
shot object detection literature still uses the former Pascal VOC AP as it is an easier metric. Hence,
we will use both of these metrics in the manuscript. We will denote them as APy 5 and APg 5.0.95

respectively.

Before computing the precision-recall curve, the predicted labels must be ranked by confidence
scores. It is usually possible to derive a confidence score along with the bounding box coordinates
and labels from a detection model. This can be for instance the highest class probability score. Once
the detections are ranked according to confidence scores, one can compute the running precision
Precy, and recall rj, by taking only the top-k bounding boxes. Then, it is possible to plot the precision
as a function of the recall by plotting the points (r, Precy), for 1 < k < DAJ |. This generally gives
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a zig-zag shaped curve Prec(r) as visible in Fig. 2.3. Therefore, it may not be easy to compute the
area under the curve, i.e, the AP. A few tricks were introduced in [7], and later popularized with

the Pascal VOC challenge [5]. They consist in taking an interpolated precision-recall curve:

Precinterpolated (I‘) = I?gi( Prec(F), (2'9)

and discretize the area computation over 11 equally spaced points along the recall axis. Hence, the

original AP definition becomes:

10
1 .
AP = T 2Precinterpolated(0.1 X ). (2.10)
1=

So far, we only discuss the evaluation without taking into account the class of the bounding boxes.
In order to take this into account, the AP is computed independently for each class and noted AP..
The predicted boxes are now considered true positive only if they have a sufficient IoU with a ground

truth box and if they have the same class. The mean Average Precision is defined as follows:

1

mAP = — ) " AP,. (2.11)
’C‘ ceC

The mAP is largely the most employed metric for object detection and most of our analysis will be

based on it. However, there exist complementary metrics that are worth presenting here.

2.1.2.2 mean Average Precision per object size
The AP and mAP can be computed only on certain object sizes. The principle is simple, simply filter
the sets of predicted and true labels to keep boxes of a certain size before the AP computation. This

distinction was introduced in the COCO challenge [6], with three different object sizes:

- Small: boxes with an area a = wh smaller than a < 322 pixels.
- Medium: boxes with 322 < a < 962.
- Large: boxes with a > 962.

This distinction is extremely relevant for COSE applications as the objects of interest in aerial im-
ages are often small and because most detectors struggle to detect them. Even worse, this issue is
reinforced in the few-shot regime as we will see in the following chapters. Therefore, mAP®, mAPM

and mAP’ will be extensively employed in our analysis.

2.1.2.3 Average Recall
Similar to the average precision, the Average Recall (AR) is computed as the area under the Recall-

IoU curve:

1
AR = 2/ Recall(v) dv, (2.12)
0.5
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Figure 2.3: Example of a Precision-Recall curve and its interpolated variant.

where v denotes the IoU threshold (ranging from 0.5 to 1) for the recall computation. Similarly
to the AP for different object sizes, the average recall can be declined according to the maximum
number of detection allowed. Basically, this controls the size of J>, the more detection the model
can output, the less likely it is to miss an object of interest. Although it can be a critical metric in

some applications (e.g., lesion detection), this is not essential for COSE’s applications.

2.1.2.4 Average Precision shortcomings and Alternative

Even though AP is widely used in the computer vision community, it has several shortcomings.
Similar values of AP can be obtained from very different precision-recall curves, hiding different
detectors’ behavior. The ranking of the confidence scores makes the AP sensitive to the prediction
confidence. Finally, the interpolation trick from [7] may cause large errors when the number of
instances of the class is small. These drawbacks were highlighted in [8], which proposes an alterna-
tive metric, the Localization-Recall-Precision (LRP). This metric is an aggregation of three metrics
based on the box regression error, the precision, and the recall, under a certain confidence threshold.

Hence, LRP fixes some of the AP’s shortcomings.

More recently, [9] also outlined two detection issues that are not spotted by AP, namely spatial
hedging and category hedging. Spatial hedging comes from the fact that low-confidence duplicates
(slightly perturbated spatially) of a box do not degrade the AP value, instead having a lot of these
duplicates generally improves the AP. However, these duplicates are mostly burdensome from an
application viewpoint. The authors even highlight some tricks in recent object detectors that boost
AP while increasing the number of duplicates. Category hedging comes from duplicated boxes
with different classes. Consequently, the authors proposed two novel metrics to specifically assess
spatial and category hedging: Duplicate Confusion (DC) and Naming Error (NE). Note that LRP

partly assesses spatial hedging as well.
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2.1.3 Literature review about Object Detection

In this section, we review the Object Detection literature but only present the most ground-breaking
works. For an exhaustive review of object detection, we defer the reader to two popular surveys
[10, 11]. This section is divided into three parts, traditional object detection, CNN-based OD and
Transformer based OD. These correspond to three phases in the development of object detection
techniques. This is highlighted by the timeline in Fig. 2.4, which summarizes the history of the
object detection field.

Two-Stage Detectors
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Figure 2.4: Timeline of the Object Detection literature, it includes some of the most relevant works
in the field of Object Detection. Papers marked with a flag are the most ground-breaking works,
some will be detailed in Sec. 2.1.3
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2.1.3.1 Traditional Object Detection Approaches

The very beginnings of the object detection field date back to the early 1990s. It began with an
easier one-class problem: face detection. Of course, there were prior works addressing this task, but
they mainly focused on face recognition and not detection. The difference is slight, the recognition
task only asks whether there is a face or not in an image. This field gained substantial interest
over the 1970s and 1980s with seminal works such as [12, 13, 14, 15]. However, it was only in 1991
that the detection task was first tackled by EigenFaces [16]. In this work, the authors perform a
Principal Component Analysis (PCA) on a set of face images. The PCA returns a set of eigenvectors
(denoted as EigenFaces) that span the face space. Applying the EigenFaces on a sliding window
over the images allows creating faceness maps and therefore localizing faces. Following this pioneer
contribution, many face detectors were proposed in the 1990s, for instance [17, 18, 19, 20]. We
called this section "Traditional Object Detection Approaches” in contrast with the two following
sections that are deep learning-based approaches. However, note that a significant proportion of
the methods developed during the 1990s actually leverage neural networks. In EigenFaces [16], for
instance, the authors discuss an implementation of their system using Multi-Layer Perceptron (MLP)
for fast parallel computation. Similarly, [19, 20] exploit and train neural networks for the task of

face detection. We will see in the next section that plenty of these ideas will be re-used 20 years later
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by current deep-learning-based detectors. The missing pieces in these early days of object detection

were large annotated datasets and dedicated hardware such as Graphical Processing Units (GPUs).

In the late 1990s, the object detection task as we know it today with multiple classes of interest
was still far off, but some research groups began to apply it to objects other than faces. As an
example, [21] introduced a general probabilistic model for the object of interest used for the vi-
sual search of faces and hands. Later, [22] stepped aside from the PCA-like object representations
and proposed generic learnable features based on Haar wavelets transform. This was successfully
applied to pedestrian detection. An extension with slightly more elaborated features proposed the
Viola-Jones detector [2]. But it mainly provided several tricks for fast computation, achieving robust

real-time detection.

In the 2000s, plenty of works shared the same strategy as the Viola-Jones detector: learning a set
of elaborated features and classifying regions in the input images by comparison with the set of
features. Improvements were made using more and more complex feature sets [23, 24] and the
popularization of Support Vector Machines (SVM) classifiers[25]. This strategy led to the well-
known Histogram of Orient Gradient (HOG) [26], which was first applied to pedestrian detection.
However, this method was one of the first to tackle multi-class object detection in the first Pascal
VOC challenge [5] in 2005.

The Pascal VOC challenge quickly became a reference in the Object Detection field, with increasing
difficulty over the years (more classes and more images). The winners of the following editions
2006, 2007 and 2008 all took inspiration from the HOG features. In particular, [27] employs several
tricks to improve the detection quality based on HOG features. Among those, Deformable Part
Models (DPM), i.e., representing each object as a set of its parts provide significant improvements.
It also leverages pyramid features and hard examples mining which are common components of
recent object detectors. DPM were then refined with for instance the Grammar Models [28] and
Star Models [28].

2.1.3.2 Object Detection in the Deep Learning Era

While there were a few attempts to solve object detection with neural networks during the 1990s, all
were limited to single-class problems and lagged behind state-of-the-art in terms of detection quality
and speed. However, this changed with the popularization of fast parallel processing units (GPUs)
and the creation of large image datasets. In 2012, AlexNet [29] was introduced for image classifi-
cation with deep convolutional networks (CNNs). Since AlexNet, deep learning was successfully

applied to most tasks in computer vision including Object Detection.

From the beginning of the deep object detection era, two schools of thought emerged: one-stage
detectors and two-stage detectors. As two-stage detectors were proposed first, we will present them

first here.
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Two-Stage Detectors

Regions with CNN features or R-CNN [4] is one of the first attempts to tackle the task of Object
Detection with CNNs. This marks a significant performance improvement over the previous meth-
ods (about 20% mAP improvement over the best DPMs on the 2010 Pascal VOC challenge). The idea
behind R-CNN is to leverage the classification power of CNNs such as AlexNet for the detection
task. It first employs Selective Search [30], a class-agnostic object locator, to generate region pro-
posals. For each region proposal, the corresponding part in the input image is cropped and fed to a
CNN pre-trained on ImageNet. The CNN outputs high-dimensional feature vectors which are then
classified by an SVM for each class. The CNN is fine-tuned for the detection task by replacing its
final classification layer with N+1 class logits (one additional class for the background) and training
with a Cross-Entropy (CE) loss function. Proposal regions with an IoU of 0.5 with a ground truth
box are selected as positive proposals and the model is trained to classify these regions with the label
of their corresponding ground truth. The other proposals (denoted negative proposals) are selected
as background examples. The authors train classification SVMs instead of using the classification
outputs of the CNN as they observe higher performance with SVMs. In addition, they train a linear
bounding box regressor to refine the coordinates of each region of interest, following the most re-
cent advances with DPM. OverFeat [3] was another attempt to solve detection with CNN. Although
it did win the ImageNet Detection Challenge in 2013, it is largely outperformed by R-CNN and the
corresponding paper was never published. Following R-CNN, the first author Ross Girscick pro-
posed two successive extensions. Firstly, Fast R-CNN [31], mainly improves over R-CNN in terms
of speed. It introduces a Region of Interest (RoI) Pooling layer which extracts Rol features directly
from the features maps of the entire image. This is largely inspired by Spatial Pyramid Pooling [32]
which consists in pooling the features of an Rol with multiple binning resolutions and concatenat-
ing the outputs. Rol Pooling saves a lot of unnecessary forward passes through the CNN (R-CNN
performs a forward pass for each Rol). Then, they dropped the SVM classifiers for the CNN outputs
and integrated a bounding box regressor at the end of the CNN as a parallel branch to the classifi-
cation layer. The training is done in a similar fashion as in R-CNN, they simply added a regression
loss function, computed only on the positive proposals to train the bounding box regression branch.
Secondly, Faster R-CNN [33] introduced the Region Proposal Network (RPN) to replace Selective
Search as the proposal generation algorithm. Selective Search provides almost exhaustive propos-
als but is slow. The RPN is a lightweight CNN that densely predicts proposal coordinates and an
objectness score at each position in the feature map. The box predictions are done as coordinate
shifts from a set of pre-defined anchor boxes. After objectness filtering, this produces a reasonable
number of proposals that can be processed with Fast R-CNN. The RPN is trained like Fast R-CNN
with a similar loss function. A binary classification loss as the RPN classifies each location between
objects or background (with the objectness score), and a regression loss. Example selection remains
unchanged compared to Fast R-CNN. The training of both the RPN and Fast R-CNN is done in an
end-to-end manner. Faster R-CNN achieves superior performance compared to its predecessors, but

most importantly, it unlocks real-time detection with deep learning-based two-stage approaches.
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One-Stage Detectors

One-stage detectors appeared slightly later than two-stage ones. The reason for this is probably
because two-stage models were the logical continuity of the sliding-window-based older detectors.
These approaches are highly inefficient as they process parts of the input images many times. While
this is reduced in modern two-stage detectors, they still have redundancies that limit their inference
speed. In 2015, Redmon et al. proposed You Only Look Once (YOLO) [34], a first detector to avoid
all redundancy as it only needs to look once at each part of the image. The main idea behind YOLO
is to reformulate OD as a regression problem and not a classification one. Prior detectors solve OD
by classifying regions of the input image, i.e., classifying given a region of interest. YOLO instead

regresses the box coordinates and classifies the object jointly.

The main principle of YOLO is to split the input image into an S x S grid and predict bounding
boxes, confidence scores and class probabilities for each cell in the grid. Each cell is "in charge" of
detecting objects that are located within its boundaries. To deal with cases where more than one
object is visible in one cell, B bounding boxes and confidence scores are predicted per cell (B = 2in
the original paper). To keep model size constrained, the class probabilities are predicted only once
per cell. This assumption limits the model to predict boxes of one class only per cell. The YOLO
architecture is based on a deep CNN followed by two fully connected layers. The grid separation
is directly implemented inside the architecture since the input size is fixed. YOLO is trained in an
end-to-end fashion with a typical detection loss function. This loss function includes a regression
part for box coordinates and a classification part, both implemented as L2 loss functions. Just like
other object detectors, YOLO has an example selection strategy to compute its loss. Each ground
truth box is attributed to the cell where its center is located and then to the box with the highest
IoU. Thus, YOLO is extremely fast compared to the two-stage approaches (50 to 100 fps depending
on the configuration for YOLO compared to less than 15 fps for Faster R-CNN). However, this speed

improvement comes at the cost of slightly lower detection quality.

Just like the R-CNN family, YOLO was extended several times by its original authors and even later
perpetuated by other research groups. In YOLOv2 [35], several improvements are introduced, in-
cluding a lighter and fully convolutional architecture, decoupled class probabilities for each box,
anchors boxes as in Faster R-CNN and a hierarchical word structure for refined classification. It also
proposes several tricks and loss function adjustments to stabilize training. YOLOv2 hence achieves
both higher detection performance and speed. YOLOvV3 [36] is then introduced in an unpublished
paper by the same authors, presenting several incremental improvements. Again, it outperforms its
previous version both in quality and speed. After YOLOv3, its authors decided to quit the Object
Detection research for ethical reasons, but many other groups continued to refine the YOLO frame-
work. The race for the best performance and speed includes numerous versions of YOLO: YOLOv4
[37], PP-YOLO [38], YOLOX [39], YOLOv6 [40], YOLOR [41] and YOLOv7 [42]. Each of these works

has its share of marginal changes involving elaborated loss design, structure change, augmentation
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techniques and refined anchors generation. Note that YOLOv5 ! and YOLOv8? also exist but only

as popular code repositories on GitHub, without any detailed report about their contributions.

YOLO models have a rich development history but are now reduced to marginal changes and im-
plementation tricks. This is extremely useful from an engineering view, but it is less relevant from
a research perspective. Nevertheless, the YOLO framework inspired plenty of other one-stage de-
tectors. In particular, some detectors drop the use of anchors boxes and instead detect objects with
keypoints. CornerNet [43] for instance produces heatmaps to determine the position of two corner
points for each object, preventing the use of boxes at all. CenterNet [44] is a refinement of Corner-
Net that only outputs a center point and infer the box dimensions from the keypoint features. Both
CornerNet and CenterNet output a keypoint heatmap for each class and involve sophisticated post-
processing to obtain the predicted bounding boxes. FCOS [45] simplifies this by directly predicting

boxes from each feature location.

It is also worth mentioning Single Shot Detector (SSD) [46], which was proposed slightly after YOLO.
It is also a one-stage detector, but unlike the first YOLO version, it is fully convolutional. This has
several advantages as it predicts boxes densely on the images (higher recall, better detection of small
objects) and it adapts better to different input image sizes. But most importantly, SSD leverages
features from various scales for the predictions which dramatically improves the detection of small
targets. Although this idea was introduced by SSD, it was popularized later with Feature Pyramid
Networks (FPN) [1]. We will discuss these advancements in the following section as well as the

choice of the CNN architecture choice.

One-stage object detectors were at first lagging behind two-stage detectors in terms of detection
performance. However, the recent progress tends to close this gap, making the one-stage detectors

the standard choice in the industry as they offer the best speed/performance tradeoff.

Backbone network choice

In the OD literature, it is common to denote the main features’ extractor CNN as the backbone of the
network. Then, the lightweight module designed for classification and box regression on top of the
backbone is logically called the detection head. What is placed between the backbone and the head
(e.g., FPN and RPN) are sometimes referred to as the neck. Fig. 2.5 highlights these three main com-
ponents of the object detector structure and outlines some design choices for each component. The
backbone has an extremely important role in object detection as it extracts the features on which
the classification and regression modules work. The choice of the backbone has been driven by the
advances in classification, specifically the most common backbones have largely proven their capac-
ities on ImageNet. First AlexNet [29] was used by R-CNN, then VGG networks [47] for Fast R-CNN,
Faster R-CNN, YOLO, SSD and many others. These were quickly replaced by Residual Networks

(ResNets) [48] which provide a large improvement in ImageNet classification, and consequently in

'https://github.com/ultralytics/yolov5
*https://github.com/ultralytics/ultralytics
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the detection task. Following the extensions upon ResNets, object detectors successfully adopted
WideResNet [49], ResNext [50] or EfficientNet [51]. More recently, the backbone network shifted

from CNN to visual transformers, but this review will be conducted in Sec. 2.1.3.3.

Now, the backbones alone are not sufficient to extract relevant features for Object Detection. Back-
bone networks are originally designed to deal with curated images where one main object is visible
and often located at the center of the image. Thus, backbones are not well-suited to deal with objects
of various sizes and locations. An alternative to this issue is to leverage pyramidal features. This is
not a very innovative idea as this was largely employed by face detectors during the 1990s and HOG
models later (see Sec. 2.1.3.1). The actual innovation is to integrate this inside the CNN architecture.
This was introduced first in SSD [46], but it was popularized with Feature Pyramid Networks (FPN)
[1]. FPNs combine features with various resolutions from the input image at a single resolution
(i.e., it is not necessary to perform the forward pass on multiple rescaled versions of the same im-
age). FPNs extract intermediate feature maps in the backbone and aggregate them in a bottom-up
manner (in contrast to the top-down processing of the forward pass). This bottom-up computation
path is generally implemented with deconvolution layers, such as in Deconvolution SSD [52]. FPNs
are plug-and-play modules that can be attached to most backbone networks and significantly im-
proves the detection performance, especially for small objects. In two-stage detectors, FPN are often
combined with Region of Interest Alignment Layer (Rol Align) to extract Rol features from the most
relevant feature level (i.e., according to the Rol size). Rol Align was introduced in Mask R-CNN [53],
an extension of Faster R-CNN for Instance Segmentation, that uses a FPN. In one-stage detectors,
the detection is carried out on all feature levels output by the FPN, deeper levels are responsible for

detecting larger objects.

Of course, plenty of contributions were proposed to improve upon FPNs. Path Aggregation Net
(PANet) [54] for instance adds another top-down path before aggregating features from multiple
levels with an Adaptive Feature Pooling layer. However, the design of the FPN architecture is not
trivial and requires lots of trial and error. To find optimal FPN designs, NAS-FPN [55] proposed
to apply principles of Neural Architecture Search for the design of FPNs and achieved superior
detection performance. However, these questions are not so relevant to us as they mainly focus on
Auto-ML problematics.

Non-Maximal Suppression

Note that these methods often output numerous detections and require elaborated filtering schemes
to prevent duplicates. Among others the Non-Maximal Suppression (NMS) became quite popular.
In the case of largely overlapping boxes (i.e., when the IoU is above a fixed threshold), NMS keeps
only the most confident box to prevent duplicates. This is done separately for each class so that
objects from different classes may overlap. It improves the visual quality of the detection, but it can
slightly degrade the detection performance when dealing with crowded scenes. For instance, Faster
R-CNN employs the NMS both on the outputs of the RPN and on the final set of bounding boxes.
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Figure 2.5: Possible architectural choices for Object Detector design.

2.1.3.3 Recent Advances in Object Detection

A Transformer is a network architecture based on a multi-head self-attention mechanism. It was
proposed in the context of Natural Language Processing (NLP) in 2017 by Vaswani et al. [56]. Since
then, it became an essential component of most NLP applications. The original idea behind trans-
formers is to represent the relations between different words in a sentence. For instance, the subject
and a pronoun in a phrase must be strongly connected as they designate the same object. The
self-attention mechanism from the Transformers is specifically built to adaptively compute these
relations between words. As Transformers reformed the entire NLP field, vision models started to
embed similar mechanisms to model long-range dependencies between parts of an image. Vision
Transformers (ViT) [57] and Image Transformers [58] are one of the first attempts to solve image
classification with Transformers and achieve considerable improvements over CNN baselines. They
achieve this by dividing an input image into several patches that they treat just like words in a

sentence.

Consequently, most vision tasks were quickly influenced by this new architecture. Object detec-
tion is no exception and in 2020, DEtection with TRansformers (DETR) [59] is introduced as a first
attempt to solve object detection using visual Transformers. Due to the time complexity of the trans-
formers blocks (O(H2W?), where H and W are the height and width of the image respectively),
it is unreasonable to directly apply ViT for OD as input images are generally quite large. Instead,
DETR leverages a ResNet backbone to extract relevant features but implements the detection head
with transformers blocks. The head is divided into two parts, an encoder and a decoder. The encoder
combines backbone features with positional encodings (i.e., fixed vector whose role is to keep track
of the location of the patch processed). The decoder takes as input a set of object queries, learn-
able vectors that represent various positions in the images (similarly to positional encodings). Their
role is to condition the detection toward a specific part of the image. Encoded image features are
integrated inside the decoder through cross-attention layers. Finally, a light MLP predicts the box
coordinates and class for each object query. The training of DETR is similar to prior object detectors
(i.e., a classification and a regression loss function). However, the matching between predicted and
ground truth boxes differs. DETR tackles OD as a set prediction problem, i.e., it predicts a set of

bounding boxes as a whole and compares it with the set of ground truth boxes. This differs from
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prior detectors which often employ box-to-box matching. In DETR, the matching is done by finding
an optimal permutation of the sets (with the Hungarian algorithm) according to a cost involving

boxes’ positions and class labels.

Although DETR is a significant milestone in the detection landscape, it does not yield impressive
performance gains over existing work. It even has considerable drawbacks, its inference is slow,
it struggles with small objects and its training is one order of magnitude slower than prior detec-
tors. Fortunately, several extensions mitigate these issues. First Deformable DETR [60], reduces
the convergence time and improves detection performance with a deformable attention module.
Deformable attention drastically reduces the amount of computation required and can process im-
ages with higher resolution. Deformable Attention Module is the twin of Deformable Convolutions
[61] but for transformers. Similarly, H-Deformable-DETR [62] builds upon Deformable DETR with

improved matching techniques which accelerate training further.

While the previous methods leverage transformers to make detections, they still rely on large CNN
models as the backbone. This choice is also questioned by recent advances in visual transformer
architectures. On the one hand, Data-efficient image Transformers DeiT [63] and Bidirectional En-
coder representation from Image Transformers (BEiT) [64] both improve ViT’s accuracy and training
strategy. Both DeiT and BEiT show similar fine-tuning properties as CNNs, unlocking their appli-
cation for various downstream tasks including object detection. On the other hand, ConViTs [65]
and Swin Transformers [66, 67] make the attention computation much faster with spatial inductive

bias and hierarchical structure respectively.

Another source of improvement for the detection backbones comes from self-supervised training.
Recent advances in large-scale self-supervised training for classification are now being adapted to
other visual tasks. DINO [68, 69] pre-trains both CNN and Transformer based backbones in a con-
trastive way with carefully designed augmentation schemes to obtain more robust visual features.
Using these pre-trained backbones generally boosts the performance on many visual tasks, at least
when applied to sufficiently similar images. The very recent Segment Anything Model (SAM) [70]
also falls under the same category called foundation models. Even though no derivative work has

been published yet, the capacities of SAM are promising for object detection.

Thanks to this progress, transformers-based backbones are about to replace CNN in most computer
vision applications, including Object Detection. Nevertheless, some CNNs backbones are still pro-
posed and seem to keep up with the rapid progress of transformers-based backbones. Among these
works, ConvNeXt [71] brings several improvements over the original ResNet architecture to out-
perform Swin Transformer backbones. Closely related, Internlmage [72] proposes an extension of
Deformable Convolution to scale CNNs architectures as much as transformers (which was limited
before). Even if the current hype is directed toward Transformers-based backbones, CNNs are not
defeated yet. As an example, DynamicHeads [73] is a recent object detector based on a ResNext back-

bone achieving very competitive results on the COCO dataset. It leverages attention mechanisms
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inside the detection head, but not Transformers modules as in DETR. Another recent detector based
on a CNN backbone is DiffusionDet [74]. It adapts the diffusion models (currently very popular for

image generation) to box prediction and obtains convincing performance as well.

To summarize, recent advances in Object Detection have largely followed the Transformer "revolu-
tion". First, with improved detection heads (the DETR family), and then, with improved backbones,

based on Transformers but also revamped CNNs.

2.1.3.4 Object Detection on Aerial Images

Most of the works presented in the above sections focus on the object detection task applied to
natural images. Aerial images differ significantly from natural images, they do not contain any
perspective, objects can be arbitrarily rotated, and they have a greater object size variance. Given

this, it seems obvious that some adjustments are required to adapt popular detectors to aerial images.

Oriented Bounding Boxes

As objects can be oriented in any direction, some aerial object detection datasets give annotations
as oriented bounding boxes. This slightly changes the problem, but most detectors can easily be
extended to deal with rotated boxes. The bounding box formulation can be extended so that it is
rotated, the regression layer must then be adapted to predict a rotation angle [75, 76], more than

four coordinates [77, 78], or to use rotated Rol, for instance with Rol Transform [79].

Small Object Detection

Aerial images contain objects with great size variance due to discrepancies in the shot conditions
(altitude, sensor resolution, camera focal length, etc.). In addition, they also have smaller objects
than natural images. To deal with the object size variance, it is possible to leverage supplementary
information such as the ground sample distance (GSD). The ground sample distance represents the
size of one pixel on the ground. Based on GSD, a model can infer the size of the Rol and therefore
refine its predictions, as done by GSDet [80]. However, object size variance is generally a limited
issue compared to detecting small objects, which remains an open challenge in object detection.
Many attempts were made to solve this issue using specific architecture design [81], multiscale
training [82, 83], data-augmentation [84] or super-resolution [85, 86, 87]. Additionally, Normalized
Wasserstein Distance (NWD) [88] proposes an alternative to the IoU loss specifically designed for
detecting small objects. It consists in computing the Wasserstein distance between two Gaussian
distributions fitted on the two bounding boxes compared. Moreover, NWD is not only used as a loss

function but also as an example selection criterion.

2.1.3.5 Training Object Detectors
While we briefly presented how object detectors are trained in the previous sections, we did not
give much detail about the loss functions and the optimization process. We remedy this here by

reviewing the loss functions of several popular object detection benchmarks.
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Loss functions for Object Detection
As object detectors must solve both classification and regression tasks, most detection loss functions
are divided into two components, a classification loss and a regression loss. Plenty of choices exist

for both components. For the classification loss, the most common choice is the Cross-Entropy loss:

LE(Yi,y,;) = —log(lf), (2.13)

where ifl is the predicted probability that the box ¢ contains an object of class c;, ¢; being the true la-
bel (y; = (bi, ¢;)). However, some alternatives such as the L1 or L2 losses over the class probabilities

are also employed:
LYY yi) = Il — LilJ3, (2.14)

where ZZ denotes the class probability vector (ZZ = {Zf}cec) and [; is the one-hot encoded true
probability vector of box i. Another very common classification loss function in recent detector is
the Focal Loss (FL) function [89], which was introduced with the RetinaNet object detector. Focal
loss is designed to address the class imbalance issue that is inherent to dense object detectors (the
background class is much more represented than other classes). Focal loss reduces the relative loss
of well-classified examples so that the learning process focuses on misclassified objects. It is defined

as follows:
L (Vi yi) = —ae, (1= 17) log(I7"), (2.15)

where o, is an inverse class-frequency parameter and -y controls how much FL reduces the contribu-
tion of well-classified examples to the loss. In RetinaNet, the authors leverage only a binary version
of FL as they tackle the multi-class classification problem as |C| binary classification problems. They
replaced the Softmax activation function on the classification layer with a Sigmoid activation and
classified the box as either background or foreground for each class independently. This binary

formulation of the classification task will be extensively re-used by derivative detectors.

For the regression part, a greater variety of loss functions exists in the literature. L1 and L2 losses
are common in early CNN-based detectors. The Smooth L1 (or Huber Loss [90]) is a variant of the
L1 loss leveraged by the Faster R-CNN family of detectors. It combines the L1 and L2 norms to get
a smooth loss function around 0. Next, UnitBox [91] introduced the IoU loss function as the new

standard for box regression training:

LI (v, y:) = —log(IoU(b;, b;)), Log version (2.16)
Li8(¥oy) =1 IoU(b}, bi). Linear version (2.17)
Following the IoU loss, several extensions were proposed, e.g., Generalized IoU [92], Distance-IoU

[93], or a-IoU [94], these will be reviewed later in Chap. 8. To summarize, Tab. 2.1 gives an overview

of the loss functions used by common object detectors.
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Classification Regression

Cross-Entropy for the detection head

Binary Cross Entropy for the RPN SmoothL1 Loss for head and RPN

Faster R-CNN [33]

YOLO [34] L2 Loss on class probability vector (for grid cell containing an object) L2 Loss on box center

L2 Loss on true class probability (for all cells) L2 Loss on square root of box dimensions
RetinaNet [89] Binary Focal Loss SmoothL1 Loss
UnitBox [91] Binary Cross Entropy IoU Loss (log)
FCOS [45] Binary Focal Loss GIoU Loss (linear)
DETR [59] Cross Entropy L1 Loss and GIoU Loss
DiffusionDet [74]  Binary Focal Loss L1 Loss and GIoU Loss

Table 2.1: Summary of the loss functions used in several object detection frameworks.

Example selection strategy

In the previous paragraph, we presented the various loss functions employed in the Object Detection
literature. For simplicity, we defined these losses for a couple of predicted and ground truth detection
labels (y;,y;). In reality, the losses are computed as the sum of all such couples (over one or multiple
images). However, it is not straightforward to build these couples as there may be more predictions
than ground truths, missed objects, or false detection. Each detector has its own strategy to operate
the matching between prediction and ground truth. These strategies were briefly presented in the

previous sections, but we regrouped them inside Tab. 2.2 for clarity.

Matching Strategy

- Select Rol with at least 0.5 IoU with a GT as Positive Samples (PS) and Rol with low IoU (< 0.1)
as Negative Samples (NS).
Faster R-CNN [33] - Classification loss is computed on all selected samples
(PS with the corresponding GT class and NS with the background class).
- Regression Loss is only computed with PS.

- Select PS as grid cells in which there is a GT center point and assign the highest IoU boxes in
case of multiple GT in one cell.
YOLO [34] All others are NS.
- Classification done separately on PS and NS.
-Regression loss with PS only.

- Select PS as feature map locations that fall inside a GT, all others are NS.
If multiple GT for the same location take the smallest one.

- Classification on PS and NS.

- Regression on PS only.

FCOS [45]

- 1-to-1 optimal prediction and GT assignment according to localization and classification cost.
- No-object are added to the GT set when the predictions are more numerous.

- Classification loss is computed for all matched couples.

- Regression loss only for couples with an actual GT.

- DETR matching.
- Supplementary 1-to-many matching with duplicated and augmented GT for training.

DiffusionDet [74] - DETR matching

DETR [59]

H-DETR [62]

Table 2.2: Brief description of some existing prediction ground truth matching strategy in existing
object detectors.
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2.1.4 Datasets Presentation

There exist numerous object detection datasets in the literature. We present in this section four of
them in detail as they will be extensively used in this manuscript. These datasets are Pascal VOC
[5], MS COCO [6], DOTA [77] and DIOR [95]. We choose these datasets because they were the most
relevant and widespread datasets of natural (Pascal VOC and COCO) and aerial (DOTA and DIOR)
images at the beginning of this project. Some other datasets will be punctually used, especially for
the cross-domain experiments in Chap. 7, they will be presented in detail there. However, we draw

up a non-exhaustive list in Tab. 2.3 of the most well-known object detection datasets in the literature.

Image Type / Application Dataset Name # Classes # Images # Instances

Pascal VOC [5] 20 11.5k 27k
Natural COCO [6] 80 117k 1.5M
LVIS [96] 1203 100k 1.3M

Object365 [97] 365 2M 30M

. KITTI [98] 11 7k 80k

Autonomous Vehicle BDD100k [99] 10 400k 3M
CityPerson [100] 1 3k 19k

Pedestrian TinyPerson [101] 1 1610 72k
CrowdHuman [102] 1 15k 340k

COWC [103] 1 33k

DOTA [77] 16 2.8k (megapixels) 220k

Aerial DIOR [95] 20 23k 190k
xView [104] 60 1.1k (megapixels) 1M

FAIR -1M [105] 37 15k (megapixels) 1M

. DeepFruits 7 457 2.5k
Agricultural / Food Oktobeerfest [106] 15 1k 2.5k
ClipArt [107] 32 5k 13k

. LogoDet [108] 3000 159k 194k

Other Modalities SIXray [109] P ok M
DroneVehicle [110] 5 56k 191k

Table 2.3: Overview of existing detection datasets

2.1.4.1 Natural Images

Natural images are the kind of image humans are the most familiar with, therefore it is logically the
most common application in Computer Vision. Object detection is no exception and most proposed
detectors are developed to process natural images. Hence, our analysis must be conducted as well
on natural images even though the industrial interest of COSE is more towards aerial imagery. To

this end, we choose Pascal VOC and MS COCO as our main sources of natural images.

Pascal VOC [5] - The Pascal VOC challenge took place every year between 2005 and 2012. This

competition defined the object detection problem as we know it today. The last version of the dataset
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Pascal VOC 2012 includes images of various sizes and aspect ratios. Each image is annotated with
horizontal bounding boxes around objects belonging to 20 classes. Examples of images and a list of

classes, ordered by the number of occurrences, are available in Fig. 2.6a.

MS COCO [6] - MS COCO is an extension of Pascal VOC which includes much more images and
classes. The set of images is completely distinct from Pascal VOC, but all classes in Pascal VOC are

included in COCO. Similarly, Fig. 2.6b presents image examples and a list of COCO classes.

2.1.4.2 Aerial Images

The overall goal of this project is to detect objects from aerial images. Aerial images are sometimes
associated with low-altitude drone images. These images are halfway between natural and aerial
images as they often preserve some perspective. Remote Sensing Images (RSI), i.e., acquired from
planes or satellites with nadir-oriented cameras are much closer to COSE’s application. In this
manuscript, we refer to this kind of image both as aerial or RSI images. There exist a few publicly
available datasets of such images. We have chosen two of them based on the ground resolution of

the images (in agreement with COSE systems) and their availability at the beginning of this project.

DOTA [77] - DOTA contains images coming from Google Earth and distinct satellites Jilin-1 and
Gaofen-2 (with roughly 1m spatial resolution GSD). Images from DOTA are large, ranging from
800 to 4000 pixels in width and objects are annotated with oriented bounding boxes. To ease the
handling of the images, we prepared DOTA by tiling all images into 512 x 512 patches with a 50%
overlap and converted the annotations to horizontal bounding boxes. Fig. 2.7a presents images and
the class list for DOTA.

DIOR [95] - DIOR is very similar to DOTA. It contains only images scrapped from Google Earth
and has slightly more classes than DOTA. The images are already tiled at 800 x 800 pixels and boxes

are horizontal. Fig. 2.7b presents images from DIOR and the list of classes.

