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Introduction

Emergent properties arise from collective systems whose whole is not reductible to
its individual components [Lew75|. Pioneering discoveries on superconductivity and
superfluidity illustrate the complexity of such systems for which experimental research
prevailed in the realm of quantum physics. The sudden vanishing resistance of mercury
at 4.2 K, first observed by Heike Kamerlingh Onnes in 1911 [DK10], is an outstanding
example of collective phenomena as superconductivity was just discovered. Later, the
observation of abnormally low viscosity in ultra cold helium 4 |[Kap38; |AM38] marked

the discovery of superfluidity.

Degenerate quantum gases have become an ideal platform for the study of collective
phenomena. The high degree of control and tunability of lasers and magnetic fields
gives the possibility to shape arbitray potentials [GWOO00; BDZ08; LZB19| and to tune
inter-atomic interactions [Chi+10; [FJLOO]. On the one hand, the first realization of a
Bose-Einstein condensate [And-+95] paved the way for extensive research on superfluids,
from the study of the hydrodynamic oscillations in a Bose gas [Sta498], to the real-
ization of phase coherent arrays of superfluid dropplets [Nor+21]. On the other hand,
it was also demonstrated that gases of fermions can be cooled to quantum degeneracy
[DJ99]. Following the original idea of Feynman |Fey82|, proposals have suggested the
realization of quantum simulators for the Fermi-Hubbard model [Hof+02]. Repulsive
fermions in an optical lattice allow to realize an ideal and tunable version of the Hubbard
model [Hub63; Hub64], a paradigm for the multitude of strong correlation problems in
condensed matter physics. The experimental trapping of fermions in optical lattices
[Koh+05], and later entering into the strongly correlated regime [Sch+08; |Jor+08|, are
the first steps for the study of quantum magnetism with fermions [BDZ0§].

7
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Active research on the Fermi-Hubbard model led to the realization of numerous
quantum simulators [BDZ08} |[Ess10; (GB17]. Typically, two spin states of alkali fermions
such as potassium 40 |Che+15; Dre+17], or litihum 6 [Gre+16; [Bol416; Par+16], are
trapped in optical lattices in the strongly interacting regime. Most of these experiments
are suited to the analogy with spin half solid states physics, in the so-called SU(2)
symmetry in the case of spin-independent interaction properties. Spin ordering and
antiferromagnetic correlations, emerging from the collective spin system, are probed

with single site resolution using most advanced atomic microscopes |Bak-+09].

Beyond spin half physics, proposals suggested the study of quantum magnetism
in enlarged SU(N) symmetry [CHU09; [HGRO09; |Gor+-10; |CR14], with no solid states
analog. Involving an enhanced number of configurations due to the large spin degree
of freedom, exotic collective phenomena are expected. For instance, SU(N)-symmetric
exchange interaction shall result in frustrated spin ordering [HGR09]. Experimental re-
alizations of the SU(N) Hubbard model yielded the measurements of the antiferromag-
netic correlations [Oza+18; Tai+20] with alkaline-earth like ytterbium, and showed the
enhanced correlations compared to that ones of SU(2) spin systems. Furthermore, these
experiments with SU(N) gases show evidence of enhanced large-spin Pomeranchuck
cooling |Tai+12], which is a practical advantage to reach stronger spin-correlations at
constant entropy, and to approach singlet states [Rey+07]. Regarding ultra cold quan-
tum gases of alkaline-earth like fermions, SU(N) symmetry arises from the decoupling
of the nuclear spin with the electronic degrees of freedom |Gor+10]. Most importantly,
this symmetry results in the conservation of the nuclear spin of degree freedom. More-
over, these species have a large nuclear spin, and strontium 87, with largest nuclear
spin I = 9/2 in the atomic ground state 1Sy, is an ideal candidate for the study of

magnetism in enlarged SU(N) symmetry.

Strontium 87 degenerate quantum gases were first realized in 2010 [DeS+10]. The
mHz clock transition 1Sy <+ 3Py, associated with weak magnetic sensitivity, raised
particular interest for the realization of optical lattice clocks [Boy07],[Mic+09],[Mic10],
and proved high performances with up to 107'® precision [Blo+14]. We are most inter-

ested in the 7.4kHz narrow intercombination line 'S, <+ 3P;, with associated hyperfine
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splitting orders of magnitude larger than the linewidth. This transition offers ideal con-
ditions for the realization of spin orbit coupling schemes |[GD10; |[LJS11] with minimal
spontaneous emission |[CR14]. For instance, it has been demonstrated that spin com-
ponents can be separated using conservative spin dependent forces [SGS11|. In lattices,
strong artificial magnetic fields can be tailored at the optical wavelength scale with
light, realizing spin dependent superlattices [GB17; |Sch4-20]. Neutral atoms moving in
such lattices can acquire a geometric phase |[Aid+11], simulating the Aharonov-Bhom
effect [AB59).

Our experiment is designed to realize the 2D Fermi-Hubbard model with strontium
87 with enlarged SU(N) symmetry. It is specificaly planned to study the dynamics of
spin entanglement. Using a spin dependent optical superlattice [Li+16; Hei+20] associ-
ated with the intercombination line, a texture of alternating spins without interactions
[Sun+1§| can be prepared, realizing a Néel spin order [Néed§|. By slowly reducing the
depth of the superlattice, spin dynamics are enabled by the time dependent spin orbit
coupling. It will be possible to slowly approach the regime where many-body physics
are driven by super-exchange interactions, within a spin-independent lattice. The spin
system shall, at least locally, adiabatically approach the singlet state [Sun+21]. The
(quasi-)long range spin correlations, that can result effectively in squeezing of the alter-
nate magnetization [Com+22|, will be detected using the same spin dependent optical
superlattice. The goal of my PhD was to set up the tools to carry out this experi-
ment, first focusing on the SU(2) case, which is the most simple to demonstrate the

practicability of the proposed schemes.

Thesis overview

The first chapter reviews our protocol to prepare degenerate Fermi gas of strontium
87. 1 show that the loading of our optical dipole trap can be significantly improved by
increasing the capture volume. This is realized by superimposing another set of far off
detuned laser beams five times larger than the dipole trap used for evaporation. Twice
the number of atoms is loaded into the dipole trap, which facilites the preparation of

Fermi seas with higher phase space densities. Typically, we can produce degenerate
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Fermi gases at T'/Tr ~ 0.2 with 40000 atoms and 10 spin components.

These degenerate gases are next loaded in lattices, made of a combination of a 1D
lattice with 2 ym site spacing, with a 2D square lattice with 270 nm site spacing. I
applied the quantum magnifier scheme demonstrated in [Ast+21] to spatially separate
the different sites of the 1D lattice, and infer the number of atoms in each layer. The
obtained spatial resolution is of the order of approximately 220 nm along the lattice
eigen axis. Finally, I show that we are able to load the 2D lattice with approximately
95 % strontium 87 atoms into the first Brillouin zone.

In the second chapter, I present our method to measure local densities with absorp-
tion imaging of objects smaller than the resolution limit of our imaging setup [Lit+21].
The method is based on the local Beer Lambert absorption law, and it takes into ac-
count the effect of fast local variations that are averaged by the detector (inducing
strong bias). This method is demonstrated on elongated Fermi gases, from which we
infer the unresolved transverse size, as small as one fourth of our imaging resolution
limit, and can surpass the diffraction limit, or other limits due to aberrations. Then, I
discuss an application of this method to attempt to measure the mean field interaction

energy of a SU(10) degenerate Fermi gas of 87Sr.

The next chapters focus on the implementation of the key protocols that will be
used: for the preparation of spin textures from single spin component band insulators,
for the adiabatic approach to the singlet state, and for the measurement of the alternate

magnetization.

In the third chapter, I first discuss our demonstrated method [Bat+20] to measure
the nuclear spin populations with a spin orbit coupling scheme associated with the
intercombination line [SGS11|. The robustness of our method is provided by adiabatic
following of a quasi-dark state, ensuring minimal spontaneous emission. Using the
strong difference of magnetic sensitivy of the coupled states, we selectively transfer,
with a resonant passage, well defined momentum recoils to well defined spin states,
with a simple retro-reflected laser beam. The overall efficiency is yet 85%, up to
now limited by available light power. I show then that we can selectively prepare a

polarized Fermi sea of 3"Sr, without requiring sympathetic cooling by another atomic
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species [Tey+10]. A comparison with the preparation of a degenerate ten spins mixture
shows that our scheme doesn’t affect the phase space density of the evaporated gases.
Finally, I estimate that the Fermi sea is polarized with 90 & 10 % fiability accounting
for the overall efficiency of our detection scheme.

In the fourth chapter, I demonstrate an adiabatic scheme to selectively and coher-
ently manipulate the nuclear spin states of 8Sr with light. Taking advantage of the
tensor light shift associated with the narrow intercombination line, we lift the degener-
acy of the two photon Raman transitions within the 1.S; ground spin states manifold.
The spins are coherently flipped with an adiabatic passage through the resonance of a
selected Raman transition. This scheme is demonstrated in bulk gases. I then present
expectations for the fidelity of preparation of alternate spin textures, based on the same
principle. With a time dependent resolution of the Lindblad equation, I estimate that
the spin fidelity of the spin texture writting is 85 % with respect to an alternate spin
pattern, in the actual conditions, and should raise to 97 % with ongoing experimental
improvements.

In the fifth chapter, I focus on the loading of the lowest band of our 1D lattice
with large site spacing 2 um. We are able to prepare several independent 2D Fermi
gases with approximately 99 % atoms in the lowest band and strictly positive chemical
potential. By comparing two methods, I show that the adiabatic following of the 3D
to 2D dimensionnality cross over is better ensured by maintening a sufficient collision
rate rather than by reaching very deep evaporation and low temperature prior to the
lattice loading. I also developped a thermodynamic model to analyze our time-of-flight
imaging in order to provide a proper estimate of the degeneracy parameter in each of
the 2D layers. We find an optimal p/er > 0.4, signaling that the 2D gases are strongly

degenerate.
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Chapter 1

Fermi gases of °'Sr in 3D optical
lattices - Experimental Setup

Ten years after the first proposal [WE89], it was demonstrated in the late 90’s, on
ytterbium first [Kuw-+99] then on strontium [Kat-+99; Muk+03|, that it is possible
to produce colder and denser atomic clouds with narrow line laser cooling associated
with the intercombination line, than with broadband cooling. The Doppler limit is
proportionnal to the inverse lifetime of the coupled excited state allowing to reach
lower temperatures. The radiation trapping limit [WSW90; SWWO91; |(CCL98| arising
from multiple light scattering is lower for the longer lived excited states, allowing to
reach higher densities [Ben+17]. While the use of large magnetic traps with alkali atoms
was quickly spreading to produce degenerate gases with collision assisted evaporation,
closed shell strontium with zero dipole moment in its ground state cannot be loaded in
magnetic traps. The high phase space densities reached thanks to narrow line cooling
are compatible with the use of far off resonant optical dipole traps [IIK00; GWOO00], in
that the 1/e size of the magneto-optical trap is on the order of magnitude of the waist
of the lasers. Since then, the production of degenerate Fermi gases of 7Sr [DeS+ 10}
SGS13; SSK14; |Stel3| has spread [DeS+10; [Tey+10; [SGS11; [Son+20], but remains

difficult with few experiments worldwide.

This chapter presents an overview of our setup and experimental procedures to

prepare degenerate Fermi gases of strontium that we trap in 3D optical lattices.

13



Chapter 1. Fermi gases of 8’Sr in 3D optical lattices - Experimental Setup 14

Atoms produced in an oven at 490°C and Zeeman slowed are captured in a broad-
band magneto-optical trap (MOT) associated with the 30 MHz wide transition 'Sy <>
1P, at 461 nm, cooling atoms down to the Doppler limit 7 ~ 1mK. The transition
is not closed so that atoms are accumulated and magnetically trapped in metastable
state 3P,. We repump them in the ground state with the 403 nm transition 3P, <+ 3Ds,
to begin a second MOT stage. The second MO'T is associated with the 7.4 kHz nar-
row intercombination line 'Sy <+ 3P;. This narrow MOT allows us to cool fermionic
strontium down to 7' ~ 3 uK, which is higher than the typical temperature 7" < 1 uK
reached for bosonic species of strontium [SSK14]. The gas is then loaded in an optical
dipole trap to start forced evaporation, which is our last step of phase space compres-
sion to reach Fermi degeneracy, down to approximately 1" ~ 0.15 Ty in our experiment.
Finally, atoms are adiabatically loaded in 3D optical lattices, made of the combination

of a vertical 1D lattice with large site spacing and a square 2D lattice.

I will first present the most relevant energy levels for laser cooling. Then I will focus
on the main features of each cooling stage, to ensure a sufficient understanding of the
experimental discussions in the next chapters. A complete description of the setup can

be found in Pierre Bataille’s thesis [Bat22] which reviews all technical specifications.

1.1 Cooling *Sr to Fermi degeneracy

1.1.1 Energy levels

Strontium atom is an alkaline-earth species with four naturaly stable isotopes. Three
of them 3¥Sr, 86Sr, 88Sr are bosonic isotopes all with I=0 nuclear spin, and the only
fermionic isotope with 7% natural abondance 87Sr has I=9/2 large nuclear spin, which
is the largest of stable alkaline-earth species. Our platform makes use of fermionic 3"Sr

only, and hence I will focus on this isotope.

The ground state 'Sy of strontium has closed-shell electronic structure [K7r|5s?
and zero electric spin. The transition at 461 nm connects 1Sy to the singlet state ' P,
which has a very short life time 5 ns [Wer4+92; [Yas+06], corresponding to a broad
linewidth I'/27 of 30 MHz, as shown on figure [1.1} This broad band transition is used
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Figure 1.1: Energy levels and optical transitions (solid double arrowed lines) associated
with electric dipoles (E1), for fermionic strontium 87. The dotted lines indicate spon-
taneous decay paths: 'P; state has 1:20 000 probability to decay toward D, and the
latter has 3:4 chance to decay to >P;, and 1:4 chance to decay to metastable 3P,. The
three energy levels F' = 7/2,9/2,11/2 are the three hyperfine states of ;. The energy
splitting and optical transitions are not to scale.

for capturing atoms out of our oven and for absorption imaging. From 1P, 1 out of 20
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000 atoms can decay to the singlet D, state , and then atoms have 1:4 probability to
decay to 3P, or 3:4 probability to decay to 3P;.

While 3P, triplet state can decay directly to the ground state 1Sy with electric dipole
transition (E1) at rate 7.4 kHz, the 3P, triplet state is a long lived metastable state.
The decay paths to lower energy states require high order processes such as magnetic
quadrupole (M2) transitions, and the associated life time has been measured up to 500
s [YKO4]. Hence, on experimental time scale, 'Sy <> 'P; is an open cycle and with
optical excitation at 461 nm, atoms are continuously shelved from the ground state into
3Py at rate Lpeping ~ T1ip /2 X 1.25107°.

The total electronic spin is not conserved on singlet-triplet transitions such as the
intercombination line 'Sy <+ 3P, hence a one photon decay path associated with
an electron spin flip should be forbidden, and these excited states should be stable.
However, higher-order processes reduce the life-time of these excited states and may
allow for single photon electric dipole (E1) transitions. For instance, ® Py is mixed with
broad-band ! P; state through spin-orbit interaction (SOC), such that the life-time of 3P,
is reduced to 25 us, corresponding to linewidth I'/27w = 7.4kHz. This is much smaller
than typical MHz broad transitions resulting in reduced spontaneous emission, but still
large compared to clock transitions. This typically means that the intercombination
line can be used at advantage both for dissipative processes and for coherent processes

with associated reduced spontaneous emission.

1.1.2 Oven - Transverse cooling and Zeeman slower

A deposit of pure solid strontium lies inside a stainless steel reservoir. It is heated by
radiation with a network of isolated heating resistances. The strontium reservoir is then
attached to a nest of microtubes to ensure a velocity selection on the hot atomic vapor,

so that fewer atoms with large transverse velocities can leave the oven.

The temperature of the oven is set with continuous voltage control, and it is
monitored with one thermocouple probe, at contact with the external surface of the

reservoir. In our experiment, we typically set the temperature of the oven at 760 K
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with input power 110 W which corresponds to an outgoing collimated flux of atoms
N ~ 6.10'2 atoms/s, with Boltzman velocity distribution and most probable axial ve-
locity v ~ 500m/s. With this operating mode, the estimated lifetime of the oven is
nearly 5 years in our experiment. The strontium deposit has been reloaded only once

since the experiment launch in 2014.

The hot atomic vapor is optically collimated with 2D optical molasses at the exit
of the oven [SVHO5|. Two orthogonal laser beams are retroflected along the transverse
velocities of the atomic flux. Transverse cooling is ensured with anisotropic beams,
the largest dimension being along the atomic flux to ensure maximal interaction time
with the atoms, and the frequency of the lasers is set red detuned A = —I'/2 from
the 1Sy <+ P, transition. This stage ensures an increase of the number of atoms later
captured by a factor of 3 in our experiment. The axial flux of atoms in then slowed with
a 50 cm long Zeeman slower [PM8&2], from v ~ 500m/s down to the capture velocity
ve =~ 20m/s of our broadband MOT.

The frequency of the blue lasers is set from a master laser with extended cavity,
whose frequency is locked on a hot atomic flux with modulation transfer spectroscopy
[MKCOS; Lee+-21]. The optical light used for transverse cooling and the zeeman slower
are generated by slave laser diodes whose frequency is set and stabilized by injected
light from the master laser into the slave diode cavities [Bat22|. The same procedure
is done for a slave dedicated to the MOT.

1.1.3 'S, < 'P, broadband MOT - 3P, shelving

The atoms are then captured in a 3D MOT on the broad-band transition at 461 nm,
and cooled down to the Doppler limit Tp ~ 1 mK. The magnetic coils in anti-Helmoltz
configuration are supplied by 170 Amper during the MOT stage, producing a magnetic
quadrupole with strong field gradient VB = 51 G/cm. The 'Sy <> 'P; transition is
not cyclic, and atoms are continuously shelved at rate I'spepping =~ [ip /2 X 1.25 107
from the ground state into the state 2P,. This metastable state has a large magnetic

dipole moment, so that metastable atoms stay trapped in the magnetic quadrupole.
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The metastable state has long lifetime 9 min [YKO04], but into the magnetic trap it
is lowered by the background collisions, down to nearly 10 s. In our experiment, we
typically set the time for loading atoms in *P; to 5 s, and it can be tuned from 2 to
10 seconds depending on the best balance between signal to noise ratio and time of
sequence for the on-going experiment. After 10 seconds of loading, the populations
reach steady state and no more atoms can be accumulated in 2P,. After then, the blue

MOT is turned off.

1.1.4 Repumping metastable P,

The temperature of the atoms accumulated in 3P, is approximately the Doppler tem-
perature of the broadband MOT, which is too hot to be directly loaded in our optical
dipole trap. To pursue optical cooling until the gas is sufficiently cold, we use a second
narrow MOT stage, which requires that atoms are in the ground state. Hence, we use
the optical transition 3P, <+ 5s6d3D, at 403 nm [SS14] to repump atoms back in the
ground state with a two photon radiative decay through 3P, as sketched in figure
When shelved in metastable 3P,, 87Sr atoms are spread in different hyperfine states,
and the 3P, <+ 3D, hyperfine resonances are resolved in the GHz range. Hence, to max-
imize the efficiency of the rempumping, we modulate the frequency of the repumper
laser to scan through the three most populated hyperfine resonances, and this is done
by modulating the voltage of the piezo-electric crystal of the cavity of the laser. The re-
sulting amplitude of the laser frequency modulation is 3 GHz in our experiment, which
allows to repump up to 40 million atoms after loading the metastable during 5 seconds
with oven heated at 760 K.

Although rempumping through other 5snd3D, states can be used, for instance
n=>5 [Pol+05; SGS13| at 497 nm or n=4 [Mic+09; Aka+21] where the decay paths
are favorable to minimize atom loss, we stick to using the 403 nm line for its easier
implementation and low cost laser. It is also possible to continuously repump atoms
during the broadband MOT stage in order to reach lower temperatures, at the cost
of atom loss [SSK14]. Since the number of atoms is critical for our experiment to

produce deeply degenerate Fermi gas, we rather repump atoms to the ground state
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after turning off the blue MOT. Note that it was recently demonstrated |[Aka+21]
that it is possible to take advantage of the cyclic transition 3P, <+ 5s4d3Ds at 3 um
inside the magnetic quadrupole, and produce ultra-cold gas at T" ~ 200 nK with one

dimensional polarization gradient cooling.

1.1.5 'Sy < 3P, narrow MOT
The MOT

The second and most critical optical cooling stage in our experiment is associated
with the 7.4 kHz intercombination line 'Sy «+ 3P, at 689 nm. While the achievable
temperature is limited in a broadband MOT due to high Doppler temperature, and
the density is limited due to the effective repulsive force associated with multiple light
scattering [WSW90; SWW91} (CCLIg|, MOT associated with the intercombination line
allows to produce much colder and denser atomic clouds [Kat+99|, since the Doppler
temperature is as cold as Tp = 177nK for strontium, which is very convenient for

further loading optical dipole traps.

Within 3Py, the hyperfine states are highly resolved with Agpg/Tsp, > 100000,
and the MOT laser beams are choosen red detuned from the *P;, F' = 11/2 hyperfine
state such that mp = +9/2 spin states can be trapped with oy laser beams. For this
transition the Doppler limit is Tp = 177nK while the associated recoil temperature
Tr = 462nK, defined as Tp = h?k*/2m where k = 27/), so that MOT cooling is
limited by the recoil energy of one photon and not by the Doppler effect. This allows
to directly cool atoms in the K range with standard MOT without using sub-Doppler
cooling techniques, which is very convenient. However, the capture velocity is limited
by the narrow linewidth, such that artificial broadening is needed to capture repumped
atoms at 1 mK, either with frequency modulation or with power broadening. Hence,
the 689 nm laser light is initially at full power, nearly 12 mW distributed over the 3
MOT axes, and its frequency is triangularly modulated over 4 MHz at rate 20 kHz.
Simultaneously, the input current of the MOT coils is lowered to 3.5 Ampers for a weak
magnetic field gradient VB ~ 1G/cm. At this stage, we capture up to 40 millions

atoms at T' ~ 25 uK. Then the modulation is reduced in two steps down to zero and
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the intensity down to a few I, ~ 3 yW /cm?.

For this narrow line cooling, and any optical scheme associated with the intercom-
bination line, high laser stability and finesse are required. Hence, the frequency of our
master laser is locked onto an ultra-stable cavity using a Pound-Drever-Hall feedback
signal [Dre+83|. The laser spectrum is as narrow as 1kHz which is sufficient for the
targeted 7.4 kHz linewidth. The optical beams used for the narrow MOT come from
slave laser diodes, whose frequency is set and stabilized by injecting light from the

master laser into the slave diode cavity [Bat+20].

Stirring laser

The narrow MOT for ' Sr requires a second laser to prevent strong atom loss [SSK14].
With high nuclear spin I = 9/2 and long lifetime 7 ~ 20 pus of the excited state
3P, atoms can remain in excited spin states transparent to light for a sufficiently
long duration such that they leave the trap. This is illustrated on figure [I.2] left.
If considering a single spin state for simplicity, here mpr = 5/2, the dissipative force
is localised on the left hand side of the zero field position. Actually, this scheme is
symmetric in mpg, accordingly with the Zeeman shift, and considering negative spin
states, the dissipative force is localised on the right hand side of the zero field position.
Hence, atoms would need to flip from mg to —mp when crossing the zero field to feel
a global restoring force, as shown by the average over all spin states as the blue dashed
line on the top figure. While magnetic atoms such as alkalis can flip spin when crossing
the trap center and always remain in a stable trap configuration, alkaline earth atoms

with zero magnetic moment need light assistance to change spin states.

It was then proposed [Muk-+03] to use a second laser beam for the narrow MOT stage
to randomize the spin states such that every atom feels a restoring force on average,
minimizing the probability of atom loss. This second laser, so called stirring laser
for the 8Sr narrow MOT, has its setup in MOT configuration, and is actually super-
imposed to the MOT laser, and its frequency is set red detuned from the 3P, F' = 9/2
hyperfine state. Figure[I.2] right, shows the spatial dependence of the STIR saturation

parameter, here defined as:
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Figure 1.2: Instability of the narrow red MOT for large spin 87Sr isotope. Left: spatial
dependence of the restoring force (a.u.) for the narrow MOT associated with the
intercombination line |*Sy) <+ [P, F' = 11/2). The ground spin state mp = 5/2 is
coupled to Zeeman shifted excited 3/2 and 7/2 spins of F' = 11/2 hyperfine state with
Lande factor gr ~ 0.36. For a given detuning (here A = —4I'), the corresponding
restoring force is plotted on the upper figure as the solid line. The restoring force
averaged over all the spin states is plotted as the dashed line. Right: spatial dependence
of the saturation parameter (a.u.) associated with oy and o_ excitation on the STIR
line |1Sy) < |?Py, F' = 9/2) with detuning A = —T', as solid line for the ground spin
5/2, and dashed line for the average over all ground spin states.

02

s(r) = R (1.1)

where A = § — mpgrupB for atoms at rest, and Q2 = (I'?/2) x (I/I,4) for both o
and o_ excitation. Since the gr factor is 4.5 smaller than that one of 3P, F' = 11/2
state, atom-light interaction is much less localized than the MOT line so that atoms
are no more transparent to light and hence have the possibility to change spin states.
With an efficient randomization of the spin states associated with the STIR line, all
atoms feel an averaging restoring force (dashed line, upper left figure , and remain
confined into the MOT. The intensity and frequency of the stirring laser are set with the
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same conditions than the MOT laser, starting with a frequency modulation of 6 MHz

and strong intensity, and with final single frequency at a few I,,; with no modulation.

In the final narrow MOT stage with field gradient VB ~ 2.5G/cm and detuning
A ~ Tsp for both stirring and MOT lasers, the bulk gas of 8"Sr extends over nearly
600 pm with 7 million atoms at 7" ~ 3 uK. The next critical step to reach Fermi
degeneracy is to transfer trapped atoms from the narrow MOT to the optical dipole

trap to perform forced evaporation.

