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Abstract : Rapoport-Zink spaces are moduli spaces classifying the deformations of some p-
divisible group equipped with additional structures. Its cohomology is expected to play a role in
the local Langlands correspondences. In general, it is difficult to compute it especially outside
of the supercuspidal part, which is described by the Kottwitz conjecture and which is known in a
variety of cases. However, a certain small family of Rapoport-Zink spaces admit a Bruhat-Tits
stratification on their special fiber, such that the strata are Deligne-Lusztig varieties of Cozeter
type. It is the case in particular of the unitary PEL Rapoport-Zink spaces of signature (1,n —1)
with p inert or ramified. The closure of a Bruhat-Tits stratum is a generalized Deligne-Lusztig
variety associated to a finite unitary or symplectic group. In the inert case, we compute the
cohomology of an individual stratum entirely, and in the ramified case we describe a substantial
part of it. Hyperspecial level in the inert case guarantees the triviality of the nearby cycles,
allowing us to carry our computations to the analytical tubes of the closed Bruhat-Tits strata.
These tubes form an open cover of the generic fiber of the Rapoport-Zink space, inducing a
Cech spectral sequence which computes its cohomology. Exploiting this sequence, we prove that
the cohomology of this Rapoport-Zink space in the inert case fails to be admissible in general.
Eventually, via p-adic uniformization the cohomology of the Rapoport-Zink space is related to
the cohomology of the supersingular locus of the associated PEL Shimura variety at hyperspecial
level. For low values of n, we compute the cohomology of the supersingular locus through this
sequence.



Cohomology of DL varieties associated to PEL RZ spaces with signature (1,n — 1)

Acknowledgements

I am first and foremost grateful to both my PhD co-supervisors, Pascal Boyer and Naoki Imai,
whose guidance throughout the years has been a constant encouragement to keep going forward.
I also wish to adress special thanks to Olivier Dudas who brought me very precious help on
multiple occasions to understand the field of Deligne-Lusztig theory. I am thankful to Jean-
Loup Waldspurger as well, who helped me understand the properties of compactly induced
representations of locally profinite groups.

Many thanks also to Torsten Wedhorn and Olivier Dudas for devoting so much time to be
rapporteurs of my PhD thesis. I'd like to extend my thanks to Jean-Francgois Dat, Sophie
Morel and Jacques Tilouine as well for doing me an honor as members of the jury.

The AGA team in LAGA, University Sorbonne Paris Nord, as well as the number theory team
in the Graduate School of Mathematical Sciences, the University of Tokyo, have given me a
warm welcome and ideal working conditions through the PhD, for which I am very grateful.
Eventually, I would like to sincerely thank my family in France, my family-in-law in Japan, as
well as my wife, Yuma, for their unfailing support.



To Yuma and Léo



Cohomology of DL varieties associated to PEL RZ spaces with signature (1,n — 1)

Contents
1 Introduction 6
1.1 Bruhat-Tits stratification in Rapoport-Zink spaces . . . . . . . . . . . .. .. .. 6
1.2 The case of inert or ramified PEL unitary Rapoport-Zink space of signature
(Ln—1) . 8
1.3 Step (A): the cohomology of an individual closed Bruhat-Tits stratum . . . . . . 11
1.4 Step (B): on the cohomology of the inert Rapoport-Zink space at hyperspecial
level . . . . e 13
1.5 The cohomology of the supersingular locus of the associated Shimura variety at
an inert prime forn =3,4 . . . . . .. 16
1.6 Adapting the approach to the ramified case. . . . . . . . . ... ... ... ... 18

2 Cohomology of the Bruhat-Tits strata in the unramified unitary Rapoport-

Zink space of signature (1,n — 1) 21
2.1 The generalized Deligne-Lusztig variety X;(id) . . . . . .. ... ... ... ... 21
2.2 Irreducible unipotent representations of the finite unitary group . . . . .. . .. 28
2.3 Computing Harish-Chandra induction of unipotent representations in the finite
Unitary group . . . . . .. .o o e e 33
2.4 The cohomology of the Coxeter variety for the unitary group . . . . . . .. . .. 38
2.5 The cohomology of the variety X;(id) . . . . . . . . ... ... 42

3 On the cohomology of the basic unramified PEL unitary Rapoport-Zink space

of signature (1,n — 1) 48
3.1 The Bruhat-Tits stratification on the PEL unitary
Rapoport-Zink space of signature (1,n —1) . . . . . .. .. ... ... ... ... 48
3.1.1 The PEL unitary Rapoport-Zink space M of signature (1,n —1) . ... 48
3.1.2 The Bruhat-Tits stratification of the special fiber Myoq . . . . . . . . .. 52
3.1.3  On the maximal parahoric subgroupsof J . . . .. ... ... ... ... 58
3.1.4 Counting the closed Bruhat-Tits strata . . . . . .. ... ... ... ... 63
3.2 The cohomology of a closed Bruhat-Tits stratum . . . .. ... ... ... ... 65
3.3 Shimura variety and p-adic uniformization of the basic stratum . . . . . . . . .. 70
3.4  The cohomology of the Rapoport-Zink space at maximal level . . . . .. .. .. 74



Cohomology of DL varieties associated to PEL RZ spaces with signature (1,n — 1)

3.5

3.4.1 The spectral sequence associated to an open cover of M?* . . . . . . .. 74
3.4.2 Compactly induced representations and type theory . . . . . . ... . .. 84
343 Thecasen =3,4 . . . . . . . 91
The cohomology of the basic stratum of the Shimura variety forn =3,4 . . .. 94

3.5.1 The Hochschild-Serre spectral sequence induced by p-adic uniformization 94
3.50.2 Thecasen =3,4 . . . . . . . 98

3.5.3 On the cohomology of the ordinary locus whenn =3 . . ... ... ... 104

4 On the cohomology of a closed Bruhat-Tits stratum in the ramified PEL

unitary Rapoport-Zink space of signature (1,7 — 1) 107
4.1 The closed Deligne-Lusztig variety isomorphic to a closed Bruhat-Tits stratum . 107
4.2 Unipotent representations of the finite symplectic group . . . . . . . . . . .. .. 110
4.3 The cohomology of the Coxeter variety for the symplectic group . . . . . . . .. 113
4.4 On the cohomology of a closed Bruhat-Tits stratum . . . . . . . ... ... ... 116
Bibliography 125



Cohomology of DL varieties associated to PEL RZ spaces with signature (1,n — 1)

1 Introduction

1.1 Bruhat-Tits stratification in Rapoport-Zink spaces

The Langlands program is a significant collection of conjectures, expected to unveil deep and
unifying connections between different fields of mathematics. In particular, it predicts the
existence of a correspondence between Galois representations and automorphic or smooth rep-
resentations of reductive groups over a global or a local field. The first formulations of this
research project date back to Langlands in 1967, giving a far-reaching generalization of Harish-
Chandra and Gelfand’s philosophy of cusp forms. It offered exciting new perspectives to the
field of number theory, and ever since several dozen researchers contributed to expanding, deep-
ening and maturing Langlands’ intuition.

One approach to tackle Langlands conjectures is based on geometry. It is commonly expected
that the correspondence one seeks to establish should be encrypted in the properties of geomet-
ric objects, known as Shimura varieties (global case) and Rapoport-Zink spaces (local case).
In the PEL case, these are moduli spaces respectively for abelian varieties or for p-divisible
groups with extra structures. These symmetric spaces are equipped with actions of reductive
groups over a global or a local field, so that their cohomology is expected to give a geometric
incarnation of the conjectural Langlands correspondences.

Different techniques have been used by various researchers to access the cohomology in some
specific cases. In particular for the local case, the Kottwitz conjecture describes the supercus-
pidal part of the cohomology of Rapoport-Zink spaces. It has been proved in the Lubin-Tate
case by Boyer [Boy99] and by Harris and Taylor [HT01]. It was established for all unramified
Rapoport-Zink spaces of EL type by Fargues [Far04] and Shin [Shil2]. Eventually, it was proved
for the unramified unitary Rapoport-Zink spaces of PEL type in an odd number of variables
by Nguyen and Bertoloni-Meli [Ngul9] and [BMN21].

The non-supercuspidal part is more difficult to grasp, and there is no conjecture to describe it.
So far, it has only been computed in the Lubin-Tate case by Boyer [Boy09], and the case of
the Drinfeld space then followed by duality (see for instance [FGLO08]). The specific geometry
of the Lubin-Tate case allowed for explicit computations, however the same approach does not
apply to more general cases, so that the non-supercuspidal part seems to be currently out of
reach.

There exists however a certain small family of Rapoport-Zink spaces whose special fiber ex-
hibits some very nice geometric properties. Such spaces are said to be “fully Hodge-Newton
decomposable” and they have been fully classified by Gortz, He and Nie in [GHN19] using a
group theoretic approach. The special fiber of a fully Hodge-Newton decomposable Rapoport-
Zink space admits a stratification by Deligne-Lusztig varieties, and the incidence relations of the
stratification is closely related to the combinatorics of the Bruhat-Tits building of an underlying
p-adic group. Consequently, this stratification is known as the Bruhat-Tits stratification. The
Rapoport-Zink space is said to be “of Coxeter type” if it is fully Hodge-Newton decomposable,
and if the Deligne-Lusztig varieties occuring in the Bruhat-Tits stratification are of Coxeter
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type. This subfamily of Rapoport-Zink space has also been entirely classified by Gortz, He and
Nie in their subsequent work [GHN22].

To our knowledge, the first time that Deligne-Lusztig varieties were explicitely mentioned in the
context of the Langlands program was in [Yos10], dealing with the Lubin-Tate tower. However,
it is the pioneering work of Vollaard and Vollaard-Wedhorn in [Vol10] and [VW11] which coined
the notion of Bruhat-Tits stratification. The authors used an approach based on Dieudonné
theory and the combinatorics of vertex lattices in a hermitian space. The corresponding space
was the GU(1,n — 1) PEL Rapoport-Zink space at inert p and hyperspecial level. Mimicking
their approach, Rapoport, Terstiege and Wilson dealt with the case of GU(1,n — 1) at a rami-
fied p and level given by a selfdual lattice in [RTW14]. This paved the way to the study of the
geometry of the special fiber on a case-by-case basis by several authors, using either a similar
Dieudonné theoretic approach or a group theoretic approach:

— the case of GU(2,2) at inert p and hyperspecial level by Howard and Pappas in [HP14],
and by Wang in [Wan21] using another method which also covers the case of split p,

— the case of GU(1,n — 1) at ramified p and parahoric level of exotic good reduction by Wu
in [Wul6],

— the case of spinor groups GSpin(n,2) at hyperspecial level by Howard and Pappas in
[HP17],

— the case of G(U(1,n — 1) x U(1,n — 1)) at unramified p and hyperspecial level by Helm,
Tian and Xiao in [HTX17],

— the case of GU(1,n — 1) at inert p and arbitrary maximal parahoric level by Cho in
[Chol§],

— the case of spinor groups GSpin(n, 2) at certain non-hyperspecial level by Oki in [Oki20],

— the case of a quaternionic unitary space at parahoric level by Wang in [Wan20] and
[Wan22|, and independently at maximal special parahoric level by Oki in [Oki22],

— the case of GU(2, 2) at ramified p and at special maximal parahoric level by Oki in [Oki21],

— the case of GU(2,n — 2) at inert p and hyperspecial level by Fox and Imai in [F121],

— the case of GL(4) as well as GU(2,2) at split p and hyperspecial level by Fox in [Fox22].

Aside from the cases studied in [Chol8] and in [FI21], all the Rapoport-Zink spaces cited above
are of Coxeter type. The spaces of [Chol8] are fully Hodge-Newton decomposable but not
of Coxeter type when the parahoric level is not special, and the space of [FI21] is not fully
Hodge-Newton decomposable when n > 5. In particular, the strata which are built in loc. cit.
are not necessarily Deligne-Lusztig varieties.

Deligne-Lusztig varieties naturally arise in Deligne-Lusztig theory, a field of mathematics whose
aim is the classification of all irreducible complex representations of finite groups of Lie type,
ie. reductive groups over finite fields. Let G be a connected reductive group over an algebraic
closure IETD of F,. Let ¢ be a power of p and assume that G has an F,-structure, induced by
a Frobenius morphism F : G — G. Let G := G(F,) ~ G be the associated finite group of
Lie type. A Levi complement L < G is the group of F,-points of some rational Levi comple-
ment L of G. Such a Levi complement L is said to be split if L is the Levi complement of a
rational parabolic subgroup P of G. One way of building irreducible representations of G is

7
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to decompose representations parabolically induced from proper split Levi complements L of
GG. However, this process fails to recover the cuspidal representations. To remedy this issue,
Deligne and Lusztig defined in their innovative work [DL76] new induction functors from any
(not necessarily split) Levi L of G, generalizing the usual parabolic induction. They did so
by associating a certain variety Yprcp to any parabolic subgroup P of G with rational Levi
complement L, which is naturally equipped with commuting actions of G and of L = L. The
alternate sum of the cohomology of Yicp provides a virtual G—bimodule—L, which is used
to define the Deligne-Lusztig induction functor RY between the categories of representations
of L and of G. Reducing to the case where L = T is a maximal torus in G and computing
explicitely the decompositions of the induced representations R$%6 for all characters 6 of T,
Lusztig managed in [Lus84] to give a complete classification of all irreducible representations
of all simple finite groups of Lie type.

To sum up, the geometry of certain Rapoport-Zink spaces can be described in terms of Deligne-
Lusztig varieties, and cohomology plays a crucial role in both the Langlands program and
Deligne-Lusztig theory. This observation is the starting point of this PhD thesis, whose aim is
to derive the consequences of the geometric connections established by the authors cited above
for the cohomology. We brought our attention to the two cases that have been chronologically
first considered, that is the unitary PEL Rapoport-Zink space of signature (1,n — 1) over a
prime p which is inert, see [Vol10] and [VW11], or ramified, see [RTW14].

In the following, we first detail the general approach before stating the results reached in the
inert case. Eventually, we explain how we plan to adapt the method to the ramified case.

1.2 The case of inert or ramified PEL unitary Rapoport-Zink space
of signature (1,n — 1)

If F is a p-adic field where p > 2, let Op denote its ring of integers,let m denote a uniformizer
and let k(F) be the residue field. Let Nilpy be the category of Og-schemes where 7 is locally
nilpotent. Assume now that £/Q, is quadratic and denote by = the non-trivial element of
Gal(E/Q,). If E/Q, is ramified, we may chose 7 so that 7 = —7. If E/Q, is unramified, then
E ~Qp = W(F,)q, and Op ~ Z,2 := W(F,2), where W(-) denotes the ring of Witt vectors.
Let E'/FE be an unramified extension. For S € Nilpg,, a unitary p-divisible group of signature
(1,n—1) over S is a triple (X, tx, Ax) such that

— X is a p-divisible group over S,
— 1x : O — End(X) is a Og-action on X such that the induced action on its Lie algebra

satisfies the Kottwitz signature (1,n — 1) condition:
Va € Op, char(i(a) | Lie(X)) = (T — a)(T —a)" !,

— if E/Q, is ramified, then the induced action of ¢tx on Lie(X) also satisfies the Pappas

condition:
2

N\(t(r) + 7| Lie(X)) = 0 and if n. > 3, /\ («(r) — 7| Lie(X)) = 0,

8
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~ Ax : X 5 tX is a principal polarization, where X denotes the Serre dual of X. We

assume that the associated Rosati involution induces ~ on Op.

Note that char(c(a) | Lie(X)) is a polynomial with coefficients in Og. The Kottwitz condition
compares it with a polynomial with coefficients in Op < Opg/ via the structure morphism
S — Op.

Let us fix such a unitary p-divisible group (X, vx, Ax) of signature (1,n—1) over x(E’), such that
X is superspecial. We call the triple (X, tx, Ax) the framing object of the Rapoport-Zink space.
If £/Q, is unramified or if £ ~ Q,[/—p] then one may take £’ = E. However if & ~ Q,[,/ep]
where € € Z) is such that —e is not a square in Z,, then one must take £’ = E'®q, W (F,2)q in
order to define the framing object. The Rapoport-Zink space is the moduli space M classifying
the deformations of the framing object by quasi-isogenies. More precisely, for S € Nilp,
M(S) is the set of isomorphism classes of tuples (X, tx, Ax, px) where (X, tx, Ax) is a unitary
p-divisible group of signature (1,n — 1) over S, and where px : X x5S — X x4 S is an
Og-linear quasi-isogeny such that ‘py o Ax o px = cAx for some c € Q;. Here S is the special
fiber of S and ‘px is the dual quasi-isogeny. By the work of Rapoport and Zink in [RZ96]
and of Pappas in the ramified case, the functor M is a formal scheme over Spf(Og/) which is

formally of finite type, formally smooth in the inert case, and flat in the ramified case.

Remark. In the inert case and in the ramified case with n odd, any choice of the framing object
X gives the same Rapoport-Zink space. In the ramified case with n even however, there are
essentially two choices of framing objects, giving rise to two different spaces. These two cases
are refered to as the split and non-split cases, see [RTW14] Remark 4.2.

Let M,.q denote the special fiber of M. The Bruhat-Tits stratification, which is built in
[VW11] for the inert case and in [RT'W14] for the ramified case, can be written as

Mied = |_| My,
Ael

where each stratum M3 is a locally closed subvariety which is defined over x(F), and A runs
over the set L of so-called vertex lattices. More precisely, the indices A are almost self-dual
Op-lattices in a certain £/Q,-hermitian space of dimension n (denoted by V in the inert case,
and by C' in the ramified case). Let J denote the group of unitary similitudes of this hermitian
space, so that J acts on the set of vertex lattices £. The group J can also be identified with
the group Aut(X, tx, Ax) of automorphisms of the framing object. In particular, J also acts on
Mby g-(X,ix, \x,px) = (X, tx,A\x,g0px) for all ge J.
For all A € £ let Mp denote the closure of the stratum M$3. The J-action on the special fiber
M eq i1s compatible with the Bruhat-Tits stratification, in the sense that any g € J induces an
isomorphism

g: My — M;(A)a
and thus an isomorphism between the closed strata My — Mgy as well. Let Jy := Fix;(A)
be the fixator in J of A € L. Then J, is a maximal compact subgroup of .J, and it admits a
finite quotient which is isomorphic to a finite group of unitary similitudes GU;,)(F,) in the
inert case, and to a finite group of symplectic similitudes GSp,,(F,) is the ramified case. Here

9
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0 < t(A) < n is a certain integer called the orbit type of A € £, and which is odd in the inert
case and even in the ramified case. It turns out that the induced action of Jy on M, factors
through an action of this finite quotient.

The Bruhat-Tits stratification is very well behaved for the two following reasons.

(1) The set L of vertex lattices can be given the structure of a polysimplicial complex, whose
combinatorics describes the incidence relations between the closed Bruhat-Tits strata.

(2) Each closed Bruhat-Tits stratum, equipped with its action of the finite quotient of the
maximal compact subgroup Jy, is naturally isomorphic to a generalized Deligne-Lusztig
variety for GUy)(F,) in the inert case, and for GSpy(,(F,) in the ramified case.

The polysimplicial complex £ of (1) is closely related to the Bruhat-Tits building BT of J over
Qp. In fact, both polysimplicial complexes are equal except in the case of split ramified p with n
even. There, £ is a slight modification of BT, see [RTW14] Proposition 3.4. The isomorphism
of (2) also induces an isomorphism between M3 and the Coxeter variety for GUy,)(IF,,) or for
GSpya) (F,). This is in accordance with the fact that the Rapoport-Zink space M is of Coxeter
type in both the inert and the ramified cases, by [GHN22].

Let M®" denote the generic fiber of the formal scheme M in the sense of Berkovich. Thus,
M? is a smooth analytical space of dimension n—1 over E’. Let red : M® — M4 denote the
reduction map. It is anticontinuous, ie. the preimage of a closed (resp. open) subset is open
(resp. closed). In order to derive the consequences of such a stratification for the cohomology,
we establish the following strategy.

(A) Understand the cohomology H®(M s ® F,, Q) of an individual closed Bruhat-Tits stra-
tum by using Deligne-Lusztig theory via (2).

(B) Introduce the analytical tubes U, := red '(M,), and study the cohomology of the
Rapoport-Zink space M®" via the Cech spectral sequence associated to the open cover

{Un}a, whose combinatorics is described by (1).

Remark. By general theory, there is a connected reductive group G over Q,, a parahoric sub-
group Ky < G(Q,), and a finite étale cover Mg — M for every open compact subgroup
K < K,. Here, G is the group of unitary similitudes of some n-dimensional F/Q,-hermitian
space, and J is an inner form of G. Moreover the group K is maximal special, and in the inert
case it is hyperspecial. For K < K’, there are transition maps Iy g : Mg — My so that
the spaces M fit together in a projective system M, 1= (M)g, called the Rapoport-Zink
tower. The action of J on M can be extended to an action on each M which is compatible
with the transition maps. Therefore M, is equipped with an action of G(Q,) x J, where G(Q,)
acts on the structure level by Hecke correspondences. One may define the cohomology of M,
via the formula
HE (Mo, @) 1= lim liny lim 2 (U B C,, Z/02) @ Q.
K Uk k
where Uk runs over all the relatively compact open subsets of M g. These cohomology groups

are representations of G(Q,) x J x W, where W = W denotes the absolute Weil group of

10
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E. We note that the action of W is induced by Rapoport and Zink’s (non effective) Weil
descent datum on M, as defined in [RZ96] 3.48. These cohomology groups are the main object
of interest in the context of the Langlands program.

In this thesis, our results only deal with the cohomology of the generic fiber M*" = Mk, .
Thus, we focus on the cohomology groups

H; (Man7@) = H; (MoOa @)Kov

as representations of J x W. The reason is that our approach is fruitful only in situations
where one may relate the cohomology of a closed Bruhat-Tits stratum M in the special fiber,
to the cohomology of its analytical tube Uy i := H;(}Kored_l(MA) in M. In the inert case,
this can be achieved trivially when K = K; since the formal smoothness of M insures the
triviality of the nearby cycles. In future works, we hope to generalize our approach to more
general parahoric level structures, in which case the semi-stable reduction should allow explicit
computations of the nearby cycles. Other cases of bad reduction, such as the ramified case,

may also be manageable as we discuss in the end of the introduction.

1.3 Step (A): the cohomology of an individual closed Bruhat-Tits
stratum

As mentioned in (2), each closed Bruhat-Tits stratum is isomorphic to a generalized Deligne-
Lusztig variety. Let us explain what we mean by this. In general, let G be a connected reductive
group over ]FTp equipped with a Frobenius morphism F': G — G inducing an Fg-structure. Let
G := GF be the associated finite group of Lie type. Let P be a parabolic subgroup of G. The
associated generalized Deligne-Lusztig variety is

Xp :={gPe G/P|g 'F(g) e PF(P)}.

It is defined over F s where 6 > 1 is the smallest integer such that F 3(P) = P, and it is equipped
with an action G — Xp by left translations. We say that a generalized Deligne-Lusztig vari-
ety Xp is classical if in addition, there exists a rational Levi complement L € P. When this
condition is satisfied, the Deligne-Lusztig variety inherits an action Xp ~— L := L by right
translations, which commutes with the action of G. In this case, the cohomology of Xp is a
G-bimodule-L, and can be used to defined the Deligne-Lusztig induction functor between the
categories of representations of L and of G. We note that the varieties denoted above by Yi,cp
are in fact some L-torsor of Xp.

Thus, in the context of Deligne-Lusztig theory which focuses on the study of the induction func-
tors afforded by the varieties Yrcp, one is only interested in classical Deligne-Lusztig varieties.
For this reason, to our knowledge their generalized versions have not been systematically stud-
ied in the literature, except in [BR06] where a criterion for the irreducibility of Xp is proved.
It turns out that the Deligne-Lusztig variety to which a closed Bruhat-Tits stratum M, is
isomorphic, is not classical. Therefore, no result regarding its cohomology can be directly read
from the literature.

11
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However, the works of [VW11] in the inert case, and of [RTW14] in the ramified case, give
us enough geometric understanding of M, in order to access its cohomology. Let us write
t(A) = 20 + 1 in the inert case, and ¢(A) = 26 in the ramified case. There exists a stratification
(called the Ekedahl-Oort stratification in the inert case)

My = | | Mu0),
0<0'<6

where each M (¢') is a locally closed subvariety, and the closure of the stratum associated to
¢ is the union of the all the strata associated to ¢t < #’. The isomorphism of (2) between My
and a generalized Deligne-Lusztig variety, naturally induces an isomorphism between M (6")
and a classical Deligne-Lusztig variety which is, in some sense, parabolically induced from the
Coxeter variety for the smaller group of unitary similitudes GUsyg41(F,) in the inert case, and
for the smaller group of symplectic similitudes GSpyy (F,) in the ramified case.

In [Lus76], Lusztig has computed the cohomology of the Coxeter varieties for all finite classical
groups in terms of unipotent representations. The unipotent representations of GUsgg1(F,) are
classified by the integer partitions A of 260 + 1 and we denote them p,, see 2.2.1. The unipotent
representations of GSpy,(F,) are classified by Lusztig’s notion of symbols S of rank ¢ and of
odd defect, and we denote them pg. In 2.4.3 and 4.3.2, we translate Lusztig’s results of [Lus76]
in terms of the classification by integer partitions or by symbols respectively. From [GM20]
and [GP00], we derive the combinatorical rules to compute parabolic induction of unipotent
representations. It allows us to entirely determine the cohomology of a stratum M (6’). Then,
we study the spectral sequence associated to the stratification

BV = H (M, (0) ® F,, Q) = HP' (M, @ F,, Q)

which degenerates on the second page thanks to the repartition of the Frobenius eigenvalues
throughout the sequence.

The variety M, is projective of dimension 6, and it is smooth only in the inert case, and in the
ramified case when 6 < 1. Let 7 € Gal(F,/x(E)) be the geometric Frobenius relative to x(E).
In the inert case, the purity of the Frobenius on the cohomology of M, allows us to compute
all the Fs terms, and it leads to the following statement.

Theorem (2.5.1). In the inert case, let A € L and write t(A) = 26 + 1.

(1) The cohomology group Hi(My ® F,, Q;) is zero unless 0 < j < 26.
(2) The Frobenius T acts like multiplication by (—p)’ on Hi(My ® F,, Q).
(3) For 0 < j <60 we have

HY(MA® F,, Q)= @ pass1-2s29)-
s=0
For 0 <j<60—1 we have
' o min(j,0—1—j)
Hzﬁl(MA ® Fp, Qp) = (‘D P(20—25,25+1) -
s=0
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In particular, all irreducible representations in the cohomology groups of even index belong to
the unipotent principal series, whereas all the ones in the groups of odd index have cuspidal
support determined by the unique cuspidal unipotent representation of GU3(IF,), which is de-
noted pa, with Ay equal to the partition (2,1) of 3. The cohomology group HI (M, @ F, Q)
contains no cuspidal representation of GUgg,1(F,) unless § = j =0or § = j = 1. If § = 0 then
H? is the trivial representation of GU(F,) = F2, and if § = 1 then H! is the representation
pa, of GU3(F,).

In the ramified case, unless when # = 0 or 1, in which case M, is respectively isomorphic to
a point or to P!, we do not have a full understanding of the cohomology of My, but we can
still get substantial information from the spectral sequence. For 0 < k < 26 the weights of
the Frobenius 7 on the cohomology group H¥(M, ® F,, Q) form a subset of {p’, —p’*'} for
k—min(k,0) <i < k—[k/2] and for k —min(k,0) < j < k—[k/2] — 1. Among other things, if
i,7 > k—min(k, 0) then we determine the eigenspaces of the Frobenius H* (M, ® F,, Q,),: and
HE(My ® Fp, Q)+t explicitely up to at most four irreducible representations of GSpy,(F,).
We refer to 4.4.2 and 4.4.3 for the detailed results, as it would be too long to fit this introduction.
In particular, we note that the action of the Frobenius on the cohomology is not pure when
0 = 3 (for = 2 the non-purity is undetermined). This is in accordance with M, not being
smooth for # > 2. All irreducible representations of GSp(26,F,) occuring in an eigenspace
of 7 for an eigenvalue of the form p* belong to the unipotent principal series, whereas those
corresponding to an eigenvalue of the form —p’*! belong to the cuspidal series determined by
the unique cuspidal unipotent representation of GSp(4, F,) which is denoted by pg,, where S5 is
the symbol defined in 4.2.5. We note in particular that H*(M, ® F,, Q,) contains no cuspidal
representation of GSpyy(F,), unless § = k = 0 or § = k = 2. When 6 = 0 then HY is the
trivial representation of GSpy(F,) ~ {1}, and when 6 = 2 then the eigenspace of 7 in H? for

the eigenvalue —p is pg,.

Remark. We observe that in the inert case, the non-principal cuspidal series determined above
contributes to the cohomology of M, for 8 > 1, but in the ramified case it only contributes for
6 = 2. Moreover, in the inert case the two cuspidal series contribute separately to groups of
even or odd degrees, but in the ramified case both series contribute to cohomology groups of

degrees of any parity.

1.4 Step (B): on the cohomology of the inert Rapoport-Zink space
at hyperspecial level

From now on, we consider only the inert case. Let £™** denote the subset of all vertex
lattices A € £ having maximal orbit type t(A) = tyax. We have

; n if n is odd,
max —
n—1 if nis even.

13
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Let us write tpmax = 20max + 1. Then {Up}aepmax forms an open cover of the generic fiber M®" to
which one can associate the following J x WW-equivariant Cech spectral sequence, concentrated
in degrees ¢ < 0 and 0 < b < 2(n—1),

Eab @ Hb @@) — Hngb(Man’@).

YEl-at1

See 3.4.1.4 for some details regarding the definition of the W-action. Here, for a < 0 the set
I_,,1 is defined by

IfaJrl = {7 = <A17 S 7Aia+1)

—a+1
V1<j<—a+1,/\je£(m) and U(vy) := ﬂ Upi :@}_

By the properties of the Bruhat-Tits stratification, if v € I_,,1 then there exists a unique vertex
lattice A(y) € £ such that U(y) = Ua(y). Thus, we must first relate the cohomology of any
Uy with the cohomology of its special fiber M, that we have investigated in step (A). Each
cohomology group H%(U (), Q) is naturally a representation of (Jy x I)7% where I = W is the
inertia subgroup, and 7 := (p~! - id, Frob) € J x W is called the rational Frobenius element.
Here, Frob € W is a fixed lift of the geometric Frobenius, and p~! -id is seen as an element of
the center Z(.J) ~ Q, (recall that J is a group of unitary similitudes).

Proposition (3.4.1.5). Let A€ L and let 0 < b < 2(n —1). Write t(A) =20 + 1. There is a

natural (Jy x I)7T%-equivariant isomorphism
ch)(UAv@) — ch)—Q(n—l—G) (MA ® Eu @) (’I’L —1- 9)

On the right-hand side the inertia I acts trivially, the rational Frobenius T acts like the geometric
Frobenius T defined in step (A), and the Jx-action factors through its finite unitary or symplectic

similitudes quotient.

This proposition relies on the fact that we consider the Rapoport-Zink space M®" = My, at
hyperspecial level, insuring the triviality of the nearby cycles between Uy and M.

It follows that 7 acts like multiplication by the scalar (—p)® on any term E} *Thus, the spectral
sequence degenerates on the second page and the filtration on the abutment splits, ie. the k-th
cohomology group of M?" is the direct sum of the Ej * terms on the diagonal a + b = k, see
3.4.1.7.

In order to study the J-action, we rewrite the terms EY * in terms of compact inductions. Let
{Ao,...,Np,..} be a maximal simplex in £ such that for all 6, t(Ag) = 20 + 1. We write
Jy := Ja,. We also define

K(_9(2+1 = {7 € I a+1 |A( ) A9}7

which is a finite subset of I_,,; equipped with an action of Jy.

Proposition (3.4.1.10). We have an equality

Ela,b _ (_BC _ Ind?g (Hb(UAg, QK) ® QE[ —a+1]>
6=0

where Q[ K _a+1] denotes the permutation representation associated to Jy — K 3+1'

14
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By exploiting this spectral sequence, we are able to compute the cohomology groups of M
of highest degree 2(n — 1). We denote by J° the subgroup of J generated by all the compact
subgroups. It corresponds to all the unitary similitudes in J whose multipliers are a unit. We
note that J° is normal in J with quotient J/J° ~ Z.

Proposition (3.4.1.12). There is an isomorphism

HD(M™, Q) = ¢ — IndJ. 1,

and the rational Frobenius T acts via multiplication by p*>™=1).

When 0,,.x = 1 (ie. n = 3 or 4), the Bruhat-Tits building of J is essentially a tree. Exploiting
its combinatorics and the spectral sequence, we are also able to compute the group of degree

2(n — 1) — 1. Recall the representation pa, which we introduced in the previous section.

Theorem (3.4.3.4). Assume that 0. = 1. We have

H2OD= (M @) > ¢ — Ind?, pa,

with the rational Frobenius T acting via multiplication by —p*"—D-1.

In general, the terms Ey *in the second page may be difficult to compute. However, the terms
corresponding to @ = 0 and b € {2(n — 1 — Opax),2(n — 1 — Opax) + 1} are not touched by
any non-zero differential in the alternating version of the Cech spectral sequence, making their

computations accessible.

Proposition (3.4.1.11). We have an isomorphism of J-representations

0,2(71—1_0111&;() ~ J
E2 ~ C — IHngmax 1

If n = 3 then we also have an isomorphism

Eg,Q(n—1—9max)+1

maxal) °

~c— Imdi}max £(26

Here 1 denotes the trivial representation, and p(s,,..,1) denotes (the inflation to Jy,,. of) the

unipotent representation of GUy, .. (F,) associated to the partition (20yax, 1)

maxv]-

The previous statement has important consequences for the cohomology of M?*". To explain
it, let us recall a certain property of compactly induced representations.

Let x be a continuous character of the center Z(.J) ~ ;2 and let V' be a smooth representation
of J. Let V, be the maximal quotient of V' on which Z(J) acts through x. Let K be an open
compact subgroup of J and let p be an irreducible smooth representation of K. Assume that
X agrees with the central character of p on Z(J) n K. Then

(c — Indy, Py = C— Ind%(J)K X®p="V,,0®D V,x.0

see 3.4.2.2 and 3.4.2.3. The decomposition on the right-hand side follows from a general theo-
rem in [Bus90]. The J-representation V,, o is the sum of all supercuspidal subrepresentations
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of c — Indg( 7k X ® p. This is a finite sum. The space V), o contains no non-zero admissible
subrepresentation, in particular it contains no irreducible subrepresentation but it may admit
many irreducible quotients and subquotients, none of which is supercuspidal. We note that
Vo0 or V,\ o may be zero.

Therefore, the behaviour of a compactly induced representation as above depends greatly on
whether there exists some irreducible supercuspidal subquotient in ¢ — Indi{ p. The existence
of such subquotients may be elucidated by type theory, especially in the case where p is inflated
from a finite quotient of K. Combining with the two previous propositions, we deduce the fol-
lowing statements. Note that we consider unramified characters of Z(.J) because any unipotent

representation has trivial central character.

Proposition (3.4.2.12). Let x be any unramified character of Z(J) ~ Q;.

o 072 7179max N N N
— assume that n = 3. The representation (E, (n ))X contains no non-zero admaissible

subrepresentation, and it is not J-semisimple. If n = 5, then the same statement holds
fOT (E§,2(n7179max)+1)x.

— forn =1 (resp. n = 3,4), let b = 0 (resp. b = 3,5). Then (EY"), is an irreducible
supercuspidal representation of J. Ifn = 2, then (Eg’2)x 15 the sum of two non-isomorphic

supercuspidal representations of J.

In particular, we obtain the following corollary.

Corollary. Let x be any unramified character of Z(J). If n = 3 then Hg(n_l_emax)(/\/lan,@)x
is not J-admissible. If n =5 then Hg(nflfgm‘”‘)ﬂ(/\/lan,@)x is not J-admissible.

This non-admissibility result shows a different behaviour from the cases of the Lubin-Tate tower
or of the Drinfeld space.

1.5 The cohomology of the supersingular locus of the associated
Shimura variety at an inert prime for n = 3,4

The Rapoport-Zink space M is related to the supersingular locus of a certain PEL Shimura
variety via the p-adic uniformization theorem, and a certain spectral sequence relates the co-
homology of both spaces. In particular, for small values of n, our results so far allow us to
compute the cohomology of the supersingular locus both in the inert case. Let us give some
more details.

Let E be an imaginary quadratic field, and let V be an n-dimensional non-degenerate E/Q-
hermitian space of signature (1,n — 1) at infinity, and such that V® Q, is isomorphic to the
hermitian space defining the group of unitary similitudes G. In particular E, ~ Q,2, so that
p is inert in E. Let G be the group of unitary similitudes of V, seen as a reductive group
over Q. Then Gg, = G and Gg = GU(1,n — 1). Assume that there exists a self-dual Og-
lattice I" in V, and let Stab(I") denote the compact subgroup of G(Ay) of elements g such that
9(I'®y Z) =I'®z 7. Here A 7 denotes the ring of finite adeles. For any open compact subgroup
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KP < Stab(I') n G(A") which is small enough, there is an integral model Sk» of the associated
PEL Shimura variety which is defined over Og. Since we have hyperspecial level structure at
p, the integral model Sg» is smooth and quasi-projective. Let Sg» denote the special fiber
of Skr, and let ?S;p denote the supersingular locus. Let I be the inner form of G such that
1(Q,) =J,1 ar = Gyp and I = GU(0,n). The p-adic uniformization theorem of [RZ96] gives
natural isomorphisms of analytic spaces over E’

I(Q)\(M™ x G(A?)/K?) = Sii™ @5

which are compatible as the level K? varies. Here §§§fm denotes the analytical tube of the
supersingular locus inside the analytification of the generic fiber of Sg». Associated to this
geometric identity, Fargues has built in [Far04] a spectral sequence computing the cohomology
of §§§fn. Since Sk» is smooth, it amounts to the cohomology of the supersingular locus ?ijp
itself. The (G(A%) x WW)-equivariant spectral sequence takes the following shape

Bt = @ Exty (HOD MM, - n),IL) @I — H(S © F,, L),
e Ag (1)

where ¢ is a finite dimensional irreducible algebraic Q,-representation of G of weight w(¢) € Z,
L is the associated local system on the Shimura variety Sg», A¢(1) is the space of all automor-
phic representations of I(A) of type € at infinity, and H (S™® F,, L¢) = lim o He (Sir®TF,, Le).
By [Far04] Lemme 4.4.12, we have Fi"* = 0 as soon as a is strictly bigger than the semisim-
ple rank of J, which is equal to 6,.,. In particular, if 0., < 1 then all the differentials are
zero and the spectral sequence is already degenerated, allowing us to compute the abutment
entirely. Since the case 0.« = 0 is kind of trivial, we now assume 60y,,, = 1 (ie. n =3 or 4). In
particular, the supersingular locus Eiip has dimension 0,,,x = 1. Let X" (.J) denote the set of
unramified characters of J. Let St; denote the Steinberg representation of J. If x € Q" we
denote by Qq[z] the 1-dimensional representation of the Weil group W where the inertia acts
trivially and Frob acts like multiplication by the scalar x.