2.2 Few-Shot Learning: Learning with Limited Data

As presented in the introduction, COSE faces a substantial challenge in the design of its imaging
systems: the lack of real-case images and unknown objects of interest. All methods described in
Sec. 2.1 require large annotated training sets to achieve reasonable detection performance, which is
misaligned with COSE’s constraints. This issue is common in the industry, most computer vision
problems lack large annotated datasets, and therefore the direct application of research contribu-
tions is often challenging. Fortunately, there exists an entire research field dedicated to learning
with limited annotated data. The main paradigm in this field is to learn a closely related task with
sufficient data and adapt to the real task with limited annotations. Two kinds of adaptation can be
considered: class adaptation and domain adaptation. Given a computer vision task such as classifi-
cation, the former consists in learning to classify objects or images among a set of classes and then

adapt to another set of classes. This is usually called Few-Shot Classification (FSC). While classifica-
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tion is not the primary interest of COSE, it is worth exploring the FSC literature as it is an older field,
much more developed than FSOD and because FSC lays the foundation for tackling more complex
tasks in the few-shot regime. On the other hand, domain adaptation consists in adapting to differ-
ent kinds of images, e.g., different seasons, weather conditions, general environments, etc. In the
strict definition of domain adaptation, the classes of interest remain the same. However, the setting
when both the classes and the domain change is also studied in the literature. It is more challenging,
but it better reflects the industrial needs such as COSE’s. In this section, we review both kinds of
adaptations for the classification problem. Even though it is not a task of interest for COSE, under-
standing few-shot adaptation strategies is crucial before addressing the more challenging problem

of Few-Shot Object Detection which we reserve for Chap. 3.

2.2.1 Few-shot Classification

2.2.1.1 Problem Definition

Classification is a simpler problem than detection. Given a set of classes C and an input image
I, one wants to find the class ¢ € C that is depicted by I. Of course, the higher considerations
briefly presented in Sec. 2.1.1 about how to properly define the membership of an image to a class
still holds. For classification as well, the class membership is determined by human appraisal and
common sense. Solving a classification task is to find a model F (-, §) that outputs a class label for
a given input image I:

F(I,0)=c¢eC. (2.18)

Deep Learning based models proved to be particularly adapted to the classification task in a fully
supervised setting (i.e., provided with sufficiently large annotated datasets). This was supported
amongst others by LeNet [111] for digit classification, and by AlexNet [29] and ResNet [48] for
ImageNet classification. However, the classification task in this form is not a topic for this section,

and we refer to [112] for a complete review of existing works in this field.

In the few-shot setting, the classification goal remains the same, predicting the class of an image.
The input image to an FSL model is usually denoted as a query image, and therefore, the test set
is called the query set. What changes between the few-shot and regular settings is the amount
of annotated images available to train the model. In the literature, the expression N-way K-shot
classification designates the task of classifying images amongst N different classes only provided
with K annotated examples per class. The /NK images constitute the novel dataset, in contrast to
the base dataset which contains an arbitrary number of annotations for another set of classes. In
the few-shot literature, the novel dataset is often called the support set, and its elements support

examples. Similarly, the sets of classes of the base and novel datasets are called the base classes set
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Figure 2.6: Image examples for the Natural images dataset Pascal VOC and MS COCO.
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(a) Examples of DOTA images and class repartition on the training split.
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(b) Examples of DIOR images and class repartition on the training split.

Figure 2.7: Image examples for the Aerial images dataset DOTA and DIOR.
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(noted Cpase) and novel classes set (noted Cyqvel) respectively. Specifically, we have:

Dpase = {(Ii7 Ci)}lﬁiﬁ\’DbasJ ¢i € Chase, (2.19)
Duovel = U {(1127 C)}lngK . (2.20)
cecnovel

As mentioned above, Dy, is used to train the model during a first phase called base training. During
this phase, the model has access to plenty of annotated data and is trained in a supervised manner
to classify images within Cpuge. It is noteworthy to point out that this supervised base training is
not the only possible choice. Recent advances in Self-Supervised Learning (SSL) [113, 114, 115, 116]

proved that SSL is a competitive alternative to supervised base training.

After base training, the novel dataset is leveraged to adapt the model to classify the novel classes.
Hence, the few-shot classification task can be seen as predicting the class label from the input image
and the novel dataset:

F(I, Dyovet) = ¢ € C. (2.21)

The model adaptation generally starts with small architectural modifications, such as replacing the
final classification layer with a novel layer randomly initialized and with the right number of outputs
(e.g., if the numbers of base and novel classes differ). Then, several approaches exist for adjusting
the model to the novel classes given the novel dataset. We identify here four different adaptation
strategies and will present each of them in the next sections. These strategies are: fine-tuning,
metric-learning, meta-learning and attention-mechanisms. However, there are no clear boundaries
between these four areas, Fig. 2.8 illustrates the interactions between the various strategies and gives
a few examples for each category. We propose this taxonomy as it suits well the few-shot object
detection field. Hence, reviewing FSC through this lens helps to understand how these techniques
could be extended for detection. However, there exist much more detailed taxonomies and reviews
about FSC in the literature, [117, 118] are worthy examples. Note that the novel dataset can also be
used during inference, so that adaptation is done "on the fly". This is called transductive inference

and will be presented in Sec. 2.2.1.6.

In the most common few-shot setting, we have Cpase NCpovel = (), meaning that there are no common
classes between the base and novel sets. Of course, some works focus on relaxing these assumptions,

we will outline some of them in Sec. 2.2.1.7

2.2.1.2 Fine-tuning

Probably the most straightforward way to tackle the FSC task is to employ fine-tuning or transfer
learning. This method trains the model on Dy,se and then the model weights are fine-tuned using
Dhovel With only the few examples available. It works well but the fine-tuned models are prone to
strong overfitting and catastrophic forgetting [119]. Overfitting on the novel set is problematic as

it means that the fine-tuned model will have poor generalization capabilities, i.e., its performance
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Figure 2.8: Taxonomy of the Few-Shot Classification literature. To illustrate each category of the
taxonomy, a few papers are selected as representatives among others. Papers marked with a * are
not solving the FSC task but are included in this figure as no contribution in the literature tackles
classification from this perspective.

will be way lower on the test set than on the training set. Catastrophic forgetting is a more subtle
issue. It happens when the performance of the fine-tuned model on the base classes drops. In the
case of the simple FSC it is a subtle issue, but it becomes more challenging when dealing with
extended setups such as generalized FSL and Continual Learning (see Sec. 2.2.1.7 for more details).
However, the authors of [119] propose regularization penalties to be applied during fine-tuning that
alleviate both the overfitting and catastrophic forgetting. Specifically, the penalty prevents the fine-
tuned weights from being too far from the pre-trained weights. Similarly, [120] proposes several
regularization loss functions and a grouped parameter update during fine-tuning to overcome the
overfitting. Closely related, [121] leverages Direct Loss Minimization’s theorem [122] to optimize
the model’s weights with an Information Retrieval Loss at inference. Although fine-tuning is a
relatively simple approach for FSL, it was not much explored in the case of classification. We will

see in Chap. 3 that it has gained more attention recently for more complex tasks.

2.2.1.3 Metric Learning

Metric learning is a branch of deep learning which consists of learning self-organized representation
spaces, i.e., similar inputs should have similar representation in the embedding space. It was first
introduced with Siamese Networks for signature verification [123] and later for face identification
[124]. The idea behind the Siamese Networks is to leverage two copies of the same model and

feed them two different images. The output of the two networks should be similar if the input
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images look similar as well. Siamese networks were then applied for one-shot image classification
by [125]. It was one of the first attempts to solve this task using deep neural networks. Features
from the query and support images are extracted by the siamese nets and then compared by a final
prediction layer. This final layer takes as input the difference between the features of the query
and support images. Its role is to assess whether the features are similar enough so that the two
images belong to the same class. Following Siamese Networks, a series of works was proposed
based on the same principle. These contributions are embodied by Prototypical Networks [126].
ProtoNets replace the final prediction layer of the siamese networks with a linear classifier and
extend the metric learning framework for multi-class and increased number of shots. Specifically,
the features of all support examples of one class are aggregated to form class prototypes and query
features are classified according to the class of the closest prototype. Many variants of the ProtoNets
were then proposed. Inspired by Siamese Networks, Relation Networks [127] replace the linear
classifier of the Prototypical Network with a small MLP trained to predict a similarity score based
on the query features and a prototype. The difference with Siamese Networks is that this is done
with each class prototype allowing Relation Nets to address multi-class problems. Other extensions
include prototypes rectification for intra and extra-class variance [128], semi-supervised prototypes
refinement [129] and multiple prototypes per class [130]. It is essential to note that Prototypical
Networks and their extensions leverage episodic training strategies borrowed to meta-learning. This
strategy consists in dividing the training into shorter episodes. During each episode, the model is
trained for a random task, generally a subset of the novel classes (only the D, 4y dataset is considered
by these approaches). The episodic strategy follows the "learning to learn” paradigm and mimics

the adaptation process the model will undergo at test time.

The episodic strategy in the context of metric learning is first used in Matching Networks [131],
an earlier work than Prototypical Network. Matching Networks are more inspired by the meta-
learning techniques, hence the episodic strategy. Two networks are trained jointly, one to extract the
support features and one for the query features. However, the way query and support features are
combined differs from other metric-learning methods. The authors leverage an attention mechanism
to compute the predicted class probabilities as a similarity-aware weighting of the support examples
labels. Closely related, Task Dependent Adaptive Metric (TADAM) [132] learns a task representation
and adapts its embedding network through a task-conditioning layer which resembles an attention
mechanism. The class prototypes are then task-dependent and an image is classified according to
the most similar prototype. Matching Network and TADAM are therefore at the intersection of three
approaches for FSL: metric-learning, meta-learning and attention mechanism. These are reviewed

in the two following sections.

2.2.1.4 Meta-Learning
As hinted at the end of the previous section, meta-learning’s paradigm is "learning to learn”. This
was the main motivation for the episodic training strategy described there. Each episode forces

the model to adapt to new classes, repeating these episodes should overall increase the adaptation
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capacities of the model. However, the concept of meta-learning goes even further.

This concept was introduced and popularized during the 1990s [133, 134]. At the time, meta-learning
was mostly applied in the context of policy learning, with evolutionary or reinforcement learn-
ing methods. It was brought up-to-date for the few-shot classification by Model-Agnostic Meta-
Learning (MAML) [135] which proposes to directly train the initial weights of a classifier so that
it will quickly adapt to a given task. The optimization is done in a nested manner. At the inner
level, a task is sampled (like with the episodic training strategy) and the classifier is initialized with
the current initial weights. A few gradient steps are performed on the classifier with respect to the
task objective function. Then, at the outer level, the initial weights are updated through gradient
descent on the task loss value computed with the trained classifier. The meta-update converges to
a set of initial weights that make the classifier "easy to train" on any task. However, MAML does
not take task information into account for the weight initialization, and it is unrealistic to find truly
task-agnostic initializations. Therefore, [136] extends MAML to only choose a subset of the optimal
initial parameters to initialize the classifier based on task information. Orthogonally, some contri-
butions integrate uncertainty in the weight initialization [137, 138], others make the training easier

[139, 140] or provide a theoretical framework and guarantees [141].

Similarly, some meta-learning techniques propose learning the optimization process instead of the
weight initialization. This is the case of Optimization as a Model [142] which trains a LSTM meta-
learner to output gradient updates for the classifier network. The meta-learner takes as input the
weights of the classifier and the gradients computed on a given task. The recurrent nature of the
meta-learner helps to keep track of the previous error signals and update consequently the weights
of the classifier. Close to MAML, the meta-learner is updated after several weight updates (with

different tasks) based on the loss values of the classifier on a test set.

Another meta-learning direction is introduced with Ridge Regression Differentiable Discriminator
(R2D2) [143]. It consists in teaching a model “to use” standard machine learning tools such as Ridge
or Lasso Regression. These techniques often have closed-form solutions and are fast to compute
when few data are available. In R2D2, a CNN is trained as a feature extractor as a meta-learner,
while the classifier’s weights are computed with a ridge regression from the support set. The meta-
learner CNN is trained to extract features that will generate optimal classifier weights through ridge

regression.

2.2.1.5 Attention-Based methods

As an alternative to the rather complex and heavy meta-learning methods, a line of work followed
the MAML principle but focused only on some layers rather than on the complete classifier. This
originates with LearNets [144] that are trained to output the weights of a convolution kernel from a
support example. The kernel is then used in a Dynamic Convolution Layer (DCL) inside the classifier,
which in the end predicts a class-membership score (according to the class of the support example).

When multiple classes are available in the support set, the DCL is applied with each class features
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independently and the classifications are done in a binary fashion. This can be understood as an
attention mechanism between the query and support features. The dynamic convolution acts as a
filter responsive to the support features. To put it another way, the locations in the query feature
map that are similar to the support features will be highlighted. The dynamic convolution sets the
focus of the classifier on features from the support class. Self-Attention (SA) is probably the most
common form of attention mechanism used in the current deep learning literature. It highlights sim-
ilarity links between subparts of the input (e.g., different locations in an image, or two words in a
sentence). Here, with DCL, this is done with two distinct images: a query and a support image. Sev-
eral other works build upon this idea. Simple Neural Attentive Learner (SNAIL) [145] designs more
complex attention blocks, based on transformers, to perform the classifier’s adaptation. Although
their primary goal is to tackle few-shot reinforcement learning with temporal convolutional layers
(to deal with causality), they apply it successfully to FSC as well. The N K images in the support
set are fed in random order and the query image is given last. Very similar to SNAIL, CrossTrans-
formers [146] assemble an attention module to combine query and support features. The crucial
difference with SNAIL is the preservation of the spatiality of the features. Most previous works
aggregate the support features to perform the adaptation, losing the spatial information of the sup-
port image. Inspired by the recent progress of ViT, CrossTransformers manage to adapt the classifier
while preserving spatial information. Just like many metric learning methods presented in the pre-
vious section, some of the attention-based techniques discussed above borrow an episodic training

strategy from meta-learning.

The query-support attention mechanism can also be interpreted as a conditioning of the classifier’s
input based on the support features. That is the view adopted by Dynamic Conditional Network
[147]. The general idea is very similar to LearNet except for the training which is not done in an
episodic manner. Conditionally Shifted Neurons (CSN) [148] see the adaptation as the condition-
ing of the classifier activations. The meta-learner outputs shift values that are added to the pre- or
post-activation values in the network. The shifts are computed from a task description stored in a
memory. The task description regroups the activation of all the layers of the classifier fed with the
support images. The use of a memory bank is widespread along with attention-based mechanisms
for FSC. Memory Augmented Neural Network (MANN) [149] epitomizes this line of work. It lever-
ages a controller (i.e., a small network) to read and write in the memory. The controller generates
a key from an input, which is then used to either add a new entry in the memory or retrieve al-
ready stored information. The retrieval is done through an attention-like mechanism. The memory
is built throughout a task episode adaptively. When a new memory is added, if a similar memory
is already stored, the new memory refines the existing one to build more relevant representations.
Plenty of contributions took inspiration from MANN. Adaptive Posterior Learning (APL) [150] re-
fines the memory writing process to store only "surprising" memories. Meta Networks [151] also
leverage external memory only accessible to the meta-learner in charge of adapting the classifier.
[152] proposes a second abstract memory which stores refined information relevant for the current

task. All these memories are generally wiped when the task is modified. However, life-long memory
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[153] also benefits the FSC even though it is mostly exploited for slightly more challenging tasks

such as Generalized FSL or Continual Learning (see Sec. 2.2.1.7).

2.2.1.6 Transductive Inference

A recent line of work tackles the few-shot classification problem with transductive inference. Trans-
ductive inference, in contrast to inductive inference, consists of leveraging labeled and unlabeled im-
ages and classifying all unlabeled data points at the same time. Conversely, inductive inference deals
with each data point independently. Of course, deploying such methods in an industrial scenario
requires having multiple data points available at test time. For real-time applications, it is generally
not practical. However, in the case of COSE and the detection task, this is largely applicable. Very
large images cannot be processed as a whole, they must be divided into smaller images. In addition,
for the detection task, an image is often seen as a collection of objects or regions of interest. COSE’s
use case is therefore rather well-suited for transductive inference. Therefore, we briefly review the

recent advances of transductive learning for FSC in this section.

Transductive inference is an old concept of statistical learning that was popularized under this name
and for machine learning applications by Vladimir Vapnik in the 1990s [154]. As mentioned above,
in the transductive setting, an entire unlabeled dataset (e.g., a test dataset or a query set in the few-
shot context) is available at test time. Transductive methods leverage information contained both in
the support and query set to make predictions. Before application on FSC, transduction was applied
to regular classification on small-size datasets, yielding significant improvements over inductive
methods. Amongst them, Transductive Support Vector Machines [155] extends the well-known SVM
[156] to make use of unlabeled information to refine the class separation margins. Another direction
is taken by [157] which derives an iterative method that propagates known labels to unlabeled data
points according to their similarity. Recently, TransBoost [158] even applied transduction to the
entire ImageNet dataset with significant accuracy gain over inductive methods. The authors propose
a fine-tuning approach to refine trained neural networks to perform better on a specific test set. It
takes both the training set and the unlabeled test set to compute a regularization loss function that

penalizes similar images to be classified differently by the network.

Transductive inference is especially effective in the few-shot context as the limited labeled data is
often not enough to provide sufficient supervision. Leveraging additional unlabeled data is therefore
highly beneficial. Various approaches were proposed to make use of this supplementary information
within the already existing few-shot frameworks. Probably the most straightforward approach is to
fine-tune pre-trained models with additional regularization loss based on the labeled and unlabeled
data. This is the direction taken by [159] which compares the few-shot performance of several
methods against a simple transductive fine-tuned baseline. Similarly, Transductive Episodic-wise
Adaptive Metric (TEAM) [160] and Transductive Information Maximization with Gradient Descent
(TIM-GD) [161] also both leverage fine-tuning objectives to refine the model before transductive

inference. This resembles semi-supervised learning which fine-tunes models with additional unla-
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beled data, i.e., different from the training and test set. However, the essence of transductive learning
lies more in adapting the inference based on the additional information rather than fine-tuning the
model. This can be done by direct optimization of an objective function with regularization as in
LaplacianShot [162], TIM [161] or Cross-Attention Networks [163]. Many propositions iteratively
propagate the known labels to unlabeled data points within a graph structure [164, 165, 166, 167,
168]. But there also exist contributions that exploit transductive inference through metric learning
with e.g., Prototype Rectification[128] or Meta-Confidence Transduction [169], which meta-learn a
distance metric. Meta-learning based methods also get their transductive extension, such as Reptile
[170] which extends MAML to perform transductive inference by leveraging information shared by

test samples through the batch normalization layers.

2.2.1.7 Extending the Few-Shot Setting

The few-shot setup that we described in previous sections is limited and makes a few assumptions:

1. The set of base and novel classes are known in advance.
2. At test time, only the performance on novel classes matters.

3. Novel classes are only added once and all at the same time.

These assumptions significantly simplify the problem, but these are relaxed by different sub-fields
of few-shot learning. In some aspects, the few-shot detection can be seen as a relaxation of these
assumptions. Various tasks, similar to few-shot classification, exist in the literature. [171] provides
a comprehensive taxonomy of these tasks. We will briefly present in this section some relevant
extensions of the few-shot classification for COSE’s application and the detection task. Tab. 2.4

provides an overview of these tasks and their differences in terms of goal and available data.

Few-shot Open-set Recognition

Open-set classification assumes that some classes are unknown during training (i.e., the training
dataset is incomplete) and deals with these classes. Instances of unknown classes can be rejected
or identified as unknown classes. It models real use cases better as test data can be contaminated
by classes not included in the training set. Object detection can be assimilated as an open-set prob-
lem as objects belonging to a fixed set of classes must be localized while rejecting everything else
as background. The training set can only contain a limited variety of background examples and
new instances of background will be presented to the model at test time. There are plenty of ap-
proaches for Open-set Recognition, but we will not review them here in detail and refer the reader
to a complete survey [171] about it. Instead, we simply outline the general principle behind algo-
rithms that tackle this problem. Two main approaches coexist in the literature, discriminative and
generative approaches. The former ones propose techniques to distinguish between known and un-
known classes using discriminative information, e.g., distance to class representations [172]. The
latter leverage generating models to hallucinate negative examples as additional training data [173].
Of course, transduction also helps in this case and outlierness score [174] can be computed using the

unlabelled examples available at test time.
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Task Classes of interest Novel supervision Query-support interaction
Regular Classification Chase None None
Few-shot Classification Crovel K examples per novel class Cquery = Csupport
Zero-shot Classification Crovel External information (e.g., class labels) None
Generalized FSC Chase U Crovel K examples per novel class Cquery = Csupport

K examples per novel class

FS Open-set Recognition Crovel U Cunknown None for unknown classes

Cquery C Csupport or Cquery > Csupport

Continual Learning Chase U (Ul Cﬁovel) K examples per novel class None

Few-Shot Object Detection  Cnovel \Chackground K annotated images per novel class Cquery = Csupport

Table 2.4: Summary of the various flavors of classification tasks existing in the literature. The second
column, classes of interest, denotes what is the overall goal of the task. The last column presents
the possible class setup encountered both in the query and support set (Cquery and Csupport respec-
tively.). Cunknown represents additional classes that should be identified in the open-set setting. In
the detection task, Chackground denotes all object classes that can be present in the background and
that should not be detected.

This holds for open-set recognition, but in few-shot there are additional complexities. Not only
the classes from the query set may be unknown (i.e., not even in the support set), but the support
set could provide irrelevant information for the current task. This setup, introduced in [175], is
not common in the FSL literature even if it is of great interest from an industrial perspective. It is
also quite relevant from the few-shot detection point of view as the detection support examples can

embed irrelevant information for the task.

Generalized Few-Shot Classification

Up to now, we presented the few-shot classification problem as only adapting a model to classify
novel classes. However, it can sometimes be relevant to keep the possibility of classifying classes
from the base dataset. Often the adaptation significantly reduces the performance on base classes,
this phenomenon is known as the catastrophic forgetting [119]. When both base and novel classes
are of interest, the task is called generalized few-shot learning. This can be achieved with several
tricks such as doing the inference with both base-trained and fine-tuned models. But it is also
possible with careful extension and fine-tuning of the model, e.g., via disentangling base and novel

class predictions [176].

Continual Learning

Generalized few-shot is an intermediary step toward continual or life-long learning which consists
in continuously adapting the model with novel classes. This is way more challenging but also re-
sembles the industrial setting better. While extremely relevant from COSE’s perspective, we choose
not to tackle this problem in this PhD project as it seems more sensible to address first the already
challenging few-shot setting for the detection. In addition, continual learning often leverages com-
plex learning scheme such as task rehearsal [177] or adaptive model architectures [178] to prevent

forgetting classes or tasks.
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2.2.2 Cross Domain Adaptation
Sometimes, there are significant discrepancies between images from train and test datasets. We
discussed in the previous section the discrepancies in terms of classes: classes encountered at test
time may differ from annotated training classes. However, training and test images can also have
different aspects. For instance, autonomous vehicle perception systems could be trained only with
daylight images and encounter nighttime images once deployed. The train and test image spaces
are denoted as source domain and target domain in the Cross-Domain Adaptation (CDA) literature.
Specifically, a domain consists in an image space Z and a marginal probability distribution p(I) over
it:

M={Z,p(I)}, Iel. (2.22)

CDA aims at adapting a model trained for a specific task on a source domain Moyrce

{Zsources Dsource (1)} to perform the same (or another) task on the target domain Mireet =
{Larget, ptarget(l )} For simplicity, we restrain the scope of this section to the classification task.
Hence, when the task changes from source and target, the set of classes changes as well. We denote
these sets as Csource and Ctarget to comply with the CDA notations. Note that these sets of classes
correspond to the base and novel classes in the FSC context. Generally, in the CDA literature, a lim-
ited amount of annotated data is available for the target domain which prevents direct supervised
training. However, if a closely related source domain with sufficient available data is available,
adaptation to the target domain is possible with limited data. Accordingly, cross-domain adapta-
tion and few-shot learning are closely related problems. In this section, we review the two kinds of
CDA, with and without label shift. COSE’s industrial application contains CDA’s problematics as
the imaging systems can be deployed to different theaters of operations for which no images were

available during training.

2.2.2.1 Domain Adaptation without class shift

There exists a slight difference between Domain Adaptation (DA) and what is sometimes called Few-
shot Domain Adaptation (FSDA) in the literature. This difference lies in the amount of available
data in the target domain. FSDA methods have access to fewer target examples than regular DA.
This distinction is not relevant as in both cases, there is not enough target data to perform directly
supervised training (although additional unlabeled target data is often leveraged). Therefore, we
choose to review both DA and FSDA at once. This review is not exhaustive, and we refer the reader
to [179] for a more complete overview of Domain Adaptation. Following this survey, we divide our

review into two parts, discrepancy-based adaptation and generative modeling approaches.

Discrepancy-based Adaptation

The simplest way to adapt a model to a target domain is to fine-tune it on the few available target
data. The model is first trained on the source domain to learn the task. Then, fine-tuning is done on
the target domain with some tricks to avoid overfitting. These tricks consist in reducing the discrep-

ancies between source and target features. For instance, [180] fine-tunes on the target domain with
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a regular cross-entropy loss but leverages additional loss functions to minimize domain confusion
with additional unlabeled target images. Similarly, [180] has been extended with semi-supervised
consistency [181] and contrastive [182] losses. Following the same principle, a number of works
[183, 184, 185, 186] leverage additional losses based on the Maximum Mean Discrepancy (MMD) or
close extensions. MMD is a distance measure between probability distributions. In the context of
DA, it can be leveraged to assess the shift from source to target domain for a given class. Employing
MMD-based loss functions allows these methods to learn domain invariant features and therefore
improve cross-domain generalization. As an example, Central Moment Discrepancy (CMD) [187]
proposes an approximation of MMD to derive a discrepancy regularizer. This regularization is com-
puted over all layers of the model to enforce features from all levels to be domain invariant. Other
contributions developed relatively similar techniques based on other criteria such as Kullback-Leiber

divergence [188], or correlation alignment [189].

The methods presented above all fine-tune the models from feature discrepancies. However, as the
task remains the same, it is reasonable to assume that optimal weights for the source and target
domains are related. Following this idea, [190] proposes a weight regularization to prevent fine-
tuning to find weights too different from source weights. Closely related, [191] proposes to only

change Batch Normalization’s statistics to adapt to the target domain.

Finally, advances in adversarial learning provided new ways to address DA by minimizing source
and target discrepancies in an adversarial setup. This is embodied by [192] and [193] which both
jointly train a domain discriminator along with the target feature extractor in an adversarial fashion.
The trained extractor embeds images in a shared source-target feature space on which the source

classifier can perform well.

Generative Modeling

Another approach to domain adaptation is to artificially generate target data. This is particularly
easy with discriminative approaches based on Generative Adversarial Networks [194]. GANs were
extended to perform domain translation with CoGAN [195], Pix-2-Pix [196] and CycleGAN [197].
The source domain images can then be converted into source-target image pairs which greatly fa-
cilitate domain adaptation with methods similar to the ones described in the previous paragraph.
This is done for instance in CyCADA [198]. Of course, GANs are not the only available generative
models suitable for this task. Recent advances in image generation leveraging Diffusion Processes
[199, 200] unveil new possibilities for domain adaptation following existing work about generative

domain adaptation as done very recently by [201].

Closely related, Deep Reconstruction Networks (DRCN) [202] jointly learn to classify and recon-
struct images from multiple domains. The model is trained to classify source images and recon-
struct target images. This strategy enforces the learning of domain-invariant features and largely
improves domain adaptation. Similar approaches have been proposed with disentangled domain-

invariant and domain-specific representations [203], or adversarial reconstruction [204].
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2.2.2.2 Cross-Domain Adaptation with class shift

Cross-Domain Few-Shot Classification (CD-FSC) designates problems where both classes and do-
main change at the same time. This complexifies further the learning, but it is closer to real-case
scenarios and developing such techniques will ease the deployment of classification techniques. It is
particularly interesting for COSE as it solves two major issues regarding training visual recognition
systems for surveillance applications: undefined objects of interest and changing image appearance.
This setting is relatively new in the few-shot literature and has been popularized in particular by
the creation of Meta-Dataset [205]. Meta-Dataset is a benchmark for CD-FSC. It gathers 10 existing
classification datasets and proposes a simple testing scenario: pre-train on ImageNet then fine-tune

on each dataset individually with limited annotations.

Most of the proposed techniques for solving CD-FSC borrow from both the few-shot learning and
domain adaptation fields. Plenty of approaches are then based on the meta-learning strategy, pre-
training on the source dataset and fine-tuning episodically on the target domain and novel classes.
Meta-FDMixup [206] for instance trains episodically a classifier with additional domain discrimi-
nant losses computed on an augmented query set (mixing-up source and target domain — MixUp
[207] is a well-known augmentation technique). Meta-FDMixup, is later extended with a dynamic
mixup strategy by Target Guided Dynamic Mixup (TGDM) [208]. Another merger of FSL and DA
techniques is Domain-Adaptive Prototypical Networks (DAPN) [209], which extends prototypical
networks with a domain adaptation module for prototype alignment, trained in an adversarial fash-
ion. Closely related, [210] proposes a bi-directional prototype alignment. Another line of work
tackles CD-FSC through the prism of distillation, for instance, [211] first trains two "experts" net-
works to perform the FSC task on both domains independently. Then, a student network is trained to
match the output of both teachers using distillation techniques. It results in a student network able
to deal with both domains identically. Similarly, Universal Representation Learning (URL) [212] dis-
tills knowledge learned from K classifiers trained on K distinct domains into a single cross-domain
model. This is achieved by adding lightweight domain adaptation modules between the feature ex-
traction module and the classification layer. Overall these techniques all involve complex training
strategies and architectural designs which are not very convenient for industrial deployment, repli-
cation, or future extensions. To counter this, ReFine [213] proposes a simple fine-tuning strategy
that only re-initializes the last layers of the model before fine-tuning to facilitate domain adaptation.

Much simpler than concurrent approaches, it yields competitive results.

Finally, some other works [214, 215, 216] study an even harder task when target domain data are
completely unlabeled. We will not review this kind of approach as it is out of the industrial scope
of COSE.
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2.3 Conclusion

This chapter presents the object detection and few-shot learning fields, both necessary to the con-
ception of few-shot object detectors. For object detection, notations and problem definitions are
given in detail, as well as a list of popular evaluation metrics and datasets. A thorough review of
existing works redraws decades of progress in this field and helps understand how state-of-the-art
detection has been achieved. Similarly, for Few-Shot Learning, this chapter gives the key defini-
tions to understand the stakes of the few-shot problem. An overview of the few-shot literature
also provides relevant insights about how to adapt perception models in low-data regimes. This
prospecting work greatly helps in understanding what is relevant from a research perspective and

what directions to follow according to the industrial needs of COSE.
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CHAPTER

FEW-SHOT OBJECT DETECTION

ABSTRACT

This chapter presents the task of detection in the few-shot regime and reviews the existing
literature about it. Few-Shot Object Detection (FSOD) is at the crossroads of Object Detection
and Few-Shot Learning, and therefore, extensively relies on these two fields explored in Chap. 2.
Just as for classification, various directions are explored in the literature to tackle the detection
task in the few-shot regime which will be presented in detail. Finally, this chapter focuses on
the aerial image application of FSOD methods and extensions of the few-shot setting.
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The company COSE is developing CAMELEON, an intelligent airborne surveillance system to au-
tomatically detect objects of interest. The detection algorithm must be adaptative as the objects

can change from one operation to another. Therefore, the most relevant direction to explore is the
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Few-Shot Object Detection (FSOD) task. In this chapter, we properly define the FSOD setting and
present an exhaustive review of the current literature. We also explain how detection datasets can

be leveraged for FSOD and how the proposed methods are evaluated.

3.1 Problem definition

Unsurprisingly, the Few-shot Object Detection task aims to detect objects just as regular object
detection but under the few-shot constraints. Specifically, given an input image I, FSOD’s goal is
to learn a detection model F(-,#), with parameters 6, able to adapt to new classes (Cpovel) from
only a limited number of examples. Just as for the few-shot classification problem, two datasets
are available, a base dataset with plenty on annotations of base classes instances Cp,se and a novel

dataset (also called support set) with K annotated images for each novel class:

Dpase = {(IZ‘Cia yfi)}lﬁiélpbase\ ¢i € Chase; (3.1)
Dnovel = U {(IE, yic)}lngK ) (3'2)
Cecnovel

where I} is an image containing at least one instance of the class ¢, and )} is the corresponding
annotation set (bounding box and label) for the image It filtered to contain only class ¢ instances.
Note that there could be more than K annotations per class as multiple objects of the same class can
be visible on one image. This setting is commonly used in the FSOD literature and called N-ways
K -shots object detection. Conversely, keeping only one annotation to comply with the few-shot
classification setting can be problematic as it provides wrong supervision to the model. This issue
will be elaborated further in Chap. 4. Hence, based on the input image and the support set, the few-
shot detection model F (-, §) should predict bounding boxes and labels for all instances of classes

Cnovel:
Ny A Myp ’\' o My . S
]:(Iv Dnovel) — y - {y'i}izl — {(bl7 Cl)}izla with Ci € Cnovel- (33)

This setup resembles the FSC setting described in Chap. 2, but brings some complications. While
the sets of base and novel classes are disjoint, FSOD must deal with the background. Any object
that does not belong to either the base or novel class sets is considered background. Therefore, an
object detector can encounter unknown classes at test time and must be able to ignore them. No
information about the background classes is available which makes it even more difficult to dis-
criminate between classes of interest and background. From this perspective, FSOD is closer to the
few-shot open-set recognition problem than FSC. In addition, multiple different classes of interest
can be depicted within a single image. Distinct objects can overlap in the image and their features
(potentially from different classes) can blend, making recognition challenging. This is reinforced as
the objects get smaller, their features get noisier and can be misclassified more easily. This stands

for the query images but also for support images which increases the difficulty compared to FSC.
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Figure 3.1: Timeline of the FSOD literature, several works are included as milestones for each of
the four kinds of approaches to FSOD: Fine-tuning, Metric Learning, Meta-Learning and Attention-
based approaches. The yellow hatched rectangle represents the duration of this PhD project.

3.2 Review of the Few-Shot Object Detection Literature

Even though FSOD is a natural extension of FSC, the difficulties mentioned above prevent the direct
use of FSC techniques, just as classification techniques may be extended for detection. Of course,
the main principles for adapting classification models to the few-shot setting can be reused, but
they need to be carefully adjusted to take care of the supplementary challenges of the detection
task. Hence, as for FSC, the detection models are first trained on the base dataset and then adapted
to novel classes with the support set. This adaptation can be done in many ways, often based on
FSC approaches. Therefore, we adopt the same organization as for Sec. 2.2 and divide our review
into four distinct parts: fine-tuning, metric learning, meta-learning and attention-based approaches.
Fig. 3.1 outlines the organization and the temporality of the FSOD field. FSOD is a relatively new
challenge and only started 2 years before this PhD project. Tab. 3.1 provides an almost exhaustive
overview of the literature about FSOD. The reader can refer to several surveys [217, 218, 219] about
FSOD for more thorough reviews. However, note that these surveys are already a few years old,

which is already a lot compared to the recency of the field.

