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Résumé

Dans cette thèse, nous abordons les défis liés à l’identification et au diagnostic des lésions
pathologiques dans le tractus gatro-intestinal (GI). L’analyse des quantités massives
d’informations visuelles obtenues par une capsule vidéo-endoscopique (CVE) qui est
un excellent outil pour visualiser et examiner le tractus GI y compris l’intestin grêle,
représente une charge considérable pour les cliniciens, entraînant un risque accru de
diagnostic erroné.

Afin de palier à ce problème, nous développons un système intelligent capable
de détecter et d’identifier automatiquement diverses pathologies gastro-intestinales.
Cependant, la qualité limitée des images acquises en raison de distorsions telles que
le bruit, le flou et l’éclairement non uniforme constitue un obstacle significatif. Par
conséquent, les techniques de prétraitement des images jouent un rôle crucial dans
l’amélioration de la qualité des images acquises, facilitant ainsi les tâches de haut niveau
telles que la détection et la classification des anomalies. Afin de résoudre les problèmes
liés à la qualité limitée des images causée par les distorsions mentionnées précédemment,
plusieurs nouveaux algorithmes d’apprentissage ont été proposés. Plus précisément, les
avancées récentes dans le domaine de la restauration et de l’amélioration de la qualité des
images reposent sur des approches d’apprentissage qui nécessitent des paires d’images
déformées et de référence pour l’entraînement. Cependant, en ce qui concerne la CVE,
un défi significatif se pose en raison de l’absence d’une base de données dédiée pour
évaluer la qualité des images. À notre connaissance, il n’existe actuellement aucune
base de données spécialisée conçu spécifiquement pour évaluer la qualité vidéo en CVE.
Par conséquent, en réponse à la nécessité d’une base de données complète d’évaluation
de la qualité vidéo, nous proposons tout d’abord la "Base de données axée sur la qualité
pour l’endoscopie vidéo par capsule/ Quality-Oriented Database for Video Capsule
Endoscopy" (QVCED).

Ensuite, nos résultats montrent que l’évaluation de la gravité des distorsions
améliore significativement l’efficacité de l’amélioration de l’image, en particulier en
cas d’illumination inégale. À cette fin, nous proposons une nouvelle métrique dédiée à
l’évaluation et à la quantification de l’éclairage inégal dans les images laparoscopiques
ou par CVE, en extrayant l’éclairement de l’arrière-plan de l’image et en tenant compte
de l’effet de la mise en égalisation de l’histogramme. Notre métrique offre une perfor-
mance supérieure à celle de certaines méthodes d’évaluation les plus avancées de la
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qualité d’image sans référence (NR-IQA), démontrant sa supériorité et sa performance
compétitive par rapport aux méthodes d’évaluation de la qualité d’image avec référence
complète (FR-IQA).

Après avoir effectué l’étape d’évaluation, nous développons une méthode d’amélioration
de la qualité d’image visant à améliorer la qualité globale des images. Le nouvel algo-
rithme est basé sur un mécanisme de l’attention croisée, qui permet d’établir l’interaction
d’information entre la tâche de l’extraction du niveau de distorsion et de la localisation
de régions dégradées. En employant cet algorithme, nous sommes en mesure d’identifier
et de cibler précisément les zones spécifiques des images affectées par les distorsions.
Ainsi, cet algorithme permet le traitement approprié adapté à chaque région dégradée,
améliorant ainsi efficacement la qualité de l’image.

Suite à l’amélioration de la qualité de l’image, des caractéristiques visuelles sont
extraites et alimentées dans un classificateur pour fournir un diagnostic par classification.
La difficulté dans le domaine de CVE est qu’une partie significative des données reste
non étiquetée. Pour relever ce défi, nous avons proposé une méthode efficace basée
sur l’approche d’apprentissage auto-supervisé ("Self-Supervised Learning" ou SSL en
anglais) afin d’améliorer les performances de la classification. La méthode proposée,
utilisant le SSL basé sur l’attention, ont réussi à résoudre le problème des données
étiquetées limitées couramment rencontré dans la littérature existante.

Mots-Clés — Capsule Vidéo-Endoscopique (CVE), évaluation de la qualité d’image
sans référence, égalisation d’histogramme, base de données de distorsions, amélioration
de la qualité de l’image, algorithme de l’attention croisée, classification basée sur
l’apprentissage auto-supervisé (SSL).
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Abstract

In this thesis, we address the challenges associated with the identification and diagnosis
of pathological lesions in the gastrointestinal (GI) tract. Analyzing massive amounts
of visual information obtained by Wireless Capsule Endoscopy (WCE) which is an
excellent tool for visualizing and examining the GI tract (including the small intestine),
poses a significant burden on clinicians, leading to an increased risk of misdiagnosis.

In order to alleviate this issue, we develop an intelligent system capable of automati-
cally detecting and identifying various GI disorders. However, the limited quality of
acquired images due to distortions such as noise, blur, and uneven illumination poses a
significant obstacle. Consequently, image pre-processing techniques play a crucial role in
improving the quality of captured frames, thereby facilitating subsequent high-level tasks
like abnormality detection and classification. In order to tackle the issues associated with
limitations in image quality caused by the aforementioned distortions, novel learning-
based algorithms have been proposed. More precisely, recent advancements in the realm
of image restoration and enhancement techniques rely on learning-based approaches that
necessitate pairs of distorted and reference images for training. However, a significant
challenge arises in WCE which is an excellent tool for visualizing and diagnosing GI
disorders, due to the absence of a dedicated dataset for evaluating image quality. To the
best of our knowledge, there currently exists no specialized dataset designed explicitly
for evaluating video quality in WCE. Therefore, in response to the need for an extensive
video quality assessment dataset, we first introduce the "Quality-Oriented Database for
Video Capsule Endoscopy" (QVCED).

Subsequently, our findings show that assessing distortion severity significantly im-
proves image enhancement effectiveness, especially in the case of uneven illumination.
To this end, we propose a novel metric dedicated to the evaluation and quantification of
uneven illumination in laparoscopic or WCE images, by extracting the image’s back-
ground illuminance and considering the mapping effect of Histogram Equalization. Our
metric outperforms some state-of-the-art No-Reference Image Quality Assessment (NR-
IQA) methods, demonstrating its superiority and competitive performance compared to
Full-Reference IQA (FR-IQA) methods.

After conducting the assessment step, we proceed to develop an image quality
enhancement method aimed at improving the overall quality of the images. This is



viii

achieved by leveraging the cross-attention algorithm, which establishes a comprehensive
connection between the extracted distortion level and the degraded regions within the
images. By employing this algorithm, we are able to precisely identify and target the
specific areas in the images that have been affected by distortions. This allows an
appropriate enhancement tailored to each degraded region, thereby effectively improving
the image quality.

Following the improvement of image quality, visual features are extracted and fed
into a classifier to provide a diagnosis through classification. The challenge in the WCE
domain is that a significant portion of the data remains unlabeled. To overcome this
challenge, we have developed an efficient method based on the self-supervised learning
(SSL) approach to enhance the performance of classification. The proposed method,
utilizing attention-based SSL, has successfully addressed the issue of limited labeled
data commonly encountered in the existing literature.

Keywords — Wireless Capsule Endoscopy (WCE), No-Reference image quality assess-
ment (NR-IQA), Histogram Equalization, distortion dataset, image quality enhancement,
cross-attention algorithm, Self-Supervised Learning (SSL)-based classification.
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2 Chapter 1. Introduction

This work is devoted to the development of smart computer-aided solutions for the
detection and diagnosis of diseases related to the gastrointestinal (GI) tract, which,
together with the biliary system, forms the digestive system.