Let 7 = c— Indl‘{IJ(Jl) pa, where N;(Jp) is the normalizer of Ji, and pa, is an extension to
N(J1) of the cuspidal representation pa, of J;. Then 7 is an irreducible supercuspidal repre-
sentation of J. If IT € A¢(I), we define 0y, := wrr, (p~* - id)p~*©® € Q" where w, is the central

1

character of II,, and p~! - id lies in the center of J. For any isomorphism ¢ : Q; ~ C we have

(0, )| = 1.

Theorem (3.5.2.3). There are G(A’}) x W -equivariant isomorphisms

HIS(bo) @ F,Le) ~ P 1P @ Qufdn,p" ],

HE.Ag(I)
TI,e X ()
H(lj (g(b0> X® IF, ‘C_f) ~ C_B I1P R @[5prw(f)] D C_B 1P ® @[*(Sl_lppw(f)-i-l]7
HE.A{(I) HeAg(I)
IxeXn (), Ixe X (J),
Mp=x-Sts Mp=x71
HX(S(bo) ® F, Le) ~ @ 1P @ Qu[on,p" @+,
e A¢ (1)
=0

17



Cohomology of DL varieties associated to PEL RZ spaces with signature (1,n — 1)

1.6 Adapting the approach to the ramified case

As one of the rapporteur wittingly pointed out to me, an unfortunate typo can be found in
[RTW14], where the authors wrote in the course of a paragraph that Pappas’ integral model
of the unitary PEL GU(1,n — 1) Shimura variety, at a ramified prime and at parahoric level
given by the stabilizer of a self-dual lattice, is smooth. This is however not the case, and it
is consistent with such a parahoric subgroup being special but not hyperspecial, nor does it
correspond to a case of exotic good reduction. We note that this typo has absolutely no impact
on the contents of [RTW14], as smoothness is not needed there anyway.

In an earlier version of this thesis, I intended to apply the same approach as in the inert case to
the ramified case, and with the smoothness hypothesis it seemed like all steps described above
would work the same way. But, this hypothesis being actually wrong, the situation of the
ramified case is more complex. Therefore, regarding the ramified case, this thesis only contains
the part exploiting Deligne-Lusztig theory in order to get information on the cohomology of a
closed Bruhat-Tits stratum.

Let us explain what obstacles we face and propose a slightly unformal strategy to overcome
them.

The main issue concerns 3.4.1.5 Proposition, where one identifies the cohomology of an analyti-
cal tube U, with the cohomology of its special fiber M. In the proof, we push the Bruhat-Tits
stratum into the associated Shimura variety via p-adic uniformization, and we apply a result
of Berkovich in [Ber96]. Since the integral model of the Shimura variety is smooth (in the inert
case), nearby cycles are trivial and we obtain an isomorphism H*(Uy, Q) ~ H*(My, Q). In
general however, we only get an isomorphism with the cohomology of M, with coefficients in
the nearby cycles sheaf R\I/n@. In situations where these nearby cycles can not be computed,
it seems hopeless to try using the approach of this thesis.

Thus, in the ramified case, the non-smoothness of the integral model means that one must first
understand the nearby cycles on the Shimura variety. The integral model Sk» over Spec(Og)
(with £/Q, quadratic ramified) has been built by Pappas in [Pap00] as a moduli space classi-
fying abelian schemes with usual additional structures, and satisfying a certain “Pappas con-
dition” similar to the one in the definition of the Rapoport-Zink space in the ramified case.
Theorem 4.5 of [Pap00] states that Sk» is normal, Cohen-Macaulay and flat over Spec(Og).
Moreover its special fiber Sk» is smooth outside of a finite number of singular points, and if
n = 3 the blow-up BL(Sk») — Sk» at the reduced singular locus has semistable reduction, ie.
it is regular and its special fiber is a divisor with normal crossings. If n = 2 then Sg» already
has semistable reduction.

In this context, the nearby cycles Rq\lfn@ for ¢ > 0 are skyscraper and concentrated on the
singular points of the special fiber Sg». For any point x € Sk», there exists a point y € M
(the local model associated to the PEL datum) such that x and y have some isomorphic etale
neighborhoods. The stalk (Rq@n@)x may therefore be computed on the local model, which

has a much simpler linear algebraic description. In fact, from general theory the integral model
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Ske of the Shimura variety and the local model M'°¢ share the same geometric properties, and
it is mainly the local model which is studied in [Pap00] ; it is also described in [Krd03]. Since
the blow-up BI(M!°¢) — M! ¢ at the singular points has semistable reduction, we understand
the nearby cycles on the blow-up (for instance via [I1194]), and via proper base change we could
compute the cycles on the local model itself. Then, if one may understand the distribution of
singular points of the special fiber Sg» with respect to the Bruhat-Tits stratification on the
supersingular locus, it seems reasonable to think that the cohomology groups H® (M, R\I/n@)
could be understood, at least sufficiently enough in order to apply the approach described in

the inert case.
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Organization of the thesis

The body of the thesis consists of the two papers written during the PhD, along with the first
part of the 3rd paper. Section 2 is [Mul22b], section 3 is [Mul22a] and Section 4 is the first
part of [Mul22c]. Section 2 and 3 deal with the inert case, the former consists of step (A) and
the latter of step (B) as explained in the introduction. Section 4 deals with step (A) in the
ramified case. Each section may be read independently, however some parts of them may make
reference to previous sections as the papers have been written in this chronological order.

We warn the reader that the notations may vary slightly from one section to the other, as well

as they may vary from the introduction.
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2 Cohomology of the Bruhat-Tits strata in the unrami-
fied unitary Rapoport-Zink space of signature (1,n—1)

Notations

Throughout this section paper, we fix ¢ a power of an odd prime number p. If k is a perfect
field extension of F,, we denote by o : z — 27 the g-th power Frobenius of Gal(k/F,). We fix
an algebraic closure IF of ;. Unless specified otherwise, G will denote a connected reductive
group over [ equipped with an F,-structure, induced by a Frobenius morphism I’ : G — G.
If H is an F-stable subgroup of G, we denote by H := H ~ H(F,) its group of F,-rational
points. We fix a pair (T, B) consisting of a maximal torus T contained in a Borel subgroup B,
both of them being F-stable. Such a pair always exists up to G' = G¥-conjugation. We obtain
a Coxeter system (W, S) on which F' acts, where W = W(T) is the Weyl group attached to T
and S is the set of simple reflexions. It can be identified with the Weyl group of G as defined
in [DL76]. Let ¢ denote the length function on W relative to S. For I < S, we write P;, U, L;
respectively for the standard parabolic subgroup of type I, for its unipotent radical and for its
unique Levi complement containing T. We also write W; for the parabolic subgroup of W
generated by the simple reflexions in I. Recall that an element w € W is said to be [-reduced
(resp. reduced-I) if for every v € Wy, we have £(vw) = £(v) + £(w) (resp. L(wv) = L(w) + £(v)).
The set of I-reduced (resp. reduced-I) elements is denoted by W (resp. W!). If I, I’ = S, an
element is said to be I-reduced-I’ if it belongs to "W := ITW ~ W',

2.1 The generalized Deligne-Lusztig variety X (id)

2.1.1 Let G be a connected reductive group over F. Let F' be a Frobenius morphism defining
an F -structure on it. If H is an F-stable subgroup of G, we denote by H := H" ~ H(F,) its
group of F -rational points. We fix a pair (T, B) consisting of a maximal torus T contained in
a Borel subgroup B, both of them being F-stable. Such a pair always exists up to G = GFf-
conjugation. We obtain a Coxeter system (W,S) on which F' acts, where W = W(T) is the
Weyl group attached to T and S is the set of simple reflexions. It can be identified with the
Weyl group of G as defined in [DL76]. Let ¢ denote the length function on W relative to S. For
I c S, we write P;, U, L respectively for the standard parabolic subgroup of type I, for its
unipotent radical and for its unique Levi complement containing T. We also write W for the
parabolic subgroup of W generated by the simple reflexions in I. Recall that an element w € W
is said to be I-reduced (resp. reduced-TI) if for every v € W, we have £(vw) = £(v)+{(w) (resp.
{(wv) = £(w) + £(v)). The set of I-reduced (resp. reduced-I) elements is denoted by W (resp.
W), If I,I' € S, an element is said to be I-reduced-I" if it belongs to "W := "W n W',

2.1.2  We recall the definition of Deligne-Lusztig varieties from [BR06]. If P is any parabolic
subgroup of G, the associated generalized parabolic Deligne-Lusztig variety is

Xp := {gP € G/P| g 'F(g) € PF(P)}.
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When these varieties were first introduced in [DL76] only the case of Borel subgroups was con-
sidered, hence the adjective “parabolic”. Moreover, parabolic Deligne-Lusztig varieties have
mostly been studied with the additional assumption that P contains an F-stable Levi comple-
ment, see for instance [DM14]. This is not required by the definition above, hence the adjective
“generalized”.

Using the Coxeter system as above, one may give an equivalent description of these varieties.
For I,I' = S the generalized Bruhat decomposition is an isomorphism

P\G/Py = | | PA\PwPy/Py=W \W/Wy.

wel W’
For w e TW¥) | the generalized parabolic Deligne-Lusztig varieties is defined by
X](w) = {gP[ € G/P[ | g_lF(g) € P]U)F(PI)}

The families of varieties Xp and X;(w) are the same and [BR06] explains how to go from one
description to the other. The case I = & corresponds to usual Deligne-Lusztig varieties in G/B.
Moreover, the additional assumption regarding the existence of a rational Levi complement
translates into the equation

w w = F(I), (%)

which is a compatibility condition between the parameters w and I. The variety X;(w) is
defined over F., where ¢ is the least integer such that F*(I) = I and F*(w) = w.

2.1.3 In this paragraph, we compute the dimension of a generalized Deligne-Lusztig variety
Xi(w). For any we W, let {(w) denote the length of w with respect to S.

Proposition. For I ¢ S and w e "W¥WD | we have

dim X (w) = £(w) + dim G /Py p(ryw-1 — dim G/P.

Let us introduce a few more notations. If I,I’ < S, the generalized Bruhat decomposition
implies that the G-orbits for the diagonal action on G/P; x G/P are given by

OI,I/(U)) = {(g]_:)]7 th) |g_1h € P]’U}Pp}

for w € 'WT'. The Deligne-Lusztig variety X;(w) can be seen as the intersection of O p(ry(w)
with the graph of the Frobenius F' : G/P; — G/Pp(y. This intersection is transverse, see
[DL76] 9.11 (in loc. cit. the proof deals with the case I = J, but it generalizes to any I).
Thus, the proposition follows from the following lemma and the fact that dim P; = dim P g(p).

Lemma. For I,I' ¢ S and w e "W, we have
dim O[’p (U)) = E(w) + dim G/P[ﬁwpw_l.

Proof. Recall that for I < S, the standard parabolic subgroup of type I decomposes as a union
of Bruhat cells P; = BW;B, and any Bruhat cell BwB has dimension dim B +¢(w). Therefore
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dimP; = dim B + ¢(I) where ¢(I) denotes the maximal length of elements of W7.

Let I,1" and w be as in the lemma. Consider the first projection O p(w) — G/P; which is
a surjective morphism with fibers isomorphic to P;wP/Pp. It is flat since G — G/P; is
faithfully flat, and the pullback O; r(w) x@/p, G is isomorphic to G x P;wP/Pr. We have

P[U}Pp = BW[BU}BW[/B = BW]’U)W]/B,
therefore the dimension of a fiber is given by

dimP;wP /Py = dimP;wPp —dimPp =  max  ((v) — ().
veEWrwW p
Since w is I-reduced-I’, according to [DM20] Lemma 3.2.2, any element v € W;wW, can
uniquely be written as v = xwy such that x € W,y € Wy and zw is reduced-I’. In particular
l(v) = {(z) + (w) + £(y). It follows that

(v) =l(w) + O(x) + ().
x| (v) = {(w) i () + £(I)

We prove that W; n Wyt = W; A Winwl'w™"

Let 2 € W; n W w1, we show that z is reduced-I n wl'w™". Let s € I nwl'w™", so that we
can write s = wtw ™! for some t € I'. Then xsw = zwt. Since xs € W; and w is I-reduced, the
left hand side has length £(zs) +¢(w). On the other hand, since t € I’ and zw is reduced-1’, the
right hand side has length ¢(zw) 4+ 1 = ¢(x) + £(w) + 1. Therefore ¢(zs) = ¢(z) + 1 as expected.
For the other inclusion, let y € W; n W/ @™ e show that yw is reduced-I’. Towards a
contradiction, assume that ¢(ywt) < ¢(yw) for some t € I'. Let y = s1...5, and w = uy ... uy
be reduced expressions respectively of y and of w, with the s; in I and the u; in S. Since w is
I-reduced, the concatenation of both reduced expressions give a reduced expression of yw. By
the exchange condition (see [DM20] 2.1.2), we have

ywt = 81...8; ... 8W O Yuy ... Uj. .. Uy

for some 1 < i < rorl < j < 7, where ~ denotes the product with one omitted term.
The second case is impossible, since after simplifying y it would contradict the fact that w is
reduced-1".

Let us write s := y~'s;...5;...5, € Wy, so that we have
wt = sw.

The left hand side has length ¢(w) + 1, and the right hand side has length ¢(s) + ¢(w). It

follows that s € I has length 1. Therefore s = wtw™' € I n wl'w™!. Eventually, we have
{(ys) = L(y) + 1 since y is reduced-(I n wl’w™'). This is absurd, because ys = s;...5;...s,

has length r — 1 = {(y) — 1.
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To conclude the proof, we recall the following general fact. If (W, S) is a Coxeter system and
K < S, then the product map W& x Wy = W mapping (v, wg) to wfwg is a bijection.
In particular we have

_ K
g};%(f(w) = max L(w™) + e U (wg).

We apply this to the Coxeter system (W, I) and K = I nwl'w™'. Tt follows that
max  {(z) = max 0(z) =0I)— (I nwlw™).
ZEW AW =1 2eEW AW nwl’w=1

Putting things together, have proved that
dim (9171/(w) = dim G/P[ + dimP[pr/Pp

=dimG —dimB — ¢(]) +vevrs%?u)\<>v,,€(v) — (1)

=dim G —dimB — {(]) + {(w) + max  {(x)

2eW AW w1
=dimG —dimB — /(I nwl'w™) + {(w)
=dim G/Pprw-1 + L(w).
O

Remark. In [VW11] 4.4, the formula given by the authors for the dimension of Oy ;/(w), and
as a consequence for the Deligne-Lusztig variety X;(w) as well, contained a mistake.

2.1.4 Let d be a nonnegative integer and let V' be a (2d + 1)-dimensional F -vector space.
Let (-,-) : V x V — F_ be a non-degenerate hermitian form on V. This hermitian structure
on V is unique up to isomorphism. In particular, we may once and for all a basis B of V in
which (-, ) is described by the square matrix wy of size 2d + 1, having 1 on the anti-diagonal
and 0 everywhere else. If k is a perfect field extension of Fj, we may extend the pairing to
Vi =V Qr k by setting

(v®z,w®y) = zy’(v,w) €k
for all v,w € V and z,y € k. If U is a subspace of V}, we denote by U* its orthogonal, that is
the subspace of all vectors z € V}, such that (z,U) = 0.
Let J denote the finite group of Lie type U(V,(-,-)). It is defined as the group of F-fixed
points of J := GL(V)g with F' a non-split Frobenius morphism. Using the basis B, the group
J is identified with GLgg41 with Fy-structure induced by the Frobenius morphism F(M) :=
wo(M @) "tiyy. Here, M@ denotes the matrix M having all coefficients raised to the power q.
We may then identify J with the usual finite unitary group Usgy1(q).
The pair (T, B) consisting of the maximal torus of diagonal matrices and the Borel subgroup
of upper-triangular matrices is F-stable. The Weyl system of (T, B) may be identified with
(G2411,S) in the usual manner, where S is the set of simple transpositions s; := (i i + 1)
for 1 < 4 < 2d. Under this identification, the Frobenius acts on W as the conjugation by the
element wy, characterized for having the maximal length. It satisfies wg(i) = 2d + 2 — i, and a
natural representative of wy in the normalizer of T is no other than wy. Since wy has order 2,
the action of the Frobenius on W is involutive. It also preserves the simple reflexions with the
formula F(s;) = soq+1--
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2.1.5 We define the following subset of S

I:= {817 <5 8dy Sd+25 - - '782d} = S\{Sd-i,-l}'

We have F(I) = S\{sa} = I. We consider the generalized Deligne-Lusztig variety X;(id). It
corresponds to the variety denoted Yy in [VW11] 4.5. It has dimension d and it does not satisfy
the compatibility condition ().

Proposition ([VW11] 4.4). The variety X;(id) is defined over F 2 and it is projective, smooth,

geometrically irreducible of dimension d.

Although the proposition in loc. cit. is only stated in the case ¢ = p, the arguments carry over

to general q. The geometric irreducibility is a consequence of the criterion proved in [BRO6].

Remark. Even though the dimension formula for generalized Deligne-Lusztig varieties in [VW11]
is wrong, it does give the correct result in the case of X;(id). It is because for w = id, we have
I nwF(I)w™" = I n F(I). Therefore, that mistake does not change anything regarding the
validity of the authors” work.

For example, we may consider the Deligne-Lusztig variety X;(s2s;) for Us(F,) with I = {s;}. It
is classical so that dim X;(ses1) = €(s251) = 2. However, we have P;~p) = B and dim G/B =
3 whereas dim G/P; = 2, so that the formula of loc. cit. says that X;(s2s1) would be of
dimension 2 + 3 — 2 = 3.

2.1.6 Rational points of Deligne-Lusztig varieties associated to a unitary group U over I,
can be described in terms of vectorial flags, in a certain relative position with respect to their
image by the Frobenius. Let k be a perfect field extension of Fp2. According to [Voll0] 2.12,
the Frobenius acts on a flag F in V;, by sending it to its orthogonal flag F*. Explicitely, we

have
F o {0} c F c...c F <V,
Ft o {0} c Ft c ... c FQ < V.

r

Here, given our choice of I, a k-rational point of X;(id) corresponds to a flag of the type
F: {0} cUcV,

with U having dimension d + 1, and which is of relative position id with respect to F*. This
precisely means that U must contain U+,

Proposition. The k-rational points of X;(id) are given by

X;(id)(k) ~{U c V4| diimU = d + 1 and U+ < U}.

2.1.7 In [VW11] 5.3, the authors defined the Ekedahl-Oort stratification on the Deligne-
Lusztig variety X;(id). By loc. cit. Corollary 5.12, it turns out that each stratum is itself

isomorphic to a parabolic Deligne-Lusztig variety which is not generalized. They are defined
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as follows.
For 0 <t < d, we define the subset

Iy = {51, <oy Sd—t—15 Sd+t+25 - - '752d} c S.

The subset I; consists of all 2d simple reflexions in S, except that we removed the 2t + 2 ones in
the middle. Thus, it has cardinality 2(d—t—1). In particular, it is empty for ¢t = d or d—1. We
also define the cycle wy := (d+t+1 d+t...d+1). Its decomposition into simple reflexions
is wy = Sqq1-.-Sq4¢. When t = 0, it is the identity. We note that even though I; = I, 1 = &,
we still have wg = wg_1.

One may check that F(I;) = I, and that w; belongs to “WIt. Moreover, the compatibility
condition (*) is satisfied for the pair (I;,w;). Indeed, the reduced decomposition for w; does

not use any simple reflexion that is adjacent to those in I;.

Proposition ([VW11] 3.3 and 5.3). The Deligne-Lusztig variety Xy, (w:) is defined over FFp

and has dimension t. There is a natural immersion X, (w;) — X;(id) inducing a stratification

|| X0 (w).

o<t<d

The closure of the stratum X, (wy) is the union of all the strata X, (ws) for s <t.

2.1.8 Following the proof of Theorem 2.15 of [Voll0], we can describe the stratification at
the level of rational points. Let k be a perfect field extension of F,.. Because of the choice of
I;, a k-point of X, (w,) is a flag

F: {0jcF,1c...cFicFHc...c iV,

with dim(F_;) = d+ 1 —i and dim(F;) = d + i for 1 < i < ¢+ 1, and which is in relative
position w; with respect to F*. It means that we have a diagram of the following type.

F ‘F—t—l c...C f_lc fl o - -Ft+1

| \'"\

Fto FLy ... Ft CT]-"l CTJT"Q < 7(F) CTftH)

Here, 7 := 02 - id is an F2-linear automorphism of Vj, and it satisfies 7(U) = (U L)L for every
subspace U < (Vi)g. This diagram implies that 7(F;) = F;_1 + 7(F;_q) for all 2 <@ <t + 1.
This rewrites as F; = F;_1 + 7 (Fi_1). We deduce that

i—1
Fi=,7'(R)
=0

for all 1 < ¢ < t+ 1. Thus, the whole flag is determined by the subspace Fi;, which has
dimension d + 1 and contains its orthogonal. The immersion Xy, (w;) < X(id) maps the flag
F to Fl.
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Conversely, a k-point of X;(id) is given by a subspace U < V} of dimension d + 1 containing
its orthogonal. For i > 1 we define

i—1

Fi = ZTﬁl(U) < Vi.

1=0
Then (F;);>1 is a nondecreasing sequence of subspaces of Vj. Let t be the smallest integer
such that F;,1 = Fio. It follows that 0 < ¢ < d and that ¢ is also the smallest integer such
that Fi, = 7(Fi11). Moreover the orthogonal U+ has dimension d and we have U+ < U,
so that Ut < (UY)t = 7(U). In particular, if t > 0 then U n 7(U) = U*t. Thus, we have
dim(F,) = d+2. Similarly, we have dim(F;) = d+i for all 1 <i < t+1. By setting F_; := F;,

we obtain a flag F that is the k-rational point of X7, (w;) associated to U.

2.1.9 The Deligne-Lusztig varieties X7, (w;) are related to Coxeter varieties for smaller unitary

groups as we now explain. We define

K, = {31, c oo Sd—t—15Sd—t+1y -+ - 5 Sd+ty Sd+t+2; - - + 5 Szd} = S\‘{Sd—t> 3d+t+1}-

The set K, is obtained from [I; by adding the 2¢ simple reflexions in the middle. It has cardinality
2d — 2 and satisfies F'(K;) = K;. We have I; ¢ K,; with equality if and only if ¢ = 0.

Proposition. There is a Usgi1(q)-equivariant isomorphism
L
X1, (we) > Uaas1(q) /U, X1k, Xp, (1),

where XII;Kt (wy) is a Deligne-Lusztig variety for Lg,. The zero-dimensional variety Usg,1(q)/Uk,
has a left action of Usqy1(q) and a right action of Lg,.

Proof. This is an application of [DM14] Proposition 7.19 which is the geometric identity behind
the transitivity of the Deligne-Lusztig functors. It applies to the varieties X7, (w;) because they
satisfy the compatibility condition (x), and satisfies the following conditions: K; contains I, it is
stable by the Frobenius and w; belongs to the parabolic subgroup Wg, ~ G441 x Gop11 xGy_y <
Sads1. O

2.1.10 The Levi complement Lg, is isomorphic to the product GLg_; x GLgi 1 x GLg4
as a reductive group over F. Given a matrix M = diag(A,C, B) € Lg,, we have F(M) =
diag(F(B), F(C), F(A)), where we still denote by F' the Frobenius morphism for smaller linear
groups. Writing H for the product of the two GL4_; factors, we have Lg, ~ H x GLy;;; and
both factors inherit an F,-structure by means of F. We have Ly, ~ GLqg_¢(¢?) x Ugi1(q), the
first factor corresponding to H.

The Weyl group of L, is isomorphic to Wg x Gy where Wy ~ G4 x &4, is the Weyl
group of H. Via this decomposition, the permutation w; corresponds to id x w;, where wy; is the
restriction of wy to {d—t+1,...,d+t+1}. Similarly, the set of simple reflexions S decomposes
as Sy L §, the second term corresponding to the simple reflexions in Gy;,1. Then, we have
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It:SHI_IQ

The Deligne-Lusztig variety for Lk, decompose accordingly as the following product
Xyt (wy) = XE (i) x X0 ().

The variety X§ (id) is just a point, whereas X ;2”1(‘7) (;) is a Deligne-Lusztig variety for the
unitary group of size 2t+1. We observe that the permutation w; is a Coxeter element in Gy 1,
ie. the product of exactly one simple reflexion for each orbit of the Frobenius. Deligne-Lusztig
varieties attached to Coxeter elements are called Coxeter varieties, and their cohomology
with coefficients in Q, where ¢ is a prime number different from p are well understood thanks
to the work of Lusztig in [Lus76]. Before stating the results of loc. cit. we recall parts of the
representation theory of finite unitary groups.

2.2 Irreducible unipotent representations of the finite unitary group

2.2.1 In this section, we recall the classification of the irreducible unipotent representations
of the finite unitary group and we explain the underlying combinatorics.
We use the notations from 2.1.1. For w € W, let w be a representative of w in the normalizer
Ng(T) of T. By the Lang-Steinberg theorem, one can find g € G such that w = g~ 'F(g).
Then 9T := gTg ! is another F-stable maximal torus, and w € W is said to be the type of 9T
with respect to T. Every F-stable maximal torus arises in this manner. According to [DL76]
Corollary 1.14, the G-conjugacy class of 9T only depends on the F-conjugacy class of the image
w of the element g~ 'F(g) € Ng(T) in the Weyl group W. Here, two elements w and w’ in W
are said to be F-conjugates if there exists some element u € W such that w = uw'F(u) L.
For every w € W, we fix T,, an F-stable maximal torus of type w with respect to T. The
Deligne-Lusztig induction of the trivial representation of T, is the virtual representation of G
defined by the formula

Ry i= Y (~DH(Xg(w)

i=0

where Xg(w) is a Deligne-Lusztig variety for G as defined in 2.1.2. According to [DL76]
Theorem 1.6, the virtual representation R, only depends on the F-conjugacy class of w in W.
An irreducible representation of G is said to be unipotent if it occurs in R, for some w € W.
The set of isomorphism classes of unipotent representations of G is usually denoted £(G,1)
following Lusztig’s notations.

2.2.2  Assume that the Coxeter graph of the reductive group G is a union of subgraphs of
type A,, (for various m). Let W be the set of isomorphism classes of irreducible representations
of its Weyl group W. The action of the Frobenius F' on W induces an action on \\7\7, and we
consider the fixed point set WF. Then, the following classification theorem is well known.

Theorem ([LS77] Theorem 2.2). There is a bijection between WP and the set of isomorphism

classes of irreducible unipotent representations of G = GF.
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We recall how the bijection is constructed. If V e W7 is an irreducible F-stable representation
of W, according to loc. cit. there is a unique automorphism F of V of finite order such that

R(V) := L Z Trace(w o F'| V) Ry,
W S

is an irreducible representation of G. Then the map V — R(V') is the desired bijection.

In the case G = GL,, with the Frobenius morphism F' being either standard or twisted (ie.
G = GL,(q) or U,(q)), we have an equality WP = W. Moreover, the automorphism F is
the identity in the former case and multiplication by wy on the latter, where wy is the element
of maximal length in W. Thus, in both cases the irreducible unipotent representations of G
are classified by the irreducible representations of the Weyl group W ~ &,,, which in turn are
classified by partitions of n or equivalently by Young diagrams. We now recall the underlying
combinatorics behind the representation theory of the symmetric group. A general reference is

[Jam&4].

2.2.3 A partition of n is a tuple A = (A\; = ... > \.) with r > 1 and the \;’s are positive
integers such that A\ + ... + A, = n. The integer n is called the length of the partition and
it is also denoted by |A|. If a partition has a series of repeating integers, it is common to
write it shortly with an exponent. For instance, the partition (3,3,2,2,1) of 11 will be denoted
(3%,22,1). Partitions of n are naturally identified with Young diagrams of size n. The diagram
attached to A has r rows consisting successively of A, ..., A\, boxes.

To any partition A of n, one can naturally associate an irreducible representation y, of the
symmetric group &,,. An explicit construction is given, for instance, by the notion of Specht
modules as explained in [Jam84] 7.1. In particular, the character x(, is trivial while the

character x(;») is the signature.

2.2.4  We recall the Murnaghan-Nakayama rule which gives a recursive formula to evaluate
the characters x,. We first need to introduce skew Young diagrams. Consider a pair A and p
of two partitions respectively of integers n + k and k. Assume that the Young diagram of pu
is contained in the Young diagram of A. By removing the boxes corresponding to p from the
diagram of ), one finds a shape consisting of n boxes denoted by A\u. Any such shape is called
a skew Young diagram of size n. It is said to be connected if one can go from a given box
to any other by moving in a succession of adjacent boxes.

For example, consider the partition A = (32,22, 1) and let us define the partitions p; = (22),
pe = (3,12?) and uz = (2,1). The diagrams below correspond, from left to right, to the skew
Young diagrams \\u; for i = 1,2, 3.
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The skew Young diagram A\p; is not connected, whereas the others are connected. A skew
Young diagram is said to be a border strip if it is connected and if it does not contain any
2 x 2 square. The height of a border strip is defined as its number of rows minus 1. For
instance, among the three skew Young diagrams above only A\us is a border strip. Its size is
6 and its height is 3.

The characters y, are class functions, so we only need to specify their values on conjugacy
classes of the symmetric group &,. These conjugacy classes are also naturally labelled by
partitions of n. Indeed, up to ordering any permutation o € &,, can be uniquely decomposed
as a product of r > 1 cycles ¢y, ..., ¢, with disjoint supports. We denote by v; the cycle length
of ¢; and we order them so that 14 > ... > v,.. We allow cycles to have length 1, so that the
union of the supports of all the ¢;’s is {1,...,n}. Thus, we obtain a partition v = (v4,...,v,)
of n which is called the cycle type of the permutation o. Two permutations are conjugates in
S,, if and only if they share the same cycle type. We denote by xa(v) the value of the character
X on the conjugacy class labelled by v.

Theorem (Murnaghan-Nakayama rule). Let A\ and v be two partitions of n. We have

xa(v) = Z(—l)ht(s)XA\S(V\V1)>
5
where S runs over the set of all border strips of size vy in the Young diagram of X\, such that
removing S from A gives again a Young diagram. Here, the integer ht(S) € Zsq is the height of
the border stip S, the Young diagram X\S is the one obtained by removing S from X, and v\,

is the partition of n — vy obtained by removing vy from v.

Applying the Murnaghan-Nakayama rule in successions results in the value of x,(v). We see
in particular that x(,) is the trivial character whereas x(i» is the signature. We illustrate the
computations with A = (3%,2%2 1) and v = (42,3). There are only two elligible border strips of

size 4 in the diagram of A\, as marked below.

and
X | %
X X
X | x X
X

Both border strips have height 2. Thus, the formula gives

X(32,22,1)(42» 3) = X(32,1)<47 3) + X(3,14)<47 3)-

In each of the two Young diagrams obtained after removal of the border strips, there is only
one elligible strip of size 4, and eventually the three last remaining boxes form the final border
strip of size 3.
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X | X[ X X | X [ X
— ——
X | X[ X X
X X
X
X

Taking the heights of the border strips into account, we find

X(32,1)(473) = —X(S)(3) = —Xg = -1, X(3,14)(473) = —X(3)(3) = —Xg = —1.

Here, & denotes the empty partition. The computation finally gives X(32,22,1)(42> 3) = —2.

2.2.5 The irreducible unipotent representation of U, (q) (resp. GL,(q)) associated to x, by
the bijection of 2.2.1 Theorem is denoted by p} (resp. p§%). The partition (n) corresponds to
the trivial representation and (1) to the Steinberg representation in both cases. We will omit
the superscript when the group we are talking about is clear from the context.

The degrees of the representations p* and pY are given by expressions known as hook for-
mula. Given a box [ ]in the Young diagram of A, its hook length A([_]) is 1 plus the number
of boxes lying below it or on its right. For instance, in the following figure the hook length of

every box of the Young diagram of A = (32,22, 1) has been written inside it.

=N | Ot

=Wl

Proposition ([GP00] Propositions 4.3.1 and 4.3.5). Let A = (A\; = ... = \,) be a partition of
n. The degrees of the irreducible unipotent representations pS& and pY, respectively of GL,(q)
and U,(q), are given by the following formulas

[[ind—1 \) [[ind — (=1)

deg(p§") = ¢ : deg(py) = ¢ :
A [ O -1 A [Ter O — (-0

where a(X) = Y (i — 1)\

2.2.6  Werecall from [GM20] 3.1 and 3.2 some definitions on classical Harish-Chandra theory.
A parabolic subgroup of G is a subgroup P < G such that there exists an F-stable parabolic
subgroup P of G with P = P, A Levi complement of G is a subgroup L < G such that
there exists an F-stable Levi complement L of G, contained inside some F-stable parabolic
subgroup, such that L = L. Any parabolic subgroup P of G has a Levi complement L.

Let L = L¥ be a Levi complement of G inside a parabolic subgroup P = P¥. Let U = U¥ be
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the F-fixed points of the unipotent radical U of P. The Harish-Chandra induction and
restriction functors are defined by the following formulas.

R¢_p : Rep(L) — Rep(C) *RY_p : Rep(C) — Rep(L)
o+ C[G/U) @y 0 p — Homg(C[G/U]. p)

Here, Rep(G) is the category of complex representations of GG, and similarily for Rep(L). These
two functors are adjoint, and up to isomorphism they do not depend on the choice of the
parabolic subgroup P containing the Levi complement L. For this reason, we will denote the
functors R¢ and *RY instead.

An irreducible representation of G is called cuspidal if its Harish-Chandra restriction to any
proper Levi complement is zero. We consider pairs (L, X)) where L is a Levi complement of
G and X is an irreducible representation of L. We define an order on the set of such pairs
by setting (L, X) < (M,Y) if L ¢ M and if X occurs in the Harish-Chandra restriction of Y
to L. A pair is said to be cuspidal if it is minimal with respect to this order, in which case
X is a cuspidal representation of L. If (L, X) is a cuspidal pair, we will denote by [L, X] its
conjugacy class under G.

Given a cuspidal pair (L, X) of G, its associated Harish-Chandra series £(G, (L, X)) is
defined as the set of isomorphism classes of irreducible constituents in the induction of X to
G. Each series is non empty. Two of them are either disjoint or equal, the latter occuring if
and only if the two cuspidal pairs are conjugates in G. Thus, the series are indexed by the
conjugacy classes of cuspidal pairs [L, X]. Moreover, the isomorphism class of any irreducible
representation of GG belongs to some Harish-Chandra series. Thus, Harish-Chandra series form
a partition of the set of isomorphism classes of irreducible representations of G. If p is an
irreducible representation of GG, the conjugacy class [L, X'| corresponding to the series to which
p belongs is called the cuspidal support of p. If T denotes a maximal torus in G, then the
series £(G, (T, 1)) is called the unipotent principal series of G.

2.2.7 For the general linear group GL,(¢), there is no unipotent cuspidal representation
unless n = 1, in which case the trivial representation is cuspidal. Moreover, the unipotent
representations all belong to the principal series. The situation for the unitary group is very
different. First, by [Lus77] 9.2 and 9.4 there exists an irreducible unipotent cuspidal represen-
tation of U, (q) if and only if n is an integer of the form n = @ for some x > 0, and when
that is the case it is the one associated to the partition A, := (z,z —1,...,1), whose Young
diagram has the distinctive shape of a reversed staircase. Here, as a convention Uy(q) denotes
the trivial group.

For example, here are the Young diagrams of Aj, Ay and Ajz. Of course, the one of A, the

empty diagram.
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Furthermore the unipotent representations decompose non trivially into various Harish-Chandra
series, as we recall from [GM20] 4.3.

We consider an integer x > 0 such that n decomposes as n = 2a + @ for some a = 0.
We also consider the standard Levi complement L, ~ GL;(¢?)* x U+ (¢) which corresponds
to the choice of simple reflexions s,11,...,8,¢—1. We write p, for t2he inflation of pgw to an
irreducible representation of L,. Then £(U,(q),1) decomposes as the disjoint union of all the
Harish-Chandra series £(U,(q), (L., p.)) for all possible choices of . With these notations, the

principal unipotent series corresponds to x = 0 if n is even and to x = 1 if n is odd.

2.2.8 Given an irreducible unipotent representation py of U,(q), there is a combinatorical
way of determining the Harish-Chandra series to which it belongs. We consider the Young
diagram of \. We call domino any pair of adjacent boxes in the diagram. It may be either ver-
tical or horizontal. We remove dominoes from the rim of the diagram of X so that the resulting
shape is again a Young diagram, until one can not proceed further. This process results in the
Young diagram of the partition A, for some x > 0, and it is called the 2-core of . It does not
depend on the successive choices for the dominoes. Then, the representation p, belongs to the
series £(U,(q), (Ls, pz)) if and only if A has 2-core A,.