3.2.1 Fine-tuning
Fine-tuning is the simplest approach to tackle FSOD, the principle is quite straightforward and sim-

ilar to FSC: train a detection model to detect base classes on a large dataset and then fine-tune it
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Approach Abbreviation Venue Date Detection Framework Multiscale Datasets Aerl;\l:l/:;:stural
FRW [220] Iccv 2019 YOLO No Pascal / COCO Natural
OSOD-CACE [221] NEURIPS 2019 Faster RCNN Yes Pascal / COCO Natural
Meta R-CNN [222] Iccv 2019 Faster RCNN No Pascal / COCO Natural
| FSOD-RSI[223] ~ TGRS 2020 YOLO  Yes  DIOR/NWPUVHR  Aerial
ARPN [224] CVPR 2020 Faster RCNN Yes COCO Natural
VEOW [225] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural
KT [226] SMC 2020 Faster RCNN Yes Pascal Natural
OSOD-WFT [227]  Preprint 2020 FCOS Yes Pascal / COCO / ImageNet Loc Natural
ONCE [228]% CVPR 2020 Center Net Pascal / COCO / Deepfashion Natural
Attention
Meta-FRCNN [231] AAAT Faster RCNN Pascal / COCO
Meta-DETR [232] TPAMI 2021 DETR No Pascal / COCO Natural
DRL [233] Preprint 2021 Faster RCNN Yes Pascal / COCO Natural
DANA [234] ™ 2021 Faster RCNN Yes Pascal / COCO Natural
SP [235] Access 2021 Faster RCNN Yes Pascal / COCO Natural
JCACR [236] ICIP 2021 YOLO Yes Pascal / COCO Natural
TI-FSOD [237] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
 SAM[238]  MDPL 2021 FasterRCNN  No  NWPUVHR10/DIOR Aerial
FSOD-FCT [239] CVPR 2022 Faster RCNN No Pascal / COCO Natural
SAR-DRM [240] TGRS 2022 Faster RCNN No FUSAR-GEN Aerial §
FSOD-PSI [241] DT 2022 YOLO Yes Pascal / COCO Natural
SAFT [242] CVPR 2022 FCOS Yes Pascal / COCO Natural
APSP [243] WACV 2022 Faster RCNN No Pascal / COCO Natural
KFSOD [244] Faster RCNN Pascal / COCO
FSOD-ICF [247] WACV 2023 Faster RCNN Pascal / COCO Natural
Attention / PNPDet [248] WACV 2021 Center Net No Pascal / COCO Natural
Metric Learning UPE [249] iccv 2021 Faster RCNN Yes Pascal / COCO Natural
GenDet [250] NNLS 2021 FCOS Yes Pascal / COCO Natural
RepMet [251] CVPR 2018 Faster RCNN Yes Pascal / ImageNet Loc Natural
RN-FSOD [252] NEURIPS 2020 Faster RCNN Yes Pascal / ImageNet Loc Natural
Metric learning MDODD [253]f iccv 2021 Faster RCNN No Pascal / COCO Natural
FSCE [254] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
GD-FSOD [255]  NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural
LSTD [256] AAAI 2018 Faster RCNN Yes Pascal / COCO / ImageNet Loc Natural
MSPSR [257] ECCV 2020 Faster RCNN Yes Pascal / COCO Natural
TFA [258] ICML 2020 Faster RCNN Yes Pascal / COCO / LVIS Natural
WOFG [259]1 CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
Hallu-FSOD [260] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
| DHP[21]  ICCVW 2021 FasterRNN  Yes  iSAID/NWPUVHR  Aerial
LVC [262] CVPR 2021 Faster RCNN No Pascal / COCO Natural
FSCN [263] CVPR 2021 Faster RCNN Yes Pascal / COCO Natural
Fine-tuning FADI [264] NEURIPS 2021 Faster RCNN Yes Pascal / COCO Natural
DeFRCN [265] ICCcv 2021 Faster RCNN Yes Pascal / COCO Natural
Stratesy | SIMPL[266]  TAEORS 2022 YOLO  No  xView(planeonly)  Aerial
DETReg [267] CVPR 2022 Deformable DETR Yes COCO Natural
CFA [268]1 CVPRW 2022 Faster RCNN No Pascal / COCO Natural
~ CR[29] TGRS 2022 Faster RN Yes  NWPUVHRI0/DIOR Aerial
NIMPE [270] ICASSP 2022 Faster RCNN Yes COCO Natural
HDA [271] IROS 2022 Faster RCNN Yes COCO Natural
MDB [272] LNCS 2022 Faster RCNN No Pascal / COCO Natural
DCB [273]t NEURIPS 2022 Faster RCNN Yes Pascal / COCO Natural
| CPP-FSOD [274]  Preprint 2023 FasterRONN  Yes  Pascal/COCO  Natural
I-DETR [275]% AAAT 2023 Deformable DETR No Pascal / COCO Natural
Meta-Learning MetaDet [276] Iccv 2019 Faster RCNN No Pascal / COCO Natural
Sylph [277]% CVPR 2022 Faster RCNN No COCO / LVIS Natural
Zero-shot TL-ZSOD [278] iccv 2019 RetinaNet Yes COCO Natural
Object Detection ML-CMP [279] Preprint 2022 Faster RCNN No Pascal / COCO Natural
OA-FSUI2IT [280] AAAI 2022 Faster RCNN Yes Multiple datasets Natural
Acro FOD [281] ECCV 2022 YOLO Yes Multiple datasets Natural
Cross-domain CD-CutMix [282] ACCV 2022 Faster RCNN No Multiple datasets Natural

Table 3.1: List of the most relevant contributions to the Few-Shot Object Detection field. These works
are grouped according to the general approach employed to tackle FSOD and sorted by their year
of publication. Green rows signify that the methods were applied to aerial images and § indicates
that these images are SAR images. | signals that it was applied to generalized FSOD while  means
that it was developed in an incremental setting.
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on novel classes with the few available annotations. This is leveraged by Low Shot Transfer De-
tector (LSTD) [256], a pioneer work on FSOD. It first trains a Faster R-CNN on a base dataset and
fine-tunes it on a support set containing only some examples of the novel classes. Regularization
losses are introduced to prevent overfitting. Before fine-tuning, the last layer of the classifier branch
is replaced with a randomly initialized layer with the right number of outputs (i.e., the number of
novel classes [Cpovel|). Closely related, [258] leverages the same idea without any additional loss.
Instead, they propose a Two-stage Fine-tuning Approach (TFA), which freezes most of the network
after base training. TFA is then extended by Constraint-based Fine-tuning Approach (CFA) [268]
which leverages a technique borrowed from Continual Learning: Average Gradient Episodic Mem-
ory. It applies orthogonality constraints to the gradient during fine-tuning to prevent forgetting
base knowledge. This mostly helps for the generalized FSOD setting, but it is also beneficial for
regular FSOD. Another extension on top of the basic fine-tuning approaches is to add a refinement
step to filter the bounding boxes predicted by the fine-tuned network. For instance, [263] proposes
a Few-Shot Correction Network (FSCN) whose goal is to assist the detector classification branch. It
is trained directly on the false positive of the detector to specifically target challenging situations.
Similarly, [262] leverages a kNN classifier to “verify” the predicted labels and lightweight bounding
regressors to “correct” the predicted localizations. Multi-scale Positive Sample Refinement (MSPSR)
[257] also proposes a proposal refinement strategy by leveraging a multiscale refinement branch. It
provides a better balance between positive and negative samples and makes both base training and

fine-tuning more efficient.

Another line of work addresses the FSOD problem through an augmentation perspective. It circum-
vents the low few-annotated examples and the overfitting risk by enriching the support set with
more or less elaborated augmentations. An easy and effective solution is to crop and paste novel
instances directly inside base images [274]. During fine-tuning, images from the base dataset and
support examples are randomly sampled. The support examples are cropped and pasted into the
base images. This significantly boosts the fine-tuning procedure and improves FSOD performance.
Similarly, Synthetic object IMPLantation (SIMPL) [266] leverages 3D models for each novel class
to generate high-quality augmented images. SIMPL completely blends the augmented object inside
the image, whereas [274] pastes some background around the novel object as well. SIMPL leverages
external information about the classes and requires access to 3D models of the classes which is not
always possible. However, this opens an opportunity for addressing the even more challenging zero-
shot setting. Pushing even further, [260] proposes a generative model to enrich the support set and
improve detection quality. The hallucinator model is trained jointly with the detector in an EM-like
procedure. First, the hallucinator is trained with the detector classification loss (the detector is kept
frozen). Then, the detector is trained while the hallucinator provides more support examples (with

the hallucinator now frozen).

Finally, some other works leverage the fine-tuning strategy with other tricks. Novel Instances Min-

ing with Pseudo-Margin Evaluation (NIMPE) [270] build a mining network to extract pseudo-labels
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from the base dataset. Reference [272] fine-tunes both the classifier and the regressor of Faster R-
CNN with an additional distillation loss based on pseudo-labels. Pseudo-labels are computed in a
metric learning fashion between the query feature and the prototype features stored in a memory
bank. Few-shot object detection via Association and DIscrimination (FADI) [264] splits the fine-
tuning step into association and discrimination steps. During the association step, the network is
fine-tuned to map novel classes onto base classes. It leverages the well-structured base class repre-
sentation space learned during base training and separates novel classes. Then, the discrimination

step disentangles base and novel class representations with a dedicated margin loss.

Considering FSOD as a hierarchical refinement [271] is also a viable option as it breaks down base
classes into novel classes. While this setup is certainly relevant for many applications, it differs from

the commonly adopted FSOD setting.

3.2.2 Metric-learning based methods

Metric-learning-based methods are extensively employed for few-shot classification. Metric learn-
ing is designed especially for classification and cannot handle bounding box regression. Thus, it
cannot be directly applied to object detection. However, several attempts were made to tackle FSOD
with metric-learning techniques, mostly replacing the classification branch of the model with pro-
totypical networks or closely related variants and keeping the regression branch unchanged. Of
course, even the classification adaptation is not straightforward as object detection includes a spe-
cial background class that should be processed with care. Among these attempts, RepMet [251]
learns class representative vectors to classify Regions of Interest (Rol) in Faster R-CNN according
to their distance to the closest class prototype. Class vectors are initialized with support image rep-
resentations and then fine-tuned via backpropagation. The fine-tuning is based on a cross-entropy
loss and a margin metric loss which favors tight clusters in the embedding space. The background
class probability is computed as the complementary probability of the most probable class. Closely
related, Plug-and-Play Detectors (PNPDet) [248] learns prototype vectors as well as scale factors. In
addition, they replace the Euclidean distance from RepMet with a Cosine similarity measure. Sim-
ilarly, FSCE [254] adds a contrastive head on top of a pre-trained detector during fine-tuning. This
head outputs embedding for each Rol. A contrastive loss is optimized to bring closer the represen-
tations of same-class Rol and repel Rol with no objects. Likewise, [253] leverages prototypes as well

but deals with the background class separately with a learnable binary classifier.

Plenty of other works leverage class prototypes for the classification part of the detector. However,
various tricks are proposed in the literature to improve the quality and use of the prototypes. For
instance, Universal Prototype Enhancement (UPE) [249] refines prototypes with affine transforma-
tion to convert image-level representations into object-level prototypes much more adapted to the
detection task. Also, it does not leverage the prototypes directly as a classifier but rather uses them
to adapt query features before classification and regression. Similarly, GenDet (Generate Detectors

from Few Shots) [250] combines the technique from RepMet and UPE, i.e., learnable prototypes to
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adapt the query features. Negative prototypes can also be learned to better deal with the back-
ground class [252]. Finally, some contributions manage two sets of prototypes, arguing that one
set is not optimal for adapting features for both the classification and the regression. Decoupled
Metric Network [285] introduces a decoupled representation transformation to adapt class proto-
types for either classification or regression. Likewise, [255] splits the representations using Singular
Value Decomposition. Eigenvectors corresponding to the largest singular values represent the main
source of variance. The authors argue that this accounts for the general adaptation between base
and novel classes. They are leveraged for adapting query features both for regression and classifica-
tion. Other eigenvectors only represent the inter-class variance and therefore, are only used in the
classification branch. The methods described in this paragraph are slightly different from the ones
at the beginning of this section. They all use their representation vectors to update query features
before a learnable classification and regression module, instead of using them for direct classifica-
tion (e.g., distance to the closest prototype). They highly resemble some attention-based methods

that will be presented in the next section.

3.2.3 Attention-based methods

As we briefly broached at the end of the previous section, a common technique for FSOD is to adapt
the features from the query image based on the support images. This can be understood as an at-
tention mechanism between the query and support features as it highlights locations in the query
feature map that are similar to the support images. Another way to see this is to think of the at-
tention mechanism as an adaptive filtering layer. It filters the query features map according to the
support features. Highlighted locations in the query map show features similar to the support im-
ages. Following the attention module, the regression and classification are performed independently
per class, often using a shared, class-agnostic detection head (see Fig. 3.2). The query-support com-
bination module takes the query feature maps and the features from all novel classes as input and
outputs class-specific query feature maps. This will be explained in more detail in Chap. 6 which
presents a general framework to subsume existing attention mechanisms for FSOD. To summarize,
what we call here attention-based FSOD methods are techniques that leverage support information
to adapt query features before the classification and regression branches. Following this definition
the methods presented at the end of Sec. 3.2.2 can be interpreted as attention methods. However,
they are presented from a metric learning perspective which is why they are not discussed in the

current section (they will be classified as "Attention/Metric Learning” methods in Tab. 3.1).

A seminal work in this field introduces Feature ReWeighting (FRW ) [220], which trains a reweight-
ing module along with a YOLO detector. The reweighting module produces class-specific feature
vectors with a Global Pooling layer (GP) applied on the support feature maps. These are then
channel-wise multiplied by the query features extracted by the backbone. Hence, class-specific
query features are generated, and the detection head computes predictions for each class separately.
This technique has been widely re-used in the following literature, with other detection frameworks:
Faster R-CNN [286, 287, 229, 225, 226, 221], CenterNet [228, 248] or FCOS [227]. The class reweight-
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Figure 3.2: Attention-based FSOD principle

ing vectors can be enriched by several tricks to improve feature filtering. A few works [226, 229,
233] employ Graph Convolutional Networks (GCNs) to combine and refine the reweighting vectors
before the combination modules. [230] finds optimal vectors through iterative optimization. Others

leverage multi-scale features to enrich class representation [223, 230].

This channel-wise multiplication between query and support features is a simple form of attention.
It can be thought of as an adaptive convolution layer, whose weights depend on the support fea-
tures. Incidentally, it is often interpreted and implemented as such by existing works, approaching
the meta-learning paradigm. However, more complex attention mechanisms have been leveraged
in the literature. The incentive behind this improvement was the loss of spatial support informa-
tion and background feature contamination with the GP layer. First, [235] proposes a self-attention
module to better highlight the support object features and prevent background contamination. Very
similar, Dual AwareNess Attention (DANA) [234] introduces a background attenuation block for the
same reason. However, DANA also leverages an alignment mechanism to combine query and sup-
port features without losing spatial information. This alignment module is quite close to the visual
transformers’ attention. It encodes the features from the query images as queries and the features
from a support image as keys and values. Queries here refer to the query-key-value (QKV) formu-
lation of the transformers, the correspondence with the query features is fortuitous. Queries and
keys are combined to form an attention map, which represents the similarity between the query
and support image patches. Then, the dot product between the attention map and the values pro-
duces the aligned support features. It can be understood as an alignment as it re-organizes spatially
the support features to match the spatial dimension of the query map, according to the similarity
between query and support. The underlying idea is that the same class objects in the query and
support images will likely have different aspects or poses. Therefore, a direct comparison between
the feature maps is often irrelevant. The alignment procedure moves support features to similar

locations in the query map. This is illustrated in Fig. 3.3, but more details will be given in Chap. 6.
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Figure 3.3: Spatial alignment between query and support feature maps. Similarity matrix is com-
puted as an outer product between the feature maps. For sake of clarity, maps are reshaped as 2-D
matrix where the first dimension controls the spatial position in the map: n, positions for the query
and n, for the support. d is the number of channels. Similar colors mean that features are similar.

Hence, this alignment mechanism combines query and support features, highlighting their simi-
larity without losing spatial information. The same technique is leveraged by several works [286,
231, 239, 242] with slight variations. Similarly, [243] uses QKV attention with globally pooled sup-
port features. Instead, the authors propose to compute attention between the query images and all
support images for a class at once. In other works, the attention is generally aggregated per class.
Following the same idea, Meta-DETR [232] computes attention between a query image and all sup-
port images at once. However, the authors do this for all classes at the same time and replace the
binary classification with a multi-class classification layer (unlike most methods discussed above).
To achieve this, a task encoding module adapts the features for a specific task (i.e., to the classes of

interest) before the classification head.

Of course, these are not the only attention mechanisms existing in the FSOD literature. Some works
derive other kinds of attention achieving competitive results. Kernelized FSOD (KFSOD) [244] pro-
poses elaborated kernel functions to combine query and support features in various ways, which
can be interpreted as attention. Differently, [287] trains three distinct branches that combine query
and support in different fashions, globally, locally, and patch-to-patch. Dynamic Relevance Learning
(DRL) [233] proposes a simpler way to combine query and support features by simple point-wise

operations (concatenation, multiplication, and subtraction) after global pooling.

In addition to these attention mechanisms, some works also propose additional loss functions to
improve the quality of the extracted features (query and support). As an example, Transformation
Invariant FSOD (TI-FSOD) [237] leverages two losses to enforce robust feature extraction. These
losses are implemented as a distance between original and augmented query or support features.
The same principle is also proposed for application on remote sensing images by [246]. Another
technique is proposed by [247], which computes a regularization loss between two randomly sam-
pled subsets of an Rol feature. This regularization enforces consistency and robustness in the feature

space making the detection easier. Likewise, [236] derives a reconstruction loss function by com-
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puting a low-rank matrix and reconstructing the extracted query and support features. It enforces
relevant latent structure and alignment between query and support features. Finally, [241] intro-

duces a loss function to promote orthogonality between classes in the feature space.

3.2.4 Meta-Learning

While Meta-Learning methods are very common for FSC, they are much rarer in the FSOD lit-
erature. It is explained easily by the difficulty of the task and the complexity of meta-learning
approaches. They often require training a meta-learner model for generating weights or gradient
updates to a smaller classification network. However, detection models are much larger than the
classification ones, which makes the meta-learning approaches impractical for FSOD. Nevertheless,
the FSOD literature borrows some techniques from the meta-learning field. In particular, most at-
tention and metric-learning-based methods for FSOD are trained using an episodic training strategy
(see Tab. 3.1). In addition, many works are presented within the meta-learning perspective because
of the episodic training, here are some examples: Meta Faster R-CNN [231], Meta R-CNN [288],
Meta-DETR [232], and GenDet [250].

Yet, there are a few attempts at solving FSOD with meta-learning approaches. MetaDet [276] extends
Faster R-CNN with the MAML framework. Specifically, they choose to generate weights only for the
detection head of Faster R-CNN, considering that the feature extractor and RPN are class-agnostic
and do not need adaptation. This significantly reduces the size of the generated weights and makes
it possible to use MAML. During base training, only the detector is trained on the base dataset.
Then a fine-tuning phase occurs, the meta-learner is trained to predict the weight of the detection
head only provided with support examples for the novel classes. At the same time, the detector is
fine-tuned on the support set, with all class-agnostic parts frozen. At test time, the meta-learner
predicts weights for the novel classes to extend the detector’s head and the detector can be used as
a regular detector. Similarly, Sylph [277] applies the same idea but only to the classification branch

of the detector, assuming that the regression is also class-agnostic.

This section draws an almost exhaustive list of the contributions to the FSOD field (see Tab. 3.1). As
for FSC, several research tracks explore FSOD. However, meta-learning is a lot less popular approach
for detection compared to classification. Instead, attention-based methods (often trained with an
episodic strategy) are the mainstream approaches. Nevertheless, there is no consensus about the
best way to tackle FSOD, and fine-tuning or metric-learning contributions are often simpler and

still competitive.

3.3 Few-Shot Object Detection on Remote Sensing Images

Few-Shot Object Detection is a relatively recent field in computer vision and so far, it has been
applied mostly to natural images and in particular on Pascal VOC and MS COCO datasets (Sec. 3.5
explains how they are prepared for the few-shot setting). However, there are a few contributions that

apply FSOD techniques on Remote Sensing Images (RSI), these are highlighted in green in Tab. 3.1.

70



3.4 - EXTENSION OF THE FEW-SHOT OBJECT DETECTION SETTING

RSI are notoriously more challenging than natural images for the detection task. Objects are smaller
and more numerous, they can be arbitrarily oriented, and the background is often more complex.
Therefore, object detection methods applied to RSI often comprise some tricks to better deal with the
specificities of RSL. FSOD techniques applied to RSI follow the same trend. Among these tricks, the
use of multiscale features is certainly the most common. For instance, FSOD-RSI [223] extends FRW
with three levels features map to better deal with small objects. Similarly, [230, 245, 269] leverage
multiscale features for either the query image, support images or both. FSOD applied to RSI is based
on attention-mechanisms [223, 230, 245, 238, 240, 246] or fine-tuning strategies [261, 266, 269, 289],

but to our knowledge, there is no FSOD method based completely on a metric-learning approach.

Among these contributions, some tackle the detection problem with other modalities than visible
light. Indeed, this is a problem of interest as earth observation is often conducted with non-visible
light. Image quality is highly dependent on the weather conditions, and half the earth at night is
unobservable with visible light. Therefore, a lot of applications rather use infrared light or Synthetic-
Aperture Radar (SAR). Two articles tackle few-shot detection in SAR images [240, 245], yet without

any notable adjustment to account for the modality change.

These contributions are of particular interest for COSE as the goal is to design efficient detec-
tion methods for high-resolution images. Some extensions for the CAMELEON project are already
planned with multi-spectral images and LIDAR. Hence, methods able to adapt from one modality to

another are especially valuable.

3.4 Extension of the Few-Shot Object Detection Setting

As for Few-Shot Classification, the Few-Shot Object Detection setup has several extensions. These

settings are more challenging but reflect better real-life use cases.

One-shot and Zero-shot Object Detection

First, in the case of extremely limited annotations, object detection is still achievable. One-Shot
OD has been addressed by several works [227, 221, 236, 242] that we present in the above section.
These approaches are not different from the few-shot setting, it simply is more difficult. However,
in the zero-shot setting, it becomes even more challenging as no image example is available for
the novel classes. The common approach in this setting is to leverage semantic representations
from the class labels and condition the detection on this information [290]. Recently introduced
large language-visual models such as CLIP [291] provide strong improvements for various zero-
shot tasks and object detection is no exception. For instance, [279] trains a prompt generator in
a meta-learning fashion to condition the detection on novel classes. Alternatively, DINO [68] and
DETReg [267] conceive strong self-supervised pre-training schemes specifically adapted for object
detection, which translate into impressive performance in a low shot setting. Finally, [278] leverage
a transductive pseudo-labeling approach to improving zero-shot detection. To our knowledge, this

is the only transductive method applied to few-shot detection.
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Generalized and Incremental FSOD

The goal of FSOD is to adapt to novel classes; however, in many cases, the performance on base
classes matters as well. This is the case in the Generalized FSOD (G-FSOD) setting where we are
interested in detecting both base and novel classes. The incremental setting extends G-FSOD with
several adaptations to novel classes without forgetting the previously seen classes. For G-FSOD, a
naive approach is to train two detectors: one on base classes and one on all classes (base and novel),
as a fine-tuned version of the first one. Outputs from both detectors are combined at test time to
achieve better performance on base and novel classes. This is adopted by [259] with two Faster R-
CNN. However, other contributions propose more sophisticated methods. CFA [268], for instance,
proposes a regularization loss to prevent forgetting base classes. Alternatively, [273] duplicates the
detection head to process separately the foreground and background samples and prevents classifi-
cation bias toward base classes. In the incremental setting, the naive approach from [259] does not
scale as it would require duplicating the detector each time novel classes are added. Instead, [228,
277] train a meta-network to generate classifier weights for novel classes on-the-fly unlocking con-
venient adaptation. Incremental DETR [275] adopts a different strategy based on fine-tuning and

distillation to prevent forgetting previously seen classes.

Cross-domain Few-Shot Object Detection

Last but not least, Cross-Domain FSOD (CD-FSOD) tackles the few-shot object detection task in the
context of domain adaptation. CD-FSOD aims at designing methods able to generalize to new kinds
of images. Just as for classification, two sub-tasks have been explored in the literature: CD-FSOD
with and without class shift. For COSE, both tasks are relevant but CD-FSOD with class shift pre-
cisely corresponds to their application. Indeed, once a system is in operation, it will likely encounter
new objects and domains. While the images will always be taken from above, their general aspect
may change a lot due to weather conditions, different landscapes or carrier altitude. Therefore,
solving CD-FSOD with class shift is crucial for the CAMELEON system.

However, this field remains barely untouched. To our knowledge, only a few contributions tackle
CD-FSOD. First, without class shift, several works address this problem with augmentation-based
approaches. The idea is to leverage the few target examples to augment the source images so that
they become plausible samples from the target domain. For instance, [281] proposes a directive
data augmentation procedure that optimally augments the source examples, so their features are
close to the features of the target examples. The detector is then trained as a regular detector
on the augmented examples. Likewise, [292, 280] propose source-to-target translation networks
that convert source images into target images. These networks are trained adversarially with a
discriminator that aims to distinguish between domains. Closely related, Cross-Domain CutMix
[282] crafts an augmentation technique that mixes two domains by cropping and pasting objects

from the target domain into source images and vice-versa.
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The methods discussed above assume that the source and target domains share the same label space,
i.e., they have the same classes. This assumption allows for building simple domain augmentation
approaches as once the source images are translated into the target domain, their annotations can be
directly used for training. When classes shift between source and target domains, this is no longer
an option. In this very challenging setting, most FSOD methods showcase poor results and adap-
tation capabilities. Naive fine-tuning is often the best alternative in this case. To our knowledge,
there are still no contributions that tackle this task. Only two articles [283, 284] pave the way for
future research in this direction with dedicated benchmarks and baselines. Both propose to study
the generalization capabilities of FSOD methods on various datasets after a large base training on
COCO dataset. First, [283] combines three datasets: 1) ArTaxOr [293], a close-up insect images
dataset, 2) UODD [294], an underwater image dataset, and 3) DIOR. The authors propose a sim-
ple self-distillation strategy, similar to self-supervised approaches, during the fine-tuning on the
new domains. Second, [284] builds a more complete benchmark called Multi-dOmain FSOD (MoF-
SOD) with 10 different target domains. However, the authors study the influence of two different
source datasets COCO and LVIS [96]. They also provide a domain distance measure that assesses the
similarity between a dataset and COCO. This measure is the recall of a detector trained on COCO
applied to a dataset in a class-agnostic manner. Intuitively, if a dataset is close to COCO (in terms of
classes and aspects), the trained detector will detect a lot of objects (even if the classes are wrong)
and will have a high recall. Based on this similarity measure they study the impact of freezing
some layers of the detector during the fine-tuning. Previous works recommend only fine-tuning
the detection head while keeping the backbone frozen. However, [284] shows that this is true only
for sufficiently similar datasets. In other words, when the source-target gap is large, it is better to
fine-tune the model entirely for better adaptation. Unfortunately, the authors did not provide an
easy-to-use meta-dataset for future research and addressing CD-FSOD remains challenging due to

complex initial data processing.

3.5 Dataset preparation and evaluation in the Few-Shot setting

3.5.1 Adapting detection datasets in the Few-Shot setting

There are no specific datasets for Few-Shot Object Detection. Instead, regular detection datasets
can be adapted to the few-shot setting. In this section, we describe this process in the case of the
four datasets on which this PhD project mainly focuses: DOTA [77], DIOR [95], Pascal VOC [5] and
COCO [6].

The conversion of a dataset for the N-ways K-shots setting is straightforward. First, the set of
classes is divided into two sets: the base and novel class sets (with |Cyovel] = N). The class split
for each dataset is fixed by common practices (for Pascal VOC and COCO) or taken at random (for
DOTA and DIOR) when no convention is set in the literature. Tab. 3.2 gives the class split that will
be used throughout this PhD thesis. Then, the instances of the novel classes are filtered from the

dataset to keep only K images per novel class. This filtering operation is performed in two steps:
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1. for each novel class ¢ € Cpovel, K images containing at least one instance of class c are selected

as the support examples. They constitute the support set.

2. the instances of the novel classes are removed from all other images in the dataset.

This choice is motivated by the presence of distractors. This concept and further explanations about
how they influence the few-shot training in detection will be presented in Sec. 4.1. It is important to
note that as FSOD is a recent field, several preparation techniques coexist in the literature. However,

the one described above seems the most reasonable and common in current FSOD works.

Nevertheless, the existence of various preparation settings makes the comparison with existing
methods difficult as this choice is rarely discussed in the articles. It may be challenging to fig-
ure out precisely how the datasets were prepared, not to mention the choice of the training strategy
(i.e.,, episodic or direct fine-tuning). The reported FSOD performance in the literature should then

be regarded with a critical eye.

3.5.2 Evaluation protocol for Few-Shot Object Detection

The common practice in FSC is to randomly sample a support set from the training split of the
whole dataset, adapt the model with it (through fine-tuning or direct adaptation), and finally, make
the predictions and compute the relevant metrics on the test split. This is repeated many times
with different support sets and the scores are finally averaged to give a robust evaluation of the

generalization capabilities of the models.

For detection, the same principle should be applied to get a robust assessment of the models’ per-
formance. However, the adaptation of such models is often quite long compared to classification
models. Indeed, detection models are much larger than classification ones, thus they take more
time to adapt to novel classes. Before going further, we need to distinguish two approaches, on the
one hand, the fine-tuning strategy and on the other hand all other strategies (i.e., metric learning,
meta-learning and attention-based methods). The main distinction is that the latter use the support
set during inference whereas fine-tuning approaches only leverage it during the second phase of
training. Fig. 3.4 illustrates the two different approaches for FSOD model evaluation and exhibits a
time estimation for training and evaluating one model, following the general recommendations of

FSC (i.e., at least 100 repetitions with various support sets).

Evaluation of fine-tuning FSOD approaches

Repeated evaluation requires fine-tuning the base model (i.e., the model after base training) with
various support sets. Fine-tuning FSOD methods can take up to a few hours and repeated evaluation
may take days !, which is not practical. A reasonable compromise is to perform a limited number of
runs (between 10 and 30), which is sufficient according to empirical studies in [258]. Even though,

robust evaluation is still an intensive process in this setting.

'a typical setup in FSC is to repeat 100 times the adaptation, even if an FSOD model takes only 30 minutes to adapt
to the novel classes through fine-tuning, the robust evaluation would take almost 2 days.

74



3.5 - DATASET PREPARATION AND EVALUATION IN THE FEW-SHOT SETTING

Novel classes

Base classes

Pascal VOC

MS COCO

DOTA

DIOR

bird, bus, cow, motorbike, sofa

person, bicycle, car, motorcycle,
airplane, bus, train, boat, bird, cat,
dog, horse, sheep, cow, bottle, chair,
couch, potted plant, dining table, tv

storage—tank, tennis-court,

soccer-ball-field

airplane, baseball field, tennis court,

train station, wind mill

aeroplane, bicycle, boat, bottle, car,
cat, chair, diningtable, dog, horse,
person, pottedplant, sheep, train,
tvmonitor

truck, traffic light, fire hydrant, stop
sign, parking meter, bench, elephant,
bear, zebra, giraffe, backpack,
umbrella, handbag, tie, suitcase,
frisbee, skis, snowboard, sports ball,
kite, baseball bat, baseball glove,
skateboard, surfboard, tennis racket,
wine glass, cup, fork, knife, spoon,
bowl, banana, apple, sandwich,
orange, broccoli, carrot, hot dog,
pizza, donut, cake, bed, toilet, laptop,
mouse, remote, keyboard, cell phone,
microwave, oven, toaster, sink,
refrigerator, book, clock, vase,
scissors, teddy bear, hair drier,
toothbrush

plane, ship, baseball-diamond,
basketball-court, ground-track-field,
harbor, bridge, small-vehicle,
large-vehicle, roundabout,
swimming-pool, helicopter,
container-crane

airport, basketball court, bridge,
chimney, dam, expressway service
area, expressway toll station, golf
course, ground track field, harbor,
overpass, ship, stadium, storage tank,
vehicle

Table 3.2: Base / Novel class splits for the different datasets used throughout this thesis. The novel
classes in the COCO dataset correspond to all classes in Pascal VOC.
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Fine-tuning Strategy Other strategies
Base Model Base Model ‘
Fine-tuning on Fine-tuning on
n | novel classes novel classes
novel ~1h ~ a few hours
Fine-tuned Fine-tuned
Model x 100 Model
~— Inference i Test-time
Test ~ a few novel adaptation +
set | minutes ~——’ Inference x 100
— < b ~ 5 minutes
Test
N n
g
lasses lasses
redigtions redigtions
Total time: ~ 100 hours Total time: ~ 15 hours

Figure 3.4: Illustration of two evaluation processes existing in the literature. One for fine-tuning
methods (left) and one available for all other methods (right).

Evaluation of other FSOD approaches

Other methods adapt to novel classes at inference time given a support set. Therefore, they can be
more robustly evaluated (in a reasonable time) than their fine-tuning counterparts. Adaptation is
often fast compared to the fine-tuning phase and can be more easily repeated. However, detection
models that are based on metric learning or attention still require a fine-tuning phase at least for
the regression branch. A support set must be used for this as well and its choice influences the
performance of the model, even if adaptation is repeated multiple times after the fine-tuning. Yet
this fine-tuning step is often even more time-consuming than basic fine-tuning approaches as the
models are augmented with costly adaptation modules. In this case, the common setting is to repeat

the adaptation at inference multiple times after only a single fine-tuning of the model. These settings
provide a sweet spot between evaluation robustness and computation time. They will be employed

in our all experiments unless specified, both for fine-tuning, metric learning and attention-based

approaches.

3.6 Conclusion

In this chapter, we reviewed the FSOD literature. This field is relatively recent and fastly growing.
It has significantly evolved since the beginning of this project. In 2020, most FSOD works were
based on attention-based approaches, yet fine-tuning techniques are now getting more and more
interest. This review helps to understand the main directions that have already been explored and

the relevant tracks that need to be pursued.
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CHAPTER

UNDERSTANDING THE CHALLENGES OF FEw-
SHOT OBJECT DETECTION

ABSTRACT

The detection task becomes extremely challenging when limited annotated data is available.
In this chapter, we explore the reasons behind this difficulty. In particular, we focus on the
case of aerial images for which it is even harder to apply FSOD techniques. It turns out that
small objects are especially challenging for the FSOD task and are the main source of poor
performance in remote sensing images.

[ P. Le Jeune and A. Mokraoui, "Improving Few-Shot Object Detection through a Performance Anal-
ysis on Aerial and Natural Images," 2022 30th European Signal Processing Conference (EUSIPCO),
Belgrade, Serbia, 2022, pp. 513-517, doi: 10.23919/EUSIPC0O55093.2022.9909878.

[ P. Le Jeune and A. Mokraoui, "Amélioration de la détection d’objets few-shot d travers une anal-
yse de performances sur des images aériennes et naturelles.” GRETSI 2022, XXVIIléme Colloque
Francophone de Traitement du Signal et des Images, Nancy, France
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In this chapter, we present our first contribution to the FSOD field. Specifically, this section presents
an analysis of the difficulties of going from a regular to a few-shot data regime for the detection task,

especially for aerial images.
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4.1 Distractors in the Few-Shot Data Regime

First, changing the set of classes of interest during the training procedure (i.e., between base training
and fine-tuning) is problematic. Classes considered as background can become objects of interest,
which goes against the knowledge acquired during the base training phase. This is embodied by
the concept of distractors, introduced in [263]. It refers to examples that provide wrong supervision
to a model during training. We choose to refine this concept in two categories: self-distractors and
co-occurrence distractors. Self-distraction occurs when annotated and non-annotated instances of a
class are visible in the same image. The non-annotated instances are called self-distractors. This
can happen when there are annotation mistakes in a dataset, but it can also happen in the few-
shot settings. For instance, if annotations of support examples are filtered (e.g., to keep only one
annotation per support image), all the filtered instances will become self-distractors during fine-
tuning. When fine-tuning on the support examples, the annotated instances of the novel classes will
provide correct supervision to the model. However, the non-annotated instances will be considered
as background and wrong supervision will be propagated in the model. This explains why it is
more sensible to keep all annotations of the novel classes in the support set even though it does
not fully comply with the original N-ways K -shots setting. In the literature, this choice is barely
discussed and early works in the field employ either the strict one annotation per image sampling
or the self-distractor-free sampling described above. Using self-distractor-free sampling often results
in improved performance; however, no analysis was conducted to explain the origins of these gains
(either coming from more examples or thanks to more coherent supervision). In our experiments,
both setups were used as this issue was encountered in the middle of this project. We will clearly

specify what setting is used for all our experiments.

The second type of distraction, co-occurrence distraction, happens when novel class instances are
visible in images during base training. Their annotations have been filtered out, therefore they are
considered as background. Of course, this makes sense during base training as the novel classes
are by definition unknown at this point. However, in this setup, the model is specifically trained to
consider these objects as background, whereas if no co-occurrences of the novel and base classes
were allowed, no background supervision would be given to novel class instances. This could be
achieved by removing all images containing such co-occurrences from the dataset. However, this
type of distractor is much less frequent than the self-distractors (see Fig. 4.1). In addition, these
mostly occur during the base training phase, and even if they provide incorrect supervision, fine-
tuning will rectify it. Therefore, we choose to keep images with co-occurrence distractors during

base training.