The diagnosis and management of GI abnormalities and disorders pose significant
challenges in the field of medicine, particularly in healthcare systems worldwide. GI
diseases and disorders affect the GI tract and its various organs, including mouth,
esophagus, stomach, small intestine, large intestine, and anus. Several pathologies (or
conditions) which can manifest in diverse symptoms, include inflammatory bowel diseases
(such as ulcerative colitis, Crohn’s disease), gastroesophageal reflux disease, liver cirrhosis,
and gastrointestinal cancers. The impact of digestive diseases is staggering, with statistics
indicating their widespread prevalence. An alarming increase in the occurrence of several
digestive diseases with statistics indicating their widespread prevalence, has had a major
impact worldwide. For instance, according to the World Gastroenterology Organization,
digestive diseases account for approximately 8 million deaths globally each year, with
gastrointestinal cancers alone causing over 3 million deaths annually [1]. In Europe,
GI and liver disorders are responsible for about one million deaths each year across
Europe with significant healthcare costs since 2000 [2]. Additionally, digestive diseases
are responsible for a significant number of hospitalizations and outpatient visits, placing
a substantial burden on healthcare resources and budgets. Addressing the burden of GI
diseases requires a comprehensive approach that encompasses prevention, early detection,
accurate diagnosis, and effective management strategies. Moreover, the complexity of
the GI system, coupled with the diverse range of potential abnormalities, necessitates
accurate identification and precise diagnosis for effective treatment [3], [4].

1 Wireless Capsule Endoscopy (WCE) imaging modality

Traditional endoscopic procedures have been employed for a long time to visualize and
assess the GI tract; however, these techniques are invasive, uncomfortable, and limited
in their ability to comprehensively examine the entire digestive system [5]. In recent
years, the emergence of Wireless Capsule Endoscopy (WCE) has revolutionized the field
of gastroenterology, becoming one of the best tools for visualizing and diagnosing GI
disorders (e.g. bleeding, polyps, ulcers) and more interestingly small intestinal diseases.
WCE involves the ingestion of a small capsule equipped with a miniaturized camera
(Fig. 1.1) that captures images when it traverses the GI tract [6], [7]. This non-invasive
and patient-friendly diagnostic modality provides clinicians with an unprecedented view
of the entire gastrointestinal system, enabling the identification and evaluation of various
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abnormalities, including bleeding, ulcers, tumors, and inflammatory diseases [6].

Figure 1.1: Capsule endoscopy camera. (source: https://www.mayoclinic.org/tests-
procedures/capsule-endoscopy/about/pac-20393366)

By offering detailed visualization and analysis of the mucosal lining, WCE enables
the identification of lesions and abnormalities that might otherwise go unnoticed [6].
Furthermore, WCE eliminates the need for sedation or anesthesia typically required
for traditional endoscopic procedures, making it more accessible and comfortable for
patients [8]. The real-time and continuous monitoring capabilities of WCE facilitate the
observation of dynamic changes within the GI system, aiding in the timely diagnosis of
time-sensitive conditions and guiding appropriate treatment strategies [7].

In WCE, after several hours of fasting, the patient ingests a vitamin-sized electronic
pill, which passes through the GI tract by peristalsis. While traveling through the GI
tract, the pill takes images and transmits image data wirelessly to a portable data logger
unit attached to a belt, around the patient’s waist. During the procedure, patients are
free to conduct their daily activities such as walking, sitting, driving, etc. However, the
patient should avoid strenuous physical activity, especially if it involves sweating, and
should not bend or stoop during the procedure. After 8 - 10 hours, the battery life
of the capsule runs out and the image data stored in the data logger are transferred
to a workstation or a personal computer (PC) where the images are reconstructed
and displayed for medical diagnosis. Generally, the capsule comes out from the body
naturally after two to three days [9]. The typical WCE system is shown in Fig. 1.2.

WCE has introduced a new set of challenges in handling the vast amount of visual
data generated during the examination of the gastrointestinal tract. First of all, the

https://www.mayoclinic.org/tests-procedures/capsule-endoscopy/about/pac-20393366
https://www.mayoclinic.org/tests-procedures/capsule-endoscopy/about/pac-20393366
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Figure 1.2: A typical Wireless Capsule Endoscopy system.

continuous capture of high-resolution images and videos by the WCE device results in
a significant volume of data that needs to be effectively managed and analyzed. For
example, a single clinical procedure can generate 50,000 images and hours of video
footage [11]. This poses challenges in terms of data storage capacity, transmission
bandwidth, and computational resources required for processing. The sheer volume of
data necessitates efficient data management techniques to store, organize, and retrieve
the information effectively. Furthermore, ensuring the quality and reliability of the
captured images and videos becomes crucial for accurate diagnosis and interpretation.
The major issue with WCE images is their quality. Indeed, the capsule’s motion in
the GI tract is uncontrolled, and images are taken under low illumination. Some
common WCE image artifacts include noise, motion blur, and uneven illumination can
greatly impact the overall quality and usability of the visual data, potentially leading to
misinterpretation or missed abnormalities. Therefore, it is imperative to develop robust
and efficient techniques for data capacity management and quality analysis to extract
meaningful information from the extensive WCE datasets.

However, addressing the challenge of effectively extracting meaningful information
from these extensive datasets necessitates the development of an advanced smart solution
to effectively handle and analyze the massive amount of visual data generated by WCE
[7]. These innovations will unlock the full potential of WCE technology in the field of
gastroenterology, enabling more accurate diagnoses and improved patient care [12].

The remainder of this chapter is organized as follows. Section 2 presents the problem
motivation and context. Subsequently, Section 3, we will summarize the significant
contributions made by this thesis. In section 4, we briefly describe the organization of
our thesis. Finally, the publications are presented in Section 5.
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(c) Blood-Fresh (BF) (d) Blood-Hematin (BH)(a) Erythema (ERY) (b) Angiectasias (ANG)

(e) Erosion (ERO) (f) Ulcers (ULC) (g) Lymphangiectasia (LYM) (h) Polyp (PYL)

Figure 1.3: Sample WCE images with common pathologies: from left to right and top to bottom:
Erythema (ERY), Angiectasias (ANG), Blood-Fresh (BF), Blood-Hematin (BH), Erosion (ERO),
Ulcers (ULC), Lymphangiectasia (LYM), and Polyp (PYL) [10].

2 Objectives

By efficiently handling the massive volume of data and the image quality issues of WCE
images, an intelligent system for such modality analysis would provide an accurate
identification of GI abnormalities while reducing time and cost. Upon viewing WCE
images, abnormalities or lesions which are symptoms of different diseases may be
revealed. Some common lesions including Blood-Fresh (BF), Blood-Hematin (BH),
Foreign Body (FB), Erythema (ERY), Angiectasias (ANG), Erosion (ERO), Ulcers
(ULC), Lymphangiectasia (LYM), and Polyp (PYL) [10] are shown in Fig. 1.3. Since
these lesions appear in a few frames of a video and usually have a small size compared
to the frame size, physicians may miss them during the examination [13]. In addition,
it is a time-consuming and boring task for the physician to check a thousand frames to
find pathological lesions [14]. Therefore, a computer-aided (CA) method is needed to
automatically detect frames containing lesions.

In order to cope with the challenge, this thesis aims to develop a smart CA system
in WCE, leading to improved diagnostic accuracy and more efficient clinical decision-
making in gastroenterology. The main objective is to develop novel image-processing
methodologies and intelligent algorithms based on machine-learning approaches and
adapted to the specific characteristics of WCE data, in order to enhance the detection
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and classification of GI abnormalities. Due to the challenge in WCE image quality, the
proposed intelligent system requires a pre-processing module designed to enhance the
quality of acquired images before the subsequent detection and classification stage.