For instance, the diagram A = (32,22 1) has 2-core Aj, as it can be determined by the fol-
lowing steps. We put crosses inside the successive dominoes that we remove from the dia-
gram. Thus, the unipotent representation p, of Uj;(q) belongs to the unipotent principal series

E(Un1(q), (L1, p1))-

2.3 Computing Harish-Chandra induction of unipotent representa-
tions in the finite unitary group

2.3.1 In this paragraph, we recover the notations from 2.1.1. We recall from [GM20] 3.2
how Harish-Chandra induction of unipotent representations can be explicitely computed. Let
W = W be the Weyl group of G. It is still a Coxeter group, whose set of simple reflexions S
is identified with the set of F-orbits on S. Let (L, X) be a cuspidal pair of G. The relative
Weyl group of L is given by Wg(L) := Ng(L)¥'/L < W. The relative Weyl group of the
pair (L, X)), also called the ramification group of X in [HL83], is the subgroup Wg (L, X)
of W (L) consisting of elements w such that wX ~ X, where wX denotes the representation
wX (g) := X(wgw™") of L. Tt is yet again a Coxeter group if G has a connected center or if X
is unipotent.

Theorem 3.2.5 of [GM20] establishes an isomorphism between the endomorphism algebra of the
induced representation RY(X) and the complex group ring of the ramification group Wg(L, X).
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In particular, this gives an bijection between the Harish-Chandra series £(G, (L, X)) and the
set Irr(We (L, X)) of isomorphism classes of irreducible complex characters of We (L, X'). These
bijections for G' and for various Levi complements in G can be chosen to be compatible with
Harish-Chandra induction. This is known as Howlett and Lehrer’s comparison theorem which
was proved in [HL83].

Theorem ([GM20] Comparison Theorem 3.2.7). Let (L, X) be a cuspidal pair for the finite
group of Lie type G. For every Levi complement M in G containing L, the bijection between
Irr(Wa (L, X)) and E(M, (L, X)) can be taken so that the diagrams

ZE(G, (L, X)) —— ZIrr(We(L, X)) ZE(G, (L, X)) ——— ZIrr(We(L, X))
R%T Tlnd *R‘fdl J/Res
ZE(M, (L, X)) ——— ZIrr(Wy (L, X)) ZE(M, (L, X)) ——— ZIrr(Wy (L, X))

are commutative. Here, Ind and Res on the right-hand side of the diagrams are the classical
induction and restriction functors for representations of finite groups.

In other words, computing Harish-Chandra induction and restrictions of representations in G
can be entirely done at the level of the associated Coxeter groups. In order to use this statement
for unitary groups, we need to make the horizontal arrows explicit and to understand the
combinatorics behind induction and restriction of the irreducible representations of the relevant
Coxeter groups. This has been explained consistently in [F'S90] for classical groups.

2.3.2 We focus on the case of the unitary group. Let z > 0 such that n = 2a + @ for
some a > 0. We consider the cuspidal pair (L, p,) as in 2.2.7, with L, = GL;(¢*)* x U@+ (q).
The relative Weyl group Wy, (q)(Lz) is isomorphic to the Coxeter group of type B,, Wflich is
usually denoted by W,. Indeed, the Weyl group Wy, (o) (L) admits a presentation by elements

01,...,0._1 and 6 of order 2 satisfying the relations
Oo001 = 010010, Oo; = 0,0, V2<i<m-—1.
0i0i410; = 0i1100441, 0;0j = 004, Vi—j| =2

Explicitely, the element o; is represented by the permutation matrix of the double transposition
(i i+ 1)(n—14i n—1i+1) and the element 6 by the matrix of the transposition (1 n), all
of which belong to Ny, q(Lz). This presentation coincide with the Coxeter group W, of type
B, see in [GP00] 1.4.1. Moreover, the ramification group Wy, (g)(La, pz) is equal to the whole
of Wy, (¢)(Lz) =~ W,. The identification between the ramification group and the Coxeter group
W, is naturally induced by the isomorphism between the absolute Weyl group W and the
symmetric group &,,. In order to proceed further, we need to explain the representation theory
of the group W,.

2.3.3 Let W, be a Coxeter group of type B, given with a presentation by elements oy, ...,0,_1
and 6 satisfying equations as in 2.3.2. For 1 <i < a — 1, we define §; = 0;...01001...0;. In
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particular 6, = 6. Following [GP00] 3.4.2, we define signed blocks to be elements of the
following form. Given k > 0 and e > 1 such that k + e < a, the positive (resp. negative) block
of length e starting at k is

b;ie = Ok+10k42 - - - Ok+te—1, b;e = O0p0k410k42 - - - Okge1-
A bipartition of a is an ordered pair («, 5) where « is a partition of some integer 0 < j < a
and f is a partition of a — j. Given a bipartition («, 5) of a and writing o = («, ..., q,) and

B =(B1,...,08s), we define the element

o - g+ +
wa76 . — bklaﬁl e bk57ﬁsbks+laal e ks+7‘7a’r

where k1 = 0, ki = ki + g if 1l <@t < sand kiyg =k +a;_sifs+1 <i<s+7r—1.
In particular, we have k,,s + a,. = a. According to [GP00] Proposition 3.4.7, the conjugacy
classes in W, are labelled by bipartitions of a, and a representative of minimal length of the
conjugacy class corresponding to the bipartition («, ) is given by w, g. Thus, the irreducible
representations of W, can be labelled by bipartitions of a as well. An explicit construction of
these irreducible representations is given in [GP00] 5.5. We will not recall it, however we may
again give a method to compute the character values, similar to the Murnaghan-Nakayama
formula. The character of the irreducible representation of W, associated in loc. cit. to the
bipartition («, 5) of a will be denoted x4 5. If (7,d) is another bipartition of a, we denote by
Xa,8(7,6) the value of the character x, g on the conjugacy class of W, labelled by (7, 9).

One can think of a bipartition («, §) of a as an ordered pair of two Young diagrams of combined
size a. A border strip of a bipartition (a, 3) is a border strip either of the partition « or of
B. The height of a border strip is defined in the same way.

Theorem ([GP00] Theorem 10.3.1). Let («, 5) and (7, d) be two bipartitions of a. If v = &,
let € =1 and let x be the last integer in the partition v. If v = &, let €e = —1 and let x be the
last integer of the partition 6. We have

Xas(1,0) = D (1) efsx 0 an (7, 0)\a),
S

where S runs over the set of all border strips of size x in the bipartition (a, B), such that re-
moving S from («, B8) gives again a pair of Young diagrams. Here, the pair of Young diagrams
(c, B)\S is the one obtained after removing S, and (v,8)\x is the bipartition obtained by re-
moving x from (v, 98). Eventually, the integer fs is 0 if S is a border strip of a, and it is 1 if
S is a border strip of (.

Applying this formula in successions results in the value of x(4,g)(7,6). In particular, one sees
that x(a),z is the trivial character and xg (10) is the signature character of W,. We illustrate
the computations with (a, 8) = ((3,1?),(4,2)) and (v,d) = ((4), (5,2)). There is only elligible
border strip of size 4 in the pair of diagrams («, 3), as marked below.
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This border strip S has height 1. It was taken in the diagram of 5 so fg = 1. Since v = & we
have € = 1. Applying the formula, we obtain

X(3,12),4,2)((4), (5,2)) = —=x(3,12),12) (T, (5, 2)).

We are now looking for border strips of size 2 in the pair of diagrams of the bipartition
(3,1%), (12). Three of them are eligible, as marked below.

, and , and X ,

These three border strips have respective heights 1,0 and 1. The corresponding values of fg
are respectively 1, 0 and 0. Moreover, the partition ~ is now empty so € = —1. The formula
gives

X(3.12),02) (T, (5,2)) = X3.12),5(F, (5)) + X3),02) (T, (5)) — X(3),12) (T, (5))-

In the bipartitions ((1?),(1%)) and ((3),(1%)) there is no border strip of size 5 at all. Thus,
the formula tells us that the corresponding character values are 0. On the other hand, the
bipartition ((3,1%), &) consists of a single border strip of size 5 and height 2. The formula gives

X120, (5) = xg = 1.

Putting things together, we deduce that x(312y,12)((4),(5,2)) = —1.

2.3.4 We may now describe the horizontal arrows in 2.3.1 Theorem for the unitary group.
To do this, we need an alternate labelling of the irreducible unipotent representations of the
unitary group. We refer to [FS90] for the details.

The new labelling of the irreducible unipotent representations of U, (gq) involves triples of the
form (A,, o, 8) where x is a nonnegative integer such that n = 2a+@ for some integer a = 0,
and where (o, §) is a bipartition of a. The corresponding representation will be denoted pa, o -
With this labelling, the unipotent Harish-Chandra series £(U,(q), (L., p.)) consists precisely
of all the representations pa, o3 with (a, 8) varying over all bipartitions of a. The bijection
ZE(Un(q), (Ly, ps)) — ZIrr(Wy,,(g)(Ls, ps)) involved in the Comparison theorem simply sends
PA.a8 1O Xa. Here, we made use of the identification Wy, (g)(Lg, pz) =~ W, as in ?7.

More generally, if M is a standard Levi complement in U,(¢q) containing L,, we may write
M =~ Uy(q) x GLg, (¢%) % ... x GLq4,(¢%) where n = 2(a; + ... +a,) + b and b > @ The
irreducible unipotent representations of M in the Harish-Chandra series £(M, (L., p.)) are
those of the form pa, o pf\;lL . pf} where ); is a partition of a; for 1 < ¢ < r and
(a, B) is a bipartition of the integer ¢ := % (b — @ . On the other hand, the relative Weyl
group Wy(Ly, pz) can be identified with the subgroup of Wy, (g)(Laz, pz) =~ W, isomorphic to
the product W, x &,, x ... x &,, (note that ¢+ a; + ...+ a, = a). With the notations of
2.3.2, the W, component is generated by the elements 6, 0y,...0.1, the &,,-component by

the elements ooy ..., 0014,-1, and so on. Irreducible characters of Wy, (L,, p,) have the shape
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Xa,s X X2 X ... X xa, Where (o, 3) is a bipartition of ¢ and ); is a partition of a; for 1 <i <.
Then, according to [FS90] (4.2), the bijection ZE(M, (L, p.)) — ZIrr(Wyy(Ly, p,)) involved in
the Comparison theorem in 2.3.1 sends pa, a8 X pS5 B ... B p§Y 60 Xays B xa, K. .. K X, -

2.3.5 We explain how the two different labellings of the irreducible unipotent representations
of U, (q) are related. To do this, one needs the notion of 2-quotient. For the following definitions,
we allow partitions to have 0 terms at the end. Thus, let us write A = (A, > ... > \,) with
A = 0. The (-set of ) is the sequence of decreasing nonnegative integers 5; := \; + r — i for
1 < i < r. Mapping a partition A to its f-set gives a bijection between the set of partitions
having r terms and the set of decreasing sequences of nonnegative integers of length r. The
inverse mapping sends a sequence (51 > ... > [, = 0) to the partition A given by \; = 8;+i—r.
Let A be a partition of n as above, and let § be its S-set. We let Seven (resp. Poaqa) be the
subsequence consisting of all even (resp. odd) integers of 5. Then, we define the following

50 = (% Bz € Beven) 51 = <5Z2_ ! ‘ﬁz € ﬁodd)

sequernces.

The sequences £° and 3! are the 3-sets of two partitions, which we call ;4 and p' respectively.
Then, the 2-quotient of \ is the bipartition (u°, p') if 7 is odd, and (u!, u°) if 7 is even. We
note that the ordering of u° and p' in the 2-quotient may vary in the literature. Here, we
followed the conventions of [FS90] section 1. A different ordering is used in [Jam84] 2.7.29.
In loc. cit. Theorem 2.7.37, another construction of the 2-quotient using Young diagrams is
proposed.

Let X be another partition which differs from A only by 0 terms at the end. While the [-sets
of A and X are not the same, the resulting 2-quotients are equal up to 0 terms at the end of
the partitions. Thus, from now on we identify all partitions differing only from 0 terms by
removing all of them. The 2-quotient of a partition is then well-defined.

Theorem ([Jam84] Theorem 2.7.30). A partition X is uniquely characterized by the data of its
2-core A, and its 2-quotient (\°, \'). Moreover, the lengths of these partitions are related by
the equation

AL = 1A +2(]A° + [AT])

and |A;| = @

For instance, the 2-quotient of the partition A = (32,22 1) is (22,1). Recall that the 2-core of \ is
Ay. Thus, the equation on the lengths of the partitions is satisfied, as we have 11 = 1+2(4+1).
We may now relate the two labellings {p}} and {pa, s} of the irreducible unipotent represen-
tations of U, (q) together.

Proposition ([FS90] Appendix). Let X\ be a partition of n. Denote by A, its 2-core and by
(A%, \Y) its 2-quotient. On the other hand, let x = 0 be such that n = 2a + @ for some
a =0 and let (o, B) be a bipartition of a. Then the irreducible representations pY{ and pa, ap
are equivalent if and only if x =y and (\°, \') = (o, B) if z is even or (A\°, \1) = (B, ) if = is
odd.
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For instance, for A = (32,22, 1) the representation pf is equivalent to pa, (1,(22)-

2.3.6 In order to apply the comparison theorem 2.3.1 for unitary groups, it remains to un-
derstand how to compute inductions in Coxeter groups of type B. Such computations are
carried out in [GP00] Section 6.1. It turns out that we will only need one specific case of such

inductions, and the corresponding method is known as the Pieri rule for groups of type B.

Proposition ([GP00] 6.1.9). Let a = 1 and consider r,s = 0 such that r + s = a. We think of
the group W, x &y as a subgroup of W, as in 2.3.4.

— Let (o, B) be a bipartition of r. Then the induced character

Ind%:xgs (X(a5) B X(s))

is the multiplicity-free sum of all the characters x.s such that for some 0 < k < s, the
Young diagram of v (resp. &) can be obtained from that of a (resp. B) by adding k bozxes
(resp. s — k bozxes) so that no two of them lie in the same column.

— Let (v,0) be a bipartition of a. The restricted character

Res%: (X'y,é)

is the multiplicity-free sum of all the characters x(ap) such that for some 0 < k <'s, the
Young diagram of v (resp. () can be obtained from that of v (resp. §) by deleting k bozxes
(resp. s — k boxes) so that no two of them lie in the same column.

We will use this rule on concrete examples in the sections that follow.

2.4 The cohomology of the Coxeter variety for the unitary group

2.4.1 In this section, we describe the cohomology of the Coxeter varieties for the unitary
groups in odd dimension in terms of the classification of unipotent representations that we
recalled in the previous section. The cohomology groups are entirely understood by the work
of Lusztig in [Lus76].

Let ¢t = 0. The Coxeter variety for Us1(q) is the Deligne-Lusztig variety X (cox), where
cox is any Coxeter element of the Weyl group W ~ Gy, 1. Recall that a Coxeter element is a
permutation which can be written as the product, in any order, of exactly one simple reflexion
for each F-orbit on S. The variety X (cox) does not depend on the choice of the Coxeter
element. It is defined over 2 and is equipped with commuting actions of both Uy, 1(g) and
F2,

Notation. We write X' = X (cox) for the Coxeter variety attached to the unitary group
Uasy1(q). We also write H2(X?) instead of H2(Xg(cox) @ F, Q), where £ = p.

We first recall known facts on the cohomology of X! from Lusztig’s work.

Theorem ([Lus76]). The following statements hold.
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(1) The variety X has dimension t and is affine. The cohomology group HLT(X?) is zero

unless 0 <@ < t.
(2) The Frobenius F?* acts in a semisimple manner on the cohomology of X*.

(3) The group H*(X") is 1-dimensional, the unitary group Usyy1(q) acts trivially whereas F?

has a single eigenvalue ¢*.

(4) The group HY(X?') for 0 < i < t is the direct sum of two eigenspaces of F?, for the
eigenvalues ¢* and —q**'. Each eigenspace is an irreducible unipotent representation of

U2t+1(q)-

(5) If 0 < a < 2t, the dimension of the eigenspace of (—q)* inside the sum Y, HIF(X?) is

given by the formula
2t—a gt — (_1)a+j

(2t—a)(2t+1—a)
e .
o@ (=

(6) The sum Y, o HEP(X") is multiplicity-free as a representation of Usy1(q).

2.4.2 We wish to identify these unipotent representations of Usgy1(q) occuring in the coho-
mology of X!, To this purpose, we start by defining the following partitions. If 0 < a < 2t, we
put AL := (1 + a,1%77). Note that \j = (12*™!) and A}, = (2t + 1).

Lemma. For 0 <i <t, the 2-core of \,; 1s Ay and its 2-quotient is ((1'7°), (4)).
For 0 <i <t, then the 2-core of Ny;.| is Do and its 2-quotient is ((7), (1*7"71)).

In particular, according to 2.3.5 the irreducible unipotent representation py: of Usir1(q) is

equivalent to the representation pa, (),1t-+), and Prs;,, 0 Py (i), (1t-i-1)-

Proof. The Young diagram of the partition A! has the following shape.

The first row has an odd number of boxes when a is even, and an even number of boxes when
a is odd. To compute the 2-core, one removes horizontal dominoes from the first row, right to
left, and vertical dominoes from the first column, bottom to top. The process results in A
when a is even and A, when a is odd.

The partition A has 2¢ + 1 — a non zero terms. Its -set is given by the sequence

f=2t+1,2t—a,2t—a—1,...,1).
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Assume that a = 2i is even. Then the sequences £° and ' are given by
B=(t—it—i—1,...1), Bl=@tt—i-1,t—i—2,...,0).

The sequence 8° has length ¢t — i while 8! has length ¢ — ¢ + 1. The associated permutations
are then respectively po = (1'7%) and p; = (4). Since 2t + 1 — a is odd, the 2-quotient is given
by (10, 111) as claimed.

Assume now that a = 2i + 1 is odd. Then the sequences $° and 8! are given by

B=t—i—1,t—i—-2,...1), Bl=tt—i—-1,t—i—2,...,0).

The sequence 3° has length ¢ —i — 1 while 8! has length t —i + 1. The associated permutations
are then respectively g = (17°"1) and p; = (i). Since 2t + 1 — a is even, the 2-quotient is
given by (1, po) as claimed. O

2.4.3 We may now identify the irreducible unipotent representations occuring in the coho-

mology of the Coxeter variety X*.

Proposition. For 0 <1 < t, the cohomology group of the Coxeter variety for the finite unitary
group Usy11(q) is given by

H." (X)) = pag, @ g,
with the first summand corresponding to the eigenvalue ¢** of F? and the second to —g**!.

Moreover, HZ'(X") = pyy, with eigenvalue ¢*.

Before going to the proof, one may notice that the statement is consistent with the dimensions.
Indeed, the formula given in 2.4.1 Theorem (5) coincides with the hook formula for the degree
of the representation pE\Jt given in 2.2.5 Proposition.

Proof. First, the statement on the highest cohomology group H*(X?*) follows from 2.4.1 The-
orem (3). It is the only cohomology group in the case ¢ = 0. We will prove the formula by
induction on t. Let us now assume t > 1 and that the proposition is known for ¢ — 1. If
0 <i<t—1, we know that H,*/(X") is the sum of two irreducible unipotent representations.

So let us write
Hi+i(Xt) = Pu; @ Pv;

where p; and v; are two partitions of 2¢ + 1, and so that p,, corresponds to the eigenvalue ¢*
of F? whereas p,, corresponds to —g***.

We consider the standard Levi complement L ~ GL;(¢?) x Uy_1(q) < Usgsy1(q). Let V denote
the unipotent radical of the standard parabolic subgroup containing L. According to [Lus76]
Corollary 2.10, one can build a geometric isomorphism between the quotient variety X*/V and
the product of the Coxeter variety for L and of a copy of G,,. Even though this geometric
isomorphism is not L-equivariant, Lusztig proves that the induced map on cohomology is L-
equivariant. By a discussion similar to that in 2.1.10, the Coxeter variety for L is isomorphic
to the Coxeter variety X'~ for Uy_1(q). We write *R}_; for the composition of the Harish-

Chandra restriction from Usgyq(q) to L, with the usual restriction from L to the subgroup
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Uy 1(q). For any nonnegative integer i, the Uy _(q), F%-equivariant induced map on the

cohomology is an isomorphism
*Ri—l (HZJrz(Xt)) ~ Hifl+i(Xt71) D Hifl+(ifl)(Xt71)<1). (**>

Here, (1) denotes the Tate twist (the action of F? on a twist M (n) is obtained from the action
on the space M by multiplication with ¢**). The right-hand side of this identity is given by
the induction hypothesis. Let us look at the left-hand side.

We fix 0 < ¢ < t—1 and we denote by (A,, o, ) and by (A,,7, ) the alternative labelling of the
representations p,, and p,, respectively as introduced in 2.3.4 and 2.3.5. By the Howlett-Lehrer
comparison theorem for restriction in 2.3.1 and by the Pieri rule in 2.3.6, we know that the
restriction *R!_; (pa, ) is the multiplicity-free sum of all the representations pa, o g where
the bipartition («/, 5) can be obtained from («a, #) by removing exactly one box, of either « or
. The similar description also holds for *R}_; (pa, )

By using 2.4.2 Lemma and the induction hypothesis, we may write down the identity ()
explicitely. Moreover, as it is F?-equivariant we can identify the components corresponding to
the same eigenvalues on both sides. We distinguish 4 different cases depending on the values

of t and 3.

— Case t = 1. We only need to consider i = 0. On the right-hand side of (xx), the second

term is 0 because t—1+(i—1) = —1 < 0. On the other hand, the first term is pyg ~ pa, g,z
and it corresponds to the eigenvalue (—¢)° = 1. By identifying the eigenspaces, we have
*Re (Pas.a,8) = panz,o and *R (pa,.6) = 0. The second equation implies that there is
no box to remove from + nor from §. Thus, v = § = J. The value of y is given by the
relation 2t + 1 =3 =2(0+0) + w, that is y = 2. This corresponds to the partition
vp = A}. We notice in passing that the representation p,, is the unique unipotent cuspidal
representation of Us(q).
As for pg, the equation *R{ (pa,.a.5) ~ pa,.z.z tells us that there is only one removable
box from («, 3). After removal of this box, both partitions are empty. Thus, we deduce
that z = 1 and (o, 8) = (1,) or (F,1). This corresponds respectively to g = A} or
po = Ay That is, p,, is either the trivial or the Steinberg representation of Uz(g). We can
deduce which one it is by comparing the degree of the representations with the formula of
2.4.1 Theorem (5). According to this formula, the dimension of the eigenspace for (—g)°
is ¢3. This is precisely the degree of the Steinberg representation pxy as given by the hook
formula in 2.2.5 Proposition, and it excludes the possibility of p,, being trivial. Thus, we
have pig = A} as claimed.

From now, we assume t > 2.

— Case i = 0. On the right-hand side of (+x), the second term is 0 because t — 1+ (i —1) =
t —2 <t —1. The first term is Pat=1 @ Pat=1 = pay,gr1t-1) @ Pag,z,(1t-2)- Identifying the
eigenspaces, we have *Rl_; (pa,.a3) = payg -1 and *RE_; (pa,.6) = pag,g,ai-2). We
deduce that x = 1 and y = 2. Moreover, it also follows that there is only one removable

box in (a, 8) and in (v, ). After removal, we should obtain respectively (&, (1°71)) and
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(5, (1172)). The only possibility is that (o, 8) = (&, (1*)) and (v,0) = (&, (17)). This
corresponds to pg = A) and vy = A} as claimed.

— Case i =t — 1. On the right-hand side of (xx), the first term is PALL, = PALGE-1).2 and
the second term is PALL,, @p)\é(i?m =~ pAyLt—2),1)DPas,—2),- Identifying the eigenspaces
while taking the Tate twist into account, we have *R}_; (pa,.a,8) = Pa,(t—1).0DPPAL,(t—2).1)
and *R!_; (pa,4.5) = pas,t—2).0- We deduce that = 1 and y = 2. Moreover, there are
two removable boxes in («, ) and only one removable box in (v,d). After removal of
one of the two boxes in (a, ), we can get either ((t — 1),) or ((t —2),(1)) ; and
after removal of the box in (v,d) we obtain ((¢ — 2),f). The only possibility is that
(@, 8) = ((t = 1),(1)) and (v,0) = ((t = 1),). This corresponds to -1 = Ay, ) and
Vi1 = )\';(tfl)+1 as claimed.

— Case 1<i<t—2 On the right-hand side of (+x), the first term is py—1 @ pye—1 =

2141

PALG6),(1t-1-7) D Pag,@),at-2-1y. The second term is P @D pye—1 ~ AL Gi—1),1t-1) @

2(i—1)+1
PAs,(i—1),(1t-1-#)- Identifying the eigenspaces while taking the Tate twist into account, we

have *Ri_; (Pas,0,8) = pay i),00-1-) @ Py -1, 00-) and "Ry (pa, 25) = pas 002 @
PAs,(i—1),(1t-1-7)- We deduce that z = 1 and y = 2. Moreover, there are exactly two
removable boxes from (a, 3) and from (v,d). After removal of one of the two boxes in
(a, B), we can get either ((z), (17"17%)) or (( — 1), (1%)) ; and after removal of one of
the two boxes in (7v,d), we can get either ((), (1°27%)) or ((i — 1), (1*"'7%)). The only
possibility is that (a, 3) = ((7), (17%)) and (v,d) = ((¢), (1*"17%)). This corresponds to

pi = Ny, and v; = A, . as claimed.

2.5 The cohomology of the variety X;(id)

2.5.1 We go on with the computation of the cohomology of the variety X;(id). We use the
same notations as in section 1. We first compute the cohomology of each Ekedahl-Oort stratum
X1, (wy), before using the spectral sequence associated to the stratification to conclude.
Recall that X;(id) has dimension d, is defined over Fp and is equipped with an action of
J ~ Usgs1(q). As before, we will write H2(X;(id)) as a shortcut for H2(X;(id) ® F, Q).

Theorem. The following statements hold.

(1) The cohomology group H.(X(id)) is zero unless 0 < i < 2d. There is an isomor-
phism H(X;(id)) ~ H24(X;(id))v (d) which is equivariant for the actions of F? and
of Uszat1(q)-

(2) The Frobenius F? acts like multiplication by (—q)" on H.(X[(id)).

(3) For 0 <i<d we have

min(,d—1)

Hgi(XI(id)): @ P(2d+1—2s5,25)-
s=0
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For 0 <i1<d—1 we have

min(i,d—1—1)

HZN (X () = D ped-2s2ss1)-

s=0

Thus, in the cohomology of X;(id) all the representations associated to a Young diagram with
at most 2 rows occur, and there is no other. Such a diagram has the following general shape.

We may rephrase the result by using the alternative labelling of the irreducible unipotent
representations as in 2.3.5. The partition (2d+ 1 —2s, 2s) has 2-core A; and 2-quotient (&, (d—
s,8)) ; whereas the partition (2d — 2s,2s + 1) has 2-core Ay and 2-quotient ((d — 1 — s, s), ).
Thus, according to 2.3.5 Proposition, we have

P(2d+1-25,25) = PA1,(d—s,s),> P(2d—2s,25+1) = PAs,(d—1—s,s),*

In particular, all irreducible representations in the cohomology groups of even index belong to
the unipotent principal series €(Usq41(q), (L1, p1)), whereas all the ones in the groups of odd
index belong to the Harish-Chandra series £(Usqy1(q), (L2, p2))-

Proof. Point (1) of the statement follows from a general property of the cohomology groups,
namely Poincaré duality. It is due to the fact that X;(id) is projective and smooth. It also
implies the purity of the Frobenius F?2 on the cohomology : we know at this stage that all
eigenvalues of F> on H'(X/(id)) have complex modulus ¢' under any choice of an isomorphism
Q~C.

We prove the points (2) and (3) by explicit computations. As in 2.4.2, we denote by A the
partition (1 + a,1%7%) of 2t + 1. Let 0 <t < d. For 0 < a < 2t we will write

R} = Ry (pfily 6%,

Recall that 2.1.9 Proposition gives an isomorphism between the Ekedahl-Oort stratum X7, (w;)
and the variety Usay1(q)/Uk, X Ly, XII;Kt (wy). Tt implies that the cohomology of the Ekedahl-
Oort stratum is the Harish-Chandra induction of the cohomology of the Deligne-Lusztig variety
XII;Kt (w;). According to 2.1.10, this cohomology is related to that of the Coxeter variety for
Usgi41(g). Combining with the formula of 2.4.3 Proposition, for 0 < i <t — 1 it follows that

HZJri(XIt(wt)) = Réz S Rt2i+17 Hzt(XIt (wt)) = Rgt

The representation R! in this formula is associated to the eigenvalue (—q)® of F.

We first compute R! explicitely. By the combination of the Howhlett-Lehrer comparison theo-
rem in 2.3.1 and the Pieri rule for groups of type B as in 2.3.6, one can compute the Harish-
Chandra induction R! by adding d — ¢ boxes to the bipartition corresponding to the represen-
tation PE\Jg with no two added boxes in the same column. Recall from 2.4.2 Lemma that the
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representation pye. of Ugi11(q) is equivalent to the representation pa, ;) 1t-i), and that P is
equivalent to pa, ) 1t-1-+)-

In order to illustrate the argument, let us say that we want to add N boxes to a bipartition of
the shape as in the figure below, so that no two added boxes lie in the same column.

We will add N; boxes to the first diagram and Ny to the second, where N = Ny + N,. In the
first diagram, the only places where we can add boxes are in the second row from left to right,
and at the end of the first row. Because no two added boxes must be in the same column, the
number of boxes we add on the second row must be at most the number of boxes already lying
in the first row. Of course, it must also be at most Nj.

In the second diagram, the only places where we can add boxes are at the bottom of the first
column and at the end of the first row. Because no two added boxes must be in the same
column, we can only put up to one box at the bottom of the first column and all the remaining
ones will align at the end of the first row.

At the end of the process, we will obtain a bipartition of the following general shape.

We colored in yellow the boxes that were already there before we added new ones. The box
with a question mark may or may not be placed there.
We now make the result more precise, and write down exactly what the irreducible components

of R! are depending on the parity of a.

— For 0 <4 < t, the representation R, is the multiplicity-free sum of all the representations
Pa,.a.p Where the bipartition («, 8) satisfies, for some 0 < z < d —t,

a=(i+x—s,s) for some 0 < s < min(z, 1),

B=(d—-t—z, 1" or (d—t—x+1,1771).

— For 0 < i < ¢t—1, the representation R}, ; is the multiplicity-free sum of all representations
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Pas.a.p Where the bipartition («, 8) satisfies, for some 0 <z < d —t,

a=(i+x—s,s) for some 0 < s < min(z,1),

f=d-t+1—x, 1" " or(d—t+2—z, 1727,
In our notations, we used the convention that the partitions (0) and (1°) are the empty partition
. The integer x corresponds to the number of boxes we add to the first partition. We notice
that if 7 takes the maximal value, there is only one possibility for 8 that is respectively (d—t—x)
in the first case and (d —t + 1 — z) in the second case.
Recall from 2.1.7 that the variety X,(id) is the union of the Ekedahl-Oort strata X, (w;) for

0 <t < d and the closure of the stratum for ¢ is the union of all strata X, (ws) for s < ¢. At the

level of cohomology, it translates into the following F2, Usgy1(q)-equivariant spectral sequence
EY" s He' (X, (wy)) = H{(X(id)).
The first page of the sequence is drawn in the Figure 1, it has a triangular shape.

d
R2d

d—1 d d
R2d—2 R2d—2 S 1:{Zd—l

R? —— — — RIF'@RIT ——— RIORY
R —— RI®R: —— —— RyTORY ——— RIORY
Ry —— R®Rl —— RZOR? —— — — RI'ORITT ——— REORY

Figure 1: The first page of the spectral sequence.

The representation R! corresponds to the eigenvalue (—q)® of F'? as before. The only eigenvalues
of F? on the i-th row of the spectral sequence are ¢* and —¢**!. In particular, the eigenval-
ues on two distinct rows are different. Since the differentials in deeper pages of the sequence
map terms from different rows, their F2-equivariance implies that they vanish. Therefore, the
sequence degenerates on the second page.

Moreover, by the machinery of spectral sequences, for 0 < k < 2d there exists a filtration by
Usgs1(q) x (F*)-modules on H¥(X;(id)) whose graded components are the terms of the second
page lying on the anti-diagonal ¢ +4 = k. Since the group algebra Q;[Usqsy1(q)] is semi-simple,
the filtration splits, meaning that H*(X;(id)) is actually the direct sum of the graded compo-
nents. The purity of H*(X;(id)) then implies that all the terms of the second page lying on the
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anti-diagonal ¢ +14 = k, which are associated to an eigenvalue whose modulus is not equal to ¢*,
must be zero. Therefore, the second page has the shape described in Figure 2. The Frobenius
F? acts via ¢¥ on the term EY’, and via —¢**! on the term E,"™". Point (2) of the Theorem

readily follows.

ES?
E;l—l,d—l Eg,d—l
DS E>! 0 .. 0
ES° E;° 0 0 .. 0

Figure 2: The second page of the spectral sequence.

By the previous computations, we understand precisely all the terms in the first page of the
spectral sequence. The key observation to compute the second page is that two terms on the
first page which lie on the same row, but are separated by at least 2 arrows, do not have any
irreducible component in common. We make the argument more precise in the following two

paragraphs, distinguishing the cohomology groups of even and odd index.
We first compute the cohomology group H*(X;(id)) for 0 < ¢ < d. We look at the following
portion of the first page
Ry — Ry '@ORy, —— RyZ@RGE
By extracting the eigenspaces corresponding to ¢%!, we actually have the following sequence

t u t+1 v t+2
RS, > Ry, » Ro; = .

The representation R, is the sum of all the representations pa, o s where for some 0 < z < d—t
and for some 0 < s < min(z,t), we have a = (t + x — s,5) and f = (d —t — z).

The representation R4 ! is the sum of all the representations pa, .. Where for some 0 < 2’ <
d—t—1 and for some 0 < s < min(2’,t), we have o/ = (t + 2/ — s,s) and f' = (d —t — 2’) or
(d—t—2 —1,1).

The quotient space Ker(v)/Im(u) is isomorphic to the eigenspace of ¢* in ELTY which is zero.
Besides, in the representation R4 all the irreducible components have the shape PALa,gr With

B" a partition of length 2 or 3. In particular, all the representations pa, o g of R5" with 3’ a
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partition of length 1 automatically lie inside Ker(v) = Im(u). Such representations correspond
to all the irreducible components pa, .5 of Rb, having = d — t. Thus, none of them lies in
Ker(u) ~ E5".

The remaining components of R}, are those having x = d — ¢, and they do not occur in the
codomain of u so that they lie in Ker(u). By the previous argument, they must form the whole
of Ker(u).

Thus, we have proved that

min(¢,d—t)

Byt ~ H2(X;(id)) ~ Ker(u) = P payi-ss).0
s=0

and it coincides with the formula of point (3).

We now compute the cohomology group H**1(X;(id)) for 0 < t < d — 1. We look at the
following portion of the first page

t t+1 t+1 t+2 t+2 t+3 t+3
R2t R2t EBf{2t+1 RQt 6_>]R21‘/+1 R’2t ®R2t+l :

2t+1

By extracting the eigenspaces corresponding to —¢“*™*, we actually have the following sequence

t+1 u t+2 v t+3
0 1:{215-1-1 R‘2t+1 R2t+1 :

The representation Rb/!, is the sum of all the representations pa, s where for some 0 < x

d—t—1 and for some 0 < s < min(x,t), we have a« = (t + x — s,s) and = (d — t — x).

N

The representation R/ 2, is the sum of all the representations pa, o Where for some 0 < 7’ <
d—1t—2 and for some 0 < s < min(a2/,t), we have o/ = (t+ 2’ —s,s) and f = (d—t—1—2',1)
or (d—t—u2a).

The quotient space Ker(v)/Im(u) is isomorphic to the eigenspace of —¢**! in E4™>", which is
zero. Besides, in the representation Rgﬁl all the irreducible components have the shape pa, o7 g
with 8" a partition of length 2 or 3. In particular, all the representations pa, s of R5 2, with 3’
a partition of length 1 automatically lie inside Ker(v) ~ Im(u). Such representations correspond

to all the irreducible components pa, o5 of Rh}; having x = d —t — 1. Thus, none of them lies

in Ker(u) ~ Ey™.

The remaining components of R4/, are those having = d — ¢ — 1, and they do not occur
in the codomain of u so that they lie in Ker(u). By the argument above, they must form the
whole of Ker(u).

Thus, we have proved that

min(d—¢—1,t)
By~ PN (X (id) ~ Ker(u) = @D pas(-1-s0.0
s=0
and one may check that it coincides with the formula of point (3). ]
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3 On the cohomology of the basic unramified PEL uni-
tary Rapoport-Zink space of signature (1,n — 1)

Notations

Throughout this section, we fix an integer n > 1 and we write m := [”T’lj so that n = 2m + 1
or 2(m + 1) according to whether n is odd or even. We also fix an odd prime number p. If
k is a perfect field of characteristic p, we denote by W (k) the ring of Witt vectors and by
W (k)q its fraction field, which is an unramified extension of Q,. We denote by oy, : x — 2P the
Frobenius of Gal(k/F,), and we use the same notation for its (unique) lift to Gal(W (k)q/Q,).
If &'/k is a perfect field extension then (ak/)|k = 0y, SO we can remove the subscript and write
o unambiguously instead. If ¢ = p® is a power of p, we write F, for the field with ¢ elements.
In the special case where ¢ = p?, we also use the alternative notation Z,2 = W(F,2) and
Q2 = W(F,2)g. We fix an algebraic closure F of F,,.