1.1.6 Optical dipole trap loading

The transfer of atoms from the narrow MOT in our optical dipole trap (ODT) [GWOO00]
is associated with a few critical difficulties. First, there is the strong difference of size
of the two traps. With simple geometry considerations, a straight volume mapping of
the narrow MOT bulk gas onto the ODT shape would mean that less than 1% of the
atoms would be transfered from one trap to the other. To increase to loading efficiency,
the MOT is further compressed [IIK00| simultaneously to loading the ODT. However,
inside the ODT, the differential light shift associated with the intercombination line
has to be managed to prevent strong atom loss. Because the ground state is more
red-shifted than the excited state 2P;, the 'Sy <+ 3P, transition acquires a blue shift
much stronger than I'sp. Morover, the light shift varies spatially as a function of
the intensity profile of the ODT, which is much smaller than the size of the narrow
MOT. Hence, if we choose the MOT light to be slighty red detuned at the center of
the dipole trap in presence of the light shift, it is blue detuned at the edge of the ODT
and atoms are expelled. I will here first introduce the properties of the ODT and the
space dependent resonance for the intercombination line, then I will quickly describe
our method to circumvent those two major difficulties and maximize the phase space
density when loading the ODT.

Geometry: our optical dipole trap is made of two crossed far-off red detuned laser
beams at 1070 nm. The first beam is nearly horizontal with small tilt ~ 1°, and its

shape is elliptic with large horizontal waist ~ 150 um and small vertical waist ~ 80 ym
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at the atoms position, for a strong vertical confinement. The second beam is nearly
vertical with angle ~ 30° with respect to gravity, and its shape is isotropic with waist
~ 80 um at the atoms position, for strong confinement in the horizontal plane. The
crossing of the two beams defines a rather spherical volume of radius ~ 80 ym, which is
nearly 500 times smaller than the size of the 600 pm wide narrow MOT before loading.
The depth of initial trap at loading is 50 uK at the crossing, accounting for gravity sag,
with power distribution P=9.6 W in the horizontal beam and P=4.7 W in the vertical

beam.

Differential light shift: atoms are transfered from the narrow MOT associated with
the 1Sy <+ 3P, transition at 689 nm, to the ODT at 1070 nm. For far-off detuned atom-
light interaction and non-resolved hyperfine structure, the light shift is determined only
by the rotationnally invariant contribution to the dynamic polarizability and reads
as the dipole potential which can be computed from resolution of the optical Bloch
equations [CDGYS]:

Rl
4A
Here, 1/A = 1/(wy — wp) — 1/(wp, + wp), such that both the resonant and anti-

resonant contributions to the atom-light dipole interaction are considered. €2 is the

Uaip = (1.2)

Rabi coupling frequency, which is easily computed from the inverse lifetime I" and light

intensity I:

rz 1
02=_— 1.3
2 [sat ( )

where I, is the saturation intensity of the considered optical transition.

Regarding the light shift of 'Sy, the contribution from 5snp!P states, n < 11,
accounts for more than 99 % according to Thomas-Reiche-Kuhn sum rule of oscilla-
tor strengths [Lud0§]. The light shift can then be computed from the sum of the
relative dipole potentials U, o< Agx/ A, where Agy, is the transition probability, ac-
cording to the known values of the transition probabilities and wavelengths [Wer+92;
SN10]. The light shift of triplet state 5s5p3P; can be properly defined by considering
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Figure 1.3: Differential light shift of the 1Sy <+ 3P, intercombination line during the
loading of the optical dipole trap at 1070 nm. Black solid lines indicate the energy
levels light shifted and the red solid line indicates the MOT light frequency with the
ground state space dependent offset. For this frequency, the MOT light is red detuned
at the bottom of the trap and blue detuned outside.

the triplet-triplet transitions involving excited 35, 3P, and 3D states, with according
oscillator strengths and line wavelengths [Wer+92; SN10|. The shift ¢ of the transi-
tion 1Sy <+ 3P, is then simply the difference between the two introduced light shifts
ho = Ugip(P1) — Ugip(1Sp). In our experiment, Upy,(*So) ~ —1.5 MHz for the ground
state and Uy, (*Py) ~ —1.2MHz, such that the intercombination line is shifted by
nearly 300 kHz to the blue at the bottom of the trap, and is spatially proportional to

the intensity shape of the dipole trap laser beams. This is shown on figure
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ODT loading: the 1070 nm laser beams are quickly turned on after the narrow MOT
stage, and atoms in continous motion are attracted by the dipole trap of depth 50 pK. In
the bottom of the ODT, the MOT resonance is so much shifted that it can be neglected
and atoms simply run their phase space trajectory for conservative dipole interaction
with no capture nor compression. Hence, we want to shift the light frequency to the
blue to get closer to resonance at the bottom of the trap. This way, atoms are slowed
down and captured, and we can obtain further phase space compression with MOT
light induced dissipation inside ODT. Note that because of the differential light shift,
atoms outside the ODT see blue detuned light. We then slowly ramp the frequency of
the MOT light by 170 kHz during 120 ms, further compressing the position selectivity
of cooling inside the differential light shift, and increasing phase space density. The
intensity of the MOT light is simultaneously and slowly turned down to zero, so that is
it as low as possible when getting close to resonance in the high atomic density region at
the bottom of the dipole trap. This way, a balance is found between dissipative cooling
and heating at the outskirts. With this method, we are able to load up to 1.4 million
atoms at 3.8 uK inside the ODT, which corresponds to nearly 25 % atoms transfered
from the MOT to ODT with depth to temperature ratio U/kgT ~ 13, with density
no ~ 1.15 x 10®°atoms.m=3.

Enhanced capture volume: with this setup, we are limited by the capture volume of
the ODT compared to the volume of the narrow MOT. To increase the number of atoms
captured, we take advantage of a later used far-off detuned optical lattice to increase the
capture volume of the dipole trap, as shown on figure[1.4] We use a 1D optical lattice at
1064nm (introduced in section with larger vertical waist 100 ym and horizontal
waists 170 um, such that the capture volume is more than 5 times larger. This lattice
is one dimensional with vertical eigen axis, defining layers of large 170 x 170 um? dipole
traps with approximately 500 kHz depth, spaced by 2 pum.

This 1D lattice is turned on quickly and simultaneously to the ODT. The combina-
tion of the ODT and lattice makes a deeper trap reaching almost 90
rmu K, and we are able to load up to 2.6 million atoms with temperature 7.2 pK, which
corresponds to nearly 43 % atoms transfered from the MOT to ODT with depth to tem-

perature ratio Uopr/kgT ~ 12.5. This way, twice the number of atoms are loaded,
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Figure 1.4: Enhanced capture volume of the optical dipole trap. Left: optical dipole
trap loading without 1064 nm lattice, in situ (top) and after time of flight (bottom),
absorbtion images. Middle: enhanced loading using the 1064 nm lattice. Top right:
vertical cut of the satured in situ absorbtion images, the dashed line is the in-situ density
on the satured region infered from a Boltzmann distribution and the low density wings.
Bottom right: integrated optical depth from the time of flight images (bottom) used to
measure the number of loaded atoms and temperatures with gaussian fits for Boltzmann
gases in harmonic traps.

while the density ng ~ 3.3 x 10'? is approximately unchanged, accounting for the weak
increase of confinement w? = w2 ;) +w,, and U/kpT 1.3 times smaller. At this step,

the collision rate is approximate one collision per atom per millisecond.

Note that the efficiency of loading could be further improved with additional lasers.

An ODT at magic wavelength 840 nm for the intercombination line |[Muk+03| cir-
cumvents the differiential AC Stark shift and hence allows to have homogeneous MOT

cooling inside the dipole trap. Also, it is possible to use a transparancy beam [Son+20],
detuned by a few GHz from the 3P, «+ 35 transition, resulting in a localized light shift
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for the intercombination line. Atoms inside the transparency beam are protected from
MOT light, and the energy is dissipated through collisions to outside atoms which are
continuously optically cooled, allowing to further pass the radiation pressure limit and

reach even higher densities and lower temperatures before evaporation.

1.1.7 Forced evaporation

The gas is finally cooled down to Fermi degeneracy, see figure 1.5 with forced evapo-
ration. The 1D optical lattice used to help loading the optical dipole trap is smoothly
turned off during the first 2.5 seconds of evaporation. This way, atoms are transfered
from vertically stacked 2D harmonic traps to a three dimensional (3D) harmonic trap,
which permits a more efficient evaporation [LRW96] within higher dimensionnality. In
the meantime, the power of the horizontal ODT beam is lowered from 11.6 W to 2.4
W and from 4.7 W to 2 W for the vertical beam. This corresponds to a reduction of
the geometric mean of the trap frequency w = (wxwywz)l/ 3 from 275 Hz to 140 Hz. The
powers of the dipole trap laser beams are then reduced much more slowly at the end
of the evaporation, the horizontal beam from 2.4 W to 1.2 W and the vertical beam
from 2 W to 0.84 W, during 5 seconds. All in all, in our experiment, forced evaporation
runs over 8 to 10 seconds, and the gas reaches degenerate regime with 10 Fermi seas at
T < 0.5TF with approximately 7500 atoms per spin state, and the phase space density
p o< N@? /T3 is increased by three orders of magnitude, with respect to the dipole trap
loading, as shown on figure Note that our evaporation efficiency is limited by the
background collisions, with typical time 7 ~ 8 s which is approximately the duration of

evaporation.

1.2 Optical lattices

The objective of our experiment is to realize a quantum simulator for the Fermi Hubbard
model. In our experiment, this is realized by trapping spinor atoms at the sites of several
independent 2D optical lattices which are vertically stacked. The resulting 3D optical
lattice is presented in figure[1.6] It is made of a vertical 1D lattice at 1064 nm, defining

horizontal 2D layers at its maxima, and a 2D lattice at 532 nm shaping 2D square
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Figure 1.5: Forced evaporation dynamics. The temperatures and number of atoms are
measured from time of flight images, and the trapping frequencies of the dipole trap
are infered from an independent calibration of the trap geometry. At each evaporation
step, the gas thermalizes during 330 ms before time of flight. In inset, the phase space
density p increase with respect to the initial gas pg at ODT loading, where the phase
space density is computed as N3 /T3.

lattices within each horizontal layer. The combination of the two lattices is a set of
horizontal 2D square lattices with sites spacing 256 nm separated by ~ 2um. The
tunneling within the 2D bravais lattices is controlled by the intensity of the 532 nm
laser beams, while the tunneling from layer to layer is separately controlled by the depth
of the 1064 nm lattice. The tunneling from layer to layer is negligible on the timescale

of to the 2D spin dynamics.

In this section, I first introduce the geometry of the vertical 1D lattice at 1064 nm,
and our method to measure the depth of the low recoil lattice. Moreover, several sites

of the 1D lattice are loaded in our experiment, typically 8 layers, and I discuss our
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Figure 1.6: Optical lattices setup. Two lasers beams at 532 nm with 6 = 16° elevation
are retroflected to shape a 2D lattice, and the 1D lattice is made of two interfering laser
beams at 1064 nm separated by 6 = 32° elevation. The resulting lattices are layers of
2D lattices separated by 2 um, with sites spacing of 256 nm.

application of the quantum magnifier scheme [Ast+21| to measure the distribution of

atoms in the several layers. Then, I introduce the geometry of the 2D lattice.
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1.2.1 1064 nm 1D lattice

Geometry

The 1D lattice is made from the interference of two laser beams at 1064 nm with
wavevectors k_i, k; In a spherical basis (r, 0, ¢), where elevation angle 6 and azimutal
angle ¢ are defined on upper left inset of figure , the wavevector k of each laser beam

is here defined as:

- cos¢p sinf
— | sing sind (1.4)
A

cost

k

The two laser beams at 1064 nm have same azimutal angle ¢ and elevation angle
0 = £16° so that they are separated by 66 = 32° elevation and ky - ky = Ky Ky cos(32°).
The stationnary wave resulting from the interference of the two laser beams is a vertical
1D lattice with eigen-axis d@ along Ky — k:z, and the sites spacing is a = A/2sin(16°) ~
2pum. The two beams are controlled by the same AOM and separated right before
crossing at the position of the Fermi gas, ensuring that the phase coherence between

the interfering beams is maximally maintained.

Depth and band gap calibration of low recoil 1D lattice

Lattice depth calibration is usually done with diffraction calibration [Den-+02]. In
the case of low recoil lattices, the diffraction orders cannot be resolved with time of
flight imaging since they are separated by only a few nK, 7 nK in the case of 2 um
sites spacing for 8Sr, which is much lower than the lowest momentum spread that
can be reasonable attained for degenerate Fermi gases of strontium, (~ 20nK with
approximately 20000 atoms in our experiment). To circumvent this issue, we rather
observe the time evolution of the gas momentum distribution inside the lattice potential
[Huc+09] after suddenly switching it on. The low recoil lattice is pulsed on bulk gas,
long enough such that the atoms are accelerated into the lattice potential. Atoms
initially laying next to the negative interferences of the lattice will acquire maximal
acceleration when reaching the bottom of the sites. When the lattice is turned off, with

time of flight, then the atoms will expand with the kinetic energy acquired from the
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Figure 1.7: Experimental images for the depth calibration of a low recoil 1D lattice.
For each duration of the lattice pulse, in bottom axis, a time of flight image is recorded.

lattice depth. If the pulse time is long enough, then atoms must have had enough time
to explore the whole depth of the lattice sites, and then the maximal velocity measured

in time of flight maps the depth of the lattice.

Figure shows experimental images of the scheme for different pulse times. If
the pulse time is long enough, then the atoms have explored the whole depth, which
happens from 60 us in this measurement. Figure [L.§ shows a cut of the optical depth
from figure along the longitudinal axis for each time of flight, from which it is
possible to detect the atoms with maximal velocity. At 60 ps of pulse, the maximal

separation in the imaged density is nearly dx ~ 100 px, such that the maximal velocity

dx
2ttof

the measurement of the depth V; of the lattice:

acquired iS Uy = . This gives the maximum acquired kinetic energy, which gives

Lo

Vb - §mvmacc

(1.5)

From this measurement, the trap depth is 113kHz, which corresponds to V, =
791 Er. The band gap can then be directly infered from hwgs = 2v/VoEg, which is
8 kHz in this case.
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Figure 1.8: Longitudinal cut profile through the experimental images of the depth
calibration shown in figure for each pulse time, shown in left axis. There no axis
showing the density.

Distribution of atoms in the several layers

To measure the number of atoms in each layer, I applied the quantum magnifier scheme
recently demonstrated by [Ast+21]. This scheme relies on exchanging the position and
momentum distributions of the atoms with a 7/2 phase space rotation, and this is
realized in a conservative harmonic potential of period T every §t = T/4. In the
experiment, this is done by suddenly turning on and off a harmonic potential during one
fourth of the period T' = 27 /w where w is the trapping frequency along the magnification
direction, vertical in this case, and this way, initial positions {x;} of trapped atoms
converted to initial momentums {p;}. Then, the gas is released for a time of flight
measurement. Since the measured positions map the initial momentum distribution,

this is actually a measurement of the spatial distribution of the atoms in the lattice
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Figure 1.9: Magnification of the sites of the 1D lattice using the quantum magnifier
scheme [Ast+21]| along the vertical axis. Left: experimental absorption image of the
magnification of the sites, with approximately 85 x 10* atoms at T/Tr ~ 0.3 before
loading. The color bar represents the optical depth per pixel surface. Center: fit of
the integrated optical depth to measure the populations into the different 2D layers.
The relative population measured in each layer is noted as a percentage above each
peak picturing a layer, in red, big font. The bins represent a guess of the populations
with respect to the size o of the initial gas and the sites spacing a of the lattice. Here,
o~ 3.1um and a ~ 2 um. The relative population guessed in each layer is noted as a
percentage above each peak picturing a layer, in dark blue, small font. Righ: loading
of two layers only.

{z;} thanks to the harmonic pulse. If the eigenaxis of the harmonic pulse is perfectly
colinear with the eigenaxis of the bravais lattice, then this measurement results in a
magnification M = wr of the bravais lattice, where w is the harmonic frequency and 7
the time of flight.

In our experiment, I used the horizontal laser beam used for the dipole trap with
strong trapping frequency essentially along the vertical axis, w, ~ 27 x 450 Hz, which
is parallel to the lattice eigenaxis. With a 7'/4 pulse and 10 ms of time of flight, the
vertical magnification is M ~ 30 for sites spacing a ~ 2 um of the 1D lattice, which
correponds to approximatively 9 pixels of size 6.45 ym in our camera. The resulting
experimental absorption imaging is shown in figure left, where we can see that the

2D layers are well resolved. Figure|l.9, center shows the integrated optical depth along
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the axis of the layers, such that it is possible to measure the number of atoms in each
layer. From this data, I deduce the relative populations in each site, as noted above
the integrated density of each layer in red, big font. The measure let us know that
approximately 50 % of atoms are into the 2 equally populated middle layers, and about
30 % in the two next equally populated layers. This measure is compared with a guess
of the populations, infered from the size o, = \/W of the initial Boltzmann gas
and the sites spacing a. This indicates that the atoms barely move while being loaded
into the 1D lattice, as a consequence of the long period of the potential that rapidly
kills tunneling at bar lattice depth. The initial density is sliced into bins mapped on the
lattice sites, as shown on the figure, and then the relative number of atoms are infered
from the binned density. The result, for a gas of initial size o, ~ 3.1 ym, corresponding
to an initial 3D trap with frequency w,/27m ~ 130 Hz at temperature 7' ~ 65nK, is
texted above the bins in dark blue, small font. The guess fits very well with an average
deviation of less than 1%. In the guess, the lattice sites are shifted by a/5 to match
the asymmetry in the populations of the sites. Finally, we show that the number of
loaded layers can be tuned, as it depends on the initial extension of the 3D gas. Hence,
adiabatic compression of the gas along the lattice eigen-axis reduces the number of
lattice sites that are loaded, and figure [I.9] right, shows that we are able to load two

layers only, which moreoever have approximately the same number of atoms.

Layers independence

The layer to layer tunneling is suppressed thanks to the very low recoil, i.e. very
large sites spacing a, of the lattice. Strontium atoms in the ground state have zero
eletric dipole moment, and the magnetic dipolar interaction of the nuclei are negligeable
[Gor+10]. The 2D layers defined by the 1D lattice are then completly independent. This
is actually a very interesting feature since it allows to simultaneously run independent
quantum simulations in each layer, and hence increases the experiment capability to

acquire much data and increase the quality of statistical analysis.
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1.2.2 532 nm 2D lattice

Geometry

The 2D lattice is made of two retro-reflected laser beams with waists 150 um at the
atoms position and powers P, and P,. The intensities are controlled with two inde-
pendent AOMs detuned by 200 MHz to prevent interferences. The azimutal angle §¢
between the two laser beams is exactly 90° and both have 6§ = 16° elevation. The
spherical coordinates of the wavevectors of the two beams can then be written as
ki = (k,0; = +16°,¢1 = ¢) and ky = (k.0 = 61,6, = ¢ + 90°), where k = 21/,

A = 532nm. The intensity of resulting stationnary wave is

N 2 . 2
I[(F) = 4P; sin <k1 . F) + 4P, sin (kz - F) (1.6)

Within each 2D layer defined by the maxima of the 1D lattice at 1064 nm, the

projected 2D bravais lattice can be then written as:

- A
Rm,n -

A
o d ol 1‘
m200$9a1+n20080a2 (1.7)

where 8 = 16°. Here, m and n are the sites indices of the bravais lattice and a4,

ay the eigen-axis, respective normalized projections of k; and ko along the (Ozy) plan

defined on figure [1.6]

Note that k; and ko are not orthogonal, Ky - kg o 005(0)2 = 0, but the projection of
the 2D lattice on the horizontal planes defined by the 1D lattice maxima is a proper
2D square lattice. Indeed, a1 = (1,0 = 0,¢; = ¢) and a3 = (1,05 = 0,01 = ¢ + 90°)
so that a7 - a3 = 0. Moreover, the § = 200 MHz detuning between the two lattice arms
is negligeable with respect to the light frequency v; = ¢/, i.e. §/v; ~ 3-1077, so that

the lattice can be considered square, with sites spacing a = 276 nm.

Ground band population

To measure the number of atoms in the ground band of the 2D lattice, I first identified
the first Brillouin zone (FBZ) with a diffraction measurement. The 2D lattice is quickly

turned on and off during a few microseconds on the bulk gas, and the diffraction orders
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Figure 1.10: Absorbtion images of atomic clouds after diffraction (a) and band mapping
(b) of the 2D lattice at 532 nm. (a) Simultaneous diffraction of the atomic cloud by
the two arms of the 2D lattice. The first Brillouin zone (FBZ) at :tlhk;{ is graphically
infered from the first diffraction orders at £2hk momentum recoils. The non diffracted
population is the brightest central cloud. (b) Measurement of the population in the
ground of band of the 2D lattice with 2D band mapping after adiabatic loading of the
lattice, where the FBZ is mapped from the diffraction measurement.

are identified after a time of flight. The first diffraction orders of each arm of the 2D
lattice give a measurement j:2hk§g, where k:} is the momentum recoil of each lattices,
which further allows to identify the FBZ. This is shown on figure (a), where the
FBZ is identified as the white rectangle at :l:lhk;g of each lattice. Then, the number
of atoms in the FBZ after adiabatic loading of the 2D lattice can be measured from a
band-mapping . In our experiment, this is done by slowly turning off the 2D
lattice within 2 ms before time of flight. By mapping the FBZ identified with lattice
diffraction onto the band mapping, it is possible to count the number of atoms loaded
in the FBZ. With this measurement, I infer that 91 % to 97 % atoms are loaded in the
ground band of the lattice, allowing for £1 pixel uncertainty on the identification of
the FBZ.



Chapter 2

Absorption imaging of objects
smaller than the resolution limit

In our experiment and more generally in the whole community, we study physics in cold
and ultra cold gases which are typically tiny objects not much larger than a micrometer.
Such objects are sometimes not resolved by standard imaging setups with low numerical
aperture, and we typically consider that the data provided by in-situ absorption imaging
cannot be used in that case. In this chapter, I present our method [Lit421] to recover
the actual size of our in-situ object even when this is below our imaging resolution
limited by either low numerical aperture, pixelation, or aberrations such as out of focus
imaging. It relies on an estimate of the fraction of absorbed photons infered from two
absorption pictures, with and without atoms, which depends non-linearly on the local
density of atoms when the optical depth is large enough. By using a convenient ansatz
on the density profile, and an independant measurement of the number of atoms, we
show that the actual size of the sample can be known. We have tested our method
on absorption images of elongated gases, unresolved along the transverse axis only, in
which case a straight application of the integrated Beer-lambert law leads to strong
distorsions of the measured local density, so that even the longitudinal axis, assumed
resolved, is distorted. Our results show that we are able to measure RMS sizes as small
as one fourth of our resolution limit, and we confirm the validity of our method by
comparing our measurements to expected sizes from equi-partion of energy. Finally, I

will show that this method also permits to recover the density profile along the elongated
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axis. We verified this result with a comparison to expected density profiles from both

Boltzmann statistics for hot gases and Fermi statistics for degenerate gases.

2.1 Motivations

2.1.1 Measuring the interaction energy of an SU(10) degener-
ate Fermi gas

This work was first motivated by an experiment to measure the enhanced mean-field in-
teraction in the weakly interacting regime of a SU(10) degenerate Fermi gas [Son+-20]
of fermionic 87 Sr, which has 10 degenerate ground spin states and spin-independent
scattering length ag = 97 ag, in Bohr radius units. In a two components Fermi gas
with equal populations, the mean-field energy Eiig@)/Eho ~ kras/3 [VS99; MPS02] is
small, where kp is the Fermi momentum, a, the scattering length and E}, the oscilla-
tor energy. However, a Fermi gas with enlarged SU(N) symmetry |[CHU09; |Gor+10;
Tai+12] has increased interaction energy Egg(N) =(N— 1)E§g(2) due to reducted role
of the Pauli exclusion principle. When a trapped ultra cold quantum gas is released
by switching off the trap, the local density decreases during expansion and hence so
does the mean-field energy E;,;, which is progressively converted to kinetic energy due
to energy conservation. A measurement of the velocity distribution after time of flight
provides the release energy Fr [Bou0O4], which is the sum of the initial kinetic energy
prior to the release Ff, with the mean-field energy [GPS0§|. In a given direction, the

release energy is then given by

1 1
Bror = gEK + gEmt (2.1)

In our experiment with fermionic 87.Sr, we wanted to further enhance the mean-field
signal with a 1D expansion, .e. by allowing the gas to expand along one axis only, so
that the full mean-field energy is converted to kinetic energy into this axis only. In this

case, the release energy along a given direction is then given by:

1
B = 3 Erc + Eine (2.2)
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The mean field energy can finally be infered by comparing these two quantities, i.e.
the release energy measured from a 1D expansion and measured independently from a
time of flight. This method has the advantage that it is twice as sensitive as a single

time of flight measurement of the release energy to infer the mean field energy.