In particular, with the rapid advancements in Artificial Intelligence (AI), specifically
in Deep Learning (DL) approaches, Convolutional Neural Networks (CNN) is a powerful
tool for image classification. Hence, in this research, the classification of GI lesions
will be developed using deep convolutional networks, as they possess the capability to
effectively model complex and voluminous data.

Image Visualization for 
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Figure 1.4: The proposed system contains two main components of the proposed method: pre-
processing and classification. The pre-processing stage involves various proposed techniques to
enhance the quality of the input WCE images. The classification component employs advanced
algorithms to classify the pre-processed data into distinct pathologies.

A brief architecture of the proposed system is illustrated in Fig. 1.4. The proposed
method, as depicted in Fig. 1.4, comprises two key components: pre-processing and
classification. Our adaptive image enhancement methods enhance the captured frames
by addressing some common distortions of WCE images such as noise, blur, and uneven
illumination[15], [16]. This is achieved through a data-driven decision-making process.
In order to do this, we built an image quality dataset and employed a robust quality
assessment method to quantify distortions severity. By enhancing the quality of the input
data, we ensure that it is in an ideal form for subsequent analysis. After pre-processing,
the data is passed to the classification component, where advanced algorithms are
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employed to assign appropriate class labels or pathologies to the input images. The
classification algorithms exploit the extracted features and employ decision boundaries
or rules to accurately classify the data. The combined implementation of pre-processing
and classification within the proposed method facilitates the effective analysis and
interpretation of the input data, enabling reliable decision-making in various domains
such as disease diagnosis, or anomaly detection.

3 Contributions

This Ph.D. project is primarily aimed at making a significant contribution to the field
of medical imaging by developing an intelligent system capable of detecting, identifying,
and classifying abnormalities in Wireless Capsule Endoscopy (WCE) images. The
system we are designing encompasses a crucial pre-processing module, dedicated to
enhancing the quality of the captured images before they are used as input for the
detection and classification phases. Furthermore, we recognize the remarkable strides
made in the field of artificial intelligence, particularly within the domain of Deep
Learning (DL) technologies. Convolutional Neural Networks (CNNs) have emerged as
a potent approach for image classification, owing to their ability to effectively model
intricate representations from complex and voluminous datasets. In our research, the
classification of lesions within the WCE images will heavily rely on deep convolutional
networks, exploiting their capability to extract meaningful features from these intricate
medical images.

To streamline the process of detecting and identifying abnormalities, we will employ
a two-step approach. First, our pre-processing module will enhance the image quality,
ensuring that the input data is optimized for the subsequent analysis. Following this, a
classification process will be applied, aiding in the precise identification of abnormalities
within the WCE images. It’s essential to note that the effectiveness of our image
enhancement techniques is closely tied to the ability to take into account the degree
of distortion present in the original images. The severity of distortion provides critical
information that will enable us to adjust the enhancement process to an appropriate
level of treatment.

Understanding the level of distortion is important because it allows us to strike a
balance between improving image quality and preserving the integrity of the original
data. In cases of mild distortion, a lighter enhancement approach may suffice to maintain
the fidelity of the image. Conversely, when dealing with more severe distortion, a more
aggressive enhancement strategy might be necessary to restore essential details and
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ensure accurate detection and classification of abnormalities. To accurately identify
and address distortion in WCE images, it is imperative for the proposed Deep Neural
Networks) to have access to a comprehensive dataset that includes information about
both the type and level of distortion present in images. Additionally, employing a well-
defined assessment metric is crucial for evaluating the effectiveness of image enhancement
techniques.

Therefore, in this thesis, our research unfolds systematically, commencing with
the introduction of a distortion dataset, followed by the development and application
of a quality assessment technique. Subsequently, we present our innovative image
enhancement method, culminating in the implementation of an effective classification
method. This structured approach serves as the core of our research strategy, ensuring
a thorough and comprehensive examination of the challenges and solutions in the field
of WCE image analysis.

Our contributions related to each method are summarized in the following sub-
sections, highlighting the idea and impact of each component in the context of our
research.

3.1 WCE dataset creation (QVCED)

In this work, we introduce the Quality-Oriented Database for Video Capsule Endoscopy
(QVCED), an innovative dataset derived from the well-established Kvasir-Capsule
dataset [10]. The primary objective of QVCED is to encompass a wide spectrum of
scenarios, including various pathological conditions and multiple forms of distortion,
thereby prioritizing the simulation of realistic conditions encountered in clinical practice.
To construct this dataset, we employ a meticulous two-stage process.

In the initial stage, we carefully select reference videos that conform to stringent
quality criteria, drawing from the Kvasir-Capsule dataset [10]. These reference videos
serve as the foundation for QVCED, ensuring that the dataset maintains a high standard
of quality from the outset.

Subsequently, we embark on the second stage, where we deliberately subject these
reference videos to a degradation process. This process involves the controlled introduc-
tion of distortion, with the level of degradation precisely controlled using the physical
parameters of a distortion generation model. By doing so, we aim to emulate and
capture various types and degrees of distortion that real-world WCE videos can exhibit.
This comprehensive approach equips QVCED with the capacity to address a broad
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range of image quality scenarios, making it an invaluable resource for research and
development in the field of video capsule endoscopy.

3.2 Image quality assessment metric (IHED)

To quantitatively evaluate the quality of images affected by uneven illumination (UI), we
present a novel and straightforward Non-Reference Image Quality Assessment (NR-IQA)
method, which relies on analyzing local variations in the background illuminance (BI)
component of images subject to UI, such as laparoscopic images or WCE images. We
employ the standard deviation of the difference signal between the BI values of the
original image and its histogram-equalized counterpart as a physical metric to quantify
the impact of non-uniform lighting.

The core concept behind this method is inspired by our observation that the extent
to which an image is affected by UI phenomenon correlates with the degree to which
contrast enhancement (CE) exacerbates the difference between the BI values before and
after the application of CE.

More precisely, we propose a simple yet effective NR-IQA approach that leverages
the analysis of BI variations to evaluate the impact of non-uniform lighting condi-
tions, ultimately revealing how the application of contrast enhancement amplifies these
differences. This method has the potential to offer valuable insights into the quality
assessment of laparoscopic images, WCE images and their suitability for various medical
applications. Indeed, we utilized this metric to meticulously create a comprehensive
quality-oriented dataset including various types and levels of distortions. This dataset
plays an important role in evaluating how image quality affects the performance of
machine learning models for robust quality assessment.

3.3 Image quality enhancement method (TCFA)

After evaluating the distortion severity, we propose a novel image enhancement method
applied to WCE images. The proposed method, namely TCFA which stands for Triplet
Clustering Fusion Autoencoder, effectively addresses the challenging issues of noise, blur,
and uneven illumination while accounting for varying degrees of distortion severity. Our
key contributions include a distortion level encoder that classifies distortion severity
using the triplet loss function, a variational cross-attention module for precise uneven
illumination correction, and the integration of a pre-trained network for extracting
essential structural features from WCE images. Extensive experiments conducted on the
Kvasir-Capsule dataset [10] demonstrate the remarkable efficacy of TCFA, showcasing
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its superior performance compared to state-of-the-art methods when applied individually
to distinct distortion types, our approach focuses on addressing one distortion at a time
rather than simultaneously managing multiple distortion levels. This approach shows
promise in significantly advancing WCE image enhancement for specific distortions.