3.1 The Bruhat-Tits stratification on the PEL unitary
Rapoport-Zink space of signature (1,n — 1)

3.1.1 The PEL unitary Rapoport-Zink space M of signature (1,n — 1)

3.1.1.1 In [VW11], the authors introduce the PEL unitary Rapoport-Zink space M of sig-
nature (1,n — 1) as a moduli space, classifying the deformations of a given p-divisible group
equipped with additional structures. We briefly recall the construction. Let Nilp denote the
category of schemes over Z,> where p is locally nilpotent. For S € Nilp, a unitary p-divisible
group of signature (1,n — 1) over S is a triple (X, tx, Ax) where

— X is a p-divisible group over S.

~ tx 1 Zy2 — End(X) is a Zje-action on X such that the induced action on its Lie alge-
bra satisfies the signature (1,7 — 1) condition: for every a € Z,2, the characteristic
polynomial of tx(a) acting on Lie(X) is given by

(T — a)l(T — O'(CL))nfl € Zp2 [T] c Os[T].
— Ax : X = "X is a Zy2-linear polarization where *X denotes the Serre dual of X.

The Z,»-linearity of Ax is with respect to the Z,.-actions ¢x and the induced action t:x on the
dual. A specific example of unitary p-divisible group over F,2 is given in [VW11] 2.4 by means
of covariant Dieudonné theory. We denote it by (X, 1x, Ax) and call it the standard unitary
p-divisible group. The p-divisible group X is superspecial. The following set-valued functor
M defines a moduli problem classifying deformations of X by quasi-isogenies. More precisely,
for S € Nilp the set M(S) consists of all isomorphism classes of tuples (X, tx,Ax, px) such
that
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— (X, A\x, px) is a unitary p-divisible group of signature (1,n — 1) over S.

—px X xgS —>X XF Sis a Zy2-linear quasi-isogeny compatible with the polarizations,

in the sense that ‘px o Ax o px is a Q;—multiple of \x.

In the second condition, S denotes the special fiber of S. By [RZ96] Corollary 3.40, this moduli
problem is represented by a separated formal scheme M over Spf(Z,2), called a Rapoport-
Zink space. It is formally locally of finite type, and because the associated PEL datum is
unramified it is also formally smooth over Z,.. The reduced special fiber of M is the
reduced Fj2-scheme M,qq defined by the maximal ideal of definition. By loc. cit. Proposition
2.32, each irreducible component of M,.q is projective. The geometry of the special fiber has
been thoroughly described in [Vol10] and [VW11], and we recall some of their constructions.

3.1.1.2 Rational points of M over a perfect field extension k of F,2 can be understood in
terms of semi-linear algebra by means of Dieudonné theory. We denote by M (X) the Dieudonné
module of X, this is a free Z,-module of rank 2n. We denote by N(X) := M(X) ® Q2 its
isocrystal. By construction, the Frobenius and the Verschiebung agree on N(X). In particular,
we have F? = p-id on the isocrystal. The Z,-action tx induces a Z/2Z-grading M (X) =
M(X)o @ M(X); as a sum of two free Z,2-modules of rank n. The same goes for the isocrystal
N(X) = N(X)o® N(X); where N(X); = M(X); ®Q,2 for i = 0,1. The polarization Ax induces
a perfect o-symplectic form on N (X) which stabilizes the lattice M (X) and for which F is self-
adjoint. Compatibility with ¢x implies that the pieces N(X); are totally isotropic for i = 0,1
and dual of each other. Moreover, the Frobenius F is then 1-homogeneous with respect to this
grading. As in [VW11] 2.6, it is possible to modify the symplectic pairing so that it restricts
to a non-degenerate Q,2-valued o-hermitian form {-,-} on N(X)o.

Notation. From now on, we will write V := N (X) and M := M (X),.

Then V is a Qpe-hermitian space of dimension n, and M is a given Z,-lattice, ie. a Z,-

submodule containing a basis of V. Given two lattices M; and M, the notation M, & M,
means that M; ¢ M, and the quotient module M;/M; has length d. The integer d is called the
index of M; in My, and is denoted d = [Ms : M;]. We have 0 < d < n. Given a lattice M < 'V,
the dual lattice is denoted M". It consists of all the vectors v € V such that {v, M} < Z,.
Then, by construction the lattice M satisfies

PMY & M 'S M.

The existence of such a lattice M in V implies that the o-hermitian structure on V is isomorphic

to any one described by the following two matrices
Am
Toda := Aamy1, Toven 1=
Am

Here, A; denotes the k x k matrix with 1’s in the antidiagonal and 0 everywhere else.
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Proposition ([Voll0] 1.15). There exists a basis of V such that {-,-} is represented by the

matrix Togq 15 n is odd and by Tepen if n is even.

3.1.1.3 A Witt decomposition on V is a set {L;};c; of isotropic lines in V such that the
following conditions are satisfied:

— For every i € I, there is a unique ¢’ € I such that {L;, L} = 0.
— The sum of the L;’s is direct.
— The orthogonal in V of the direct sum of the L;’s is an anisotropic subspace of V.

Because each line L; is isotropic, in the first condition one necessarily has (i) =i and i = 7.
As a consequence, the cardinality of the index set I is an even number #/ = 2w(V). The
integer w = w(V) is called the Witt index of V and it does not depend on the choice of
a Witt decomposition. We write L*" for the orthogonal of the direct sum of the L;’s. The
dimension of L*" is n® := n — 2w, therefore it is also independent on the choice of the Witt
decomposition.

Given any Witt decomposition, one may always find vectors e; € L; such that {e;,e;} = 9.
Together with a choice of an orthogonal basis for L*", these vectors define a basis of V which
is said to be adapted to the Witt decomposition. For any i € I, the direct sum L; ® L; is
isometric to the hyperbolic plane H. Therefore, we obtain a decomposition

V =wH® L™

We may always rearrange the index set so that I = {—w,...,—1,1,...,w} and for every i € I,
we have {L;, L_;} = 0. Thus, the i’ associated to i by the first condition is —i. Of course, this
process is not unique as it relies on a choice of an ordering for the lines {L;};c;. In this context,
we write Lo instead of L?".

3.1.1.4 We fix once and for all a basis e of V in which the hermitian form is represented by

the matrix Tyqq or Teven. In the case n = 2m + 1 is odd, we will denote it
e=(E_my...,e_1,€5" €e1,...,€n),
and in the case n = 2(m + 1) is even we will denote it
e=(eomy...,e_1,ed el er, ... em).

In this way, for every 1 < s < m the subspace generated by e_, and e, is isomorphic to
the hyperbolic plane H. Moreover, the vectors with a superscript -*" generate an anisotropic

subspace V# of V. The choice of such a basis gives a Witt decomposition
V=mHeV™"

consisting of an orthogonal sum of m copies of H and of the anisotropic subspace V2". In
particular, the Witt index of V is m and we have n® = 1 or 2 depending on whether n is odd

or even respectively.
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3.1.1.5 Given a perfect field extension %k of F,2, we denote by Vj, the base change V ®aq,s
W (k)g. The form may be extended to Vi by the formula

vz, Wy} =y’ {v,w} e W(k)g

for all v,w € V and z,y € W(k)g. The notions of index and duality for W (k)-lattices can be
extended as well. We have the following description of the rational points of the Rapoport-Zink

space.

Proposition ([Vol10] 1.10). Let k be a perfect field extension of F2. There is a natural bijection
between M(k) = Miea(k) and the set of lattices M in Vi such that for some integer i € Z, we
have

pPMY E M S MY,

3.1.1.6  There is a decomposition M = | |._, M, into formal connected subschemes which are
open and closed. The rational points of M; are those lattices M satisfying the relation above
with the given integer ¢. Similarly, we have a decomposition into open and closed connected
subschemes Myeq = | |,y M rea- In particular, the lattice M defined in the previous paragraph
is an element of M(F,2). Not all integers ¢ can occur though, as a parity condition must be

satisfied by the following lemma.

Lemma ([Vol10] 1.7). The formal scheme M, is empty if ni is odd.

3.1.1.7 Let J = GU(V) be the group of unitary similitudes attached to V. It consists of
all linear transformations g which preserve the hermitian form up to a unit c¢(g) € Q,, called
the multiplier. One may think of J as the group of Q,-rational point of a reductive algebraic
group. The space M is endowed with a natural action of J. At the level of points, the element
g acts by sending a lattice M to g(M).

By [Vol10] 1.16, the action of g € J induces, for every integer 4, an isomorphism M; —
Mita(g) Where a(g) is the p-adic valuation of the multiplier ¢(g). This defines a continous

homomorphism
a:J -7

where 7Z is given the discrete topology. According to 1.17 in loc. cit. the image of a is Z
if n is even, and it is 2Z if n is odd. The center Z(J) of J consists of all the multiple of the
identity. Therefore it can be identified with Q. If A € Q% then ¢(A-id) = Ao(A) = Norm(A) €

X
D

a(Z(J)) = 2Z. Thus, the restriction of «a to the center of J is surjective onto the image of «

where Norm is the norm map relative to the quadratic extension Q,2/Q,. In particular,

only when n is odd. When n is even, we define the following element
I

Jo =

)
o3

pln

o1
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where [,,, denotes the m x m identity matrix. Then gy € J and ¢(go) = p so that a(gy) = 1.
Moreover g2 = p - id belongs to Z(J).

Let i and ' be two integers such that ni and ni’ are even. Following [Vol10] Proposition 1.18,
we define a morphism ;s : M; — M, by sending, for any perfect field extension k/F,2, a
point M € M; to

i'—i

pz -M ifi=4 mod 2.
wi,i’<M) = i1 ey
p 2 go-M ifi#47 mod 2.

This is well defined as the second case may only happen when n is even. We obtain the following
proposition.

Proposition ([Vol10] 1.18). The map 1; is an isomorphism between M; and M, . Moreover
they are compatible with each other in the sense that if i,7 and i" are three integers such that

ni,ni’ and ni" are even, then we have ;s i 0 ;i = ;.

The same statement also holds for the special fiber M oq. In particular, we have M; = ¢J if

and only if ni is even.

3.1.2 The Bruhat-Tits stratification of the special fiber M,

3.1.2.1 We now recall the construction of the Bruhat-Tits stratification on M,,q as in
[VW11]. Let i be an integer such that ni is even. We define

L;:={A c V alattice|p"™'AY < A < p'AV}.

If A € L;, we define its orbit type t(A) := [A : p"™'AV]. We also call it the type of A. In
particular, the lattices in £; of type 1 are precisely the IF2-rational points of M; ;cq. By sending
A to g(A), an element g € J defines a map L; — L; q(g)-

Proposition ([Voll0] Remark 2.3 and [VW11] Remark 4.1). Let ¢ be an integer such that ni
18 even and let A € L;.

— The map L; — Liia(g) induced by an element g € J is an inclusion preserving, type
preserving bijection.
— We have 1 < t(A) < n. Furthermore t(A) is odd.

— The sets L;’s for various i’s are pairwise disjoint.

Moreover, two lattices A, N' €| | ..o, L; are in the same orbit under the action of J if and only

iFH(A) = t(A').

Proof. The first three points are proved in [Vol10]. Thus, we only explain the last statement.
If A and A’ are in the same J-orbit, because the action of J preserves the type we have
t(A) =t(N).

For the converse, assume that A and A’ have the same type. Let i and i’ be the integers such
that A € £; and A’ € L. According to 3.1.1.7, we can always find g € J such that a(g) = i —7'.

Hence, replacing A’ by g - A’ we may assume that ¢ = ¢/. Then the statement follows from

[VW11] Remark 4.1. O
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We write £ := | | .o, £;. For any integer ¢ such that ni is even and any odd number ¢ between
1 and n, there exists a lattice A € £; of orbit type t. Indeed, by fixing a bijection £; — L it is
enough to find such a lattice for ¢ = 0. Then, examples of lattices in £, of any type are given
in 3.1.2.6 below.

3.1.2.2  Write t.y := 2m+1, so that the orbit type t of any lattice in £ satisfies 1 < t < tux.
The following lemma will be useful later.

Lemma. Let i € Z such that ni is even, and let A € L. We have AY € L if and only if either
n is even, either n is odd and t(\) = tpax-

If this condition is satisfied and n is even, then AY € L_; 1 and t(AY) = n —t(A). If on the
contrary n is odd, then A¥ € L_; and t(AY) = t(A).

Proof. First we prove the converse. We have the following chain of inclusions
. n—t(A t(A .
pihEY A E i

If n is even, then —n(i + 1) is also even and n — t(A) = 0. Since (AY)Y = A, we deduce that
AY € L_;_; with orbit type n — t(A). Assume now that n is odd and that t(A) = tpax = n.
Then AV =p~iAe L_;.

Let us now assume that AV € £ and that n is odd. Let i’ € 2Z such that AY € £;. We have

n—t(AV —t(A t(A)

AY o )pz/A n - )pi/JriAv7 N pfiflA

t(AY -
(C )pflfz 72Av’

therefore —2 < i+4' < 0. Since i+4’ is even it is either —2 or 0. If it were —2, then we would have
t(A) = t(AY) = 0 which is absurd. Therefore i+i = 0, and we have n—t(A) = n—t(AY) =0. O

3.1.2.3 With the help of £;, one may construct an abstract simplicial complex B;. For s > 0,
an s-simplex of B; is a subset S < L; of cardinality s+ 1 such that for some ordering Ag, ..., Ag
of its elements, we have a chain of inclusions p"™'AY € Ay € Ay < ... & A,. We must have
0 < s < m for such a simplex to exist.

We introduce J = SU(V), the derived group of J. We consider the abstract simplicial complex
BT(j ,Q,) of the Bruhat-Tits building of J over Qp. A concrete description of this complex is
given in [Vol10], while proving the following theorem.

Theorem ([Vol10] 3.5). The abstract simplicial complex BT(J,Q,) of the Bruhat- Tits building
of J is naturally identified with B; for any fized integer i such that ni is even. There is in
particular an identification of L; with the set of vertices of BT(J, Qp). The identification is
J -equavariant.

Apartments in the Bruhat-Tits building BT(J,Q,) are in 1 to 1 correspondence with Witt
decompositions of V. Let L = {L,};er be a Witt decomposition of V and let f = (f;)ier u B™
be a basis of V adapted to the decomposition, where B*" is an orthogonal basis of L*". Under
the identification of BT(j ,Q,) with B;, the vertices inside the apartment associated to L
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correspond to the lattices A € L£; which are equal to the direct sum of A n L* and of the
modules p"Z, f; for some integers (7;);c;. The subset of £; consisting of all such lattices will
be denoted AF or, with an abuse of notations, .Azf . We call such a set A the apartment
associated to L in C,.

Remark. The set of vertices of the Bruhat-Tits building of J = GU(V) may then be identified
with the disjoint union £ of the £;’s. The subsets of lattices in a common apartment correspond
to the sets A := | | ..., A¥ where L is some Witt decomposition of V. The set A" will be
called the apartment associated to L.

We recall a general result regarding Bruhat-Tits buildings.

Proposition. Let i be an integer such that ni is even. Any two lattices A and N in L; (resp.
L) lie inside a common apartment AL (resp. AY) for some Witt decomposition L.

Moreover, the action of the group J sends apartments to apartments. It acts transitively on the
set {AF};. The same is true for J acting on the set {A"}r.

3.1.2.4 Recall the basis e of V that we fixed in 1.4. We will denote by
ATy ey 71, 8,71, ey )

the Z,2-lattice generated by the vectors pie; for all j = +1,..., +m, by p®ef® and if n is even,
by p*tei" too. Here, the r;’s are integers and s denotes either the integer s, if n is odd or the
pair of integers (sg, $1) if n is even.

Proposition. Let i be an integer such that ni is even. Let (rj,s) be a family of integers as
above. The corresponding lattice A = A(r_p, ..., 7_1,8,71,...,Tm) belongs to L; if and only if

the following conditions are satisfied

— forall1 < j <m, we have r_; +r; € {i,i + 1},

- S0 = [%J;

— if n is even, then s; = |%].

Moreover, when that is the case the type of A is given by
tA) =1+2#{1<j<m|r_;+r; =i}
Proof. The lattice A belongs to £; if and only if the following chain of inclusions holds:
PHAY S A pAY,

The dual lattice AV is equal to the lattice A(=rp,, ..., =71, , —r_1,...,—r_p), where s’ = —s;
when n is odd, and s’ = (—sg, —s1—1) when n is even. Thus, the inclusions above are equivalent

to the following inequalities:

i—T_j<Tj<i+1—7“_j, 1— 80 < Sg<t+1— s,

i—1—s1 <5 <i—s; (if nis even).
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This proves the desired condition on the integers r;’s and on s.

Let us now assume that A € £;. Its orbit type is equal to the index [A, p"**AV]. This corresponds
to the number of times equality occurs with the left-hand side in all the inequalities above. Of
course, if the equality ¢ — r_; = r; occurs for some j, then it occurs also for —j. Moreover, if ¢
is even then the equality i — sy = sg occurs whereas i — 1 — s; = s7. On the contrary if 7 is odd,
then the equality ¢ — 1 — s1 = s occurs whereas ¢ — sy = sg. Thus in all cases, only one of s
and s; contributes to the index. Putting things together, we deduce the desired formula. [J

3.1.2.5 We deduce the following corollary.
Corollary. The apartment AS (resp. A¢) consists of all the lattices of the form
A=A, o 71,8,y )

which belong to L; (resp. to L).

Proof. According to the previous proposition, it is clear that all lattices which belong to £; and
are of the form A(r_,,,...,7_1,8,71,...,7) are elements of A¢. We shall prove the converse.
Let A € A¢. By definition, there exists integers (r;) such that

A=AnV*"QP EI—) (P Zype_; DD Lye;).

1<j<m
Write A’ = A n V22, This is a lattice in V2* which satisfies the chain of inclusions
pi+1Alv CA,CpiA/V

where the duals are taken with respect to the restriction of {-, -} to V. Since V" is anisotropic,
there is only a single lattice satisfying the chain of inclusions above. If we write a := [%J and
b= [%J, it is given by p*Z,2e3® if n is odd, and by pZ,2e3" @ p*Z,2ei™ if n is even. Thus, it
must be equal to A’ and it concludes the proof. n

3.1.2.6 We fix a maximal simplex in £, lying inside the apartment A§. For 0 < 0 < m we
define

m 0 m—0
Here, the 0 in the middle stands for (0,0) in case n is even. The lattice Ay belongs to Lo, its
orbit type is 260 + 1 and together they fit inside the following chain of inclusions

pAy S Apc ... A,

Thus, they form an m-simplex in L.
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3.1.2.7 Given a lattice A € £;, the authors of [VW11] define a subfunctor My of M, ;eq
classifying those p-divisible groups for which a certain quasi-isogeny, depending on A, is in fact
an actual isogeny. In Lemma 4.2, they prove that it is representable by a projective scheme
over I,
M, are called the closed Bruhat-Tits strata of M. Their rational points are described as

and that the natural morphism My < M, 4 is a closed immersion. The schemes

follows.

Proposition ([VW11] Lemma 4.3). Let k be a perfect field extension of Fp2, and let M €
M, rea(k). Then we have the equivalence

M e MA(I{I) — M c Ak = A®Zp2 W(k)

The set of lattices satisfying the condition above was conjectured in [Voll0] to be the set of
points of a subscheme of M, ,eq, and it was proved in the special cases n = 2,3. In [VW11],
the general argument is given by the construction of M. The action of an element g € J on
M, eq induces an isomorphism My = M, 4.

3.1.2.8 Let A € L, we denote by J, the fixator of A under the action of J. If A = Ay for
some 0 < # < m, we will write Jy instead. These are maximal parahoric subgroups of J.
In unramified unitary similitude groups, maximal parahoric subgroups and maximal compact

subgroups are the same. A general parahoric subgroup is an intersection Jy, N ... N Jy,
where {Aq,..., A} is an s-simplex in £; for some i. Any parahoric subgroup is compact and
open in J.

Let i be the integer such that A € £;. We define V} := A/p""'A¥ and V} := p’A¥/A. Since
pA cp-p'AY and p-p'AY < A, these are both F2-vector space of dimensions respectively ¢(A)
and n — t(A). Both spaces come together with a non-degenerate o-hermitian form (-,-)q and
(-,)1 with values in F2, respectively induced by p~*{-,-} and by p~**{.,-}. If k is a perfect
field extension of Fy2 and if € € {0,1}, we may extend the pairings to (VY), = Vi ®r , k by
setting

(v®z,wRY) =y’ (v,w). € k

for all v,w € Vi and z,y € k. If U is a subspace of (V) we denote by U* its orthogonal, that
is the subspace of all vectors z € (V) such that (z,U). = 0.

Denote by J; the pro-unipotent radical of Jy and write Jy := Ju/J; . This is a finite group
of Lie type, called the maximal reductive quotient of 5. We have an identification Jj =~
G(U(VY) x U(V}Y)), that is the group of pairs (go, g1) where for € € {0,1} we have g. € GU(VY)
and ¢(go) = c(g1). Here, c(gc) € F, denotes the multiplier of g..

For 0 < 6 < m and € € {0, 1}, we will write V and Jy instead of Vi, and Jj,. A basis of V) is
given by the images of the 20 + 1 vectors e_g...,e_1,€3 e1,...,e9. As for Vj', a basis is given
by the images of the n — 20 — 1 vectors p~te_p,....,p te_yp_1,€041,-..,€m when n is odd, and
in case n is even one must add the image of p~'ei" to the basis.
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3.1.2.9 Let A € L; where ni is even. We write t(A) = 20 + 1. Let k be a perfect field
extension of F2. Let T' be any W (k)-lattice in V}, such that

, 20/ +1
p T T T < A,

where 0 < @’ < 0. Then T must contain p*™'AY and [A, : T] = 6 — 6. We may consider
T = T/p"* Ay the image of T in V”’. Then T is an F,2-subspace of dimension 8 + 6 + 1.
Moreover, one may check that pi+t1Tv = Ti, therefore the subspace T contains its orthogonal.
These observations lead to the following proposition.

Proposition ([Vol10] 2.7). The mapping T +— T defines a bijection between the set of W (k)-

lattices T in V3, such that p"* 1T T e Ay and the set

(Uc (V| dmU =0+ +1 and U+ < U}.

In particular taking 6’ = 0, this set is in bijection with My (k).

Remark. Similarly, the set of W (k)-lattices T such that Ay = T i p!TV for some 0 < ' <

m is in bijection with
(Uc (V| dimU =n—60 —60 —1and U* < U}.

The bijection is given by T — T" where T := T/Ay, < Vk(l). These sets can be seen as the
k-rational points of some flag variety for GU(VZEO)) and GU(V/@)), which are special instances
of Deligne-Lusztig varieties. This is accounted for in the next paragraph.

3.1.2.10 Let A € L. The action of J on the Rapoport-Zink space M restricts to an action of
the parahoric subgroup Jj on the closed Bruhat-Tits stratum M. This action factors through
the maximal reductive quotient Jj ~ G(U(Vf) X U(VAI)) This action is trivial on the normal

subgroup {id} x U(V}) < J, thus it factors again through the quotient which is isomorphic to
GU(VQ).

Theorem ([VW11]| Theorem 4.8). There is an isomorphism between My and a certain “gen-
eralized” parabolic Deligne-Lusztig variety for the finite group of Lie type GU(VY), compatible
with the actions. In particular, if t(A) = 20 + 1 then the scheme My is projective, smooth,
geometrically irreducible of dimension 6.

We refer to [Mul22a] Section 1 for the definition of Deligne-Lusztig varieties. In particular,
the adjective “generalized” is understood according to loc. cit. The Deligne-Lusztig variety
isomorphic to My is introduced in [VW11] 4.5, and it is denoted by Y, there.

3.1.2.11 We now explain how the different closed Bruhat-Tits strata behave together.

Theorem ([VW11] Theorem 5.1). Let i € Z such that ni is even. Consider A and A’ two
lattices in L;. The following statements hold.
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(1) The inclusion A = N is equivalent to the scheme-theoretic inclusion My < My:. It also
implies t(A) < t(A) and there is equality if and only if A = A'.
(2) The three following assertions are equivalent.

(i) AnANecl,. (i) An A contains a lattice of L;.  (iii) My N My = &.

If these conditions are satisfied, then My N My = Mpn~ar, where we understand the left
hand side as the scheme theoretic intersection inside M, reqd.

(3) The three following assertions are equivalent

i) A+ A el (i) A + A" is contained in a lattice of L;.
(iil) My, Mar < My for some A in ;.

If these conditions are satisfied, then My ns is the smallest subscheme of the form My
containing both My and My .
(4) If k is a perfect field field extension of B2 then Mi(k) = Jyep, Ma(k).

In essence, the previous statements explain how the stratification given by the M, mimics the
combinatorics of the Bruhat-Tits building of .J, hence the name.

3.1.3 On the maximal parahoric subgroups of J

3.1.3.1 In this section we give a few results that will be useful later regarding the maximal
parahoric subgroups Jy. First, we study their conjugacy classes. It starts with the following

lemma.

Lemma. Let A, N € L.

(i) The parahoric subgroup Jx acts transitively on the set of apartments containing A.
(ii) We have Jy = Jy if and only if there exists k € Z such that A = p*A’ or A = p*A’ V.

Proof. The first point is a general fact from the theory of Bruhat-Tits buildings.

For the second point, the converse is clear. Indeed, if x € Q; then J,x = Jj, and an element
g € J fixes a lattice A if and only if it fixes its dual AV.

Now, let A, A’ € £ such that Jy = Jy. Up to replacing A’ by an appropriate lattice g - A/, it
is enough to treat the case A’ = Ay for some 0 < § < m. By 3.1.2.3 Proposition, we can find
an apartment A’ containing both Ay and A. By the first point, we can find ¢ € J, = Jx which
sends A” to A°. Therefore g- A = A belongs to A°. According to 3.1.2.5, we may write

A=Ar_pmy o 71,871,y Tm)

for some integers (r;,s). Let i be the integer such that A € £;. Then according to 3.1.2.4 we

have
- Vi<j<m,r_;+r;e{ii+1}.
- s0 =[]
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— if n is even then s; = |[£].

For 1 < j <0, let g; be the automorphism of V which exchanges e_; and e; while fixing all the
other vectors in the basis e. Then, from the definition of Ay we have g; € Jy. Therefore g; must
fix A too, which implies that r_; = r;. And for 6 +1 < j < m, let g; be the automorphism
sending e; to p~te_; and e_; to pe; while fixing all the other vectors in the basis e. Then again
we have g; € Jy = Jp which implies that r_; = r; — 1.

Assume first that ¢ = 2’ is even. Combining the previous observations, we have r; = i’ for all
I<j<bfandr; =17+ 1forall §+1<j<m. Moreover we have s, = i’ and if n is even, we
have s; = ¢'. In other words, we have A = p Ay.

Assume now that ¢ = 2¢/ + 1 is odd. This implies that n is even. Combining the previous
observations, we have r; = ¢ 4+ 1 for all 1 < j < m. Moreover we have sy = 7 + 1 and if n is

. !
even, we have s; = i’. In other words, we have A = p" *1A}. O

3.1.3.2 We may now describe the conjugacy classes of these maximal parahoric subgroups.

Corollary. Let A,\N € L.

(1) If n is odd, then t(A) = t(A’) if and only if the associated mazximal parahoric subgroups Jy

and Jy are conjugate in J. FEach such subgroup is conjugate to Jy for a unique 0 < 0 < m.

(i1) If n is even, then t(A) € {t(N'),n —t(N)} if and only if the associated mazimal parahoric

subgroups Jy and Jy are conjugate in J. Fach such subgroup is conjugate to Jy for a
unique 0 < 0 < |%].

Thus, there are m + 1 conjugacy classes of maximal parahoric subgroups when n is odd, and

only | %] 4+ 1 when n is even. If n is odd the subgroups Jy are pairwise non conjugate, whereas

Jy is conjugate to J,,_y when n is even.

Remark. The special maximal compact subgroups are the conjugates of Jy and of J,,. When n

is odd, the conjugates of J,, are hyperspecial.

Proof. For the first point, assume that ¢t(A) = t(A’). By 3.1.2.1 Proposition, we can find g € J
such that g - A = A’. Therefore Jy = J,n = 9J4, the two parahoric subgroups are conjugate.
For the converse, assume that Jy = 9Jx for some g € J. Then Jy = Jga. By 3.1.3.1 there is
some k € Z such that A’ = p¥g - A or (A')Y = pFg- A. This implies that t(A) = t(A’). Indeed,
it is clear in the first case, and in the second case we have in particular (A’)Y € L. Since n is
odd, by 3.1.2.2 we have t(A") = t((A’)Y), so that we are done.

For the second point, if t(A") = ¢(A) then we reason the same way as above. If t(A’) = n—t(A)
then A’ and AY have the same type. By the first case, we know that Jy and Jyv = Jj are
conjugate. The converse goes the same way as above, except that the case (A')Y = p*g- A now
implies that t(A’) = n — t(A) therefore we are done. O

3.1.3.3 As another corollary of 3.1.3.1 we may also describe the normalizers of the maximal

parahoric subgroups.

29



Cohomology of DL varieties associated to PEL RZ spaces with signature (1,n — 1)

Corollary. Let A€ L. Ift(A) = n—t(A) then the normalizer of Jy in J is Ny(Jp) = Z(J)Jy.
Otherwise, n is even and there exists an element hy € J such that h3 = p-id and N;(Jy) is the
subgroup generated by Jy and hg. In particular, Z(J)Jy is a subgroup of index 2 in Nj(Jy).

Remark. The condition t(A) = n — t(A) is automatically satisfied if n is odd. If n is even, it is

satisfied when ¢(A) = m + 1, this is the case in particular when m is odd.

Proof. 1t is clear that Z(J)Jy < N;(Jp). Conversely, let g € N;(Jy), so that we have Jy =
9Jp = Jga. We apply 3.1.3.1 to deduce the existence of k € Z such that g- A = pFA (case 1)
or g-A = pFAY (case 2). If we are in case 1, then g € p*Jy < Z(J).J, and we are done. If n is
even, the assumption that t(A) = n — t(A) makes the case 2 impossible. If n is odd and we are
in case 2, then in particular AY € £. By 3.1.2.2, we must have A = p’A¥ for some even i € Z.
In particular, we are also in case 1. Therefore, no matter the parity of n, we are always in case
1.

Assume now that t(A) = n —t(A), in particular n and m are both even. We write m = 2m’ so
that t(A) = 2m’+ 1 and we solve the case A = A, first. Recall the element gy that was defined
in 3.1.1.7. By direct computation, we see that go - A,y = pA,. Therefore %.J,, = JpAyvn/ = J
so that gy € Ns(Jp). Now let g be any element normalizing J,,, so that Jyy = 9Jp = Jga .
According to 3.1.3.1 there exists k € Z such that g-A,y = p*A, or g- Ay = pPAY, = pFLgo- Ay
In the first case we have g € p*J, and in the second case we have g € p*1goJ,. Because
g¢ = p - id, the claim is proved with hy = go.

In the general case, we have t(A) = 2m’ + 1 = t(A,y). By 3.1.2.1 there exists some ¢ € J such
that A = g+ A,». Then N;(A) = 9N;(A,) so that the claim follows with hg := ggog™". O

3.1.3.4 Let J° be the kernel of o : J — Z. In other words, J° is the subgroup of J consisting
of all g € J whose multiplier c(g) is a unit in Z 5. We have an isomorphism .J/.J° ~ Z induced by
«a when n is even, and by %a when n is odd. Note that J° contains all the compact subgroups
of J, in particular Jy, < J° for every A € L. Let K be the subgroup generated by all the J, for
A € £ having maximal orbit type t(A) = 2m + 1. We will prove the following result.

Proposition. We have K = J°.

The proof requires the following lemma.

Lemma. Let i € Z such that ni is even and let A € L; be a lattice of maximal orbit type. Let
N, N € L; such that N n A and A" n A belong to L;. There exists g € Jy such that g- A = N’
if and only if t(A") = t(A”) and t(N' n A) = t(A" n A).

Proof. The forward direction is clear because the action of J preserves the types of the lattices.
We prove the converse. Since J acts transitively on £ while preserving types and inclusions, it
is enough to look at the case i = 0 and A = A,,, = A(0,...,0). Let 0 < 0_ <0, <m. We fix
a certain A’ € Ly such that t(A’) = 20, + 1 and t(A' n A) = 20_ + 1, and we prove that any
A" € Ly satisfying the hypotheses of the lemma is in the J,,-orbit of A’. We define

A/ — A(09_7 194_79_’ 1m70+ , O, Om79+, _194_79_’ 09_>
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where the 0 in the middle stands for 0 when n is odd and the pair (0,0) when n is even. Then,

we have

AN A A= A0, 177, 0,0m,0%)

so that A’ satisfies the required conditions. Let A” be as in the lemma. Let L be a Witt
decomposition of V such that the corresponding apartment A” contains both A and A”. Since
Jm acts transitively on the set of apartments containing A,,, we can find some g € .J,,, such that
g- AF = A°. Up to replacing A” by g - A”, we may then assume that A” € A°. Therefore, there
exists integers r_,,, ..., "y, s such that

n"
AN = Ay 71,8, 71 ey ).

Since A" € Ly, by 3.1.2.4 we have s = 0 and r; +r_; € {0,1} for all 1 < j < Let us write
r_; = rj+€; where¢; € {0, 1}. Since t(A”) = 26, +1, there are 6, indices 1 < j

such that €¢; = 0 if and only if j is one of the ji’s. Moreover, we have

J<m.
SH<...<Jo, <M

AN A A=A max(—r, + €n,0),...,max(—r; + €1,0),0, max(ry,0), ..., max(r,,0)).

This lattice is in Ly, thus for every 1 < j < m we have 0 < max(—r; + ¢;,0) + max(r;,0) < 1.

Hence, if j = j), for some k then €; = 0 and
max(—r; + €;,0) + max(r;,0) = max(—r;,0) + max(r;,0) = |r;|.
Thus, |r;| = 0or 1. If j = ji for all k, then ¢; = 1 and

1 Il =1

max(—7; + €;,0) + max(r;,0) = max(—r; + 1,0) + max(r;,0) = 5

This sum is a positive integer between 0 and 1, therefore it is always 1. It means that |r;| +
|7; — 1] = 1 and as a consequence, r; = 0 or 1.

Lastly, we have t(A” n A) = 20_ + 1 so there are exactly 6_ indices j for which the sum
max(—7; + €;,0) + max(r;,0) is zero. As we have just seen, this may only happen when j is
one of the j,’s. Thus, among the indices j = ji, ..., jo, , there are exactly 6_ of them for which
(r_;,r;) = (0,0), and for the others we have (r_;,7;) = (1,—1) or (—1,1). If j is not one of the
Jk's, we have (r_;,7;) = (0,1) or (1,0). In other words, the pairs of indices (r_;,r;) are, up to
shifts and ordering, the same as the corresponding pairs of indices defining A’. By considering
appropriate permutation matrices, we may change a pair (r_;,r;) into (r;,7—;) and we may
change the order so that A” is sent to A’. This transformation defines an element of J which
stabilizes A = A(0,...,0). O

3.1.3.5 We may now prove the proposition.

Proof. Tt is clear that K < Ker(«a), so we prove the reverse inclusion. Let ¢° € J°. We will
write ¢° as a product of elements in .J, each of which fixes some lattice of maximal orbit type in
the Bruhat-Tits building. We write A := A,, = A(0,...,0) and A® := ¢°- A. Since ¢° € J°, we
have A° € £,. We would like to send A° back to A by using elements of K only. Let L be some
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Witt decomposition of V such that the corresponding apartment A% contains both A and A°.
We can find some g; € J, which sends A* to A°. We define ¢g* := g,¢° and A := ¢g' - A. Then

A € Ly and it belongs to the apartment A°. Therefore, there exists integers r_,,,..., m, s
such that

A = ATy 71, 8,71, Ti).
Since A € £y and its orbit type is maximal, we have s = 0 and r_; = —r; for all 1 < j < m.
Let 1 < j1 < ... < jo, < m be the indices j for which r; is odd. We have 0 < a < m. For

1 < j <m we write r; = 2r’ + 1 if j is some of the j;s and r; = 21 otherwise. We also write
/

_] )
define go the endomorphism of V sending e_; to p*Ti ej for —m < j < m and j = 0, and which

' = —r’, so that we have r_; = 2r’ ; — 1 if j is some of the ji’s and r_; = 21" ; otherwise. We

acts like identity on V2. Then g5 is an element of J with multiplier equal to 1. Moreover, go

stabilizes the lattice A(r",,,..., 7" 1,0,77,...,7r..) € Lo whose orbit type is maximal, therefore

g2 € K. We define ¢ := ¢go¢* and A% := g% - A € Ly. Concretely, the lattice A? still lies in the
apartment A° and its coefficients are obtained from those of A' by replacing each pair (r_;,,7;,)
by (1,—1) and the other pairs (r_;, ;) by (0,0). Let us note that if a« = 0 then we already have
A? = A,

Let us now assume that @ > 0. The intersection of the lattices A% and A has the following
shape.

AMAA=A(Oorl,...,00or1 ,0,0™).

~ ~

~~
a times 1 and m—a times 0

The coefficient takes the value 1 if and only if its index is one of the —j;’s. This is a lattice
in Ly of orbit type 2(m — a) + 1. We will use 3.1.3.4 Lemma in order to send A% to A while
fixing some lattice of maximal orbit type. In order to find this lattice, we need to leave the
apartment A°. Let 6 € Z, such that () = —3. We define the following vectors

e; if 7 is not one of the =+ j;’s.
fi =1+ pe—j if j = —J.
p_lejk + 6e_jk if j = Jk-

We also define f? = €2 for i € {0,1} (the case i = 1 only occurs if n is even). All together,
these vectors form a basis f of V. We write A for the Z,:-lattice generated by the basis f. One
may check that {f;, f;) = 0;, _; for every j and j'. It follows that A; € £, and it has maximal
orbit type. It turns out that both intersections A* n Ay and A n Ay are equal to A* N A, as we

prove in the following two points.