2.1.2 Distorsion of imaged in-situ density

We first did the measurement of the release energy with a 1D expansion. The gas,
initially trapped in a 3D harmonic potential, is suddenly released along one direction
only while it remains confined in the two other directions. After expanding along this
single direction, we take in-situ absorption images of the elongated gas inside the 2D
confinement, which is presented in figure (a). From this measurement, we identify
several problems. First, the imaged gas is confined into the 2D trap, and figure
(b) shows that the density distribution along the short axis, which is along the 2D
confinement, is pixelated as it is spread over a few pixels only, and the negative signals
indicate imaging aberrations such as light diffraction on the atomic cloud, and out of
focus imaging. Moreover, from the imaged density of atoms n(i, j), measured from the

standard application of the Beer Lambert law on each pixel (i,j):

N (F)
i) = =5 o9 G )

we obtain an integrated density profile along the elongated axis which shows sig-

(2.3)

nificant deviations from the expected gaussian distributions at temperatures T > TFx
as shown in figure (c). Here, op = 3A\%/27 is the resonant atom-light absorption
cross-section, and I ([y) the recorded light intensity with (without) atoms. Finally,
the number of measured atoms on the 1D expansion measurement, NP ~ 9 x 10% did
not match ones of the time of flight experiments N;?f ~ 14 x 103, which are shown on
figure (d). This is explained because the density profile is not resolved along the
short axis, resulting in pixelation, and the local density of atoms cannot be directly
infered from the Beer-Lambert law used for absorption imaging because of its non lin-
earity. Hence, using the Beer-Lambert law induces non-linear error on the estimated
local atomic density, which results on a distorted image, and any straigth estimate of

the release energy is mistaken, even along the a priori resolved elongated axis.
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Figure 2.1: Distorsion of optical depth with in-situ absorption imaging of an elongate
gas inside a 2D confinement. (a) Optical depth measured with absorption imaging and
the Beer Lambert law. The grey solide lines indicate horizontal, and vertical, cuts
shown on figures (b), and (c.1), respectively. (b) Each vertical bin corresponds to a
single pixel of the horizontal cut. (c.1) Vertical cut of the optical depth in solid black
line, and gaussian fit in dashed red line. The residuals of the fit, normalized by the signal
maximum amplitude, are shown on figure (c.2). (d.1) Time of flight measurement, and
(d.2) residuals of the gaussian fit from which we measure the number of atoms.

2.1.3 Incorrect estimation of the pixelated local density

The local intensity loss of a weakly saturating laser beam propagating through an
atomic cloud is proportionnal to the atom-light absorption cross section ¢ and the local
density of atoms n. This is the well known Beer-Lambert law, and for resonant light

propagating along Oz, it is written as:

dl
T = —noydz (2.4)

Assuming that the length of the gas along the propagation axis is smaller than the
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Rayleigh length of the imaging laser beam, diffraction effects along propagation can be
neglected, and the x,y,z intensity variations are independent. Then, the optical depth
OD(z,y) = oo [ n(z,y, z)dz is defined after integration of the Beer-Lambert law along

the propagation axis:

I(z,y)
IO ($7 y)
where [ is the light intensity after passing through the atomic cloud, and I is the

OD(z,y) = —log

(2.5)

light intensity without gas. The column density n(x,y) is then directly infered from

OD(z,y)

0o

On experiments, the light intensity is recorded on cameras with pixel size a. The
recorded power P(i,j) on pixel (i,7) is then the light intensity integrated over the

surface a? of a pixel at location (i,j):

P - [ 1oy 2.7
pizel (i,j

where pizel(i, j) = [{ia, (i + 1)a} x {ja, (j + 1)a}] is the domain of integration. If
the intensity profiles vary slowly enough over the pixel length a, i.e. dI/dx < I/a
and dI/dy < I/a , then the double sum in equation can be approximated to
P(i,j) ~ a®I(ai,aj). In this case, the local density of atoms, average over pixel (i, ),
can be measured with the optical depth that is infered from the averaged local intensity
using equation [2.5]
P(i, j)
Po(i, j)
However, if the gas is too small so that the intensity profile varies quickly with

<n >(,5) 00 =< OD >(i,j): —ZOQ (28)

respect to the pixel size, the approximation for the Beer-Lambert in equation 2.8 doesn’t
hold. In this case, the logarithm of the averaged absorbed light is not equal to the
averaged optical depth:

P@i,j) 1 I(z,y)
log———= # —// log————=dxdy 2.9
P(i,j) ~ a? pizel(i,j) Io(z,y) (29)
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which is due to the non-linearity of the logarithm. Hence, it is generally not possible
to infer the local density of atoms by using the integrated Beer-Lambert law with the
recorded light power on each pixel, and this is what we observed on the 1D expansion
measurement shown on figure [2.1] It is interesting to note here that even if only one of
the two dimensions are not resolved, it is enough to forbid the approximation and

the data remains in the non valid case similarly to equation 2.9

This shows that a straight use of the integrated Beer-Lambert law to measure the
optical depth is mistaken and leads to distorted density profiles in case of pixelation,
but it is also true if the resolution limit, larger than the imaged object, is due to the
diffraction limit for instance. This effect is even more signicant for large optical depths
with quickly varying profiles, but our problem is different from the total absorption
regime |Rei+07]; we consider here that there is light collected at every pixel, accordingly
to our measurement presented on figure 2.1} In this regime, the error on the measured
number of atoms can be compensated for by rescaling the absorption cross section
[Est4-06], giving a first order correction on the measurement of the local density of
atoms. However, here we show that the error on the measurement of the local density
of atoms is non linear, so that it is important to consider an effective absorption cross
section which depends on the density oy — (n). I will now show how to apply this

correction.

2.2 Non-linear correction on the measurement of
the sub-resolved local density

In this section, I describe how to account for the resolution problem by making use
of the fact that when light passes through an atomic cloud, the amount of absorbed
photons depends on the density of atoms and the depth of the crossed cloud. The first
met atoms absord some quantity of light, so that the next atoms are in their shadow
and hence are not exposed to the same intensity. Hence, for a fixed number of atoms
in a given light beam, the total number of absorbed photons depends only on the size
of the atomic cloud, since the shadowing effect increases for larger densities. I will

now show that relying on this principle, it is possible to dodge the resolution limit and
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infer the local density from the number of missing photons, thanks to an independent
measurement, e.g. the total number of atoms. This way, we infer both the size of
the gas along the non resolved axis 0x, and the longitudinal density profile along the

elongated axis Oy.

2.2.1 Parametrization of the density dependent correction

We focus here on elongated gases with a slowly varying longitudinal profile, as shown
on figure 2.1 (c.1), and non-resolved density profile along the transerse axis, as shown
on figure (b), accounting for possible light diffraction on the tighly confined axis
and defocusing. Let’s first derive an equation for the total number of absorbed photons
as a function of the local column density n(z,y). From two images of the imaging
beam, one with atoms and recorded power P(i,j) at pixel (7,j), and one without
atoms and recorded power Py(i,j), we define the ratio of absorbed photons (Py(i,j) —
P(i,7))/FPo(i,j). Note that here, we defined the domain of integration as the pixel size
a?, similarly to equation Let’s now define

Rpn(j) = — 2.10
P ( ) zl: Po(l,]) ( )
the ratio of absorbed photons recorded on the camera along the elongated axis
Oy (index j) which is not problematic with respect to the imaging limitation. The
integration along a pixel line in the transverse axis Ox (index i) permits this reduction
of dimensionality, which moreover allows to not account for the light diffraction along

the short axis Ox |[Arm+10]. Then, by inserting definition one gets:

i) =3 777 )] " (fo(l‘a y) - I, y>)dxdy

X i (= e )

(2

(2.11)

Even if the object is small, the imaging light beam has to be large enough such that

the light intensity is homogeneous over the surface of a pixel. In this case, Py(i,j) =
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a’Iy(z,y). Then, by inserting the local column density 7(x,y) defined in equation

one gets:

1 [la+Di (a+1);
Rypn(j) = Z@/ dﬁ/_ dy(l - eXP(—Uo/n(x,y,z)dz)> (2.12)
i ai aj

Far from the cloud of atoms, no photons are absorbed, such that the sum over
the short axis ), fa(fﬂ)l[...]dx can be extended to infinity [,[...]dz where the ra-
tio of absorbed photons is zero. Also, in our case, the gas is very elongated along

axis Oy, and hence it is rather homogeneous over a pixel length along Oy, such that
(a+1)j
faj

atomic density n(z,y, z). With these simplifications, equation can be rewritten as:

n(z,y, 2)|dy ~ a f[n(x,aj, z)], where f can be any slow varying function of the

Ron(j) = % /R (1—exp(—aoﬁ(x,aj))>dx (2.13)

Equation [2.13] is our first equation relating the ratio of absorbed photons which is
the actual data, with respect to the column density of atoms, which is what we want to
infer. Until now, the following approximation have been made. First, the atomic gas is
elongated enough along axis Oy so that the variations of the density profile along this
axis are negligeable along one pixel length. Also, we supposed that the light intensity
of the imaging beam is homogeneous over the surface of a pixel, and, the diffraction
of the probe light can be neglected over the depth of the sample along its propagation

direction.

Now, let’s parametrize the sub-resolution feature, which is the size of the cloud
along the unresolved transverse axis. To do this, we introduce an ansatz on the local
density of the gas, and it is relevant to use a gaussian ansatz for thermal gases:

_ a?
n(z,aj) =e 2:n(0,aj) (2.14)
where o, is the transverse size of the cloud, and 7(0,aj) the peak column density
along axis Oy. By inserting the gaussian ansatz in equation [2.13] and with change of

variable u = x/0,, one gets:
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R,(j) = % : (1 — exp<—ooﬁ(07aj)@_uz/2>)dx (2.15)

%F(aofz(o, aj))

which defines the transfer function F'. This last equation relates the quantity R, (j)
to the local density of atoms that we want to retrieve, parametrized by the size o,. F

is monotonous, hence it can be inverted to have a direct reading of the local density:

(0, aj) = iF‘l(ﬂl-'iph(j))

go Og

" (2.16)
= —ODcy(j)
g0

This highlights that the expected local density is obtained from the establishement
of an effective optical depth OD.s(j), dependent on the measurement R,;(j), and
parametrized by the size o,. Actually, this is equivalent to the establishement of an

effective absorption cross section ot by the following transformation:

. : 1 : . : 1 :
n(0,aj) = —OD.ss(j) = 1(0,aj5) = OD(j) (2.17)
70 Teff
where OD = —log P/ P, is the straight application of the Beer-Lamber law (see

figure , contrary to OD,.ss which is infered from our method. The expected local
density of atoms is then equivalently infered by introducing either an effective optical
depth, or an effective absorption cross-section, both dependent on the measurement
R,1(j), i.e. on the local density of atoms itself. In both cases, this correction is

parametrized by the unknown size o,, hence a supplementary constraint is required.

2.2.2 Calibration of the non-linear correction

Several constraints can be used, typically the parameters defining the statistics of a
thermal cloud, and here we choose an independent measurement of the number of
atoms. A gas is prepared in the same conditions than the 1D expansion experiment

and it is imaged after a time of flight, i.e. released along the three directions so that
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it expands enough to be resolved and equation [2.6| can be used. In this case, the total

number of atoms is obtained from a direct measurement of the optical depth as defined

in equation 2.5}
Ntor _ @ S 0D*(i, ) (2.18)
= — 7 .
at 00 — 7.7

where the tof annotation refers to the independent measurement with a time of
flight. Regarding the 1D expansion experiment, the total number of atoms can be
computed from the column density 7(0,aj) and transverse size o,, according to the
gaussian ansatz [2.14], and using equation [2.16 the number of atoms finally reads:

Nuw = Va0, = 3 F 7 (- Fynl) (2.19)

Here, the pixel size a appears because the number of atoms is obtained from the
discrete sum over pixels, which has to be rescaled to the physical pixel size. Equation
2.19 relates the unresolved transverse size o, to the measured number of missing pho-
tons, through the constrained number of atoms. Finally, the size o, that we measure is
obtained by matching the number of atoms indendently measured with a time of flight

and with a 1D expansion, which is done by solving:
o a 1/ a 4
Niof \/2mx0—0 Y F 1(U—Rph(3)) =0 (2.20)
j x

The establishement of this equation concludes the method to restore the density
profiles from the distorted images of the atomic clouds. Note that the dependence
on the atom-light absorption cross-section o is the same for both derivations of the
number of atoms, such that it is canceled from the cost function. Hence, the estimation
of the size o, is independent of og, which is an advantage because this method is then
insensitive to fluctuations which could arise, for instance from optical pumping effects

during the imaging.
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2.3 Experimental demonstration

2.3.1 Production of degenerate Fermi gases expanding along
one direction only

The gas is cooled by forced evaporation in our optical dipole trap as presented in
chapter . The optical dipole trap (ODT) is made of two far red-detuned laser beams,
one horizontal, and the other one makes a 30° angle with respect to gravity axis. After
the gas has reached thermal equilibrium, we let the gas expand only in one direction
by switching off the horizontal beam. The gas then falls along the mostly vertical
beam. After a certain time of expansion along one dimension, the data is taken with
absorption imaging, while the gas is still confined in the two perpendicular directions.
The imaging setup has magnification 1 with an objective of focal length f = 150 mm
and diameter 2 inches, for a numerical aperture NA=0.08. The resulting diffraction
limit is 2um, much lower than the size 6.45 x 6.45 um of the square pixels of our
camera , which is our ultimate resolution limit. Figure shows absorption images of
the channeled expansion for different times of channeling. This procedure was done for
different final temperatures of the thermal gas before release. To measure the expected
number of atoms, we use a second set of pictures which is actually a standard time of
flight measurement. We let the gas expand in the three directions by turning off both
ODT beams, then we take an absorption image. The 3D gas is prepared in the same
conditions than the elongated gases, such that the number of atoms are the same in
both images. Our imaging setup has magnification 1 and the pixels of the camera have

dimension 6.5 um x 6.5 um.

2.3.2 Recovery of the unresolved transverse sizes o, of elon-
gated gases

For each image of the elongated gases, we retrieve the longitudinal profile of the ratio
of absorbed photons defined in equation [2.10} Then assuming a size o,, we compute
the corresponding number of atoms as defined in equation [2.19] It is possible to build
a full curve by repeating this process for different values of o, as shown on figure

In this figure, each one of the three curves corresponds to a single image, cooled to
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Figure 2.2: Absorption images of channeled expansion. The time of channeling before
imaging is written at the top of each image. The horizontal and vertical axis are
given in camera pixels scale, as captured during the experiment. The colorbar is the
optical depth. The dimension of one pixel is 6.5 x 6.5 um? and the imaging setup
has magnification 1. All these images belong to a same set of data with temperature
T ~0.35Tk.
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Figure 2.3: Size o, in pixel units, of the elongated gas along the non resolved dimension
Ox, with respect to the number of atoms, computed from the inverse of equation [2.19
Each curve indicates the analysis of a single experimental image of an elongated gas,
for three different temperatures indicated in Fermi temperature units. The vertical
dotted lines indicate the number of atoms measured from the images of 3D gases, with
its uncertainty. The horizontal dashed lines indicate the corresponding size for the
unresolved elongated gases.

the indicated degeneracy. The temperature and degeneracy are infered from the 3D
gases. Using the reference measurement of Néff from the 3D time of flight images,
and its associated uncertainty with shot to shot fluctuations, we get the corresponding
transverse size o, and its confidence interval. This is pictured by the dashed lines on
figure We see here the principle of the analysis: for a given number of absorbed
photons, more atoms means a smaller gas, and this is consistent with the shadowing

effect described above.

The measured transverse sizes o, are reported in figure [2.4] as a function of the time
of channeled expansion, for every temperatures after evaporation.

First we can see that o, doesn’t vary much during the channeled expansion. For
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Figure 2.4: Transverse size o, in pixel units (1 pz = 6.45 um with respect to the time
of channeled expansion time, for different degeneracies T'/Tr, indicated in the legend.
Each point corresponds to a statistical average over nearly ten images. The errorbars
contain both the confidence interval of the infered o, for each image as well as the
standard deviation over the different experimental realizations. The solid lines link the
points of the same set of data, 7.e. with same degeneracy, for visual comfort. The
degeneracy is measured on the reference images with 3D time of flight.

instance, the size of gases with temperature T' ~ 0.57TF vary within a 0.6 £+ 0.05 px
window, which corresponds to nearly 10 % variations, and colder gases vary as much
if not less. However, the hotest gases at T' > 0.77Tr have their transverse sizes o,
somehow raised during the channeled expansion by nearly 10% to 15%. During the
channeled expansion, the gas falls along nearly 100 um of the guiding beam, whose
frequency for the transverse confinement evolves from 210 Hz at the initial position of
the gas, to 145 Hz after 20 ms of channeling , according to our estimations. Atoms
adiabatically follow the shape of the beam, due to the slowly varying Hamiltonian,
and the transverse size should raise by 20 %. We note the robustness of our method,
considering that the measurement of the transverse sizes o, is stable with respect to the

time of channeling which correspond to different elongations along Oy. Even at 2 ms of
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Figure 2.5: Transverse size o, with respect to the kinetic energy of the gas. Each
box corresponds to a different position in the guiding beam, accordingly to the time of
channeled expansion, which is written in the top left corner of each box. Each black dot
corresponds to an average over ten images of the infered transverse sizes. The associated
errorbars contain both the confidence interval of the infered o, for each image as well
as the standard deviation over the different experimental realizations. The expected
transverse size from equi-partition of energy is plotted as solid black line for each time
of channeling.

channeling where the gas is smallest along Oy as shown on figure the infered sizes
are consistant with the other measurements, which shows that the longitudinal profile
varies smoothly enough with respect to the pixel size and the approximation made in

equation [2.13]is correct.
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The smallest measured size (gaussian rms) is as low as one fourth of a pixel, which
corresponds to 1.6 um at the lowest measured temperatures in this experiment, 7" ~
30nK at T" ~ 0.15T%. This is is smaller than the typical distortions introduced by
diffraction of the imaging beam and out-of-focus measurements, and much smaller than

our resolution limit imposed by the 6.45 ym wide camera pixels.

To verify that our measurements of o, are consistent, we compare the result of our
method to theorical predictions. Because of equi-partition of energy, we expect that
imw?o? = Ey, where Ex = im < v, >, neglecting inter-atomic interactions. The
kinetic energy can be measured from the reference images of gases expanding in 3D,
and the trap frequency can be independently measured. It is then possible to have an
independent prediction of the in-situ transverse size of our elongated gases, with no free
parameter. The comparaison between our measurement and the prediction is plotted on
figure independently for each time of channeling. At high temperatures, and long
time of expansion, there is a tendancy of overestimating o, with our method compared

to the prediction, altough both estimations remain in agreement within errorbars.

2.3.3 Recovery of the distorted longitudinal density profiles

We now are interested in the longitudinal density profile. I have shown in section [2.1.2]
and that absorption imaging distorts the local density of non resolved atomic
clouds. In figure [2.1] it is shown that even if only one axis (Ox) is non-resolved, the
density profile inferred from the Beer-Lambert law is wrong along the assumed-resolved
axis (Oy). However, according to equation m, it is now possible to properly infer
n(0,aj) with our method, once the transverse size has been measured. Comparing the
recovered density profile with Boltzmann and Fermi predictions for thermal gases, at
respectively T/Tr ~ 1 and T/Tr < 1, further confirms the validity of our method.

Figure [2.6] left, shows the longitudinal density profile recovered with our method,
compared to the density profile directly inferred from the logarithm of the fraction of
absorbed light on every pixel, as defined in equation 2.6, With ¢, known, our method

gives 7(0, aj) which is the peak column density along the elongated axis in atoms.m™>
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Figure 2.6: Left: Density profile along (Oy) for a hot thermal gas at T' ~ Tp. Left:
in black dashed line, the integrated density profile obtained with equation [2.6] and
in red dashed line the corresponding Boltzman fit. The hashed region corresponds to
recovered density with our method with the associated uncertainty, and the red solide
line is the associated Boltzmann fit. Bottom: fit residuals, the top one corresponds
to the dashed lines, while the bottom one corresponds to our method. Right: Density
profile along (Oy) for a degenerate Fermi gas at T' ~ 0.15Tr. The blue solid line
is the predicted density profile for a Fermi degenerate gas, with no free parameters.
The degeneracy, temperature, and trap frequencies are measured independently on the
images of 3D expanding gases. The residuals on bottom figure show the agreement
between the prediction and our method. For both left and right, the channeling time
is 18 ms.

units. It is renormalized in atoms.m™' to be comparable with the actual data which is
the integrated density profile, i.e. for the recovered profile nip(y) = v27r0,7(0,7). In
this figure, the density profiles correspond to gases that have channeled during 18 ms,
and we expect that they reflect the momentum distribution of the gas before starting
their expansion, with initial temperature T' ~ Tr. At this temperature, the Boltzmann
statistics still very well describe the momentum distribution of a thermal gas, and
our fits are done with gaussian functions. While the density infered from equation
deviates from the Boltzmann statistics, our method recovers a density profile in

agreement with the expected statistics, as shown by the bottom fit residuals on figure
left.

Further verification is done on a degenerate Fermi gas. The recovered density is
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compared to what is expected by Fermi statistics, with no free parameters. The result
is shown on figure right. Here, the prediction is the solid blue line, and the density
measurement made with integrated Beer-Lambert law is the black dashed line, which is
obvsiously wrong. The density profile recovered by our method is plotted as the hashed
region, and it matches with the prediction, as shown by the residuals, plotted at the
bottom.

Note that the channeled expansion is performed along a laser beam that makes an
angle with the imaging plane (see appendix @, our measurement of the elongated gas
is affected by parallax. Also, the divergence of the laser beam results in a position de-
pendent force felt by the atoms as an anti-confinement. For the analysis shown in figure
[2.6] the parallax and anticonfinement are compensated for with a single multiplicative
correction parameter C to the cloud size for a given expansion time. More details for
the analysis of the parallax and anticonfinement can be found in appendix [D]

For both hot gas and degenerate gas, the residuals are small but there remains
strong pixel to pixel density fluctuations after the correction, particularly at the lowest
momenta. This is due to the non-linearity of the density dependent correction: at
higher local densities, small variations of the light absorption result in strong variations

of the density, because of the previously introduced shadowing effect.

To conclude, this demonstrates that with our method it is possible to measure
the size of atomic clouds as low as one fourth of our resolution limit. This method
also gives the possibility to recover density profiles initially distorted by pixelation,
diffraction and out of focus imaging, associated with absorption imaging. Here, we
used a gaussian ansatz on the cloud shape, and an independant measurement of the
total number of atoms to calibrate the effective optical depth that let us infer the
local density. Other ansatz are of course possible, however no unexpected features can
be retrieved from this method, since different shapes can lead to the same number
of absorbed photons. I also applied this method with a Fermi ansatz for the density
distribution along the transverse axis. The procedure is exactly the same except that
it necessitates independent calibration of the chemical potential and degeneracy, which
is easily done from the reference images of 3D expanding gases, and the results are also

in good agreement with different predictions. Note that although our method allows
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to retrieve features below the imaging resolution, its fundamental limit is the imaging
light wavelength A as it sets the scattering cross section of light by the atoms. Finally,
we expect that with this method, features smaller than the imaging resolution within
clouds otherwise larger than the imaging resolution can be measured. For example,
using the appropriate ansatz, it could be generalized to measure the size of vortex
cores within a superfluid, that are typically below the imaging resolution, or other

hydrodynamic structures, such as solitons.

2.4 Measurement attempt of the mean field inter-
action energy in a SU(10) degenerate Fermi gas

First motivated by the measurement of the mean-field interaction energy in SU(10)
degenerate Fermi gas of fermionic 87Sr in the weakly interacting regime, we want to
enhance the mean-field signal of an expanding degenerate gas by allowing the gas to
expand along one direction only. As shown earlier in section the release energy
along one axis of a 3D expansion is given by:

1 1

E3P — _F —E,, 2.21
R 3 K T 3 Lint ( )

and the release energy of the gases expanding along one direction only is given by:

1
ER’ = 3Ex + Epn (2.22)

which leads to a stronger impact from the interactions to the release energy than
in 3D. The release energy is infered from the measurement of the RMS radius o, of
the expanding clouds in ballistic expansion 02(t) = 0(0)? + a*t?, where a®> = 2ER/m.
Regarding the 1D expansion and the pixelated absorption images, the measurement of
the RMS radius of the cloud can now be realized, after the recovery of the density profile
of the elongated gases which is discussed in previous section. Figure [2.7] left, reports
the measurement of the longitudinal size o along Oy (see figure with respect to the
time of expansion, both for the channeling gases and the gases released in 3D, and for
different degeneracies. Here, all the corrections have been applied for the channeling

gases, i.e. the recovery of the density profiles, as well as accounting for the parallax and
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Figure 2.7: Measurement of the release energy of expanding gases. Left: RMS size o,
in pixel unit (1 px = 6.45 um) of the gases along the longitudinal axis Oy, with respect
to the time of expansion. Dashed lines are ballistic fits o(t)> = 0(0)* + a*t? for the
expansion of the reference gases imaged after time of flight, and solid line for the 1D
channeled expansions. Every o, of the channeled expansions are rescaled by a single
multiplicative correction of the parallax and anticonfinement (see appendix @ Right:
fitted release energies Ex from the ballistic expansion, with respect to 7'/Tr. In inset:
ratio of the release enegies FRP/E3P.

anti-confinement (see appendix D[) with a single multiplicative correction parameter.
The release energy is then infered from the slope of the expansion, given that we measure
the sizes after a long enough time so that ¢(0)? < a*t?, and the result is reported on
figure The inset compares the release energies along the longitudinal axis Oy (see
figure for the 1D and 3D expansions, and it shows that EL is smaller than that of
the 3D measurement for low 7'/Tp. This is not expected since the mean field interaction
should significantly increase the release energy in 1D compared to 3D, particularly at

the smallest temperatures.

We finally infer the kinetic energy and mean-field interaction energy which are
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completly determined from the measurement of the release energies in 1D and 3D

expansions,

3
By = i(E}qD — E3P)

3 .
Ex = S(BE — EP)

(2.23)

and figure (a) presents the result of our measurement of E;,;/Ex with respect
to T'/Tr. Our result shows a decrease of the interaction energy at low 7'/Tr, which
is not in agreement with the expected behavior. In the weakly interacting regime,
the strength of the mean-field interactions for a SU(N) Fermi gas can be numerically
computed from [MPS02]:

B3V — (N — 1)% / drn?(r) (2.24)
and
s P
Bi= [ Ln() (2.25)

and the prediction, shown on figure , (a), solid line, confirms that we expect a
raise of Fy,/Fy at low T/Tk.