3.4 Classification method (DWSA-SSL)

The recent development of WCE has seen a surge in interest in computer-aided and
vision-based solutions, aiming to automate the detection of abnormalities within imagery.
While these developments hold great promise, one of the fundamental hurdles in building
an effective computer-aided diagnostic (CAD) system for WCE lies in the limited
availability of labeled data. To address these complexities and reduce the labeled-data
requirement, in the final stage, we propose a novel self-supervised learning method,
Dilated Window-based Self-Attention Self-Supervised Learning (DWSA-SSL), tailored
for distinguishing various WCE pathologies. This innovative architecture uncovers
the underlying structural information within WCE images by using unlabelled WCE
images. This strategic application of SSL allows our model to capture essential semantic
features without the introduction of label bias. Furthermore, we enhance the image
classification quality by incorporating a transformer backbone, which reduces redundant
and noisy information that may lead to biased performance. The inclusion of an
attention mechanism allows us to emphasize crucial regions, particularly lesions, during
diagnostic predictions. Additionally, our novel S-DWSA (Shifted-Dilated Window-based
Self-Attention) module generates hybrid attention embedding, drawing from both image
patches within attention windows and their interactions with neighboring windows.
Lastly, we address the issue of attention map bias with a soft-cosine attention approach,
ensuring a more balanced and effective distribution of attention across image regions.

4 Thesis organization

The structure of this thesis is organized as follows:

• Chapter 2: In this chapter, we present the state-of-the-art relative to image
quality assessment metrics, image quality enhancement, and classification methods,
especially the existing works that inspired our research during my thesis.

• Chapter 3: We propose a novel WCE distortion dataset, called the Quality-
Oriented Database for Video Capsule Endoscopy (QVCED) which serves as the
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primary crucial resource for evaluating the quality of Wireless Capsule Endoscopy
(WCE) images and videos.

• Chapter 4: We propose a No-Reference IQA metric for Uneven Illumination
Assessment on Laparoscopy and WCE Images, namely Illumination Histogram
Equalization Difference (IHED). Subsequently, we extend its application to our
proposed QVCED dataset to evaluate its effectiveness on WCE images.

• Chapter 5: We introduce a novel method, called Triplet Clustering Fusion
Autoencoder (TCFA), for enhancing the quality of WCE images which not only
deals with three types of degradations including noise, blur, and uneven illumina-
tion but also considers different levels of distortion severity.

• Chapter 6: We propose a novel Dilated Window-based Self-Attention Self-Supervised
Learning (DWSA-SSL) method to distinguish among various WCE pathologies
and deal with these labeled-data requirement difficulties.

• Chapter 7: We provide a summary of the work presented in the previous chapters,
the contributions to knowledge already achieved in this research, and the directions
for the future work.
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1 Introduction

In the present day, as medical imaging is widely employed in healthcare, especially
for pathological diagnosis and assessment, ensuring the high quality of medical images
has become a significant concern. To attain the most accurate diagnoses, it is crucial
that medical images are clear, and free of disturbing factors such as noise and other
artifacts. As progress continues, improving the resolution and quality of medical images,
the persistence of distortion remains a prevalent concern in the field of medical imaging.
Typically, medical images are prone to various types of noises introduced during various
stages such as acquisition, transmission, storage, and display. The task of image quality
enhancement holds paramount importance because distortion has the risk of resulting
in inaccurate diagnoses.

The primary objective of this chapter is to provide a concise overview of recent
advancements in methods for assessing image quality, enhancing image quality, and
applying classification techniques. In the first part of this chapter, Section 2, we
introduce the fundamental definitions of continuous and discrete images, which will
serve as the foundation for the subsequent discussions in this thesis. Next, Section 3
delves into various distortion models commonly encountered in WCE imaging modality.
In Section 4, we explore several established image quality metrics that are utilized
to assess the effectiveness of image processing techniques and evaluate the severity
of distortions. Besides, some state-of-the-art approaches to image enhancement are
highlighted. Additionally, Section 4 also provides an overview of the WCE image
classification methods.

2 Image definition

We start by expressing a mathematical representation of an image in a discrete and
continuous setting.

Definition 2.1 (Continuous Image [17], Def. 3.1). Let Ω ∈ Rd(d ∈ N) be the image
spatial domain. A function u : Ω→ R is called a d-dimensional image if the following
conditions are fulfilled,

i. u has a compact support, if Ω is not bounded,

ii. 0≤ u(x)≤∞ for all x ∈ R
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iii.
∫
Ω

u(x)dx <∞

This representation of images offers a simple basis for the development and analysis of
mathematical methods. However, it’s essential to note that it is purely an abstraction
and cannot be practically implemented on any computer system. Consequently, we
will focus on digital images, which are more aligned with the demands of practical
applications.

Definition 2.2 (Discrete Image). Let Ω ∈ Nd(d ∈ N) be a finite subset of N2. A digital
image is an application u : Ω→ A such that A is a finite subset of Rk, with k ∈ N.

In the following, unless specified otherwise, we will focus on the image such that
A ∈ N.

In the next subsection, we list some models of common distortions found in WCE
images, including additive Gaussian noise, blur, and uneven illumination.

3 Distortion models

In the domain of image processing and computer vision, an accurate modeling of distor-
tions is useful and indispensable for various applications including image enhancement
and restoration techniques. Distortions in images can originate from numerous sources,
such as sensor limitations, atmospheric conditions, or transmission artifacts, and under-
standing and characterizing these distortions are crucial steps toward achieving robust
and reliable image analysis. In this context, the following sub-section presents some
mathematically tractable models that aim to characterize and quantify some common
degradations in WCE such as noise, blur which can have two forms, namely motion
blur and defocus blur, and uneven illumination distortion which occurs if the view field
is not evenly illuminated [18]. The more efficient the degradation model is, the better
we can address the impact of such degradation, by enhancing image quality, leading to
improved accuracy in subsequent computer-vision tasks such as classification.

3.1 Additive Gaussian noise model

WCE cameras equipped with a limited aperture size and compact sensors featuring
a constrained dynamic range often introduce noise in the captured frames [19]. In
particular, the widely accepted standard noise model in WCE images is the additive
white Gaussian noise [20]. Let us denote by f : Ω→ R with Ω ∈ N2 the observed image
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(noisy image) and u the ground truth image (noise-free image). As f is corrupted by
random noise, each pixel value f(x) of f is the realization of a random variable Fx. We
will denote by F = (Fx) the random vector consisting of independent random variables
Fx and pF (·) the probability density function (PDF) of F . Usually, it is assumed
that the random variables Fx are statistically pairwise independent and identically
distributed. Then, the conditional probability density function, pF (f | u), can be written
as:

pF (f | u) =
∏

x∈Ω

pFx(f(x) | u(x)) (2.1)

An acquired image corrupted by additive Gaussian noise can be mathematically repre-
sented as:

f(x,y) = u(x,y) + N(x,y), (2.2)

where f(x,y) represents the pixel value at coordinates (x,y) in the noisy image, u(x,y)
represents the original pixel value in the clean image, and N(x,y)∼N (0,σ2

n) represents
the random noise value at coordinates (x,y) following a Gaussian distribution with
standard deviation σn.

3.2 Blur model

Capsule cameras often feature wide-angle lenses that can only capture a limited range
of clear images. Blurriness can occur when the camera moves rapidly, operates at a low
frame rate, or when the lens is not correctly focused. These problems can lead to two
distinct types of blurriness: one caused by fast movement, namely motion blur, and the
other due to improper focus, namely defocus blur.

3.2.1 Motion blur model

The degradation of blurry images can be approximated as a linear degradation system.
The resultant blurring in the image, caused by the relative movement between the
camera and the scene, can be represented through a two-dimensional convolution model
within the linear spatial domain, and this can be formed as follows:

f = u⊛h, (2.3)

where f , and u represent the blurred and original image respectively, and h is the motion
PSF (Point Spread Function) function or blur kernel. The notation ⊛ represents the
convolution operator.