— A% n Ay : The lattice A2 Ay contains all the vectors e; where j is not of the +7j;’s. It also
contains the vectors pe_;, and p-(p~'e;, +de_;,) = e, +ope_;, forall 1 < k < a. Therefore,
it must contain the vectors e;,’s as well. This gives the inclusion A2 n A = A* n A;. For
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the converse, if x € Ay then we may write

T = Z pje; + Z Akpe*jk + )‘;c(pilejk + 56*11@)

i )
= D e+ ) (wp+ Xide s, + Np ey,
J=%jk k=1

with the scalars i, A\ and X, in Z,2. If moreover 2 € A? then in the last formula, we must
have A\gp + A0 € pZ,2. It follows that the scalars A} belong to pZ,> and thus z € A N A.

—~ A n Ay : By the same arguments as above, we prove that A> n A « A n A;. For the
converse, let z € Ay as above. If moreover x € A then the scalars A, are elements of pZ,..
It implies that Ap + N0 € pZ,2, whence z € A? 0 A.

Eventually we may apply 3.1.3.4 Lemma to the lattices Ay, A and A. It gives the existence of
an element g3 € J which stabilizes A; and sends A? to A. We write ¢° := g3¢®. It follows that
g3 - A = A, therefore ¢ € Jy < K. But ¢ = ¢3¢2919° and each of the elements ¢, go and g3
also lies in K. Therefore ¢° € K as well. O

3.1.4 Counting the closed Bruhat-Tits strata

3.1.4.1 In this section we count the number of closed Bruhat-Tits strata which contain or
which are contained in another given one. Let d > 0 and consider V' a d-dimensional F,-vector
space equipped with a non degenerate hermitian form. This structure is uniquely determined
up to isomorphism as we are working over a finite field. As in [VW11], for [g] <r <d, we
define

N(r,V):={U|U is an r-dimensional subspace of V such that U+ c U},
v(r,d) == #N(r, V),

where U+ denotes the orthogonal of U with respect to the hermitian form on V. As remarked
in [VW11], the set N(r, V') can be seen as the set of rational points of a certain flag variety for
the unitary group of V.

Proposition ([VW11] Corollary 5.7). Let A € L. Write t(A) =20 + 1 for some 0 <0 < m.

— Let 0 be an integer such that 0 < ¢ < 0. The number of closed Bruhat-Tits strata of
dimension ' contained in My is v(0 + 0" + 1,20 + 1).
— Let 0" be an integer such that 0 < 6 < m. The number of closed Bruhat-Tits strata of

dimension 0’ containing My isv(n —0 — 0" —1,n — 20 — 1).

These follows from 3.1.2.9 Proposition and Remark. Another way to formulate the proposition
is to say that v(0 +6 + 1,20 + 1) (resp. v(n—6 — 60" —1,n— 20 — 1)) is the number of vertices
of type 20’ + 1 in the Bruhat-Tits building of J which are neighbors of a given vertex of type
20 + 1 for @' < 0 (resp. ' = 0).
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3.1.4.2 In [VWI11], an explicit formula is given for v(d — 1,d). The next proposition gives a

formula to compute v(r, d) for general r and d.

Proposition. Let d > 0 and let [g] <r <d. We have

Hig—r) (pQr—d+j _ (_1)2r—d+j)

[T5= (% — 1)

Proof. Recall that for any integer k, we denote by Ay the k& x k matrix having 1 in the an-

v(r,d) =

tidiagonal and 0 everywhere else. We fix a basis (ey,...,eq) of V in which the hermitian form
is represented by the matrix A;. We denote by U, the subspace generated by the vectors
e1,...,e.. Then the orthogonal of Uy is generated by ey, ..., e4_,. Since r is an integer between
[%] and d, we have 0 < d — r < r and therefore Uy contains its orthogonal. Thus, U, defines
an element of N(r, V). The unitary group U(V) ~ Uy(FF,) acts on the set N(r,V): an element
g € U(V) sends the subspace U to g(U). This action is transitive. Indeed, any U € N(r, V') can
be sent to Uy by using an equivalent of the Gram-Schmidt orthogonalization process over F

(note that p = 2). The stabilizer of U, in Uy(FF,) is the standard parabolic subgroup

B =« #
Poi={|0 M « |€UyF,)|BeGLs (Fyp), M e Uy _4F,)
0 0 F(B)

Here, F(B) = Ag_,(B®)~TA,;_, where B® is the matrix B with all coefficients raised to the
power p. Therefore, the set N(r, V') is in bijection with the quotient Uy(F,)/Fy. The order of
Ugy(F,) is well known and given by the formula

d
d(d—1) ) .
#UaF,) =p 2 [ () — (1))
j=1
It remains to compute the order of Fy. We have a Levi decomposition Py = LNy with
Lo n Ny = {1} where
(/B 0 0
Ly=<X10 M 0 € Ug(F,) | Be GLy—(Fp2), M € Uy,_4(F,) ¢,
(\0 O F(B)
( (1 X Z
N() =4 0 1 Y |e Ud(Fp) X € Md—r,?r—d(]FpQ)7 Y e MQ’I’—d,d—T(]Fp2)7 YRS Md—r(F;ﬂ)
0 0 1

The order of Ly is given by

d—r 2r—d
H#Lo = #QLy_ (Fye)# Uy g(F,) = pld-r@-r—ns Bt [T =)@ - (1).
=1 =1

As for Ny, we need some more conditions on the matrices X, Y and Z. By direct computations,
one checks that such a matrix belongs to Uy(F,) if and only if

Y = — Ay g(XPHT A, Z+ Ay (ZP)VT Ay, = XY € My, (Fp2).
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Thus, X is any matrix of size (d —r) x (2d —r) and Y is determined by X. Let us look at
the second equation. The matrix Ay_.(Z (p))TAd_T is the reflexion of Z®) with respect to the
antidiagonal. The equation implies that the coefficients below the antidiagonal of Z determine
those above the antidiagonal. Furthermore, if z is a coefficient in the antidiagonal then the
equation determines the value of Tr(z) = z + 27, where Tr : Fj2 — [, is the trace relative to
the extension F,2/F,. The trace is surjective and its kernel has order p. Thus, there are only p

possibilities for each antidiagonal coefficient. Putting things together, the order of Ny is given

by

27<dfr)(gfrfl) o d—T (d—7)(3r—d)

#NO _ pQ(d—r)(Qr—d) p =p

where the three terms take account respectively of the choice of X, the choice of the coefficients

below the antidiagonal of Z and the choice of the coefficients in the antidiagonal of Z.
Hence the order of P, is given by

d—r 2r—d
d(d—1) ) . .
#P = #Lo#No=p = [[(07 -1 [] (- (-1)).
j=1 j=1
Upon taking the quotient v(r,d) = #U4(F,)/#Fo, the result follows. O

In particular with r = d — 1, we obtain

(P! = (DD - (=)1)

v(id—1,d) = P

If d = 26 is even, it is equal to (p?~! + 1) Z?;(l) p*, and if d = 26 + 1 is odd, it is equal to
(p? +1) Zj;(l) p?. This coincides with the formula given in [VW11] Example 5.6.

3.2 The cohomology of a closed Bruhat-Tits stratum

3.2.1 In [Mul22a], we computed the cohomology groups H2(M®F, Q) of the closed Bruhat-
Tits strata (recall that F denotes an algebraic closure of [F,). The computation relies on
the Ekedahl-Oort stratification on M, which, in the language of Deligne-Lusztig varieties,
translates into a stratification by Coxeter varieties for unitary groups of smaller sizes. The
cohomology of Coxeter varieties is well known thanks to the work of Lusztig in [Lus76]. In
order to state our results, we recall the classification of unipotent representations of the finite

unitary group over Q.

3.2.2 Let g be a power of prime number p, and let G be a reductive connected group over
an algebraic closure IF of F,,. Assume that G is equipped with an [ -structure induced by a
Frobenius morphism F. Let G = G be the associated finite group of Lie type. Let (T, B) be
a pair consisting of an F-stable maximal torus T and an F-stable Borel subgroup B containing
T. Let W = W(T) denote the Weyl group of G. The Frobenius F' induces an action on W.
For w € W, let w be a representative of w in the normalizer Ng(T) of T. By the Lang-Steinberg
theorem, one can find g € G such that w = g7'F(g). Then 9T := gTg~! is another F-stable
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maximal torus, and w € W is said to be the type of 9T with respect to T. Every F-stable
maximal torus arises in this manner. According to [DL76] Corollary 1.14, the G-conjugacy
class of 9T only depends on the F-conjugacy class of w in the Weyl group W. Here, two
elements w and w’ in W are said to be F-conjugates if there exists some element 7 € W such
that w = 7w F(7)~!. For every w € W, we fix T,, an F-stable maximal torus of type w with
respect to T. The Deligne-Lusztig induction of the trivial representation of T, is the virtual
representation of G defined by the formula

Ry = ) (~1)Hi(Xg(w) ® F,Q),

1=0

where Xg(w) is the Deligne-Lusztig variety for G given by
Xg(w) :={gBe G/B|g 'F(g) e BuB}.

According to [DL76] Theorem 1.6, the virtual representation R, only depends on the F-
conjugacy class of w in W. An irreducible representation of G is said to be unipotent if
it occurs in R,, for some w € W. The set of isomorphism classes of unipotent representations

of G is usually denoted (G, 1) following Lusztig’s notations.

Remark. Since the center Z(G) acts trivially on the variety X (w), any irreducible unipotent

representation of G has trivial central character.

3.2.3 Let G and G’ be two reductive connected group over F both equipped with an F,-
structure. We denote by F' and F” the respective Frobenius morphisms. Let f : G — G’ be an
[F,-isotypy, that is a homomorphism defined over F, whose kernel is contained in the center of G
and whose image contains the derived subgroup of G’. Then, according to [DM14] Proposition
11.3.8, we have an equality

E(G,1) ={po flpe &G, 1)}

Thus, the irreducible unipotent representations of G and of G’ can be identified. We will use
this observation in the case G = Ug(F,) and G' = GUy(F,). The corresponding reductive
groups are G = GL; and G’ = GL;, x GL;. The Frobenius morphisms can be defined as

F(M) = wo(M'V) T, F'(M,¢) = (o (MD) g, ),

Here, 1 is the k x k matrix with only 1’s in the antidiagonal and M@ is the matrix M whose
entries are all raised to the power gq. The isotypy f: G — G’ is defined by f(M) = (M,1). It
satisfies F'o f = foF, it is injective and its image contains the derived subgroup SL,, x {1} < G'.
Hence, we obtain the following result.

Proposition. The irreducible unipotent representations of the finite groups of Lie type Ug(F,)
and GUy(F,) can be naturally identified.

3.2.4 Assume that the Coxeter graph of the reductive group G is a union of subgraphs of
type A,, (for various m). Let W be the set of isomorphism classes of irreducible representations
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of its Weyl group W. The action of the Frobenius F' on W induces an action on \\7\//', and we
consider the fixed point set W¥. The following theorem classifies the irreducible unipotent

representations of G.

Theorem ([LS77] Theorem 2.2). There is a bijection between WF and the set of isomorphism

classes of irreducible unipotent representations of G.

We recall how the bijection is constructed. According to loc. cit. if V € W there is a unique
automorphism F of V of finite order such that

R(V) := Z Trace(w o F'| V)R,

W &,

is an irreducible representation of G. Then the map V +— R(V) is the desired bijection. In the
case of Uy (F,) or GU.(F,), the Weyl group W is identified with the symmetric group & and
we have an equality WF W. Moreover, the automorphism F is the multiplication by wy,
where wy is the element of maximal length in W. Thus, in both cases the irreducible unipotent
representations of G are classified by the irreducible representations of the Weyl group W ~ &,
which in turn are classified by partitions of k or equivalently by Young diagrams, as we briefly

recall in the next paragraph.

3.2.5 A partition of k is a tuple A = (A = ... = A,) with r > 1 and each \; is a positive
integer, such that \; + ... + A\, = k. The integer k is called the length of the partition, and
it is denoted by |A|. A Young diagram of size k is a top left justified collection of k boxes,
arranged in rows and columns. There is a correspondance between Young diagrams of size k
and partitions of k, by associating to a partition A = (A,...,\,) the Young diagram having
r rows consisting successively of Aj,..., A, boxes. We will often identify a partition with its
Young diagram, and conversely. For example, the Young diagram associated to A = (32,22, 1)

is the following one.

To any partition A of k, one can naturally associate an irreducible character x, of the symmetric
group G;. An explicit construction is given, for instance, by the notion of Specht modules as
explained in [Jam84] 7.1. We will not recall their definition.

3.2.6 The irreducible unipotent representation of Uy (F,) (resp. GU(F,)) associated to x»
by the bijection of 3.2.4 is denoted by p} (resp. p§Y). In virtue of 3.2.3, for every \ we
have p} = o f where f : Ui(F,) — GUk(F,) is the inclusion. Thus, it is harmless to
identify pY and pSY so that from now on, we will omit the superscript. The partition (k)
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corresponds to the trivial representation and (1¥) to the Steinberg representation. The degree
of the representations p, is given by expressions known as hook formula. Given a box [ ] in
the Young diagram of A, its hook length A([ ]) is 1 plus the number of boxes lying below it
or on its right. For instance, in the following figure the hook length of every box of the Young
diagram of A = (32,22, 1) has been written inside it.

2

=N | Ot

=W

Proposition ([GP00] Propositions 4.3.5). Let A = (A; = ... = X,) be a partition of n. The

degree of the irreducible unipotent representation py s given by the following formula

k i i
deg(py) = o — L= € = 1
[T @0 — (10

where a(X) =Y (i — 1)\

3.2.7 We may describe the cuspidal support of the unipotent representations p,. According
to [Lus77] 9.2 and 9.4 there exists an irreducible unipotent cuspidal character of Uy (F,) (or
GU(F,)) if and only if k is an integer of the form k = tH ) for some t > 0, and when that is
the case it is the one associated to the partition A; := (¢,t— 1 ., 1), whose Young diagram has
the distinctive shape of a reversed staircase. Here, as a convention Uy(F,) = GUg(F,) denotes
the trivial group. For example, here are the Young diagrams of A;, Ay and Aj. Of course, the

one of Ay the empty diagram.

We consider an integer ¢ > 0 such that £ decomposes as k = 2e + Hl) for some e > 0. Let G
denote U(FF,) or GUg(F,), and consider L; the subgroup consisting of block-diagonal matrices
having one middle block of size @ and all other blocks of size 1. This is a standard Levi
subgroup of G. For Ug(F,), it is isomorphic to GL;(F,2)¢ x U ) (F,) whereas in the case of

GU(F,) it is isomorphic to G (UI(IFQ)e X U (Fq)>. In both cases, L; admits a quotient

t+1

which is isomorphic to a group of the same type as G but of size . We write p; for the

inflation to L; of the unipotent cuspidal representation pa, of this quotlent. If X is a partition
of k, the cuspidal support of the representation p, is given by exactly one of the pair (L;, p;)

up to conjugacy, where t > 0 is an integer such that for some e > 0 we have k = 2e + @

(tH) must have the same parity. With these notations, the

Note that in particular & and
irreducible unipotent representatlons belonging to the principal series are those with cuspidal

support (Lo, po) if k is even and (Lq, p1) is k is odd.
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3.2.8 Given an irreducible unipotent representation p,, there is a combinatorical way to
determine the Harish-Chandra series to which it belongs, as we recalled in [Mul22a] Section
2. We consider the Young diagram of \. We call domino any pair of adjacent boxes in the
diagram. It may be either vertical or horizontal. We remove dominoes from the diagram of
A so that the resulting shape is again a Young diagram, until one can not proceed further.
This process results in the Young diagram of the partition A; for some ¢t > 0, and it is called
the 2-core of A\. It does not depend on the successive choices for the dominoes. Then, the
representation py has cuspidal support (L, p;) if and only if A has 2-core A;. For instance, the
diagram \ = (3%,2%,1) given in 3.2.5 has 2-core A, as it can be determined by the following
steps. We put crosses inside the successive dominoes that we remove from the diagram. Thus,
the unipotent representation py of Uy (F,) or GUyy(F,) has cuspidal support (L4, p;), so in

particular it is a principal series representation.

3.2.9 From now on, we take ¢ = p. We consider the /-adic cohomology with compact support
of a closed Bruhat-Tits stratum M, ® F, where ¢ is a prime number different from p and A € £
has orbit type ¢(A) = 20 + 1, 0 < 0 < m. Recall from 3.1.2.10 that the stratum M, is
equipped with an action of the finite group of Lie type GU(V}Y) ~ GUsgp,1(F,), and as such it
is isomorphic to a Deligne-Lusztig variety. Let F' be the Frobenius morphism of GUggy4(F,) as
defined in 3.2.3. Then F? induces a geometric Frobenius morphism My @F — M, ®F relative
to the F2-structure of M,. Because it is a finite morphism, it induces a linear endomorphism
on the cohomology groups, and it is in fact an automorphism. In [Mul22a], we computed these
cohomology groups in terms of a GUgp11(F,) x (F?)-representation.

Theorem. Let A € L and write t(A) = 20 + 1 for some 0 < 6 < m.

(1) The cohomology group HI(M\®F, Qy) is zero unless 0 < j < 20. There is an isomorphism
H{(Ma ®@F, Q) ~ B/ (My @ F, Q)" (6)

which is equivariant for the action of GUagy1(F,) x (F?).
(2) The Frobenius F? acts like multiplication by (—p)’ on HI(My Q@ F, Q).
(3) For 0 < j <6 we have

min(j,0—j)

sz(MA ®]Fa@) = (‘B P(26041-25,25)-
s=0

For 0 <j<6—1 we have

szJrl(MA RF, @) = @ P(20—25,25+1) -

s=0
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Thus, in the cohomology of M all the representations associated to a Young diagram with at

most 2 rows occur, and there is no other. Such a diagram has the following general shape.

Remarks. Let us make a few comments.

— Part (1) of the theorem follows from general theory of etale cohomology given that the
variety M is smooth and projective over F,2. The identity is a consequence of Poincaré
duality. The notation (6) is a Tate twist, it modifies the action of F? by multiplying it
with p%.

— The cohomology groups of index 0 and 26 are the trivial representation of GUgp11(F)).

— All irreducible representations in the cohomology groups of even index belong to the
unipotent principal series, whereas all the ones in the groups of odd index have cuspidal
support (Lg, p2).

— The cohomology group HZ(M,®F, Q,) contains no cuspidal representation of GUsgp 1 (F,)
unless @ = j = 0or § = j = 1. If § = 0 then H? is the trivial representation of
GU1(F,) = F 5, and if 6 = 1 then H! is the representation pa, of GU3(F,). Both of them
are cuspidal.

3.3 Shimura variety and p-adic uniformization of the basic stratum

3.3.1 In this section, we introduce the PEL unitary Shimura variety with signature (1,n—1)
as in [VW11] 6.1 and 6.2, and we recall the p-adic uniformization theorem of its basic (or su-
persingular) locus. The Shimura variety can be defined as a moduli problem classifying abelian
varieties with additional structures, as follows. Let E be a quadratic imaginary extension of Q
in which p is inert. Let B/F be a simple central algebra of degree d > 1 which splits over p
and at infinity. Let * be a positive involution of the second kind on B, and let V be a non-zero
finitely generated left B-module equipped with a non-degenerate *-alternating form (-, -) taking
values in Q. Assume also that dimg(V) = nd. Let G be the connected reductive group over Q

whose points over a (Q-algebra R are given by
G(R) := {9 € GLggr(V® R) |3c € R* such that for all v,w e V® R,{gv, gw) = (v, w)}.

We denote by ¢ : G — G,, the multiplier character. The base change Gp is isomorphic to a
group of unitary similitudes GU(r, s) of a hermitian space with signature (r, s) where r+s = n.
We assume that r = 1 and s = n — 1. We consider a Shimura datum of the form (G, X'), where
X denotes the unique G(R)-conjugacy class of homorphisms h : C* — Gy such that for all
z € C* we have (h(z)-,-) = (-, h(Z)-), and such that the R-pairing (-, h(i)-) is positive definite.
Such a homomorphism % induces a decomposition VR C = V; @ V,. Concretely, V; (resp. V)
is the subspace where h(z) acts like z (resp. like Z). The reflex field associated to this PEL

data, that is the field of definition of V; as a complex representation of B, is E unless n = 2 in
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which case it is Q. Nonetheless, for simplicity we will consider the associated Shimura varieties

over F even in the case n = 2.

Remark. As remarked in [Voll0] Section 6, the group G satisfies the Hasse principle, ie.
ker'(Q, ) is a singleton. Therefore, the Shimura variety associated to the Shimura datum
(G, X) coincides with the moduli space of abelian varieties that we are going to define.

3.3.2 Let Ay denote the ring of finite adeles over Q and let K < G(Ay) be an open compact
subgroup. We define a functor Shx by associating to an E-scheme S the set of isomorphism
classes of tuples (A, \, ¢, 7) where

— A is an abelian scheme over S.

~ XN A—>Aisa polarization.

~ 1 : B — End(A) ® Q is a morphism of algebras such that +(b*) = ¢(b)" where -7 denotes
the Rosati involution associated to A, and such that the Kottwitz determinant condition

is satisfied:

Vb e B, det(t(b)) = det(b|Vy).

— 7 is a K-level structure, that is a K-orbit of isomorphisms of B®A y-modules H; (A4, A) —
V ® Ay that is compatible with the other data.

The Kottwitz condition in the third point is independent on the choice of h € X. If K is
sufficiently small, this moduli problem is represented by a smooth quasi-projective scheme Shy
over E. When the level K varies, the Shimura varieties form a projective system (Shx)x
equipped with an action of G(Af) by Hecke correspondences.

3.3.3 We assume the existence of a Z,)-order Op in B, stable under the involution *, such
that its p-adic completion is a maximal order in Bg,. We also assume that there is a Z,-lattice
I'in V® Q,, invariant under Op and self-dual for (-,-). We may fix isomorphisms E, ~ Q2
and Bg, ~ My(Q,2) such that Op ® Z, is identified with My(Z,2).

As a consequence of the existence of I', the group Gy, is unramified. Let K, := Fix(I') be
the subgroup of G(Q,) consisting of all g such that g -I" = I'. It is a hyperspecial maximal
compact subgroup of G(Q,). We will consider levels of the form K = KyK? where K? is an
open compact subgroup of G (AI}). Note that K is sufficiently small as soon as K? is sufficiently
small. By the work of Kottwitz in [kottwitzpoints|, the Shimura varieties Shy,x» admit
integral models over O (,) which have the following moduli interpretation. We define a functor
Sk» by associating to an Op ,)-scheme S the set of isomorphism classes of tuples (4, A, ¢, )

where

— A is an abelian scheme over S.

~ XA Aisa polarization whose order is prime to p.

— 1: Op — End(A)®Z) is a morphism of algebras such that ¢(b*) = ¢(b)! where -T denotes
the Rosati involution associated to A, and such that the Kottwitz determinant condition
is satisfied:

Vb e Op, det(u(b)) = det(b| V7).
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~

— 1P is a KP-level structure, that is a KP-orbit of isomorphisms of B®A§Z—modules H; (A4, A?) —
V& A]} that is compatible with the other data.

If K7 is sufficiently small, this moduli problem is also representable by a smooth quasi-projective
scheme over O ). When the level K? varies, these integral Shimura varieties form a projective
system (Sg»)gr» equipped with an action of G (A?) by Hecke correspondences. We have a family
of isomorphisms

ShKOKp =~ SKp ®(9E’(p) FE

which are compatible as the level K? varies.

Notation. Unless explicitly mentioned, from now on the notation Sg» will refer to the smooth
quasi-projective Zy:-scheme Sgr Qo Zy2. Here, we implicitly use the identification of E,
with Q2.

Therefore, with this convention we have isomorphisms Shg, xkr@rQp2 >~ Ske ®sz Q2 compatible

as the level KP varies.

3.3.4 Let Sgv := Sk» ®sz [F,2 denote the special fiber of the Shimura variety. It is a smooth
quasi-projective variety over 2. Its geometry can be described in terms of the Newton strat-
ification as follows. Recall the Shimura datum introduced in 3.3.1. To any homomorphism
h e X, we can associate the cocharacter

i C = Ge= || Ga

Gal(C/R)

which is given by h : C* — Gf into the summand corresponding to the identity in Gal(C/R).
The conjugacy class p of py, is well-determined by X. The field of definition of y is by definition
the reflex field of the Shimura datum, that is £ when n = 2 and Q otherwise. We fix an
algebraic closure Q (resp. @Q,) containing E (resp. Q,2). We also fix an embedding v : Q — Q,
compatible with the identification E, ~ Q,». We may then consider the local datum (Gg,, u@)
where fig; is the conjugacy class of cocharacters @px — G@ induced by p and v. Let B(Gg,)
denote the set of o-conjugacy classes in G(@p) where @p = VV/(]FTQ is the completion of the
maximal unramified extension of Q,. As in [kottwitziso|, we may associate the Kottwitz
set B(Gg,, ig;) = B(Gg,). It is a finite set equipped with a partial order. An element
b € B(Gq,) is said to be pg —admissible when it belongs to B(Gg,, ug,). The set B(Gq,)
(resp. B(Guq,, pg;)) canonically classifies the isomorphism classes of isocrystals with a Gg,-
structure (resp. compatible g, G,-structures).
Let Ag»r denote the universal abelian scheme over Sg», and let Ag» denote its reduction
modulo p. The associated p-divisible group Ag»[p*] is denoted by Xg». For any geometric
point z € Sk», the p-divisible group (Xg»). is equipped with compatible tig,» Go,-structures
therefore it determines an element b, € B(Gg,, pi;)- For b€ B(Gq,, ug;), the set

Skr(b) := {x € Sk | by = b}

is locally closed in Sg». It is the underlying topological space of a reduced subscheme which we
still denote by Sk»(b). They are called the Newton strata of the special fiber of the Shimura
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variety. For a fixed b, as the level K? varies the strata form a projective tower (Sg»(b))xr
equipped with an action of G (AI}) by Hecke correspondences.

3.3.5 In [BWO05], the combinatorics of the Newton stratification is described in the case of
a PEL unitary Shimura variety of signature (1,n —1). The set B(Gq,, ug;) contains |3] + 1
elements bg < b; < ... < b[%J and we have

15]
g}(p = |_| g[{p (bz)
=0

The stratification is linear, that is the closure of a stratum Sg»(b;) is the union of all the strata
Sk (b;) for j < i. The stratum corresponding to b; has dimension m + i. The element bz is
p-ordinary, and the corresponding stratum Sk (bjz|) is called the y-ordinary locus. It is open
and dense in Sir. The unique basic element is by, and the corresponding stratum Sg»(bg) is
called the basic stratum. It coincides with the supersingular locus. It is a closed subscheme

of g[(p.

3.3.6 The geometry of the basic stratum can be described using the Rapoport-Zink space
M in a process called p-adic uniformization, see [RZ96] and [Far04]. Let z be a geometric
point of Sg»(by). Since G satisfies the Hasse principle, according to [Far04] Proposition 3.1.8
the isogeny class of the triple (A, A, ¢), consisting of the abelian variety A, together with its
additional structures, does not depend on the choice of z. We define

I:= Aut( Az, A\ 0).

It is a reductive group over Q. In fact, since we are considering the basic stratum, according to
loc. cit. the group I is the inner form of G such that I(As) = J x G(A}) and I(R) ~ GU(0, n),
that is the unique inner form of G(R) which is compact modulo center. In particular, one can
think of 7(Q) as a subgroup both of J and of G(A%). Let (§ &») b, denote the formal completion

of Sk» along the basic stratum.
Theorem ([RZ96] Theorem 6.24). There is an isomorphism of formal schemes over Spf(Z,2)
O : L(Q)\ (M x G(A)/KT) = (o)

which is compatible with the G(A?)—actz’on by Hecke correspondences as the level KP varies.

This isomorphism is known as the p-adic uniformization of the basic stratum. The induced

map on the special fiber is an isomorphism

(©x0)s : H(Q)\ (Muea x G(AR)/KP) > S (by)

of schemes over Spec(FF,2). We denote by M®*" (resp. (§Kp)f}f(‘)) the smooth analytic space over
Q,2 associated to the formal scheme M (resp. (§ k7)) by the Berkovich functor as defined in
[Ber96]. Note that both formal schemes are special in the sense of loc. cit. so that we may
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use Berkovich’s constructions. These analytic spaces play the role of the generic fibers of the
formal schemes over Spf(Z,2). By [Far04] Théoreme 3.2.6, p-adic uniformization induces an
isomorphism

R QN (M™ x G(AD)/K?) = Sk,
of analytic spaces over Q2. We denote by red the reduction map from the generic fiber to the
special fiber. It is an anticontinuous map of topological spaces, which means that the preimage
of an open subset is closed and the preimage of a closed subet is open. Then, the uniformization

on the generic and special fibers are compatible in the sense that the diagram

A~

T(Q)\ (M™ x G(AD)/K?) —R S,y

redl lred

[(Q)\ (Myea x G(AR)/K7) — 25 S0, (by)
1s commutative.

3.3.7  The double coset space I(Q)\G(A%)/K? is finite, so that we may fix a system of rep-
resentatives gi,...,gs € G(A}). For every 1 < k < s, we define T, := I(Q) n geKPg; !, which
we see as a discrete subgroup of J that is cocompact modulo the center. The left hand side of
the p-adic uniformization theorem is isomorphic to the disjoint union of the various quotients
of M (or M,eq or M?*) by the subgroups I';, < J. In particular for the special fiber, it is an
isomorphism

(@Kp)s . |_| Fk\Mred = g]{p(bo).
k=1

Let ®%., be the composition M,eq — T\ Mieq — S_hgsp and let ®x» be the disjoint union of the
®k.,. The map ®x» is surjective onto Sg»(by). According to [VW11] Section 6.4, it is a local
isomorphism which can be used in order to transport the Bruhat-Tits stratification from M4
to Sgr(bg). Recall the notations of 3.1.2.3.

Proposition ([VW11] Proof of Proposition 6.5). Let A € L. For any 1 < k < s, the restriction

of ®%., to My is an isomorphism onto its image.

We will denote by §Kp7 Ak the scheme theoretic image of M, through ®*. A subscheme of the
form ng’ Ak is called a closed Bruhat-Tits stratum of the Shimura variety. Together, they
form the Bruhat-Tits stratification of the basic stratum, whose combinatorics is described by

the union of the complexes I';\L.

3.4 The cohomology of the Rapoport-Zink space at maximal level
3.4.1 The spectral sequence associated to an open cover of M?*"

3.4.1.1 As in 3.3.6, we consider the generic fiber M®*" of the Rapoport-Zink space as a
smooth Berkovich analytic space over Q2. Let red : M — M4 be the reduction map. If Z

74



Cohomology of DL varieties associated to PEL RZ spaces with signature (1,n — 1)

is a locally closed subset of M,.q, then the preimage redfl(Z ) is called the analytical tube
over 7. It is an analytic domain in M?®" and it coincides with the generic fiber of the formal
completion of M,.q along Z. If 7 € Z such that ni is even, then the tube red_l(./\/ll-) = M is
open and closed in M?®*" and we have

M = |_| M?n.
nie27Z
If A e L, we define
Up :=red 1 (M,)

the tube over M. The action of J on M induces an action on the generic fiber M*" such
that red is J-equivariant. By restriction it induces an action of Jy on U,. The analytic space
M and each of the open subspaces U, have dimension n — 1.

3.4.1.2 We fix a prime number ¢ = p. In [Ber93], Berkovich developped a theory of étale
cohomology for his analytic spaces. Using it we may define the cohomology of the Rapoport-
Zink space M?®" by the formula

H(M™SC,, Q) o= iy H(UBC,, Q)
U

= lim lim H (U® C,, /0" 7) ® Q,
U n

where U goes over all relatively compact open of M?®". These cohomology groups are equipped
with commuting actions of J and of W, the Weyl group of Q,2. The J-action causes no problem
of interpretation, but the W-action needs explanations. Let 7 := o2 be the Frobenius relative
to F2. We fix a lift Frob € W of the geometric Frobenius 77! € Gal(F/F,2). The inertia
subgroup I < W acts on H;(Man® Cp,@) via the coefficients C,, whereas Frob acts via the
Weil descent datum defined by Rapoport and Zink in [RZ96] 3.48, as we explain now.
Recall the standard unitary p-divisible group X introduced in 3.1.1.1. Let

Fr:X®F - r*(X®F)
denote the Frobenius morphism relative to Fj. Let (M® Og,)" be the functor defined by
(MO )(5) := M(S,)

for all O@p—scheme S where p is locally nilpotent. Here, S, denotes the scheme S but with
structure morphism the composition S — Spec(O@p) 5 Spec(O@p). The Weil descent datum is
the isomorphism agy : M Os, = (MB Og,)" given by (X, 1, A, p) € M(S) = (X, 1, A, Fxop).
We may describe this in terms of k-rational points, where k is a perfect field extension of F. Since
we use covariant Dieudonné theory, the relative Frobenius Fx corresponds to the Verschiebung
V2 in the Dieudonné module. By construction of X, we have V2 = pr—!. Therefore, if
S = Spec(k) with k/F,2 perfect, then agyz sends a Dieudonné module M € M(k) to pr—(M).
Since Frob € W is a geometric Frobenius element, its action on the cohomology of M?®" is
induced by the inverse Oéf{%.
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Remark. The Rapoport-Zink space is defined over Z,. and this rational structure is induced by
the effective descent datum pagé, with p = p-id seen as an element of the center of J. It sends
a point M to 7(M). Consequently, in the following we will write 7 := (p~! - id, Frob) € J x W,
and we refer to it as the rational Frobenius. We note that p~! -id comes from contravariance of
cohomology with compact support: the action of g € J on the cohomology of M is induced
by the action of ¢g~! on the space M,

Notation. In order to shorten the notations, we will omit the coefficients C,. Thefore we write
H: (M Q) and similarly for subspaces of M?".

3.4.1.3 The cohomology groups H2(M?®, Q) are concentrated in degrees 0 to 2 dim(M?®") =
2(n —1). According to [Far04] Corollaire 4.4.7, these groups are smooth for the J-action and
continous for the I-action. In a similar way as for M®", we can also define the cohomology
groups H®(M2*, Q) for every i € Z such that ni is even. The action of an element g € .J induces

an isomorphism

H;(Man7 Qf) — H; ( z+a (9)7 QZ)

In particular, the action of Frob gives an isomorphism from the cohomology of M2 to that of

an. Let (J x W)° be the subgroup of J x W consisting of all elements of the form (g, uFrob?)
with u € T and a(g) = —2j. In fact, we have (J x W)° = (J° x I)7% where J° < J is the
subgroup introduced in 3.1.3.4. Each group H2 (M Q) is a (J x W )°-representation, and we

have an isomorphism
H(M™ Q) ~ ¢ — IndJJXX”‘fV) He (M2, Q).

In particular, when H¥(M?" Q) is non-zero it is infinite dimensional. However, by loc. cit.

Proposition 4.4.13, these cohomology groups are always of finite type as J-modules.

3.4.1.4 In order to obtain information on the cohomology of M?*" we study the spectral
sequence associated to the covering by the open subspaces Uy for A € L. The spaces Uy satisfy
the same incidence relations as the M, as described in 3.1.2.11 Theorem (1), (2) and (3). As
a consequence, the open covering of M®* by the {U,} is locally finite. For ¢ € Z such that ni is
even and for 0 < 0 < m, we denote by Lge) the subset of £; whose elements are those lattices
of orbit type 26 + 1. We also write £ for the union of the ,CZ(-H). Then {Up}perom is an open
cover of M?*. We may apply [Far04] Proposition 4.2.2 to deduce the existence of the following
Cech spectral sequence computing the cohomology of the Rapoport-Zink space, concentrated
in degrees a <0 and 0 < b < 2(n—1),

Eab @ Hb Qé) — Haer(Man’@e)

vel_at1

Here, for s > 1 the set I, is defined by

I = {72 (A, A%

Vi<j<s,ANNerl™ and Uy ﬂUNz }
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Necessarily, if v = (A',...,A®) € I, then there exists a unique 7 such that ni is even and
Noe El(-m) for all 7. We then define

A(y) = ﬂ NerL;,
j=1

so that U(y) = Up(y). In particular, the open subspace U(y) depends only on the intersection
A() of the elements in the s-tuple 7.

For s = 2 and v = (A',...,A%) € I, define ; := (A!, ... AJ, ... A%) e I, for the (s—1)-tuple
obtained from 7 by removing the j-th term. Besides, for A, A’ € £; with A’ ¢ A, we write ff{,, A
for the natural map H%(Ux/, Q;) — H%(Uy, Q;) induced by the inclusion Uy < Uy.

For a < —1, the differential E** — EY*" is denoted by ¢’ .. It is the direct sum over all

v € I_44q of the maps

H(U(7),Q)— @D  HAU®),Q)
0e{V1,--Y—a+1}
—a+1

v Z V- (—1)j+1fﬁ(7),/\(w)(“)-
j=1

Here, the notation v; - (=1)*'f} ) \(, 1(v) means the vector (=1)7*'f  \  (v) considered
inside the summand H%(U(8), Q) corresponding to § = ;. We observe that we may have
A(v;) = A(y;) even th(ﬁgh v; =y In Ech a case, the vectors fk(v),A(w)@) and fk(v),/\(vj/)(”)
are equal in HY(U(v;), Q) = HY(U(v;/), Q,), but they contribute to two distinct summands in

the codomain, namely associated to 6 = v; and § = ;.

An element g € J acts on the set I, by sending v to g -7 := (gA!,..., gA®). The action of g~*

induces an isomorphism
Hz<U(7);@5) - HQ(U(Q ), Q).
This defines a natural J-action on the terms EY ’b, with respect to which the spectral sequence

is equivariant.