The statistical noise of our result is as large as the signal we are looking for, and the
tendancy is in contradiction with the prediction. This result is not conclusive, and we
suspect imperfect thermalization when the gases reach 1" < 0.5 7. This asumption is
verified with an analysis of the aspect ratio of the gases expanding in 3D, as shown on
figure (b.1), with respect to the time of flight duration, for different degeneracies.
A non-interacting Fermi gas with 7" ~ 0.75TF has isotropic velocity distribution and
the aspect ratio o,/ of the expanding gas is 1 [BR97], as shown on figure 2.8 (b.1),
similarly to a classical gas. Then, according to our measurement, the aspect ratio for
a degenerate gas at T ~ 0.177TF is inverted at tof ~ 4ms and finally converges to
approximately 1.12. This was observed in [Son+20] with approximately 50000 atoms
per spin state as a signature of the mean field interactions [OHa+02; [PGS03; |JPS04].
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Figure 2.8: (a) Measurement attempt of the interaction energy with 1D channeled
expansions, infered from equations and our measurement of the release energies
presented on figure in function of T'/Tr. Solid lines show predictions of the mean
field energy from numerical resolution of equations (b.1) Inversion of the
aspect ratio o,/o, of the gases expanding in 3D with respect to the duration of the
expansion and (b.2) increase of the aspect ratio with decreasing 7'/Tr. On figure (b.2),
the aspect ratio is measured at fixed tof = 20 ms.

However, from simulations based on [MPS02|, we predict that with approximately 2 000
atoms per spin state in a trap of geometric mean frequency 160 Hz, which is our case,
the aspect ratio shouldn’t exceed 1 %. Finally, figure (b.2) shows our measurement
of the aspect ratio as a function of T/Tr at fixed tof = 20ms, and it exceeds 1%
for all measurements at 7' < 0.57Tr. This indicates that in this data, thermalization
is imperfect at the end of evaporation for the most degenerate gases, and no reliable

measurement of the mean-field interaction energy could be realized.



Chapter 3

Preparation and measurement of
the spin populations in a Fermi gas

of 57Sr

The narrow intercombination line of strontium 87 offers ideal conditions for the realiza-
tion of spin orbit coupling schemes [GD10; LJS11], with minimal spontaneous emission
[CR14]. Associated with spin resolved transitions, it is possible to measure and manip-
ulate the spin populations. For instance, a well established technique named Optical
Stern-Gerlach (OSG) [Sle+92] makes use of the spin-dependent dipole force associated
with the hyperfine structure of the intercombination line to spatially separate spin
components of alkaline-earth like atoms. It has been demonstrated on both strontium
[SGS11] and ytterbium [Tai+10], to measure the populations in each spin state. The
ground state 1Sy of fermionic 8”Sr has an electronic closed-shell i.e. J = 0, hence the
electronic sensitivity to magnetic fields is zero, and there only remains the magnetic
sensitivity of the nucleus which is as low as the electron to proton mass ratio relatively
to the electronic g-factor. It is then not practical to use magnetic fields to manipulate

the 10 degenerate ground spin states.

Excited triplet states such as *P; with non zero momentum have a much stronger
magnetic susceptibility than the ground state 'S;. Regarding 3P, state with I'/2m =
7.4kHz, the degeneracy lift of the excited spin states is easily larger than the linewidth:

with g-factor g; ~ 0.27, on can reach MHz Zeeman shifts with modest magnetic fields

29
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of a few Gauss. In this case, the resonnances of the 1S, <+ 3P, intercombination
line acquire a spin dependence, which enables spin selective optical transitions. The
number of spin components can then be tuned with standard optical pumping schemes
[Tey+10; Pag+14; Son—+20], further enabling the study of SU(N) many-body physics
with tunable N. Although narrow MOT cooling may induce spontaneous polarization
of a SU(N) Fermi gas, as demonstrated with erbium [Fri+12], specific schemes allow to
selectively prepare polarized Fermi gases either with dissipative blast [He+20] only or

associated with spin dependent light shifts [Son+20].

In this chapter, I first discuss our demonstrated method [Bat+20] to measure the
nuclear spin populations with a spin orbit coupling scheme associated with the in-
tercombination line [SGS11]. The robustness of our method is provided by adiabatic
following of a quasi-dark state, ensuring minimal spontaneous emission. Using the
strong difference of magnetic sensitivy of the coupled states, we selectively transfer,
with a resonant passage, well defined momentum recoils to well defined spin states,
with a simple retro-reflected laser beam. The overall efficiency is yet 85 %, up to now
limited by available light power. I will then show how we are able to tune the number
of spin components in our Fermi gas of 87Sr. Using the high spin sensitivity of the ex-
cited state 3P| associated with optical pumping [Tey+10; |Oza+18; He+20], we prepare
SU(N) fermi gas with tunable N, which leads to our preparation of a polarized Fermi
sea with a spin selective blast. Finally, I estimate that the Fermi sea is polarized with

90 4 10 % fiability accounting for the overall efficiency of our detection scheme.

3.1 Measurement of the spin populations

This spin dependent momentum transfer scheme inherently relies on spin-orbit coupling
(SOC) |GD10; |LJS11] enabled by a polarization lattice. With a zeeman degeneracy lift
of the 1Sy <+ 3P, F = 11/2 spin spin transitions, two highly saturating counter-
propagating laser beams with same frequency and well defined o, and o_ resonantly
couple two selected ground spin states with an excited state, ensuring a strong spin
sensitivity. The atoms in the selected spins are connected to a form a quasi-dark

state | W), ensuring reduced spontaneous emission. The dark state is adiabatically
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rotated by ramping the frequency of the lasers, ensuring robustness. In the end, the
final states have acquired exactly two momentum recoils by absorption of one photon
from one beam and emission of one photon into the other beam. Ideally, the perfect
correlation between the momentum and the polarization of the laser beams ensures that
the two selected spins are diffracted in opposite directions, and after a time of flight,
the diffracted spin states are separated from the rest of the cloud, and their populations

can be measured with absorption imaging.

In this section, I first present our experimental demonstration of this scheme, and I
will then discuss the adiabatic rotation of the quasi-dark state |W.) in the dressed-states
picture. With a focus on the possible spin sensitivity loss due to defects on the lasers
polarization, we demonstrate the reliability of our measurement, which we verified on
all the spins of the SU(10) ground state manyfold. I will then show that our scheme
can be generalized to simultaneously measure the populations of more than two spin
states with a proper sequence of adiabatic rotations. Finally, we further increased the
probability of success of the momentum transfer by improving the connection to the
quasi-dark state |W,), which we practically do with a Blackman-like intensity window

simultaneously to the frequency.

3.1.1 Experimental procedure

After preparing a degenerate Fermi gas (see chapter [1]), we first lift the degeneracy of the
3Py, F = 11/2 Zeeman sub-levels with a homogeneous magnetic field of amplitude |B| =
16 G, as shown on figure , (a). The excited spin states, with magnetic susceptibility
380kHz/G are then separated by grup|B| ~ 6 MHz, which is three orders of magnitude
larger than the linewidth I'sp /27 = 7.4 kHz. The ground spin states are barely affected
with magnetic susceptibility as low as 0.2kHz/G [Boy07|,|Bat+20]. Here, gp is the g-
factor of the hyperfine state F' = 11/2, and up the Bohr magneton. The 1Sy <
3P, F = 11/2 optical transitions are then spin resolved. Two highly saturating counter-
propagating laser beams with same frequency and well defined polarizations o, and o_
are turned on, shaping a polarization lattice, with I ~ 1000/, Ty =~ 3uW/cm?.

For this, we use the vertical red MOT beams. Our measurement of the circularity of
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Figure 3.1: Spin dependent momentum transfer to measure the spin populations in a
SU(N) degenerate gas. (a) The degeneracy of the hyperfine excited state 3P, FF = 11/2
is lifted by 6 M Hz with a 16 G homogneous magnetic field, with is much larger than
the 7.4 kH z linewidth. Two counter-propagating laser beams with same frequency and
well defined polarization o_ and o selectively couple two ground spin states |mpg — 1)
and |mp + 1) to the excited state |mpg). The frequency of the light excitation is ramped
through resonance at rate ¢ to realize the momentum transfer. (b) Integrated optical
depth, from absorption image, of the selected spin states |mp 4 1) which are separated
from the rest of the could after time of flight.
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the laser beams is 99 % in intensity. With appropriate near-resonant frequency, two
selected ground spin states |*Sp, mp — 1) and [*Sy, mp + 1) are coupled to the excited
state 2Py, F = 11/2, mp), defining an isolated three level system in A configuration, as
shown in figure (a). The magnetic field used to lift the degeneracy of the 1Sy «»
3P, F = 11/2 spin spin transitions combined with optical couplings with well defined
o+ polarizations ensures the strong spin selectivity. Then, w perform a frequency sweep
through the resonance from 6 ~ +700kHz to 0 ~ —700 kHz during 200 us. Here, § =
w — wp is the detuning to the excited state. Atoms in |'Sy, mp — 1) absorb one photon
from the o laser beam and re-emit one photon into the counter propagating o_ laser
beam, acquiring exactly two photon momentum recoils +2hk;}. The opposite happens
for atoms initially in [*Sp, mp + 1), acquiring exactly minus two photon momentum
recoils —2hkp. During the momentum transfer, atoms are held against gravity with
our horizontal beam for ODT. The selected spin states |'So, mp F 1) with acquired
j:2hk:} momentum recoils are then separated from the rest of the cloud after time of

flight, and the populations in each spin state are measured from absorption images, as
shown on figure 3.1} (b).

The momentum transfer is ensured by adiabatic following of a quasi dark state |¥¢).
mrp F 1,07”‘LE> to the final state |mp + 1, i2hE> is

realized by the frequency ramp, which crosses the resonance with the excited state. I

Its rotation from the initial state

will now discuss the conditions for success of the adiabatic following of the quasi dark

state and the associated reduced spontaneous emission, despite the resonant coupling.

3.1.2 Adiabatic following - Dressed-states picture

It is convenient to look at this three level system in A configuration in the dressed states
picture [DC85]. The initial ground state |1) = ‘15’0, mp — 1, Ohlg> with approximately

zero momentum is coupled to excited state [2) = ‘3P1, F=11/2,mp, 1hlg> with one
momentum recoil by o excitation with associated rabi frequency €2.. The excited
state is coupled to the final ground state |3) = ‘ISO, mp+ 1, 2hE> with two momentum
recoils by o_ excitation with associated rabi frequency €2_. In this dressed states basis

{11),12),3)}, shown on figure 3.2} (a), the hamiltonian can be written as:
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Figure 3.2: Dressed atom picture for the spin dependent momentum transfer scheme.
(a): dressed states spectrum, where A = hk?/2m is the photon recoil frequency, § =
w — wp is the detuning, and 4 the rabi frequencies associated with o, excitations.
(b): the dashed lines are the energies of the dressed states [1),]2),3), and solid lines
the eigen energies of hamiltonian defined in equation |3.1] with respect to the detuning
). Eigenstate |W¢) is defined in equation (c): |¥¢) populations along the three
dressed states |1),]2), ket3. For figures (b) and (c), parameters used are A = 4.8kHz
and Q+ = 55 kHz.

R 0 Q,/2 0
H@O)=h|Q,/2 6—-A Q_/2 (3.1)

0 O /2 4A
where 0 = w — wy is the light detuning with respect to the resonance with the
excited state in this three spins manyfold, and A = hk?/2m is the recoil frequency.
The light coupling between those three dressed states gives rise to three eigenstates,
whose spectrum is shown on ﬁgure (b). We are mainly interested in the eigen-state,
here named |¥¢), that connects to initial state |1) and final state |3). With first-order

perturbative expansion A < €2 from hamiltonian at 0 = 0, it can be shown that:

1 Q,0Q_8A
Ue(0=0) = ———=(Q_[1) = Q |3)) = ———— |2
The rate of spontaneous emission, infered from the population in the excited state
| (2|We) 2, reads:

(3.2)
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Fﬁaglxpx2v§%)2 (3.3)

where Q02 = Q. Q_. With experimental parameters, Q + /21 ~ CG+220kHz and
A/27 ~ 4.8kHz, where the CG+ are the Clebsch-Gordan coefficients associated with
o4+ transitions. For a 200 us ramp duration, equation gives an upper-bound of
spontaneous emission between 15% and 30 %, depending on the selected spins for the
momentum transfer. Most importantly, equation shows that spontaneous emission
is reduced by the light excitation, and hence, stronger resonant coupling results in less

light scattering.

Far from resonance when [0| > Q=+, the excited state can be eliminated, and the

hamiltonian 3.1l is then reduced to:

0 s219/25> (3.4)

f“5)27‘(9+9*/zs IA
in [1),]3) basis. In this perturbative regime, diagonalization of this hamiltonian

shows that two eigen-states |+), |—) read:

) = [3) + S ) -
0,0 '
)~ 1)+ e g

We want the atoms to connect to |U¢). The phase relation between |1) and |3)
imposes that for large positive detunings, |—) ~ |¥s) ~ |1) and for large negative
detunings, |[+) ~ |V¢) ~ |3). Hence, the adiatic connection to the dark-state is possible
if the initial and final detunings |§; ;| are large enough such that they respect the

condition:
Q.0
4|52-,f |A

so that the initial and final states are almost identical to |V¢). Figure (c),
shows that | (3|U¢) |> ~ 1 for 6 << 0 and | (1|¥¢) |*> =~ 1 for 6 >> 0. Moreover, this

<1 (3.6)
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shows that the detuning has to be ramped from positive to negative such that the
selected atoms initially at rest acquire two momentum recoils. With a detuning ramp
in the other direction, it can be shown with the same method that atoms initially at
rest follow a bright state which leads to the excited state and the momentum transfer

fails.

Adiabatic following is ensured if the speed of rotation of |W¢) determined by the

speed of the detuning ramp, is much lower than the coupling strength, which reads:

5 < 02 (3.7)

This criterion can be understood in the frame of nuclear magnetic resonance. A
spin in precession will stay colinear to a rotating magnetic field if the rotation speed
is slow with respect to the larmor frequency, such that the axis of precession stays in
phase with the magnetic field. This condition is analog to b < 02 regarding Raman
adiabatic passage, so that the basis rotation is slow enough and the atoms stay in phase
with the followed eigen-state rotating from one spin state to the other. The success of
the adiabatic passage is ensured by fulfilling conditions and [3.7]

Transfer dynamics and spontaneous emission: the dynamics of the transfer are com-
pared to numerical simulations of the master equation including spontaneous emission.
Figure |3.3|shows the experimental efficiency for the ‘—3 /2, OhE> — ‘1 /2, 2hE> momen-
tum transfer (black dots), as a function of the duration of the detuning ramp. While
the simulation is in agreement with our experiment and verifies that a 200 us ramp
duration fulfills the Landau-Zener condition for adiabatic following defined in equation
3.7, it also shows that spontaneous emission (red solid line) limits the efficiency of the
transfer, compared to no spontaneous emission (black solid line). The probability of
success of the adiabatic following as a function of the detuning sweep rate ¢ is finally
compared to the Landau-Zener scaling (dashed-line on figure Prz(94) x Prz(922)
[CH86| for the two-photons A scheme, resulting from the relative values of 2, , Q_ and

A, where Py 7 is defined as:
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Figure 3.3: Efficiency of the adiabatic passage in function of the duration of the de-
tuning ramp, for spin dependent momentum transfer from ’—3/2, 0hl§> to ’1/2, 2h/§>,

with a detuning ramp over 1.4 M H z, assuming an initial 10% population in —3/2. The
experimental result (black dots) is compared to numerical simulations (solid lines) with
no free parameters of the master equation including spontaneous emission (red), ne-

glecting spontaneous emission (black), and to the Landau-Zener scaling (dashed line)

PLz(Q+) X PLz(Q_).

Prz() ~1—exp (-%%) (3.8)

The lower Clebsch-Gordan thus gives the higher limit on the detuning sweep rate.
If this limit is exceeded, different consequences arise depending on which arm of the
momentum transfer has the lowest CG: associated with the first absorbed photon, atoms
fail the transfer and stay at rest, while large spontaneous emission results from low CG

associated with the second emitted photon.

At 200 ps, approximately 10 to 15% atoms fail the coherent momentum transfer,

according to both equation [3.3] and numerical simulation. Our experimental limit to
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achieve better transfer efficiency is set by the light intensity, limited by the large waist
of the MOT beams, as large as approximately 1 cm. An increase of the Rabi coupling
by a factor 2 would reduce spontaneous emission to 5% and increase the efficiency of
the coherent transfer up to 95%. This would require to increase the light intensity by
a factor 4 and the width of the detuning ramp as much, according to the conditions
for adiabatic transfer defined in equation [3.6] Ensuring spin selectivity requires then to
increase the degeneracy lift of the excited state manifold 3P, F = 11/2 by increasing the
magnetic field to |B| ~ 60 G. Although weakly sensitive, the zeeman lift of the ground
state with susceptibility 185 Hz/G would then exceed the recoil energy associated with
the momentum transfer. If not compensated for, for instance with a doppler shift
associated with a short free fall in our vertical scheme, this would result in an asymetry
of the central frequency of the detuning ramp for the momentum transfer of selected

|mp — 1) and |mpg + 1) spin states.

3.1.3 Spin sensitivity

The spin sensitivity is ensured by the association of the degeneracy lift of the 1S, <>
3P, F = 11/2 spin transitions, to the well defined wavectors +k and o polarizations
of the couplings. Hence, there are two possible sources of sensitivity loss, either from
defects on the circularity of the laser beams polarization, or from misalignement of the
counter-propagating laser beams and the magnetic field, which harms the correlation
between the initial spin state and the direction of the momentum transfer. In the first
case, spin states may be diffracted in the opposite direction to that assumed, while in
the second case, the emergence of 7w couplings allows the diffraction to spin states that
should not be diffracted. To estimate the consequences of the polarization defects, we
consider that the Rabi frequency resulting from a circularity defect € ~ 0.1 (measured
99 % circularity in intensity) scales as {2 and from a magnetic field misalignement
0 ~ 6° as 0. A helpful approach is to considered separatly the possible absorption
processes for the unintended momentum transfers, and infer their probalities of success
from a Landau-Zener scaling Ppz(e2) and Prz(02), as defined in equation with
respective Rabi Frequencies. With a sweep rate satisfying 95 % probability of success

for the intended momentum transfer (with e = 0 and 6 = 0), the unintended transfers
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Figure 3.4: Measurement of the spin sensitivity with optical pumping prior to spin-
dependent momentum transfer on the |1/2) <» |—3/2) diffraction line. (a): pumping of
1/2 and -3/2 spin states to verify m defects in polarization. (b): pumping of -3/2 only,
to verify defects in circularity.

are reduced to approximately 3 % accounting for the non zero polarization defects.

To verify the spin sensitivity, we use an optical pumping scheme to empty the
populations of selected spin states (see section prior to the momentum transfer.
Then, we realize a momentum transfer targeting at the emptied spin states. If atoms
are separated from the cloud after time of flight, they were initially populating non
targeted spin states, and they have acquired momentum because of the polarization
defects.

To evaluate the m defect associated with the alignement of the magnetic field, we
empty the populations of both spin states 1/2 and -3/2, and we realize a momentum
transfer on the associated |1/2) «» |—3/2) diffraction line. Then, we measure the atomic
density at the expected locations of the separated clouds after time of flight, as shown
on figure (a.1), (a.2). The measured populations are zero, which is consistent with
the prior pumping. Furthermore, no atoms from -1/2 spin state are diffracted, which
verifies that defects on 7 polarization can be neglected.

We also verify the quality of the circularity by selectively pumping one of the two
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Figure 3.5: Spectrum for spin dependent momentum transfer over 1Sy, manyfold. Each
point corresponds to diffracted fraction of atoms with respect to the central frequency
of the detuning ramp which is 1.4 MHz wide, with duration 330 us. Top figure shows
the lower diffracted cloud with —2hk momentum trasnfer (see figure[3.1]), while bottom
figure shows upper diffracted cloud with associated +2hk momentum transfer. The
blue filled regions correspond to measurable asymetry higher than 1 MHz in the optimal
central frequency for the two diffracted spin populations.

targeted spin states prior to the diffraction measurement. Figure (b.1), shows
the measurement of the |1/2) < |—3/2) diffraction line after pumping -3/2. The
measurement of the populations, see figure (b.2), shows that one cloud only is separated
from the rest of the atomic gas. This shows that the momentum acquired by targeted
spin state 1/2 is well defined, and verifies that defects in circularity can be neglected.
These two measurements hence verify our estimations on the o, and 7 polarization

defects, and show that our spin sensitivity is robust.

3.1.4 Spin dependent momentum transfer in SU(10) manifold

With a complete spectrum of the spin dependent momentum transfer over the SU(10)

manifold of the 'Sy ground state, shown on figure we find the optimal central
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frequency of the detuning ramps and the corresponding measured spin populations
N(mp) for every spin state. A total of 8 diffraction lines are identified in this spectrum,
each of them diffracting two spin states |mp — 1), |mpr + 1), in opposite directions.
From the sum over all spin states of the diffracted atoms at optimal central frequencies,
we infer that a total of approximately 85 % atoms are diffracted. This result is consistent
with an average 10 to 15 % momentum transfer fail due to spontaneous emission, as
discussed in |3.1.2| , and that all spin states are equally populated with approximately

10 % atoms per spin state.

This estimation neglects the |—9/2) <» |—5/2) diffraction line, which peaks at 4 %
diffracted atoms. We consider this measurement irregular because of two arguments.
First, the non-repetability of the measurement of the |—5/2) population compared to
the |[-5/2) <» |—1/2) diffraction line shows an anomaly. Moreover, while the strong
asymetry in the Clebsch-Gordan associated with o, and o_ couplings, see figure (3.6
for this diffraction line could explain a low efficiency of the momentum transfer, it is not
observed in the |[+9/2) < |45/2) diffraction line, which encounters the same asymetry.
Also, the measurement of the |+5/2) spin population is repeatable compared to the
|+5/2) <> |+1/2) line, showing that the asymetry in Clebsch-Gordan coefficients is
not responsible for the anomaly in the |—9/2) <+ |—5/2) diffraction line. Hence, this
measurement is not yet understood, but we suspect a lately spotted hardware failure
(heating of direct digital synthesizers (DDS)) which can be responsible for the lowered
efficiency and that has yet to be confirmed after repair. Until then, the sensitivity of
the measure remains satisfying for a reliable estimation of the spin populations for all
states but |—9/2).

Asymetric Clebsch-Gordan coefficients: The diffraction line [+9/2) <> |[4+5/2) shows
that a strong asymetry in the Clebsch-Gordan coefficients (CG) associated with the two
arms of the momentum transfer, here as high as CG, /CG_ ~ 6, is not detrimental
to the sensitivity on the populations measurement, as long as the timescale for adia-
batic passage is respected for the lowest CG. However, consequences arise regarding
the optimal detuning ramp. The blue regions on figure highlight the measured

diffraction lines with strong asymetry in the CGs. Here, we observe that the maximum



Chapter 3. Preparation and measurement of the spin populations in a Fermi gas of

87Sr 72
3P 4_1/2 ﬂ 7//2 /2 =3/2 —1/2 4172 43/2 45/2 4T/2 +9/2 +11/2
1
F=11/2 //' 0.38 0.51 0.65 0.82 1.00
///
15 —
0 —9/2  —7/2 /2 =32 —1/2 4+1/2 43/2  4+5/2  47/2  4+9/2 0+
711/2 —9/2  —7/2 —3/2  —1/2  +1/2  43/2  +5/2  +7/2  +49/2  +11/2
= 11/2 I I I I I 0.55 0.51 0.44 0.33 0.18
—9/2  —7/2 —=5/2  —=3/2  —1/2  4+1/2  43/2  +45/2  +47/2  +9/2 ™
—11/2  —9/2  —7/2  —5/2  —=3/2  —1/2  +1/2  +3/2 +7/z +9/2  +11/2
- 11/ 0.05 .02
\
—
—9/2  =7/2  —5/2  =3/2  —1/2  +1/2  +3/2  45/2  47/2  +49/2 o_

Figure 3.6: Clebsch Gordan coefficients squared associated with the 'Sy <3 P, F =
11/2 transitions. Top, transition associated with +1 orbital momentum, on middle
0 orbital momentum, and bottom -1 orbital momentum. The width of the lines are
directly proportional to the Clebsch Gordan coefficients, which are noted squared aside
each line.
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efficiency of the momentum transfer for each of the two targeted spin states correspond
to significantly different detunings. For instance, the optimal central frequencies for the
diffraction of states |7/2) and |3/2) are approximately 14.5 MHz and 16 MHz, which is
comparable to the width of the detuning ramp. Figure [3.7, (a.1) shows the strong
asymetry in the CGs in the A scheme associated with the |+9/2) < |+5/2) diffrac-
tion line. The energy of the followed eigen-state, (red solid line on figures (a.2)
and (a.3)), is consequently displaced asymetricaly for each direction of the momentum
transfer. This suggests that given the optimal center for the detuning ramp cannot be
the same in both cases. Moreover, the |+9/2) spin state with associated weak CG is
in an electromagnetically induced transparency (EIT) [Fri+12] configuration, such that
the quasi-dark state |¥¢) is mostly along [+9/2) at § = 0:

Vo) = (- +5/2) — Q24 [+9/2)) (3.9)

1
VO 402
where Q, /0. ~ 6. This suggests that the rotation of |¥Us) is either finished

at 0 = 0, either not yet begun, and hence it cannot be center around the reso-

nance. More precisely, equation imposes that |U¢) rotates from ’+9/2,0hlg> to
‘+5 /2, 2hE> when § < 0, accounting for the positive to negative detunings ramp 4§ < 0,
+5/2, om€>
to [+9/2, 2hlZ> occurs when § > 0. Figure (a.4), shows that the central frequency

of the detuning ramp for the adiabatic passage, that I here define as d.cpser S0 that
W (Ocenter)) =~ 1/\/§(|mF F1) — |mp £1)), is strongly shifted from the resonance
d = 0. Regarding the |+9/2) <> |+5/2) diffraction line, The numerical computation

whereas the opposite rotation for the opposite momentum transfer from

with experimal parameters shown on figure , (a.4), shows the separation of the cen-
tral frequency for each direction of the momentum transfer is 900 kHz, in agreement to
the measured spectrum (see figure , and most importantly, it is almost as large as
the detuning ramp which is 1.4 MHz. Hence, the adiabatic connexion of the initial and
final spin states to the followed eigen-state |¥ ) cannot be insured for both directions of
the momentum transfer, which explains the asymetry of the optimal central frequency

for the detuning ramp.
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Figure 3.7: Focus on the asymetry of the Clebsch-Gordan (CG) coefficients associated
with the spin dependent momentum transfer. (a.1) A scheme for the [+9/2) <> |[+5/2)
transfer with strong asymetric CGs, respectively 0.14 and 0.84. (a.2.3): Momentum

transfer in the eigen-energies picture, from ‘+5/2,0h/§> — ‘+9/2,2hl§> (a.2) and

‘+9 /2, 0h1§> o
energy displacement of the followed eigen-state |W¢) (red solid line) with respect to
the dressed states (dashed lines) is highly asymetric around the central frequency of
the detuning ramp, as a result of the CGs asymetry. (b) Momentum transfer for the
|+1/2) <> |—3/2) line with aproximately equal CGs, respectively 0.54 and 0.44. (a.4)
and (b.4): projections of |¥¢) along the dressed-states for each momentum transfer,
as a function of §, here centered around the resonance with the zeeman shifted excited
state.