From (2.3), it is evident that the main goal in deblurring is to estimate the PSF
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function h. Assuming the scene object moves uniformly compared to the camera, we
can conclude that the gray colors of points in the blurry picture are connected to the
gray colors of nearby points in the original picture. This relationship allows us to define
the PSF for motion-induced blurring as follows [21]:

h(x,y) =

 1, if 0≤ |x| ≤ lcosθ, |y|= l sinθ

0, otherwise
(2.4)

where l is the length of blur, and θ represents the angle of blur.

3.2.2 Defocus blur model

The defocus blur model resembles that of motion blur but employs a different filter. It
begins by generating a Gaussian Kernel G0(x,y) [22], followed by applying Gaussian
Blur through the convolution of the image with this normalized box filter.

G0(x,y) = 1
2πσxσy

e

−(x−µx)2

2σ2
x

+
−(y−µy)2

2σ2
y , (2.5)

where µ is the mean (the peak) and σ2 represents the variance (per each of the variables
x and y). In this work, we assume that the standard deviation in each direction is
the same (σx = σy = σ), and the center of the Gaussian distribution is at the origin
(µx = µy = 0) , we can simplify the 2D Gaussian blur kernel formula as follows:

G0(x,y) = 1
2πσ2 e

−(x2 + y2)
2σ2 (2.6)

For the normal distribution, the values less than one standard deviation away from
the mean encompass 68.27% of the data; while two standard deviations from the mean
account for 95.45% of data; and three standard deviations account for 99.73%. Therefore,
the rule of thumb for Gaussian filter design is to set the filter half-width to about 3 ∗σ

(standard deviation) in each direction. Because the kernel size has been an odd number,
so the kernel size is:

w = 2×⌈3σ⌉+ 1 (2.7)

3.3 Uneven illumination model

Due to the complex structure of the GI tract, the image captured from the wireless
capsule suffers from non-uniform illumination. Fig. 2.1b shows us the field of view
(FOV) and illumination map of a WCE example. This image suffers from uneven
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illumination with a non-uniform distribution. As we can see in Fig. 2.1, when the

Figure 2.1: Field of View (FOV) measurement of a capsule endoscope: (a) illustration of FOVW S

(window surface) and FOVEP (Entrance Pupil), (b) a low-resolution image (4cm× 4cm) on a
capsule recorder screen [23].

light source is not evenly distributed across the entire FOV, it can lead to reduced
illumination towards the edges of the image, causing a vignette effect as a specific type
of uneven illumination. This is particularly noticeable when the illumination source is
not centered or when there are obstacles or irregularities in the optical path.

To analyze the effect of the direction of the light source on a captured uneven
illumination effect, Lois et al. [24] established a dedicated microscopy system. it should
be noted that both microscopy and WCE utilize optical systems to capture images.
While the scale and complexity differ, the fundamental principles remain the same -
light passes through a lens system onto an image sensor, where the quality of the image
is influenced by the distribution of light. Fig. 2.2 shows us an example result of uneven
illumination when the direction of the light source is not straight. As we can see in Fig.
2.2, if the light source is not straight to the object, the center line of the illumination
will appear as an approximately log-normal distribution. Based on the experiment
result, we could assume that the uneven illumination in WCE will have a 2D hybrid
normal-log-normal distribution shape. The specificities of the distortion simulation will
be elaborated upon in Chapter 3.
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Figure 2.2: (a) Light-shading images when the light source is not directly aligned with the
object [24], consider a scenario where the light source is positioned on the surface of a spherical
object, with the object in the center of this sphere. (b) The highest intensity point (marked
in green) within a sub-image corresponds to the point where the microlens center (marked in
blue) is orthogonally projected. The actual camera’s central view is marked as the ground truth
point (marked in red). This ground truth point can also be alternatively represented using a
mathematical model as the reference point (marked in yellow), and the weighted average point
(marked in violet) includes a weighted average of pixel intensities within the sub-image.

4 The State-of-the-art (SOTA) approaches

4.1 Introduction

The main objective of this thesis is to develop a smart system with the capability
to detect, identify, and classify abnormalities found in WCE images. An interesting
and essential element of the proposed system is a pre-processing module dedicated to
enhancing the quality of the acquired images before they are utilized in the detection
and classification stages. Moreover, for a better performance, we propose to design a
learning-based image enhancement that necessitates the knowledge of the distortion level,
the latter can be obtained through the use of IQA metrics. By integrating distortion
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level information in the pre-processing module, the overall system aims to optimize
the image quality enhancement, thereby enabling more precise and reliable detection
and classification of abnormalities in WCE images. In this context, we first make a
comprehensive overview of the state-of-the-art of three main groups including SOTA
IQA metrics, SOTA image quality enhancement, and SOTA image classification on
WCE images.

4.2 The SOTA Image Quality Assessment (IQA) metrics

4.2.1 Introduction

Typically, the performance of the image processing methods is often evaluated in both
objective measures and subjective quality assessment protocols. The objective measure
is determined through the image quality metrics. While subjective assessment of image
quality is considered highly reliable and serves as a benchmark for objective quality
metrics, it is a complex and time-consuming process that necessitates a controlled envi-
ronment adhering to ITU standard requirements [25]. Moreover, subjective evaluation
is not feasible in real-time applications where quick responses and decisions are required.
Consequently, a multitude of objective image quality metrics have been developed.
Objective Image Quality Assessment (IQA) methods can be categorized into three main
types: Full-Reference IQA (FR-IQA) [26], Reduced-Reference IQA (RR-IQA) [27], and
No-Reference or Blind IQA (NR-IQA) [28]–[30].

4.2.2 Full-Reference IQA (FR-IQA)

A Full-Reference Image Quality Assessment (FR-IQA) metric is a method used to
evaluate the perceptual quality of an image to a reference one (a high-quality image).
It requires access to both the distorted image and the corresponding reference image
for a direct comparison. FR-IQA metrics aim to quantitatively assess the similarity
between the distorted and reference images based on various visual characteristics,
such as structural information, color fidelity, texture details, and perceptual artifacts.
The image similarity measures are grouped according to their strategies including
mathematical metrics, Human Visual System (HVS) based metrics, and others.

4.2.2.1 Mathematical metrics

In the mathematical approach, the image is regarded as a 2D signal, and the dissimilarity
(or similarity) between the reference and the distorted images is calculated as a distortion
(or quality) measure. Minkowski metric, for example, calculate the Eγ distance between
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the reference image x and distorted image y by:

Eγ =

 1
N

N∑
i=1
|xi−yi|γ

1/γ

, (2.8)

where xi and yi are the i-th samples in image X and Y respectively, N is the number
of image samples, and γ ∈ [1 . . .∞). For γ = 2, one obtains the well-known Mean Square
Error (MSE) formula if the square root is ignored:

E2 =

 1
N

N∑
i=1
|xi−yi|2

1/2

=
√

MSE (2.9)

MSE and its variants such as peak signal-to-noise ratio (PSNR) are commonly used as
objective image quality metrics. PSNR is defined as:

PSNR = 10log10

(
2552

MSE

)
(2.10)

The value 255 represents the maximum gray level in an 8-bit per pixel monochromatic
image. Additional mathematical measures for quantifying image distortion, such as
average difference, maximum difference, absolute error, Peak MSE, and others, are
detailed in [31]. In the same study, Eskicioglu and Fisher also introduced correlation-
based measures, including structural content (SC), normalized cross-correlation (NCC),
correlation quality, and others. These measures are designed to evaluate the likeness
between reference and test images.

However, it’s worth noting that despite their simplicity and mathematical precision,
these metrics do not exhibit a strong correlation with perceived quality measure-
ments [32], [33]. This lack of correlation primarily arises from the fact that these metrics
do not take into account the characteristics of the HVS in their models. The HVS plays
a substantial role in shaping our perception of image quality.