4.2 The Increased Challenge of Aerial Images

The difficulties described in the previous section are not specific to any kind of image. However,
it appears from the scarce literature and our experiments that applying FSOD on aerial images is

much more difficult than on natural ones.
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Figure 4.1: Co-occurrences between the classes of the four datasets of interest DOTA, DIOR, Pascal

VOC and MS COCO. Novel classes are highlighted in red. For MS COCO only novel class labels are

shown for clarity.
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DOTA DIOR Pascal VOC
Base Classes mAP  Novel mAP Base mAP Novel mAP Base mAP Novel mAP
60.87 69.69 72.82 81.48 65.47 68.02

Table 4.1: Regular baseline performance (mAP with a 0.5 IoU threshold) on DOTA, DIOR and Pas-
cal VOC datasets (i.e., trained with all annotations). The baseline model is FCOS [45], trained on
all classes (base and novel) and with all available annotations in each dataset. Then the mAP is
computed on base and novel classes separately.

At the beginning of this PhD, only very few works addressed FSOD in aerial images. Among those,
Few-Shot Object Detection via Feature Re-Weighting (FRW) [225] and Few-Shot Object Detection With
Self-Adaptive Attention Network for Remote Sensing Images (WSAAN) [223] were the most popular.
These two works were not evaluated on the same datasets, preventing any useful comparison. In
addition, many architectural choices differ from one another, for instance, the underlying detec-
tion frameworks and the backbones. Therefore, we choose to implement these methods within a
single framework, preventing most architectural discrepancies. Our proposed framework will be
described thoroughly in Chap. 6. We also re-implemented Dual AwareNess Attention (DANA) [234]
as it was one of the best-performing methods on COCO dataset at that time. We analyze here the
behaviors of these three FSOD techniques both on natural and aerial images. The main idea is to
compare the performance of the three methods in regular and few-shot data regimes. The regular
data regime corresponds to the vanilla detector (i.e., without any modification for the few-shot set-
ting) and with full access to the novel class annotations in the dataset (i.e., no annotation filtering).
In our re-implementation of FRW, WSAAN and DANA, the underlying detector is FCOS [45]. Thus,
the regular baseline is an FCOS detector trained on the full datasets. To conduct this experiment, we
only select DOTA, DIOR and Pascal VOC as they have roughly the same number of classes. COCO
however has 4 times more classes which brings additional complexities. The performance results
of the regular baseline are available in Tab. 4.1. Specifically, FCOS is trained on each dataset with
full access to the annotations for both base and novel classes. Then the mAP is computed on each
class individually and averaged on base and novel classes separately. This gives an overview of the

performance of the model respectively on base and novel classes in a regular data regime.

It seems tempting here to extrapolate the FSOD performance on DOTA and DIOR from the per-
formance on Pascal VOC. The regular baseline (FCOS) achieves similar performance on these two
datasets, which contain the same number of classes and roughly the same number of images. Thus,
one could have expected close FSOD performance on these datasets. This is quite different from
the actual results reported in Tab. 4.2. The FSOD performance on DOTA and DIOR is significantly
lower compared with the results on Pascal VOC. To better visualize this finding, Fig. 4.2 represents
the few-shot performance as dark bars while regular baseline performance as lighter rectangles.
The height of the rectangle is set as the mAP on either the base or novel classes (in blue and red
respectively). This clearly illustrates the different behaviors of FSOD methods applied on aerial or

natural images.
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DOTA DIOR Pascal VOC
FRW WSAAN DANA FRW WSAAN DANA FRW WSAAN DANA
K Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel
1 4724 13.35 4555 12.19 49.78 12.52 56.67 16.92 56.41 15.48 58.78 20.64 59.92  28.22 61.70  30.94 62.58 32.82
3 4650 25.32 44.18  24.42 49.67 20.70 58.05 25.08 51.72 13.84 59.14 27.26 63.34  31.12 63.52 42.19 64.18 33.95
5 48.60 29.57 47.56 31.44 53.49 2496 60.75  32.58 60.79  30.32 62.12 34.16 64.35 46.33 64.68  46.16 65.20 42,59
10 4852 37.10 46.72  35.12 53.25 3439 61.47 35.56 61.88 33.41 62.49 36.43 63.16 48.71 65.27 51.70 65.03  50.30

Table 4.2: Comparison of mAPg 5 of several methods on DOTA, DIOR and Pascal VOC datasets. For
each method, mAP is reported for different numbers of shots K € {1,3,5,10} and separately for
base and novel classes. Blue and red values represent the best performance on base and novel classes
respectively, for each dataset.
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Figure 4.2: Performance comparison between FCOS trained in a regular data regime versus three
few-shot baselines, FRW, WSAAN and DANA (all based on FCOS as well) on three datasets: DOTA,
DIOR and Pascal VOC.

It is generally irrelevant to compare the performance of a method from one dataset to another,
especially with images of different natures. Each dataset has its own characteristics (resolution,
intra-class variety, color range, etc.) and therefore a given model will not perform equally well on
two distinct datasets according to a pre-defined performance metric. Hence, we cannot compare the
absolute performance of a FSOD method on Pascal VOC and DOTA and the previous extrapolation
is not valid. Nevertheless, there is a pattern: FSOD methods work consistently better on natural
images compared to aerial images. To understand this phenomenon, we need a way to fairly com-
pare the FSOD performance across several datasets. To this end, we propose to look at the relative
performance of the FSOD methods against the regular baseline (i.e. FCOS in our case) using the

following metric:
mAPpsop — MmAPggseline

mAP Baseline

RmAP =

(4.1)
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RmAP assesses how well a FSOD method is performing on different datasets compared with the
regular detection performance. Hence, it represents how much performance is lost when switching
from the regular to the few-shot regime. This is exactly what is illustrated in Fig. 4.2, white percent-
ages are RmAP values. RmAP is significantly lower on DOTA and DIOR compared to Pascal VOC,
both for base and novel classes. This way, we can quantitatively confirm the intuition emerging

from Tab. 4.2: FSOD works better on natural images.

We hypothesize that this performance gap is mainly due to differences in the object sizes within the
datasets. In aerial images, objects are much smaller on average. This is already an issue for object
detection: small objects are challenging to find. The paradigm of current vision models is to have
deep feature representations with increasing fields of view. The Field of View (FoV) of a specific
layer is the area in the input image that influences the value of one location in the feature map of
that layer. In deeper layers, the FoV is often quite large compared to small objects’ size and object
features are diluted with their irrelevant and noisy surroundings. Thus, it reduces the activation
strength at the object location, and the object can easily be missed. Feature Pyramidal Networks [1]
and various other tricks were introduced to solve this issue, as discussed in Sec. 2.1.3.4. However,
this problem is largely amplified for FSOD. It is still difficult to detect small objects, but in addition,

they are poor examples for adapting the model (either through fine-tuning or direct adaptation).
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Figure 4.3: Box plot of objects size in DOTA, DIOR and Pascal VOC and MS COCO. On the left side,
boxes represent the overall size distribution in each dataset. On the right side, the distributions
are split by class and ordered by average size. As MS COCO contains 80 classes, we choose not to
include the per class box plots for it in this plot.
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To support this hypothesis, we first conduct a brief size analysis of the four datasets DOTA, DIOR,
Pascal VOC and MS COCO (see Fig. 4.3). Aerial datasets contain far smaller objects than natural
ones. Plus, in aerial datasets, the size of objects in different classes differs a lot. Some classes contain
only small objects, while others only large objects. In Pascal VOC, this class’ size variance is limited.
We argue that it is more difficult for the model to extract relevant information from small support
examples but also to learn more diverse features to deal with greater objects’ size variance. Inci-

dentally, this partly explains the greater difficulty of MS COCO. To support this claim, we conduct
a per-class performance analysis on DOTA, DIOR and Pascal VOC. The results of this comparison

are available in Fig. 4.4. In this figure, the performance is reported per class against the average
size of the class. The first row reports absolute mAP values (with 0.5 IoU threshold) both for FRW
and FCOS (baseline). In the second row, the mAP gap between the FRW and the baseline is plotted
against the objects’ size. We did not report RmAP values for the sake of visualization. RmAP can
take large values (e.g. when the regular baseline mAP is low) and this squeezes the interesting part
of the plot in a narrow band around 0. Larger objects are easier to detect. It is true in both data
regimes, but this trend is reinforced in the few-shot regime (in the first row, the blue trend lines
are steeper than the black ones). This is observed for base classes but not always for novel classes,
probably because the trends on novel classes are not reliable due to the limited number of points.
Fig. 4.5 shows a more reliable trend for novel classes when the results from the three datasets are
aggregated. Finally, the few-shot methods, which leverage support information to condition the
detection can surpass the baseline in some cases. All three methods here are attention-based, and
therefore, benefit from having support examples available during inference to condition the detec-
tion. This would not be the case with fine-tuning approaches. However, this seems advantageous
only when the objects are large. On the contrary, when the objects are small, the performance is
degraded. It confirms that small objects are poor examples to condition the detection on. For novel
classes; however, the performance is always below the baseline, even if the gap shrinks with larger

objects. This is expected as the network only received weak supervision for these classes. This com-
parative analysis confirms that detecting small objects is a very difficult task in the few-shot regime.

It is hard to extract useful information from small support objects. Even worse, this information
can be detrimental for the detection. Existing FSOD methods are not designed to deal with small
objects, hence the application of these methods on aerial images does not yield satisfactory results.
It is therefore crucial to develop FSOD techniques that target specifically small objects. Incidentally,
we will address this point in Sec. 6.3 and in Chap. 8.

4.3 Conclusion

In this chapter, we presented our first contribution to the FSOD field with an analysis of the chal-
lenges raised by the few-shot regime for the detection task. These difficulties are reinforced when
FSOD is applied to aerial images as they contain smaller objects. This gives a clear direction for this
PhD project: improving the handling of small objects in FSOD methods. To this end, we dedicate
Sec. 6.3 and the entire Part III of this thesis.
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Figure 4.4: Performance comparison between FRW baseline — with 10 shots - (blue and red dots) and
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average performance of the two methods plotted per class against average object size. (bottom) gap
between FRW baseline and regular baseline, per class. Positive values indicate better performance
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CHAPTER

EXPERIENCE FEEDBACK ABOUT METRIC LEARN-
ING FOR FSOD

ABSTRACT

Prototypical Faster R-CNN (PFRCNN) is a novel approach for FSOD based on metric learning.
It embeds prototypical networks inside the Faster R-CNN detection framework, specifically
in place of the classification layers in the RPN and the detection head. PFRCNN is applied
to synthetic images generated from the MNIST dataset and to real aerial images with DOTA
dataset. The detection performance of PFRCNN is slightly disappointing but sets a first baseline
on DOTA. However, the experiments conducted with PFRCNN provide relevant information
about the design choices for FSOD approaches.

[ P. L. Jeune, M. Lebbah, A. Mokraoui and H. Azzag, "Experience feedback using Representation
Learning for Few-Shot Object Detection on Aerial Images," 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 2021, pp. 662-667, doi:
10.1109/ICMLA52953.2021.00110.
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As a first step into the Few-Shot Object Detection field, we proposed a naive approach to solve the
detection task in the few-shot regime. To give some context, at the beginning of this project, FSOD
was a very recent domain and very few articles tackled this challenging task, especially applied to
aerial images. Therefore, we took inspiration from the Object Detection and Few-Shot Classification
literature embodied respectively by Faster R-CNN [33] and Prototypical Networks [126]. This chap-
ter presents Prototypical Faster R-CNN, our first attempt at solving FSOD. We begin by presenting
the motivation behind this contribution and its main principle. Then, the training procedure and
several tricks are proposed to improve training stability and detection quality. Finally, Prototypical
Faster R-CNN is applied to synthetic and aerial images to assess its generalization capabilities and

understand its limitations.

5.1 Motivation and Principle

In 2020, most of the FSOD literature was focused on attention-based approaches (see Tab. 3.1); how-
ever, the simplicity and success of the metric learning classification models was tempting. Thus,
we proposed Prototypical Faster R-CNN (PFRCNN), an extension of Faster R-CNN based on metric
learning. The key idea is to replace the classification layers from Faster R-CNN (i.e., in the Region
Proposal Network (RPN) and in the Classification head) with prototypical networks. It is similar to
RepMet [251] that leverages class-representative vectors in the classification head. However, there
are two major differences with PFRCNN. First, RepMet only replaces the classification layer in the
second stage of Faster R-CNN, not in the RPN. Hence, the adaptation to novel classes is only done
in the second stage. Even if the RPN is presented as a class-agnostic detector, it specializes in the
classes seen during training. As only base classes are annotated during the first phase of training,
objects from novel classes will be filtered out by the RPN, leaving no chance for the second stage
to detect them. Even if it is trained to have a high recall, the RPN will mostly generate proposals
on base classes, which is harmful in a few-shot regime. Second, RepMet learns the class-generative
vectors from fine-tuning on the few available examples of the novel classes. Instead, a prototypi-
cal network computes its prototypes directly from the few available examples. Finally, Prototypical
Networks can adapt to novel classes without any fine-tuning. Hopefully, this property would trans-
fer to Faster R-CNN by replacing its classification layer with such malleable modules. For COSE’s

application, this would be ideal as the detection model could adapt “on the fly“ at a low cost.

5.2 Prototypical Faster R-CNN for FSOD

Before explaining in detail how the prototypical networks can be embedded into Faster R-CNN,
let us define a few notations and detail the functioning of Faster R-CNN. The backbone, RPN and
detection head are respectively denoted as f, g, and h. The backbone extracts feature F, from the
input - or query - image /,:

f(I,) = F, (5.1)
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The backbone extracts features at multiple scales using an FPN, but for simplicity, we regroup all
these features into one notation: Fj,. The backbone is a ResNet-50, the FPN extracts features from 3
different levels with respective strides 8, 16, and 32. The RPN takes [} as input and computes both

proposals boxes b; and objectness scores o; for all locations in the feature maps:

g(Fy) = {(bis0) b, (5.2)

where M is the number of generated boxes. It changes with the number of anchor boxes defined
per location, in our case, it is set to 3. Hence, M is three times the number of locations in the
feature map. Then, the top 1000 boxes with the highest objectness scores are selected to extract the

proposals features &; with the Rol Align layer:

RolAlign(F, b;) = &;. (5.3)

Finally, the detection head h outputs classification scores for each proposal from its features and

refines its box coordinates:

where I; € [0, 1]I°lI*1 is a vector of classification scores. There is one more element in /; than in C

because Faster R-CNN deals with background as a class.

5.2.1 Extending Faster R-CNN with Prototypical Networks

To replace the classification layer in Faster R-CNN by prototypical networks, we propose to change
the output dimension of the last layer in the classification branches of both the RPN and the head.
That way, instead of producing a classification (or objectness) score per box, these networks output
embedding vectors. Each vector represents the information contained inside the corresponding
box. We denote these embedding vectors of the RPN and the classification head zX*N and zlhead
respectively. Their dimension is set to 128 (2; € R!?®) and is kept fixed in all our experiments.

Hence, the outputs of the RPN and the detection head become:

Then, the objectness and classification scores for each proposal are computed with prototypical
networks based on class prototypes computed from support examples. Prototypes are computed

from the support set { (I}, b})}1<r<K. Specifically, each support image is fed into the backbone to

CEcnovel
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Figure 5.1: llustration of the architecture of Prototypical Faster R-CNN.

extract its features I’ and then the example features are extracted with Rol Align:

zo = g(Ff),

¢ = RoIAlign(z}jf’cN %),
Zi‘?cad = h(F),

= RoIAlign(z}c‘,eé‘d, b%).

(5.7)
(5.8)
(5.9)

(5.10)

This gives RPN features and classification features for each support image, denoted ®¢ and U§

respectively. Note a slight abuse of notation here, when only the embedding part of g and h is

used to project the features extracted by the backbone (i.e., not the regression part). When multiple

examples are available for a class (i.e., K > 1), their embeddings are averaged to get one prototype

per class:
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For each proposal, we compute the classification score for class c as the likelihood of the region in
the input image representing an object of class c. To do so, we suppose that the class distributions
over the embedding space are Gaussian distributions centered on the class prototypes. Hence, the
classification score of the proposal ¢ for class c is:
. _ Zhead7 \I/C)2 >
- a9 )

d(z:
it = p(abe) = exp (12

(5.13)
where d is a distance measure over the representation space, in our experiments, d is the Euclidean
distance. Note that in our case, the embeddings are normalized after their computation, therefore
the Euclidean distance is equivalent to the Cosine Similarity. ¢ is the standard deviation of the
distribution and is set to 0.5 in our experiments. In Faster R-CNN, the background is considered as
a class as well, the corresponding score can be derived from the other class scores as follows:

i@

2 = p(zM2) = 1 — max i3 (5.14)

ceC

where @ denotes the background class.

In the RPN the objectness computation is very similar to the classification score in the head. How-
ever, only two classes are considered: foreground and background. The foreground class is seen as a
mixture of Gaussians (i.e., a mixture of all foreground classes) and is approximated as the maximum
score among all classes for stability reasons:

0; = max l; lC (5.15)

These modifications make Faster R-CNN able to adapt to novel classes. Computing prototypes for
novel classes allows direct adaptation of the whole detection model and not simply the detection

head as in RepMet. However, with these changes, the model also requires a different training scheme

to ensure that the prototypes are properly leveraged and classes are not only memorized.

5.2.2 Training Procedure
Before presenting the changes with the Faster R-CNN training procedure, we present here what
remains unchanged: the loss functions and the example selection. Faster R-CNN is trained using

four distinct loss functions, two for the RPN and two for the detection head:

EEEE(()RPN bR = SmoothL1Loss(b N, BRPN), (5.16)
L33 (0i,07) = 0;log(0;) + (1 — 0;) log(1 — 05), (5.17)
Lhead (phead phead) = SmoothL1Loss(b5%, phed), (5.18)
L i, &) = —log(If), (5.19)
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where b¥PN and o; are the ground truth targets for the regression and classification branches of the
RPN. Similarly, 12 and c; are the target for the detection head. During training, not all boxes are
selected for computing the losses. The generated boxes (or proposals for the RPN) are separated
into two groups: positive examples, i.e. boxes with an overlap of at least 0.7 with a ground truth
annotation, and negative examples which represent the background class. The classification losses
are computed over all examples, while the regression losses only take into account the positive

boxes. This remains unchanged for Prototypical Faster R-CNN.

However, the training of PFRCNN is done episodically, following the Meta-Learning paradigm and
the training scheme proposed in Prototypical Networks [126]. The motivation behind such training
is to mimic the setup that will be encountered at test time and prevent base classes memorization.
Indeed, during base training, only annotations from the base classes are available. Training the
model with all base classes at the same time could lead to overfit the base class set, at the cost of
adaptation. The episodic training consists in sampling a subset of classes Cep, C Cpase and train the
model to detect only these classes for a few training steps. Such a training phase is called an episode.
The episodes are then repeated over and over until convergence. During each episode, a query set
and a support set are sampled from the original dataset. The support set contains the examples that
will be leveraged for the prototypes computation. On the other hand, the query set is exploited as a
small training set. The loss is computed on the query set and between each update of the model, the
prototypes are re-computed from the same support set. The update of the prototype is not necessary
between each training step, but since the model’s weights are updated, the class representations also
change. Additionally, the episodic strategy allows for mimicking the test time setting. If there are N
novel classes with K support images at test time, the episodes can reproduce this even though the
dataset has a lot more classes and data. Episode after episode, the model will encounter new class
combinations and support examples, in the end, it should learn to generalize to novel classes from

a few examples, according to Meta-Learning claims.

To build the support set, for each class ¢ € Cep, we select images containing objects of class ¢ and
disregard all other objects (i.e. their annotations are not included in the support set but the image
is not masked, so they are still visible). If there is more than one object c in the image, only one is
selected randomly as the annotated example. This prevents having more than K examples per class.
The query set contains K query images for each of its IV classes, this means at least K gyery examples
for each class, but this number can be larger as more than one object is present in the images. As for
the support set, the annotations with class labels not in Ce, are discarded. This sampling procedure

prevents the occurrence of self-distractors but not co-occurrence distractors (see Sec. 4.1).

Once the base training is done, the network can directly be applied to novel classes through direct
adaptation from the prototypes (see Fig. 3.4). However, the adaptation is only performed in the
classification parts of the model, regression branches are not modified. This is certainly sub-optimal
and therefore, we provide a fine-tuning scheme to remedy this. This fine-tuning is done exactly

as the base training phase, in an episodic manner except that the episode classes are sampled from
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both base and novel class sets: Cep C (Cpase U Cnovel). In this case, the examples of novel classes are

the same in the query and support sets so that the total number of support examples remains fixed.

5.2.3 Iterative improvements

PFRCNN, as described in the previous section, denoted the baseline, does not perform well on aerial
images (see Tab. 5.1). Therefore, we introduce a series of improvements to improve the performance
of the model.

In this section, we propose a series of improvements on top of the PFRCNN baseline described
above. Indeed, when tested on aerial images, vanilla PFRCNN vyields relatively poor performance

(see baseline performance in Tab. 5.1). To remedy this, we introduce several training tricks.

Hard negative example mining

One issue encountered with the baseline is the detection of the base classes regardless of support
examples. Basically, it detects base classes even though no prototypes are provided for these classes:
this is base class memorization. Although this improves performance when base class prototypes
are provided, it produces lots of false positive detections when novel classes are wanted. To address
this, we propose to sample hard negative examples to encourage the model to detect support classes
only. The main idea is to take advantage of the annotations for classes not selected in the current task
to find hard negative examples, i.e. classes that the network could have memorized from previous
tasks but should not be detected during this episode. When starting a new episode, it is likely
that the model still produces detection for objects annotated in one of the previous episodes if it
does not rely on the support information. Even though these objects are not annotated in the new
task, their annotations are available in the dataset (because they belong to base classes). Therefore,
these annotations can be used to find examples that should be considered as background for the
current task. They are different from the background examples that do not contain any class of the
dataset, which are referred to as easy negative examples and are much more numerous. Explicitly
sampling these hard negative examples encourages the network to detect only objects annotated in

the support set.

Moving average prototypes

Another issue with the baseline is that the prototypes can change abruptly, either when the network
is updated or when the support set changes. We argue that this causes some training instabilities.
To prevent such rapid modification of the prototypes, an exponential moving average is introduced
to smooth the disruption. Hence, ®¢ 11 = a®f + (1 - a)®§. « is set to 0.1 in our experiments.
®¢ is the averaged prototype for class c at iteration ¢, while ®¢ is the prototype computed from the

support set, for class c at iteration t.

Background clustering
Lastly, the baseline shows a poor separation of novel class representations (see Fig. 5.5). This leads

to poor performance with novel classes at test time. In order to solve this, inspiration is drawn from
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[295]. At each iteration, they fit a K-means on the learned representations. This gives pseudo-labels
to train the network for classification in a self-supervised manner. Similarly, we propose to fit a K-
means on the negative embeddings (i.e. representing boxes not matched by any ground truth object).
From the resulting pseudo-labels a contrastive loss function (Triplet Loss [296]) is computed. The
triplets are formed with embeddings labeled identically by the K-means. It encourages the network
to organize the negative examples into tight and separated clusters. This will eventually discover

semantic clusters that represent novel objects.

Ablation study

In order to assess the relevance of the tricks formulated in previous paragraphs, a small ablation
study is conducted on DOTA dataset. The results of this analysis can be found in Tab. 5.1. On the
one hand, the introduction of hard examples mining and moving average prototypes improves con-
sistently the novel classes mAP in the one-shot setting. On the other hand, background clustering
greatly reduces the performance on base classes, while achieving similar results on novel classes.
According to this analysis, we chose to keep only hard example mining and the moving average as

it combines the best base and novel classes performance.

PFRCNN Baseline +HEM +MA +BC
K Base Novel Base Novel Base Novel Base Novel
35.5 2.1 31.2 4 26.5 6.9 13.3 4.3
3 359 2.7 35.6 2.3 339 3.5 14.5 4.1
5 34.3 3.8 41.2 3.3 37 4.2 18.2 4.7
10 304 4.1 34.3 2.6 35.1 5.9 14.8 2.6

Table 5.1: Ablation study about the training tricks described in section 5.2.3. Each column cor-
responds to the addition of each trick on top of the previous one. HEM, MA and BC correspond
respectively to Hard Example Mining (HEM), Moving Average (MA) prototypes and Background
Clustering (BC). Detection performance is reported as mAP with a 0.5 IoU threshold. Blue and red
values represent the best performance on base and novel classes respectively.

5.3 Performance on Artificial Data

Before applying PFRCNN on aerial images, we test it on an artificial dataset with reduced difficulty.

This gives a hint about the capacities of the model on real data.

5.3.1 MNIST-LOC Dataset

As an artificial dataset, we leveraged MNIST-LOC. This dataset is not a published work but rather a
toy example sometimes mentioned in the literature. It consists in creating artificial images with the
handwritten digit images from the original MNIST dataset [297]. For each image in MNIST-LOC, a
random number of MNIST digits are sampled and placed randomly in the image with a random scale.
This creates a potentially infinite dataset but with limited variability. For our experiments, we build

a dataset with 20k images in the training split and 2k images both for the test and validation splits.
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Figure 5.2: Images of MNIST-LOC dataset and classes repartition.

The dataset has around 120k annotated objects, which translates to approximately 12k instances per

class. An overview of the dataset is provided in Fig. 5.2.

Compared to a real dataset, MNIST-LOC is far more simple. The background is uniform which
simplifies the localization of the objects. Then, the class occurrences are uniformly distributed. And

finally, the intra-class variance is reduced as MNIST is an easy dataset for the classification task.

5.3.2 Implementation details

We provide here some of the implementation details for training Prototypical Faster R-CNN, but a
complete list of the hyperparameters and their values is available in our GitHub!. The optimization
is done with Adam optimizer [298] and a learning rate of 1e—4. The backbone network is pre-trained
on ImageNet and its first two layers are kept frozen during training. Three classes are selected as
novel classes and are reserved for evaluation, the 7 others are kept as base classes. Each episode is

constituted of Kguery = 5 images per class, i.e., 15 images per episode.

5.3.3 Detection performance on MNIST-LOC

We present the performance results on MNIST-LOC in Tab. 5.2. This table reports the mean Average
Precision (mAP) with an IoU threshold of 0.5 (see Sec. 2.1.2 for more details about mAP). The results
are given with multiple values of K, the number of support examples, and two distinct splits of
the base and novel classes. The evaluation is done on an unseen test set, from which the support
examples are sampled as well. The table provides the mAP both for base and novel classes separately

as we do not consider the generalized few-shot setting.

'Link to Prototypical Faster R-CNN repository.

97


https://github.com/pierlj/proto_faster_rcnn

CHAPTER 5 - EXPERIENCE FEEDBACK ABOUT METRIC LEARNING FOR FSOD

Split 1: [0, 1, 4] Split 2: [3, 5, 8]
Dataregime Base Classes Novel Classes Base Classes Novel Classes
1 shot 94.86 21.86 92.46 19.43
3 shots 95.70 20.39 94.82 21.22
5 shots 95.10 24.34 94.95 21.73
10 shots 95.86 23.19 93.11 20.17
Faster R-CNN 76.86 96.33 84.29 79.01

Table 5.2: PFRCNN performance on MNIST-LOC dataset with two distinct class splits. On the left,
novel classes are 0, 1 and 4, while on the right novel classes are 3, 5, and 8. In both cases, all
other classes belong to the base class set. Performance is reported as mAPg 5. The last row reports
the performance of a vanilla Faster R-CNN trained in a regular data regime, i.e., with all available
annotations in the dataset. For Faster R-CNN, per-class performance is averaged over base and novel
classes separately to compare with the few-shot techniques.

First, it can be seen from this table that the performance in a regular data regime (i.e., vanilla Faster
R-CNN with all annotations) is high. This confirms that MNIST-LOC is a fairly simple dataset and
that the detection task is way easier on this dataset than on real ones. It is important to note that
these values cannot be directly compared with the performance values in the few-shot regime as
the number of classes is different. In the regular regime, the classification problem has 10 classes
whereas, in the few-shot regime, it only has three (3-ways K shots setting, even for base classes).
Then, the few-shot performance of PFRCNN on base classes is also quite high, approaching one as
the number of shots grows. However, for novel classes, this is different, the mAP values are way
lower in this case and fall below an acceptable threshold for any industrial use case. To get a better
grasp on these results, Fig. 5.3 gives detection examples on MNIST-LOC dataset for base and novel
classes. For base classes, two distinct support sets are leveraged between rows 1 and 2 (with different
classes, i.e., Celp % Cgp). For base classes, the detection is almost perfect, which represents well the
scores from Tab. 5.2. However, for novel classes, there are undesired detections of base classes and

a lot of confusion between novel classes.

5.4 Difficulties on Aerial Images

While the Prototypical Faster R-CNN is challenged on synthetic images, it has more serious difficul-
ties with real images. In this section, we present the detection result of PFRCNN applied on aerial

images, specifically on DOTA and DIOR datasets.

First, Tab. 5.3 gathers the performance results of PFRCNN on DOTA dataset for base and novel
classes. As for MNIST-LOC, two distinct class splits are experimented: Split A with plane, ship and
tennis-court and Split B with harbor, roundabout and helicopter. Following the same configuration as
in the previous section, we report the performance with mAP 5 for base and novel classes indepen-
dently. The results on base classes are much lower than with MNIST-LOC, but it makes sense as the

detection task in DOTA is also much more difficult. Nevertheless, the base classes’ performance is
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Figure 5.3: Prototypical Faster R-CNN qualitative detection results on MNIST-LOC dataset, on base

and novel classes. Predictions are done without fine-tuning and with K = 1.
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Split A Split B
K shots Base classes Novel Classes Base classes Novel Classes
275+ 1.0 47 + 2.0 41.5 £ 3.0 8.0 1.0
3 352+ 2.0 244+ 1.0 39.2 + 3.0 10.1 £ 2.0
5 39.0 £ 1.0 3.8+ 1.0 434 4+ 2.0 121 +1.0
10 384+ 2.0 41+1.0 414 £+ 3.0 10.1 2.0
Faster R-CNN 65.62 90.96 73.21 69.77

Table 5.3: PFRCNN performance on DOTA dataset with two distinct class splits. Split A has classes
plane, ship and tennis-court and Split B has harbor, roundabout and helicopter. In both cases, all
other classes belong to the base class set. Performance is reported as mAP 5. The last row reports
the performance of a vanilla Faster R-CNN trained in a regular data regime, i.e., with all available
annotations in the dataset. For Faster R-CNN, per-class performance is averaged over base and novel
classes separately to compare with the few-shot techniques.

much lower than the regular setup (i.e., Faster R-CNN trained on the whole DOTA). For novel classes,

a similar performance drop is observed, making PFRCNN unfit for any industrial application.

Nonetheless, these experiments are not useless and provide relevant insights about the FSOD task
and its difficulties. For instance, with the MNIST-LOC dataset, almost no difference could be seen
between splits. With DOTA, much better performance is achieved on Split B than Split A. It indi-
cates some interactions between classes, some combinations are more difficult than others. These
considerations were not taken into account in the design of PFRCNN and should be overcome to

achieve reasonable few-shot detection.

Despite its limited performance, Prototypical Faster R-CNN is one of the first approaches to tackle
FSOD on remote sensing images from a metric learning perspective. In addition, this method does
not need any fine-tuning. All previous results were given from a simple adaptation to the novel
classes at inference time with novel prototypes. We also experimented with an additional fine-
tuning step, especially to refine the regression branches of the model. This was performed on DOTA
with Split A and the results are available in Tab. 5.4. Fine-tuning with the few available support ex-
amples helps significantly to boost the detection quality on novel classes, but it remains insufficient
for COSE’s application. Interestingly, after fine-tuning a common property of few-shot methods
emerges: the more examples are provided, the higher the performance. It was not the case without
fine-tuning. With Split A, the best performance is achieved with K = 1, with Split B, it increases
until K = 5 and then decreases with K = 10. This indicates that the management of more shots is
difficult within PFRCNN. It suggests that support examples features may not be trivially aggregated
as it can produce irrelevant prototypes. This can happen when a class has a great variety and thus

a multimodal distribution in the embedding space.

Just as for MNIST-LOC, we provide qualitative results of the FSOD on DOTA with PFRCNN. These
are available in Fig. 5.4. The detection is satisfactory (but not perfect) on the base classes. How-

ever, the bounding boxes and labels for novel classes (bottom 2 rows) are mostly incorrect. Some
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Without fine-tuning With fine-tuning

K shots Base classes Novel Classes Novel Classes
1 275 4.7 7.5
35.2 24 9.3
5 39.0 3.8 11.3
10 38.4 4.1 11.6

Table 5.4: PFRCNN performance comparison with and without fine-tuning.

with prototypes

Base classes detection
for classes: [0, 1, 12]

Base classes detection
with prototypes
for classes: [2, 5, 9]

Novel classes detection
with prototypes
for classes: [7, 11, 13]

Novel classes detection
with prototypes
for classes: [7, 11, 13]

Figure 5.4: Prototypical Faster R-CNN qualitative detection results on DOTA dataset, on base and
novel classes. Predictions are done without fine-tuning and with K = 1.

101



CHAPTER 5 - EXPERIENCE FEEDBACK ABOUT METRIC LEARNING FOR FSOD

Base classes
plane

ship

storage-tank
baseball-diamond
tennis-court
basketball-court
ground-track-field
bridge
small-vehicle
large-vehicle
swimming-pool
soccer-ball-field
container-crane

Novel classes
harbor

B roundabout

B helicopter

Figure 5.5: TSNE visualization of the trained embedding space of PFRCNN on DOTA. Each point
represents the projection of Rol in the embedding space. Large circles and squares respectively
denote the prototypes of base and novel classes. Black points denote background proposals.

confusion between base and novel classes occurs. For instance, in the left-most image in the third
row, water tanks are mistaken as roundabouts. Of course, these two classes look similar in practice
and that makes them difficult to distinguish. To better understand why this confusion happens, we
investigate the embedding space of PFRCNN through TSNE visualization (see Fig. 5.5). This figure
is made by collecting the embedding vectors of all proposals over an entire query set, and then by
reducing their dimension using the TSNE algorithm [299]. Class-specific clusters are well-formed in
the representation space, but some classes overlap which explains the confusion. Representations of
these classes may be close to another class prototype and get misclassified. This is especially true for
novel classes which overlap over base classes, explaining their poor performance. For the example
above, the misclassification of the two water tanks is easily understood from the TSNE plot as these

two classes almost perfectly overlap (class storage-tank in dark green and roundabout in pink).

5.5 Insights and conclusion

From the results presented above, one question arises: is representation learning a suitable choice
for few-shot object detection? Metric-learning methods are competitive with state-of-the-art for
few-shot classification but seem less appropriate for FSOD. Prototypical Faster R-CNN is a first
attempt to apply prototypical networks to FSOD. The very few FSOD approaches based on Metric-
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Learning often leverage other tricks such as carefully designed fine-tuning or attention mechanisms.
Furthermore, at the beginning of this PhD, there were only two contributions solving FSOD with
metric learning: RepMet [251] and RN-FSOD [252]. More investigation was therefore needed in
this direction. Of course, the poor results of PFRCNN alone are not enough to conclude that all
metric-learning-based approaches are inappropriate. Nevertheless, metric-learning FSOD methods

are now in the minority in the current literature, which indirectly confirms their inadequacy.