Remark. The map pag, defines a Weil descent datum on M®F which is effective, and coincides
with the natural Fz-structure. Hence, the same holds for the analytical tube U A® C,. The
descent datum pag, induces the action of 7 on the cohomology of Uy. If v € I_,i; then
p-v €l 4.1 It follows that each term Ef’b is equipped with an action of W. The spectral
sequence FE is in fact J x W-equivariant.

3.4.1.5 First we relate the cohomology of a tube U, to the cohomology of the corresponding
closed Bruhat-Tits stratum M,. We observe that H?(Uy,, Q) is naturally a representation of
the subgroup (Jy x I)72 < J x W.

Proposition. Let A € £ and let 0 < b < 2(n —1). There is a (Jy x I)72-equivariant isomor-
phism
I{bQA4A<:yF,KEZ)—:+I{ba7A,K§Z)
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where, on the left-hand side, the inertia I acts trivially and 7 acts like the geometric Frobenius
F?,

In particular, the inertia acts trivially on the cohomology of Uy.

Proof. Recall the notations of 3.3.7 regarding the Bruhat-Tits stratification on the Shimura
variety Sg», where K? is any open compact subgroup of G (A?) that is small enough. Fix an
integer 1 < k < s and consider the closed Bruhat-Tits stratum Sg» 4 %, that is the isomorphic
image of M, through @’}@. Let Shg» o be the analytic tube of ngJ\,k inside (ng)f‘br(‘) By
compatibility of the p-adic uniformization, the tube Shg» s x is the isomorphic image of Uy
through (®%.,)® which is the composition M® — [\ M — (/S\Kp)fbr(lJ Thus, the following

diagram is commutative.

Un ——— Shiw ak

redl lred

My ————— Skrap

Berkovich’s comparison theorem gives the desired isomorphism. More precisely, let S kr denote
the formal completion of the Shimura variety Sk» along its special fiber. Since it is a smooth
formal scheme over Spf(Z,2), we may apply [Ber96] Corollary 3.7 to deduce the existence of a

natural isomorphism
H*(Skr ak ®F, Q) = H*(Shgo ak, Qo).

This isomorphism is equivariant for the action of (Jy x I)7Z, with the rational Frobenius 7 on
the right-hand side corresponding to F? on the left-hand side. O]

Remark. Tt is a priori not possible to use Berkovich’s result directly on the Rapoport-Zink space
because M is not a smooth formal scheme over Spf (Zf,). In fact, it is not adic unless n = 1 or
2, see [Far04] Remarque 2.3.5. It is the reason why we have to introduce the Shimura variety

in the proof.

Corollary. Let A€ L and let 0 < b < 2(n—1). There is a (Jy x I)7%-equivariant isomorphism
Ho(Un, @) = HZO (M @ F, Q) (n — 1 6)

where t(A) = 20 + 1.

Proof. This is a consequence of algebraic and analytic Poincaré duality, respectively for U, and
for My. Indeed, we have

HZ(UAa@) = HZ(nil)ib(UAa@)v(n - 1)
~ H2(n71)7b(MA ®]F,@)V (n . 1)
~ B2 D (M @B, Q) — 1 - 6).
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3.4.1.6 Let A € £ and write t(A) = 20 + 1. If X is a partition of 20 + 1, recall the unipotent
irreducible representation py of GU(VY) ~ GUgp,1(F,) that we introduced in 3.2.6. It can be
inflated to the maximal reductive quotient Jy ~ G(U(V?) x U(V}})), and then to the maximal
parahoric subgroup J,. With an abuse of notation, we still denote this inflated representation
by px. In virtue of 3.2.9, the isomorphism in the last paragraph translates into the following

result.
Proposition. Let A € L and write t(A) = 20 + 1. The following statements hold.

(1) The cohomology group H(Uyx, Q) is zero unless 2(n — 1 —60) < b < 2(n —1).

(2) The action of Jy on the cohomology factors through an action of the finite group of Lie
type GU(VY). The rational Frobenius T acts like multiplication by (—p)® on H(Uy, Qy).

(3) For 0 <b <6 we have

min(j,0—7)
Hgb+2(n71*9)(UA, QZ) = @ P(264+1-25,25)-
s=0
For0<b<6—1 we have
L min(j,0—1—j3)
Hgb“”(”_l_e)(UA,@K) = (—D P(26—25,25+1)-
s=0

3.4.1.7 The description of the rational Frobenius action yields the following result.

Corollary. The spectral sequence degenerates on the second page Ey. For 0 < b < 2(n — 1),
the induced filtration on ng(/\/lan,@) splits, ie. we have an isomorphism
WMET) > @D B
b<b'<2(n—1)
The action of W on H5(M® Qy) is trivial on the inertia subgroup and the action of the rational
Frobenius element 1 is semisimple. The subspace Eg_b,’bl 1s 1dentified with the eigenspace of T

associated to the eigenvalue (—p)v.

Remark. In the previous statement, the terms Eg_b,’b/ may be zero.

Proof. The (a,b)-term in the first page of the spectral sequence is the direct sum of the co-
homology groups H’(U(7),Qy) for all v € I_,.;. On each of these cohomology groups, the
rational Frobenius 7 acts like multiplication by (—p)’. This action is in particular independant
of v and of a. Thus, on the b-th row of the first page of the sequence, the Frobenius acts
everywhere as multiplication by (—p)’. Starting from the second page, the differentials in the
sequence connect two terms lying in different rows. Since the differentials are equivariant for
the 7-action, they must all be zero. Thus, the sequence degenerates on the second page. By
the machinery of spectral sequences, there is a filtration on H2(M?®* Q) whose graded factors
are given by the terms E;’_bl’b, of the second page. Only a finite number of these terms are
non-zero, and since they all lie on different rows, the Frobenius 7 acts like multiplication by a
different scalar on each graded factor of the filtration. It follows that the filtration splits, ie.
the abutment is the direct sum of the graded pieces of the filtration, as they correspond to the
eigenspaces of 7. Consequently, its action is semisimple. ]
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3.4.1.8 The spectral sequence EY * has non-zero terms extending indefinitely in the range
a < 0. For instance, if A € £ then (A,...,A) € I_441 so that E®* = 0 for all a < 0 and
20n —1—m) < b < 2(n—1). To rectify this, we introduce the alternating Cech spectral
sequence. If v e E*® and v € I_,,,, we denote by v, € H5(U(7), Q) the component of v in the
summand of B’ indexed by ~. Besides, if v = (A,...,A~*") e I_,.1 and if 0 € G_,,; then
we write o(y) := (AW .. Aty e [, .. For all a,b we define

Eiﬁlt = {v e BY*|Vy € I_qi1,Y0 € 611, Ug(y) = sgn(0),}.

In particular, if v = (A',...,A=%*") with A/ = A" for some j = j/ then v € Ei’slt

The subspace Ei’glt c E™" is stable under the action of J x W, and the differential ¢*  : B** —

E{TY sends EXY, to EYTEY. Thus, for all b we have a chain complex E7’, and the following

proposition is well-known.

— U’Y:O'

Proposition ([Sta23] Lemma 01FM). The inclusion map El'”glt — El"b 1s a homotopy equiva-

, o . b b
lence. In particular we have canonical isomorphisms Eq7 ~ E3” for all a,b.

The advantage of the alternating Cech spectral sequence is that it is concentrated in a finite
strip. Indeed, if v = (A',..., A7) € T .y, let i € Z such that A(y) € £;. Then all the
A7’s belong to the set of lattices in Egm) containing A(v). This set is finite of cardinality
v(in—0—m—1,n—20—1) where t(A(y)) = 20 + 1 according to 3.1.4.1. Thus, if —a + 1 is big
enough then all the 7’s in 1_,,; will have some repetition, so that Ei’;’lt =0.

Remark. The Lemma 01FM of [Sta23] is stated in the context of Cech cohomology of an abelian
presheaf F on a topological space X. However, the proof may be adapted to Cech homology
of precosheaves such as U — H%(U, Qy).

3.4.1.9 For a = 0, we have E?:glt = E?’b by definition. Let us consider the cases b =
2(n—1—m) and b = 2(n—1—m) + 1. For such b, it follows from 3.4.1.6 that H%(U,, Q,) = 0 if
t(A) < tmax. If a < —1, we have —a +1 > 2 so that for all v = (A!,... A=) e [_, ., if there
exists j = j/ such that AV = A7, then t(A(7)) < tmax and HY(U(v),Q;) = 0. It follows that
Eiﬁlt
yields the following proposition.

= 0 for all a < —1 and b as above. This observation, along with the previous paragraph,

E;),Q(n— 1-m) _ E;),2(n— 1-m

Proposition. We have ). If moreover m > 1 (ie. n = 3), then we

have B2 1mmtl o pO2M=lmmtl o el

3.4.1.10 In order to study the action of J, we may rewrite E} * conveniently in terms of
compactly induced representations. To do this, let us introduce a few more notations. For
0<60<mands > 1, we define

IO = {ye I, |t(A(y)) = 20 + 1}.

The subset I < I, is stable under the action of J. We denote by N(Ag) the finite set
N(n —60 —m —1,V,}) as defined in paragraph 3.1.4.1. It corresponds to the set of lattices
A € Ly of maximal orbit type t(A) = 2m + 1 containing Ay. For s > 1 we define

KO = {6=(A"...,A%)|V1 < j <s,A e N(Ag) and A(S) = Ag}.
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Then K is a finite subset of I\”) and it is stable under the action of Jog. lfvyel ég), there exists
some g € J such that g - A(y) = Ay because both lattices share the same orbit type. Moreover,

(0)

the coset Jy - ¢ is uniquely determined, and g -~ is an element of Ks’. This mapping results in

a natural bijection between the orbit sets
IO = JA\KD.

The bijection sends the orbit J -« to the orbit Jy - (¢ - a) where g is chosen as above. The
inverse sends an orbit Jy - 8 to J - . We note that both orbit sets are finite.
We may now rearrange the terms in the spectral sequence.

Proposition. We have an isomorphism

(‘B @ ¢ — Indyy (5 Ho(Un, , Qo) rix(s)

0 [sleto\ ),
= EB C—= Indjg ( (UA67 Qﬂ) X @é[ —a+1]>
=0
where Q[ K —a+l] is the permutation representation associated to the action of Jy on the finite
set K (93 ‘1

Remark. For ¢ € Ks(e), the group Fix(J) consists of the elements g € J such that g- 0 = 9. Any
such g satisfies gA(§) = A(J), and since A(6) = Ay we have Fix(5) < Jp. If § = (A',... A%

then Fix(d) is the intersection of the maximal parahoric subgroups Ju1, ..., Jys. We note that
in general, Fix(d) is itself not a parahoric subgroup of J since the lattices A', ..., A® need not
form a simplex in £, as they all share the same orbit type. If however A' = ... = A® then

Fix(d) = Jp1 is a conjugate of the maximal parahoric subgroup J,,.

Proof. First, by decomposing I_,,; as the disjoint union of the Ifj 41 for 0 < 0 < m, we may

write

B - @ HUM).T.

0=0 )

'76]7a+1

For each orbit X € J\I E(Q 41, we fix a representative 0x which lies in K (jz +1- We may write

E'=® © @OHUMW=0 & @O ¢ HUOX.Q).
0=0 XGJ\I£9(2+1 'YEX 0=0 XGJ\I£9(2+1 gEJ/FiX(éx)

The rightmost sum can be identified with a compact induction from Fix(dx) to J. Identifying
the orbit sets J\](_Q(ZJr1 = JQ\K(_9(2+17 we have

6—) @  c— Indiy ) H(Un,, Qo)irix)

[ ]EJG\K(—(2+1
By transitivity of compact induction, we have
¢ — Indgy, 5 H(Uny» Q0)pix(s) = ¢ — Ind3, ¢ — Indi? o HY(Un,, Q) pixs)-
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Since H’(Up,, Q¢)rix(s) is the restriction of a representation of Jy to Fix(d), applying com-
pact induction from Fix(J) to Jp results in tensoring with the permutation representation of
Jg/Fix(0). Thus

EpY ~ @ @  c—1Indy, (HX(Us,, Q) ® Q[ Js/Fix(0)])

0 [5]eo\ K,

~ De-nd), (RO, T @ Tl/FixO)] |,

6=0 [8]edo\K), |

where on the second line we used additivity of compact induction. Now, Jy/Fix(d) is identified

with the Jp-orbit Jp - 8 of § in K “at1, SO that
D  Qlh/Fix@]=Q || 0] = QK]
[5]€J0\K(—03+1 [ ]€J9\K( a+1
which concludes the proof. O]

3.4.1.11 By 3.1.2.9, we may identify N(Ay) with the set
N(Ag) :={UcV} | dimU =m —60 and U c U*}.

Thus, for s > 1, K; ) s naturally identified with

ff’):{gz(Ul,...,US)

V1< j<s,U’ e N(Ag) and ﬂ Ul = {o}} :

j=1
which fac-
tors through an action of the finite projective unitary group PU(V}) := U(V,})/Z(U(V})) ~
GU(V,))/Z(GU(V,})). Thus, the representation Q[K'%), ] of Jy is the inflation, via the maximal
reductive quotient as in 3.1.2.8, of the representation @[f(fi 1] of the finite projective unitary
group PU(V}}).
When 6 = m or when s = 1, we trivially have the following proposition.

The action of Jp on K corresponds to the natural action of GU(V,') on K K

s

Proposition. For s > 1, we have QZ[K( ] =1.
For0<6<m-—1, wehave(@g[ 1 ]=0.

Proof. I § = (AY,...,A®) e K™ then A(§) = A,, has maximal orbit type tmax = 2m + 1. For
any 1 < j < s we have A,, = A7, therefore A' = ... = A* = A,,,. Thus K™ is a singleton and
SO Qg[K§ ] is trivial. Besides, if § < m then K¢ ) is clearly empty. m

Recall 3.4.1.9 Proposition. We obtain the following corollary.
Corollary. We have

EYY ~c—1Ind] HY(U,,, Q).
In particular, we have
c— Indﬁm Pim+1) ifb=2(n—1-m),

Eg’b ~
c— Imdfm pemyy  ifm=1andb=2(n—1-m)+1.
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Remark. The representation pom1) = 1 is the trivial representation of J,,.

3.4.1.12 Let us now consider the top row of the spectral sequence, corresponding to b =
2(n —1). For A’ < A, recall the map f2(n Y (U, Q) — HX D (U, Q). By Poincaré
duality, it is the dual map of the restriction morphism H°(Uy, Q;) — H°(Uys, Qy). Since Uy is
connected for every A € £, we have H°(Uy, Q) ~ Q; and the restriction maps for A’ = A are all

identity. Thus, E¥*"Y is the Q,-vector space generated by I_,.1, and the differential ¢>" "
is given by
—a+1
YEl g41— Z (_1)j+17j'
=1

Using this description, we may compute the highest cohomology group HE(”*”(M”,@) ex-
plicitely.

Proposition. There is an isomorphism

H2"=D (M Q) ~ ¢ — Ind7. 1

and the rational Frobenius T acts via multiplication by p*>™=1).

Proof. The statement on the Frobenius action is already known by 3.4.1.7 Corollary. Besides,
we have H2"" V(M Q) ~ EX*"™Y = Coker(¢?" ™). The differential ©>" ") is described
by

(A, A) — 0, YA e £0m),
(A, A) = (A) = (A), YA, A" e £ such that Uy n Uy = &.

Let i € Z such that ni is even, and let A, A’ € Egm). Since the Bruhat-Tits building BT(j, Q,) ~
L; is connected, there exists a sequence A = A° ... A% = A’ of lattices in £; such that for all
0<j<d-1,{A, ANV} is an edge in L. Assume that d > 0 is minimal satisfying this
property. Since t(A) = t(A’) = tpay, the integer d is even and we may assume that t(A7) is
equal to t,., when j is even, and equal to 1 when 7 is odd. In particular, for all 0 < j < %l -1
we have A% A%+2 ¢ ﬁgm) and Upz;j N Upzj+2 = . Consider the vector

A2] A2j+2 EE 1,2(n— 1)

I Mm&

Then we compute gof("fl)(w) = (A) = (A). Thus, Coker(gpf(nfl)) consists of one copy of Qy
for each ¢ € Z such that ne is even. Considering the action of J as well, it readily follows that

Coker(p>™ V) ~ ¢ — Ind’, 1. O

Remark. The cohomology group H2nY (M Q) can also be computed in another way which
does not require the spectral sequence. Indeed, we have an isomorphism

HE D (M, @) ~ ¢ — Ind, HA D (M3, @)
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By definition, we have
H (M, Q) = i B (0B C,, D),
U

where U runs over the relatively compact open subspaces of Mj". Since U is smooth, Poincaré
duality gives
H" D (UBC,, Q) ~H(UBC,, Qr)".

And since M§" is connected, we can insure that all the U’s involved are connected as well.
Therefore HO(U ® (Cp,@) ~ Qy, and all the transition maps in the direct limit are identity. It
follows that HE(”*”(MSH, Qy) is trivial.

3.4.2 Compactly induced representations and type theory

3.4.2.1 Let Rep(J) denote the category of smooth Q-representations of G. Let x be a
continuous character of the center Z(J) ~ Q;, and let V € Rep(J). We define the maximal
quotient of V on which the center acts like yx as follows. Let us consider the set

Q= {W | W is a subrepresentation of V' and Z(J) acts like x on V/W}.

The set €2 is stable under arbitrary intersection, so that W, := ﬂWeQ W € Q. The maximal
quotient is defined by
Vy = V/W..

It satisfies the following universal property.

Proposition. Let x be a continuous character of Z(J) and let V,V' € Rep(J). Assume that
Z(J) acts like x on V'. Then any morphism V' — V' factors through V.

Proof. Let f : V — V'’ be a morphism of J-representations. Since V/Ker(f) ~ Im(f) < V,
the center Z(J) acts like x on the quotient V /Ker(f). Therefore Ker(f) € Q. It follows that
Ker(f) contains W, and as a consequence, f factors through V. O

3.4.2.2  As representations of J, the terms EY b of the spectral sequence 3.4.1.4 consist of
representations of the form
c— Indj@ P,

where p is the inflation to Jy of a representation of the finite group of Lie type Jy. We
note that such a compactly induced representation does not contain any smooth irreducible
subrepresentation of J. Indeed, the center Z(.J) ~ Q;z does not fix any finite dimensional
subspace. In order to rectify this, it is customary to fix a continuous character x of Z(.J)
which agrees with the central character of p on Z(J) n Jy ~ Z;, and to describe the space
(c— Indi} p)y instead.

Lemma. We have (c — Indi} Py > C— Ind%(J)Jg X & p.
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Proof. By Frobenius reciprocity, the identity map on ¢ — Indé( 7, X ® p gives a morphism
X®p — (C — Ind%(J)Je X ®,0)|Z(J)J(9 of Z(J)Jg-representations. Restricting further to Jy, we
obtain a morphism p — (c — Indé( 7)Je X ® p)| n By Frobenius reciprocity, this corresponds
to a morphism ¢ — Indj, p — ¢ — Indé(J)Jg X ® p of J-representations. Because Z(J) acts via
the character x on the target space, this morphism factors through a map (c — Indi) Py —
c— Indé( 77, X®p. In order to prove that this is an isomorphism, we build its inverse. The quo-
tient morphism ¢ — Indiﬂ p— (c— Indﬁe p) corresponds, via Frobenius reciprocity, to a mor-
phism p — (¢ — Indi} P)x|J, Of Jp-representations. Because Z(J) acts via the character x on the
target space, this arrow may be extended to a morphism y®p — (¢ — Indi) )y 1z()Je Of Z(J)Jg-
representations. By Frobenius reciprocity, this corresponds to a morphism ¢ — Ind%( 7)Js X®p —
(c— Indi} )y, and this is our desired inverse. O

3.4.2.3 We recall a general theorem from [Bus90] describing certain compactly induced rep-
resentations. In this paragraph only, let G' be any p-adic group, and let L be an open subgroup
of G which contains the center Z(G) and which is compact modulo Z(G).

Theorem ([Bus90] Theorem 2 (supp)). Let (o,V') be an irreducible smooth representation of
L. There is a canonical decomposition

c—IndS o~V @V,

where Vy is the sum of all supercuspidal subrepresentations of ¢ — Indf o, and where Vy, con-
tains no non-zero admissible subrepresentation. Moreover, Vy is a finite sum of irreducible

supercuspidal subrepresentations of G.

The spaces Vj or V, could be zero. Note also that since G is p-adic, any irreducible represen-
tation is admissible. So in particular, V., does not contain any irreducible subrepresentation.
However, it may have many irreducible quotients and subquotients. Thus, the space V, is
in general not G-semisimple. Hence, the structure of the compactly induced representation
c— Indg o heavily depends on the supercuspidal supports of its irreducible subquotients.

We go back to our previous notations. Let 0 < 6 < m, let p be a smooth irreducible repre-
sentation of Jy and let x be a character of Z(J) agreeing with the central character of p on
Z(J) n Jy. Since the group Z(J)Jy contains the center and is compact modulo the center, we

have a canonical decomposition
J ~
(c— Indj, P)x = Vo0 @ Voxoo-

In order to describe the spaces V,, o and V,, », we determine the supercuspidal supports of
the irreducible subquotients of ¢ — Indi} p through type theory, with the assumption that p is
inflated from Jy. For our purpose, it will be enough to analyze only the case 8 = m. In this
case, dim V! is equal to 0 or 1 so that GU(V,}) = {1} or IF)> has no proper parabolic subgroup.
In particular, if p is a cuspidal representation of GU(V,?), then its inflation to the reductive
quotient

Tn = G(U(Vy) x U(V,,))

is also cuspidal.
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3.4.2.4 In the following paragraphs, we recall a few general facts from type theory. For more
details, we refer to [BK98] and [Mor99]. Let G be the group of F-rational points of a reductive
connected group G over a p-adic field F'. A parabolic subgroup P (resp. Levi complement L)
of GG is defined as the group of F-rational points of an F-rational parabolic subgroup P < G
(resp. an F-rational Levi complement L ¢ G). Every parabolic subgroup P admits a Levi
decomposition P = LU where U is the unipotent radical of P. We denote by Xp(G) the set
of F-rational Q-characters of G, and by X"(G) the set of unramified characters of G,
ie. the continuous characters of G which are trivial on all compact subgroups. We consider
pairs (L, 7) where L is a Levi complement of G and 7 is a supercuspidal representation of
L. Two pairs (L,7) and (L', 7") are said to be inertially equivalent if for some g € G and
X € X"(G) we have L' = L9 and 7" ~ 79 ® x where 79 is the representation of LY defined
by 79(1) := 7(g7'lg). This is an equivalence relation, and we denote by [L,T]g or [L, 7] the
inertial equivalence class of (L, 7) in G. The set of all inertial equivalence classes is denoted
IC(G). If P is a parabolic subgroup of G, we write 1% for the normalised parabolic induction
functor. Any smooth irreducible representation 7 of GG is isomorphic to a subquotient of some
parabolically induced representation ($(7) where P = LU for some Levi complement L and
7 is a supercuspidal representation of L. We denote by ¢(7) € IC(G) the inertial equivalence
class [L, 7]. This is uniquely determined by 7 and it is called the inertial support of 7.

3.4.2.5 Let s € IC(G). We denote by Rep®(G) the full subcategory of Rep(G) whose objects
are the smooth representations of GG all of whose irreducible subquotients have inertial support
5. This definition corresponds to the one given in [BD84] 2.8. If & = IC(G), we write Rep®(G)
for the direct product of the categories Rep®(G) where s runs over &. We recall the main results

from loc. cit.

Theorem ([BD84] 2.8 and 2.10). The category Rep(G) decomposes as the direct product of the
subcategories Rep®(G) where s runs over 1C(G). Moreover, if & < 1C(G) then the category

Rep®(G) is stable under direct sums and subquotients.

Type theory was then introduced in [BK98] in order to describe the categories Rep®(G) which
are called the Bernstein blocks.

3.4.2.6 Let & be a subset of IC(G). A &-type in G is a pair (K, p) where K is an open
compact subgroup of GG and p is a smooth irreducible representation of K, such that for every
smooth irreducible representation 7 of G we have

Tk contains p < {(m) € &.

When & is a singleton {s}, we call it an s-type instead.

Remark. By Frobenius reciprocity, the condition that mx contains p is equivalent to 7 being
isomorphic to an irreducible quotient of ¢ — Indg p. In fact, we can say a little bit more. Let K
be an open compact subgroup of GG and let p be an irreducible smooth representation of K. Let
Rep,(G) denote the full subcategory of Rep(G) whose objects are those representations which
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are generated by their p-isotypic component. If (K, p) is an S-type, then [BK98] Theorem 4.3
establishes the equality of categories Rep,(G) = Rep®(G). By definition of compact induction,
the representation ¢ — Indf( p is generated by its p-isotypic vectors. Therefore any irreducible
subquotient of ¢ — Ind% p has inertial support in &.

3.4.2.7 An important class of types are those of depth zero, and they are the only ones we
shall encounter. First, we recall the following result. If K is a parahoric subgroup of G, we

denote by K its maximal reductive quotient. It is a finite group of Lie type over the residue
field of F'.

Proposition ([Mor99] 4.1). Let K be a mazimal parahoric subgroup of G and let p be an
wrreducible cuspidal representation of K. We see p as a representation of K by inflation. Let
7 be an irreducible smooth representation of G and assume that m g contains p. Then 7 is
supercuspidal and there exists an irreducible smooth representation p of the normalizer Ng(K)

such that pjx contains p and ™ ~ ¢ — IndgG(K)p.

Such representations 7 are called depth-0 supercupidal representations of G. More gener-
ally, a smooth irreducible representation 7 of G is said to be of depth-0 if it contains a non-zero
vector that is fixed by the pro-unipotent radical of some parahoric subgroup of G. A depth-0
type in G is a pair (K, p) where K is a parahoric subgroup of G and p is an irreducible cuspidal
representation of I, inflated to K. The name is justified by the following theorem.

Theorem ([Mor99] 4.8). Let (K, p) be a depth-0 type. Then there exists a (unique) finite set
S < IC(G) such that (K, p) is an S-type of G.

In loc. cit. it is also proved that any depth-0 supercuspidal representation of G contains a
unique conjugacy class of depth-0 types. Let K be a parahoric subgroup of G. Using the
Bruhat-Tits building of G, one may canonically associate a Levi complement L of GG such that
Ky := L n K is a maximal parahoric subgroup of L, whose maximal reductive quotient K,
is naturally identified with IC. This is precisely described in [Mor99] 2.1. Moreover, we have
L = G if and only if K is a maximal parahoric subgroup of G. Now, let (K, p) be a depth-0
type of G and denote by & the finite subset of IC(G) such that it is an &-type of G. Since p
is a cuspidal representation of K ~ KCp, we may inflate it to K. Then, the pair (K, p) is a
depth-0 type of L. We say that (K, p) is a G-cover of (K, p). By the previous theorem, there
is a finite set &, < IC(L) such that (Kp,p) is an & -type of L. Then the proof of Theorem
4.8 in [Mor99] shows that we have the relation

S ={[M,7]¢|[M. 7], eS.}.

In this set, M is some Levi complement of L, therefore it may also be seen as a Levi complement
in G. Thus, an inertial equivalence class [M, 7], in L gives rise to a class [M,7]g in G.
Since K, is maximal in L, in virtue of the proposition above any element of &, has the form
[L, 7], for some supercuspidal representation 7 of L. In particular, every smooth irreducible
representation of G containing the type (K, p) has a conjugate of L as cuspidal support. We
deduce the following corollary.
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Corollary. Let (K, p) be a depth-0 type in G and assume that K is not a mazimal parahoric
subgroup. Then no smooth irreducible representation m of G containing the type (K, p) is

supercuspidal.

3.4.2.8 Thus, up to replacing G with a Levi complement, the study of any depth-0 type
(K, p) can be reduced to the case where K is a maximal parahoric subgroup. Let us assume
that it is the case, and let & be the associated finite subset of IC(G). While & is in general not
a singleton, it becomes one once we modify the pair (K, p) a little bit. Let K be the maximal
open compact subgroup of Ng(K). We have K < K but in general this inclusion may be strict.
Let p be a smooth irreducible representation of Ng (/) such that pjx contains p. Let p be
any irreducible component of the restriction ﬁ‘ #- Eventually, let 7 := ¢ — Indgc( k) P be the

associated depth-0 supercuspidal representation of G.

Theorem ([Mor99] Variant 4.7). The pair (IA( ,p) is a |G, T]-type.

The conclusion does not depend on the choice of p as an irreducible component of P& Any
one of them affords a type for the same singleton s = [G, 7].

3.4.2.9 Let us now consider a parahoric subgroup K along with an irreducible representation
p of its maximal reductive quotient £ = K/K™*, where K% is the pro-unipotent radical of
K. Assume that p is not cuspidal. Thus, there exists a proper parabolic subgroup P < K
with Levi complement £, and a cuspidal irreducible representation 7 of £, such that p is
an irreducible component of the Harish-Chandra induction 5 7. The preimage of P via the
quotient map K — K is a parahoric subgroup K’ < K, whose maximal reductive quotient
K’ := K'/K'" is naturally identified with £. We have K* < K'* < K’ and the intermediate
quotient K'* /K™ is identified with the unipotent radical N of P ~ K'/K*. Consider p as an
irreducible representation of K inflated from K. The invariants p form a representation of
K’ which coincides with the inflation of the Harish-Chandra restriction of p (as a representation
of K) to L. Thus, p"" contains the inflation of 7 to a representation of K’. In other words,
we have a K’'-equivariant map
T — Pk’

By Frobenius reciprocity, it gives a map
¢ — Indk, 7 — p,

which is surjective by irreducibility of p. Applying the functor ¢ — Ind$ : Rep(K) — Rep(G),
which is exact, and using transitivity of compact induction, we deduce the existence of a natural
surjection
¢ —Ind%, 7 — ¢ — Ind%; p.

Now, (K’,7) is a depth-0 type in G. Let & < IC(G) be the subset such that (K’,7) is an
S-type, and let L be the (proper) Levi complement of G associated to K’ as in the previous
paragraph. By 3.4.2.6 Remark, it follows that any irreducible subquotient of ¢ — Ind p has
inertial support in &. Since all elements of & are of the form [L, 7] for some supercuspidal

representation 7 of L, we reach the following conclusion.
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Proposition. Let K be a parahoric subgroup of G and let p be a non cuspidal irreducible rep-
resentation of its maximal reductive quotient KC. Then no irreducible subquotient of ¢ — Indg p

18 supercuspidal.

3.4.2.10 We go back to the context of the unitary similitude group J. We may now determine
the inertial support of any irreducible subquotient of a representation of the form ¢ — Indjm P
with p inflated from a unipotent representation of GU(V?). In particular, all the terms E}*
are of this form according to 3.4.1.11 Corollary. More precisely, let A be a partition of 2m + 1
and let A; be its 2-core (see 3.2.8). Thus 2m + 1 = w + 2e for some e > 0. The integer
@ is odd, so it can be written as 2f + 1 for some f > 0, and we have m = f + e. Using
the basis of V) fixed in 3.1.2.8, we identify GU(V,?) with the matrix group GUyp,,1(F,). The
cuspidal support of py is (Ly, pr) according to 3.2.8. Let P, be the standard parabolic subgroup
with Levi complement L;. By direct computation, one may check that the preimage of P; in
Jm is the parahoric subgroup Jy ., := JrnJrp1 0.0 Jy,. Let Ly be the Levi complement
of J that is associated to the parahoric subgroup J¢, ... Using the basis of V fixed in 3.1.1.4,
let V/ be the subspace of V generated by V* and by the vectors e4y, ..., es+s. It is equipped
with the restriction of the hermitian form of V. Then L; ~ G(U(VY) x U(Q,)°).
The group Ly n Jy, . is a maximal parahoric subgroup of Ly, and p, can be inflated to it. In
particular, the pair (Ly N Jy, . pr) is a level-0 type in Ly. Since we work with unitary groups
over an unramified quadratic extension, Ly N Jy, ., is also a maximal compact subgroup of Ly.
In particular, (Ly N Jy_ m, p¢) is a type for a singleton of the form [Ly,7¢]r,. Then 7; has the
form
Tp=cC— IndﬁfL (
s Lpndg,
where p; is some smooth irreducible representation of Ny (L; n Jy, ) containing p, upon
restriction. It follows that if we inflate p, to Jf__ ,, then (J¢ . pi) is & [Ly, 7¢]-type in J.
Moreover the compactly induced representation ¢ — Indjm pa is a quotient of ¢ — Ind:; b Pt

,,,,,

In particular, we reach the following conclusion.

t(tgl) =2f + 1 for some

f = 0. Any irreducible subquotient of ¢ — Indim px has inertial support [Ly, T¢].

Proposition. Let \ be a partition of 2m + 1 with 2-core A,. Write

In particular, if f < m then none of these irreducible subquotients are supercuspidal.

3.4.2.11 Let us keep the notations of the previous paragraph. Since unipotent representa-
tions of finite groups of Lie type have trivial central characters, if x is an unramified character
of Z(J) then xz(j)~s,, coincides with the central character of py inflated to J,,. As in 3.4.2.3,

we have

(c — Indl‘;m p)\)x ~ Vox0 @ ‘/;)/\7)(700.

If f < m, then no irreducible supercuspidal representation can occur. Thus V, o = 0.
On the other hand, assume now that f = m so that L; = J and p, is equal to the cuspidal
representation pa,,. As seen in 3.1.3.3, we have N;(J,,,) = Z(J)J,,, unless n = 2 (thus m = 0) in
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which case Jy = J° and Z(J)Jp is of index 2 in N;(Jy) = J. A representative of the non-trivial
coset is given by g as defined in 3.1.1.7. If n = 2, define

Tmyx = €= Ind%(J)Jm X & P

Then 7, is an irreducible supercuspidal representation of J, and we have

(C — Indim p/\)x ~ C— Ind%(J)Jm X @ Px = Tin,x-

Thus V), .o = 0 and V,,, yo = Tin in this case.

When n = 2, py = pa, = 1 is the trivial representation of Jy, = J°. Let xo : J — @X be
the unique non-trivial character of J which is trivial on Z(.J)Jy. Then (¢ — Ind), 1)x is the
sum of an unramified character 7y, of J whose central character is x, and of the character
XoTo,- DBoth characters are supercuspidal, and they are the only unramified characters of J
with central character y.

3.4.2.12 According to 3.4.1.6 and 3.4.1.11, the terms E?’b are a sum of representations of the
form

c— Indim P,

with A a partition of 2m + 1 having 2-core Ay if b is even, and A; if b is odd. Moreover, by
3.4.1.11 we have

B2« Tnd? 1, By s ¢~ Ind) | pom 1)

In particular, summing up the discussion of the previous paragraph, we have reached the

following statement.

Proposition. Let x be an unramified character of Z(J).

0,2(n—1—m) )

— Assume that n = 3. The representation (E, v contains no non-zero admissible

subrepresentation, and it is not J-semisimple. Moreover, any irreducible subquotient has
inertial support [Lo,7o]. If n > 5, then the same statement holds for (B> 1~™Fh)
with the inertial support being Ly, ].

— Forn =1,2,3,4, let b = 0,2,3,5 respectively. Then m = 0 when 1,2 and m = 1 when
n = 3,4. Let x be an unramified character of Z(.J). The representation T, is irreducible

supercuspidal, and we have

(EU,b) ~ T'mwX Zf n = ]-7 37 47
2 JX — .
Tmx @ X0Tmy U 1= 2.

In particular, we deduce the following important corollary.

Corollary. Let x be an unramified character of Z(J). If n = 3 then H2 (M Q) is
not J-admissible. If n =5 then the same holds for HE(’"“l‘m)“(Man,@)X.
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3.4.3 The case n = 3,4

3.4.3.1 Let us focus on the case m = 1, that is n = 3 or 4. Recall that N(Ag) denotes the set
of lattices A € Ly with type t(A) = tnax = 3 containing Ag. It has cardinality v(1,2) = p + 1
when n = 3 and v(2,3) = p® + 1 when n = 4. In particular, we may locate the non zero terms
Eiﬁh of the alternating Cech spectral sequence as follows.

¥ (0.0) € (0,2 (0.8): (k. A) [0< k<p} ifn=3,
El’alt =0
| (0.) € (0,4 (0.5): (~k.6) [0 < k < 7} ifn =4,

In Figure 3 below, we draw the shape of the first page Fj n; for n = 3. The case of n = 4 is
similar, except that two more 0 rows should be added at the bottom. To alleviate the notations,
2(n—1)

—a

we write ¢_, for the differential ¢

P4 34  ¢3 24 @2 14 @ J
: El,alt El,alt El,alt C— IndJl]‘

c— Indj;1 PA,

c—1Indj 1

0

Figure 3: The first page £ 5 of the alternating Cech spectral sequence when n = 3.

3.4.3.2 Let i € Z such that ni is even. For A, A’ € L;, recall that the distance d(A, A’) is the
smallest integer d > 0 such that there exists a sequence A = A° ..., A? = A’ of lattices of £;
with {A7, A7"!} being an edge for all 0 < j < d — 1. When m = 1, any lattice A € £; has type
1 or 3, and two lattices forming an edge can not have the same type. Therefore, the value of
t(A7) alternates between 1 and 3. In particular, if ¢(A) = #(A’) then d(A, A’) is even. According
to [Vol10] Proposition 3.7, the simplicial complex £; is in fact a tree. We will use this to prove
the following proposition.

Proposition. Let b =4 when n = 3, and b = 6 when n = 4. We have E;l’b =0.