4.2.2.2 Human Visual System-based metrics

In this approach, the error signal, which represents the disparity between the reference
and test images, is evaluated through known properties of the human visual system.
Several characteristics of the HVS frequently employed in image quality assessment
(IQA) including contrast sensitivity function (CSF), luminance contrast sensitivity and
contrast masking.

Firstly, CSF plays a role in the integration process by either acting as a filter to
enhance lower spatial frequencies or by assigning different weights to subbands after
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frequency decomposition. This is because the human visual system is more sensitive to
lower spatial frequencies compared to higher ones, as observed by Lee in [34].

Secondly, based on the luminance contrast sensitivity of the human vision, it stands
out that our ability to detect variations in brightness, referred to as luminance contrast,
surpasses our capacity to precisely evaluate the actual brightness level. This observation
remains consistent with Weber’s law, which maintains that the relationship between
the smallest noticeable change in brightness (∆L) and the initial brightness value (L),
denoted as ∆L/L. ∆L/L is constant across a broad spectrum of brightness levels. In
scenarios characterized by low background brightness, such as dimly lit environments,
this ∆L/L ratio becomes notably more pronounced. This phenomenon is frequently
termed "luminance masking" in various IQA methodologies. Essentially, it implies that
in poorly illuminated environments, our ability to perceive and differentiate elements
within an image diminishes due to the reduced information pertaining to luminance
contrast [35].

Thirdly, contrast masking occurs when an element within an image becomes more
difficult to distinguish due to the presence of nearby objects. This phenomenon plays
a fundamental role in the way our eyes function. Within models utilized for IQA,
contrast masking is deliberately used to replicate situations in which certain image
details may become less visible or even concealed by adjacent elements in the image.
These circumstances can lead to alterations in our perception of the image’s quality. By
encompassing the impacts of contrast masking, IQA metrics strive to provide a more
precise assessment of image quality, taking into account the intricate interactions among
various visual components within the image.

Pre-
processing

Channel
Decomposition

Error
Normalization

& Masking
Error Pooling Quality

Score

Reference
image

Distorted
image

Figure 2.3: A standard framework of the Image Quality Assessment (IQA) system based on the
Human Visual System (HVS) involves a pre-processing phase preceding the channel decomposition.
This pre-processing phase encompasses operations such as alignment, conversion of color spaces,
and low-pass filtering through the point-spread function (PSF) to simulate the effects of eye
optics.

The HVS features, as described in Fig. 2.3, are implemented at the pre-processing and
the error normalization and masking stage. The "Channel decomposition" block serves
the purpose of changing the values of individual pixels in an image into separate and less
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related spatial sub-components. This transformation has the potential to enhance the
accuracy of quality measurement. Several transformation methods have been suggested
for this purpose, including the cortex transform, steerable pyramid transform, wavelet
transform, and DCT transform. The "Error normalization and masking" blocks are
applied individually to each channel within a system. In the majority of models, masking
is realized through a gain-control mechanism, which adjusts the weighting of the error
signal in a given channel based on a spatially varying visibility threshold specific to
that channel. Finally, the "Error pooling" block refers to the process of consolidating or
aggregating the error signals from multiple channels into a unified distortion or quality
assessment score. This technique is commonly used in various applications, such as
image or video processing, to summarize the overall quality or distortion across different
components or regions of the images [34].

The first effort to employ the HVS for measuring image quality was made by Mannos
and Sakrison [36]. This idea was later expanded upon by various other researchers.
Some notable models in this category include the "visible differences predictor" by
Daly [37], Watson’s DCT-based and Wavelet-based Metrics [35], the "perceptual image
distortion" model by Teo and Heeger [38], and the Just-Noticeable-Distortion (JND)
model by Lubin [39]. Although this approach is widely accepted, it does have some
limitations. These include the nonlinearity of the HVS, as well as challenges related to
detecting subtle differences beyond a certain threshold, known as the "suprathreshold
problem" [40].

4.2.2.3 Other metrics

Some other metrics are proposed in a simpler manner to be consistent with visual
perception. Wang et al. have introduced a novel framework for creating image quality
metrics [40], [41], known as the "structural similarity" approach. In this approach, they
make the assumption that the HVS is exceptionally adapted for perceiving information
in natural scenes, which are typically structured. Therefore, they propose that assessing
the change in structural information (between a reference and a distorted image) should
provide a reliable approximation of perceived image distortion. The SSIM value between
two images is determined by averaging the similarity index between corresponding local
image patches, denoted as xi and yi, both of which belong to the same position in the
two images being compared.

Concretely, the local SSIM index measures the similarities of three elements of
the image patches: luminance, contrast and structure as indicated in (2.11), (2.12)
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and (2.13).
ℓ(xi,yi) = 2µxµy + c1

µ2
x + µ2

y + c1
, (2.11)

c(xi,yi) = 2σxσy + c2
σ2

x + σ2
y + c2

, (2.12)

s(xi,yi) = 2σxy + c3
σxσy + c3

, (2.13)

where µx, µy are the means of the images patches xi and yi, respectively; σx,σy the
standard deviations of xi and yi, and σ(xi,yi) = 1

n−1
∑n

j=1(xi(j)−µx)(yi(j)−µy) the
covariance of the two images patches xi and yi, while c1, c2, c3 are positive constant to
stabilize the division with weak denominator. Then, the SSIM defined locally between
two image patches is defined as a weighted combination of three comparative measures.

SSIM(X,Y) =
M∑

i=1
SSIM(xi,yi) =

M∑
i=1

ℓ(xi,yi)α · c(xi,yi)β · s(xi,yi)γ , (2.14)

where X and Y are the reference and the test images, respectively, while xi and xi are
the image patches at the i-th local window, and M is the number of local windows in
the image. α, β, γ are positive constants.

In [42], the mutual information between the test and the reference images, is
quantized to relate to visual quality. The proposed measure is called Visual Information
Fidelity (VIF). The concept behind VIF is to capture and quantify the extent to which
the visual information in a test image aligns with that in a reference image. By analyzing
the mutual information between these two images, VIF aims to provide a measure that
reflects how faithful the test image is to the reference image in terms of preserving
visual information. This approach offers a valuable tool for evaluating and comparing
the quality of images by considering the information content shared between them.

4.2.3 Reduced-Reference IQA (RR-IQA)

Reduced reference image quality assessment (RR-IQA) constitutes an approach that
approach that extracts a minimal but appropriate set of characteristics from the reference
image to evaluate the quality of a test image. These characteristics encompass elements
such as frame intricacies, edges, and color attributes, functioning as partial features.
To attain efficacy, an RR-IQA algorithm must conform to a set of essential criteria,
meticulously delineated in Wang and Simoncelli’s seminal work [43]:

• The algorithm’s primary function should involve generating a succinct and efficient
summary of the reference image, extracting essential information for the quality
assessment process.



26 Chapter 2. Related works

• The algorithm must demonstrate a robust capacity to accurately identify a spec-
trum of distortions inherent in the test image. Proficiency in discerning diverse
distortion types facilitates a holistic evaluation of image quality.

• Additionally, the RR-IQA algorithm must correlate human perception of image
quality. Its design should encompass the capture and analysis of visual attributes
appropriate to human observers, thereby ensuring the relevance between algorith-
mic assessments and human judgements.

In the domain of communication systems, these algorithms serve as essential tools.
Their main purpose is to oversee the quality of images as they traverse through commu-
nication channels, effectively identifying any distortions that might crop up during the
transmission process. Through the utilization of RR-IQA algorithms, it becomes viable
to measure the influence of these distortions on image quality, thereby facilitating the
implementation of suitable corrective actions.