Despite the relatively poor performance of PFRCNN, our experiments provide useful insights for
future designs of FSOD methods. First fine-tuning is crucial for FSOD. It yields significant perfor-
mance gains compared to models only trained on base classes. This makes sense as the adaptation
of the model with the prototypes is only performed in the classification branches. The regression
branches are therefore unprepared for the localization of novel classes. Of course, having a method
that does not require any fine-tuning is highly desirable from an industrial perspective, but that
should not come at the cost of poor performance. Then, Faster R-CNN may not be the best detector
choice for few-shot extensions. Indeed, its two-stage structure duplicates the number of modifi-
cations required for the adaptation to novel classes. Even if some works argue that the RPN is
class-agnostic, it is still trained to only detect base classes while discarding everything else, includ-
ing potential novel classes. The RPN must then be adapted to novel classes as well. It makes the
few-shot extension more cumbersome, with more parameters and more causes for failure. One-stage
detectors certainly are a more sensible choice. Finally, the episodic training strategy may also be
inadequate for detection. It complexifies greatly the training and introduces distractors (this con-
cept is explained in Sec. 4.1). At the beginning of each episode, a subset of classes (either base or
novel depending on the training phase) is sampled. Annotations from all other classes are discarded
during the episode, yet the training images still contain instances of other classes. These distractors
are confusing for the model. Of course, for classification, the episodic strategy forces the model to
establish connections between support examples and the query images. But it is much simpler as
the query images only contain one object belonging to one of the episode classes. The presence of
already-seen classes (and potential future classes) inside query images certainly makes the episodic

training strategy suboptimal for the detection task.

The latter paragraph formulates a few assumptions based on our observations of the design and
training of PFRCNN. Of course, it would be wise to conduct dedicated experiments to confirm these
hypotheses. For instance, carefully designed synthetic images could help to experiment with the

distractors’ influence in a controlled way.

To conclude, this chapter presents Prototypical Faster R-CNN, a fully metric-learning-based ap-
proach for the Few-Shot Object Detection task. This is one of the first methods proposed in this
category. Despite its relatively poor performance on real images, it can adapt to novel classes with-
out any fine-tuning, which is still a rare property in the current literature. Finally, the experiments
conducted with PFRCNN provide relevant insights about the FSOD task and will help in the design

of future approaches.
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CHAPTER B

ATTENTION FRAMEWORK FOR FAIR FSOD
COMPARISON

ABSTRACT

Fair comparison is extremely challenging in the Few-Shot Object Detection task as plenty of
architectural choices differ from one method to another. Attention-based approaches are no
exception, and it is difficult to assess which mechanisms are the most efficient for FSOD. In
this chapter, we propose a highly modular framework to implement existing techniques and
design new ones. It allows for fixing all hyperparameters except for the choice of the attention
mechanism. Hence, a fair comparison between various mechanisms can be made. Using
the framework, we also propose a novel attention mechanism specifically designed for small
objects.

4 P. Le Jeune and A. Mokraoui, "A Comparative Attention Framework for Better Few-Shot Object
Detection on Aerial Images", Submitted at the Elsevier Pattern Recognition journal.

[ P. Le Jeune and A. Mokraoui, "Cross-Scale Query-Support Alignment Approach for Small Ob-
Jject Detection in the Few-Shot Regime", Accepted at the IEEE International Conference on Image
Processing 2023 (ICIP).
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6.1 Framework Presentation and Motivation

As seen in Chap. 5, metric-learning approaches are not the optimal choice for the FSOD task. The
early FSOD literature has been dominated by attention-based methods, which probably are a more
sensible alternative. Plenty of contributions in this domain leverage attention mechanisms for solv-
ing the detection task. However, it is difficult to make fair comparisons between the various mech-
anisms. Each method is proposed with its own choice of detection framework, backbone, hyper-
parameters, loss function, augmentations and training strategy. Thus, it is difficult to demonstrate
the superiority of one attention mechanism over others. Furthermore, there is no consensus in the
FSOD field about a proper way to evaluate the models. This can change from one work to another
and is also a source of variance preventing fair comparison in the literature. To this end, we pro-
pose a modular framework called the Alignment-Attention-Fusion (AAF) framework. The goal of
this framework is to allow the implementation of various attention mechanisms while keeping all
other parameters fixed. Looking closely at the existing attention-based method in the literature (see
Sec. 3.2.3), three main types of attention mechanisms can be observed: Spatial Alignment, Global
Attention and Direct Feature Fusion. Therefore the AAF framework is structured around these three
components. The framework proposes first a mathematical formalism to present and define exist-
ing and future mechanisms. Second, a modular Python package! allows easy implementation of
attention-based methods inside a controlled detection environment to ensure fair comparisons. In
the following sections, we will present the framework in detail and conduct fair comparison exper-
iments with it. Finally, a novel attention mechanism will be presented, it is designed through the
AAF framework and specifically tackles the small objects to improve the detection performance on

aerial images.

'https://github.com/pierlj/aaf_framework
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Figure 6.1: Attention-based Few-Shot Object Detection principle. Query and support images are
processed by the backbone before being fed to the query-support combination block. Detection is
then performed independently on each class.

Support Images

6.2 Alignment Attention Fusion Framework

In Sec. 3.2.3, three main components of attention mechanisms for FSOD have been identified: Spatial
Alignment, Global Attention and Direct Feature Fusion. Most attention-based FSOD methods rely
on one or more of these components. Thi section will cover the Alignment, Attention and Fusion
(AAF) framework, whose purpose is to provide a flexible environment to implement attention-based
FSOD methods. Before jumping into the definition of the AAF framework, let’s recall briefly the
main principle of attention-based FSOD, illustrated by Fig. 6.1. The goal of the attention module is
to combine the information from the query image and the support examples. Specifically, the query
features are compared with class-specific features computed from the support set. This comparison
highlights similar parts in the query image and the support examples, yielding class-specific query

features. The detection is then performed separately for each class.

The AAF framework takes as input the features from the query image [, as well as the features
extracted from every support image F for ¢ € C (if more than one example is available per class
- K > 1 -, their features are averaged). It outputs class-specific query features M in which
features relative to class ¢ are highlighted. The framework is divided into three parts as shown
in Fig. 6.2, which provides an overview of the framework. Each component is described below
in dedicated sections with examples of possible design choices. Even though this framework is
presented from the perspective of object detection, it could be applied to any kind of few-shot visual

tasks (e.g., classification or segmentation).

6.2.1 Query-Support Alignment
The alignment module, denoted A, spatially aligns the features from the query and the support.

It is unlikely that objects of the same class appear at the same position inside query and support
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Figure 6.2: The Alignment Attention Fusion (AAF) framework is composed of three components:
spatial alignment A, global attention I" and a fusion layer 2. Examples for each module are depicted,
these come from FSOD methods in the literature. Ex. A is presented in [222], Ex. B in [220] and Ex.
C in [233]. The colors chosen in this diagram match the colors used in Egs. (6.1) to (6.5).

images (in comparison to the classification task where objects to classify are in the center of the
image). This issue is commonly avoided by pooling the support map and using it as a class-specific
reweighting vector. But as discussed in Sec. 3.2.3, this trick loses the spatial information about the
support object, which can be detrimental for detection. Instead, an alignment based on similarity
can be done between query and support feature maps. The idea is to re-organize one feature map
by comparing it with the other so that similar features are spatially close in the maps (see Fig. 3.3).
The alignment module is defined as follows:

Query Features

Aligned features cRnXd

AC = N(Fy, FS) Fy, 6.1)
AS = N (Fy, FY) FE. (6.2)

Affinity matrices

Support Features for class ¢
E _;“;“ xXm

GRde

The definition of the matrices A\, and s determines how features are aligned. They are mostly
derived from a similarity measure between query and support features. This formulation is close to
the non-local blocks described in [300] and is at the heart of visual transformers [56]. Transformers
attention can be understood as an alignment of the value to match the query-key similarity. This
formulation allows easy implementation of different feature alignments by changing the expression
of the affinity matrices. As an example, Meta Faster R-CNN [222] leverages an alignment module
with affinity matrices \s(Fy, FS) = F, - (Fd)T and \j(F,, FS) = I (see Example A in Fig. 6.2). Only
the support features are aligned so that they match query features. It is important to mention that
alignment alone does not combine query and support features. It rather reorganizes spatially the
query or support features. However, once the features are aligned, their sizes match, which allows

direct comparison through element-wise operations (within the fusion layer).
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6.2.2 Global Attention
The global attention module, denoted I', combines global information of the supports and the query.
It highlights class-specific features and softens irrelevant information for the task. This module is
defined as follows:
Hy = 7y (Ag, A7), (6.3)
HS = 75 (Ag, AS). (6.4)

s

Highlighted features I

The global attention operators -, and 7, combine the global information from their inputs and
highlight features accordingly. This is generally done through channel-wise multiplication. In this
way, class-specific features are highlighted, while features not relevant to the class are softened.
Changing the definition of -y, and v, allows the implementation of a wide variety of global attention
mechanisms. This technique largely resembles the principle of the Learnet [144] introduced for
FSC. For instance, reference [220] pools the support maps with a global max pooling operation (GP)
into a reweighting vector and reweights the query features through channel-wise multiplication:
Yq(Ag, AS) = Ag ® GP(AS) and (A, AS) = AS (see Example B in Fig. 6.2).

6.2.3 Fusion Layer
The purpose of the fusion component is to combine highlighted query and support maps. This is
only applicable when the maps have the same spatial dimension. It is mostly used alongside the
alignment module as it does not combine the information from the support and the query but only
reorganizes the maps. In particular, when support and query maps do not have the same spatial
dimension, aligning support maps with query maps fixes the size discrepancy. The fusion module
is then defined as follows:

Mg = Q (Hg, Hy). (6.5)

q
Fusion operator

The highlighted maps can be combined through any point-wise operation, addition &, multiplica-
tion ®, subtraction ©, concatenation [-, -] or more sophisticated ones. An example of such a fusion
module is presented in [233]. The fusion operator concatenates the results of the addition and the
subtraction of the highlighted features: Q(Hy, HY) = [H; © H, H; © H] (see Example C in
Fig. 6.2). The point-wise operators can also contain small trainable models such as in [222], where
small CNNs (e.g., Ydot, Vsub, and eqt) are applied after the point-wise operators, but before the
concatenation: Q(Hg, HS) = [Ygor(Hg © HS), Ysup(HG © H), Vear([Hg, H])).

Except for the fusion layer which must be applied last, spatial alignment and global attention can be
applied in any order. This flexibility is required to cover methods that apply global attention before
alignment, such as DANA [234]. The whole architecture of the AAF framework is illustrated in

Fig. 6.2, in which examples from the previous sections are also depicted. The modular structure of
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the framework enables the implementation of a wide variety of attention mechanisms while keeping

all other hyperparameters fixed. In this way, it is a useful tool for FSOD methods comparison.

6.2.4 Implementation details

Before presenting the results of a fair comparison between several FSOD approaches re-implemented
in the AAF framework, we must review its implementation. To make the comparisons fair, some
design choices are kept fixed in the framework. The backbone is a ResNet-50 with a 3-layers Feature
Pyramid Network on top. It extracts features at 3 different levels, which helps the network to detect
objects of various sizes. The detection head is based on FCOS [45], a one-stage detector (a choice
motivated by insights from Chap. 5). The head is composed of a few convolutional layers with
ReLU activations followed by two branches (convolutional as well) for classification and regression
respectively. The AAF framework is applied between the backbone and the detection head. As
features are extracted at multiple levels, attention mechanisms are also implemented to work at
different scales. This may differ from the original implementations, but most methods are already
designed to work at multiscale (see Tab. 3.1). The model is trained in an episodic manner. During
each episode, a subset C., C C of the classes is randomly sampled. A query set is sampled for
each episode, containing 100 images per class. This set only contains annotations of the episode
classes and is leveraged for the loss computation and the optimization of the model. A support
set is also sampled at the beginning of each episode containing K examples for each episode class.
The support examples are used through the attention mechanisms to condition the detection on the

episode classes.

The training is divided into two phases base training and fine-tuning. During base training, only
base classes can be sampled (Ccp, C Cpgse) and one image per class is drawn for the support set
(K = 1). The optimization is done with SGD and a learning rate of 1 x 10~3 for 1000 episodes.
During fine-tuning, the backbone is frozen, the learning rate is divided by 10, and the episode classes
can be sampled from Cpgse U Cprovel, With at least one novel class per episode. Examples from novel
classes are selected among the K examples sampled once before fine-tuning. Each model is fine-
tuned separately for different values of K € 1, 3, 5, 10. During both training phases, the same loss
function is optimized, as defined in FCOS (see Tab. 2.1).

6.2.4.1 Augmentations and Cropping Strategies

Some existing works leverage sophisticated training strategies (e.g. auxiliary loss functions [224],
hard examples mining [260] or multiscale training [223]). While this certainly improves the quality
of the detections, it introduces new parameters to tune and makes the comparison with other works
difficult. As the focus of this study is on attention mechanisms, we choose not to reimplement
all these improvements. However, to remain competitive with existing works, we propose a novel
augmentation pipeline specifically designed for object detection. It is defined in the next paragraph
which includes a cumulative study of its different components on DOTA. In addition, we discuss

the choice of the support extraction strategy. Basically, this refers to how the support examples are
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extracted from the support images since most parts of these images are irrelevant for the task. From
our analysis, it seems that this design choice significantly influences the model performance (see
Tab. 6.2). However, it is barely discussed in the FSOD literature. We find that the best strategy is to
crop the support example and resize it to a fixed-size patch. This strategy is thus fixed for all our

experiments.

Augmentations

To improve the performance of the methods implemented in the AAF framework and be competi-
tive with existing works, we propose an augmentation pipeline specifically designed for detection.
Some regular augmentation techniques cannot be directly applied for object detection as they can
completely mask objects from the image. This deteriorates the training as the model will not be able

to detect hidden objects, but it will be penalized anyway.

First, we apply random horizontal and vertical flips (only for aerial images) and color jitter. As it does
not remove entire objects, these can be applied directly to the images. However, some other classical
techniques such as random crop-resize and random cut-out cannot be applied directly. Therefore,
we developed object-preserving random crop-resize and cut-out. The main idea is to apply these
transformations at the object level and not at the image level. This ensures that objects of interest
are still visible in the transformed image. For crop-resize, a non-empty subset of the objects in the
image is randomly sampled. An overall bounding box is computed around all these objects and
the cropped area is randomly drawn between this box and the image borders. Hence, it guarantees
the presence of at least one object inside the cropped image. For cut-out, the principle is similar,
instead of cutting out a random part of the image, the cut is applied at the object level so that it
does not hide out entire objects. Fig. 6.3 compares the two proposed augmentations with their naive

implementations.

We performed a cumulative study to assess the benefits of each component of the augmentation
pipeline. To do so, we implemented Feature ReWeighting (FRW) [220], a well-known FSOD tech-
nique, within the AAF framework. FRW is then trained on DOTA dataset. This experiment is
summarized in Tab. 6.1. It shows that the augmentation is beneficial for the performance on novel
classes but detrimental for base classes. Surprisingly, performance drops on base classes with aug-
mentation. More specifically, it seems that image flips are responsible for the performance loss on
base classes (see first and second columns in Tab. 6.1). Base classes performance drops when adding
flips but remains mostly constant when adding other types of augmentations. One crucial difference
between flips and other augmentations is that we choose to apply flips also on support examples.
This choice was made to increase the diversity of the support set during fine-tuning. For novel
classes, only a few images are available as support during fine-tuning, and we want to avoid overfit-
ting these examples. Although other types of augmentations could have been employed for this, we
wanted to avoid disrupting too much of the information in the support. This choice may be the cause

of the performance drop on base classes. To verify this hypothesis, we conduct a few more experi-
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Naive augmentation Proposed Adjustment

Random cut-out Random object cut-out

Random crop-resize Random object crop-resize

Figure 6.3: Difference between naive augmentation techniques (left) and our adaptation to object
detection (right). The proposed transformations are applied at the object-level to preserve objects
integrity.

ments disabling the flip in the support set. With the default cropping strategy (see next paragraph),
the experiments confirm the hypothesis: no performance drop is observed when supports are not
flipped. However, support augmentation certainly interacts with the support cropping strategy, thus
we also tried with the same-size cropping strategy. Surprisingly, it does not produce similar results,
and in this case, flipping support examples is actually beneficial for base classes performance. This
suggests a complex interaction between augmentation on the support set and the cropping strategy.
The choice made in our experiments may not be optimal in this regard, and a deeper analysis of this
interaction should be conducted in future work (e.g., studying the effect of various augmentations
on a synthetic dataset to have better control over the images). Finally, the base class performance
loss is compensated by clear improvements on novel classes. As this is the main goal of FSOD, we
choose to adopt the original augmentation pipeline, including flips in the support set, for all our
experiments. Other augmentations are not applied to the support set to prevent disrupting their

representations and therefore the conditioning of the model.
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# Shots Baseline +Flip + Color + Cutout + Crop
1 Base 48.83 45.80 45.96 47.20 45.68
Novel 6.15 5.25 6.92 6.44 10.03
3 Base 51.06 47.70 47.03 46.10 45.22
Novel 14.41 18.59 18.59 19.74 21.95
5 Base 52.66 49.38 50.09 50.28 48.74
Novel 19.25 23.71 25.08 25.01 25.95
10 Base 53.84 50.80 50.77 50.41 50.27
Novel 28.56 31.23 28.08 34.13 35.95

Table 6.1: Cumulative study of the proposed augmentation techniques on DOTA using FRW [220].
mAP 5 is reported for different number of shots.

Support example cropping strategy

The support information is only located inside the example bounding box. The remaining part of
the support image mostly contains irrelevant information concerning the object class. Therefore,
extracting features from the whole support images is not necessary. But features contained only
inside the object’s bounding box might not be sufficient as well. Context can be extremely valuable
in certain cases, especially for small objects. For instance, a car and a small boat could easily be

mistaken without context. Close surroundings of the objects can help for recognition.

A common strategy for support information extraction is proposed by [220]. They concatenate in the
channel direction the support image with the support object’s binary mask (rectangular, computed
from the bounding box) and pass this to an extractor network. This has two main drawbacks. First, it
is necessary to compute features from the entire support image, which is a loss of resources. Second,
the same network cannot be used for extracting features in query and support images as it needs an
additional input channel to process the mask. Hence, the network cannot be pretrained beforehand.

This design choice is rarely discussed, if ever mentioned, in the literature.

In this section, we explore this design choice by implementing several extraction strategies. We
did not reimplement the technique from [220] as it requires to have two different networks for
support and query feature extraction. However, some of our techniques are quite close to what they

proposed. These techniques are described below and Fig. 6.4 illustrates most of them:

- Default: the most naive extraction technique. It consists in cropping the support image
around the support object at a fixed size (e.g. 128 x 128). Objects larger than this are simply
resized to fit in the patch.

- Context-padding: the cropping occurs exactly as with the default strategy, but areas around
the objects are masked out. This is close to what was proposed by [220].

- Reflection: context is replaced by reflection of the object. In the case of small objects, the
support patch can easily be dominated either by irrelevant information or by zeros when using

the latter two extraction methods.
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Figure 6.4: Illustration of the different cropping strategies tested. The mixed strategy is not illus-
trated as it is a combination of default and same-size.

- Same-size: all objects are resized to fill the support patch entirely (preserving the aspect
ratio). It does not change the process for large objects, but it prevents smaller objects from
being dominated by irrelevant information.

- Multi-scale: the object is resized and cropped at 3 different scales. Each scale is responsible
for matching small, medium and large objects in query images.

- Mixed: it is a combination of the default strategy and same-size. Small objects (i.e. vwh < 32)
are extracted using the default strategy. Larger objects (vwh > 32) are resized into a patch
of 128 x 128 pixels. Therefore, small objects are not upscaled more than 4 times, as they are

using the resize strategy.

These strategies are compared in Table 6.2. Even though same-size gets the best overall results on
novel classes (regardless of object sizes), there is no clear conclusion. It is outperformed by both
reflection and mixed for base classes. No method outperforms the others on all object sizes, not
even the ones designed to be more robust to size (multiscale and mixed). The latter two techniques
introduce discrepancies in the features: objects of similar size (e.g., from both sides of the size limit)
are processed differently, resulting in really different features. As same-size gives the best results
on novel classes, we choose to use this strategy for all our experiments. Yet, in the light of our

performance analysis in Chap. 4, we can understand some results from Tab. 6.2. The multiscale
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. Base classes Novel classes
Cropping Strategy
All S M L All S M L

Default 49.80 24.26 5736 63.90 24.97 7.66 2431 34.48
Context padding 50.03 2496 59.72 63.03 29.60 10.71 26.76 50.91
Same-size 50.63 30.83 59.44 62.47 32.19 8.32 33.21 56.54
Multiscale 51.44 29.03 59.78 63.27 26.95 8.44 33.48 45.63
Reflection 50.28 26.05 59.36 62.49 25.50 7.22 20.66  44.29
Mixed 5095 27.16 60.48 60.67 27.96 9.51 26.52 48.89

Table 6.2: Comparison of support extraction strategies on base and novel classes with DOTA dataset
and FRW method with 10 shots. mAPg 5 is reported on all objects and separately on objects of
different sizes: small (S), medium (M) and large (L).

strategy does not perform very well as it introduces small objects features which seems detrimental
for the good conditioning of the network. On the contrary, same-size only generates large objects
as support which is a better strategy. Finally, reflection performs surprisingly well for small objects
while preserving their small size. The redundancy generated by the reflection of such small objects

certainly reinforces the object’s features.

6.2.5 Fair comparison of Few-Shot Object Detection Methods with AAF

To showecase the flexibility of the proposed AAF framework, we reimplement and compare multi-
ple existing works. Some methods described in Chap. 3 are selected: FRW [220], WSAAN [229],
DANA [234], Meta R-CNN [222] and DRL [233] (see Tab. 3.1). They have been chosen because
they represent well the variety of attention mechanisms available in the literature and according
to their popularity. FRW is based on class-specific reweighting vectors, WSAAN has a more so-
phisticated global attention and computes reweighting vectors inside a graph structure. DANA and
Meta R-CNN leverage query-support alignment in different manners and DRL only uses a sophisti-
cated fusion layer. Each of these methods has been reimplemented within the AAF framework. Of
course, some details differ from the original implementations, but the purpose of this comparison is
to compare only the query-support combination module. In particular, the backbone and the train-
ing strategy (losses and episode tasks) may differ. We first conduct such a comparative experiment
on Pascal VOC [5] and MS COCO [6] datasets. On these datasets, the performance achieved by
our implementations is close (i.e., within 2 points of mAP 5) to the values reported in the original
papers. Then, we use the framework to compare the performance of some methods on two aerial
datasets: DOTA [77] and DIOR [95].

6.2.5.1 Evaluation protocol

The evaluation is also conducted in an episodic manner, following recommendations from [217].
The performance is averaged over multiple episodes, each containing 500 examples for each class
and this operation is repeated multiple times with randomly sampled support sets. The query and
support examples are drawn from the test set, thus the support examples are different from the ones

used during fine-tuning. This prevents overestimations of the performance due to overfitting on
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FRW [220] WSAAN [229] DANA [234] Meta R-CNN [222] DRL [233] FCOS Baseline
K Base Novel Base Novel Base Novel Base Novel Base Novel Base  Novel
1 5992 2822 61.70 3095 6258 32.82 57.85 30.16 64.18 27.05
3 6333 31.12 6352 42.19 64.18 33.95 58.70 36.79 61.74  29.64 6547 68.02
5 6435 46.33 64.68 46.16 6520 4258 62.14 40.75 66.45 37.34
10 63.16 4871 6527 51.70 65.03 5030 63.38 49.45 66.98 47.99

Table 6.3: Performance comparison between five selected methods on Pascal VOC. All are reimple-
mented with the proposed AAF framework. Mean average precision is reported for each method on
base and novel classes separately and for various numbers of shots (K € {1,3,5,10}).

the support examples. To ensure a fair comparison between the various methods, the same random

seed is used for all evaluations, thus the support and query examples are the same.

6.2.5.2 Natural images

Tab. 6.3 gather the results on Pascal VOC. First, compared to the FCOS baseline, a slight performance
drop on base classes is observed. This is expected, even if the model has seen a lot of examples of
these classes during training, its predictions are still conditioned on a few examples, which can
sometimes be misleading. On the other hand, performance on novel classes is significantly lower
than the FCOS baseline, especially for low numbers of shots. The number of shots is crucial for
performance on novel classes. The higher the number of shots, the better the network performs. On
average, with 10 examples per class, the network achieves 0.2 higher mAP 5 than with 1 example.
More examples provide more precise and robust class representations, improving the detection. The
same phenomenon is observed with base classes to a lesser extent (+0.04 mAP from 1 to 10 shots).
Fig. 6.5 displays these trends clearly, both for base and novel classes. In addition, Fig. 6.6 provides the
same results split by class. An interesting observation from this last figure is the very good detection
performance for the novel class sheep. This can be explained easily from the presence of the class
horse in the base set. The model has seen a lot of examples of horses during base training, which
makes it learn visual attributes common with a sheep (e.g., four legs, hair and grassy background).
Such a class similarity makes the novel class detection much easier. Some authors do leverage this
fact, as for instance [264] which first associates a base class to each novel class before learning to

discriminate between them.

The behavior just described is expected from any few-shot object detection method. Moreover, per-
formance values are close to what is reported in the original papers of the reimplemented methods.
These results are not the same as many architectural choices differ from the proposed methods (e.g.
backbone, class splits, etc.). Nevertheless, it confirms that the proposed AAF framework is flexible
enough to implement a wide variety of attention mechanisms. It is therefore an appropriate tool to

compare and design query-support attention mechanisms.

DRL is arguably the simplest method among the five selected as it leverages only a fusion layer.
It combines query features with the features of each support image through concatenation and

point-wise operations, creating class-specific query features. It is therefore the closest to the regular
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Figure 6.5: Evolution of mAP( 5 with the number of shots averaged on base and novel classes sepa-
rately. Each line represents one of the reimplemented methods.

FCOS functioning. This explains the very good performance on base classes and lower mAP on
novel classes, compared to the baseline. Regarding the other methods, FRW and WSAAN can be
easily compared as both are based on global attention. The only difference is how the class-specific
vectors are computed. In FRW, they are globally pooled from the support feature map. However,
WSAAN combines the same vectors with query features in a graph. This certainly provides better
class-specific features and in the end, better results both on base and novel sets. The remaining
methods, DANA and Meta R-CNN both leverage spatial alignment. While it seems to bring quite an
improvement for DANA over FRW and DRL, the gain is smaller for Meta R-CNN. In both methods,
spatial alignment is not used alone. It is combined with other attention mechanisms. In DANA,
a Background Attenuation block (i.e. a global self-attention mechanism) is applied to the support
features to highlight class-relevant features and soften background ones. In Meta R-CNN, aligned
features are reweighted with global vectors computed from the similarity matrix between query
and support features. This last operation may be redundant as the similarity information is already

embedded into the aligned features, whereas background attenuation leverages new information.

From this comparison, one can conclude that both global attention and spatial alignment are ben-
eficial for FSOD. However, these improvements may not always be compatible, as shown by the
results of Meta R-CNN. Hence, the design of each component must be done carefully so that spatial

alignment, global attention, and fusion work in unison.

Another set of experiments is conducted on MS COCO dataset. Only the two best-performing meth-
ods on Pascal VOC are selected and trained on MS COCO following the same experimental setup.
The results are summarized in Tab. 6.4. The mAP values are reported following standards from Pas-
cal VOC (mAP 5 with one IoU threshold), and MS COCO (mAPy 5.9.95 with several thresholds). MS
COCO is a much more difficult detection benchmark; therefore the numbers of shots is adjusted to 1,
5, 10, and 30 shots. These results comfort the conclusion obtained on Pascal VOC: the framework is
flexible enough to implement various FSOD techniques that achieve competitive results with state-
of-the-art. As for Pascal VOC the models achieve better performance with more shots. However,

unlike on Pascal VOC, base classes also benefit significantly from a larger number of examples on
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Figure 6.6: mAPg 5 on Pascal VOC against the number of shots for each class and each method.
Dashed lines represent average performance on all classes, either base classes (top) or novel classes
(bottom).

WSAAN [229] DANA [234]
mAPg 5 mAPg.5:0.95 mAPq 5 mAPg 5.0.95

33,51  11.97 20.12  6.57 35.52 14.54 2130 7.77
39.88 19.86 23.62 10.54 42.79 22.17 25.19 11.90
10 40.87 21.42 24.38 11.49 43.00 23.70 25.57 12.89
30 4154 22.21 24.74 12.08 43.54 24.36 25.96 13.35

K Base Novel Base Novel Base Novel Base Novel
1
5

Table 6.4: Performance comparison between WSAAN [229] and DANA [234] on MS COCO.
mAPg 5.0.95 (MS COCO mAP, with IoU thresholds ranging from 0.5 to 0.95) and mAP 5 values are
reported for base and novel classes separately and for different numbers of shots: K € {1, 5, 10, 30}.

MS COCO. MS COCO is more difficult, therefore, the information extracted from the supports better
helps the models. Finally, WSAAN outperforms DANA on Pascal VOC but performs slightly worse
on MS COCO. It can be noted that the results obtained on a dataset cannot be extrapolated to another
without taking into account the characteristics of the datasets. A method that performs best on a
dataset is not guaranteed to do so on another dataset. This reinforces the need of a flexible frame-
work that allows fair and easy comparison between FSOD methods. That way, the best-performing
method can be easily selected for a given problem. Without such a framework, it is difficult to find
out from the literature which method is the most promising for a given application as most FSOD
works focus on natural images. For COSE, this framework is highly valuable as it will serve as an

objective comparison tool for attention-based FSOD methods.

From these experiments on natural images, it seems clear that DANA performs best. Therefore, it
highlights the importance of feature alignment for query-support matching. Global attention loses
spatial information in support features which is detrimental to detection. However, global attention

methods should not be overlooked. WSAAN shows impressive performance and even outperforms
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DOTA DIOR
FRW WSAAN DANA PFRCN FRW WSAAN DANA PFRCN WSAANT
Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel

47.24 13.35 4555 12.19 49.38 12,52 3498 751 56.67 16.92 56.41 1548 58.78 20.64 40.66  6.07

46.50 25.32 44.18  24.42 49.67  20.70 3458 933 58.05 25.08 51.72  13.84 59.14 27.26 40.48  7.51 -
48.60  29.57 47.56 31.44 52.49 24.96 36.09 1133 60.75  32.58 60.79  30.38 62.12 34.16 4197  8.55 - 0.25
49.04 3529 46.72 3512 53.99 36.50 36.32  11.55 61.30 37.29 62.79 3238 62.71 38.18 4237 9.16 0.54  0.32

20w = X

Table 6.5: Comparison of mAP 5 of several methods on DOTA and DIOR datasets. For each method,
mAP is reported for different number of shots K € {1,3,5,10} and separately for base and novel
classes. Blue and red values represent the best performance on base and novel classes respectively,
for each dataset. T denotes results taken directly from the original papers.

slightly DANA on Pascal VOC. It could be interesting to combine both methods, but this does not
seem to be trivial as demonstrated by the results of Meta R-CNN, which leverages the alignment
from DANA and the attention from FRW, but does not yield better results.

6.2.5.3 Aerial images

To our knowledge, very few works evaluate FSOD methods on aerial images at the time we proposed
the AAF framework. Among those we select FSOD-RSI [225], which simply applies FRW to aerial
images (we will refer to it as FRW), WSAAN [223] and our PFRCNN. In addition, we include DANA
inside this comparison as it was the best-performing technique on natural images. All these meth-
ods are evaluated on different datasets, making their performance comparison challenging. Using
the proposed AAF framework, we compare the performance of these methods on both DOTA and
DIOR. These methods are reimplemented inside the framework and all other design choices are fixed
during the experiments (as described in Sec. 6.2.4). Tab. 6.5 regroups the results of the comparison.
These results show a slight improvement over the state-of-the-art on DIOR (WSAAN [223]). Our
implementation of WSAAN outperforms (8 mAP 5 points on base classes and 0.4 on novel classes)
the result reported in the original paper. However, the attention mechanism employed in WSAAN
is not optimal for aerial images. WSAAN is outperformed by both FRW and DANA. While this was
expected for DANA in the light of results from Sec. 6.2.5.2, it was not for FRW. The superiority of
DANA over the other methods on DOTA and DIOR is clear and coherent with the results on natural
images. The more sophisticated attention mechanism, in particular the alignment, from DANA is
better at extracting and leveraging the information from the support examples. Hence, the detec-
tion performance is higher. It is particularly beneficial for small numbers of shots: the extracted

information is semantically robust.

These results confirm the analysis conducted in Chap. 4, the performance gap between the classical
baseline (i.e. FCOS) and the few-shot approaches is larger on aerial images. On natural images, the
performance drop between the few-shot approach and the regular baseline is nearly inexistent for
base classes and around 25% for novel classes. On aerial images these drops are largely increased:
~ 15% and ~ 50% for base and novel classes respectively. This can be guessed from Tabs. 6.3
and 6.5, but detailed gaps are provided in Tab. 6.6. Following the analysis from Chap. 4, the main

reason behind this performance gap between natural and aerial images is the size of the objects in
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the image. Small objects are much more difficult to detect and also are poor representatives of a
semantic class as they contain little information. Therefore, the most sensible direction to pursue is
to design new attention mechanisms specifically built for small objects. As it happens, this will be

discussed in the next section.

DOTA DIOR Pascal VOC

Base Novel Base Novel Base Novel

FCOS baseline  60.87 69.69 72.82 81.48 65.47 68.02

;g FRW 49.04 35.29 61.30 37.29 63.16 48.71
< WSAAN 46.72 35.12 62.79 32.38 65.27 51.70
= DANA 53.99 36.50 62.71 38.18 65.17 52.26
o3 FRW -19.43  -49.36 -15.83 -54.23 -3.52 -28.39
% WSAAN -23.24 -49.60 -13.78 -60.26 -0.30 -24.00
E DANA -11.30 -47.63 -13.88 -53.14 -0.46  -23.17

Table 6.6: mAPg 5 and RmAP values for some reimplemented methods and XQSA with K = 10
shots.

6.3 Cross-Scales Query-Support Alignment for Small FSOD

From the analysis in Chap. 4 and the previous section, it is clear that a new attention mechanism
specifically designed for small objects is required to get reasonable performance on aerial images.
To this end, we propose a novel alignment method that combines information from multiple scales:
Cross-Scales Query-Support Alignment (XQSA). This differs from existing methods which often
work independently at different scales. Conversely, XQSA combines the information from various
scales and sources (i.e., query and support images). Its original motivation is to unlock matching
support examples with query objects belonging to the same class even though their sizes differ. With
existing methods, this was prohibited as same-class objects with different sizes have non-similar

features and are not matched by similarity-based attention mechanisms.

6.3.1 XOQSA definition

In this section, we detail the functioning of our proposed Cross-Scales Query-Support Alignment
module. First, features are extracted from the query and support images with a backbone network
f. In our implementation, f is a ResNet-50 with an FPN attached. It outputs feature maps at three

distinct resolution levels:

{Fq,()? Fq,la Fq,Q} = f(Iq)v (6'6)
{Fso, Fs1, F5o} = f(I5). (6.7)

All query features F,; € R%«i*ha.ixd for j € {0,1,2} (i.e. from different levels) are flattened and

concatenated into a unique representation F, € R"*%, with n, = >, wg ;hq.i. Here, wy; and hy,
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denote the size of the query feature map at level 4, this size depends on the query image size and the
stride of the corresponding level in the backbone. The same operation is performed for all support
features F;,. When more than one shot is available per class, support features are average at each

level i:

K
Fe.— LN pek 6.8
Gi=e 2 (6:8)
k=1

Then, following the ViT paradigm, the support and query features are linearly projected into the
queries, keys and values matrices (), K and V. Specifically, the query features are used to produce

the queries while keys and values are computed from the support features:

Per level features

Concatenated

multiscale features

Q= Fy Wq = Fyo, Fy1,Fy2 ] Wq , (6.9)
K¢= F¢ Wk = [ F$o, Fg1, Féo | Wi (6.10)
Ve= Fs Wy =[Fgo, Fq1, Fso | Wy, (6.11)

Learned projection matrices

where Wg, Wi and Wy are learnable projection matrices, which are implemented as linear layers
in practice. From this, an affinity matrix is computed between the queries and the keys, and then

the aligned support features AS are computed as:

KCT
Q\/g ), (6.12)
AS = X°ve, (6.13)

A$ = Softmax(

For completeness with the definition of the AAF framework, \; = I, meaning that the query fea-
tures are not modified. The aligned features are finally processed by a two-layer MLP with skip
connections. LayerNorm [301] is applied before alignment and the MLP. These supplementary com-
putations can be seen as fusion operations in the AAF framework, similar to what was proposed in
[227, 222, 249]. This resembles the ViT attention, but with a major difference, it combines features
from different images and different levels (see Fig. 6.7). This allows better object matching when

there are size discrepancies between support and query images.