By 3.4.1.8 Proposition, we may use the alternating Cech spectral sequence to show that Ey Lb —
Ker(p1)/Im(p;) vanishes. As we have observed in 3.4.1.12, the term E®’ is the Q-vector
space generated by the set I_,.1, and Ei’glt is the subspace consisting of all the vectors v =

el MY such that for all 0 € &_,41 we have A\y(,) = sgn(o)A,. Here the \,’s are scalars
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which are almost all zero. To prove the proposition, let us look at the differential p,. It acts

on the basis vectors in the following way.

(A, A, A)
(A, A AN) b (A D), VA, A e £W such that Uy n Uy = &,
(N, A, A)
(A, N A) — (A A) + (A A) = (A,A), VA, A e £Y such that Uy n Uy = &,
(A, A A") — (A A + (A A — (A A7), YA A A € £ such that Uy n Uy 0 Upr = &.

We note that for a collection of lattices A',... A% ¢ .cﬁ”, the condition Upy1 ... nUps = & is
equivalent to d(AJ,AJ") =2forall 1 <j=75<s
Towards a contradiction, we assume that Im(ps) & Ker(p1). Let v € Ker(y1)\Im(py). Since

—1b6 -
ve B, it decomposes under the form

v="> Ny = (1),

where r > 1, the ~,’s are of the form (A, A’) with A = A" and Uy n Un = &, the scalars \;’s
are non zero and 7 € G, is the transposition. We may assume that r is minimal among all the
vectors in the complement Ker(y1)\Im(p2). In particular, there exists a single ¢ € Z such that
nt is even, and for all j the lattices in «; belong to 551). We may further assume ¢ = 0 without
loss of generality.

We say that an element v € I occurs in v if 4 = 7, or 7(;) for some j. Similarly, we say that
a lattice A e E(()l) occurs in v if it is a constituent of some ;.

Lemma. Let v = (AN, A) € Iy be an element occuring in v. Then there exists A" € Eél) such
that (A", A) € I occurs in v and d(N',\") = 4.

Proof. Let us write (A7, A) € I,,1 < j < s for the various elements occuring in v whose first
component is A. Up to reordering the v;’s and swapping them with 7(;) if necessary, we may
assume that (A7, A) =, for all 1 < j <'s, and that A’ = A’. The coordinate of ¢;(v) along
the basis vector (A) is equal to 2377 A;. Since ¢1(v) = 0, the sum of the \;’s from 1 to s is
zero. In particular, we have s > 2.

For all 2 < j < s, we have 2 < d(A’, A7) < 4 by the triangular inequality. Towards a contra-
diction, assume that d(A’, A7) = 2 for all 2 < j < s. In particular, §; := (A7, A’, A) € I; for all
2 < j < s. Consider the vector

o.'»|»—x

ZZ (5)EE1§15

Then we compute

pa(w) = =M (A, A) - Z (A A7) + D X ((V,A) = (W, A7),

j=2 j=2
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In particular, we get

s

vt a(w) = D1 N3 = T(3) + D (A A) — (A, A)) € Ker(pr)\Im(ps),

j=s+1 Jj=2

which contradicts the minimality of 7. O

3.4.3.3 To conclude the proof of the proposition, let us pick A = A® € Eél) which occurs in
v, say in a pair (A’,A) € I,. Write A' := A’. By induction, we build a sequence (A*)z=q of
lattices in Lél) such that for all k, the pair (A**1, A¥) occurs in v and we have d(A%, A*) = 2k.
It follows that the A*’s are pairwise distinct, and it leads to a contradiction since only a finite
number of such lattices can occur in v.

Let us assume that A° ..., A* are already built for some k£ > 1. By the Lemma applied to A¥,
there exists AF™! e ,Cél) such that the pair (A1 A*) occurs in v and d(A*~! A*™1) = 4. By
the triangular inequality, we have

d(A%, AR = |d(A°, A%) — d(A%, AP = 2k — 2 = 2(k — 1).

Thus d(A° A1) = 2(k — 1), 2k or 2(k + 1). We prove that it must be equal to the latter.

Assume d(A°, A¥*1) = 2(k — 1). There exists a path A = LO, ... L?*=1) = A¥*1 We obtain a

cycle

AP At — A — P\ U e— VA
AO \ Ak
/
\ Ll L2 - L2(k—1) — Ak+1 _ Ak A Ak-i—l

Since Ly is a tree, this cycle must be trivial, ie. the lower and upper paths, which are of
the same length, are the same. In particular, we have A¥~! = A**! which is absurd since
d(Ak_l,Ak+1) = 4.

Assume d(A° A*™1) = 2k. There exists a path A° = Ly, ..., L?* = A**1. We obtain a cycle

AR AL — AV — o — AR AAR A
AO / AkmAk+1
/
\ Ll L2 E—— L2k71 L2k _ Ak+1

Since L is a tree, this cycle must be trivial, ie. the lower and upper paths, which are of the same
length, are the same. In particular, we have A* = A¥*1 which is absurd since d(A*, A**1) = 2.

Thus, we have d(A°, A*™1) = 2(k + 1) so that A*™! meets all the requirements. It concludes the
proof.
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3.4.3.4 In particular, we obtain the following statement.

Theorem. Assume thatn =3 or4. Letb=3 ifn =3, and let b="5 if n = 4. We have
HO(M™ Qy) ~ ¢ — Indj;1 DAy

with the rational Frobenius T acting like multiplication by —p®.

3.5 The cohomology of the basic stratum of the Shimura variety for
n =34

3.5.1 The Hochschild-Serre spectral sequence induced by p-adic uniformization

3.5.1.1 In this section, we still assume that n is any integer > 1. We recover the notations
of Part 3.3 regarding Shimura varieties. As we have seen in 3.3.6, p-adic uniformization is a
geometric identity relating the Rapoport-Zink space M with the basic stratum Sg»(by). In
[Far04], Fargues constructed a Hochschild-Serre spectral sequence using the uniformization
theorem on the generic fibers, which we introduce in the following paragraphs.

Recall the PEL datum introduced in 3.3.1. Let £ : G — W¢ be a finite-dimensional irreducible
algebraic Q-representation of G. Such representations have been classified in [HT01] IIL.2.
We look at Vg, == V® Qy as a representation of G, whose dual is denoted by V,. Using
the alternating form (-, -), we have an isomorphism V, ~ V- ® ¢!, where c is the multiplier
character of G.

Proposition ([HTO01] I11.2). There exists unique integers t(&),m(§) = 0 and an idempotent
e(&) e End(V()@m(g)) such that
We ~ @ @ e(&)(Vg™?).

The weight w(&) is defined by

w(§) :=m(§) — 2t(§).
To any £ as above, we can associate a local system L¢ which is defined on the tower (Sk»)xr
of Shimura varieties. We still write L, for its restriction to the generic fiber Shy xr @p Zy2,
and we denote by E_g its restriction to the special fiber Sg». Let Ag» be the universal abelian
scheme over Sg». We write 73, : AJy — Sk» for the structure morphism of the m-fold product
of Agr with itself over Sgr. If m = 0 it is just the identity on Sg». According to [HT01] II1.2,

we have an isomorphism

Le > e(eme (RO Q1)) )

where €, is some idempotent. In particular, if § is the trivial representation of G then

Le = Q.
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3.5.1.2  We fix an irreducible algebraic representation  : G — W; as above. We associate
the space A¢ of automorphic forms of I of type { at infinity. Explicitly, it is given by

A ={f : I(Ay) > We| f is I(Af)-smooth by right translations and Vy € I(Q), f(v-) = £(v)f(-)} .

We denote by L£§" the analytification of L¢ to Shig e, as well as for its restriction to any open

subspace.

Notation. We write H'((/S\Kp)ﬁf;, L") for the cohomology of (/S\Kp)ﬁfé ®C,, with coefficients in
L.
3

Theorem ([Far04] 4.5.12). There is a W -equivariant spectral sequence
F;,b(Kp) EXta (H2n 1)— (Man QZ)( )’Ag{P) — Ha+b((§Kp)|b07£an)

These spectral sequences are compatible as the open compact subgroup KP varies in G(A?).

The W-action on Fi"*(K?) is inherited from the cohomology group H2 D=0 (Agon, Qo)(1—n).
By the compatibility with K, we may take the limit lim  for all terms and obtain a G(A?) x W-
equivariant spectral sequence. Since m is the sem1s1mp1e rank of J, the terms Fy" (K P) are zero
for a > m according to [Far04] Lemme 4.4.12. Therefore, the non-zero terms Fi"* are located
in the finite strip delimited by 0 <a <m and 0 < b < 2(n —1).

Let us look at the abutment of the sequence. Since the formal completion ng of Sk» along
its special fiber is a smooth formal scheme, Berkovich’s comparison theorem ([Ber96] Corollary
3.7) gives an isomorphism

H (S (bo) ® F, L) = H (S (b)) @ F., L) = HP((Sen)iin, £27).

The first equality follows from Sg»(by) being a proper variety. Since this variety has dimension

m, the cohomology H'((ng)wO, L") is concentrated in degrees 0 to 2m.

3.5.1.3 Let A(/) denote the set of all automorphic representations of I counted with multi-
plicities. We write 5 for the dual of £&. We also define

Ag(I) == {Tl e A(I) | TT, = £}.
According to [Far04] 4.6, we have an identification

@ I, 1)
HGA&(I)
It yields, for every a and b, an isomorphism
FP(K7) ~ @ Extf (HZ 7M™, Q)(1 - n), IT,) © (117)%.
HGA{(I)
Taking the limit over K”, we deduce that

Fy? = lim F°(K?) ~ @ Exty (HXD7(M™ Q) (1 — n),1T,) @ IIP.
Kp HE.AE( )

The spectral sequence defined by the terms Fi** computes H* (S s £87) 1=l H“*b((gm)fb%, L),
It is isomorphic to HI**(S(bo) ® F, L¢) = lim  HI**(Skn(bo) ® T, Le).
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3.5.1.4 Recall from 3.4.1.7 that we have a decomposition
M)~ O B

b<b/<2(n—1)
and Eg_b/’bl corresponds to the eigenspace of 7 associated to the eigenvalue (—p)®. Accordingly,
we have a decomposition

s @ @ By (B aon)1,) e

2(n—1)—b< Tlede(I)
y'<2(n—1)

For IT € A¢(I), we denote by wr the central character. We define
O, 1= wi, (p~t- id)p_w(g) € @X.

Let ¢+ be any isomorphism Q; ~ C, and write | - |, := [¢(-)|. Since I is a group of unitary
similitudes of an F/Q-hermitian space, its center is E* - id. The element p~! -id € Z(J) can
be seen as the image of p~' - id € Z(I1(Q)). We have wr(p~' - id) = 1. Moreover, for any finite
place ¢ = p, the element p~! - id lies inside the maximal compact subgroup of Z(1(Q,)), so
|wr, (p~'id)|, = 1. Besides Iy, = ¢, so we have

o, (07" i) = Jwg(p™" 1)) = fwe(p " - id)L = [p© = p*©)

The last equality comes from the isomorphism W ~ c/®) @ (¢ )(V?m(g)), see 3.5.1.1. In partic-
ular |0y, |, = 1 for any isomorphism ¢.

Proposition. The W-action on Extf‘}(Eg("fl)fbfbl’b/(l —n),I1,) is trivial on the inertia I, and

the Frobenius element Frob acts like multiplication by (—1)’b/5npp’b/+2("’1)+w(5).

Proof. Let us write X := Eg(”_l)_b_b/’b/(l —n). By convention, the action of Frob on a space

Ext%(X,I1,) is induced by functoriality of Ext applied to Frob™ : X — X. Let us consider a
projective resolution of X in the category of smooth representations of J

u u

Uu, U
‘s P —2s P —> P —— X > 0.

Since Frob™' commutes with the action of .J, we can choose a lift F = (F;);so of Frob™! to a

morphism of chain complexes.

us 2

u u U
> Py » P —— P —— X > 0
l}— 2 l}— 1 l}— 0 lFrob -1
u3 \ P2 u2 \ Pl U1 \ PO uo \ X \ O

After applying Hom,(-,II,) and forgetting about the first term, we obtain a morphism F* of

chain complexes.

0 —— HOHlJ(P(),Hp> — HomJ(Pth) — HomJ<P27Hp) — .

by b b

0 —— Hom,(F,1I,) —— Hom,(P,1I,) —— Hom,; (P, I1,) —— ...
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Here F f(v) := f(Fi(v)). It induces morphisms on the cohomology
Fi o Bxt’ (X, 10,) — Ext}(X,11,),

which do not depend on the choice of the lift F. Recall that Frob is the composition of 7 and
p-id € J. Since 7 is multiplication by the scalar (—1)¥p? 2"~ on X we may choose the lift
Fi= (=1)"p ¥ +20=D(p=1 . id) for all i.

Consider an element of Ext’ (X, II,) represented by a morphism f : P, — II,. For any v € P,

we have

Fifv) = f(Fi)) = (=) p 20V f((p7" - id) - 0) = (=1)p™ 20 Vg, (p7! - id) f(v).

It follows that Frob acts on Ext’; (X, IL,) via multiplication by the scalar (—1)~¥ y p~¥ 2= DFw(©),
[

3.5.1.5 In general, the Hochschild-Serre spectral sequence has many differentials between
non-zero terms. However, focusing on the diagonal defined by a + b = 0, it is possible to
compute HY(S(by) ® F, L¢). Recall that X' (.J) denotes the set of unramified characters of .J.
IfzeQ, is any non-zero scalar, we denote by Q[z] the 1-dimensional representation of W

where the inertia I acts trivially and the geometric Frobenius Frob acts like x - id.

Proposition. We have an isomorphism of G(AI;) x W -representations

HY(S(bo) @ F, L) ~ @ 1P @Qy[on,p"®].
HGAg(I)
e X ™ (J)

Proof. The only non-zero term F » on the diagonal defined by a + b = 0 is F20 . Since there is
no non-zero arrow pointing at nor coming from this term, it is untouched in all the successive

pages of the sequence. Therefore we have an isomorphism
F* ~ H)(S(bo) ® F, Le).
Using 3.4.1.12, we also have isomorphisms

F*~ @ Hom, (H2D(M™ Q)1 —n),IL,) @ II”

HEAE(I)

~ @ Homy ((c —IndJ 1)(1 —n),IL,) ®II”
HE.AE(I)

~ @ HomJo (1(1 — n), Hp|Jo) ® ]___[p.

Thus, only the automorphic representations Il € A (/) with HZO = 0 contribute to the sum.
Consider such a II. The irreducible representation II, is generated by a J°-invariant vector.
Since J° is normal in J, the whole representation II, is trivial on J°. Thus, it is an irreducible
representation of J/J° ~ Z. Therefore, it is one-dimensional. Since J° is generated by all
compact subgroups of J, it follows that HZO =0 < II, e X" (J). When it is satisfied, the
W-representation Vj] := Hom . (1(1 — n),II,) has dimension one and the Frobenius action was
described in 3.5.1.4. O
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3.5.2 The case n = 3,4

3.5.2.1 In this section, we assume that m = 1, ie. n = 3 or 4. We recover the notations of
3.4.3.1. We use our knowledge so far on the cohomology of the Rapoport-Zink space to entirely
compute the cohomology of the basic locus of the Shimura variety via p-adic uniformization.
Let £ be an irreducible finite dimensional algebraic representation of G as in 3.5.1.1. When
n = 3 or 4, the semisimple rank of J is m = 1, therefore the terms an’b are zero for a > 1.
In particular, the spectral sequence degenerates on the second page. Since it computes the
cohomology of the basic locus S(by) which is 1-dimensional, we also have Fj P — 0 for b >3,
and F’21 P~ 0forb>2 In Figure 4, we draw the second page F» and we write between brackets
the complex modulus of the possible eigenvalues of Frob on each term under any isomorphism
t: Q; ~ C, as computed in 3.5.1.4.

Remark. The fact that no eigenvalue of complex modulus p*&) appears in FQO 1 nor in F21 -1
follows from 3.4.3.2 Proposition, where we proved that E; ** = 0 for b = 4 (resp. 6) when
n =3 (resp. 4).

F20’2[pw(£)+2’pw(€)] 0
Fyt[pr©+1) Fyt[pr©+1)
R ) F[p©)

Figure 4: The second page Fy with the complex modulus of possible eigenvalues of Frob on
each term.

Proposition. We have F21’1 = 0 and the eigenspaces of Frob on FQO’2 attached to any eigenvalue

of complex modulus p*© are zero.

Proof. By the machinery of spectral sequences, there is a G (A?) x W-subspace of H2(S(by) ®
F,ﬁ_g) isomorphic to le 1 and the quotient by this subspace is isomorphic to F20 2. We prove
that all eigenvalues of Frob on H2(S(b)® F, L¢) have complex modulus p*(©*2. The proposition
then readily follows.

We need the Ekedahl-Oort stratification on the basic stratum of the Shimura variety. Let
K? = G(A%) be small enough. In [VW11] 3.3 and 6.3, the authors define the Ekedahl-Oort
stratification on M,eq and on Sg»(by) respectively, and they are compatible via the p-adic
uniformization isomorphism. For n = 3 or 4, the stratification on the basic stratum take the
following form

Skr(bo) = Skr[1] L Sk [3].

The stratum Sg»[1] is closed and 0-dimensional, whereas the other stratum Sg»[3] is open,
dense and 1-dimensional. In particular, we have a Frobenius equivariant isomorphism between

the cohomology groups of highest degree
H2(Skr(bo) ® F, Le) ~ Hi(Swr[3] ® T, L)
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According the [VW11] 5.3, the closed Bruhat-Tits strata M, and g;@ Ak also admit an Ekedahl-

Oort stratification of a similar form, and we have a decomposition
Skel3] = | |Skraul3]
Ak

into a finite disjoint union of open and closed subvarieties. As a consequence, we have the

following Frobenius equivariant isomorphisms

H(Skr[3]® F, Le) ~ D H(Skran[3]® F, Le) ~ (D H(Skrar ® F, Le)
Ak Ak

where the last isomorphism between cohomology groups of highest degree follows from the
stratification on the closed Bruhat-Tits strata Sg» k. Now, recall from 3.5.1.1 that the local
system L is given by

Le > e(&)eme) (R™O (M), Tult(€)) )
It implies that E_g is pure of weight w(§). Since the variety §Kp,A7k is smooth and projective,
it follows that all eigenvalues of Frob on the cohomology group H? (ng, Ak ® ]F,[,_g) must have

complex modulus p®©+2 under any isomorphism ¢ : Q; ~ C. The result follows by taking the

limit over KP. O

3.5.2.2 In this paragraph, let us compute the term
F21’0 ~ @ EXt}] (Hg(nfl)(Man’@)(l i n)7 Hp) R IIP
HEA&(I)

~ P Ext’ (c— Ind’. 1(1 — n), I,) @ II”.
TeAg (1)

Let St; denote the Steinberg representation of J, and recall that X""(.J) denotes the set of
unramified characters of J.

Proposition. Let m be an irreducible smooth representation of J. Then
Q; ifdxe X™(J),m~x-Sty,

Ext}(c —Ind). 1,7) =
0 otherwise.

In order to prove this proposition, we need a few general facts about restriction of smooth
representations to normal subgroups. Let G be a locally profinite group and let H be a closed
normal subgroup. If (o,W) is a representation of H, for g € G we define the representation
(09, W) by 09 : h — (g 'hg). The representation o is irreducible if and only if o9 is for any
(or for all) g € G.

Lemma. Assume that Z(G)H has finite index in G.

(1) Let m be a smooth irreducible admissible representation of G. There exists a smooth

wrreducible representation o of H, an integer r = 1 and ¢y, ..., g, € G such that
Mg ~0"®...007.
Moreover r < [Z(G)H : G|, and for any g € G there exists some 1 < i < r such that

09 ~ g9,
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(2) Assume furthermore that G/H is abelian. Let m and o be two smooth admissible irre-
ducible representations of G. The three following statements are equivalent.
- (7T1)\H = (7T2>|H-
— There exists a smooth character x of G which is trivial on H such that mo ~ x - 7.
— Hompy (7, m5) = 0.
(3) Assume that G/H is abelian and that [Z(G)H : G] = 2. Let g9 € G\Z(G)H and let
m be a smooth admissible irreducible representation of G. If there exists an irreducible

representation o of H such that mg ~ o ® 0%, then o % o%.

Proof. For (1) and (2), we refer to [Ren09] VI.3.2 Proposition. The result there is stated in
the context of a p-adic group G with normal subgroup H = °G such that G/°G ~ Z¢ for some
d = 0, but the same arguments work as verbatim in the generality of the lemma. Admissibility
of the representations involved is assumed only in order to apply Schur’s lemma, insuring for
instance the existence of central characters of smooth irreducible representations. In particular,
if G/K is at most countable for any open compact subgroup K of G, then it is not necessary
to assume admissibility.

Let us prove (3). Assume towards a contradiction that my ~ 0 @ 0% and that o ~ 0%. We
build a smooth admissible irreducible representation II of G such that IIjz = o, which results
in a contradiction in regards to (2) since Hompy (II, 7) = 0 but II;5z % mp. Let x be the central
character of 7. Then x|z()~m coincides with the central character of o.

Let W denote the underlying vector space of 0. By hypothesis, there exists a linear automor-
phism f: W — W such that for every he H and we W,

f(o(g5 " hgo) - w) = a(h) o f(w).

Let us write g2 = 29hg for some zy € Z(G) and hg € H. We define ¢ := f2 o0 a(ho)~*. Then for
all h e H and w e W, we have

(hg thho)a(hg') - w)
(902h90)( 1)~w)
= a(h)o fA(o(he)™" - w)
)

p(o(h) - w) = f*(o(hg'h) -w) = f*(
£

o

o

Thus ¢ : 0 — ¢. By Schur’s lemma we have ¢ = X -id for some A € Q;. Up to replacing f by
(x(20)A")Y2f, we may assume that ¢ = x(z0) - id, ie. f? = x(20)o(ho).
We build a G-representation II on W which extends o. Let g € G and define

x(z)o(h) if g=z2he Z(G)H,

I(g) =
(9) x(2)foa(h) ifg=gozhe gZ(G)H.

Then one may check that II is a well defined group morphism G — GL(W). The fact that it is
smooth irreducible and admissible follows from II|; ~ o by construction, and it concludes the
proof. O]
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Remark. Under the hypotheses of (3), as long as ¢ is a smooth irreducible admissible repre-
sentation of H such that 0% ~ o and whose central character x|7@)~z can be extended to a

character of Z(G), then one may build IT as in the proof of the lemma.

We may now move on to the proof of the proposition.

Proof. By Frobenius reciprocity we have
Ext}(c —IndJ. 1,7) ~ EXt},o(l,ﬂ|Jo).

By functoriality of Ext, we have Ext}. (1, myo) = 0 if the central character of 7 is not unramified.
Thus, let us now assume that it is unramified. According to 3.1.3.4, we have J/J° ~ Z, and
Z(J)J° = J when n is odd, and is of index 2 in J when n is even. Thus, 7 is irreducible
when n is odd, and can either be irreducible, either decompose as o @ 0% for some irreducible
representation o of J° such that 0% % ¢ when n is even. Here, gy may be defined as in 3.1.1.7.
Thus, we are reduced to computing Ext’.(1,0) for any irreducible representation o of J°
with trivial central character. Let J!' = U(V) denote the unitary group of V (recall that
J = GU(V) is the group of unitary similitudes). Then J' is a normal subgroup both of J° and
of J. Moreover, J°/J* is isomorphic to the image of the multiplier ¢ o : J° — Z, , in particular

it is compact. Thus, we have
Extl.(1,0) ~ Ext}i (1, U'Jl)JO/Jl.

Since o has trivial central character, the .J°-action on Extbl(l,a| s1) is actually trivial on
Z(J°)J*. But this group is equal to the whole of J°. Indeed, let g € J°. Since Q,2/Q, is
unramified, there exists some A € Z, such that Norm()) = ¢(g). Thus c(A"lg) = 1so that g is
the product of A-id € Z(J°) and of an element of J'. Hence, J° acts trivially on Ext}: (1, 05).
Since J! is an algebraic group, we may use Theorem 2 of [NP20], a generalization of a duality
theorem of Schneider and Stiihler, to finish the computation. Namely, we have

EXtLlil(]_, 0'|J1) >~ Homjl (U‘J17 D(l))v7

where D denotes the Aubert-Zelevinsky involution in J!. We note that D(1) = St is the
Steinberg representation of J*.

Let us justify that the restriction of St; to J! is equal to St;1. The Steinberg representation
Sty (resp. Stji) can be characterized as the unique irreducible representation p of J (resp. of
J1) such that Ext?(1, p) = 0 (resp. Ext:(1,p) = 0). The gap between the degrees of the Ext
groups for J and for J! is explained by the non-compactness of the center of J. Since St; has
trivial central character, by [NP20] Proposition 3.4 we have

Ext(1,St,) ~ Ext},(1,St,) @ Ext3, (1, St,),

where the Ext groups on the right-hand side are taken in the category of smooth representations
of J on which the center acts trivially. Equivalently, this is the category of smooth representa-
tions of J/Z(J). Consider the normal subgroup Z(J)J'/Z(J) ~ JY/Z(J) n J' = J'/Z(J'), with
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quotient isomorphic to J/Z(J)J', which is trivial if n is odd and Z/2Z is n is even. Thus, we

have

Ext5,(1,5t;) ~ Ext}/zm(l, Sty)
~ Ext}l/z(ﬂ) (1, (StJ)|J1)J/Z(J)J1
~ Ext (1, (Sty) ) /47
~ Ext5i (1, (Sty)0) 7207

the last line following from the same Proposition 3.4 as above, but applied to J'. In [Far04]
Lemme 4.4.12, it is explained that Ext’, (7, 7) vanishes for any smooth representations 7y, 7o
of J' as soon as ¢ is greater than the semisimple rank of J, that is 1 in our case. Hence,
Ext’,(1,St,) = 0 and we have

Ext?(1,St) ~ Ext}(1,St,) ~ Exthi (1, (Sty) )74,

In particular, the right-hand side is non zero, which proves that (St;) ;1 contains St;. If n is
odd so that Z(J)J' = J, it follows that (St;);,» = St;1. If n is even, in virtue of point (3) of
the lemma, it remains to justify that for any g € J we have St%, ~ St ;1. This follows from the

following computation
EXt}]l (]_, St%l) = EXt(l]l (1971, Stjl) = EXt}ﬂ (1, Stjl) = 0.

Let us go back to the irreducible representation m of J with unramified central character.
Summing up the previous paragraphs, we have that ;1 contains St i if and only if 7 ~ x - St;
for some character x of J that is trivial on J' (and thus trivial on Z(J°)J! = J° by the
unramifiedness of the central character), and

Q if m ~ St ,
Eth(C — Indio 1, 7T) ~ HomJ1 (U\Jl, StJl)v ~ @é |J1 gt
0  otherwise.

[]

3.5.2.3 We may now compute the cohomology of the basic stratum. Recall the supercuspidal
representation 7y of the Levi complement M; < J that we defined in ?7?7. When n = 3 or 4, we
actually have M; = J and

71 = C— Indl{IJ(Jl) /pX;

is a supercuspidal representation of J, where N;(J;) = Z(J)J; (see 3.1.3.3) and pa, is the
inflation of pa, to Ny(J;) = Z(J)J; (see 3.1.3.3) obtained by letting the center act trivially.

We use the same notations as in 3.5.1.5.
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Theorem. There are G(A}) x W-equivariant isomorphisms

HIS(b) @ F,Le) ~ P 1P @ Qe[ dn, p" ],

HGAg(I)
HpeXllﬂ(J)
H!Sb) @ F.Le) ~ P IPQLnp@le P P Q[—on,p @,
e A (1) e A (1)
IxeX(J), IxeXun(J),
Hp=x-Sts p,=x-71
H(S(bo) @ F, Le) ~ B 1P @ Qu[bn,p" 9+
Te A (1)
1 =0

Proof. The statement regarding H(S(by) ® F, L¢) was already proved in 3.5.1.5.
Let us prove the statement regarding H2(S(by) ® F, L¢) first. By 3.5.2.1, we have

H2(S(b) ® F, Le) = F* = @ Homy (EY(1-n),1L,) @11,
HE.Ag I)
where b = 2 if n =3 and b = 4 if n = 4. The term Eg’b is isomorphic to ¢ — Ind§1 1. Therefore,

by Frobenius reciprocity we have
Hom, (Eg’b(l — n),Hp> ~ Homy, (1(1 —n),1I,).

Hence, only the automorphic representations I € A¢(I) with H]{l = 0 contribute to F3">. Such
a representation II, is said to be Ji-spherical. Since J; is a special maximal compact sub-
group of J, according to [minguez] 2.1, we have dim(7”/1) = 1 for every smooth irreducible
Ji-spherical representation m of J. The result follows using 3.5.1.4 to describe the eigenvalues
of Frob.

We now prove the statement regarding H.(S(by) ® F,L¢). By the Hochschild-Serre spectral
sequence, there exists a G(A?) x W-subspace V' of this cohomology group such that

V'~ F° and H(S(by) ® F, Le)/V' ~ Fy.
We have

B~ @ Bxth (H2D(M™ Q)(1 —n),1L,) @ II”
HE.Ag(I)
@ Extb (c — Indjo 1(1 —n), Hp) ® I”
HE.A{(I)
(—B I1r ®@[5nppw(§)]a
HE.A&(I)

Iye XU (),
IIp=x-Stsy

0

0

according to 3.5.2.2, and with the eigenvalues of Frob being given by 3.5.1.4.
On the other hand, we have

'~ @ HomJ< EY21- (1—n),np)®np.
TleAg (1)
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By 3.5.1.4, Frob acts on a summand of FQO’1 by the scalar —(5pr“’(5)+1. Since Frobyy» has no
eigenvalue of complex modulus p*©+! the quotient actually splits so that F20 1 is naturally a
subspace of H(S(by) ® F, L¢). It remains to compute it.

We have

B s o tnd], g,

with 7 acting like multiplication by —p* when n = 3 and by —p°® when n = 4, and A, = (2,1)
is the partition of 2m + 1 = 3 defined in 3.2.7. Hence, we have an isomorphism
)t~ @ Hom, (c-— Ind}, pa,(1 —n),1L,) @11
HEA&(I)

@ Homy (pa,(1 —n), I, ) QIIP.
HE.A&(I)

0

It follows that only the automorphic representations II € A¢ (/) whose p-component I, contains
the supercuspidal representation pa, when restricted to Ji, contribute to the sum. According
to 3.4.2.7, such I, are precisely those of the form x - 7 for some xy € X" (J). By the Mackey

formula we have

Hom; (c — Ind§1 PAys X * 7'1) ~ Hom,, (pAQ, 7'1‘]1)
~ Hom, (pAgu (c— Indi{IJ(Jl) EZ;)LA)

= @ HomJlthJ(Jl)(pAga h@))
hEJl\J/NJ(J1)
where in the last formula we omitted to write the restrictions to J; n"N;(J;). We used the fact
that x|, is trivial. Since pa, is just the inflation of pa, from J; to N;(J1) = Z(J)J; obtained
by letting Z(J) act trivially, we have a bijection

HomJlthJ(Jl)(PAza hf)ZZ) = HOmNJ(Jl)thJ(Jl)(ﬁZ; hﬁZ;)-

Now, N;(J;) contains the center, is compact modulo the center, and 73 = ¢ — Indi{b( 1) PA, 18
supercuspidal. It follows that an element h € J intertwines pa, if and only if h € N (J;) (see
for instance [bushnellbook| 11.4 Theorem along with Remarks 1 and 2). Therefore, only the
trivial double coset contributes to the sum and we have

HOHIJ (C — Indi PAsyy X * Tl) = HomJ1 (psz PAQ) = Qf'

To sum up, we have

0,1 ra W w
'~ @ IPQQ[—6n,p @M.
HEA&(I)
IxeXxv2(J),
Ip=x11

It concludes the proof. O

3.5.3 On the cohomology of the ordinary locus when n = 3

3.5.3.1 In this section, we assume that the Shimura variety is of Kottwitz-Harris-Taylor type.
According to [HT01] 1.7, it amounts to assuming that the algebra B from 3.3.1 is a division
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algebra satisfying a few additional conditions. In particular, B, is either split either a division
algebra for every place v of Q, and there must be at least one prime number p’ (different from
p) which splits in £ and such that B splits over p’. In this situation, the Shimura variety is
compact.

According to 3.3.5, when n = 3 there is a single Newton stratum other than the basic one. It
is the p-ordinary locus Sg»(b;), and it is an open dense subscheme of the special fiber of the
Shimura variety. Moreover, since the Shimura variety is compact, the ordinary locus is also an
affine scheme according to [goldringnicole| and [koskivirtawedhorn|. By using the spectral

sequence associated to the stratification
ng = §K17<b0) U ng(bl),

we may deduce information on the cohomology of the ordinary locus. The spectral sequence is
given by
Gi" - H(Skr(ba) ® F,Qr) = Hi*'(Sge ® F, Qo).

In figure 5, we draw the first page of this sequence.

HZ(Sk»(b1) ® F, Q)
H2(Sr (bo) ® F, Q) —2— H3(Spn(b) ® F, Q)
H (Skr (bo) ® F, Q) — H2(Spen(b1) ® F, Q)

HS (ng (b)) ® T, @)

Figure 5: The first page G.

3.5.3.2 Let v be a place of E above p’. The cohomology of the Shimura variety She, xr ®p F,
has been entirely computed in [Boy10]. Note that as G(A})-representations, the cohomology of
Sheyk» ®E B, is isomorphic to the cohomology of Sheyxr @ Qp2, which in turn is isomorphic
to the cohomology of the special fiber Sk» using nearby cycles. In particular, we understand
perfectly the abutment of the spectral sequence G‘f’b. Since Sk» is smooth and projective, its
cohomology admits a symmetry with respect to the middle degree 2. Moreover, by the results
of loc. cit. the groups of degree 1 and 3 are zero. It follows that ¢ is surjective and v is
injective. Combining with our computations, we deduce the following proposition.

Proposition. There is a G(AI}) x W -equivariant isomorphism

HiS(b)®F, L)~ P P @Q[on,p .
HE.AE(I)
,eX ™ ()
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There is a G(A}) x W -equivariant monomorphism

HS(b)® F.L) — @ Qi[5 ).
HEAE(I)
=0

There is a G(A}) x W -equivariant monomorphism

D Felbny9le @ FeQl-ony"“""—H(Sh)eF L).

HE.Ag(I) HEAg(I)
IxeXxmn(J), Ixe X (J),
Ip=x-Sty Mp=x-11
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4 On the cohomology of a closed Bruhat-Tits stratum
in the ramified PEL unitary Rapoport-Zink space of
signature (1,n — 1)

Notations

Throughout the chapter, we fix an integer n > 1 and an odd prime number p. If £ is a perfect
field of characteristic p, we denote by ¢ : x — 2P the Frobenius of Aut(k/F,). If ¢ = p° is a

power of p, we write I, for the field with ¢ elements. We fix an algebraic closure I of F,,.

4.1 The closed Deligne-Lusztig variety isomorphic to a closed Bruhat-
Tits stratum

4.1.1 Let ¢ be a power of p and let G be a connected reductive group over F, together with a
split F -structure given by a geometric Frobenius morphism /. For H any ['-stable subgroup
of G, we write H := HF for its group of F -rational points. Let (T,B) be a pair consisting
of a maximal F-stable torus T contained in an F-stable Borel subgroup B. Let (W,S) be
the associated Coxeter system, where W = Ng(T)/T. Since the Fy-structure on G is split,
the Frobenius F' acts trivially on W. For I < S, let P;, U, L; be respectively the standard
parabolic subgroup of type I, its unipotent radical and its unique Levi complement containing
T. Let W be the subgroup of W generated by I.

For P any parabolic subgroup of G, the associated generalized parabolic Deligne-Lusztig
variety is

Xp :={gPe G/P|g 'F(g) e PF(P)}.

We say that the variety is classical (as opposed to generalized) when in addition the parabolic
subgroup P contains an F-stable Levi complement. Note that P itself needs not be F-stable.
We may give an equivalent definition using the Coxeter system (W,S). For I = S, let W' be
the set of elements w € W which are I-reduced-I. For w € W/, the associated generalized
parabolic Deligne-Lusztig variety is

X](w) = {gP[ S G/P[ | gilF(g> € P[U)F(P[)}

The variety X;(w) is classical when w™'Tw = I, and it is defined over F,. The dimension is

given by dim X;(w) = l(w) where [(w) denotes the length of w with respect to S.

4.1.2 Let G and G’ be two reductive connected group over F both equipped with an -
structure. We denote by F' and F’ the respective Frobenius morphisms. Let f : G — G’ be
an [F -isotypy, that is a homomorphism defined over F, whose kernel is contained in the center
of G and whose image contains the derived subgroup of G’. Then, according to [DM14] proof
of Proposition 11.3.8, we have G’ = f(G)Z(G’)?, where Z(G')? is the connected component of
unity of the center of G’. Thus intersecting with f(G) defines a bijection between parabolic
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subgroups of G’ and those of f(G). Let P be a parabolic subgroup of G and let P’ =
f(P)Z(G")° be the corresponding parabolic of G’. Then the map gP — f(gP) induces an
isomorphism f : Xp — Xps which is compatible with the actions of G' and G’ via f. Therefore
G and G’ generate the same Deligne-Lusztig varieties.

4.1.3 Let 0 > 0 and let V be a 20-dimensional [F,-vector space equipped with a non-
degenerate symplectic form (-,-) : V x V — F,. Fix a basis (ey,...,eg) in which (-,-) is

0 A
—4y 0 )

where Ay denotes the matrix having 1 on the anti-diagonal and 0 everywhere else. If k is a

described by the matrix

perfect field extension of Fy, let Vj := V ®p, k denote the scalar extension to k equipped with
its induced k-symplectic form (-,-). Let 7 : V}, — V}, denote the map id® o. If U = Vj, let U+
denote its orthogonal.