+5/2,2hl;> (a.3), with respect to the same detuning ramp. The

This feature can be compared to the case {2_ ~ ), where the followed eigen-state is

in a balanced superposition of the two spin states W) =~ 1/4/2(|1) — [3)), at resonance
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0 = 0. In this case, the central frequency of the rotation is obviously close enough to the
resonance such that both directions of the momentum transfer are efficient for the same
detuning ramp of 1.4 MHz. Figure (b), shows that the for the |4+1/2) <> |—-3/2)
diffraction line with balanced CGs 0.54 and 0.44, the energy displacement of |¥¢) is
negligeable over the detuning ramp, and the seperation of central frequencies for each
direction of the transfer is only 10 % of the detuning ramp. Hence, both directions of

the momentum transfer are optimaly realized with the same detuning ramp.

3.1.5 Simultaneous measurement of four spin populations

We demonstrated a generalization of our scheme to simultaneously measure more than
two spin populations. Figure |3.8] shows an experimental measurement of four spin
populations, —7/2, —3/2, +1/2, and +5/2, with a single realization. This is done by
transfering four different momenta to each one of the selected spin states, respectively
+2h/§, +4hl¥, —4h/2, and —27112, such that they are all separated after time of flight. For
this measurement, we realize a sequence of three adiabatic passages, shown on figure
3.8, (a). The first passage on diffraction line |-3/2) <> |+1/2) is the same as introduced

before:

‘—3/2,0h§> = ‘+1/2,+2hl_€>
‘+1/2,0h/2> o ‘—3/2, —2hE> (310

while the second passage |4+1/2) <» |4+5/2) transfers two more momentum recoils

to the final states of the first passage:

]+1/2,+2h1€> = ‘+5/2,+4m%’>

) ) (3.11)
’+5/2,0hl€> = ‘+1/2, —2hk>
as well as the third passage on diffraction line |-7/2) <> |—3/2):
‘—3/2, —2h1§> N ‘—7/2, —4hE>
(3.12)

‘—7/2,0hl§> N ]—3/2,+2h/%’>
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Figure 3.8: Simultaneous measurement of four spin populations with the spin dependent
momentum transfer scheme. (a) Sequence of adiabatic passages. The second and third
passages transfer two momentum recoils to the final states of the first passage, such
that they final states have acquired a total of four momentum recoils, with associated
recoil frequency 16A. (b) Absorption image after time of flight of the four diffracted
spin states. (c) Integrated optical depth from the absorbtion image (b) to measure the
spin populations. The red and blue solid lines are fits of the diffracted atomic clouds
with a Boltzmann distribution.

From absorption images of the diffracted spin states, we measure the number of
atoms in each selected spin state, as shown on figures (b) and (c). The first obser-
vation is that the population of atoms which have experienced two adiabatic passages,
i.e. |+1/2) and |—3/2) is weaker than the populations associated with +2hk recoils.
Obviously, the probability of success of two consecutive adiabatic passages, which scales
as the product of each individual probability of success, is lower than for one single pas-
sage. Moreover, the eigen-state |U) associated with the transfer to the final states with
acquired four recoil momenta and 16 recoil energy must have a larger rate of sponta-
neous emission according to equation further reducing the probability of success of
the second adiabatic passage. Hence, diffracted clouds at +2hk are contaminated by

the populations that failed passage to +A4Rk.

Although having limited efficiency, this measurement that can yet be optimized

demonstrates the possibility to simultaneously measure the populations and associated
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resolved momentum distributions of four different spin states. Further improvements
may enable the simultaneous measurement of the populations of the ten spin states,
matching the performances of OSG [SGS11} Tai+10].

3.1.6 Intensity window for improved adiabaticity

While the realization of an efficient adiabatic passage requires a slow enough rotation of
the eigen-basis with respect to the coupling intensities, the initial and final parameters
of the passage have to be chosen so that atoms properly connect to the eigen-state of
interest |W¢). In the case of the spin dependent momentum transfer, those conditions,
defined in equations and [3.7] are written as:

o< Q2 (3.13)

2
4A
In the ideal case, respecting both conditions can be done with a very slow sweep

;.| > (3.14)

rate and a large detuning ramp. While the speed is limited by processes realized at
longer time scales such as unintended momentum transfers from polarization defects,
and spontaneous emission, the span of the detuning ramp is limited by the neighboring
resonances. With /27 = 220kHz and A /27 = 4.8 kHz, the detuning ramp should start
much farther than approximately 1.5 MHz from the resonance, accounting for the CGs,
while the excited spin states are separated by 6 MHz. Hence, preserving spin selectivity
with a narrower detuning ramp is preferable, and it is actually not incompatible with a
proper connection to the eigen-state of interest, which can be done by slowly increasing

the Rabi coupling.

In the spin-dependent momentum transfer picture, the basis rotation is induced by
the variation of the detuning. However, a variation of the Rabi coupling rotates the
basis as well, starting from the atomic states at zero coupling. Consequently, a slow
increase of the Rabi coupling at the begining of the ramp, and slow decrease at the
end, maximizes the connection of the atoms to |VU¢). We increased the efficiency of
the adiabatic passage by approximately 5 %, as shown on figure 3.9 by superimposing

an intensity window over the detuning ramp. We compare the measurement of the



Chapter 3. Preparation and measurement of the spin populations in a Fermi gas of

8781" 78
— Lnnax 1
0+ . . 0+ : :
0 150 300 0 150 300
t(ps) t(us)
100 100 100 100
(a.1) (a.2) (6.1) (6.2)
80 80 80 80
L2 } 8.8+ 0.3% " F9.240.3%
60 1 60 4 60 1 604"
v o o o
[ 9 Q) (]
o a a a
40 40 404 40 1
) 9.2 4+ 0.3% = 9.94+0.3%
20 A 20 20 4 20
0 : 01— ; ; : 0 ; 01— : . .
0 20 0 2 4 6 0 20 0 2 4 6
Pixels Integrated Optical depth (a.u.) Pixels Integrated Optical depth (a.u.)

Figure 3.9: Intensity window to enhance the efficiency of the adiabatic following. (a)
|1/2) <> |—3/2) diffraction line with squared intensity window, and (b) with an inverted
parabolic intensity window. The intensity ramps are shown on the upper insets, the
black solid is the measured intensity during the frequency ramp, the red dashed line is
an inverted parabola oc —(t — t9)?/At? with At = 36us. Each image (a.1) and (b.1)
are averages over 7 measurements.

populations of the diffracted clouds with a squared intensity ramp, shown on figure (a),
and with a smoothed intensity ramp, shown on figure (b), which practically corresponds
to an inverted parabola. Averaged over 7 measurements for each case, we measure
that the efficiency of the momentum transfer is then increased by approximatly 5 %,

confirming the improvement on the connection to the followed eigenstate.

In this section I presented our method to selectively measure the population in every
spin state of the 1Sy manifold with a spin dependent momentum transfer scheme. This
tool permits us to monitor manipulation schemes of the spin populations that I present

in the next section, and which we ultimately use to prepare polarized Fermi seas of
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3.2 Selective preparation of polarized Fermi sea of
87Sr

We apply a magnetic field to produce a Zeeman degeneracy lift of the 3P, F' = 11/2
Zeeman states. We thus can resonantly couple a selected ground spin state to an
excited state with a pulse of light with well defined o_ polarization to realize spin
selective optical pumpings [Tey+10; Pag+14; Oza+18; |Son+20|. First, I discuss our
method to empty the population of one spin state and the associated heating, and then
the preparation of two components Fermi mixtures. Finally, I will show how we can

prepare polarized Fermi seas with this method.

3.2.1 Optical pumping
Experimental procedure

After loading the optical dipole trap, and before forced evaporation (see chapter [1)),
we lift the degeneracy of the P, F = 11/2 Zeeman sub-levels with a homogeneous
magnetic field of amplitude |B| = 6.8 G, as shown on figure [3.10} top. The excited
spin states, with magnetic susceptibility 380 kHz/G are then separated by grup|B| ~
2.6 MHz. The 1Sy <+ 3P, F = 11/2 optical transitions are spin resolved, and we pulse
a strongly saturating laser beam, I ~ 70l with I, ~ 3uW/cm?, with well defined
polarization o_, resonant with a |'Sy, mp) <> |>P;,mp — 1) transition, to pump the
population out of the targeted |mp) spin state. Figure , middle, shows the depletion
of the each pumped spin population, measured with the spin dependent momentum
transfer scheme, with respect to the frequency of the pump, with pulse duration 30 ms.
This spectrum lets us infer the resonance of every |'Sy, mp) <> [Py, mp — 1) transition
with a Lorentz fit:

L(f) = N0(1 - m) (3.15)

T/2

of the populations depletion. Here, yq is the baseline, f the frequency of the pump
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and fy the resonance. The measured resonances f; are reported on figure bottom,
for every spin state, as well as the width of the depletion. The resonances are sepa-
rated by 2.6 MHz which is in agreement with the expected Zeeman degeneracy lift with
magnetic field |B| = 6.8 G.

This measurement shows that we are able to empty the population of any selected
spin state of the ground state manyfold with a pulse of well polarized o_ light at
appropriate frequency. Due to spontaneous emission, the population of the targeted
|mp) spin state is transfered to |mp — 1) and |mp — 2) spin states, and the emission
of one spontaneous emission with 7 or o, polarization is enough to flip the spin of the
atom. Once an atom populates a new spin state, it will not see the excitation anymore
because of the degeneracy lift and the light polarization, and thus will remain stable in
the new spin state. Note that the o_ excitation on —9/2 is cyclic, such that atoms in
PPy, F =11/2,mp = —11/2) cannot de-excite anywhere but back on —9/2. Note that

transfering this spin population would require to reverse the magnetic field.

Frequency and polarization sensitivity

While experiencing Rabi oscillations between the ground and the excited nuclear spin
states, an atom has a probability to spontaneously emit a photon with random polar-
ization and relax to any of the connected ground states, and the excitation has to be
applied for a long enough duration such that the probability of spontaneous emission
increases and the spin flip is realized. Figure [3.11] reports our measurements of the
+9/2, +7/2,-1/2, and -7/2, spin population depletion (black dots, indicated at bottom
right corner of each figure) with respect to the duration of the o_ light pulse. The
population depletions are fit with exponential decays exp(—t/7) (dashed lines) and the
infered decay times 7 are all in the order of one millisecond (written at bottom left cor-
ner of each figure). The data is compared to numerical time integration of the Lindblad
equation shown by the solid black lines, accounting for possible detuning and circularity

defect that will be discussed in the following.

Frequency sensitivity: in the saturating regime I ~ 70 I, one would expect that the

rate of spontaneous emission governs the timescale of optical pumping, which would
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be (Dsp, /2)~!

than our measurement.

, t.e. tens of microseconds for I'sp = 7.4kHz, which is much faster

This scaling is correct in the case 2 > I',§ such that the
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Figure 3.11: Spin populations depletion with respect to the duration of the o_ light
pulse. We measure the number of atoms remaining in the target spin state (black dots),
respectively +9/2, +7/2,-1/2, and -7/2, from top to bottom figure, and the associated
spins with the spin-dependent momentum transfer scheme, respectively +5/2, +3/2,
+3/2, -3/2 (white dots). FEach spin population depletion is fit with an exponential
decay exp(—t/7) (dashed line), and the fitted decay time 7 is noted on the bottom left
corner of each figure. Black solid lines: numerical integration of the Lindblad equation
with experimental parameteral I = 70 I,,; accounting for a global perturbative defect
in light circularity (2.5 x 1073 x I) for all spin states, and tunable detuning.

probability for each atom to the populate the excited state is close to 1/2. However, if
the light excitation is detuned from resonance, the amplitude of the Rabi oscillation is

reduced, hence is the population of the excited state, which reads in the rotating wave
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approximation (RWA) [MS99]:

1 s
e — 5 1+s (316)
where s is the saturation parameter defined as:
20)?

The radiative decay time in the non-resonant case can be directly infered, and it

reads, in units of the resonant radiative decay time:

0 _ 4 <2_5)2 (3.18)

T0 I

where IV = ['sp, \/ 1+ CG?I /1,4 is the power broadened linewidth of the transition,
with associated Clebsch-Gordan (CG), and 79 ~ 70 us. If considering the depletion of
mp = 4+9/2, with I ~ 70, and CG ~ 0.135, a detuning 6 = 4I'sp, increases the
decay rate to approximately 2.2ms, which is in good agreement with the measured
decay time, and numerical time integration of the Lindblad equation, accounting for
the detuning, confirms this result, as shown by black solid lines on figure |3.11} The
increase of decay time of the pumping of the other spin states +7/2, -1/2, and -7/2, is
similarly explaing with respective detunings 71'sp,, 8I'sp, and 8I'sp,. Regarding our
measurement, those detunings are relevant since we calibrated the optimal pumping
frequency with a 100 kHz ~ 13 'sp, /27 step. This also confirms that pumping is robust
against frequency drifts which only extends the duration of the light pulse to a few
milliseconds, and hence can be easily compensated for. Another possibility is to sweep
the frequency of the optical pumping, and this gives the same results than extended

pulse durations.

Polarization sensitivity: the number of atoms are measured with the spin-dependent
momentum transfer scheme, hence a second spin population is measured simultaneously,
as shown by the white dots (indicated top right corner of each figure). The pumping of
spin states +9/2 and +7/2 are measured with the diffraction lines +9/2 <+ +5/2 and

+7/2 <> +3/2, which means that one of the two final states is measured simultaneously
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with the depletion of initial state. However, the pumping of spin states -1/2 and -7/2 are
measured with the diffraction lines —1/2 <+ +3/2 and —7/2 <> —3/2, and the second
measured state cannot be a final state of o_ optical puming, and the measurement
of these populations, which is stable all over the duration of the pulse, confirms the

robustness in spin sensitvity.

The first two measurements show that the populations of +5/2 and +3/2 are in-
creased simultaneously with the depletion of +9/2 and +7/2, respectively, which is
expected for optical pumping. However, for longer pulse duration, higher than 10 ms,
the populations of final states +5/2 and +3/2 start decreasing. In our case, we explain
this decay by the imperfection of the circularity of the light. Let’s consider the pumping
of +9/2 with o_ excitation. A negligeable fraction of o, light is enough to excite +5/2,

and in a two level picture, the associated rate of spontaneous emission reads:

T, = PSPE (3.19)

where s < 1 is defined in [3.17], accounting for the polarization defect  along o, so
that:

rz., I
0= —¢? 3.20
2 © [sat ( )
and a defect as small as €2 = 2.5 x 1073, i.e. Iy /I, = 2, which is hardly

measurable with a powermeter, is enough to be responsible for a depletion of the +5/2
population with associated decay time 7 ~ 12.5ms. On figure[3.11] the time integration
of the Lindblad equation, shown by the black solid lines, accounts for this circularity
defect €2 = 2.5 x 1073, and is enough to explain the population depletion of +5/2 and
+3/2 that we measure, as small as it is. This shows that pumping is very sensitive to
the polarization, indeed a 1 % defect in intensity, 5 times larger than we infer, would be
enough to lower the decay time of |[+5/2) to 3ms, and would break the spin sensitivity
at our time scales. It is then critical that the polarization is optimized on the non-

depletion of mp — 2 population for o_ optical pumping.

Another possible explanation would be that these states are also excited by the o_
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pulse, but the 2.6 MHz zeeman degeneracy lift of the excited states ensures the spin
selectivity, and the verified equation |3.18| confirms that with such a detuning as large
as the degeneracy lift, the associated decay time is as large as hundreds of milliseconds,
which would not be observable on the measured time scales. Note that a defect in 7
polarization could not explain the depletion of spin states |[+5/2) and |4+3/2) because
of the Zeeman degeneracy lift, and considering the non-zero o, defect, the stationnary
state of the three coupled ground states would obviously have non zero population in
the target state. Even if we don’t reach a stationnary state, as shown by the populations
of +5/3 and +3/2, our measurement shows that the target state is completly depleted,
which shows that a defect in 7 polarization is completly negligeable, and this confirms

a good alignement of the magnetic field with the propagation of the light.

Associated heating

Since this scheme relies on spontaneous emission, the atoms obviously heat during the
process. When experiencing the Rabi oscillations, atoms can relax to any of the con-
nected ground states, including the initial state. This means that the atoms may need
to emit more than one spontaneous photon before changing spin state. The proba-
bilities for relaxation are exactly the square of the Clebsch-Gordan coefficients (CG),
which are definied as le?quh,j2q2 = (Jiq1, joqo|kq), where |j1q1) = PP, F =11/2,mp,)
and |kq) = |'So, F = 9/2, mp;). For each spontaneously emitted photon, let’s define

meg. 2

Pfail = CmF;,l—l (3.21)

the probability for the atom to relax in the initial state, and

Psuccess = 1 - Pfail (322)

the probability to relax in one of the two possible final states. This is a binomial
process, with associated probabilities for success pgyccess and fail pq;, and then the aver-
age number of tries for first success, here changing spin population, is simply 1/psuccess
which is exactly the average number of spontaneously emitted photon needed to change

spin population < Ny, em. >= 1/Psuccess-



Chapter 3. Preparation and measurement of the spin populations in a Fermi gas of
8781" 86

Let’s now discuss the heating associated with optical pumping and resulting from the
multiple momentum exchanges, say n, between an atom and the photons from the light
excitation. Anisolated atom at rest realizes a Brownian motion in the momentum space,
consequently to the n consecutive momentum recoils acquired with the absorption -
spontaneous emission process. It results in an acceleration along the light propagation
with acquired n?Egr 1D kinetic energy, where Er = h?k*/2m is the recoil energy, and
a three dimensional diffusion in momentum resulting from the spontaneously emitted
photons with acquired nFEg 3D kinetic energy. Let’s quickly give a proof of this well
known result. The momentum variation §k associated with multiple processes of one
absorption of a photon from the excitation with momentum hEL and one spontaneous

emission with momentum hk,.; and random direction 7 reads:

0k = nkp + Y kuea (3.23)

i=1
Regarding this energetic consideration, the relevant quantity is the momentum

spread, which reads as the quadratic momentum variation averaged over the realiza-

tions:

n

2 n
<0k > =< n?k? + (Z Ese,i) + QnZ Ko - kp >
=1 =1

=n® <kl >+n <k >

(3.24)

This results from the independence between the absorption and emission process, so
that the momentum of the absorbed photon is not correlated with the momentum of the
spontaneous photon, and < ki, - Ese S=< kp >< Ese >. Similarly, every spontaneous
emission is inpendant so that < Ese’i . lgse,j >=< Ese,i >< Ese,j >. Since the momentum
of spontaneously emitted photons is random, < ke >= 0, which cancels both products.
Now, the recoil energy Er = h?k%/2/m associated with the intercombination line can

be inserted to define the average energy acquired:

<0E>=n’Er+nkEg (3.25)



87 3.2. Selective preparation of polarized Fermi sea of 87 Sr

which shows the quadratic dependence on n of the energy acquired from the 1D
acceleration and the linear dependence on n of the 3D momentum diffusion resulting

from the spontaneous emission.

In our experiment, the decay time associated with optical pumping of a spin state is
approximately between 1 and 2 ms (see figure , while the collision rate is slightly
lower than 1 collision per atom per millisecond. Considering that the gas necessitates
several collisions to thermalize, and the pumping duration is smaller than the dipole
trap period, it is then reasonnable to consider that an atom is approximately isolated
when it is pumped into another spin state. The estimated average energy acquired by

the atom is:

<0E>=n’Er+nkEpg (3.26)

The associated heating for a 3D thermal gas in a harmonic trap with total energy
Eioy = 3kgT finally reads:

1
0T = gn(n +1)Tr (3.27)

Where the recoil temperature associated with the intercombination line of 87Sr is
Tr = Er/kp = 230nK. Considering that the heating associated with one spin flip
is redistributed to the whole gas after thermalization, the heating associated with the
total depletion of a spin population can finally be predicted from:

N; 1
= ——nn+1)T 3.28

g+ DT (3:23)

where is the initial number of atoms in the pumped spin state and N, the total

or

number of atoms in the gas, and 7 = 1/psyuccess the average number of spontaneous
emissions needed to change spin population, where pg,ccess i defined in equation [3.22
For instance, considering that the gas is initially unpolarized with 10 % atoms per spin
state, atoms in -3/2 have 0.5 probability to change spin state, so that emptying the
population of -3/2 heats the gas by approximately 115nK. Note that the populations

of the low negative mp spin states, with strong CGs associated with o_ relaxation, see
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figure [3.6] need to experience more spontaneous emission than the positive spin states

to be transfered, for instance —3/2 spins are heaten twice as much as 9/2.

Optical pumping is best realized on a hot gas in a deep trap, rather than on an
ultra-cold gas in a shallow trap which would consequently strongly heat the atoms and
might blast them out of the trap. For this reason, the spin populations are emptied
just after loading the dipole trap which is 90uK deep, while the gas is unpolarized
with approximately 10 % atoms per spin state (see section at 7.2 uK (see section
of chapter . In this case, the heating associated with the pumping of one spin

population is hardly measurable.

3.2.2 Controlling the number of spin components from 1 to 10

In the previous section, I presented our method to empty the population of a mg spin
state and transfer it to mp — 1 and mp — 2. I will now explain how we can tune the
number of spin components in the Fermi gas of 8"Sr from 10 to 1. To prepare a selective
spin mixture, we rely on the pure polarization of the laser, such that consecutive spin
states can be emptied in descending mp order, while never bringing back atoms in
previously emptied spin states. Considering the preparation of a Fermi gas with 2 spin
components with initially all 10 spin states populated, we sequentially empty all mg
states with decreasing mp, but one spin state that we volontary skip, say -5/2, and
-9/2 that cannot be pumped with o_ excitation, so that all spin states are emptied,
but —5/2 and —9/2.

Figure shows absorption image after time of flight of a SU(2) 87Sr thermal gas
(right) after a pumping sequence to prepare a {—9/2, —1/2} mixture, and a SU(10) gas
(left) with no prior optical pumping. We compare the temperature of the gas after the
pumping sequence and after allowing for 500 ms thermalization, to the initial temper-
ature of the gas prior to pumping, as well as the number of atoms. The increase of
temperature is reported on figure [3.12] (a), for the {—9/2, —1/2} preparation, as well
as other preparations, {—9/2,3/2}, {-9/2,—-3/2}, and {-9/2,—7/2}. We measure

an increase of 1 uK after thermalization of the {—9/2, —7/2} preparation, and smaller
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Figure 3.12: Measurement of the heating and atom loss associated with the preparation
of a 2 component Fermi gas of 8’Sr with a pumping sequence. Top figures, absorption
images after time of flight of a SU(10) gas (left) and SU(2) gas with remaining -9/2 and
-1/2 spin states. The number of atoms and temperatures and infered from a Gaussian
fit (white dashed line) of the integrated optical depths (black solid lines). (a): heating
of 0T = Tsyoy — Tsu(z), infered from a simulated pumping sequence (black dots),
neglecting evaporation, and measurement with associated fit uncertainty. (b) density
of the remaining spin component, here defined as oc N,,,./T?, infered from a simulation
(black dots) and measurement (empty squares), where the population in mp is infered
from the measured number of atoms and the predicted population balance after the
pumping sequence. (c¢) Prediction of the ratio of atoms in mp after preparation of a
—9/2, mp two component gas, using Clebsch-Gordan coefficients.

increase of approximately 800 nK for the other preparations, and it is compared to
simulations of the associated pumping sequences using only the Clebsch-Gordan coeffi-
cients, and equations and Our measurement shows that heating is less spin
dependent contrary to the prediction and moreover it is generally lower. A possible

explanation is that during thermalization, the two component gas continues evapora-
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tion, attenuating the heating from the pumping sequence, and our measurement of the

) ~ 106 for all preparations confirms that one third of the atoms

number of atoms NiU
are lost after thermalization. We assume that thermalization is homogeneous for all
spin states, and that there is no spin exchange due to the SU(N) symmetry of the
collision properties [Gor+10]. Then, the population in the remaining mp component
can be infered from the total number of atoms measured and the predicted population
imbalance after the pumping sequence, shown on figure [3.12] (c). This way, we deduce

the density of atoms in the remaining mpg component, as shown on figure |3.12} (b).