Small objects have a limited footprint in feature maps which make them hard to detect but also hard
to match with support examples. XQSA’s multiscale alignment enhances the chances of matching as
each query feature is compared with support features at all scales. Finally, in order to fairly compare
XQSA with DANA, we leverage their BackGround Attenuation block (BGA) on the support features
before alignment. They conduct a thorough ablation study which shows the positive impact of BGA

on the few-shot performance of their method. We also carry out an ablation study about our cross-
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Figure 6.7: Diagram illustrating the proposed cross-scales query-support alignment method. Fea-
tures are extracted from the query and support images at multiple scales and combined to form an
affinity matrix. For each query feature position, the affinity is computed with any position in the
support features. This allows object matching across different feature levels.

scales method (see Tab. 6.7) and find that BGA also improves performance in this case. XQSA is
implemented inside the AAF framework, split into three modules: alignment, attention and fusion,
following the description from Sec. 6.2. BGA is implemented within the global attention block,

which can handle as well self-attention module as well and is applied before alignment.

6.3.2 Ablation study XQSA

To confirm the benefits of each component of our attention methods, we conduct a brief ablation
experiment, adding separately the different modules of our proposed attention mechanism. The
ablation is conducted on DOTA and the results are available in Tab. 6.7. From this table, it is clear
that each component plays a role in the improved performance of our method. Both the fusion (with
the MLP) and the skip connections around fusion and alignment are beneficial for the performance
on novel classes. It is worth noting that Background Attenuation proposed by [234] helps both for

base and novel classes, which confirms the experiments conducted by the authors of this work.

Baseline v v v v
Cross-scale Alignment v v v
Fusion Layer v v
Query-Support Self-Attention v
Base classes 49.20 4946 49.13 51.11
Novel classes 36.52 38.84 40.31 41.01

Table 6.7: Ablation study of the XQSA attention method on DOTA dataset. mAPg 5 scores are re-
ported for base and novel classes with K = 10 shots.
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DOTA DIOR Pascal VOC MS COCO
All S M L All S M L All S M L All S M L

FRW  49.04 2548 59.17 63.37 62.20 8.21 48.66  80.67 63.21 15.67 47.94 81.73 29.03 13.08 3587 48.00
DANA 5399 36.98 62.33 70.39 62.71 10.92 49.34 83.17 65.17 18.14 50.58 80.11 38.14 2330 51.85 56.38
XQSA 5111 26.10 59.41 6430 59.88 10.64 45.69 82.34 62.13  15.60 48.64 75.94 31.56 16.13  40.13  49.83

Base
Classes

Novel FRW 3529 1399 3411 5931 37.29 248 33.74 59.38 48.72 1644 26.71 68.27 24.09 11.53 2245 38.69
Cl:svsees DANA 3658 1432 40.28 64.65 38.18 3.21 3491 60.99 52.26  10.05 24.67 67.23 24.75 12.01 29.40 37.95
XQSA 41.00 17.84 44.57 54.46 41.51 4.12 40.69 58.21 53.94 19.46 34.86 66.14 25.03 12.57 26.05 38.55

Table 6.8: Performance comparison between XQSA, FRW, and DANA. mAP 5 values are reported
separately for base (top) and novel (bottom) classes on DOTA, DIOR, Pascal VOC, and MS COCO
with K = 10 shots. mAP values are reported for All, Small (v/wh < 32), Medium (32 < vwh < 96)
and Large (vwh > 96) objects.

6.3.3 Application to aerial and natural images

To assess the capabilities of the proposed method, we compare it with the best methods from
Sec. 6.2.5: FRW and DANA on DOTA, DIOR, Pascal VOC and MS COCO. The results of these ex-
periments are available in Tab. 6.8. The mAP values are reported separately for small (vwh < 32),
medium (32 < Vwh < 96) and large (vwh > 96) objects. Hence, the methods can be com-
pared specifically on small objects. XQSA performs consistently better on small and medium novel
objects, compared with FRW and DANA. This performance gain comes at the expense of slightly
lower detection quality for larger objects. In XQSA, the shallow query features are compared to all
support features (i.e., not only shallow support maps). As deeper maps are smaller, this increases
moderately the number of potential detections for small objects. However, for large objects, the
deep query feature map is compared with all support maps, including the shallow ones. It increases
a lot the number of potential matches between query and support features (see an illustration of this
phenomenon in Fig. 6.8). For large objects that are already well detected, this mostly adds wrong
matches and deteriorates the performance. For small objects, however, this is useful as very few
correct matches are found by current FSOD methods. A potential solution for this issue would be to
down-weight the contributions of shallower features in the affinity matrix’s bottom rows (i.e., the
left and bottom blocks of the matrix). The affinity matrix could even be made upper triangular to
avoid taking into account the contributions of shallower levels at all. For similar reasons, XQSA
demonstrates a slight drop in base classes performance. However, the actual goal of few-shot learn-
ing is to maximize performance on novel classes. The large number of available examples during
base training is enough to learn robust query-support matching even for small objects. However,
our goal here is to improve the generalization capabilities of the model on novel objects. The perfor-
mance on base classes is simply a safety check and relates more to the Generalized FSOD problem
(see Sec. 3.4).

Looking at the performance on all objects, disregarding their size, the proposed alignment technique
significantly improves the detection quality for aerial images. Using XQSA in the AAF framework
increased novel class mAP by 5 and 4 points on DOTA and DIOR, respectively. As it works better on
small objects but worse on large objects, it is less appropriate for natural images. As a consequence,

it shows lower improvements for Pascal VOC and MS COCO. Overall, XQSA largely improves on
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Figure 6.8: XQSA small and large objects matching asymmetry.
DOTA DIOR Pascal VOC MS COCO
Al s M L Al S M L Al s M L Al s M L
B FRW 2318 860 27.84 3222 3560 260 23.04 5082  37.93 654 2284 5049 1560 547 1884 27.83
Claes DANA 2663 1143 3073 37.62 3639 348 2493 5231 3912 7.28 2537 5139 2246 1022 29.72 36.51
XQSA 2530 885 2878 3464 3480 3.54 2290 5147 2745 318 1660 3676 1137 444 1418 3197
Novel TFRW 1599 425 1409 2965 2000 048 1700 3330 2009 564 1221 4005 1241 484 1090 208
Cl;)SVSeeS DANA 17.17 5.60 2044 32.40 20.35 0.78 17.49 34.01 31.75 5.23 11.09 43.38 13.44 5.30 15.03 21.47
XQSA 2104 791 2518 2649 2278 097 2097 3478 2507 640 1274 3515 1033 487 1004 1672

Table 6.9: Performance comparison between XQSA, FRW, and DANA.

(32 < Vwh < 96) and Large (Vwh > 96) objects.
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mAP 5.0.95 values are re-
ported separately for base (top) and novel (bottom) classes on DOTA, DIOR, Pascal VOC, and
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Figure 6.9: mAP 5 and corresponding RmAP values of the four best performing methods from all our
experiments. All methods are trained within our proposed AAF framework with data augmentation
which explains slightly higher performance for FRW and WSA. 10 shots are available for each class
at inference time.

existing works for aerial images. On DIOR, this corresponds to a 10 mAP point increase compared
to previous state-of-the-art [223]. However, this is not sufficient to fill the performance gap with
natural images as presented in Fig. 6.9. This figure extends Fig. 4.2 with XQSA results. While XQSA
improves upon other methods on aerial images, it is still far behind the performance of the regular
baseline. XQSA is better for small and medium objects but at the cost of lower performance on
large objects and base classes. Progress is still required to get more versatile FSOD solutions able to

handle small, medium, and large objects at the same time.

In complement to Tab. 6.8, we also provide the comparison between XQSA, DANA and FRW with
mAP 5.0.95 metric and on the four datasets. These results are provided in Tab. 6.9. mAPq 5.0.95 is a
more demanding metric for object detection. It is especially hard for small objects as a few pixels
shift from ground truth can greatly reduce the IoU and therefore lead to a missed detection. This

intensifies as the IoU threshold increases in the mAP computation.

For DOTA and DIOR, results with mAPq 5.9.95 are in agreement with results from Tab. 6.8 (i.e. with
mAP 5). However, XQSA does not perform better than DANA on Pascal VOC and MS COCO novel
classes with mAPq 5.0.95. This is mainly due to the metric being too strict on small objects. This
questions the soundness of these metrics for FSOD, especially when dealing with small objects. We

will tackle this question in Chap. 8.
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6.3.4 XOQSA Implementation Challenges and Extensions

XOQSA is inspired by the ViT and resembles some FSOD techniques that leverage transformer atten-
tion as well. It is well-known that these mechanisms are computationally heavy and scale quadrat-
ically in terms of the number of locations in the feature maps. Here, it is slightly different as we
combine the features from the support and query images. Support images are 4 X smaller than query
images (see Sec. 6.2.4.1), therefore the complexity of the attention module is greatly reduced. Ac-
cording to the notations introduced in Sec. 6.3.1, the complexity of the XQSA alignment block is
O(ngns). As ng is way smaller than n, (roughly 16 times), this is way better than a self-attention
mechanism which would be O(ng). However, with XQSA, as features from all scales are concate-
nated, this remains computationally heavy, especially as this process must be repeated for each
support image. Unfortunately, this does not scale well as we increase the number of support exam-
ples. Time complexity rapidly becomes prohibitive, but memory complexity is more limiting. The
gradients of the Softmax used for the computation of the similarity matrices are extremely large
(O(ngn?)) and do not fit on GPU memory when the number of support examples increases. To

bypass these limitations, we propose several tricks.

- Pytorch manual gradient computation: automatic differentiation in Pytorch is not always
optimal. When successive computations involve the same gradients, Pytorch often computes
and stores them separately, wasting precious resources. To this end, we re-implemented the
XQSA block as a self-contained operation, with custom gradients computation to prevent
duplicated gradients. This results in slight memory and performance gains, but it is still not
enough to scale efficiently with the number of support examples.

- Pytorch gradient checkpointing: Pytorch has an API to checkpoint the gradients during
the backward pass. It copies back the gradients on the CPU memory to prevent overflowing
the GPU memory. It solves the out-of-memory issues, but makes the training much slower.

- Deformable XQSA block: The alignment block is expensive due to the comparison between
all query feature locations and all support locations. Thus, we extend the XQSA block with
a deformable attention mechanism, inspired from ConViT [65]. Specifically, we introduce an
inductive bias inside the attention module by adding a layer that selects the locations that will
be compared between support and query feature maps. This resembles Deformable Convolu-
tions [61] and Deformable-DETR [60]. While this was solving both the memory overflow and
training slowness, we were not able to achieve reasonable detection performance with it.

- Support class averaging: while this solution seems sub-optimal, it saves a lot of time and
memory by avoiding a lot of computation. Of course, it does not completely solve the scaling
issues (e.g., as the number of support classes increases). However, it allows adding a large

number of support images per class without any issues and performs well on the FSOD task.

Finally, we only keep the support class averaging as it is the simplest and best-performing alternative

tested.
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Figure 6.10: Support examples for base classes (K = 10). These are the examples used during the
detection inference that produced results from Fig. 6.13.

6.4 Qualitative Comparison within the AAF framework

In this section, we provide a qualitative comparison of the four attention-based methods that we
compared previously in Fig. 6.9: FRW, WSAAN, DANA and ours XQSA. To get a fair comparison,
we sampled the same support examples for each method and performed the detection on the same
query images. For convenience, we split the comparison in two, first on base classes and then on
novel classes. In both cases, we provide the support examples used for the detection in the first
figure and the detection on a handful of images in the second figure. These comparisons are visible

in Figs. 6.10 and 6.11 for base classes and in Figs. 6.12 and 6.13 for novel classes.

6.4.1 Base Classes Detection Quality

From Fig. 6.11, it is quite difficult to assess which method is superior to the other. It seems quite
obvious that DANA and XQSA perform slightly better than FRW and WSAAN. However, there are
cases where neither DANA nor XQSA is the best (see the second row for instance). This is in line
with the quantitative results from the previous sections. The gap between these methods on base
classes is tight, it is therefore quite difficult to correctly assess the quality of these methods from
only a handful of examples. It is worth noting that these techniques work quite well on the base
classes. Of course, there are some false positives, but the number of false negatives is limited, which

is quite important for intelligence applications.

6.4.2 Novel Classes Detection Quality

With novel classes, the performance differences are more visible than with base classes. First, it can
be seen that XQSA produces less false positives which indicates a higher accuracy. Then, XQSA also
provides more small detection than other methods. It sometimes gives false positives, but overall
it improves the detection of small targets (see the last row for instance). Interestingly, XQSA and
DANA are less sensitive to partial objects in the images (see first row). This may be explained by the
spatial information kept in the query-support combination compared to FRW and WSAAN. As the
whole object is available in the support examples, DANA and XQSA match all parts of the support
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Figure 6.11: Qualitative assessment of the detection quality of FRW, WSAAN, DANA and XQSA on
DOTA with K = 10 shots on base classes.
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features with the query features and detect only entire objects. It seems that this kind of matching
is much more robust than the global attention alone (FRW and WSAAN) as they showcase many
more false positives overall. Of course, the detection of small objects is still very challenging in the
FSOD setting which explains the relatively poor detection quality in these images. It is not easy
to objectively determine which method is the best at this, but a slight advantage seems in favor of

XQSA, confirming quantitative results.

6.5 Conclusion

In this chapter, we have introduced a highly modular framework for implementing attention-based
FSOD methods. First, this framework allows fair comparison between the various attention mech-
anisms proposed in the literature. From our analysis, it seems that spatial alignment is crucial to
achieving high-quality FSOD, mostly because it does not lose the spatial information contained in
the support examples. Secondly, the AAF framework is a practical tool to design new attention
mechanisms. For that matter, we developed a novel cross-scales alignment layer within the frame-
work to specifically increase the detection performance on the small objects. The so-called XQSA
alignment allows us to achieve large improvements compared to the contemporary literature on
several datasets. It works especially well on aerial images as they contain smaller and more ob-
jects than natural images. Specifically, XQSA outperforms the state-of-the-art on DOTA and DIOR

datasets at that time.

Nevertheless, the attention-based methods are not completely satisfactory from an industrial per-
spective. While they achieve reasonable performance on aerial images, they have some disadvan-
tages. First, even if they can adapt to novel classes from a few support examples at test time, they still
require extensive fine-tuning to perform correctly. This fine-tuning can take up to several hours,
which is not convenient for "on-the-fly" adaptation. Then, the episodic training strategy is some-
what cumbersome and generates unrealistic scenarios. Indeed, during each episode, query images
are sampled so that they contain at least one instance of one of the episode classes. In real-case
applications, no object of interest can be visible in an image which makes the detection task more
challenging. But most importantly, only the episode classes are detected during the episode, the
detection task is, therefore, simpler as it only classifies objects among a smaller number of classes.
Given these drawbacks, we investigate in the next chapter FSOD methods that do not employ the

episodic training strategy and therefore solely rely on a fine-tuning scheme.
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Figure 6.12: Support examples for novel classes (KX = 10). These are the examples used during the
detection inference that produced results from Fig. 6.13.
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Grond truth

Figure 6.13: Qualitative assessment of the detection quality of FRW, WSAAN, DANA and XQSA on
DOTA with K = 10 shots on novel classes.
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CHAPTER

FEwW-SHOT DIFFUSION DETECTOR VIA FINE-
TUNING

ABSTRACT

Previous chapters explore few-shot object detection with metric learning and attention-based
techniques. This chapter focuses on the last major approach for FSOD: fine-tuning. Based on
DiffusionDet, a recent detection framework leveraging diffusion models, we build a simple
but efficient fine-tuning strategy. The resulting method, called FSDiffusionDet, achieves
state-of-the-art FSOD on aerial datasets and competitive performance on natural images.
Extensive experimental studies explore the design choices of the fine-tuning strategy to better
understand the key components required to achieve such quality. Finally, these impressive
results allow considering more complex settings such as cross-domain scenarios, which are
especially relevant for COSE.

CONTENTS

7.1 Diffusion Probabilistic Models Principle. . . . . . . ... ... ... ... ... 134
7.1.1 Forward and Reverse Diffusion Processes . . . . . . .. ... ... .... 134
7.1.2 DDPM Training and Sampling . . . . . . . .. ... .. ... .. ..... 136
7.1.3 Recent Advances with Diffusion Models. . . . . . . ... ... ... ... 139

7.2 DiffusionDet for Object Detection. . . . . . . . . . ... .. ... .. ..... 141

7.3 Few-Shot DiffusionDet. . . . . . . . .. ... ... 143
7.3.1 Fine-tuning Strategy for Few-Shot DiffusionDet. . . . . . . . .. ... .. 143
7.3.2 Experimental Study of FSDiffusionDet. . . . . . . . . .. ... ... ... 145
7.3.3 Comparison with existing FSOD Methods . . . . . . . .. ... ... ... 157

7.4 Application to Cross-Domain FSOD. . . . . . . ... ... .. ... .. .... 160
741 MSCOCO — Anything. . . . . . . ... ... 160
7.4.2 Aerial Cross-Domain . . . . . . . . . ... 164
7.4.3 Cross-Domain Perspectives. . . . . . .. ... ... ... ... ... 165

7.5 Conclusion . . . . . . . ... 166

133



CHAPTER 7 - FEW-SHOT DIFFUSION DETECTOR VIA FINE-TUNING

In Chaps. 5 and 6 we have proposed respectively metric-learning and attention-based approaches
to tackle the FSOD problem. Both of these directions were sensible choices given the state of the
FSOD literature at the beginning of this project. Since then, however, fine-tuning approaches have
gained a lot of interest with competitive performance and reduced complexity. Following this trend,
we explore in this chapter a simple fine-tuning strategy for FSOD. Based on the recent DiffusionDet
[74] model, we propose an effective fine-tuning scheme for FSOD which outperforms all previous
methods on DOTA and DIOR datasets while being competitive with state-of-the-art on natural im-
ages. We begin with a brief presentation of the Diffusion Probabilistic Models (DPM) and their
recent progress in various generative tasks. Then we present in detail DiffusionDet, which tack-
les OD with a refreshing perspective, as a box-denoising problem. Following this, we present our
fine-tuning strategy called Few-Shot DiffusionDet (FSDiffusionDet) and the results of multiple ex-
periments conducted to improve our strategy. Given the impressive performance of FSDiffusion-
Det in the few-shot regime, we broaden the scope of our analysis and study the more challenging
Cross-Domain FSOD task. We emphasize that the first two sections of this chapter present existing
works in the literature, while the last three sections discuss our contributions: the FSDiffusionDet
strategy, thorough experimental analysis of the strategy on several datasets, and its application in

Cross-Domain scenarios.

7.1 Diffusion Probabilistic Models Principle

Diffusion Probabilistic Models have been introduced in 2015 by Sohl-Dickstein et al. [199]. Their
principle is simple, to approximate a complex and intractable probability distribution, they model a
diffusion process from the original distribution to a normal distribution as gradual Gaussian noise
addition. Then, the goal is to find the reverse process to approximate the original distribution by
iterative denoising. In this section, we present the main concepts of the DPM [199] and their recent

advances in generative tasks, mostly led by Denoising Diffusion Probabilistic Models (DDPM) [200].

7.1.1 Forward and Reverse Diffusion Processes

First, let’s introduce a few notations. Our objective is to be able to efficiently sample elements x
from a distribution P. When P is an arbitrary distribution, its Probability Density Function (PDF) is
intractable and sampling often relies on expensive Monte Carlo techniques. Here, we suppose that

there exists a random process ¢ that transforms P into a normal distribution:

q(z) ~ N(0,1). (7.1)

This is called the Diffusion Process and refers to the eponym physical phenomenon. The main

hypothesis is to assume that this process is a Markov Chain that adds Gaussian noise progressively:

7 = q(x1:7|70), (7.2)
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where oy ~ P is an element sampled from the original distribution and 7 ~ N(0,1) is sampled
from a normal distribution. 7" denotes here the number of steps in the Markov chain and q(z1.7)
represents the joint distribution of variables 1 to zp. The diffusion process adds Gaussian noise

iteratively and therefore is defined as:

T

q(z17|20) = HQ(!Et|9Et71) with q(z¢|zs—1) := N (/1 = Byae, BiI). (7.3)

t=1

The B; denote the variance schedule, i.e, the amount of gaussian noise added at each step. For

convenience, we also define oy and ay:
ar = 1- Bta (74)

t
Ay = H . (7.5)
s=1

q is called the forward diffusion process as it transforms x( into noise (this is true only asymptotically
when T" — 00). Thus, we can write for 1 <¢ < T"

= a1 + V1 — ey, (7.6)
= o179 + /1 — arop_1€64—9, (7.7)

= arrg + V1 — ageg, (7.8)

where the ¢; (0 < ¢ <t — 1) are sampled from a normal distribution.

The reverse process instead transforms Gaussian noise into elements sampled from P. It is also a

Markov chain with Gaussian transitions (this is ensured for sufficiently small 3,):

T

q(zo.1) = Hq(mt_1|xt) with g(xi—1|zt) == N (e, ). (7.9)
t=1

Unfortunately, the reverse process, or rather y; and 3¢, are highly intractable and cannot be easily

estimated. However, we can approximate this process with a parametrized model py:
T
po(zo.7) = p(ar H (xi|zi—1) with pp(ze|ai—1) == N (g, t), Lo(ze, 1)). (7.10)

Hence, if we find an optimal set of parameters  so that the model is able to approximate the reverse
process expectation ; and variance ¥ from variable z; and timestep ¢, then the reverse process

can be computed. Now, we must derive efficient ways to estimate the reverse process.
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One solution is to leverage deep neural networks which are well suited for these kinds of tasks.
We will explain how such models can be trained to approximate the reverse process conditional
probabilities g(x¢—1|z;). Note that the reverse process is initialized with a normal distribution:
p(zr) = N(0,I). The forward and reverse diffusion processes are illustrated in Fig. 7.1, in the
context of image denoising. Before jumping to the next section to see how we can estimate such
models, we can observe that the reverse process distribution is tractable when conditioned on x, it

will be useful for training:

q(z—1| 24, 20) = N (fie (4, 20), B1), (7.11)
T Vo (l — oy
with fi; (x4, xo) = at iﬁtxg + o _at 1):Ut, (7.12)
1-— Qi 1-— (677
~ 1—day_
and f = ——1g, (7.13)
1— Qg

po(Xt—1x¢) :
_)_)@—) S 0 e )

: Ko .- -

: A

S _——-

Figure 7.1: Diffusion Processes illustration in the context of image denoising. Image taken from
[200, 302].

7.1.2 DDPM Training and Sampling
Now that we have introduced the forward and reverse diffusion processes, we can dive into the core
of DDPM and see how we can train models to approximate the reverse process. The overall goal is

to maximize the log-likelihood of the modeled data distribution pg(xo):

0* = arg max log(py(xo)). (7.14)
0

Unfortunately, the log-likelihood is not easily optimizable and several tricks are required to get a
more tractable objective. First, [199] makes use of the well-known Evidence Lower BOund [303]

(ELBO), which is lower bound to log-likelihood objective and more easily computable. In practice,
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we minimize the negative log-likelihood and leverage the evidence upper bound:

—log(pg(x1.7)) = —log </p9(330:T)d961:T> , (7.15)
= —log (/pG(fL'O:T)(Mdl'I:T) ; (7.16)

q(z1.7|70)
. pQ(xO:T)
= —logE, [Q(l'lzT‘xo)] (7.17)
< Eq |:— log p@(-TOT):| = LELBO- (7.18)
q(@1:7|w0)

Now, using the definition of the process py(zo.7) and g(x1.7|z¢), and Bayes’ rule, we can split the

objective for each timestep ¢t and make it tractable:

Leiso = Eq [ log -2 q(xﬂxo + Z —log % —log pg(xo|x1) ] . (7.19)
t>1
Objective for timestep 7', L1 I Lo

Objective for timestep ¢t — 1, L1

The previous equation is only valid because ¢(z.7) if a Markov chain and because the Markov Prop-
erty states that q(x¢|zs—1,20) = q(x¢|x¢—1). This is crucial, otherwise, the Bayes’ rule introduces
intractable terms (¢(z;) and ¢(x;—1)). We refer the reader to Appendix A from [200] and Appendix
B from [199] for the detailed derivation of Eq. (7.19). Finally, the terms highlighted in gray and blue

in the above Eq. (7.19) can be interpreted as Kullback-Leiber Divergence terms:

Leiso = Dy (q(zrlzo)llp(er)) + ) Dy (q(@elai—1, z0)l|po(we—1|x:))
t>1 (7.20)

Lo Ly
: + E, [ logpe(zol|z1)] - -

Lo
These KL divergence terms are easy to compute as they compare only Gaussian distributions. This
gives an easy-to-optimize upper bound to train the diffusion models. Diffusion models are meant
to approximate the reverse diffusion process. One way to achieve this with neural network models
is to use the reparametrization trick introduced in [303]. The idea is to train a neural network to
output the mean and variance parameters of a Gaussian distribution and sample elements from the
estimated distribution. That way, the gradients can be computed through the stochastic sampling
operation. Here, we specifically learn two models able to predict the mean and variance parameters
oz, t) and Xg(xy, t) conditioned on x; and timestep ¢. These two estimators are trained following
the ELBO objective which compares the estimated and reverse process distributions at each timestep.
In practice, this is achieved by randomly sampling a timestep and optimizing the model with the

corresponding loss function.
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To stabilize the training, authors from [200] propose to fix 3g(x;,t) = BZI and introduce a few
simplifications in the loss. First, as the loss only involve KL divergence between Gaussians, it can

be written analytically:

1
L :E7 € oy (12 [:L T, L0 _M9x7t 2:|' (721)
= Eunge | sy an ) = oo, )|

Another simplification follows from observing that ji;(x¢, z¢) and pg(x¢,t) can be re-written as:

(1, 70) = —— Lo (7.22)
Tt T = — | Xt — —F——€ .

M\ T, Lo o t 1 — a t |

1-— Ot

o, t) = \/1@ (xt - m@(xt,t)) .

(7.23)

This follows from Egs. (7.8) and (7.11). Given this expression of 19 (¢, t), it is only necessary for the
model to estimate €y (¢, t), the amount of gaussian noise added to z;_1 to produce x;. This explains
why diffusion models are especially well suited for denoising applications. Therefore, the loss can

be further simplified as (using Eq. (7.8)):

L™ =By 4y e [ller — ol )] (7.24)

= Et,mo,e [Hﬁt - 69(\/ arrg + V1 — ey, t)HQ] . (7.25)

Note that the scaling term has been omitted from the last equation as the authors from [200] obtained
better results without it. The training procedure can be summarized in Algorithm 1. Finally, once
the model is trained, the sampling can be done from random noise and repeatedly applying the

reverse process. Using the model to estimate the noise added at each time step, we have:

_ 1 1 - t 7.26
Tt—1 = \/77 (33t - ﬁ@(f’fty )) . (7.26)

The sampling procedure is then defined in Algorithm 2. Please note that the formalism employed in
this section is identical to the one used in [200]. We could have referred the reader directly to this
article, but it seemed essential to recall the basic principles of diffusion models. For completeness,
we also cite the excellent blogpost [302] from which we drew some inspiration for the two previous

sections.

Algorithm 1 Diffusion Training procedure

while not converged do

70 ~ q(xo)

t ~ Uniform({1,...,T})

€ ~ N(0,1) Take a gradient descent step on Vy||e — ea(v/@zo + /1 — age, t)]|?
end while
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Algorithm 2 Diffusion Sampling Procedure

T ~ ./\/(0, I)
fort=1T,....,1do
z ~N(0,1)
Ti1 = \/% <-Tt - \}%Ee(lft,t)) + B2z
end for
return xg

7.1.3 Recent Advances with Diffusion Models

In the previous sections, we have presented the diffusion models and how they can be trained to
learn complex data distributions. It was originally leveraged for image generation in [200], which
samples 2D random noise and progressively generates a sensible image. Plenty of consecutive works
have done the same with various improvements. In DDPM, the authors employ a denoising U-Net
to estimate the noise at each time step. This U-Net is replaced with visual transformers in recent
diffusion models [304]. With the above formulation, the sampling is expensive as it requires iterative
application of the denoising model to the whole image. Instead, Latent Diffusion Models (LDM)
[304] proposes to apply the diffusion process to the latent space to greatly reduce sampling time.
The authors leverage an encoder-decoder scheme to map the image space onto the latent space
and back. In addition, their formulation is well suited for latent manipulation and conditioning
the generation process with additional information such as text, other images, layout, etc. Other
approaches speed-up DMs with improved sampling such as strided sampling schedule [305], ODE-
based sampling [306, 307], and careful variance scheduling [308]. Alternatively, some contributions
reconsider the denoising diffusion process and leverage other corruption processes such as blurring
[309] or masking [310]. Another approach is to leverage non-Markovian diffusion process with
for instance Denoising Diffusion Implicit Models (DDIM) [311]. Similarly to LDM, [312] derives a
cascaded framework to scale up the generated image size. With these iterative improvements, DMs
largely outperform the state-of-the-art image generation in terms of quality. Up to now, this field
was mostly dominated by GANSs (e.g., [313, 314]). GANs run faster, but the gap is getting smaller

and DMs overcome the GANs main issues: lack of diversity, training instabilities and mode collapse.

These techniques recently got a lot of attention out of the computer vision field with their associa-
tion with Large-Language-Models (LLMs) (e.g., CLIP [291], GPT [315] or T5 [316]). These models are
referred to as Visual Language Models (VLM), and combine the rich semantic latent space of LLMs
with image representation to perform text-to-image generation. They are embodied by Dall-E [317],
Flamingo [318] and Imagen [319], among others. These models are able to generate almost indistin-
guishable images (at least for the human eye) in an extremely controllable way. It is great for plenty
of applications, including for creative purposes. However, it also has a large societal impact as such
models can easily be misused (e.g., for deepfake generation) and are subject to questionable biases.
As an example for the previous claims, Fig. 7.2 provides a few examples of real and fake images

generated with various VLMs, guessing correctly which pictures are fake is quite challenging.
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Figure 7.2: Examples of real and fake images generated with diffusion approaches. We encourage
the reader to guess which images are real and which are fake. We provide the list of answers in a
footnote!on the next page to prevent any confirmation bias.
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Of course, image generation is not the only task that can be handled with diffusion models. Gen-
eration of all kinds of modalities can be performed with DMs: music [320, 321], voice [322], text
[323], time series [324] or graphs [325]. In addition, DMs can also be leveraged for non-generative
tasks, such as image translation [326], inverse image problems [304] (application to inpainting), 3D
modelling [327]. Last but not least, they can also be used for predictive tasks such as segmentation
[328], and, of course, detection with DiffusionDet [74]. Thus, the next section will be dedicated to
explaining the principle behind DiffusionDet.

7.2 DiffusionDet for Object Detection

DiffusionDet [74] is a recently proposed model for object detection. It tackles the OD task using a
generative approach instead of seeing it as a regression task. The latter predicts the box coordinates
from the input image while the former generates the box coordinates conditioned on the image.
The difference is subtle, but not seeing the detection as a regression problem unlocks new designs.
The main idea of DiffusionDet is to apply the diffusion principle to the box generation. Random
boxes are first sampled, and a model is trained to refine iteratively the size and position of the boxes
so that they localize the objects in the input image, this is illustrated in Fig. 7.3. Specifically, the
boxes are iteratively denoised by the model. The diffusion process considered here is the same as
in Denoising Diffusion Implicit Models (DDIM) [311], which as mentioned in the previous section,
proposes a non-Markovian forward process that leads to the same objective as DDPM. The non-
Markovian property of the novel diffusion allows for much faster denoising. DDIM sampling is

then leveraged in DiffusionDet to iteratively denoise the boxes.

Specifically, the denoising part of DiffusionDet is a lightweight hybrid network, it consists of a
self-attention layer (transformer-like) followed by a dynamic layer (called an Instance Interaction
layer). The diffusion/detection head is finally split into two branches, one for classification and one
for regression. Both branches are implemented as small MLPs. The input to the head is computed
from the input images features extracted with a backbone network. The backbone is a ResNet-50
with a three level FPN attached on top. Before being fed to the detection head, object features are
pooled from the entire feature map with Rol Align module. The detection head processes object
features independently, but the Instance Interaction layer enables interactions between instances.
The detection head is applied iteratively to refine the bounding boxes. The initial bounding boxes
are sampled randomly from a normal distribution. The regression branch of the head is trained to
predict the noise between the true boxes and the current boxes. After each iteration, the boxes are
updated following the DDIM sampling strategy. Only a small number of iterations is required to
get satisfactory boxes (the original paper provides experiments with between 1 and 8 iterations).
A renewal process also replaces boxes with small confidence scores with random ones after each
iteration to prevent duplicated or erroneous boxes. The dynamic layer injects features from the

previous iteration into the computation of the adjusted boxes. The current time step is encoded

'Real images are images: A, B, G, H, L and N, others have been generated with Midjourney or Dall-E.
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Figure 7.3: Ilustration of DiffusionDet principle, figure taken from [74]. (a) diffusion process, (b)
diffusion process for image generation with DDPM and (c) DiffusionDet principle, random boxes
are denoised to locate objects in the image.

into a time embedding using a lightweight MLP. These embeddings are then used to compute scale
and shift vectors to transform the object features and condition the model. We provide a detailed

architecture diagram in Fig. 7.4.

The training is done in a similar fashion as in DDIM, except for the loss function which is designed
for object detection. First, a timestep is sampled randomly, then the right amount of noise is added
to the ground truth boxes and the model is optimized using a classical loss function for detection
(a combination of Generalized IoU, L1 loss on box coordinates and cross-entropy for the labels). As
the number of predicted boxes is fixed, a set-to-set matcher is employed to build target-prediction
pairs with similar functioning as in DETR [59]. The loss is then computed on the selected pairs as

done in any detection framework.
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Figure 7.4: DiffusionDet architecture and detailed detection head design.
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DiffusionDet has a hybrid structure, it only has one stage, yet it does not predict boxes and labels
densely as common one-stage detectors. The box denoising formulation allows for replacing the
first stage (i.e., the RPN) with a much more naive approach: random box sampling. The iterative re-
finement of the boxes is able to compensate for the poor initial positioning of the boxes. In a sense,
DiffusionDet resembles two-stage detection frameworks that leverage iterative bounding box re-
gression such as CRAFT [329], Object Detection via Multi-region model [330], or Cascade R-CNN
[331]. The main difference between these models and DiffusionDet is the direct box prediction.
Instead of outputting refined box location, DiffusionDet is trained to predict the shift between the
current boxes and the corresponding ground truth. This does not seem significant, but it is much
more adapted to the iterative regression procedure. First iterative methods propose using the same
detection head repeatedly to get better and better boxes. However, the head is trained directly to out-
put correct boxes, no matter how off they are in the first place. DiffusionDet instead conditions the
model with the timestep embedding so that it knows how much noise should be removed from the
boxes. With this trick, it can reuse the same head without any issues. Conversely, Cascade R-CNN
makes use of decoupled heads for each iteration to account for different refinement magnitudes;

however, it significantly increases the model size.

7.3 Few-Shot DiffusionDet

Now that we have reviewed the basic principles of diffusion models and presented DiffusionDet we
can see how it can be leveraged for FSOD. In this chapter, we propose an adaptation of Diffusion-
Det in the few-shot setting, based on fine-tuning. Fine-tuning has become increasingly popular in
FSOD throughout the last two years (see Tab. 3.1). Simple fine-tuning strategies are now competi-
tive with elaborated attention mechanisms. Another motivation for trying a fine-tuning approach
is to study techniques from the three main directions in FSOD. Chaps. 5 and 6 respectively focus
on metric-learning and attention-based methods. The last kind of FSOD approach in the literature
relies on fine-tuning. While such a strategy is not very innovative, this is one of the first appli-
cations of a diffusion-based approach to a few-shot predictive task. In addition to the fine-tuning
strategy, we propose a transductive inference scheme to boost the performance of the fine-tuned
model. However, these are only preliminary work and do not yield the expected results yet. Fi-
nally, we also investigate an attention-based extension of DiffusionDet, while promising on paper

the experimental study demonstrates poor results.