We consider the finite symplectic group Sp(V,(-,-)) ~ Sp(260,F,). It can be identified with
G = GT where G is the symplectic group Sp(Vg, (+,-)) ~ Sp(20,F) and F is the Frobenius
raising the entries of a matrix to their ¢-th power. Let T < G be the maximal torus of diagonal
symplectic matrices and let B < G be the Borel subgroup of upper-triangular symplectic
matrices. The Weyl system of (T, B) is identified with (Wy, S) where Wy is the finite Coxeter
group of type By and S = {s1,..., 54} is the set of simple reflexions. They satisfy the following

relations
5059-15050—1 = S9—15959—150, 5i8i—18; = Si—15iSi_1, V2<i<0-1,
855 = S;jSi, v |Z _.]‘ = 2.
Concretely, the simple reflexion s; acts on V' by exchanging e; and e;;1 as well as egy_; and

eg9_ir1 for 1 <i < 60 — 1, whereas sy exchanges eg and ey, 1. The Frobenius F' acts trivially on

W.

4.1.4 We define the following subset of S
I := {51, C 789_1} = S\{S@}

We consider the generalized Deligne-Lusztig variety X;(sg). Since sgsg_18¢ ¢ I, it is not a clas-
sical Deligne-Lusztig variety. Let Sy := m be its closure in G/P;. This normal projective
variety occurs as a closed Bruhat-Tits stratum in the special fiber of the ramified unitary PEL
Rapoport-Zink space of signature (1,n — 1), as established in [RTW14]. In loc. cit. the authors

describe the geometry of Syp. We summarize their analysis.

Proposition ([RTW14] 5.3, 5.4). Let k be a perfect field extension of F,. The k-rational points
of Sy are given by
So(k) ~ {U < Vi |UL = U and U E U + 7(U)},

<1 . . o ‘ .
where < denotes an inclusion of subspaces with index at most 1. There is a decomposition

Sg = X[(ld) L X[(Sg),
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where X;(id) is closed and of dimension 0, and X(sg) is open, dense of dimension 6. They
correspond respectively to points U having U = 7(U) and U < U + 7(U).
If 0 = 2 then Sy is singular at the points of X;(id). When 6 = 1, we have S; ~ P

4.1.5 For 0 < 0 < 0, define
Iy = {51, e 75979'71}7

and wy 1= Sgy1-¢ ... Se. In particular Io =1, Iy_1 = Iy = J, wy = id and w; = sy.

Proposition ([RTW14] 5.5). There is a stratification into locally closed subvarieties
o
S@ = |_| Xlg,(wgl).
6'=0

The stratum X, (we) corresponds to points U such that dim(U +7(U)+...+7771(U)) = §+6'.
The closure in Sy of a stratum Xi,(wy) is the union of all the strata Xi,(w;) fort < 0'. The
stratum X, (wy) is of dimension ¢', and X,(wy) is open, dense and irreducible. In particular

Sy 1s irreducible.

Remark. This stratification plays the role of the Ekedahl-Oort stratification My = | |, Mx(t)
of the closed Bruhat-Tits strata in the unramified case, see [VW11].

4.1.6 It turns out that the strata X ,(we) are related to Coxeter varieties for symplectic

groups of smaller sizes. For 0 < ¢’ < 6, define
Ky = {81, < 50-6'—1, S0—-0'+1, - - -,39} = S\{Se—e/}-
Note that Ko = Iy = I and Ky = S. We have Iy < Ky with equality if and only if ¢ = 0.

Proposition. There is an Sp(26,TF,)-equivariant isomorphism
L /
Xi, (we) =~ Sp(20,F,)/Us,, %1, X, (wer),

L
where XI;W (wegr) is a Deligne-Lusztig variety for Ly, . The zero-dimensional variety Sp(20,F,)/Uk,,
has a left action of Sp(20,F,) and a right action of L, .

Proof. 1t is similar to [Mul22b] Proposition 8. O

4.1.7  The Levi complement L, is isomorphic to GL(6 —6') x Sp(2¢'), and its Weyl group is

isomorphic to Gg_g x Wy Via this decomposition, the permutation wy corresponds to id x wy.
L

The Deligne-Lusztig variety X I:G’ (wg) decomposes as a product

Lg,,

GL(6-6") ,. Sp(20’
X, (w) = Xpr O (d) x X0 (wy).

GL

The variety Xp, @) (

(9_9/)(id) is just a single point, but X %p wyr) is the Coxeter variety for the
symplectic group of size 26’. Indeed, wy is a Coxeter element, ie. the product of all the simple

reflexions of the Weyl group of Sp(26’).
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4.2 Unipotent representations of the finite symplectic group

4.2.1 Recall that a (complex) irreducible representation of a finite group of Lie type G = G¥
is said to be unipotent, if it occurs in the Deligne-Lusztig induction of the trivial representation
of some maximal rational torus. Equivalently, it is unipotent if it occurs in the cohomology
(with coefficient in Q, with ¢ = p) of some Deligne-Lusztig variety of the form Xg, with B a
Borel subgroup of G containing a maximal rational torus.

Let G,G" and let f : G — G’ be an F-isotypy as in 4.1.2. If B is such a Borel in G, then
B’ := f(B)Z(G’)" is such a Borel in B/, and f induces an isomorphism X — Xp' compatible

with the actions. As a consequence, the map
p—fop

defines a bijection between the sets of equivalence classes of unipotent representations of G’
and of G. We will use this observation later in the case G = Sp(20) and G’ = GSp(26), the
symplectic group and the group of symplectic similitudes, the morphism f being the inclusion.

4.2.2 In this section, we recall the classification of the unipotent representations of the finite
symplectic groups. The underlying combinatorics is described by Lusztig’s notion of symbols.
Our reference is [GM20] Section 4.4.

Definition. Let # > 1 and let d be an odd positive integer. The set of symbols of rank 6
and defect d is

X = (371, . JxTer) . Tiv1 — X4
with z;,y; € Zx,

.. >1
Vi, =S = (X,Y)‘ k(S = 6 / (shift),
-0 { Y = (yla"'ayr) ?/J+1—?/j = 17

where the shift operation is defined by shift(X,Y) := ({0} u (X + 1), {0} u (Y + 1)), and where

the rank of S is given by
—1)2
rk(S) := Zs - {%J .

seS

Note that the formula defining the rank is invariant under the shift operation, therefore it is

well defined. By [Lus77], we have rk(S) > {%J so in particular V;, is empty for d big enough.

We write ) for the union of the y;ﬁ with d odd, this is a finite set.

Ezample. In general, a symbol S = (X,Y) will be written

L1 oo Ly oo Tp
S = 1 +d '
Y1 - - Yr

We refer to X and Y as the first and second rows of S. The 6 elements of ); are given by

A R (e O O A s G

The last symbol has defect 3 whereas all the other symbols have defect 1.
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4.2.3 The symbols can be used to classify the unipotent representations of the finite sym-
plectic group.

Theorem ([Lus77] Theorem 8.2). There is a natural bijection between Y, and the set of equiv-

alence classes of unipotent representations of Sp(20,F,).

If S € )} we write pg for the associated unipotent representation of Sp(26,F,). The classifica-

tion is done so that the symbols

0 0O ... -1 6
’ 1 ... 6 ’
correspond respectively to the trivial and the Steinberg representations.

4.2.4 Let S=(X,Y) be asymbol and let £ > 1. A k-hook h in S is an integer z > k such
that ze X,z —k¢ XorzeVY,z—k¢Y. A k-cohook ¢ in S is an integer z > k such that
zeX,z—k¢YorzeY z— k¢ X. The integer k is referred to as the length of the hook h
or the cohook ¢, it is denoted ¢(h) or ¢(c). The hook formula gives an expression of dim(pg)
in terms of hooks and cohooks.

Proposition ([GM20] Proposition 4.4.17). We have

0 i
dim(pg) = ¢* [T, (¢* = 1)
21)’(5) Hh (qg(h) _ 1) HC (qe(c) + 1),

where the products in the denominator run over all the hooks h and all the cohooks ¢ in S, and
the numbers a(S) and b'(S) are given by

)= Y min(s,t)—2<#s2_2i>, b(S) ﬁi‘ﬂ-#(xmw

{s,t}cS i>1

4.2.5 For § > 0, we define the symbol

0 ... 20
Ss 1= ( ) € Vas16(621):

Definition. The core of a symbol S € ), , is defined by core(S) := S5 where d = 26 + 1. We
say that S is cuspidal if S = core(S5).

Remark. In general, we have rk(core(S)) < rk(S) with equality if and only if S is cuspidal.

The next theorem states that cuspidal unipotent representations correspond to cuspidal sym-
bols.

Theorem ([GM20] Theorem 4.4.28). The group Sp(26,F,) admits a cuspidal unipotent rep-
resentation if and only if 0 = §(6 + 1) for some 6 = 0. When this is the case, the cuspidal
unipotent representation is unique and given by pg;.
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4.2.6 The determination of the cuspidal unipotent representations leads to a description of

the unipotent Harish-Chandra series.

Definition. Let 6 > 0 such that § = §(6 + 1) + a for some a = 0. We write
Ls ~ GL(1,F,)* x Sp(2§(0 + 1),F,)

for the block-diagonal Levi complement in Sp(26,F,), with one middle block of size 26(0 + 1)
and other blocks of size 1. We write ps := (1)* X ps,, which is a cuspidal representation of Ls.

Proposition ([GM20] Proposition 4.4.29). Let S € ¥y ;. The cuspidal support of ps is (Ls, ps)
where d = 26 + 1.

In particular, the defect of the symbol S of rank # classifies the unipotent Harish-Chandra
series of Sp(26,F,).

4.2.7 As it will be needed later, we explain how to compute a Harish-Chandra induction of
the form

R{ 1K ps,
where G = Sp(26,F,), L is a block-diagonal Levi complement of the form L ~ GL(a,F,) x
Sp(20',F,) and S" € Y3, is a symbol.

Definition. Let S = (X,Y) € y;ﬁ and let h be a k-hook of S given by some integer z. Assume
that z€ X and z —k ¢ X (resp. z€ Y and z — k ¢ V). The leg length of h is given by the
number of integers s € X (resp. Y) such that z — k < s < z.

Consider the symbol S" = (X', Y”) obtained by deleting z and replacing it with z — k in the
same row. We say that S’ is obtained from S by removing a k-hook, or equivalently that S
is obtained from S’ by adding a k-hook.

Theorem ([FS90] Statement 4.B’). Let " = (X', Y”") € Vi, We have

RY 1 X pg :ZPS
S

where S runs over all the symbols in yé,e such that, for some ay,as = 0 with a = a1 + as, S
is obtained from S’ by adding an ai-hook of leg length O to its first row and an as-hook of leg
length O to its second row.

This computation is a consequence of the Howlett-Lehrer comparison theorem [HL83] as well
as the Pieri rule for Coxeter groups of type B, see [GP00] 6.1.9. We will use it in concrete
examples in the following sections.

4.2.8 There is a similar rule to compute Harish-Chandra restrictions. Let 0 < 6 < 0 and
consider the embedding G’ < L — G where G’ = Sp(2¢',F,),G = Sp(26,F,) and L is the
block diagonal Levi complement GL(a,F,) x Sp(20',F,) where a = 0 — ¢'. We write *R&, for
the composition of the Harish-Chandra restriction functor *R¢ with the usual restriction from
L to G'.
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Theorem. Let S = (X,Y) € V;,. We have

R ps = D | ps
S/

where S” runs over all the symbols in y;ﬁ, such that, for some ay,as = 0 with a = a; + as, S’
1s obtained from S by removing an ai-hook of leg length 0 to its first row and an as-hook of leg

length O to its second row.

4.3 The cohomology of the Coxeter variety for the symplectic group

4.3.1 In this section we compute the cohomology of Coxeter varieties of finite symplectic

groups, in terms of the classification of the unipotent characters that we recalled in 4.2.3.

Notation. We write X* := X (cox) for the Coxeter variety attached to the symplectic group
Sp(2k,F,), and H2(X*) instead of H3(X* ® F,Q,) where ¢ = p.

We first recall known facts on the cohomology of X* from Lusztig’s work.

Theorem ([Lus76]). The following statements hold.

(1) The variety X* has dimension k and is affine. The cohomology group H:(X*) is zero
unless k <1 < 2k.

(2) The Frobenius F acts in a semisimple manner on the cohomology of X*.

(3) The groups H=1(X*) and H*(X*) are irreducible as Sp(2k, F,)-representations, and the
latter is the trivial representation. The Frobenius F' acts with eigenvalues respectively ¢* ="
and q¢".

(4) The group HETH(X®) for 0 <i < k — 2 is the direct sum of two eigenspaces of F, for the
eigenvalues ¢ and —q* 1.
Sp(2k,F,).

(5) The sum @

FEach eigenspace is an irreducible unipotent representation of

Hi(X*) is multiplicity-free as a representation of Sp(2k,F,).

120

In other words, there exists a uniquely determined family of pairwise distinct symbols S, ... Sk
and Ty, ..., TF , in V! such that

VO<i<k
<

—2
VE—1<1i<k, HYH(XF) ~ pgr.

The representation pgr (resp. ppr) corresponds to the eigenspace of the Frobenius F' on
D,z HL(X") attached to p’ (resp. to —p™*'). Moreover, we know that pgs is the trivial

5 - (k) |

Lusztig also gives a formula computing the dimension of the eigenspaces. Specializing to the

representation, therefore

case of the symplectic group, it reduces to the following statement.
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Proposition ([Lus76]). For 0 < i < k we have

(hi)? k=i sii 1 k—i—1 qs+i +1

deg(pgr) = ¢ -
S»L 1 qs _ 1 poliv qs + 1

For 0 <j <k—2 we have
_ k—j—2 i k—j—1 i
(k—j—1)2(qk () T e 1 e
2(¢+1) Tl S S o

deg(prt) = ¢

4.3.2  Our goal in this section is to determine the symbols S¥ and Tf explicitly. This is done
in the following proposition.

Proposition. For 0 <i: <k and 0 < j <k — 2, we have

gk _ 0...k—i—1 k (0 k—j—-3 k—j—-2 k—j—1 k
' 1... k—i ’ J 1 ... k—j—2 '

We note that the statement is coherent with the two dimension formulae that we provided

earlier. That is, the degree of pgr (resp. of pyx) computed with the hook formula 4.2.4, agrees
‘ I .

with the dimension of the eigenspace of p’ (resp. of —p’*!) in the cohomology of X* as given

in the previous paragraph.

Proof. We use induction on k > 0. Since we already know that S¥ is the symbol corresponding
to the trivial representation, the proposition is proved for k = 0. Thus we may assume k > 1.
We consider the block diagonal Levi complement L ~ GL(1,F,) x Sp(2(k — 1),F,), and we
write *RF | for the composition of the Harish-Chandra restriction from Sp(2k,TF,) to L, with
the usual restriction from L to Sp(2(k — 1),F,). As in the proof of [Mul22b] Proposition 19,
for all 0 < i < k we have an Sp(2(k — 1), F,) x (F')-equivariant isomorphism

*R£,1 (chchz(Xk)) ~ Hl;fl+i(Xk71) D chcflJr(ifl) (inl)(l) (*>

Here, (1) denotes the Tate twist. This recursive formula is established by Lusztig in [Lus76]
Corollary 2.10. The right-hand side is known by induction hypothesis whereas the left-hand
side can be computed using 4.2.8 Theorem. We establish the proposition by comparing the
different eigenspaces of F' on both sides.

If S € Y, is any symbol, the restriction *Rj_; pg is the sum of all the representations pg where
S’ is obtained from S by removing a 1-hook from any of its rows.

We distinguish different cases depending on the values of k and 1.

~ Case k = 1. We only need to determine Sj. For i = 0, the right-hand side of (x) is pgo
with eigenvalue 1. Thus, the symbol S} € Y} has defect 1 and admits only one 1-hook.
If we remove this hook we obtain SJ. Therefore, Sj must be one of the two following

() ()

By 4.3.1, we know that pst has degree ¢, thus S} must be equal to the former symbol.

symbols
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From now, we assume k > 2 and we determine S¥ for 0 < i < k.

— Case k=2 and i =0. The eigenspace attached to 1 on the right-hand side of (*) is
psy- Thus, the symbol S2 € Y} has defect 1 and admits only one 1-hook. If we remove
this hook we obtain Sj. Therefore, Sz must be one of the two following symbols

@)

By 4.3.1, we know that pg2 has degree q*, thus S? must be equal to the former symbol.
— Case k > 2 and i=0. The eigenspace attached to 1 on the right-hand side of (*) is
pgi-1- Thus, the symbol Sk e Y} has defect 1 and admits only one 1-hook. If we remove

this hook we obtain S¥~!. The only such symbol is

L k=1k
sg:<° )
1... k

~ Case 1<i<k-—1. The eigenspace attached to p’ on the right-hand side of (*) is
pgr-1 @ pge-1. Thus, the symbol SF e Y} has defect 1 and admits only two 1-hooks. If we

remove one of these hooks we obtain either ¥~ or S¥—'. The only such symbol is

ok _ 0...k—1—-1 k .
‘ 1... k—1

It remains to determine Tf for0 <) <k-—2

— Case k = 2. The eigenspace attached to —p on the right-hand side of (x) is 0. Thus,
the symbol T2 € ) has no hook at all, implying that it is cuspidal in the sense of 4.2.5.
Since Sp(4,F,) admits only 1 unipotent cuspidal representation, we deduce that

012
T02:< )

— Case k = 3. First when j = 0, the eigenspace attached to —p on the right-hand side of
() is prz. Thus, the symbol T3 € Y3 has defect 3 and admits only one 1-hook. If we
remove this hook we obtain Tj7. Therefore, T3 must be one of the two following symbols

0123 0 1 3
1 ’ :
%, thus Tg’ must be equal to the former

By 4.3.1, we know that prs has degree 7t
symbol.

Then when j = 1, the eigenspace attached to —p* on the right-hand side of (x) is pr2-
Thus, the symbol T} € Vi has defect 3 and admits only one 1-hook. If we remove this
hook we obtain 7. Thus T} is also one of the two symbols above. We can deduce that it
is equal to the latter by comparing the dimensions or by using the fact that the symbols

Tf are pairwise distinct.
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From now, we assume k£ > 4 and we determine Tf for0 <j<k-—2

— Case k=4 and j = 0. The eigenspace attached to —p on the right-hand side of (x) is
prz- Thus, the symbol T, o € V! has defect 3 and admits only one 1-hook. If we remove
this hook we obtain 7. Therefore, Ty must be one of the two following symbols

01234 012 3
12 ’ 2 '

%, thus T must be equal to the former

By 4.3.1, we know that pr1 has degree ¢°
symbol.

— Case k >4 and j = 0. The eigenspace attached to —p on the right-hand side of (*) is
prs-1. Thus, the symbol T; ™ e Y} has defect 3 and admits only one 1-hook. If we remove

this hook we obtain Tf‘l. The only such symbol is

oo k—=3k-2k-1
Th — 0 3 k k .
1... k=2

— Case k=4 and j = k — 2. The eigenspace attached to —p* on the right-hand side of
(*) is prs. Thus, the symbol T) € Y} has defect 3 and admits only one 1-hook. If we

remove this hook we obtain 7. Therefore, Ti must be one of the two following symbols

Py ()

(*-1D(q*-1)

D thus T3 must be equal to the former

By 4.3.1, we know that prs has degree ¢
symbol.

— Case k >4 and j = k — 2. The eigenspace attached to —p*~! on the right-hand side of
() is Pt Thus, the symbol TF , € V! has defect 3 and admits only one 1-hook. If we

remove this hook we obtain T,f__gl. The only such symbol is

1k
7f2=<0 >.

— Case 1 < j < k— 3. The eigenspace attached to —p’*! on the right-hand side of (*) is
Pri-1 @ pri-t. Thus, the symbol Tf € V! has defect 3 and admits only two 1-hooks. If

we remove one of these hooks we obtain either Tf’l or 7}?“_’11. The only such symbol is

ph_ (0 k=3 k-2 k—j-1k\
o\l k—j—2

4.4 On the cohomology of a closed Bruhat-Tits stratum

4.4.1 Recall from 4.1.4 the #-dimensional normal projective variety Sy := X;(sy) defined
a)-

over F,. It is equipped with an action of the finite symplectic group Sp(26,F,). We use the
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stratification of 4.1.5 Proposition to study its cohomology over Q,. If ) is a scalar, we write
H?(Sp)» to denote the eigenspace of the Frobenius F' associated to A (we do not in principle
assume the eigenspace to be non zero). We give a series of statements before proving all of

them at once in the remaining of this section.
Proposition. The Frobenius F acts semi-simply on H2(Sy). Its eigenvalues form a subset of

{d0<i<Ou{—¢d"|0<j<O-2}

4.4.2 In a first statement, we give our results regarding the eigenspaces attached to a scalar of
the form ¢ for some 4. Recall from 4.2.6 the cuspidal supports (L, ps) for the finite symplectic
group Sp(26,F,).

Theorem. Let 0 < i <6 and 0 € Z.
(1) The eigenspace HY *%(Sg) i is zero when 6’ < i or §' > 6.
We now assume that 0 < i < 60" < 6.

(2) All the irreducible representations of Sp(20,F,) in the eigenspace HY *%(Sp),: belong to the
unipotent principal series, ie. they have cuspidal support (Lo, po)-

(3) We have
H(Sp) = HY(Sp) ~ P<9>, H2’(Sp) = HZ’(Sp)go =~ p(g)-

(4) Ifi+2 <0 then

O<d<0-0'-1 \1 ¢ _j_-10—i—d

@ P(o...af—z’—Q 0 —i—1 9’+d>@

1<d< /A i
min(i.f—0'—1 1...0—-i—-1 6—i—d

0’ +i
@ p<0 0 —i—20 —i—1+4d 9/) — He "(Sp)g-
)

The cokernel of this map consists of at most 4 irreducible representations of Sp(26,F,).
(5) Wheni=60"= 6, we have

p<9) — Hzl(Sb)qz Zf2i < (9, p<0> (—Bp<9i i+ 1) — Hzl(SQ)qz Zf2i > 0.
0

en 0" = 0 we have
(6) When 0" =0 we h
He ' (So)g =0 0mpry g_i—10)
G5t
(7) When 0" =1 and i =0, we have

H!(S)) =0, H.(Sp) = HL(Sp)1 ~ 0 or p<0 1 9) when 0 = 2.
1 2

We note that when 6’ = 6, the formula of (4) does not say anything about the eigenspace
HY™(Sy), since the sums are empty. However, by (6) we understand that this eigenspace is
either 0 either irreducible.

We note also that the theorem does not give any information in the case i + 1 = ', except
when ¢’ = 1 and ¢ = 0 which corresponds to (7).
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4.4.3 In a second statement, we give our results regarding the eigenspaces attached to a

scalar of the form —¢’*! for some j.

Theorem. Let 0 < j<0—2 and 0’ € Z.
(1) The eigenspace HY 9 (Sy)_yi+1 is zero when @' < j +2 or 6 > 0.
We now assume that 2 < j+2 <60 <86.

(2) All the irreducible representations of Sp(20,F,) in the eigenspace HY +7(Sp) _ 541 are unipo-
tent with cuspidal support (Lq, p1).
(3) We have

H272(Sp) _go-1 ~ P(o 1 9)-

(4) If j+4 <0 <0 then

0Sd<6=6'-1 {1 . ¢~ j-360—j—2—d

0'+j )
C—B 0...0—i—4 0 —i-3 0’j29’j1+d9’)<_>Hc (59)—qﬂ“'

p(
1<d< . .
min(i.0—0'—1) 1...00—-j—-360—-j—-2—-d

@ P(o...e’—¢—4 9 —i—3 9/—j—29’—j—19’+d)®

The cokernel of this map consists of at most 4 irreducible representations of Sp(26,F,).

(5) When j+2 =46 =0, we have

P(o 1 9) — H2UD (Sy) g if2(5 +1) < 0,
p(o 1 9) @P<0 0—i—1 i+2> — H2UH(Sp)_ i if2(7+1) = 0.

(6) When 0" = 0 we have

0+j ) ~
He ™ (Sp)—gier = 0 07’P<o...0—j—3 6—j—2 9—j—19>'
1. 6—j—2

We note that when 6’ = 6, the formula of (4) does not say anything about the eigenspace
HY™7(Sy)_+1 since the sums are empty. However, by (6) we understand that this eigenspace
is either 0 either irreducible.

We note also that the theorem does not give any information in the case j + 3 = 6.

Remark. A cuspidal representation occurs in the cohomology of Sy only in the cases # = 0 and
6 = 2. When 0 = 0 it corresponds to H%(Sy) which is trivial. When 6 = 2 it corresponds to
H2(S)_, as described by (3) in the theorem above.

4.4.4 The remaining of this section is dedicated to proving the theorems stated above. Recall
from 4.1.5 that we have a stratification Sy = |_|z/:0 X1, (wgr). Tt induces a spectral sequence on
the cohomology whose first page is given by

EP = Het (X, (wa)) = H™(Sp). (E)
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Now, recall that the strata X ,(we ) are related to Coxeter varieties for the finite symplectic
group Sp(20',F,). Using 4.1.7, the geometric isomorphism given in 4.1.6 Proposition induces
an isomorphism on the cohomology

H2(X7, () > RIS TR (X (), (=)

where L, denotes the block-diagonal Levi complement isomorphic to GL(6—¢,F,) xSp(2¢', F,).
The variety X Sp(zel)(ng) is nothing but the Coxeter variety that we denoted by X* in 4.3.1,
and whose cohomology we have described. For 0 < i < 6" and 0 < j < 6’ — 2, recall from 4.3.2
the symbols S?" and Tf'. We define

Rip = R 1K pgor, Rip =Ry 16 py.
Then by (*+), we have

Hgl+i(X19/ (wg/)) = R;S:G’ S RZW V0<i< 0/ B 27
HY' (X0, (wg)) ~ Ry Wot<isd.

The cohomology groups of other degrees vanish. The representation Rfa, corresponds to the
eigenvalue ¢* of F, whereas R;Ce, corresponds to —¢/*1.

Lemma. Let 0<0'<0,0<i<60 and0<j <0 —2.

If i < @, the representation Rfﬁ, 18 the multiplicity-free sum of the unipotent representations

ps where S € yie runs over the following 4 distinct families of symbols

51 A A IR R

(52 V) a0
spey (DTN e

(S Exc 2) (1) 90_’_;1 5:1111 8/+1> if0 =0,0—1and0 <0 +i+1.

The representation Rf,,ye, is the multiplicity-free sum of the unipotent representations ps where
Se :)711’9 runs over the following 2 distinct families of symbols

"+1
(S1°) ’ ritd Vo<d<6-¢,
0—0" —d
, d 0 +1 ,
(52°) (6—9’—d ) V1< d<min(¢,0-6).
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— If j+2 < @', the representation R}:G, is the multiplicity-free sum of the unipotent representations

pr where T € ygﬁ runs over the following 4 distinct families of symbols

0 —j—4 0 —j—3 O—j-2 0 —j—1 0+d
(T1) ) ! ~i—d J J * VO<d<0-—0,
1 0 —7-3 0—7—2—4d
T2) 0 0 —j—4 0—j—3 0—j—2 0—j—1+d 0') Vl<d<
1 0—7—-3 0—7—2—d min(j,0 — ¢'),
0 —j—2 0—j—160-j 0
(TEwc1) [° J J J ifo =90,
1 0—j—1
-2 0—j—10-5j-16+1 0 =001
(T B2 (Y J J J " yo=66-1
1 0 —j5—1 and 0 <0 +j5+ 1.

— The representation R9T,_279, 1s the multiplicity-free sum of the unipotent representations pr where

Te ygﬁ runs over the following 2 distinct families of symbols

1 2 ¢ +1
(1) 0 0+1+d Vo<d<0-—0,
0—0 —d
1 2 "+1

This lemma results directly from the computational rule explained in 4.2.7. In concrete terms,

an induction of the form
Ri{;@@,]}*‘q) ]_ PS’

o/
is the sum of all the representations ps where S is obtained from S’ by adding a hook of leg
length 0 to both rows, whose lengths sum to 8 — 6’. We illustrate the arguments by looking at

a concrete example.

With 8 = 6,6 = 3 and ¢ = 2 let us explain the computation of

S _ pSp(12,Fg)
Rys = Rp,, " " 1K psy-

03
5 - <1 ) |
For 0 < d < 0—6" = 3, we add a d-hook of leg length 0 to the first row of S3, and a (3 —d)-hook

of leg length 0 to its second row.

Recall that

We may always add the hooks to the last entries of each row. By doing so we obtain the

()

representations corresponding to the family of symbols (S1):

B )
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When d < min(§ — ¢',7) = min(3,2) = 2, we may also add the first hook to the penultimate
entry of the first row. Note that since i < @', the first row of Sf' has at least 2 entries. By
doing so, we obtain the representations corresponding to the family of symbols (S2):

o) )

Now, recall that symbols are equal up to shifts. Therefore, one may rewrite S as

014
S3 = ghift(S3) = .
5 = shift(S3) (02>

Written this way, we notice that a 1-hook can be added to the first entry of the second row,
which is a 0. Then one must add to the first row a hook of length d = § — 6’ — 1 = 2. One may
always add it to the last entry, which results in the first “exceptional” representation (S Exc
1). Moreover if d < i, which is the case here, one may also add this hook to the penultimate
entry of the first row, which leads to the second “exceptional” representation (S Exc 2):

016 0 3 4
12 )7 1 2 '
The sum of the representations attached to all the 8 symbols written above is isomorphic to R§73.

We also explain in detail the special case i = #. Thus we compute

S _ Sp(ng]FlI)
R‘@,Q - RLKQ/ 1 psgll

corresponds to the trivial representation of Sp(26’,F,). In order to compute this induction, we

shift the symbol S¢ first:
o 060 +1 '
0

For 0 < d < 60— 0, we add a d-hook of leg length 0 to the first row and a (6 — ¢’ — d)-hook
of leg length 0 to the second row. We may always add the hooks to the last entries of each

Recall that

row. By doing so, we obtain the representations corresponding to the family of symbols (S1").
Moreover when d < min(6#’,6 — '), we may also add the first hook to the 0 in the first row. It
leads to the representations corresponding to the family of symbols (52).

In particular, we notice that the symbol of (S1') with d = 6 — ¢ corresponds to the trivial
representation of Sp(26,F,).
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s s T s T s T
Ry, — ... 2 Ry @Ry s = Ry 1 ORy 1y — REH,ORyy

s . RS . s T s T s T
R7, » RTo » oo = Ry 0 @RIy = Ry 1®Rip 1 — RIy® Ry,

. pS . PS T s T s T s T
> Roq » Roa®@Roo — - — Ry 2@ Ry o — Rpy1 ® Ry — Ry @Ry

Figure 6: The first page of the spectral sequence.

4.4.5 Now, we have an explicit description of the terms EY * in the first page of the spectral
sequence (F). In the Figure 6, we draw the shape of the first page.

First, since the Frobenius F acts with the eigenvalue ¢* (resp. —¢’*') on the representations
R;S:@, (resp. RjTﬂ,), 4.4.1 Proposition as well as point (1) of 4.4.2 and 4.4.3 Theorems follow from
the triangular shape of the spectral sequence. Point (2) also follows from 4.4.4 Lemma.

Next, we notice that on the b-th row of the first page F4, the eigenvalues of F' which occur are
¢® and —¢**!. In particular, the eigenvalues on different rows are all distinct. It follows that all
the arrows in the deeper pages of the sequence are zero, therefore it degenerates on the second
page. Moreover, the filtration induced by the spectral sequence on the abutment splits, so that
H¥(Sy) is isomorphic to the direct sum of the terms Ey " on the k-th diagonal of the second

page.

We prove point (3) of 4.4.2 and 4.4.3 Theorems. By the shape of the spectral sequence, we see
that

HZ(Sp) = H?(Sp) 0 ~ Rg )= p <9> H272(Sp) o1 ~ Rg_w ~ p (0 ) 9>.

Moreover, by the spectral sequence we know that HY(Sy) is a subspace of R& o, thus the Frobe-
nius F' acts like the identity. Since Sy is projective and irreducible, the cohomology group
HE(SQ) = HO(SQ> is trivial.

We now prove point (4) of 4.4.2 and 4.4.3 Theorems. Let 2 < i+ 2 < 0’ < 0§ — 1. By extracting
the eigenvalue ¢’ in the spectral sequence, we have a chain
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S u S v S
T Ri,eul B— R‘i,@’ — Ri,9’+1 — -

The quotient Ker(v)/Im(u) is isomorphic to the eigenspace HY 7%(Sy),:.

The middle term Rfe, is the sum of the representations pg where S runs over the families of
symbols (S1), (S2), (S Exc 1) and (S Exc 2) as in 4.4.4 Lemma. All these symbols are written
in their “reduced” form, meaning that they can not be written as the shift of another symbol.
Let us look at the length of the second row of these symbols. If S belongs to (S1) or (S2), then
the second row has length 6’ —i. If S belongs to (S Exc 1) or (S Exc 2), then the second row
has length 6/ — i + 1.

We may do a similar analysis for the left term (resp. the right term) by replacing ¢ with ¢’ — 1
(resp. 6’ +1). In the left term Ry _;, all the representations corresponding to the families (S1)
and (S2) have second row of length ' —i—1. No such representation occurs in the middle term,
therefore they all automatically lie in the Ker(u). Then, in the left term the representation
corresponding to (S Exc 1) occurs since # —1 = 6. We observe that it is equivalent to the
representation pg occuring in Rie’ with S in the family (S1) and d = 6 — ¢’. Further, assume
that 6 < 6’ +4 so that the representation corresponding to (S Exc 2) occurs in Ry, _,. Then we
observe that it is equivalent to the representation pg occuring in Rfﬁ, with S in the family (S2)
and d = 0 — 0’ = min(i,0 — ¢'). Hence, it follows that Im(u) consists of at most 2 irreducible
subrepresentations of ng,, and they correspond to the symbols of (S1) and (S2) with d = 6 —¢'.
Next, all the subrepresentations pg of Rfy with S in (S1) or (S2) belong to Ker(v), since no
component of Rfa, 1 correspond to a symbol whose second row has length ¢’ —i. Since 6" = 0,
the represensation corresponding to (S Exc 1) occurs in stﬁ" We observe that it is equivalent
to the representation pg occuring in ng, 41 With S'in the family (S1) and d = #—6"—1. Assume
that < 6—2 and 6 < 0"+ i+ 1, so that the representation corresponding to (S Exc 2) occurs
in st,@" Then we observe that it is equivalent to the representation pg occuring in REG, 41 With
S in the family (S2) and d = 0 — 0’ — 1 = min(i,0 — ¢’ — 1). Therefore, it is not possible to tell
whether the components of R?;, corresponding to (S Exc 1) and (S Exc 2) are in Ker(v) or not.
In all cases, we conclude that Ker(v)/Im(u) contains at least all the representations correspond-
ing to the symbols S in (S1) and (S2) with d < 6 — ¢’. With this description we miss up to
four irreducible representations, which correspond to (S1) and (S2) with d =6 — ', (S Exc 1)
and (S Exc 2). This proves point (4) of 4.4.2 Theorem.

The point (4) of 4.4.3 Theorem is proved by identical arguments.

We now prove point (5) of 4.4.2 and 4.4.3 Theorems. We consider i = #' = §. By extracting
the eigenvalue ¢’ in the spectral sequence, we have a chain

S u S

The kernel Ker(u) is isomorphic to the eigenspace HZ(Sp),i. The left term RY; is the sum of the
representations pgs where S’ runs over the families of symbols (S1’) and (S2’). We observe that
the representation pg with S" in (S1’) corresponding to some 0 < d’ < 6 —i — 1 is equivalent
to the component pg of Ry, ; with S in (S1) corresponding to d = d’. Similarly, we observe
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that the representation pg with S’ in (S2’) corresponding to some 1 < d’ < min(i,0 —i — 1) is

S
1,0+

Therefore, the representation pg corresponding to S in (S1’) with d’ = 6 — i belongs to Ker(u).

equivalent to the component pg of R?,,; with S in (S2) corresponding to d = d'.

This is no other than the trivial representation. Moreover, if min(i,0 — i — 1) = min(¢,60 — 1),
ie. if 2¢ = 0, then the representation pg corresponding to S in (S2’) with d' = 6 — i also belongs
to Ker(u). This proves point (5) of 4.4.2 Theorem.

The point (5) of 4.4.3 Theorem is proved by identical arguments.

Points (6) of 4.4.2 and 4.4.3 Theorems follows easily from the shape of the spectral sequence.
Indeed, it suffices to notice that all the terms Rfﬁ and R}jg in the rightmost column of the
sequence are irreducible. Thus, they may either vanish, either remain the same in the second

page.
Lastly we prove point (7) of 4.4.2. Assume first that 6 = 1. The 0-th row of the spectral

sequence is given by
'0<1> p<0 1) u p(o 1)
1 1

We have H!(S;) ~ Coker(u). Since we already know that HY(S;) ~ Ker(u) is the trivial repre-
sentation of Sp(2,F,), we see that u must be surjective. Therefore H.(S;) = 0.

Remark. The vanishing of H.(S;) also follows directly from the fact that S; ~ PL.

Let us now assume 6 > 2. The first terms of the 0-th row of the spectral sequence are

We have H}(Sy) = H(Sp)1 ~ Ker(v)/Im(u). The middle term R, is the sum of all the
representations corresponding to the following symbols

010} 0 1+d) Vo<d<—1.
19 0 d

On the other hand, the left term Rg o 1s the sum of all the representations corresponding to the
following symbols

0 L+d) V0 < d < 0.
0 d

Since we already know that H%(Sy) ~ Ker(u) is the trivial representation of Sp(26,F,), we see
that Im(u) contains all the components of R&l associated to a symbol whose second row has

length 1. Therefore, H!(Sp) is either 0 either irreducible, depending on whether the remaining

o
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is in Ker(v) or not. This proves point (7) and concludes the proof of 4.4.2 and 4.4.3 Theorems.
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