On figure[3.13] we compare the final state of several gases after evaporation, depend-
ing on spins mixture preparation prior to evaporation. The initial mixtures are either
a SU(10) gas with no optical pumping prior to evaporation, or a SU(2) gas prepared
in {-9/2,-7/2}, {-9/2,-3/2}, {-9/2,—1/2}, or {—9/2,+3/2} (these preparations
are the ones discussed on figure . After the evaporations, all realized from initial
trap frequency 330 Hz ramped down to 85 Hz during 5 seconds, we compare the den-
sities and degeneracies of each preparation, accounting for the predicted balance of the
population, see figure [3.12]

This measurement first shows that a SU(10) gas of 8"Sr has four times more atoms
than a SU(2), and thermalizes at a temperature lower by 20 %, for this evaporation
depth. Accounting for the fact that initially SU(10) gas has approximately 30 % more
atoms, this shows that relatively more atoms are evaporated in SU(2) preparations.
This is consistent with previous observations that the collision rate of a SU(2) gas is
lowered compared to that one of a SU(10) gas [Son+20]. However, accounting for the
number of atoms per spin state, the phase space density N,,¢/T? of the most populated
spin state of the SU(2) preparations {—9/2,—7/2} and {—9/2,—5/2} is equal to that
one of the SU(10) preparation, as well as the degeneracy 7'/Tr. The {—9/2, —1/2} and
{—9/2,3/2} preparations, with less atoms in the selected spin states, are consequently
less degenerate. This shows that the manipulation of the spins populations is viable
for the preparation of ultra cold gases of 87Sr with tunable N. Moreover, we are not
interested into the choice of the spin mixture regarding the latter study of the Heisenberg
model in enlarged SU(N) symmetry, since the collision properties of 87Sr do not depend

on the spin states. It is then reasonnable to select the most favorable spin mixture
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regarding only the production of degenerate gases.
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Collision rate for unbalanced miztures. The preparation of the SU(2) mixtures in-
duces populations imbalances between the remaining spin states. It is then interesting
to investigate the consequences regarding the efficiency of evaporation, that depends
on collisions. Symmetry rules forbid s-wave collisions between two identical fermions,
so that collisions are inhibited in the degenerate regime and the efficiency of the evap-
oration decreases when 7" — 0 [DeS+10]. In case of population imbalance between the
colliding fermions, the collision rate per atom will be lowered for the most populated
spin state, mp in our case. Indeed, the less populated has more partners to collide with,
and Pauli exclusion principle forbids collisions for which the arrival state is already oc-
cupied by a fermion of the same specie, so that at thermal equilibrium between the two
spin states, the most populated state has more occupied states in the arrival state for
the collision, inhibiting the probability for this collision. It is possible to numerically
predict the inhibition of collisions due to a population imbalance in a two components
fermi mixture. The collision rate of two colliding species a and § can be computed
thanks to the collisional integral [LRW96; Geh+03]:

,0(54)fa(54) Z% /OO d€1d€2d€3p(6min)(5(d61 + d62 — d€3 — d€4)
(1= falen)(X = fs(e2) fales) fo(ca) (3.29)

I N, = / desp(e) o)
0

where M is the mass, o = 4ma,? the low energy s-wave collisions cross-section with
as the scattering length, and & the reduced Planck constant. p(e) = &2/2(hw)? stands
for the density of states, in a harmonic trap of geometric mean frequency w. The Pauli
exclusion principle is taken into account by the (1 — f(g)) non-occupation number,

where f(e) is the Fermi-Dirac occupation number:

fFD(E,T, ,u) = 65( L (330)

=i 41
Here, § = 1/kgT and the chemical potential p is defined as the Fermi energy at
zero temperature u(7T = 0) = ep = kpTr, Tr the Fermi temperature. When solving

equation [3.29] it is important to take into account the fact that the two unbalanced
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Figure 3.14: Inhibition of the collision rate per atom for unbalanced populations in the
two colliding Fermi components o and . The numbers above each curve indicates the
ratio of atoms p, in the considered state o with respect to the total number of atoms
Niot = No + Ng, i.e. N, = paNior. The calculation has been made for trap frequency
© = 120Hz and N,,, = 10°, representative of our trap after after evaporation.

populations have different Fermi energy ep, = ho(6N,)"/? and hence Fermi tempera-
ture and chemical potential. So the occupation numbers f, and fz are not the same
for the two species. The details for the computation can be found in appendix [A] In
figure [3.14] are presented different collision rates per atom in state mpg,, with respect
to T'/Tg, and populations inbalance, for fixed N;,; and @. If the two spin states are
equally populated, N, = N = Ny /2, then collision rate per atom is maximal, and
the forced evaporation efficiency optimal. Then if the state mp,, starts to be more
populated, i.e. p, = No/Niw > pp, the collision rate drops quickly, from -20% for
Pa = 0.6 with respect to equally populated states (p, = ps = 0.5) to approximately
-80% for p, = 0.9.

This shows that unbalanced mixtures suffer from inhibition of the collisions, which

results in a less efficient evaporation. This is consistent with our measurement of the
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number of atoms after evaporation presented on figure [3.13] which indicates that the
most unbalanced mixture {—9/2, —7/2} is slightly lower than the other SU(2) prepa-
rations. However, it is not significant, as T/Tr is smaller. Regarding the preparation
of SU(2) degenerate Fermi gases with forced evaporation, the best mixtures are hence

-9/2 with either -7/2 or -5/2, according to our measurement.

A spin mixture with more than two components can be prepared exactly the same
way, except that another m g spin has to be skipped during the pumping sequence. Note
that the preparation of the Fermi gas with tunable number of spin components is real-
ized in the deep dipole trap prior to evaporation because of the heating associated with
optical pumping, so it is mandatory to keep at least two spin components to authorize
forced-evaporation assisted by s-wave collisions. For this reason, our preparations of

polarized Fermi seas have to be done after evaporation, which I will now discuss.

3.2.3 Spin purification to prepare a polarized Fermi sea

To prepare a polarized Fermi sea from a two components degenerate Fermi gas, we
selectively blast one spin state out of the trap after evaporation. This is done by
realizing our optical pumping scheme on spin state -9/2, i.e. with a long pulse of
saturating o_ light resonant with the |'Sy, —9/2) «» [P, F = 11/2,—11/2) transition.
This transitions is cyclic, and atoms absorb photons from the laser and emit spontaneous
photons until they acquire enough energy to leave trap. Then, there remains only the

other spin state and the Fermi gas is spin polarized.

Figure shows our experimental realization of the blast to prepare a polarized
Fermi gas in mp = —1/2, from an evaporated gas previously prepared in a —9/2, —1/2
spins mixture with optical pumping. Right figure shows absorption images of the
|—1/2) <> |+3/2) diffraction line, with respect to the duration of the o_ pulse, and the
corresponding longitudinal integrated optical depths are superimposed for each blast
duration. The population in the non diffracted cloud, which corresponds to atoms in -
9/2, and centered on pixel 30, is progressively reduced with longer pulses until it reaches

a minimum while the population in -1/2 seems not affected, and the absence of a second
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Figure 3.15: Preparation of a polarized Fermi gas in mp = —1/2 by blasting atoms

in mp = —9/2 out of a two components trapped Fermi gas. (a) Depletion of the -9/2
population, and relative increase of the -1/2 population, with respect to the frequency
of the blast with fixed duration 5 ms. (b) Ratio of atoms in mp = —1/2 with respect to
the blast duration. It is fit with an exponential decay of the -9/2 population e~*/7, with
fitted decay time 7 = 97 & 14us, and the ratio of atoms in —1/2 saturates at approxi-
mately 66 % in this measurement. (¢) Measured number of atoms and temperature of
the diffracted cloud associated with -1/2 population, with respect to the duration of
the blast. Right figure: absorption images of the |—1/2) <» |4+3/2) diffraction line, with
respect to the duration of the resonant blast with saturating o_ excitation, I ~ 70 I,
used for the measurements on figures (b) and (c).
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diffracted cloud confirms that the population in +3/2 is zero. From this measurement,
we infer the ratio of atoms in -1/2 with respect to the blast duration, shown on figure
(b), which raises consequently to the exponential decay of the population in -9/2, with
fitted decay time 7 = 974 14 us. We observe here that the population in -1/2 saturates
close to 70 %, and this is also observed on a scan of the optimal frequency of the blast
with 5 ms of pulse, shown on figure (a), with a plateau of the depletion in -9/2 over 150
kHz of scan. This poor efficiency of the blast was due to a hardware failure damaging
the efficiency of the spin-dependent momentum transfer, so that atoms in -1/2 were

not diffracted for this specific data. This failure was later corrected.

Nevertheless, our measurement shows that during the blast of atoms in -9/2, atoms
in -1/2 remain unaffected, as the diffracted cloud has an approximately constant number
of atoms, and the temperature remains stable compared to the temperature of the initial
gas T; ~ 451K, as shown on figure [3.15 (c). This is consistant with the fitted decay
rate v = 1/7 ~ 27 x 1.5kHz of the -9/2 population, which is much higher than the
collision rate and the trap frequency. Atoms in -9/2 leave the trap before colliding with
atoms in -1/2, and the Zeeman degeneracy lift of the excited state ensures that there

is no possible light scattering from atoms in -1/2 on those timescales.

3.2.4 Polarized Fermi sea

We measure the fiability of our preparation of a polarized Fermi sea of 8"Sr in mp =
—7/2, by measuring the number of atoms in every spin state with the spin-dependent
momentum transfer scheme. Figure [3.16] shows the results of our preparation with
absorption images of each diffraction line (see section [3.1.4)). From the diffraction line
|—7/2) <> |—3/2) (see (a)), we measure 75 £+ 3 % diffracted atoms from —7/2.

The signal in the non diffracted cloud, in both the absorbtion image (top) and the
integrated optical depth (a), shows that atoms at rest prior to the momentum transfer,
at the center of the gas, are better diffracted than atoms with non zero velocity away
from the center. This is a systematic effect that leads to an underestimate of the number
of atoms from —7/2. The feature is taken into account in figure (b). The inset shows the

velocity dependence of the efficiency of the momentum transfer, which is infered from
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Figure 3.16: Measurement of the spin polarization after preparation of a polarized
Fermi sea in mp = —7/2. Top: absorption images of each diffraction line, the labels
correspond to the spins expected at location indicated by the dashed circles. (a) Fit
of the |-7/2) <» |—3/2) diffraction line (solid line) with the sum of gaussian distribu-
tions. Insets: residuals of thermal (left) and degenerate (right) fits of a non diffracted
polarized Fermi sea. (b) Expected density profile (dashed-line), accounting for the
velocity v dependent efficiency P(v) of the spin-dependent momentum transfer (see in-
set). (c) Integrated optical depths of the other diffraction lines with indicated fraction
of diffracted atoms. (d) Measured number of atoms in —7/2 (empty square), accounting
for the velocity dependent efficiency (empty circle), and calibrated by the total fraction
of diffracted atoms (filled square and circle).
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numerical integration of hamiltonian |3.1| accounting for an opposite doppler shift on
the o, and o_ photons. The number of atoms in —7/2 is then measured by accounting
only for atoms at rest, i.e. the peak density of the diffracted cloud, and the density
at v = 0 for the non diffracted cloud. On figure (b), the dashed line indicates the
expected density profile by neglecting the velocity dependence. With this correction,
we infer 81 £ 3 % diffracted atoms from —7/2. These two results are finally calibrated
by taking into accounts the atoms detected in the other spin states (see figure (c)), and
we find 89.5 +£ 10%. Figure (d) reports the result of our measurements: accounting
only for the detected atoms in —7/2 (empty square), with the correction of the velocity
sensitivity (empty circle), and calibrated by the efficiency of the diffraction measurement
(respectively filled square and circle).

Finally, the degeneracy of the gas is measured from a non diffracted gas prepared
in the same conditions, with a fit of the absorption images with a degenerate density
distribution [KZ08| (see residuals and fit result in inset of figure 3.16] (a)), and we
measure 7'~ 0.25Tg, Tr ~ 250 nK with approximately 20000 atoms.

This finally shows that we are able to prepare a degenerate polarized Fermi gas of
87Sr at T/Tr ~ 0.25 with 20 x 10% atoms, and we estimate that 89.5 £ 10 % atoms are
in the same spin state |[=7/2). Therefore our measurement is compatible with a 99 %

SU(1) degenerate Fermi gas.



Chapter 4

Coherent manipulation of the
nuclear spin states of 87y

The ground state 1S, of fermionic ”Sr has an electronic closed-shell. As mentionned
in chapter [3] it is not practical to use magnetic fields to manipulate the 10 degenerate
ground spin states. In the prospect of studying the Heisenberg model in enlarged
SU(N) symmetry, we rely on spin-orbit coupling and spin resolved Raman transitions
to coherently probe and manipulate the spins with light. To do this, we take advantage
of spin dependent light shifts.

The bosonic isotopes of strontium have zero nuclear spin and J=0 in the ground
state, and hence no hyperfine structure. However, one of the most interesting properties
of fermionic 87 Sr is the hyperfine coupling between total momentum J and the large
nuclear spin I = 9/2 in excited states. For instance, the excited state 3 P, with non-zero
momentum J is split into 3 hyperfine states F = 7/2,9/2, 11/2, which are all separated
by more than 1 GHz. These three hyperfine states are highly resolved compared to the
narrow linewidth I'/2r = 7.4kHz of the optical transitions. Therefore, the dynamic
polarizability associated with the intercombination line can acquire a significant and
tunable spin dependence [Shi+15], so called tensor polarizability [MORS6|, with low
spontaneous emission. While experiments for optical lattice clocks take specific care
of minimizing spin dependent light shifts [Boy07; [Lud08] on alkaline earth species to

prevent perturbations on the clock frequencies, degenerate gases experiments can take
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advantage of the tensor polarizability. It has been demonstrated on both strontium
[SGS11| and ytterbium [Tai+10] that spin components can be separated using conser-
vative spin dependent forces, enhancing the study potential of many-body physics in
enlarged SU(N) symmetry |[CHU09; Gor+10; Tai+12].

In our experiment, we use a dressing laser beam that realizes spin dependent light
shifts associated with the intercombination line of 87Sr, so that the degeneracy of Raman
transitions within the ground state spin manifold is lifted. Then, we selectively and
coherently flip chosen nuclear spin states with two photon Raman process, with one
photon from the dressing beam, and a one photon from another laser, that I call Raman
beam in this chapter, and whose frequency is adiabatically sweeped through the selected
Raman resonnance. Designed as a dipolar optical lattices, the spin dependent light
shifts are then associated with a spatial selectivity that can be taylored at the optical
wavelength scale. Therefore, the Raman process acquire a site dependence, that can be
used to prepare, and detect, spin textures into lattices. In the prospect of the realization
of a quantum simulator for Heisenberg model, this scheme enables the possibility to

probe long range spin ordering, and to detect spin entanglement |[Tai+20; |Sun+21].

The basics of the tensor polarizability and the derivation of the quadratic light shift,
as well as the associated scattering rate, are well known results that are first recalled
in this chapter. We measured the quadratic light shift with Raman spectroscopy, and
results are compared to predictions. Then, I show how we manipulate the ground spin
states, taking advantage of the tensor polarizability to engineer spin selective adiabatic
passages within the 10 spins ground state manifold of 87Sr. Finally I discuss the short-
term prospect of associating spatial selectivity to the spin dependent light shift, to

prepare spin textures into lattices with site dependent adiabatic passages.
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4.1 Degeneracy lift associated with spin dependent
light shift

4.1.1 Tensor dynamic polarizability

The rotational invariance of AC Stark shift can be broken for atoms which have fine
and hyperfine structures, and in this case, the polarizability can acquire a dependence
on the zeeman sub-levels mp. Here, I will focus on the main steps to summarize the
derivation of the irreducible tensor components of the atomic polarizability « in order
to expand the spin-dependant light shifts in terms of a scalar component, indepen-
dent on mp, a vector component, linearly dependent on mpg, and a tensor component,
quadratically dependent on mpg. This well-known result can already be found in sev-
eral publications and pedagogical contents. |[MORS86; Ovs+06; |Shi+15] . A clear and
interesting introduction to the angular momentum algebra and spherical tensors can be

found in [Wal21], which are explicitly used for the following derivations.

The interaction between the atom electric dipole D and the classic monochromatic
light field E of angular frequency w;, E = %6|E\ei(wlt_¢) +c.c, is described by the electric

dipole potential operator ﬁdip:

. 1.
Ugip = —Za|E|2 (4.1)

where « is the polarizability operator. We are interested in the magnetic dependence
of the polarizability (m;| & |ms), where |m;) and |my) are Zeeman sub-levels of the

ground state 'Sy. In second order perturbation theory, « reads:

_ly<:DI#){le:D e DIg)(#e D

Wy — Wi Wy + wy

A 4.2
o= (1.2
l¢")

where £ is the reduced Planck constant. Here, |¢') = |n'L’'S’J' F'm’) are the excited
states, and € is the polarization of the electric field. In the spherical basis of unit vectors
u;, defined as us; = F(x £ iy)/V?2, uy = z, with u, = (=1)%u*, the electric dipole

operator D = —eR can be expended as a linear combination of spherical harmonics
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Yy [Wal2i):
. 4
D =) —er|y/ - Viu; (4.3)
q

This is enough to show that D is a spherical tensor T% of rank k = 1, with three
standard components Ty,, ¢ = 0,£1. It is then possible to apply the Wigner-Eckart
theorem on the electric dipoles Dy (|mq),|¢))) = (ma|e* - D|¢') and Do(|¢'), |ms)) =
(¢/| - D |ms):

D1<m17 ¢/) = Z(e* ) u;)(_l)Fﬁml <F1| |D| |F/> < b ! F/)

i
—miy q m
q1

Da(¢,mz) = 3 (e s, )(— 1) 140 (P | D] | ) (

q2

F o1 F’) (4.4)

/
my q2 —M

where the angular dependence is contained into the Wigner-3j symbols. Here, F;
and F’ are the hyperfine states associated with the |m;), i = 1,2, Zeeman sub-levels and
the excited state |¢'). The double bar matrix elements (Fi||D||F’) and (F'||D||Fy)

are the reduced dipole matrix elements which do not depend on my, mq or m'.

The product of the two spherical tensors D; and D, of rank k; and ko can be
expanded as the sum of irreducible tensor operators of integer ranks |k; — ky| < k <
k1 + ko. This can be done either by expanding the product of Wigner-3j symbols over
m’ using sum rules for angular momentum, or by identically expanding the product
of the two uncoupled spherical tensors in a direct sum of irreducible tensors [Wal21].
Practically, these irreducible tensor operators have rank k£ = 0,1,2 in the case of the
combination of two electric dipole operators. The result of the expansion takes the
simple form [MORS6; (Ovs+06} Shi+15]:

2 k

(ma] @ |mz) =Y ap(w) Y (=1)Crl i {e ® € g (4.5)

k=0 q=—k

where {€ ® €* '}, = ZCfglJQQeqle* [IMORSG], and €, = u; - €. Here, ¢ and ¢y are

a2
the projections in the spherical basis of the standard components of the electric dipole

operator, as defined in equation 4.3} The C symbols are the Clebsch-Gordan coefficients
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definied as leqql e = (141, J2qa|kq). This approach allows to isolate the contributions
from the different physical components. Indeed, the polarization dependence is entirely
contained in the tensor {€ ® €*};,, the magnetic dependence in the Clebsch-Gordan
coefficient CE™ Fimg kg a0d the light angular frequency in the tensor component ag(w;) of

the dynamic polarizability, which reads [MORS&6; |Ovs+06; Shi+15]:

F+1
1 [2k+1 kF_F,< 1 (—1)k> F F &k L 12
S F||D||n'F
) = 14/ S5 PP oo a1 g | FIDIE)

(4.6)
where the bracket symbols are the Wigner-6j symbols. Two useful examples with

purely polarized light illustrate the efficiency of this approach.

If the light is m (linearly) polarized, such that € = uj; = €*, then {€ ® €}, is non
zero only if ¢ = 0. In this case the momentum conservation rules impose m; = my = m,
which makes sense for purely polarized light, and parity rules impose that k is even,
else Cf&m = 0. Thus, the polarizability matrix elements can be written as following
[MORS6; |Shi+15]:

(m| a|m) | = ngoocggloao(wﬂ + C£$20012810QZ(W1> (4.7)

B 3m? — F(F+1) .
(mlafm) |, =~ vrv@, R ape) (Y

The polarizability matrix elements are now reduced to a sum of two terms, as seen on
the right hand side. The first term is independent of the magnetic sub-levels, depending
only on the scalar component of the dynamic polarizability, while the second term is
quadratically dependent on the magnetic sublevels. This first result shows that if the
tensor component of rank 2 s (w;) is non zero, then the dynamic polarizibility acquires
a dependence in the magnetic sub-levels, and for pure m polarized electric field, this

dependence is quadratic.

If the light is oy (circularly) polarized, such that € = ui,, i.e. €, = —€x, then

again {€ ® €"}4, is non zero only if ¢ = 0, and momentum conservation rules impose
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my; = me = m. But k only needs to respect triangle inequality in Cfium, such that
rank 1 irreducible tensor of polarizability expansion is not obvisouly zero. In this case,

the polarizability matrix elements read:

(ml & |m) |

ot CFmOO 1j:1 1110‘0<Wl) +CFmIOCI:I:1 1;10‘0(0‘”) +CFm2OC1:tl 1110‘2@}1) (4.9)

1 3m? — F(F +1)

(ml &fm) |,, = zaolenForlw)m—mmmmests \/F F+1)@2F - 1)(2F + 3)
(4.10)

Finally, let’s consider an electric field with mixed polarizations, for instance 7+ o,
i.e. €= (u}+ut)v2 and € = (up — u_)v/2. In this case, {€ ® €}, can be non zero
for all four possible 2 photon process involving m and o, photons, which corresponds

o (q1,q2) pairs (0,0), (1,—1), (1,0) and (0, —1). The two first possibilities correspond
to absorbtion and reemission of a photon with same polarization, which is exactly
the two first introduced examples with pure polarized light. However, the (1,0) and
(0, —1) pairs respectively correspond to absorption of a m(o ) photon and reemission of
a o (m) photon. This coupling is actually a Raman two photon coupling, which is non
diagonal in the Zeeman sub-levels basis and hence involves a basis rotation. The tensor
polarizability acquires non diagonal components (m — 1| &|m) for (¢ = 1,¢2 = 0) and
(m+ 1| &|m) for (¢ = 0,¢2 = —1), and selection rules respectively impose that ¢ = 1
or ¢ = —1 and hence k > 0. Finally, the new non-diagonal matrix elements of the
tensor polarizability read:

(m—1falm)| = (Cpmn'Cit 1001 (W) + Crmar Cii 1002(w1)) /2 (4.11)

T+o4

(m+1|&|m) ’ (Cﬁﬂfﬂcm 110 (wr) + Cgﬁfﬂw 1102(wr))/2 (4.12)

m+o4

Tensor polarizability is then completly defined from equations [4.7], [4.9] and
Note that a factor 1/2 has to be added to the diagonal elements when summing

as(w)
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the 7,7 and 0,0, contributions, which comes from the 1/4/2 normalization of the

unit polarization of the electric field.

This shows that the polarizability matrix elements can be completely defined by
Clebsch-Gordan coefficients and three parameters, which are commonly defined as the
scalar ayg, vector ay and tensor ap irreducible components of the polarizability, and
usually obtained by rescaling g, ay, as [MORS6; [Shi+15]:

av = a5 (4.13)

- 2F(2F — 1)
=N 3(F +1)(2F + 3)

One has to know the transition strength D3, = | (nF||D||n'F’) |* to fully compute

the dynamic polarizability. Extensive research on the characterization of the transition
rates for atomic spectra has yielded an affluent database on atomic spectroscopy, for
instance [SN10] and more recently [HS22| regarding strontium 87. It is then possible to
determine the transition strength element from the transition angular frequencies weyg,

oscillator strengths fye [Lud0§] and transition rates I'yy:

sz?w 2

oo = ——=D35 4

2 3rhegcd *?
2 4 m

Joor = 390 33 Dow

(4.14)

where m and e are the electron mass and charge.

4.1.2 Scattering rate

The scattering of photons can be modeled by the absorption of a photon from the laser
field with angular frequency wy,, and the spontaneous emission of another photon. This
two photon process connects to the continum energy many-fold, which can be described

by the Fermi golden rule to derive the scattering rate:
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2m A
Lo, = == {my| W |ma) *p(E = hwr) (4.15)
where W is the coupling between the ground states |m;) and |m;) with energies
Ey, = By, and p(E) the density of states of energy E. If the excited state connecting
|m;) and |m;) is weakly populated, then the two photon effective coupling W reads in

second order perturbation theory:

Iy~ D) (#ler:D & D) (#]ep D

A 1
W =—-|EL||E
2| L|| v|h Wy — WL Wy + wr,

(4.16)
|¢')

Here, E,(Ey) stands for the electric field of the vaccum (laser) of polarization e,
(er). Note that here we consider that the polarization of the excitation is 7, so that
the polarization of the spontaneous photon is well defined for a considered arrival state
m;. Injecting the effective two photon coupling into Fermi golden rule finally gives,

after neglecting the anti-resonant term:

o, = SO B T 5~ G 1) (F R ) (F 1P ) ‘2
e w3 4 B2 &7 wor —wr \ ™My m' —m; —m') \m; 0 —m/
(4.17)
which can be rewritten with the Clebsch-Gordan coefficients
rooo_ 3meohc® |EL|* T2, Z Chomtimt—m,Chmao i (4.18)
iy w3 4  R? o Wy — WL,

This result for the scattering rate associated with small population of the excited
state is actually known as the Kramers-Heisenberg formula [RF99]. In our case, the
polarisation of the laser electric field is pure 7, i.e. € = ug, and I',,4; is the inverse life
time of the excited states |¢).

The decay to the final state depends on the polarisation of the spontaneous emitted
photon, such that the total scattering rate I'; = > ; L'imsj from the initial spin state |m;)
can be decomposed over the scattering to the three possible final states |m;) (|m; £ 1))

for a 7w (0+) emitted photon. Scattering rate of mp = +3/2 for each polarization of the
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Figure 4.1: Calculated scattering rate as a function of the light frequency spanned
within the hyperfine structure F=7/2,9/2,11/2 of the 1Sy <3 P, transition. The scat-
tering rate is calculated using experimental light parameters, which is a 6 mW gaussian
laser beam with a waist of 180 um and polarization 7. Left: scattering rate from
mp = +3/2, for each polarization of the spontaneously emitted photon, in dashed
lines. The total scattering rate is plotted in solid black line. Right: total scattering
rate for each zeeman sub-level. Here, only positive spin states are represented because
[p¢ is symmetric in mpg. On both figures, the red vertical solid lines are the hyperfine
resonances.

spontancous photon is plotted on figure[d.1] left, as well as the resulting total scattering
rate. In this figure, the calculation is made with a 7 polarized light excitation, and the

intercombination line *Sy <+ Py, F' = 9/2 only is considered for the calculation.