4.2.4 No-Reference IQA (NR-IQA)

NR-IQA algorithms are formulated to forecast the subjective quality of altered images
by relying on human perception, all without necessitating access to the corresponding
reference images, also known as ground truth images. These algorithms hold significant
utility in real-world situations where obtaining or accessing the reference image proves
to be prohibitively expensive or infeasible. Although humans can frequently intuitively
assess the subjective quality of a distorted image even in the absence of a reference
image, replicating this from a computational perspective has presented considerable
challenges.

Over the years, there has been a development of numerous NR-IQA algorithms,
which can be broadly classified into two categories: distortion-specific and general-
purpose (universal) approaches. Distortion-specific NR-IQA algorithms utilize particular
distortion models to estimate the subjective quality of an image, as mentioned in Corchs
et al.’s work [44]. These algorithms have the capability to measure one or more distortions
within an image, such as noise and blur, and subsequently assess its visual quality
based on these parameters. These NR-IQA algorithms are adept at quantifying and
evaluating various types of distortions present in an image, which may include blur,
blocking, ringing, and noise. They are often referred to as application-specific NR-IQA
algorithms since their applicability depends on prior knowledge of the specific distortion
type.

In contrast, general-purpose NR-IQA algorithms present a more formidable task since



4. The State-of-the-art (SOTA) approaches 27

they aspire to function effectively across various types of distortions, devoid of any prior
knowledge about the specific distortion type. This is due to practical situations where
information regarding the distortion type and its statistical characteristics may be either
unavailable or entirely unfamiliar. Moreover, an image’s quality can be simultaneously
influenced by multiple types of distortions, thereby compounding the complexity of the
NR-IQA problem in terms of analysis, research, and development. Although existing
NR-IQA algorithms still grapple with limitations concerning image degradation modeling
and training, as noted in Beghdadi’s survey [45], general-purpose NR-IQA algorithms
hold substantial potential for application in uncontrolled environments, as indicated by
Shahid [46], despite these formidable challenges.

After briefly introducing NR-IQA algorithms, we review in detail various approaches
of distortion-specific and general-purpose NR-IQA algorithms in Section 4.2.4.1 and
Section 4.2.4.2, respectively.

4.2.4.1 Distortion-specific NR-IQA methods

The fundamental goal of research in the NR-IQA field is to devise computational
models that can accurately predict image quality, even without or with little available
prior information about the image’s contents and distortions. Typically, all NR-IQA
algorithms adhere to a two-step framework, which involves extracting features and
mapping them to subjective quality. However, when it comes to practical implementation,
distortion-specific NR-IQA algorithms, which specialize in identifying specific distortions
like blurring and noise in WCE images, tend to be simpler in terms of feature extraction
and quality prediction compared to their general-purpose NR-IQA counterparts. In the
following section, we will provide a concise overview of the distortion-specific NR-IQA
algorithms.

Blur-oriented algorithms Blur artifacts tend to have a notable impact on main
image elements, including edges and intricate details. These effects can be examined
in either the spatial domain or the spatial-frequency domain [47]. NR-IQA algorithms
that specifically address blur concentrate on modeling the dispersion of edges and
establishing a connection between this dispersion and the perceived image quality, as
illustrated in Sang et al.’s work [48]. Over time, various techniques have been developed
to quantify blur artifacts. These methods encompass calculating the block kurtosis of
discrete cosine transform (DCT) coefficients [49], detecting edge widths [50], evaluating
image spectrum uniformity [51], scrutinizing the dominant eigenvalues of the covariance
matrix [52], employing iterative thresholding of a gradient image [53], and utilizing
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probabilistic approaches for blur detection [54].

To improve the consistency and effectiveness of NR-IQA algorithms focused on
blur, researchers have introduced models that reflect how blurriness is perceived by
the HVS. This approach seeks to align these algorithms with the characteristics and
mechanisms of human perception. For instance, in [55], Sadaka et al. explored the use
of saliency models to construct a blur-oriented NR-IQA algorithm. Additionally, in [56],
the authors introduced a perceptual sharpness measure based on just noticeable blur
(JNB). JNB considers how the HVS responds to sharpness at various contrast levels,
enabling the quantification of blurriness perception. To account for the impact of noise
on blur assessment, a noise-robust blur measure was proposed in [57]. This measure
combines a gradient-based approach with singular value decomposition to enhance its
resistance to noise interference. Furthermore, a more recent approach, as detailed in [58],
employs multiplicative multi-resolution decomposition to analyze blurring effects in
an innovative manner. These advancements in modeling blurring, incorporating HVS
characteristics, and applying novel techniques have significantly contributed to the
development of more effective blur-oriented NR-IQA algorithms.

Noise-oriented algorithms Accurate noise statistics estimation holds significant
importance for the precise assessment of image quality in the presence of noise. This is
because noise estimation can be utilized for evaluating image quality, as demonstrated
by Gabarda’s and Zhai’s works [59], [60]. Within the literature, various noise estimation
approaches have been developed, including the filter-based approach [61], the patch-based
approach [62], and a combination of both these approaches [63].

Recent advancements in noise estimation algorithms have developed. For instance,
an IQA algorithm proposed in [64] utilizes a block-based homogeneity measure for
estimating noise statistics like variance within the image. This algorithm also takes into
account the visual masking effect of the HVS. Another challenge in noise estimation is
the selection of an appropriate block size, as it directly affects the accuracy of locally
derived noise statistics. To address this challenge, researchers introduced a deformable
ant colony optimization (DACO) algorithm in [65]. This algorithm dynamically adjusts
the kernel size for image block selection, allowing for improved noise estimation. Deng
et al. [66] examine how well the kurtosis of image wavelet coefficients, when used as
a feature for a feedforward NN, can be employed to teach the NN to convert kurtosis
values into scores related to perceptual quality. These recent developments in noise
estimation algorithms contribute to the more accurate assessment of image quality for
noisy images by effectively capturing and analyzing the underlying noise characteristics.
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Multiple distortions-oriented algorithms In addressing the complexity arising from
the simultaneous presence of various types of distortions, multiple approaches have
been highlighted [67]–[69]. For instance, Li introduced an NR-IQA algorithm [69]
that integrates metrics related to three distinct image distortions: ringing, noise, and
blocking. Its primary goal revolves around the identification and quantification of the
impact these distortions have on image quality. Another approach, presented by Cohen
and Yitzhaky [70], focuses specifically on noise and blur, aiming to discern and measure
their effects on image quality. This particular algorithm operates by meticulously
examining shared statistical characteristics derived from the power spectra of the images.
Furthermore, Sazzad et al. proposed an NR-IQA algorithm [71] that remains unrestricted
by predefined artifacts commonly associated with JPEG2000 images. Its purpose is to
evaluate image quality without being constrained by the presence of specific artifacts.

These efforts collectively highlight the evolution of NR-IQA algorithms geared toward
addressing the simultaneous influence of diverse distortion types, thereby providing
comprehensive evaluations of image quality in a variety of scenarios.

4.2.4.2 General-purpose NR-IQA methods

In the field of NR-IQA, there has been a shift towards adopting machine learning-based
approaches, primarily driven by the demand for applications based on machine learning.
As a result, most existing NR-IQA algorithms follow a two-step framework [72], consist-
ing of feature extraction and quality prediction. This framework aims to learn the human
evaluation process using human-rated scores available in benchmark databases. The
objective is to develop algorithms that can automatically predict the visual quality of im-
ages across different types of distortions and image contents. Similar to distortion-specific
NR-IQA algorithms, when developing a robust general-purpose NR-IQA algorithm, two
major challenges arise: features extraction and quality prediction. These challenges
are more complex in the context of general-purpose algorithms and require in-depth
exploration and discussion. In the following subsection, we will examine these issues in
detail and discuss approaches for addressing them effectively.