7.3.1 Fine-tuning Strategy for Few-Shot DiffusionDet
We present in this section the fine-tuning strategy that we propose to adapt DiffusionDet to the

few-shot regime:

1. Train DiffusionDet in a regular fashion on a dataset containing only examples of the base
classes.
2. Once base training is done, replace the classification layer with a randomly initialized layer

with as many output neurons as the number of novel classes.
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3. Freeze the entire backbone and let only the detection head be updatable. This choice is not
optimal and will be discussed in the next section, however, we present here the baseline con-
figuration.

4. Reset the learning rate scheduler, so it goes again through a warmup phase. The scheduling is
a simple linear warmup starting at ﬁ of the base Learning Rate (LR) and linearly increasing
up to the base LR value during 1000 iterations.

5. Fine-tune the model with K images for each novel class. All instances of the novel classes are
kept while instances from other classes are discarded. This corresponds to the distractor-free

sampling scheme discussed in Sec. 4.1.

As our goal is not to tackle the Generalized Few-Shot setting, we are mostly interested in the per-
formance on novel classes. Of course, one might want to detect base classes as well, in this case, it is
possible to keep a version of the model after base training and leverage it for base classes detection.
Of course, it would require twice as much time to perform the inference to detect both base and

novel classes, but this is a mild compromise compared to common issues raised by G-FSOD.

Fine-tuning is part of most FSOD methods as the adaptation of the regression part of the mod-
els cannot be easily done on the fly (conversely to the classification part). However, fine-tuning
attention-based or metric learning models is often quite long in comparison with "simple" fine-
tuning strategies which directly fine-tune object detectors on the support set without expensive
additional components (e.g., a query-support attention block). This makes the fine-tuning faster
and unlocks much quicker iterations and experiments. Nevertheless, fine-tuning approaches can-
not be adapted at inference time and therefore, it is difficult to measure the robustness to various
support examples. Thus, multiple fine-tunings are required to get a relevant evaluation of a model,
otherwise, the randomness of the support set can introduce some variance and the comparison is
less reliable. In practice, fine-tuning with different support does not significantly change the per-

formance of FSDiffusionDet.

While the proposed strategy is fairly simple, it yields impressive results. We provide in Tab. 7.1 a
comparison between the FSDiffusionDet baseline and the discussed methods from previous chapters.
It outperforms largely the metric-learning and attention-based methods on aerial images. On natural
images, the gains are reduced but FSDiffusionDet is still superior (especially for MS COCO where
the problem is now a 20-ways detection problem and not a 5-ways task as in previous chapters). A
detailed analysis is conducted in the next section to understand why it performs so well and how it

can be improved further.

Another advantage of FSDiffusionDet compared with attention methods is its memory efficiency.
Indeed, query-support combination blocks and support embedding models require a lot of memory
while training and often scale linearly with the number of classes (/V) and the number of shots K.
FSDiffusionDet is not limited by the number of shots and therefore, we can explore much higher shot

settings than with metric-learning or attention-based methods. Tab. 7.2 provides the novel classes
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DOTA DIOR Pascal VOC MS COCO
Method Base Novel Base Novel Base Novel Base Novel

FRW 49.04 3529 6130 37.29 63.21 48.72 29.03 24.09

DANA 53.99 36,50 62.71 38.18 65.17 52.26 38.14 24.75
WSAAN  46.72 35.12 6279 3238 65.27 51.70 40.87 21.42
PFRCNN 3632 11.55 4237  9.16 - - - -

XQSA 51.11  41.00 59.88 41,51 62.13 53.94 3156 25.03

FSDiffDet 69.58 52.05 81.71 54.32 74.63 52.64 5191 2499

Table 7.1: FSDiffusionDet baseline compared with other FSOD methods. mAP is reported with a 0.5
IoU threshold and all methods leverage 10 shots.

K DOTA DIOR PascalVOC MS COCO

1 4.19 27.17 22.24 7.43
2 9.83 40.31 31.98 12.45
3 27.61 43.54 29.52 15.75
5 39.00 46.92 38.08 19.33
10 52.05 54.32 52.64 24.99
20 62.79 60.24 59.26 28.76
30 67.32 65.28 64.19 31.19
50 71.91 71.21 67.81 34.64
100  72.27 77.05 71.31 38.77

Table 7.2: Influence of the number of shots on the few-shot object detection performance of FSDif-
fusionDet on DOTA, DIOR, Pascal VOC and MS COCO. Performance is reported with mAP 5.

performance on our four datasets of interest. The base class performance is not reported here as they
do not depend on the number of shots, they can be found in the last row of Tab. 7.1. One can observe
a smooth increase in performance with the number of shots with a plateau above 50 shots. To better
visualize this trend and compare it with attention-based methods studied in Chap. 6, we plot in
Fig. 7.5 the performance against the number of shots. From this, it can be seen that the performance
is much lower in the one-shot setting with FSDiffusionDet compared to attention-based approaches.
However, FSDiffusionDet quickly catches up and outperforms largely other methods in higher shots
settings. In addition, we can observe a much quicker increase in performance as the number of
shots increases with FSDiffusionDet. This is a highly desirable property in an industrial application
because this means that the model has more potential for improvements. On the contrary, attention-
based approaches do not display such a strong trend, they are better suited for extremely low-shot

regimes, but become less effective with higher shots.

7.3.2 Experimental Study of FSDiffusionDet
In the previous section, we have presented an efficient fine-tuning strategy for DiffusionDet along
with an analysis of its few-shot performance on several datasets. However, this is only a baseline

for FSDiffusionDet and its performance can be improved further. Its fast training time allows for

145



CHAPTER 7 - FEW-SHOT DIFFUSION DETECTOR VIA FINE-TUNING

DOTA Pascal VOC
70 70 1
60
60
50
0
o= 40 0 207 0
<C
E 30 4044
201
¢ 30
101
T T T 20 -t T
100 10! 102 100 10!
K shots K shots
DIOR MS COCO
80 40
701 35
60 301
0
f 50 1 25
<C
E 40" (> 20_
301 15
201 101
e o] Nt o
K shots K shots
—0— FSDiffusionDet —0— XQSA —o— FRW —v— DANA —~— WSAAN

Figure 7.5: Performance of FSDiffusionDet, XQSA, FRW, DANA and WSAAN on DOTA, DIOR, Pas-
cal VOC and MS COCO against the number of shots. Performance is reported with mAP 5.
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Backbones DOTA DIOR Pascal VOC MS COCO

Scratch 7.28 8.72 13.72 0.38
ImageNet 52.05 54.32 52.64 24.99
DINO 46.84  55.88 54.58 23.94
CLIP 40.36 51.61 49.81 19.83

Table 7.3: Study of the influence of the backbone pre-training. mAP 5 is provided only for base
classes, therefore the blue and red colors to distinguish between base and novel classes are no longer
required.

conducting more experiments, which was too expensive with metric-learning and attention-based
methods. Thus, we present in this section a series of experiments that we conducted to explore the

capabilities of FSDiffusionDet but also to answer more general questions about FSOD.

7.3.2.1 Backbone Weights Initialization

First, in classification, it is now well-known that using self-supervised pre-trained backbones often
boost a lot the few-shot performance of a method [113, 332, 68, 291]. While plenty of studies show
this for classification, for detection, the transferability of the learned features is not so evident. As
a matter of fact, a few contributions actually show that using such backbones is sub-optimal. For
instance, InsLoc [333] and SoCO [334] propose object-level self-supervised techniques and prove
empirically that image-level SSL is not optimal and in some cases can even be detrimental to the
detection task. In this section, we study empirically the influence of using SSL pre-trained weights
for the backbone initialization, before base training and fine-tuning. We do not consider the recent
object-level techniques and instead leverage four different initialization strategies for the backbone

weights:

- Scratch: weights are randomly initialized.

- ImageNet: weights are initialized from a ResNet-50 trained in a supervised manner for Ima-
geNet classification.

- DINO: weights from the DINO [68] pretraining on ImageNet.

- CLIP: weights taken from the CLIP [291] model, trained in a contrastive way on a 400 million

image-text pairs dataset.

Then, FSDiffusionDet is trained following our two steps training scheme (base training and fine-
tuning). The results are available in Tab. 7.3. From this, it is quite clear that training from scratch is
not a sensible option, even though base training is correct, the fine-tuning on base classes provides
really poor detection performance. Then, between Imagenet, DINO and CLIP the differences are
tight. Of course, CLIP’s weights are slightly worse than ImageNet and DINO, but it is still a strong
baseline. Between ImageNet and DINO, however, it is difficult to conclude as both achieve the
best performance on one aerial and one natural dataset. As the performance gap is thin between
ImageNet and DINO, we choose to conduct our next experiments with ImageNet weights which

have stood the test of time and are now the default choice in computer vision.
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7.3.2.2 Plasticity Analysis

The number of parameters frozen in the model is sometimes called the plasticity of the model in the
continual learning field, but this concept may also be useful in the few-shot setting. For simplicity,
we measure the plasticity of the model as the ratio between the number of trainable parameters over
the total number of parameters. Plasticity close to 1 means that the model is malleable and could
learn new complex tasks. However, when it is close to 0, the model can barely change and learning

new tasks may be difficult.

The plasticity is commonly explored in fine-tuning strategies for few-shot tasks. The underlying
principle is that the task is learned during base training, and fine-tuning is only used to adapt the task
to novel classes. Hence, the behavior of the entire model should not change dramatically. Therefore,
the plasticity of the models is often quite low in the FS literature. In practice, the early stages of the
model are kept frozen while only the deeper layers are trained. This trick is well-motivated as it
drastically reduces the capacity of the model and thus prevents overfitting, which is particularly
severe in low-shot regimes. In addition, it also reduces catastrophic forgetting, which can be quite
a challenge in G-FSOD.

However, this may be inadequate for the detection task. As the detection is primarily a problem
of finding what is and what is not an object of interest, the backbone is trained as a feature filter.
Features from classes of interest are highlighted while others are faded out. Conversely, for classifi-
cation, backbones are not required to learn such a filtering process as all classes are "of interest", and
there is always one object of interest in the image. In addition, some recent experiments [284] about
freezing settings in cross-domain scenarios show that improved performance is achieved with in-
creased plasticity. In this work, the authors only study three freezing settings: fine-tuning only the
last layer (as proposed in TFA [258]), fine-tuning only the detection head (proposed in FSCE [254]),
and fine-tuning the whole model (their proposition). Here, we investigate the freezing setting in a
more detailed manner with several intermediary setups, but the main difference is that we conduct

this analysis on the same image domain:

- Fine-Tune last layer only: fine-tune only the last regression and classification layers.

Fine-Tune head only: fine-tune only the detection head.

Up to stage i: Freeze backbone up to stage number i (i € [1, 5] as ResNets have 5 stages).
- Fine-Tune whole: fine-tune the whole model.

- Bias only: fine-tune only the backbone biases.

BatchNorm only: fine-tune only the backbone BatchNorm parameters.

The results of this comparison can be found in Tab. 7.4. It reports the mAP with different freezing
strategies on DOTA, DIOR, Pascal VOC and MS COCO. Additionally, the plasticity rate is reported
for each freezing strategy. Two distinct behaviors are observed here. First, on DOTA, as the plastic-
ity increases, the FSOD performance increases as well. On DIOR, Pascal VOC and MS COCO, lower
plasticity is optimal (fine-tuning the detection head and the last stage of the backbone). Therefore,

the fine-tuning strategy cannot be set once for all datasets. It is therefore crucial to understand what
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Freezing point  Plasticity rate DOTA DIOR Pascal VOC MS COCO

FT whole 100.00 % 60.09 52.17 43.10 17.15
Bias only 35.98 % 60.45 55.12 49.90 20.19
BatchNorm only 35.97 % 59.35  55.63 51.96 19.70
Up to stage 1 99.98 % 58.85 53.37 43.81 17.72
Up to stage 2 99.47 % 57.41 53.21 41.23 17.73
Up to stage 3 96.57 % 59.88 54.36 47.57 19.49
Up to stage 4 79.66 % 56.13 57.51 53.72 21.88
FT head only 35.97 % 51.82 55.70 51.72 19.96
FT last layer only 0.03 % 0.05 0.11 0.53 0.01

Table 7.4: Influence of the amount of plasticity on the FS performance on DOTA, DIOR, Pascal VOC
and MS COCO. mAP is reported with a 0.5 IoU threshold.

differs in DOTA from the other datasets. As the task and the images remain similar between base
training and fine-tuning, the only source of variability comes from the class splits. Our hypothesis
here is that base and novel classes in DOTA are less compatible (i.e., less alike) than in the other
datasets. For Pascal VOC, we briefly discuss this aspect in Sec. 6.2.5.2, where we observed surpris-
ingly high mAP for the novel class sheep as the class horse was in the base set. A more quantitative
way of measuring the compatibility between the base and novel class sets would be required to draw

reliable conclusions about this. We are currently working on this.

In addition, we observe that fine-tuning the backbone entirely is often a sub-optimal choice. In-
stead, higher (or at least competitive) results are achieved by fine-tuning only the biases or the
batch normalization parameters of the backbone. Fine-tuning only the biases or the batch normal-
ization parameters in the backbone does not change much the plasticity as only a few parameters
are concerned, yet it seems to provide a beneficial adaptability to the entire backbone. On DIOR,
Pascal VOC and MS COCO, it provides very high mAP compared to other settings with similar plas-
ticity. Finally, fine-tuning only the very last layer of the classification and regression branches is
completely sub-optimal. Strangely, this contradicts some FSOD models that adopt this strategy and
achieve reasonable performance (e.g., TFA [258]). With FSDiffusionDet, this strategy achieves ex-
tremely poor detection, having too small plasticity must be avoided. Thus, a plasticity compromise

must be found depending on the dataset and its split compatibility.

7.3.2.3 Number of Proposals

Another set of experiments explores the influence of the number of proposals for FSOD. The pro-
posals are the boxes sampled at the beginning of the diffusion process. The number of proposals N,
represents the maximum number of objects that the model can detect in one image. This number is
chosen large compared to the average number of objects in the images. Intuitively, sampling more
random boxes reduces the chances of missing an object. However, having a higher number of pro-
posals generates more duplicates which can be detrimental as well. More proposals also lead to a

higher training time and memory usage as the denoising process is applied on all boxes. The critical
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# of Proposals DOTA DIOR Pascal VOC MS COCO

200 41.57 52.92 52.86 23.24
250 47.97 47.62 52.28 22.61
300 55.76  51.77 51.81 22.46
350 52.27 50.41 50.63 22.13
400 46.49 49.98 50.55 20.04
450 53.11 53.07 51.06 20.48
500 52.03  55.31 51.44 20.25

Table 7.5: Analysis of FSDiffusionDet performance (mAP 5) against the number of proposals on
DOTA, DIOR, Pascal VOC and MS COCO datasets.

parts are the self-attention layers that scale in O(Ng). Thus, we investigate the few-shot perfor-
mance of FSDiffusionDet with various numbers of proposals. The results of these experiments are
available in Tab. 7.5. We notice two different behaviors between natural and aerial images. For nat-
ural images (Pascal VOC and MS COCO), it seems better to set the number of proposals relatively
low compared to aerial images. This makes sense as there are more objects in aerial images. For
natural images, the detection quality increases as the number of proposals is reduced, and it may
be relevant to test what happens with even fewer proposals. However, with aerial images, the per-
formance does not seem to correlate well with the number of proposals. It is relevant to mention
that the results on MS COCO are opposite to what the authors of DiffusionDet found in the regular
data regime (increasing the number of proposals increases the mAP). This could be explained by
the reduced number of objects in the images, as in the few-shot regime we consider only the novel

classes, many instances are discarded and fewer proposals are required to detect the objects.

7.3.2.4 Other Experiments and Future Directions

In addition to the previous experiments, we conduct several other studies to further improve the
detection capabilities of FSDiffusionDet. However, some of these studies did not yield very rele-
vant insights, some others were not explored deeply enough due to the time constraint of this PhD
project. We briefly present these experiments that will pave the way for future improvements of
FSDiffusionDet.

Learning Rate Sweeping.

First, just as proposals, freezing sweet spot and backbone pre-training, we studied the influence of
the Learning Rate (LR) and its schedule on the FSOD performance. Indeed, the choice of the LR
value during the fine-tuning is not trivial. Therefore, to make sure we get a good fit for our experi-
ments we conduct a LR sweeping, i.e., we try several different values for the LR. This experiment is
conducted only on DOTA with K = 10 for simplicity, but in theory, it should be done for every new
experiment. Indeed, following the nomenclature from the recent Deep Learning Tuning Playbook
[335], the learning rate is a nuisance parameter, meaning that to make a fair comparison between

various settings, the optimal LR should be found for all runs individually. As we change some hy-
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Learning rate Constant Schedule Cosine Annealing

le—6 39.04 29.45
5e—6 49.06 45.32
le—5 52.31 49.33
5e—95 53.46 52.99
le—4 53.25 51.96
S5e—4 49.33 52.51
le—3 47.45 47.82

Table 7.6: Learning rate sweeping on DOTA dataset with K = 10 shots. Two distinct schedulers
are considered: constant and cosine annealing. Performance is reported with mAP 5.

perparameters, it is likely that the optimal learning rate changes as well, therefore fair comparison
can only be achieved if the LR is optimal for all runs, e.g., the optimal learning rate for K’ = 1 or
K = 100 shots may not be the same. Even though fine-tuning methods are fast to adapt, running
such an LR analysis is very expensive. Nevertheless, running an LR sweeping on DOTA provides
insights into how it influences the FSOD performance. The results can be found in Tab. 7.6, and
show an optimal value around 5e—>5. But most importantly, it shows a relatively large area where
performance is satisfactory. This comforts us in our choice of fixing the LR for all our experiments.
While this is probably not the optimal choice, it is reasonable. We also tried a cosine annealing
scheduler, but it yields consistently inferior results and was then rejected. Its only advantage is that

it seems to deal better with higher LR, which makes the training slightly faster.

Proposal Prior Distribution.
In DiffusionDet, the coordinates of the proposals are sampled randomly following a normal distri-
bution. The coordinates of the boxes are clamped with a scale parameter ¢ to make sure the center

of each box remains within the image limits. Specifically, we have:

w = (clamp(ey, —¢,¢) /s + 1) /2, (7.27)
h = (Clamp(€h7 - §)/§ + 1) /23 (7.28)
x = (clamp(e,, —¢,¢) /s + 1) /2 — %, (7.29)
y = (clamp(ey, —¢,¢)/s +1) /2 — g, (7.30)

with €, €y, €, €5, ~ N (0, 1). (7.31)

By default, < is set to 2, but it would be interesting to explore how it changes the FSOD performance.
Indeed, as ¢ — 0 the boxes are more and more identical and their centers tend to approach the image
corners, as ¢ — 00, the boxes are more and more aligned with the image center. It could also be
relevant to explore the use of a uniform sampling instead of a Gaussian distribution. This would
prevent having a bias toward the image center as it happens with high values of ¢. In fact, the use

of ¢ close to 1, is relatively close to a uniform distribution. This is illustrated in Fig. 7.6.
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The setting of ¢ slightly changes the diffusion process as the boxes are generated from clamped
Gaussian distributions and not regular Gaussians. Most of the derivations detailed in Sec. 7.1 hold
only for gaussian distributions and therefore using small values of ¢ or uniform prior may disrupt
the diffusion process. We did not have time to conduct these experiments yet, but this is planned
as future work. Another consideration is the size of the generated boxes. In the above, the size of
the proposal is randomly sampled and has an expected value of half the image size. This may not
be optimal, especially when applying FSDiffusionDet on aerial images with small objects. Hence,
we propose to introduce a proposal scaling parameter w that divides the width and height of the

proposals:

: (7.32)

, (7.33)

q1=9|=

where w’ and ' are the scaled width and height of the sampled boxes. Of course, as small proposals
may not cover the whole image, their number must be increased to prevent missing objects. Going
further, we can also imagine a mixture of width and height distribution to sample proposals with
significant size differences, which is not achieved in practice yet as shown in Fig. 7.6. Fig. 7.7 shows

how the proposals would change with w, with ¢ = 2 fixed.

Transductive Inference.

To further improve the FSOD performance of FSDiffusionDet, we also consider designing a trans-
ductive inference scheme inside the detection framework. To our knowledge, this would be a first
in the FSOD domain. Of course, the transductive setting is slightly different from the regular few-
shot inference as it requires access to a large set of query images during the inference. The goal
is to detect objects in these images, but these unlabelled images can be leveraged to improve the
detection on the entire set. This setup makes a lot of sense for COSE’s application. Indeed, the very
large images of COSE cannot be processed as a whole, instead, they must be cropped into smaller
patches. This means that a relatively large number of images are to be processed at the same time
(11600 x 8700 pixels images can be cropped into roughly 400 patches of 512 x 512 pixels). Hence,

studying transductive inference is of particular interest to the company.

First of all, in classification, the transductive inference is often used in replacement of a fine-tuning
step and allows for direct adaptation of a model to a new task or domain (see Sec. 2.2.1.6 for more
details). This is prohibited in the detection context as the regression branch must be fine-tuned
anyway. Thus, our goal is to improve the classification part once the model has been fine-tuned. To
this end, we propose to adapt LaplacianShot [162] to work with representations of objects instead
of representations of entire images. Specifically, the Laplacian Shot Module (LSM) replaces the
classification layer of the model. As input, LSM receives a set of all objects representation detected
in the query set (using the boxes produced by the regression branch) and the representation of the

annotated support examples. Then, LSM optimizes an objective function to find an optimal label
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Figure 7.6: DiffusionDet initial random boxes with various values of ¢, the parameter that controls
the spread over the images. 75 proposals are sampled per image.
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Figure 7.7: Influence of w on the size of the proposals. Note that here 200 proposals are sampled,
for visualization purposes.
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assignment ) of all query examples (in our case all objects found in the query set):

|Q‘ |Cnovel‘
1
Lsu) =D Y lid(zime) + 5 > 0z 2l L, (7.34)
i=1 c=1 i,j

where z, and [, are the extracted features and classification score vector for object g, respectively. ()
represents the set of object representations in the whole query set, d is a distance measure (e.g., the
euclidean distance between objects representations), and 7 is a similarity function in the embedding
space (in practice, it is chosen as a binary k-NN, i.e., a vector has a similarity of 1 with its k nearest
neighbors and 0 with all others). Finally, m, is the representation of class ¢, it is computed as the
average over the support representations of that class. Intuitively, this objective function finds a
compromise between assigning to an unlabelled object the label of the closest support example and

assigning the same label as its neighbors.

As a first comparison, we leverage four distinct inference setups for detection:

- Fine-tuning Inference (FI): boxes and classification scores output by the fine-tuned model.

- Transductive Inference (TI): boxes from fine-tuned model and classification score from the
Laplacian Shot Module.

- Hybrid Transductive Inference (HTI): boxes from fine-tuned model and classification
scores as a combination (e.g., element-wise multiplication) of LSM and fine-tuned model.

- Optimal Classification (OC): boxes from the model and optimally matched labels from the
ground truth. It can be seen as an oracle, it is a performance upper-bound given the quality

of the regression.

We assume above that for the detection task, the regression branch must be fine-tuned otherwise
performance is highly degraded. To confirm this assumption, we compare the four inference settings
described above using a model that has only been base-trained against a model that was fine-tuned
on the novel classes. This is done on DOTA with K = 10 shots. The results are available in Tab. 7.7.
From that table, it is clear that the fine-tuning of the regression branch is crucial to achieving rea-
sonable performance. In particular, the oracle (OC) is highly degraded when the regression branch
is not fine-tuned. Interestingly, in this case, TI achieves higher mAP than the non-fine-tuned clas-
sification branch of the model. It makes sense as this layer is only initialized with random weights.
However, one can see that the Tl is largely under the FI when using the fine-tuned regression branch.
The classification made by the LSM is therefore worse than the fine-tuned classification branch. A
quick investigation of the classification scores shows that the scores output by TI differ significantly
from FI (see Fig. 7.9). The fine-tuned model outputs a large number of very small classification scores
which mostly correspond to background objects. Hence, they are filtered out by the post-processing
(score thresholding and NMS), and the remaining ones will have a negligible impact on the mAP
computation. TI, however, outputs much higher scores, with a greater variance. It struggles to dis-

tinguish foreground and background objects, and for good reason, it was designed for classification
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and not detection. To this end, we propose HTL a hybrid classification inference that leverages
both the score from the fine-tuned model and the transductive inference. Hopefully, it will fix the
mistakes from the fine-tuned classification layer while avoiding the TT’s pitfall. To do so, we simply
multiply the scores from FI and TI together. Thus, the good foreground/background distinction from
FI is embedded in the new score distribution. This helps a lot for the classification; however, it is
still under the FI performance. From this, it seems that TI is only detrimental to classification. TSNE
representations of the embedding space help to make sense of these results. These can be found in
Fig. 7.8 for FI, TI and HTI, and the Oracle.

One can see large patches of the cluster representing the class 2 misclassified as class 14 by both
TI and HTL The prototype of class 2 seems closer to these misclassified points in the TSNE vi-
sualizations, but the distances must be interpreted carefully as two dimensions are not enough to
represent the entire complexity of the representation space (dimension 256). Yet, it seems that the
distributions of the classes in the embedding space are multimodal, therefore it may be impossible
to accurately classify the objects with only one prototype per class. Leveraging multiple prototypes

per class should be investigated in future work.

In addition to HTIL, we also tried to filter the objects with low FI scores (with a threshold at 0.05),
this greatly helps for the transductive inference although it reduces slightly the performance of FI
(some objects are correctly detected but have a low score but are filtered anyway). With filtering
and HTIL we almost reach the same performance as the FI which is encouraging. However, the goal
is to benefit from the transductive inference and this is not achieved yet. More analysis needs to
be conducted to better understand the reason behind the poor classification score of TI. In addition,
the transductive inference should be extended to account for the detection challenges: a great fore-
ground/background imbalance and an increased intra-class diversity. To this end, we have a few

ideas that we did not have time to explore yet:

- Geometric priors: leverage the geometrical features of the objects (e.g., size, aspect ratio,
etc) to find outliers and exclude them without using a hard score thresholding. This could
significantly reduce the number of objects and help to filter ill-formed boxes.

- Multiple prototypes per class: instead of aggregating all support examples of one class as
one prototype, use multiple prototypes per class and extend LSM as a mixture model.

- Background class: Introduce a background class within the LSM module to prevent the poor

foreground/background distinction.

These tracks will be explored during the last months of this PhD project and will hopefully improve
further the detection capabilities of FSDiffusionDet. In addition, we plan to apply the transductive

inference in Cross-Domain scenarios, as it could help against the performance drop in these settings.

Support Attention.
Finally, we also try to extend FSDiffusionDet with an attention mechanism (e.g., XQSA). The main

motivation is to be able to compare the influence of the detection framework on attention-based
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Fl predictions Tl predictions

e Background « Class 4 * Support class 2 * Support class 14
e Class 2 « Class 14 * Support class 4

Figure 7.8: Comparisons of the TSNE visualizations of the fine-tuned model predictions (FI), trans-
ductive inference (TI), hybrid inference (HTI) and the oracle. Note that background predictions are
only available for the oracle as the models’ inferences only provide class scores.
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Figure 7.9: Comparisons of the scores histograms of fine-tuned model predictions (FI), transductive
inference (TI), and hybrid inference (HTI).

Training Strategy FI TI HTI OC
Base training only 0.04 3.79 256 2542
Base training + FT 58.98 33.61 5390 67.35

Base training + FT + Filtering 57.95 43.63 57.00 67.35

Table 7.7: Naive comparison between a model only trained on base classes against a model that
has been fine-tuned as well. All 4 inference setups are compared as well. Bold values represent the
best-performing method between FI, TI and HTIL, the Oracle (OC) is not included. Performance is
reported as the mAPg 5

FSOD methods (in Chap. 6, we studied the influence of the attention mechanism with a fixed detec-
tion framework). Given the impressive results of FSDiffusionDet with a simple fine-tuning strategy,

this is promising.

Thus, we extend the detection head with a query-support block which is meant to incorporate the
support features within the detection head. The head is then split and boxes are produced for each
class independently (following the attention-based FSOD principle, see Fig. 6.1). Unfortunately, this
does not yield satisfactory results and slows down the training a lot. Considering the time already
spent on attention mechanisms since the beginning of the project and the very good performance of
FSDiffusionDet with the fine-tuning, we decided not to explore this direction further. Nonetheless,

this remains an interesting direction for future work.

7.3.3 Comparison with existing FSOD Methods

In the previous section, we explored several design choices for FSDiffusionDet and analyzed how
they influence the detection performance on novel classes. We compare here the best settings for
FSDiffusionDet according to our experiments conducted in the previous section. These experiments
are averaged over 5 distinct seeds to get more reliable results. This contrasts with the above experi-
ments which are mostly done with one seed only. However, the limited variance observed over the
multiple runs confirms that previous results are reliable as well. FSDiffusionDet is compared with

PFRCNN and XQSA that we proposed in Chaps. 5 and 6 and some relevant works from the literature.
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DOTA DIOR Pascal VOC MS COCO
All S M L All S M L All S M L All S M L
FRW 3529 1399 3411 5931 37.29 248 3374 5938 4872 1644 2671 6827 24.09 11.53 2245 38.69
DANA 36.50 1432 40.28 64.65 3818 321 3491 60.99 5226 10.05 24.67 67.23 2475 12.01 29.40 37.95
WSAAN 35.12 - - - 32.38 - - - 51.70 - - - 21.42 - - -
PFRCNN 11.55 - - - 9.16 - - - - - - - - - - -
XQSA 41.00 17.84 44.57 5446 4151 412  40.69 5821 5394 19.46 34.86 66.14 25.03 12.57 26.05 38.55

FSDiffusionDet 57.93 45.99 61.33 5325 55.80 14.66 54.14 72.82 5580 1505 30.20 69.64 24.03 517 19.23 38.62

Table 7.8: Detection results of FSDiffusionDet on DOTA, DIOR, Pascal VOC and MS COCO datasets.
The models employed to produce this figure have been finetuned with & = 10 shots and following
the best fine-tuning strategy found in Sec. 7.3.2.4 for each dataset. The mAPq 5 is reported as an
average of over 5 distinct runs. The top rows include methods from the literature while the bottom
rows designate our proposed methods.

This comparison can be found in Tab. 7.8. This table also includes the Small, Medium, and Large
size distinctions from the previous chapters. FSDiffusionDet largely outperforms other methods dis-
regarding the object sizes. For small objects, FSDiffusionDet achieves impressive performance on
aerial images but lags slightly behind XQSA on natural images. It is particularly noteworthy as it
was not designed specifically for small object detection. Another surprising result can be observed
on DOTA where medium size objects are better detected than large ones, which is not the case for
other datasets. This is unusual compared to all our previous experiments, including attention-based
methods. It might result from having too few proposals boxes (N, = 300 in Tab. 7.8 for DOTA),
then the model can only focus on small and medium objects as they are more numerous than larger
ones. Given the size distribution in DOTA, this is a better compromise as it yields higher over-
all mAP. From Tab. 7.8, it seems that FSDiffusionDet performs slightly worse than XQSA, DANA
and FRW on MS COCO. This is not true as FSDiffusionDet tackles MS COCO as a 20-ways detec-
tion problem whereas other approaches only consider an easier 5-ways problem. It is not possible
to perform 5-ways episodic evaluation with FSDiffusionDet as all classes must be included during
fine-tuning. However, it could be interesting to observe how well attention-based methods perform
in the 20-ways settings (it is often challenging to do so with attention-based methods due to memory

constraints and long inference time).

Finally, we also provide a qualitative assessment of the performance of FSDiffusionDet on DOTA,
DIOR, Pascal VOC and MS COCO in Fig. 7.10. This figure presents novel class detection results on 5
images from each dataset. It is certainly stronger than all previously studied methods (see Fig. 6.13).
However, it is not perfect. Some objects are misclassified (see the third row in MS COCO column),
some are not detected (DOTA, first row), and there are still false detections (Pascal VOC, 4th row).
Nonetheless, these qualitative results are much better than our other approaches and can be consid-
ered for actual industrial applications. It strengthens the need for more elaborate fine-tuning strate-
gies and insight into how to design them without too much trial and error. FSDiffusionDet achieves
impressive FSOD results, especially on DOTA and DIOR, but this performance was achieved through
expensive exploration. It would be of great help to know in advance how a strategy will perform on

a given dataset. We started some investigation in this direction with the design of a compatibility
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Figure 7.10: Qualitative detection results of FSDiffusionDet on DOTA, DIOR, Pascal VOC and MS
COCO datasets. The models employed to produce this figure have been fine-tuned with K = 10
shots and following the best fine-tuning strategy found in Sec. 7.3.2.4 for each dataset.
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score between base and novel classes, taking into account both the overall shift and discrepancies
in the class structures. Lastly, FSDiffusionDet’s results are strong enough to tackle more complex
scenarios such as Few-Shot Cross-Domain Adaptation. This will be explored in Sec. 7.4 and should

be continued in future work as well.

7.4 Application to Cross-Domain FSOD

Given the impressive performance of FSDiffusionDet on DOTA and DIOR, it seems tempting to
try more difficult setups. Up to now, the methods studied in this project were barely reaching a
satisfactory point from an applicative perspective. With FSDiffusionDet, we are past that, and can
now consider the Cross-Domain setting. Cross-Domain is especially important for COSE, given the
prohibited access to test-time images. The ability to adapt to new domains would be an extremely
valuable property for a surveillance system such as CAMELEON. Of course, the domain change
would be limited in COSE’s applications as the only change between two missions would be the
general aspect of the image (i.e., weather, GSD, luminosity, etc.). However, the images will always

be aerial taken pointing nadir.

In this section, we tackle the challenging Cross-Domain Few-Shot Object Detection (CD-FSOD)
task which is barely untouched in the literature. To this end, we focus on two distinct scenarios,
one introduced by [284] with a first training on MS COCO and one specifically designed for COSE’s
applications where both the source and target domains are aerial datasets. For both scenarios, we
first present the dataset used as source and target domains and the experimental setup. Then we
provide some experimental results with the FSDiffusionDet baseline. These results are preliminary
and promising, further experimentation in this direction is required to better understand this task
and further improve FSDiffusionDet in this context. Therefore, we end this section with a summary

of the future work that is planned.

7.4.1 MS COCO — Anything

First, we study a general Cross-Domain (CD) setting introduced in the literature by [284]. It consists
of training first on MS COCO and then fine-tuning on another dataset with a restricted number of
shots. Unlike in the FSOD setting, there is no separation between base and novel classes in CD,
all classes of the target domain are considered novel. The benchmark introduced by [284] contains
a list of 10 datasets (VisDrone2019 [336], DeepFruits, iWildCam [337], SIXray [109], Fashionpedia
[338], Oktoberfest [106], LogoDet-3K [108], CrowdHuman [102], ClipArt [107], KITTI [98]).

7.4.1.1 Cross-Domain Scenarios

The pool of datasets proposed by [284] has a large variety of images, therefore it constitutes a
relevant benchmark for CD-FSOD. However, it does not contain any aerial dataset. VisDrone is
an aerial image dataset but differs greatly from DOTA or DIOR as its images are taken from a much
lower altitude and contain perspective. In addition, 10 datasets make the experiments expensive to

run. Thus, we propose a lighter benchmark using VisDrone2019, DeepFruits, SixRay, DOTA, DIOR
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VisDrone ClipArt DeepFruits SixRAY

List of classes:

List of classes: pot:‘edp's?”é' hai List of classes: _
pedestrian, person , car, person, oat, bird, charr, strawberry, mango, List of classes:

. o diningtable, bottle, car, I Gun. Wrench. Knif
van, bus, truck, motor, ! orange, apple, un, Wrench, Knife,
bicycle, awning-tricycle, cow, dog, tvmonitor, rockmelon, avocado, Pliers, Scissors

tricycle. sofa, sheep, bus, capsicum

bicycle, aeroplane, train,
motorbike, cat, horse

Figure 7.11: Presentation of the datasets used in our Cross-Domain benchmark: VisDrone2019,
DeepFruits, SixRay, and ClipArt.

and ClipArt. We emphasize that dealing with that many datasets is quite challenging as almost every
dataset has its own annotation format and data structure. When [284] proposed this benchmark,
the authors only provided the list of datasets, without any information about their preparation and
split, which makes their experiments very hard to reproduce. On the contrary, we propose for the
convenience of future research on CD-FSOD a prepared version of this "meta-dataset™® under the
same format (the MS COCO format, which is relatively common in the OD community). In addition
to the prepared meta-dataset, we also extend the popular Python package pycocotools to help load

and explore the datasets.