As expected, the spin dependent scattering rate is maximum closer to resonance.
There exist detuning values § such that the scattering process towards a specific final
state, 7.e. emitted photon polarisation, is canceled, as it can be seen when the scattering
rate reaches zero. The sum over the hyperfine states F' = 7/2, F' = 9/2, and F' = 11/2,
accounts for the different paths through those excited states leading from the initial
state to the final state, and the probability for a scattering event to happen results from

the interference between these different possible paths. This can be seen in equation
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from the sum over the excited states of C;C;/0 which can be zero for specific 4,
depending on the coupling strengths C,C;, i.e. on |m;) and |m;). However, this doesn’t
mean that the light scattering is canceled. Indeed, the total light scattering accounts
for all possible scattering paths.

Since the polarization of the excitation is well defined, the final states associated
with scattering are distinguishable and there are no inteferences involved into the total
scattering from one mp, i.e. T'; = ; I';s;. The total light scattering from each spin
state is plotted on figure [4.1] right, and it can be seen that indeed it is never zero for

any frequency of the light excitation.

4.1.3 Tensor light shift associated with the intercombination
line

Tensor light shifts can be easily computed numerically from equation [4.5] given that
the transition strength defined in equation is known. If the transition is not closed,
e.g. if the lower state has fine or hyperfine structure, then the branching ratios of the
transitions have to be taken into account [Lud08; Shi+15]. Regarding the intercombi-
nation line of 87.Sr, the excited state 3P, can decay only to the ground state 1S;. Hence,

the radiative decay rate of the excited state I'sp, gives the L — L’ transition strength:

3
Wo 2

o 3L
3rhegc® ™

where L = 0 and L' = 1. Here, the hyperfine structure is not accounted for, and the

Tsp, = (4.19)

branching ratios are needed to write the transition strength in the hyperfine coupled
basis [MS99; Wal21]:

J 1 J F1 F
D= (2L + 1)(2F + 1)(2F" +1)(2J + 1)(2J" + 1) {L s L,} { 7T D} .
(4.20)
and it finally reads:
3mheoc? J 1 J F''1 F
n 12 _ 0 l / !
| (F||D||F") |* = F3P1—w8 (2L'+1)(2F4+1)(2F'+1)(2J+1)(2J'+1) {L g L/} { J I

(4.21)

|
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Figure 4.2: (a) Calculated light shifts as a function of the light frequency spanned
within the hyperfine structure F=7/2,9/2,11/2 of the 'Sy <3 P, transition, for each
spin state of the ground state manifold. The mp spin states are noted above the cor-
responding solid lines. The spin dependent light shift is calculated using experimental
light parameters, which is a 6 mW gaussian laser beam with a waist of 180 um and
polarization 7. (b) Degeneracy lift of the mp <> mp £ 1 raman resonances within the
ground state manifold, computed as Ug,(mp) — Ugip(mp £ 1). The corresponding spin
states are noted above the curves. On both figures, the red vertical solid lines are the
hyperfine resonances.

Now, the tensor polarizability associated with the intercombination line can be
computed for a defined polarization of the electric field, from equations and
Figure (a) shows a numerical computation of spin dependent light shifts
within the ground state manifold 1Sy with 7 light, with respect to the detuning to the
1Sy <+ 3P, F = 9/2 transition, within second order perturbation theory. Because the
approximation ¢ > ['sp has been made, the calculated light shifts diverge close to the
resonance with each hyperfine state. However, it is interesting to see that for every spin
state, the dipole force goes from attractive to positive, when the light frequency goes
from the F' =9/2 to F' = 11/2 resonance. Moreover, a light detuned at approximately
—700 MHz from F' = 9/2 highlights the spin dependence of the dipole potential, where
half the spins are attracted and the other half expelled by the potential. Practially,
figure (a) shows that with those parameters, it is possible to expell all spin states
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but +9/2 and —9/2 with w; —wg /2 ~ —1.1 GHz, effectively preparing a SU(2) ¥7Sr gas,
similarly to [Son+20]. The opposite can also be realized by setting the light frequency
at w; — wyj2 =~ +1GHz, preparing a SU(8) gas. The resulting energy splits between
the mp ground states are plotted with respect to the angular frequency of the light
on figure (b). The energy differences are rather uniform when the light frequency
is tuned in the middle of two hyperfine states, while close to resonance the spectral

resolution diverges for all the |mg) <> |mp + 1) opened gaps.

Most importantly, we see here that because of the spin-dependent light shift, the
ground state manifold acquires spectrally resolved |mpg) <> |mp £ 1) transitions. With
only a scalar or linear dependence on the Zeeman sub-levels, all the transitions would
be resonant. This means that only thanks to the quadratic spin dependence of the
tensor light shift, two photon Raman transitions can be used to selectively couple two
ground spins states. For pure 7w polarized light, this lifted degeneracy can be easily

written as :

—30./T

FF -1 me T (422

a(mp +1) —a(mp) =

according to equations[t.8land [1.13| where a(mp) = (mp| & |mp). Hence, a quadratic
spin dependent light shift results in linear spin dependent |mpg) <> |mpr £ 1) Raman
resonances. Increasing the spectral resolution of the Raman resonances by tuning the
light close to resonance also increases the scattering rate as shown in figure 4.1} not only
heating the atoms but also enhancing spin relaxation and decoherence. It should be
noticed that close to the F' = 9/2 resonance, stretched states have highest polarizabil-
ity, resulting in maximal light scattering and energy shifts for these spin states, while
close to the F' = 11/2 resonance, the minimaly magnetic spins, i.e. minimal |mg|, are
the most shifted and scattering spin states. The competition between light shift and
light scattering thus has non trivial spin dependence. This competition can be looked
at by comparing the energy difference between two successive spin states, to the mean
of the scattering rate of these two states. The ratio of these two quantities is plotted
in figure [4.3] and it shows that optimal light frequency tuning might exist to maximize
the degeneracy light while minimizing scattering rate, and this result highly depends
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Figure 4.3: Calculated degeneracy lift of Raman resonances within the 'Sy, manifold,
over spin dependent scattering rate, computed as the mean over the two connected
spin states, as a function of the frequency of near resonant light field spanned within
the hyperfine structure of the 3P, state. The red vertical solid lines are the hyperfine
resonances. This calculation is made with our experimental parameters

on the spin-spin transitions. This has non negligible consequences on the choices of

experimental schemes to realize spin swaps by efficient adiabatic passages.

The predictions for the tensor light shift associated with the intercombination line
of 87Sr are well characterized, as well as for the associated scattering rate. We are now
interested in the experimental realization and measurements of the tensor light shifts

associated with the intercombination line of 87Sr.
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4.2 Engineering the degeneracy lift of ®'Sr ground
state manifold

4.2.1 Experimental design

To realize spin dependent light shifts on the experiment, we use a dedicated laser setup
presented in figure [4.4l The laser head is made of a diode with extended cavity, and it
is beat-locked onto our Master red laser. By setting the frequency for the beat signal,
it is possible to tune the frequency of the laser beam within a 1 GHz wide frequency
window centered on the F' = 9/2 hyperfine resonnance. For the experiment, we use
two double pass accousto-optical modulators, such that we can tune independently the
frequencies of two laser beams. The RF frequencies for the two AOMs derive from two
direct digital synthetizers (DDS) which share the same clock and are therefore phase
coherent. The first one is used to realize the spin dependent light shift, which I will
call dressing beam for simplicity. The second beam is used to flip the spins with a two
photon process together with the first beam, and I will call this laser beam Raman beam.
Before interacting with the atoms, the dressing and Raman beams are superimposed
with a beam-splitter, and the outgoing electric fields of the two beams are orthogonal.
The quantization axis can be chosen collinear with the dressing beam wave vector, such
that in this frame the electric field of the Raman laser is o0, + o_ polarized. To do
this, we set the power of the Raman beam one thousand time weaker than the dressing
beam. This way, it is possible to realize well defined |mpg) <> |mp £+ 1) two photon
Raman transitions with one 7 photon from the dressing beam, and one o1 photon from
the Raman beam. The Raman beam has the same waist than the dressing beam, 1.e.
180 pum, at the location of the atoms. In this case, the relative intensities are equal to

the relative powers.

4.2.2 Measurement of the spin dependent light shifts

We characterize the spin-dependent light shift by measuring the energy difference be-
tween two consecutive spins of the ground state manifold. This is done with a Raman
spectroscopy after the tensor light shift is turned on, and our measurement shows that

the resonances are separated by a quadratic light shift.
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Figure 4.4: Dedicated laser setup for the spin dependent light shift and spin selective
spin flips. This scheme is simplified for easy reading, only the main components are
presented. Two accousto-optical modulators (AOM) in double passe configuration are
used to independently tune the frequencies of the dressing beam and the Raman beam.
A third path is used for beat lock onto the Master laser. The Raman and dressing
beam are finally recombined before the vacuum chamber.

The measurement proceeds as follows. The gas is prepared in a spin polarized
state, as presented in section of chapter [3| after forced evaporation. Then, the
homogeneous magnetic field is slowly rotated such that it is aligned with the linear
polarization of the electric field of the dressing beam. This way, the polarization of
the light is well defined and it is purely 7. Then, the dressing beam is slowly turned
to its maximum power P = 6 mW within 2 ms. Now, the degeneracy of the ground
state is lifted by the quadratic light shift. We then rely on Raman spectroscopy to
find the |mp) <> |mp £ 1) resonances by pulsing the Raman laser beam at different
frequencies. The power of the Raman beam is set as low as possible, here 5 yW, in
order to narrow the measurement of the resonances, and the time of pulse at fixed
frequency long enough, here 10 ms, to maximize the frequency resolution of the Raman

spectroscopy.

The result of the experiment is shown on figure Atoms are initially in mp =
—5/2, and the Raman detuning is scanned to find the |—5/2) <> |—3/2) and |-5/2) <>



Chapter 4. Coherent manipulation of the nuclear spin states of 8"Sr 114

o o * e IR IR R AR 3/2 -
04 — — —
50 f +0e? =5/2

_ ~11.2+ 0.6 kHz
S ~101 —5/2 £ —_—
8 =
z T 90 ~168+0.9kH>
8 =
g S g {77/2== -
£

—40 4

=50 7 —

-10 1 1 1 1 1 1 1 1 1 1 1 1 T r . T

-26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 O
Raman detuning (kHz)

-9]/2 7/2 -5/2 -3/2 -1/2 1}2 3}2 5}2 7/'2 9}2

mp

Figure 4.5: Left: Raman spectroscopy of the |=5/2) <+ |=5/2 4+ 1) resonances, after
degeneracy lift with quadratric light shift. Atoms are initially in mrp = —5/2, and
the population transfer to mrp = —7/2 and mp = —3/2 are measured with spin-
dependent momentum transfer (see chapter|3). The solid lines are fits of each resonance
with Lorentz functions (see equation . In this experiment, the dressing beam has
measured power 6 mW and waist 185 + 5um at the location of the polarized fermi sea,
and the Raman beam has measured power 5 uW and same waist. The filled regions
correspond to the resonances prediction with experimental parameters and associated
uncertainty on the waist 185 & 5um. Right: calculated degeneracy lift of the ground
state manifold with experimental parameters, and the two photon Raman transitions
correspond to the ones measured.

|—7/2) resonances. The populations of the coupled spin states after the pulse are
measured with the spin dependent momentum transfer technique presented on chapter

The populations are fitted with Lorentz functions:

A
L(f7A7 fO'/F) — T —fo~o
1+ ()
and their centers fj is found at —11.5 + 0.3kHz for the |—5/2) <> |—3/2) resonance
and —16.5 + 0.3kHz for the |—5/2) <+ |—=7/2) resonance. This measurement confirms

that the energy difference between two consecutive spin states is as expected for a

(4.23)

quadratic light shift, see equation 4.22
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This result is compared to numerical prediction with experimental parameters, in-
cluding the uncertainty on the waist measurement 180 &+ 5 um, which is shown as the
filled region on the same figure, for each resonance. The computation predicts compati-
ble resonances, —11.2+0.6 kHz for the |-5/2) <> |—3/2) transition and —16.80+0.9 kHz
for the |—5/2) <> |—7/2) transition. The uncertainty comes only from the measurement
of waist of the dressing beam. The degeneracy lift of the ground state manifold, numeri-
cally calculated, is plotted on figure[.5] right, where we can see both the quadratic light
shift, as well as the spin dependence of the energy gaps between two consecutive spin
states. The whole spectrum is numerically computed with experimental parameters, as

it can easily be infered from the measurement of arp.

4.2.3 Measurement of the scattering rate

We are interested in the light scattering associated with the spin dependent light shift,
as it is a limitation to the conservative spin manipulations. On the experiment, the
scattering rate is characterized by measuring the heating rate associated with the spin
dependent light shift. After preparing a cold gas of strontium with ten spin compo-
nents, the dipole trap is recompressed to its maximum depth Uy, ~ 65 uK and either
the dressing beam or the Raman are pulsed, with detuning A = —400 MHz from the
3P, F = 9/2 hyperfine state, and with respective powers Pp = 6 mW and P = 6 mW.
Atoms acquire kT of heating energy during the light pulse, and the deep trap with
Ugip > KT ensures that they don’t leave the trap, so that all the energy acquired by
the uncoherent scattering events is maintained into the gas. For each duration of pulse,
the temperature of the gas is then measured after a time of flight, and the result of
the experiment is shown on figure left. It is compared to a witness heating rate
measurement, which is done by realizing the same sequence without ever turning on the
dressing nore the Raman beam, and that I call here residual heating. We suppose that
this heating is due to mechanical vibrations of the optical dipole trap in which atoms
are trapped during the measurement. Right figure shows the heating slope after remov-
ing the residual heating signal, and the heating rate associated with the spin dependent
light shift is measured between 2204 10nK.s7!.mW~! and 2554+ 12nK.s7'.mW~! from

the dressing beam and Raman beam respectively, assuming the same waist. Note that
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Figure 4.6: Measurement of the heating rate associated with the spin dependent light
shift. For this measure, the detuning is set at A = —400 MHz from the 3P, F =
9/2 hyperfine state. The heating rate of the Raman (empty squares) and dressing
(empty dots) beams are compared to the residual heating (black dots), and to the same
measurement after spectral mode filtering of the laser (blue filled dots). Left figure
shows the straight measure of the gas temperature, with P = 6 mW, Pp = 6 mW
and P.,, = 2.5mW. Right figure shows the same data normalized to the respective
beam powers, and the slope of the residual heating has been removed. The prediction
(hatched region) is computed according to equation with waist 185 £ 5 pm.

the uncertainty doesn’t take into account the power and waists measurements of the
laser beams, only the fit covariance is given. Since the trap is recompressed, atoms are
hot and dense enough such that the collision rate is much bigger than the scattering
rate, so we can assume that the gas is always at equilibrium, hence the scattering rate

can be infered from heating rate as follows.

When an atom scatters photons, a two step process happens. The atom absorbs the
photon of momentum hk:_i from the coherent laser beam, then randomly emits another
photon of momentum hk_; in any direction. The exchange of momenta between the

atoms and the photons after a scattering event can be written as 6}9 = hk; — hkz.
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Assuming that the trapped 3D gas is at equilibrium < 5}9 >= (0 with temperature T,
and no other process can be responsible for energy variations, then the time evolution
of the kinetic energy of the gas Ex = 3kgT /2, where kg is the Boltzmann constant, is

only due to the exchange of momenta 5?9 happening at rate vs.qu, and it reads

dEg < op? > - 3dkgT < op? >
a Vscatt om o dt Vscatt om

where m is the mass of an atom. The spontaneous emission of a photon with random

(4.24)

momentum < k:;e >= () implies that the absorbtion-emission processes are independant
< k;kz S=< ky >< ky >= 0, such that < 5_]52 >= 2(hkg)? where hkg is the recoil
momentum of a 689 nm photon. Therefore, the heating rate associated with the light
scattering reads:

T (4.25)
where Er = h%k?/2m is the recoil energy of a photon absorbed or emitted by a

strontium atom. Finally the scattering rate can be deduced from the heating rate that

is experimentally measured:

3d [ kgT
scat — J 1, 4.26
Yscat 2dt< Er ) ( )

From the measured heating, we infer a scattering rate 1.4 & 0.06s~! for the Raman
beam and 1.7+0.08 s7! for the dressing beam, per 1 mW, 4.e. approximately 2.9 W /cm?.
With the experimental parameters, the prediction of the scattering rate from equation

! which is three times

averaged over the 10 spin states, gives < Vseart >mp= 0.54 8~
lower than our measurement. We explain our measurement of enlarged scattering by
spectral imperfections of the diode generating the laser beam, resulting in amplified

spontaneous emission (ASE) [SGS13|.

To circumvent this issue, we added a Fabry-Perot cavity to our setup. After
filtering the spectral mode of the laser diode, we measure a heating rate lowered
to 60 £ 20nK.s7'.mW~!, as shown on , corresponding to scattering rate 0.39 +

0.12s . mW~!. This result is in agreement with the prediction at the upper limit of
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the uncertainty, which embeds only the fit covariance. This measurement is enough
to show that the spectral mode of the laser is broadened, and after cavity filtering,
the scattering rate associated with the tensor light shift is properly understood and
predicted. Note that the cavity was not further used because of instability issues, and

is presently being upgraded for persistent use.

4.2.4 Spin depolarization

Our setup to engineer the spin dependent light shifts involves spin dependent couplings,
notably the dressing beam and the quantization field. Hence, attention has to be paid
to possible second order spin-spin couplings, which would allow spin rotations, and in
the case of a polarized Fermi sea, result in depolarization. For instance, the electric-
dipole operator resulting from the interaction of atoms with a dressing beam with not
pure 7 polarization allows |mpg) <+ |mp £ 1) couplings, as shown in equations and
In this case, the spin eigenbasis is SU(N) rotated and the definition of the new

eigenstates is not trivial, which is unwanted for proper understanding of our schemes.

To avoid these complications, it is possible to physically rotate the magnetic field
such that the polarization of the electric field of dressing beam is well defined and
purely m, o, or o_. Is it particularly true if the dressing beam is linearly polarized
and the magnetic field aligned with the direction of the polarization and in this case,
the eigenstates are the same with or without dressing beam. In our experiment, we
optimized the alignement of the magnetic field with the 7 polarized electric field as
follows: we prepare a polarized Fermi sea, and for each rotation of the quantization
field the dressing beam is pulsed at maximum power, then we measure the number of

atoms remaining in the initial spin state.

4.3 Selective global manipulation of the spin states

In this section, I present our scheme to selectively and coherently flip the ground spin
states of strontium 87. After lifting the degeneracy of the ground state manifold with

a quadratic light shift, we take advantage of the resolved |mpg) <> |mp 4+ 1) transitions
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to engineer selective adiabatic passages. With minimal spontaneous emission, we flip
the spin of the atoms from their initial state to a well determined final spin state. With
a measurement of the spin populations we infer 80 % efficiency for the preliminary

experiments. We finally compare our results with simulations.

4.3.1 Scheme overview

In our setup, the spin flips are induced by two photon adiabatic Raman passages. One
photon of the Raman process comes from the dressing beam, with 7 polarization, while
the second photon comes from the Raman beam, with either o, or o_ polarization.
Raman transitions can be engineered either with m + o_ photons, or with © + o
photons, as presented on figure Because of the quadratic degeneracy lift and
selection rules, only one of the two polarizations of the Raman beam crosses a Raman
resonance for one Raman detuning 6 = wp — wg. Hence, for each Raman transition, it
is possible to choose either m + o, or m 4+ o_ two photon transition. Since we usually
work with negative spin states because of our optical pumping scheme (see chapter [3)),
and since Clebsch-Gordan coefficients associated with o_ transitions are stronger for
negative spin states, we focus on the m+ o_ case only. Indeed, stronger Rabi couplings
allow faster passages, which means that the time needed to engineer spin flips is lowered
compared to typical time for light scattering, which is strongly favorable in presence of
noise. In this case, the Raman resonances are crossed for § > 0 for negative spin states

and § < 0 for positive spin states, as shown on figure [4.7]

4.3.2 Spectrum of the Raman transitions in the S, manifold

Now, I will discuss adiabatic passages in A scheme in the large spin states manifold.
Let’s consider the ground state manifold of 8"Sr and its 10 spin states, coupled to two
photon fields E,, E,_ with 7 and o_ polarizations. To write the associated Hamiltonian,
it is conveniant to define the dressed state basis |mp +n) = |mp +n, Ny —n, N, +n),
where N, (NN,) is the number of photons in the field E; (E,_), and n is integer. Each
spin state |mpg) is connected to |mp %+ 1) states by the 7 + o_ two photon Raman
process, with associated Raman detuning § = w, — w,_. Hence, in the absence of the

quadratic degeneracy lift, each dressed state |mg + n) has energy nd.
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Figure 4.7: Scheme of Raman two photon couplings within the spin states manifold
after quadratric degeneracy lift, within mpr < 0 spin states. R and D letters above Rabi
frequencies stand for Raman beam, o, 4+ o_ polarized, and Dressing beam, 7 polarized.
Left: positive detuning 6 = wp — wgr > 0, such that negative spin states are coupled
with m + o_ photons. Right: negative detuning 6 = wp — wr < 0, such that negative
spin states are coupled with 7 + o, photons.

Then, the off-diagonal couplings of the dressed Hamiltonian are effective two photon

Raman couplings which can be computed from second order perturbation theory:

hQYE2 mpo| € -Dle) (e|€x_ - D|m

M o, | (el DI e Dmn)
le)

where A, ~ w, — w; >~ w, — w,_. This approximation holds since the Raman

detuning is in the order of the kHz, while the detuning from the excited state is

in the M Hz range. After applying the Wigner-Eckart theorem, the summed terms

fimpe = (€| € - D |mp) can be written as:

, et (F 1 F
_ (AL +S+I+I +I-m ,
fimpe = (—1) F (mF ] _m%) Dy r (4.28)

!/

where " symbol stands for the excited state |e), and Dpp has been defined in
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equation [4.21] with branching ratios. The effective two photon Raman couplings are

then completly defined for any |mpg) <> |mp + 1) transition.

Taking into account the quadratic degeneracy lift of the ground state manifold by
E, as a diagonal operator (mp| H, |mp) = —1/4 (mp| & |mp) |EL|?, where (mp| & |mp)
is defined in equation [4.8] the effective tridiagonal hamiltonian in the dressed state basis
finally reads:

—95 Qn 0 ... 0 0 0
Qg =T Qs ... 0 0 0
! 0 Q¥F -5 . 0 0 0 . -
== : S |+ H, :
: (R R
0 ..ol 1o )
0 ... 0 QY 9

This approach to write the effective hamiltonian gives the same result as obtained
with the standard components of the tensor polarizability in the case of an electric
field with polarizations 7 + o_ treated in section [1.1.1] with amplitudes [E| and |E,_|.
The spectrum of hamiltonian 4.29] giving the energy crossings and hence light induced
spin-spin transitions, can be obtained by direct diagonalization. The result of the diag-
onalization, is plotted in figure [£.8 and it is calculated with experimental parameters

(see caption).

The spectrum within mrp < 0 manifold only is shown here for better visibility.
This spectrum shows that the energy crossings between |mpg) and |mp £ 1) states are
avoided, authorizing two photon transitions, and those are the transitions that we use
to selectively flip the spins. The insets of figure show that crossings between |mp)
and |mp + 2) states are also avoided, authorizing transitions involving the exchange
of four photons. To make sure that the four photon transitions do not damage the
selectivity of the spin flips that we realize with the two photon transitions, it is relevant

to investigate on the relative strength of the two process.
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Figure 4.8: Spectrum of Hamiltonian defined in equation with 7 + o_ two photon
couplings, with respect to Raman detuning 6. For this computation, experimental
parameters are used: detuning of the dressing beam A/27 = —700MHz from the
hyperfine state 2Py, F' = 9/2 and intensity Ip ~ 9.3 W/cm?, and much lower intensity
of the Raman beam Ip ~ 5.1mW/cm?. Top: eigenergies with respect to Raman
detuning 0 = w, — w,_, where the solid lines are the eigenenergies, while the dashed
lines indicate the energy of the dressed states. T'wo photon transitions are annoted in
red, and four photon transitions are annoted in grey. Upper insets zoom in respective
four photon transitions. Bottom : states mixing, defined in 4.30f as a function of the
two photon Raman detuning §. The solide (dashed) line indicates two (four) photon
transitions, and the respective Rabi couplings, defined in equation are given
by the half width at 1/4/2 of the states mixing.

The strength of the transitions, given by the Rabi frequency €2, can be graphically
evaluated by the size of the gap at the avoided crossings, and figure top, indicate



123 4.3. Selective global manipulation of the spin states

the the two photon transitions are stronger. It is also convenient to look at the states
mixing [MS99]:

: Q2
sin(26) = JET 0 o) (4.30)

as a function of the detuning § — wr with respect to the resonance wg of the consid-

ered transition. The states mixing is shown on figure 4.8 bottom, for every resonances.
Here, 6 is the mixing angle |[MS99; [FIMO5], which defines the coherent superposition
of the atom |¥) over the two spin states |mp) and |m’s) involved into the transition,

which can read:

| W) = cos(0) |mp) + sin(8) |m’p) (4.31)

At resonance 6 — wg = 0, the states mixing is maximal sin(20) = 1, i.e. |U) =
(Imp) + |m%))/v/2. The half-width of the resonances at sin(20)/v/2, for both two
and four photons transitions, is then given by the Rabi frequency 2, and bottom,
illustrates again that with the experimental parameters, the two photon transitions are
much stronger than the four photon transitions.