As mentioned above, we study here 6 cross-domain scenarios with a common base training on
MS-COCO. Every scenario has a different target domain represented with one of the following
datasets. Fig. 7.11 provides some image examples (without annotations) for VisDrone2019, Deep-
Fruits, SixRay, and ClipArt. We refer the reader to Fig. 2.7 for a presentation of DOTA and DIOR.

For convenience, we denote these 6 scenarios as COCO — X scenarios.

®Link to the Meta-Dataset and Python API package
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7.4.1.2 Experimental Results

We only experimented with the CD scenario with the baseline of FSDiffusionDet. Specifically, only
the detection head is fine-tuned, with 500 proposals. The weights of the model are initialized using
the pre-trained weights available on the DiffusionDet repository, except for the last layer of the
classification branch which is initialized randomly with the right number of outputs. While this
is certainly not optimal for every scenario, this gives a strong baseline to compare with in future

experiments.

The results of our experimentation with the cross-domain scenarios can be found in Tab. 7.9 and
Fig. 7.12. As for the regular FS experiments, a clear pattern is visible as the number of shots in-
creases. Obviously, the more shots, the better the detection. However, this pattern differs from one
scenario to another. For instance, COCO — ClipArt scenario sees very little improvements as the
number of shots increases unlike COCO — DOTA and COCO — SIXRay. It is also noteworthy to
observe the different behaviors between DOTA and DIOR. Even if DIOR is an "easier" dataset than
DOTA (in the sense that higher performance is achieved on DIOR in a regular detection setting),
there is a larger difference in the COCO — X cross-domain scenario. Relatively low performance
is observed for ClipArt and VisDrone, this is probably due to differences in data preparation com-
pared with [284]. As the author did not provide any information about all the datasets’ splits and
preparation, we can only guess what they did. For ClipArt, it is slightly different as they leveraged
a GAN-augmented version of the dataset which might sensibly boost the detection performance.
Finally, for each scenario 5 distinct training were done with varying seeds to check the consistency
of our results. Tab. 7.9 gives the average over the 5 runs and a 95% confidence interval. A limited
variance between different runs is observed, this means that FSDiffusionDet is not very sensitive to
the examples chosen in the support set. This is a crucial property as some few-shot methods de-
pend a lot on the choice of the support set. Of course, most of our experiments should be repeated
the same way to strengthen the results, but this quickly becomes expensive in terms of computing

resources.

These preliminary results are promising, FSDiffusionDet achieves satisfactory performance with
only a few-annotated examples on various datasets. These datasets are constituted of various kinds
of images, therefore it demonstrates well the adaptation capabilities of FSDiffusionDet. Now for
COSE’s application, these results on aerial datasets are particularly encouraging. FSDiffusionDet
achieves impressive performance with only a base training on MS COCO and few examples of either
DOTA or DIOR. Thus, this model could be rapidly fine-tuned for a specific mission by the forces
without declassifying any image. Of course, this is only a baseline and FSDiffusionDet can surely
be improved further. In addition, this scenario starts with a base training on natural images, which
is probably not optimal, instead, we could leverage an aerial dataset as a source model as well.

Incidentally, this will be the subject of the next section.
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K Shots DIOR DOTA DeepFruits  SIXRay ClipArt VisDrone
1 11.10 £ 0.32  4.03 £ 0.26 38.47 £1.42 4.80+£0.87 2.09+0.19 2.83+0.17
5 3042 +0.69 1445+ 043 5558+ 136 13.25+1.14 5.26+0.15 5.74£0.22
10 38.73 £ 0.65 25.02 £ 0.65 68.37 +2.01 21.26 £1.33 5.694+0.10 7.50+ 0.10
20 48.23 +0.33 33314046 73.95+0.53 30.06£1.09 6.10+0.22 9.144 0.35
50 56.97 & 0.60 43.23 £ 0.68 76.65 1+ 0.78 41.93 £1.02 6.444+0.16 11.47+ 0.27

Table 7.9: Cross-domain performance results on 6 scenarios COCO — DIOR / DOTA / DeepFruits
/ SIXRay / ClipArt / VisDrone. Results are given for different numbers of shots. Experiments are
repeated 5 times for each scenario and shot setting. The average mAP 5 is reported with a 95%
confidence interval.

Novel Classes mAP
DIOR

SIXRay

5 shots
—A— 50 shots

—0— 1 shot O —o— 10 shots

—v— 20 shots

Figure 7.12: Cross-domain performance of FSDiffusionDet on multiple scenarios with MS COCO
as the source domain. Light areas denote the 95% confidence interval. Concentric circles indicate
mAP 5 levels.
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DIOR — DOTA

Backbone frozen Fully fine-tuned
K shots  All S M L All S M L
1 541 2.72 6.28 4.51 5.09 3.08 6.72  4.07
5 25.88 16.99 3147 22.50 2490 15.85 29.67 22.27
10 3199 17.64 3690 31.23 33.30 1597 37.13 3245
20 38.77 21.68 46.49 34.79 41.30 2197 4590 41.08

50 44.07 29.22 52.66 41.00 49.22 2941 5594 52.82

Table 7.10: FSDiffusionDet Cross-domain results on the scenario DIOR — DOTA. Two settings are
compared: with the backbone frozen (left) and the backbone fully fine-tuned (right). Bold values
denote the best setting for overall performance on novel classes. Performance is reported with
mAP 5 values.

7.4.2 Aerial Cross-Domain

Besides experimenting with COCO — X scenario, we propose another setting specifically designed
for aerial images and COSE’s application. The idea is to leverage two distinct aerial datasets as source
and target domains. In particular, we use DOTA and DIOR to get two scenarios: DOTA — DIOR
and DIOR — DOTA. Of course, it would be interesting to leverage other kinds of datasets as well
(e.g., xView, VisDrone, etc.), especially as DOTA and DIOR are very similar (mostly overhead urban
images and shared classes). Yet, this gives insights into how FSDiffusionDet behaves in fairly simple
cross-domain scenarios. We report experiments with these two scenarios in Tabs. 7.10 and 7.11. The
results are given for multiple numbers of shots ranging from 1 to 50. In addition, we studied two
freezing strategies by fine-tuning only the detection head (i.e., frozen backbone) or the whole model
(fully fine-tuned).

The key takeaway from this experiment is that higher performance is achieved in the aerial cross-
domain scenarios than with the COCO — X scenario. It seems more profitable to perform base
training on a source domain that is similar to the target domain. Of course, compared to the FS per-
formance on DOTA and DIOR, lower quality is achieved in cross-domain scenarios. This is explained
first because the images from the two datasets differ, but also because the task is now slightly more
complex as all classes of the target dataset are novel. The detection task becomes a 16-way K -shots
problem in DIOR — DOTA scenario for instance. In the regular FS setting studied throughout this
project, only three classes were selected as novel classes for DOTA, making the classification much
easier. Then, from Tabs. 7.10 and 7.11, a contradiction arises, in DIOR — DOTA scenario, the fully
fine-tuned model outperforms the model with the backbone frozen, which agrees with the exper-
iments from Sec. 7.3.2.4. However, in the DOTA — DIOR scenario, the inverse is observed. This
clearly shows that the freezing sweet spot depends on the source and target domains and cannot be
set once and for all. It works in the case of regular few-shot when the source and target domains are
identical. So, one could expect the same behavior in cross-domain scenarios with similar source and

target domains as it is with DOTA and DIOR. However, in the regular few-shot setting, the number
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DOTA — DIOR
Backbone frozen Fully fine-tuned
K shots  All S M L All S M L
1 20.18 553 16.96 23.43 9.40 3.86 9.15 8.95
5 3443 999 31.12 47.03 29.57 870 25.80 35.76

10 41.48 12.85 36.62 53.85 38.44 10.50 32.58 47.27
20 49.00 16.39 40.23 62.79 4536 15.29 36.51 55.05
50 54.07 18.70 43.83 67.58 53.51 19.49 41.27 63.04

Table 7.11: FSDiffusionDet Cross-domain results on the scenario DOTA — DIOR. Two settings are
compared: with the backbone frozen (left) and the backbone fully fine-tuned (right). Bold values
denote the best setting for overall performance on novel classes. Performance is reported with
mAP 5 values.

of classes in the source domain (i.e., the base classes) is always larger than the number of classes
in the target domain (i.e., the novel classes). Here, DIOR has more classes than DOTA and this dif-
ference may explain the opposite results between the two CD scenarios. Specifically, fine-tuning
the model entirely may be beneficial only when the target domain contains fewer classes than the
source domain. It could also be caused by different class separations between the datasets. If classes
are easily differentiable in DIOR but not in DOTA, it might be difficult to transfer from DIOR to
DOTA. These are only conjectures, and they should be taken carefully especially as complex inter-
actions between source and target classes may also cause such behavior. More experiments would

be required to analyze and understand this surprising result.

7.4.3 Cross-Domain Perspectives

The previous sections have been devoted to cross-domain experiments. These are preliminary but
interesting results. They give insight into how difficult this setup is and how fine-tuning strategies
can perform. However, plenty of experiments are still necessary. We detail here some of the most

relevant perspectives for future CD-FSOD research that we briefly hinted in the previous sections:

1. Comparison with other FSOD methods: it would be interesting to compare with other ex-
isting FSOD methods, in particular, with attention-based techniques that we studied in depth
in Chap. 6. In addition, studying other fine-tuning approaches is required to validate the re-
sults found in our experiments.

2. Transductive inference: Even though our naive transductive detection did not outperform
the fine-tuning strategy in FSOD, it could help in cross-domain scenarios. Indeed, leveraging
query images during inference can reduce the discrepancies between source and target do-
mains and improve performance. This has been empirically shown for the classification task,
but it remains to be adapted for detection.

3. Source-target domain compatibility score: [284] proposes to choose the fine-tuning sweet
spot according to the distance between the source and target domains. Specifically, more plas-

ticity is required when domains are farther apart. They compute such distance as the recall of
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a pre-trained detection model on MS COCO, applied to the target dataset in a class-agnostic
manner. This could be generalized to any source and target domains with a detection model
trained on the source domain. However, we would like to emphasize that this should not be
called a distance measure between domains as it does not satisfy the symmetry property. In-
stead, it is a compatibility measure as it evaluates how beneficial the source domain is for the
adaptation to the target domain. Our cross-domain scenarios on aerial images clearly demon-
strate this, as we obtain contradictory conclusions for DOTA — DIOR and DIOR — DOTA
scenarios. More plasticity is required for DIOR — DOTA than for DOTA — DIOR, hence, the
compatibility measure cannot be the same for these two scenarios. In addition, this distance
is highly influenced by the detector chosen in the first place, in particular, some models are
known to output a lot of duplicate boxes which often boost the recall significantly (see such
an analysis in [9]). It would be helpful to come up with a properly defined compatibility mea-
sure for a given scenario that does not rely on a detection model and gives coherent hints to
obtain an optimal fine-tuning strategy. This measure should also be able to assess the com-
patibility of the base and novel class set in the regular FSOD setting, as a special case of the
cross-domain scenario (source and target domains are identical but the classes change). We
are currently working on such a compatibility score based on an overall discrepancy measure

between source and target domains and a source-target classes compatibility score.

7.5 Conclusion

In this chapter, we have presented thoroughly the basic principle of diffusion models and how they
can be leveraged for detection. Then, we proposed a simple fine-tuning strategy to apply Diffusion-
Det in the few-shot setting. FSDiffusionDet achieves sensibly higher performance than all previous
methods studied in this PhD on aerial images. To understand why, we conducted extensive ex-
perimental studies on crucial design choices of our strategy. It highlighted a strong but complex
connection between the plasticity of the model and the detection performance. Finally, we ap-
plied FSDiffusionDet in several cross-domain scenarios and observed promising results. Again, the
plasticity has a great influence on the performance and more experiments must be conducted to un-
derstand this relation completely. A possible direction would be to design a compatibility measure
between domains and between sets of classes to determine the optimal amount of plasticity required

for a given scenario.
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CHAPTER B

ScALE-ADAPTATIVE INTERSECTION OVER UNION

ABSTRACT

Intersection over Union (IoU) is not an optimal box similarity measure for evaluating and
training object detectors. For evaluation, it is too strict with small objects and does not align
well with human perception. For training, it provides a poor balance between small and large
objects to the detriment of small ones. We propose Scale-adaptative Intersection over Union
(SIoU), a parametric alternative that solves the shortcomings of IoU. We provide empirical and
theoretical arguments for the superiority of SIoU through in-depth analysis of various criteria.

4 P. Le Jeune and A. Mokraoui, "Rethinking Intersection Over Union for Small Object Detection in
Few-Shot Regime", Submitted at the International Conference on Computer Vision 2023 (ICCV).

[ P. Le Jeune and A. Mokraoui, "Extension de I'Intersection over Union pour améliorer la détection
d’objets de petite taille en régime d’apprentissage few-shot", GRETSI 2023, XXIXéme Colloque
Francophone de Traitement du Signal et des Images, Grenoble, France.
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Intersection over Union (IoU) is a box similarity criterion, it measures how well two bounding boxes
overlap each other. We already defined it in Chap. 2, but in this chapter we explore its properties
thoroughly and highlight some of its flaws when employed as a loss function or as a cornerstone
of the evaluation process of detection models. These flaws mainly concern small objects for which
IoU is too strict. Therefore, it is particularly relevant to tackle these issues for aerial images and
COSE’s applications. To address these weaknesses, we propose Scale-Adaptive Intersection over
Union (SIoU), a parameterizable criterion that can be set to favor small objects as needed. We start
by defining and analyzing the IoU and its variants. Then, we propose our novel criterion SloU and
its properties. Sec. 8.3 presents an original empirical and theoretical study of several box similarity
criteria and argues for the superiority of SloU. Finally, we conduct a user study and experimental

analysis to further consolidate the advantages of SIoU over IoU.

8.1 Analysis of Intersection over Union

In this section, we first review the definition of IoU and present some of its variants that are available

in the literature. Then, we analyze why IoU is not optimal for small objects.

8.1.1 Intersection over Union and its Variants
To begin, let us review the definition of existing criteria for box similarity. Originally, the IoU is

defined as the intersection area of two sets divided by the area of their union:

_ |AnB|

IOU(A, B) = m,

(8.1)

where A and B are two sets. Even if there are plenty of applications where IoU is useful (e.g., in
statistics where IoU is better known as the Jaccard index), we are mostly interested here in its ap-
plication in computer vision. In this case, A and B are sets of pixels, and the IoU measures how
close they are. When A and B are rectangular boxes, IoU can be computed easily with simple op-
erations on box coordinates (see Eq. (2.7)). This explains why IoU is such a widespread criterion for

object detection. It is used as a loss function (£ = 1 — IoU) by several well established detection
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frameworks (e.g., [91, 45]). IoU is also involved in the process of example selection during training
of most detection methods, i.e, all the ones inspired either by Faster R-CNN [33] or YOLO [34]. In
these frameworks, regression loss is computed from the coordinates of proposed boxes and ground
truth. Not all pairs of proposals and ground truth are kept for the computation. Only proposals with
a sufficient IoU with a ground truth box are selected. Finally, IoU is also used at the heart of the
evaluation process. A proposed box is considered a positive detection if it meets two conditions: 1)
an IoU greater than a given threshold with a ground truth box, and 2) the same label as this ground
truth (see Sec. 2.1.2).

Several attempts were made to improve IoU but existing works mostly focus on the regression loss
part, disregarding the other IoU uses in the detection task. First, [92] proposed a generalized version

of IoU which yields negative values when boxes do not overlap:

[C\(AU B)|

GloU(4, B) = 10U(4, B) — = o=,

(8.2)

where C is the convex hull around A and B. This criterion is employed as a loss function by several
detection frameworks [45, 37, 339]. It is sometimes also combined with other regression loss as in
[340, 59], which both combine it with an L1 regression on box coordinates. Combining IoU loss with
other regression terms was also proposed by [93]. They introduce two losses Distance-IoU (DIoU)
and Complete-IoU which respectively add an L2 regression term and an aspect ratio penalty to the
IoU loss. Recently, a-IoU [94] extends DIoU [93] by proposing a family of losses following the same

structure as DIoU with the IoU term raised to the power a:
a-IoU(A, B) =1oU(A, B)*. (8.3)

Balanced IoU (BIoU) also extends upon DIoU by measuring shifts between the corners of the boxes
instead of their centers. Alternatively, Bounded IoU [341] computes an IoU upper bound between
a proposal and a ground truth. Other approaches, such as Scale Balanced Loss [342], try to design

distance-based loss functions which share properties with IoU, especially its scale-invariance.

All these IoU variants are proposed to improve the regression part of the models. However, IoU is
involved in other parts of the framework including example selection, Non-Maximal Suppression,
and evaluation. A recent user study [343] indicates that IoU does not completely align with human
perception. Humans have strong positional and size preferences based on conceptual information
contained in the boxes. It suggests that IoU is not an optimal choice either for example selection or

for evaluation as it will lead to detections that do not satisfy human users.

8.1.2 Inadequation of IoU for Small Objects and Few-Shot Regime
Object detection is a fundamental task in industry and has applications in many domains such as
medical imaging, agriculture, or autonomous driving. However, it is often impracticable or too

expensive to build sufficiently large annotated datasets to train detection models. It is therefore

171



CHAPTER 8 - SCALE-ADAPTATIVE INTERSECTION OVER UNION

1.0 Predicted box 1.6
loU
1 1.44

0.8 |
g / ) 1.9 0.8
‘= €loc 3
[ i . Ground truth : 0.6
B 06 %, round tru 3 1.01 .
S 8 |
- © 0.81% 0.4
= : i) e
& i =] &=
& 0.4 = vin
= : 0.6 1%
= : & ? 0.2
£
(2] 0.4

0.2

___________ 0.2
0.0 0.0 '
40 0 100 200 300 400 500
Localization error g Object size w
—— w=4 —O0— w==64 loU —-— SloU
w=16 —V— w =128 ---- NWD - a-loU

Figure 8.1: (Left) Evolution of IoU, NWD [88], the proposed SIoU and a-IoU [94] when a box is
shifted from the ground truth box by &), pixels, for various box width w € {4, 16, 64,128} (boxes
are squares). (Right) Ratio between pixel localization error €j,. and object size w for a trained
detection model on DOTA dataset. Each point represents the localization error of one object in
DOTA test set.

crucial to improve data-efficient approaches and particularly Few-Shot Object Detection (FSOD)
methods. However, the limited number of examples provides poor supervision and prevents the
model to learn accurate localization, which is especially problematic for small objects. This difficulty
greatly intensifies in the few-shot regime as shown by Chap. 4. Designing FSOD methods specifically
for the detection of small objects partially solves this issue (see Sec. 6.3.1), but is not enough. One of
the reasons for the poor FSOD performance on small objects is the extensive use of the IoU. Just as
for detection, most FSOD pipelines employ IoU as a regression loss [91, 45]; for example selection
[33, 34, 46]; or as an evaluation criterion, but IoU is not an optimal choice when dealing with small

objects.

IoU has a remarkable property: scale invariance. It means that scaling all coordinates of two bound-
ing boxes by the same amount will not change their IoU. At first glance, this seems a desirable prop-
erty as all objects will be treated identically no matter their size. In practice, it has a fundamental
drawback: small boxes are prone to large IoU changes from only small position or size modifications.
To clarify, let us consider a simple example. Two square boxes of width w are shifted diagonally by
€loc pixels. In this setup, a 1-pixel shift leads to a larger decrease in IoU when boxes are smaller. This
comes from the scale invariance property, IoU stays constant as the ratio ¢ remains fixed. How-
ever, this ratio is not constant for trained detection models, it increases as objects get smaller (see
Fig. 8.1, right), leading to lower IoU values for smaller objects. Hence, small objects are much more
likely to fall under the IoU thresholds which decide if a box is a true or false detection, even though

being satisfactory from a human perspective (see the user study in Sec. 8.4). In addition, Secs. 8.3.1
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and 8.3.2 explore the resilience of various criteria to localization inaccuracies and confirm that IoU

is not an optimal box similarity measure.

Only a handful of works question the adequation of IoU for object detection. Among those, [92]
proposed a generalization of IoU when boxes do not overlap, [88] introduced a novel loss function
to target small objects, and [344] proposed a Scale-Sensitive IoU which extended CloU with an area
regulatory factor. In addition, [343] showed that human perception and IoU are not fully aligned.
This lack of interest in new criterion design is explained by the great detection performance in
the regular setting (i.e., natural images with sufficient annotations). In the few-shot regime, and
when targets are small, the flaws of IoU become critical. Therefore, we revisit IoU to improve FSOD
methods and focus on aerial images which mostly contain small objects. We propose Scale-adaptive
Intersection over Union (SIoU), a novel criterion that can replace IoU for training and evaluating
detection models. However, for training we mostly aim at few-shot detection models as small objects
are particularly difficult for them. To demonstrate the superiority of the proposed SloU, Sec. 8.3
compares it with various existing criteria. This section analyzes criteria distributions when exposed
to randomly shifted boxes. To our knowledge, this is the first attempt to empirically and theoretically
study the distributions of these criteria. The conclusions of this analysis are then compared with
human perception through a user study which shows that SIoU aligns better with human appraisal
than IoU (see Sec. 8.4). The comparison of these criteria also highlights that SIoU as a loss function
can guide training towards small objects better than other criteria and in a more controlled fashion.
SIoU loss can be tuned to improve the detection of small objects just as it can be tuned to align with
human perception. Finally, these analyses are confirmed by extensive experiments on both aerial
images (DOTA and DIOR datasets) and natural images (Pascal VOC and COCO datasets).

8.2 Scale-Adaptive Intersection over Union

8.2.1 Definition of the novel box similarity criterion

Before introducing the proposed criterion, let us define two bounding boxes by = [1, Y1, w1, hl]T
and by = [z, Y2, wo, hg]T (the prediction box and ground truth respectively), following the box
definition from Chap. 2. Similarly, the adjectives small, medium, and large keep the same meaning
as in previous chapters: the box b; is small if v/w;h; < 32 pixels, medium if 32 < \/w;h; < 96, and
large if \/w;h; > 96.

IoU is scale-invariant, hence if IoU(b1, b2) = u, scaling all coordinates of both boxes by the same

factor k will produce the same IoU:

IOU(b1, bg) = IOU(kal, kbg) = U. (8.4)

However, detection models are not scale-invariant, they do not localize equally well small and large
objects. Fig. 8.1 (right) clearly shows that the ratio between the localization error (€1 = ||b1 — b2||1)

and the object size (w = y/wshs) increases as the object becomes smaller. This figure is made with a
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detection model trained on DOTA with all annotations. Each point represents the ratio = for one
object in the test set. If the detection model was indeed scale-invariant, the ratio should not change
significantly with the object sizes. Hence, because of the scale-invariance property, IoU scores are

lower for small objects. It then has several consequences:

1. Bounding boxes output by the model are not considered positive examples during evaluation.
2. Bounding boxes are not selected as positive examples for loss computation, which biases the
training towards larger objects.

3. NMS does not filter duplicates of small boxes as their overlap is not high enough.

A way to alleviate these issues is to relax the invariance property of the IoU so it favors more small
objects without penalizing large ones. To this end, we propose a novel criterion called Scale-adaptive

Intersection over Union (SIoU):

SIOU(bl, bg) = IOU(bl, bQ)p

vwiht + w2h2> (8.5)

with p=1—yexp <—
\/ﬁm

where p is a function of the object sizes. Thus, the scores are rescaled according to the object size.
v €] —00,1] and k > 0 are two parameters that control the strength and direction of the rescaling
(hence, p > 0). v governs the scaling for small objects while x controls how fast the behavior of
regular IoU is recovered for large objects. Fig. 8.5 (left) in Sec. 8.3.4 shows the evolution of p with
object size for various v and x. For convenience, we will denote the average object size i.e., , the

average size of boxes by and by, by 7 = %

Of course, there are many valid choices for the exponent p. However, we want to ensure some

properties for SloU, which translate into constraints for p:

- SIoU should either be higher or lower than IoU when objects are small, but should remain
finite, so p(0) € R7.

- For large objects, SIoU should behave like IoU, Tli_>nolo p(r) = 1.

- To prevent complete inversion of the order and smooth changes, p should be positive, contin-

uous, and monotonic.

Thus, an exponential response is a natural choice for the design of p. Similar forms could be achieved
with hyperbolic functions. For instance, p(7) = 1 — ﬁﬁ would be a sensible alternative. An
inconvenient of these designs is the possibility to only focus on either small or large objects. This is
mainly due to the monotonicity of p. It can be relaxed to unlock the possibility of targeting objects
of a specific size, for instance, with a bell-shaped exponent e.g., p(7) = 1 — v exp(—£(T — Trarget)?)-
Where x could be understood as a bandwidth parameter around objects of size Tiarger. We did not
investigate the design of p, but experimenting with it would be relevant to better understand the

balance between small and large objects during training.
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8.2.2 SIoU Properties

This new criterion follows the same structure as a-IoU [94], but differs greatly as it sets different
powers for different object sizes. SIoU provides a solution for small object detection in the few-shot
regime while a-IoU only aims to improve general detection. However, SIoU inherits a few properties
from a-IoU.

Property 1 (SIoU Relaxation)
Let by and by be two bounding boxes and introduce T = W their average area. SIoU preserves
the behavior of IoU in certain cases such as:

- IOU(bl, bg) =0= SIOU(bl, bg) = IOU(bl, bg)
- IOU(bl, b2) =1= SIOU(bl, bg) = IOU(bl, bg) =
- lim SIOU(bl, bg) = IOU(bl, bg)

T—400

- lim SIOU(bl, bg) = IOU(bl, bz)
Kk—0

0
1

Property 1 shows that SIoU is sound: it equals IoU when boxes have no intersection and when
they perfectly overlap. Therefore, the associated loss function (see Property 2) will take maximal
values for boxes that do not overlap and minimum values for identical boxes. In addition, SIoU
behaves similarly to IoU when dealing with large objects (i.e., when 7 — 00). When boxes are large,
the power p that rescales the IoU is close to 1. Hence, this change of criterion only impacts small
objects. However, when discussing the properties of SIoU, the limit between small/medium/large
objects is relative to the choice of k. If & > v/wh, even large objects will be rescaled. On the
contrary, when x — 0, all objects are treated as large and are not rescaled. In practice, x and ~y are
chosen empirically, but Sec. 8.3 provides useful insights for the choice of these parameters.

Property 2 (Loss and gradients reweighting)
Let Liou(b1,b2) = 1 —10U(by, b2) and Lsiou (b1, b2) = 1 —SIoU(by, be) be the loss functions associated
respectively with IoU and SIoU. Let us denote the ratio between SIoU and IoU losses by W, (b1, b2) =

%. Similarly, Wy (b1, ba) = % denotes the ratio of gradients generated from SloU

and IoU losses:
1 —IoU(by, by)P
b1,by) = 8.6
W (b1, b2) = ploU(by, ba)P ", (8.7)

W and Wy are increasing (resp. decreasing) functions of IoU when p > 1 (resp. p < 1) which is
satisfied when v < 0 (resp. v > 0). As the IoU goes to 1, W, and Wy approaches p:

li We (b, bs) = p, 8.8
IoU(bll,Ilg)—ﬂ £(b1,b2) =p (88)
lim Wv(bl, bz) =p. (8.9)

IOU(b1 ,bz)—>1

We employ the same tools as in [94] to analyze how SloU affects the losses and associated gradients.

We show in property 2 that their results hold for a non-constant power p as well. From this, it can
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be observed that when IoU is close to 1, losses and gradients are both rescaled by p. Hence, the
gradients coming from objects of different sizes will be rescaled differently. The setting of v and
 allows to balance the training towards specific object sizes. Experimental results are provided in

Sec. 8.5 to support these findings. Proofs for properties 1 and 2 are available in App. A.

However, order preservingness is not satisfied by using power value changing with the size of the
objects. This property ensures that the order given by the IoU is preserved with the novel criterion,
e.g., 1oU(b1, ba) < IoU(b1,b3) = a-IoU(by1,be) < a-IoU(by, b3). a-IoU preserves the order of IoU,
but SIoU does not. We show in App. A that even though this property is not always satisfied, a

large proportion of boxes meet the conditions for the order to hold.

8.2.3 Extensions and Generalization of SIoU

Finally, SIoU can very well be extended as IoU was with GIoU or DIoU. Note that we only focus on
GIoU extension here as DIoU and its variants are composite loss (i.e., sum of multiple loss functions).
We provide here an extension following GIoU as it appears especially well-designed for small object
detection. When detecting small targets, it is easier for a model to completely miss the object,
producing an IoU of 0 no matter how far the predicted box is. On the contrary, GloU yields negative
values for non-intersecting boxes. This produces more relevant guidance during the early phase of
training when the model outputs poorly located boxes. Therefore, we extend SIoU by raising GloU

to the same power p as in Eq. (8.5):

GloU(by,bs)?  if GIoU(by, b) > 0
GSIoU (b1, by) = . (8.10)
*|GIOU(b1, b2)|p if GIOU(bl, bz) <0

8.3 Scale-Adaptive Criteria Analysis

This section analyzes both empirically and theoretically the behaviors of IoU, GIoU [92], a-IoU
[94], NWD [88], SIoU and GSIoU. We investigate the desirable properties of such criteria for model

training and performance evaluation.

8.3.1 Response Analysis to Box Shifting

As mentioned in Sec. 8.2, IoU drops dramatically when the localization error increases for small
objects. Shifting a box a few pixels off the ground truth can result in a large decrease in IoU, without
diminishing the quality of the detection from a human perspective. This is depicted in Fig. 8.1 (left),
where plain lines represent the evolution of IoU for various object sizes. These curves are generated
by diagonally shifting a box away from the ground truth. Boxes are squares, but similar curves would
be observed otherwise. In this plot, boxes have the same size, so when there is no shift in between
(€10c = 0), IoU equals 1. However, if the sizes of the boxes differ by a ratio r, IoU would peak at

1/72. Other line types represent other criteria. SIoU decreases slower than IoU when &}, increases
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and this is especially true when boxes are small. This holds because v > 0, if it was negative, SloU
would adopt the opposite behavior. In addition, the gap between IoU and SIoU is larger when objects
are small. Only NWD shares this property, but it only appears when boxes have different sizes (all
lines coincide for NWD). Hence, SIoU is the only criterion that allows controlling its decreasing rate,
i.e., how much SIoU is lost for a 1-pixel shift. As GIoU and GSIoU values range in [—1, 1], they were

not included in Fig. 8.1, but for completeness, they are plotted in Fig. 8.2 along with other criteria.
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Figure 8.2: Evolution of various criteria (IoU, GloU, and GSIoU) when a box is shifted from the
ground truth box by p pixels for various box sizes w € {4, 16,64, 128}. With boxes of the same size
(left) and different sizes (right).

8.3.2 Resilience Analysis to Detector Inaccuracy

Knowing how a criterion responds to shifts and size variations is important to understand what
makes a sensible box similarity measure. Pushing beyond the shift analysis, we study empirically
and theoretically the criteria’s distributions when exposed to detector inaccuracies, i.e., randomly

shifted boxes. This setting mimics the inaccuracy of the model either during training or at test time.

8.3.2.1 Empirical Protocol

To simplify, let us suppose that all boxes are squares of the same size w and can be shifted only
horizontally. Similar results are observed by relaxing these constraints, see Sec. 8.3.2.4. A box is
then entirely defined by its horizontal position x and its width w. If a detector is not perfect, it will
produce bounding boxes slightly shifted horizontally from the ground truth. To model the detec-
tor’s inaccuracy, we suppose that the predicted box position is randomly sampled from a Gaussian

distribution centered on the ground truth location (which is chosen as 0 without loss of generality):
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Figure 8.3: Analysis of the distribution of IoU, SIoU, GloU, GSIoU and a-IoU when computed on
inaccurately positioned boxes. This is done by observing the probability distribution functions for
various w values (left), the expectation (middle) and standard deviation (right) for all criteria. For
SIoU and GSIoU, we fixed v = 0.5 and k = 64, for a-IoU, & = 3 (as recommended in the original
paper [94]). The inaccuracy of the detector is set to 0 = 16. Note that the empirical pdfs were
smoothed using a Kernel Density Estimator method. This affects particularly IoU, SIoU , and a-IoU
for which the actual pdf is defined only on [0, 1]. For the sake of visualization, GIoU and GSIoU were
rescaled between 0 and 1 for the expectation and standard deviation plots.

X ~ N(0,0?) where o controls how inaccurate the model is. We are interested in the distribu-
tion of € € {IoU, GloU, SIoU, GSIoU, a-IoU, NWD} and how it changes with w. To this end, let
7 = €(X). More precisely, we are interested in the Probability Density Function (PDF) of Z and its

two first moments (which exist because € is continuous and bounded).

Fig. 8.3 gathers the results of this analysis. It shows the pdf of each criterion for various box sizes
(left) along with the evolution of the expectation and standard deviation of Z against w (middle and
right). Specifically, we randomly sample a large number of boxes and compute the associated criteria
values for all € and boxes. Then, the average and standard deviation are computed to estimate the
moment of the criteria’ pdfs. This process is repeated for various box sizes w to understand how it
changes the behaviors of the criteria. From this, it can be noted that the size of the boxes has a large
influence on the distributions of all criteria. The expected values of all criteria are monotonically
increasing with object size. In particular, small objects have lower expected IoU values than larger
ones. This is consistent with the initial assessment from Fig. 8.1 (right) and it validates the choice

of ¢ constant for this study (although Sec. 8.3.2 discusses this assumption).

When building detection models, we hope to detect equally well objects of all sizes, this means
having a constant expected IoU, no matter the objects’ size. This would require the localization
error to be an affine function of w. Of course, the localization error of the detector is likely to
depend on w. However, it cannot be an affine function, otherwise, small objects would be perfectly
detected, which is not observed (see Fig. 8.1, right). As SIoU has larger expected values than IoU for

small objects, it can compensate for their larger localization errors. The setting of v and « allows
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controlling how much small objects are favored (see Fig. 8.5). NWD is not included in these plots as

its expected value and variance are constant when dealing with same-size boxes.

8.3.2.2 Influence Analysis on the Performance Evaluation

If the expected value of a criterion is too small, it is likely that the boxes will be considered negative
detections during evaluation and therefore reduce the performance. Therefore, having a criterion
with larger expected values for small objects would better reflect the true performance of a detector.
One might think that it would be equivalent to scale-adaptive IoU thresholds during the evaluation,

but this is not completely true as the variance of the criteria also differs.

Having an accurate criterion (i.e., with low variance) is crucial for evaluation. Let us take a detector
that produces well-localized boxes on average, i.e., on average the criterion computed between the
boxes and their corresponding ground truths is above a certain threshold. As the detector is not per-
fect, it will randomly produce boxes slightly better or slightly worse than the average. If the criterion
has a high variance, it will be more likely that poor boxes get scores below the criterion threshold
and therefore will be considered negative detections. This will reduce the performance of the de-
tector even though on average, it meets the localization requirements. In addition, a criterion with
a higher variance will be less reliable and would produce more inconsistent evaluations of a model.
The fact that the IoU variance is high for small objects partly explains why detectors have much
lower performance on these objects. Hence, SIoU seems more adapted for evaluation. Of course,
using this criterion for evaluation will attribute higher scores for less precise localization of small
objects. However, this aligns better with human perception as demonstrated in Sec. 8.4. Employing

SIoU in the evaluation process also allows tweaking it for the needs of a specific application.

8.3.2.3 Influence Analysis on Training

All criteria discussed above are employed as regression losses in the literature. The loss associated
with each criterion € is L¢(b1,b2) = 1 — €(by, ba). Therefore, the expected value of the criterion
determines the expected value of the loss and thus the magnitude of the gradients. Large values of
the criterion give low values for