From the dressed states point of view, which is schemed on figure 1.9 the four
photon transitions are very similar to standard two photon Raman transitions. At
resonance, the effective coupling between |mpg) and |mp £ 2) is simply Q4 = Q55 /2A,
where A = 0 — (41 — €my) 1s the detuning with respect to the intermediate state,
which is actually the detuning to the two photon transition. Hence, the effective four

photon couplings read:

QmF+1QmF+2
mpg

mp+1
_— 4.32

QmF+2 —

mpg
At resonance with the four photon transition, § = (£,42 — €my)/2. Hence, A is
simply the difference between with the four photon and two photon resonances. It is
very interesting to note here that both resonances depend on the quadratic light shift
which is proportional to the intensity of the dressing beam, and then A o Ip. Since

the two photon Rabi couplings are proportional to \/Iplg, then Qnr +2 o I, which
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Figure 4.9: Four photon transitions in the dressed states point of view. Left: energy
levels with quadratic degeneracy lift, and example of a four photon transition with
associated resonance (e_s5/2 — €_9/2)/2 and Raman detuning 0. Right: dressed state
picture of 2 and 4 photons couplings, where Ay, = § — (6_7/2 — €_9/2) is the detuning
with respect to the 2 photons transition, and Ay,, = 26 — (€_5/2 — €_9/2) to the 4
photons transition. N, and N,_ are the number of photons in respective photon fields
E.and E, .

first shows that the four photon transitions are much weaker than the two photon. And

most importantly, the relative strength of the effective couplings finally scale as:
Q4 IR
— “ —
QQ ID

This shows that the relative strength of the four photon couplings is strongly reduced

(4.33)

with an approriate setting of the Raman and dressing beams intensities. In this example
shown on figure the laser intensity into the Raman beam is 500 times smaller than
that of the dressing beam. It is sufficient to strongly displace the eigenenergies, enabling
the avoided crossing that we use for adiabatic passages, while the relative strength of
the four photon couplings is as low as €4/ ~ 5 %.

Note that all this derivation is done in the |E,| > |E, | regime. In the opposite

case, where the dressing beam is o_ polarized and the Raman beam 7 polarized, the
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degeneracy lift of the ground state manyfold should be derived for a o_ excitation, as
presented in |4.1.1] with the main difference that the polarizability acquires a linear
dependence in mp. Regarding the Raman transitions, it has no consequences, and
hence the previous estimation of the relative strength of the two photon and four photon
couplings remains valid.

In the intermediate regime Ip ~ Ig, the tensor polarizability accounts for the com-
bination of the two laser and associated polarizations, and the ground state manifold
is rotated from the |mpg) <> |mp £ 1) couplings defined in equations and as
presented in section [£.1.1] This means that spin flips can be better realized with a
STIRAP sequence |[BVS15; Vit+01; MSB96|, i.e. a sequence of pulses sequence by
varying the laser intensities with respect to time rather than the Raman detuning.

In our experiment, we manipulate the spins in the |E;| > |E,_| regime that we

considered here, and this is the case that I will also consider in the following discussions.

4.3.3 Engineering selective spin flips

In the frame presented on figure[4.8] a selected spin can be flipped to a target spin with
adiabatic passage by ramping the Raman detuning through the corresponding Raman
resonance. With proper parameters to center the ramp on the resonance and with
initial and final detunings such that no other resonances are crossed, the success of the
adiabatic passage presents no difficulty. However, it is possible to take advantage of
the conditions for adiabatic passage to facilitate experimental engineering of the spin
flips. Indeed, I have shown in the previous section that, accordingly to equation
the relative strength of the four photon couplings can be dramatically minimized by
lowering the power of the Raman beam or increasing the power of the Dressing beam.
Regarding adiabatic passages, a four photon transition has much lower probability of
success than a two photon transition considering a fixed duration of ramp of the Raman
detuning. It is then possible to engineer a spin flip with a ramp crossing multiple four

photon transitions.

To realize selective spin flips on the experiment, we first prepare a spin polarized

gas in spin state mp = —7/2, as presented in section of chapter . Then, the
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magnetic field is slowly rotated such that it is aligned with the linear polarization of
the electric field of the dressing beam. This way, the polarization of the light is well
defined and it is purely linear. Then, the dressing beam, 7 polarized, is slowly turned
to its maximum intensity Ip ~ 9.3 W/cm? within 2 ms, with detuning A = —700 M H z
from the 2P, F = 9/2 hyperfine state. Now, the degeneracy of the ground state 1S is
lifted by the quadratic light shift, and the spin-spin transitions are well resolved. At

this step, the experiment is ready for adiabatic passage.

After slowly turning on the Raman beam up to Iz ~ 5.1 mW /cm? within 2.5 ms,
ensuring smooth connection to the eigenstates (see annexe , the frequency of the
Raman beam is ramped such that the Raman detuning § = w, — w,_ is spanned from
5 KHz to 13 kHz, for different durations of the frequency ramp. Then, the Raman beam
is turned off within 2.5ms, and the populations in the spin states are measured with
the spin dependent momentum transfer scheme (see chapter |3]). The result of this spin
flip experiment is presented on figure [1.10] left. The top figure shows the frequency
ramp through the Raman resonances, and the bottom figures shows the measurement
of the spin populations, which are shown as round dots with associated errorbars and
rescaled by the 80 % efficiency of the populations measurement, for different durations
of the detuning ramp. Note that not all atoms are detected during the populations
measurement. This is shown by the total percentage of detected atoms in gray dots in
bottom plots of figure [4.10] which is not constantly 100 % and even goes as low as 80 %.

Initially, approximately 90 % atoms are in —7/2 and 10 % in —5/2. For fast ramps,
atoms remain in the initial state —7/2 and all transitions fail. For slow enough ramp
with duration ~ 20 ms, 80 % spins have flipped to —5/2, while the population in —3/2
has raised to 10 %, and approximately 10 % atoms remain in —7/2. To evaluate the
efficiency of the adiabatic passage, it is convenient to realize a back passage. From the
final state of the forth passage, the same procedure is done with a reversed ramp from
0 = 13kHz to 6 = 5kHz, and the Raman beam is turned off between the two passages.
The back passage is shown on right figures. For slow enough ramp with duration
~ 20 ms, we detect 60 % atoms in —7/2, and nearly 10 % atoms are in both —5/2 and
—3/2. With this experiment, we infer that approximately 65 % out of the 90 % atoms
initially in —7/2 have successfully realized the back and forth adiabatic passage, which
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Figure 4.10: Experimental back and forth adiabatic passages from —7/2 to —5/2, with
A = =700 MHz, Ip ~ 9.3W/cm?, and Iz ~ 5.1mW /cm?. Left: forth passage from
—7/2 to —5/2 with ramp of the Raman detuning § = w, — w,_ from 5kHz to 13 kHz.
Right: consecutive back passage from —5/2 to —7/2 with ramp of the Raman detuning
from 13kHz to 5 kHz. The Raman beam is turned off between the two passages. Ramps
through the spectrum of the two and four photon transitions are shown on top figures.
The measured populations, with associated errorbars and rescaled by the 20 % efficiency
of the measurement, in the different spin states are shown in bottom figures, with
respect to the duration of the ramp. The gray large points correspond to the total
percentage of measured atoms. On both figures, solid and dashed lines are results from
time integration of the Lindblad equation, including respectively predicted scattering
rate and four times the predicted scattering rate.



Chapter 4. Coherent manipulation of the nuclear spin states of 8"Sr 128

results in 80 % efficiency for a one way adiabatic spin transfer. This experiment verifies
the applicability, and robustness, of this adiabatic spin transfer scheme. Even if the
detuning ramp crosses multiple two and four photon resonnances, there is an optimal
duration of the frequency ramp such that the four photon transitions are avoided while
the adiabatic followings are ensured for two photon transitions. With proper choice of
the direction of the frequency ramp, it is then possible to ensure a reliable selectivity

on the spin transfer |mg) <> |mp £ 1), depending only on the initial spin state.

The result of the experiment is compared to numerical time integration of Lindblad
equation [Man20)]:
D i)+ > (mkﬁﬁil — AT ﬁ}) (4.34)
where the hamiltonian is defined in equation [4.29] p is the density matrix, and the
Liy’s are the jump operators, i.e. ’me> (mp;| projectors [DCM92| for mp; — mpy
transitions, associated with rate v,. Here, {A, B} = AB + BA is the anticommutator
operator for A and B. The sum runs over all the possible spin projections, in our
case set by Raman scattering defined in equation [£.18 Note that the elastic Rayleigh
scattering Iy, ., is taken into account, even if it doesn’t change the spin state, as it
is a source of spin decoherence and hence it can decrease the efficiency of the coherent
adiabatic passage. Also, no atom loss is considered here, since the measured heating
rate is low enough so that the atoms cannot be blasted from the trap, according to our

measurement presented on figure [4.6]

The prediction with experimental parameters (intensities and detuning) and no
other adjustable parameter is plotted on figure [4.10, bottom left and right, as thick solid
line, and it shows that the efficiency of the adiabatic passage should be significantly
higher than measured, as high as 95%. Because the measurement of the scattering
rate showed that it is much higher than predicted (see section , it is relevant to
artificialy enlarge the scattering rate as high as measured to compare prediction with
the spin flip measurement. This is shown by the thin dashed line on .10} bottom

left and right, where the scattering rate is four times higher than predicted, according
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to the measurement. While the expected populations in —7/2 and —3/2 are higher
by a few percents to what is measured, this second simulation seems to be in good
agreement with the experimental results, accounting for the non 100 % total percentage
of detected atoms. Hence, this simulation shows that our experiment is only limited
by spontaneous emission due to the enlarged light scattering, that can be corrected by
filtering the spectral mode of the laser with a Fabry-Perot cavity. Then, we expect that
the adiabatic passage scheme to selectively flip spin state should reach 90 % efficiency.
Note that a cavity has been set and used to measure the scattering rate (see section
, however its sensitivity to vibrations has prevented us from using it for a spin flip

experiment. The cavity is presently being upgraded for future use.

4.4 Site selective adiabatic passage to prepare spin
textures - Outlook

Previous experiments have demonstrated experimental realizations of patterns of atoms
selectively placed at the sites of optical lattices, using an optical super lattice [Pei+03],
or site selective light shifts [Gri+06]. More recently, experiments have shown that
patterns can be assembled atom by atom using optical tweezers |[Bar+16; Kum+18].
In this section, I present our scheme to prepare alternate spin textures [Li+16|. Using
a spin dependent optical super-lattice [Man+03; Hei+20] and a homogeneous Raman

laser, we will selectively flip half the spins of a single component band insulator.

4.4.1 General Idea

Starting from a polarized Fermi gas loaded in the ground band of a 2D lattice, half the
spins are selectively flipped to prepare a Neel order [Sun+21], i.e. an alternate pattern
of up and down spins, as shown on figure This is done with a space dependent
tensor light shift [Hei+20] which varies at the micrometer scale, and it is engineered
by retro-reflecting the laser beam responsible for the spin dependent light shifts. Since
the resonances of the lifted spin spin Raman transitions are proportionnal to the local
laser intensity, it is possible to realize a chirp of Raman detuning that crosses the

resonances at sites with maximal depth of the spin dependent potential only, using
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Figure 4.11: Scheme for writing spin textures. Left: the spin dependent lattice (red
background) is superimposed to a 2D spin polarized lattice. A cut of the potential
(horizontal green solide line) is presented on the middle figure. Middle: spin dependent
potential (red solide line) along an eigenaxis of the 2D lattice. Each spin (blue dots)
localized at the sites of the 2D lattice (x axis) feels a different light shift which is
proportional to the light intensity (yaxis). The chirp of the raman detuning is shown by
the black arrow and crosses the Raman resonnances (see figure of the maximally
shifted sites only, which are flipped from blue spin to red spin. The resulting spin
texture is shown on right figure.

an homogeneous Raman beam. Then, our demonstrated scheme to coherently flip the
nuclear spin states acquires a well defined site dependence, enabling the possibility to

handwrite a predictable spin texture.

4.4.2 Geometry of the lattices

The geometry of the laser setup used to engineer the spin dependent lattice is presented
on figure[4.12] The dressing beam at 689 nm is retro-reflected to shape a 1D lattice, that
I will call for simplicity dressing lattice, and the azimutal angle between the dressing
beam and the 532 nm beams is 45°, such that the dressing lattice is along the diagonals
of the 2D trapping lattice. With elevation angle 16°, the projection of the dressing
lattice on the 2D layers has site spacing aggg ~ 360 nm, which is smaller by less than
10 % than the diagonal of the 2D lattice as32v/2 ~ 390 nm(i.e. the distance between
neighbours at 45° of the main lattice axis). Neglecting the 10% difference in first
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Figure 4.12: Experimental design of the setup for lattices. The retro-reflected 1D spin
dependent lattice is nearly colinear with one arm of the 1064 nm lattice, with azimutal
angle 45° with each arm of the 2D lattice at 532 nm and 16° elevation angle.

approximation (see figure 4.13] (a)), it means that the spin dependent light shift is
maximum one out of two diagonals of the 2D lattice, and hence the depth of the spin
dependent potential would alternate along an eigen-axis of the 2D lattice. In this case,
a chirp of a Raman detuning crossing only the maximally shifted resonances to flip
half the spins would realize exactly a Neel order. If considering the 10% difference,
Figure m (b.1) shows that trapped atoms actually see 11 sites periodic pattern of
alternate maximum and minimum depth of the spin dependent potential. This pattern
has maximum contrast at the center over about 7 sites and is blured at the edges over
about 4 sites, and this results in alternate pattern for the Raman resonances between
higher and lower frequencies, see figure (b.2), over 11 sites.
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Figure 4.13: Spatial and spin dependence of the tensor light shift associated with the
intercombination line. (a) The eigenaxis of the 689 nm 1D lattice is along the diagonal of
the trapping 2D lattice, considering agsg = as32V/2. (b.1) Considering the experimental
situation with sites spacing aggg ~ 360nm, which is 90 % of the diagonal of the 2D
lattice, this is the projection along one eigenaxis of the 2D square lattice at 532 nm
of the trapping (dashed lines) and spin dependent (solid lines) potentials, for each
spin state. (b.2) Projection along one eigenaxis of the 2D square lattice of the raman
resonances defined as Uggg(mp) — Ugsg(mp + 1), where U is the dipole potential.
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Figure 4.14: Site dependent Raman resonances. The 532 nm lattice is sketched as
the green solid line, and the target two photon |—7/2) <> |-5/2) transition (Red) is
sketched for each site, as well as the other Raman resonances subtitled at the central
site. The ramp of Raman detuning from ¢; to dy, sketched by the black arrow, crosses
the resonance one over two sites only, as shown by the blue filled region. The initial
frequency is chosen as 90% of the less shifted |-7/2) <> |—5/2) resonance among
selected sites, and the final frequency as 110 % of the most shifted resonance, which
corresponds to the lattice depth.

4.4.3 Site dependent Raman resonances

The Raman resonances of the spin spin transitions, with acquired site dependence, are
presented on figure 4.14] along 11 sites of an eigen-axis of the 2D lattice at 532 nm. The
Raman resonances, proportional to the local intensity of the dressing lattice, are then

site resolved.

One every two sites, say odd sites, the resonances are maximally shifted, so that
chirp of the Raman detuning with appropriate initial and final frequencies can cross the
resonance of a target two photon resonance on these sites only, while it is not crossed on

the other half sites, say even sites. This way, it is possible to realize an adiabatic spin
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flip on the odd sites, while atoms at the even sites are not affected by the frequency
chirp. It is pictured by the black arrow between an initial J; and final d; detunings,
and d; is chosen such that the |—9/2) <» |—7/2) two photon resonances of the avoided

sites are not crossed by the ramp, for instance on sites -5 and 5 on figure [4.14!

4.4.4 Predicted texture writing

The frequency chirp presented on figure [£.14] is simulated by numerical integration of
the Lindblad equation defined in equation for each one of the 11 sites, and the
result is shown on figure For this simulation, the intensities are Ip ~ 11 W /cm?
and Iz ~ 6 mW /cm?, where Ip (Ip) is the intensity of the dressing (Raman) beam,
with detuning A = —700 MHz from the excited hyperfine state [Py, F = 9/2). The
Raman detuning 6 = wp — wg is ramped from 63 % to 110 % of the maximally shifted
|—7/2) <> |—5/2) target resonance (site 0 of figure during 5 ms. The amplitude of
the Raman beam is ramped up (down) during 2.5 ms before (after) the frequency ramp,
as shown by the red filled background, to improve the connection to the followed eigen-
states. The left column, considering predicted spontaneous emission, shows the spins
populations dynamics during a transfer from the initial spin state —7/2 to the final
spin state —5/2. Sites with deeper tensor light shift (Ugi,/Upes > 0.5) are flipped with
90 % chance of success, while the avoided sites (Ugip/Upmas < 0.5) have less than 3%
chance of success, and on this 11 sites sample, the fidelity of the spin texture writting,
here defined as the average of the final —5/2 populations in target sites and final —7/2
in avoided sites, can be estimated as high as 97 %. If taking into account the measured
spontaneous emission which is four times higher than the prediction (see section ,
the result of the simulation is shown on the right figure, and the estimated fidelity of

the spin texture writing is lowered to 85 %.

The conditions for adiabatic passage have to be carefuly looked at for every site.
Indeed, the spin dependent light shift is not the same for all selected sites, and hence
the Landau-Zener (LZ) condition for adiabatic following (see appendix |C]) varies ac-
cordingly. It is therefore important to focus on the site dependence of the adiabatic

following. First, let’s recall that the Landau-Zener probability of success for an adia-
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Figure 4.15: Simulation of the frequency chirp presented on figure with numerical
integration of the Lindblad equation for each one of the 11 sites, to flip spins
from —7/2 to —5/2. The success of passage is indicated in big black font, and the final
populations in -9/2 and -3/2 are indicated in small red font. The simulation parameters
are detailed in section In left column, the simulation is realized with predicted
scattering rate, while right column takes into account measured scattering which is four
times larger.



Chapter 4. Coherent manipulation of the nuclear spin states of 8"Sr 136

batic following is defined as:

) 0?2
Prz(Q%0) =1 —exp (—27r4—5.) (4.35)

where Q2 is the coupling strength and 4 is the speed of the detuning ramp. Consid-
ering that the intensity of the Raman beam is homogeneous over the whole lattice, and
that the detuning ramp is linear in time, then the chance of success is lowered at sites
with lower spin dependent light shift, since Q2 o< Ip. However, the scattering rate asso-
ciated with the tensor ligth shift is obviously higher at sites with stronger intensity of
the dressing lattice. Finally, the probability of success for four photon transitions does
not depend on the depth of the tensor light shift. This means that there exists optimal
conditions for adiabatic passage, which corresponds to a chirp duration slow enough to
maximize the relative chance of success of the targeted two photon transitions on the
less shifted sites with respect to the avoided four photon transitions, and fast enough

to minimize spontaneous emission on the most shifted sites.



Chapter 5

2D Fermi gases in the lowest band
of a low recoil 1D lattice

The objective of our experiment is to realize a Fermi Hubbard model with 2D lattices
[BDZ08; (GB17]. Such experiments require the preparation of ultra cold Fermi gases,
that are trapped into the lowest Bloch band of optical lattices with minimal entropy
[MD11]. Practically, it requires to circumvent the difficulties associated with the ma-
nipulation of ultra cold gases of fermions [Ess10]. For instance, atoms are typically
cooled to quantum degeneracy with forced evaporation assisted by collisions |[GWOOO;
LRWO0|, that are inhibited for ultra-cold fermions [DeS+10|. Yet, active research on
the Fermi Hubbard Model led to the realization of numerous quantum simulators, typ-
ically using alkali fermions such as potassium 40 [Sch+08; |Che+15; [Dre4-17] or litihum
6 [Gre+16; Bol+16; |[Par+16|. Regarding alkali atoms, Feshbach resonances |Chi+10]
can be used to tune the scattering length a,, which helps prepare ultra-cold gases, and
at the realization of isentropic transformations assisted by collisions, such as lattice
loading. Inside lattices, entropy can be further reduced, for instance with Raman side
band cooling [Ham+98; | GWOO00; |Ker+00; [Tho+13], or by filtering of atoms populating
the excited bands [Arn+19].

In our experiment, ultra cold strontium 87 shall be trapped in a 3D optical lattice,
that is made of the combination of a 1D lattice with large site spacing [Huc+09] and

negligible tunneling, with a 2D lattice where the spin dynamics takes place (see chapter

137
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. The 1D lattice, that is first loaded, has site spacing 2 um, so that prior to the
loading the gas extends over approximately 8 sites. The large spacing of the lattice
permits that the inter site tunneling is inhibited with moderate lattice depths of a few
tens of kHz. From this geometry, we prepare several independent 2D Fermi gases that
are vertically stacked. The 2D gases shall next be adiabatically loaded in a 2D square
lattice to prepare several band insulators [Leb+18] that do not interact with each other.
This chapter is dedicated to the loading of the lowest band of the 1D lattice.

Chapter summary: first, I will discuss a critical limit set by the Pauli exclusion
principle at the loading of the lowest band only of the 1D lattice with large site spacing.
The Fermi energy of the 2D gases cannot exceed the lattice band gap, which limits the
number of atoms that can be loaded. However, in practice, the Fermi momentum of
our evaporated gases exceed the recoil momentum of the lattice, so that atoms connect
to excited bands when turning on the lattice. In this case, loading the lowest band of
the lattice requires a quasi-static transformation assisted by s-wave collisions [Ess10].

Then, I will present our loading experiment. I will describe two attempts to do so.
In the first, the gas is initially prepared at very low temperature, by strong evaporation
in the dimple. T show that we are able to load the 1D lattice with 93(2) % atoms
into the lowest band, using a Boltzmann approximation and a global analysis over
the entire cloud distributed in a few layers. It is even possible to extract information
that depends on the layers of the 2D lattice. From the Fermi statistics, I estimate the
chemical potential of each layer, as well as the temperature, based on an independent
measurement of the distribution of atoms between the layers.

Using this method, I find that the 2D gases have negative chemical potentials, in-
dicating that they are not degenerate, and the infered probability of occupation of the
lowest band is the same than the classical analysis. A comparison with the initial ther-
mal state of the gas prior to the loading shows that the high probability of occupation
of the lowest band is enabled by a deep evaporation prior to the lattice loading, until
our lower limit yet of measurable temperature T'=5 4+ 5nK into the dipole trap with
approximately 5000 atoms. However, the degeneracy of the loaded gases are higher
than expected for an isentropic loading. Hence, this measurement shows the quasi-

static behavior failed, and it suggests that the collisions were not sufficient. This study
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serves as a guideline for a preliminary result.

In a second attempt, improved adiabaticity is shown by holding sufficient dipole trap
compression prior to the loading into the lattice, ensuring sufficiently high collision rate.
This way, we are able to produce 4 independent 2D degenerate SU(10) Fermi gases with
p/er = 0.4 and approximately 99 % atoms into the lowest band.

5.1 Limit to the atom number for fermions in the
lowest band

In our experiment, the site spacing of our 1D lattice is a ~ 2 ym with associated recoil
momentum kr = 7/a. In this case, the recoil energy Er = h%k%/2m is as low as
Er ~ kg x TnK ~ h x 150 Hz, which is much lower than in typical retroreflected
optical lattices. Consequently, the site to site tunneling ¢ ~ exp<—2 m> [BDZ08|
is negligible for a lattice depth Vj of a few tens of kHz, and in our experiment we
measure V ~ 1800ER (see chapter [1]), so that the motional degree of freedom along the
lattice eigen axis is practically frozen. The phase space is then restrained to the on-site
2D motion, with associated phase-space cell d*rd?p/h?, and to the band excitation n.
Assuming that only the lowest band n = 0 is populated, every site of the 1D lattice is
reduced to 2D dimensionnality (r,p) = (74, ry, Pz, Py)-

In the T" = 0 K limit, fermions occupy all energy states below the Fermi energy,
and for non zero temperature, higher energy states are accessible. This sets a critical
limit to the number of atoms that can be loaded into the lowest band of a 1D lattice.
Assuming that the transverse confinement of the lattice sites can be approximated to

harmonic traps of frequency w,, and that the tunneling is negligible, the limit reads

5F—50:th(2N)1/2<th (51)

where hw| = 2v/VyER is the lattice band gap, and ¢, the energy of the lowest band.
This result can be shown by derivating the Fermi energy e of a gas trapped into a 3D
harmonic trap, tightly confined along one direction only and with zero band excitation

(see appendix [A]). It is simply the Fermi energy of a 2D gas shifted by the energy of
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the lowest band. In our experiment, fw ~ 12kHz and hw, ~ 80 Hz, so that the Fermi
energy is lower than the energy of the first excited band only if N < 10000 atoms per
spin state. If the transverse harmonic confinement can be adjusted without changing
the lattice depth, for instance by using a a combination of a red and blue detuned dipole

traps, the maximum number of atoms in the lowest band can be practially adjusted
[Sch+-08].

5.2 Adiabatic loading of the lowest band : collision
requirements

Typically, lattice loading requires adiabaticity in the single particle sense. It relies
on the adiabatic theorem that implies that atoms follow the eigenstates of the time
dependent Hamiltonian if it is modified suficiently slowly [Den+02|. This way, an atom
in a plane wave state kgom evolves into a Bloch state, that will be the ground state
if kytom < kr. The momentum recoil kg = 7m/a of the lattice defines the limit of the
first Brillouin zone (FBZ), and momenta exceeding the FBZ connect to the excited
bands of the lattice. In the case of a Fermi gas, the loading of the lowest band only
thus implies, in the single particle limit, that kr < 7/a. In our case, the recoil energy
Er ~ kpx7nK ~ hx150 Hz is much lower than in typical retroreflected optical lattices,
and this is cause for concern. First, cooling a thermal gas of strontium 87 fermions in
this limit is difficult as collisions are inhibitted by Pauli blocking at deep evaporation
stages [DeS+10], and closed shell strontium 87 atoms do not benefit from Feschbach
resonances to favorably tune the collision rate. Second, even if we did, the average
distance between atoms would scale as the site spacing a. In the prospect of next
loading a 2D lattice with site spacing a/8 (see chapter [1]) to realize a band insulator,
such low densities are not favorable. Therefore, the idea of adiabatic following at the
single particle level is not fruitful. Fortunately, there is als<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>