Features Extraction The natural world represents only a small portion of all
potential scenes, and it’s far from random in its appearance. Instead, it demonstrates
consistent statistical characteristics known as Natural Scene Statistics (NSS), which have
drawn significant attention from researchers in their investigation of statistical features
that correlate well with human judgements of quality. In the domain of NR-IQA, the
attributes used to evaluate image quality primarily originate from statistical properties
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of natural images, whether in the spatial or transform domain.

In [73], Mittal et al. introduced an NR-IQA algorithm named the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE). This algorithm functions within the spatial
domain and relies on statistics of locally normalized luminance coefficients to measure
possible losses of “naturalness” in the image affected by distortions. The core principle
is that natural images demonstrate specific, consistent statistical properties, which are
quantifiably altered by the presence of distortions. BRISQUE employs a framework that
uses a Generalized Gaussian Distribution (GGD) to model the mean-subtracted contrast-
normalized (MSCN) luminance coefficients distributions, assuming that characteristic
statistical properties of MSCN coefficients are modified due to the presence of distortion.
It evaluates an image’s naturalness by examining the parameters of the GGD model. It
has been proved that the GGD model can effectively capture a wider range of statistics
related to distorted images. The GGD model (with zero mean) is expressed as follows:

f(x;α,σ2) = α

2βΓ (1/α)exp

(
−
( |x|

β

)α)
, (2.15)

where β = σ

√
Γ (1/α)
Γ (1/3α) and Γ (·) is the gamma function with:

Γ (a) =
∞∫
0

ta−1e−t dt, a > 0. (2.16)

Within the BRISQUE algorithm, the parameters α and σ control the shape and variance
of the distribution, respectively. The estimation of parameters α and σ is carried out
through the moment-matching-based approach [74]. Subsequently, these estimated
parameters find utility in quantifying the naturalness of an image.

In terms of modeling the empirical distributions of pairwise products among adjacent
MSCN coefficients across various orientations (horizontal, vertical, main-diagonal, and
secondary-diagonal), the BRISQUE algorithm relies on an asymmetric generalized
Gaussian distribution (AGGD) model. The specific mathematical formulation of the
AGGD model is described within the BRISQUE algorithm as:
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−x
βl

)v)
, if x < 0,
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, if x≥ 0,

(2.17)

where the distribution’s shape is controlled by the shape parameter v, and the spread on
each side of the model is governed by scale parameters σ2

l and σ2
r . The scale parameters

βl and βr are derived as βl = σl

√
Γ (1/v)
Γ (3/v) and βr = σr

√
Γ (1/v)
Γ (3/v) . It is worth noting that
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BRISQUE distinguishes itself from other NR-IQA algorithms by not requiring any
transformation into a different coordinate frame.

In another work, Liu et al. proposed CurveletQA as a general-purpose NR-IQA
algorithm in [75]. CurveletQA operates in the curvelet domain and extracts a set
of features based on Natural Scene Statistics (NSS). These features exhibit strong
correlations with human perception, making CurveletQA unique in its approach. The
mathematical definition of the discrete curvelet transform for a 2D function f(t1, t2) is
as follows:

θ(j, l,k) =
∑

0≤t1,t2≤1
f [t1, t2]φ(j, l,k)[t1, t2], (2.18)

where φ(i, j,k) represents a curvelet with scale j, positioned at index k with angle index
l, while t1 and t2 represent spatial domain coordinates. To enhance the effective capture
of distribution characteristics of coefficients with larger amplitudes, the algorithm
computes the empirical probability distribution function (PDF) of the logarithm of the
magnitude of curvelet coefficients at scale j as follows:

hj(x) = PDF (log10(|θj |)), (2.19)

where θj is the set of curvelet coefficients at scale j. Then, an AGGD model is used to
fit the curve of hj(x) and the fitting parameters are extracted as the features.

In [76], Saad et al. presented BLIINDS, an NR-IQA algorithm that relies on DCT
statistics to make predictions about image quality. BLIINDS extracts four distinct
features from the DCT domain, considering two different spatial scales. It operates at
the level of local image patches, with a particular focus on DCT-based contrast and
DCT-based structural characteristics. The computation of the DCT-based contrast
feature involves averaging the ratio between the magnitudes of non-DC DCT coefficients
within the local patch, normalized by the DC coefficient of that patch.

In a different work, Moorthy and Bovik, in [77], introduced the Blind Image Quality
Index (BIQI), which estimates image quality by leveraging statistical attributes obtained
through the Discrete Wavelet Transform (DWT). BIQI operates across three spatial
scales and three orientations and models the sub-band coefficients derived from the
DWT using a Generalized Gaussian Distribution (GGD). From this distribution, two
parameters are estimated and utilized as features. The resulting 18-dimensional feature
vector serves the purpose of characterizing the distortions present within the image. In
their subsequent research [78], they introduced the DIIVINE algorithm, an advancement
building upon the foundation laid by BIQI. DIIVINE employs a steerable pyramid
transform characterized by two scales and six orientations to extract its distinctive
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features. Similar to BIQI, DIIVINE makes use of a GGD model for capturing the
statistical properties inherent in sub-band coefficients. Furthermore, it integrates both
a joint statistical model and a structural similarity index to encode local dependencies
across various dimensions, including scales, orientations, and spaces. The parameters
emerging from these models, culminating in a comprehensive set of 88 features, are
skillfully employed in the estimation of image quality.

In [28], Mittal et al. introduced the NIQE algorithm. NIQE’s operational principle
is rooted in the observation that natural images exhibit consistent statistical properties
that can be leveraged to distinguish between high-quality and distorted images. NIQE
calculates a quality score by scrutinizing diverse statistical features derived from the
image. These features encompass aspects such as image sharpness, naturalness, noise,
and contrast. The algorithm employs a learning-based approach, where a model is
trained using a dataset of images with known quality scores to estimate image quality.

In another work [79], Zhang et al. proposed a novel and effective NR-IQA algorithm
known as the Integrated Local Natural Image Quality Evaluator (IL-NIQE). To more
comprehensively capture structural distortions and the nuances of contrast distortion,
they incorporated a quality-aware gradient statistics feature. The gradient magnitudes
(GMs) of natural images are amenable to modeling through a Weibull distribution, as
follows:

p(x;a,b) =


a

(ba)xa−1exp
(
−
(x

b

)a) , if x≥ 0,

0 if x < 0,
(2.20)

where parameters a and b correspond to GM and local contrast distributions of an
image, respectively.

Quality prediction Within the domain of general-purpose NR-IQA algorithms,
the primary goal is to establish a functional link between the quality-aware attributes
derived from an image and the corresponding evaluations in terms of Mean Opinion
Scores (MOS) or Differential Mean Opinion Scores (DMOS). These scores are pivotal
for evaluating the performance of an IQA algorithm by its correlation with human
subjective judgements of quality. Typically, this work is carried out in the framework of
machine learning, as explored in various studies [80]–[84].

Certainly, neural networks (NN) have attracted considerable attention as potent
mathematical tools in a range of pattern recognition applications [85], [86]. The
interest in NN is increased by their ability to approximate the functional relationship
between a known set of input and output data, enabling them to construct precise
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models for a diverse set of tasks. In [81], Li et al. proposed an NR-IQA algorithm
focused on a generalized regression neural network (GRNN). This particular algorithm
estimates image quality by approximating the functional connection between quality-
aware attributes, encompassing metrics such as the mean value and entropy of the phase
congruency image, in addition to the entropy and gradient of the distorted image, and
subjective quality ratings.

In another approach [87], the challenge of estimating image quality without reliance
on a reference image is addressed using a Growing and Pruning Radial Basis Function
(GAP-RBF) network. This strategy transforms the estimation task into one of function
approximation, wherein the previously unknown relationship between the features
and Mean Opinion Score (MOS) values is acquired during the training phase of the
GAP-RBF network.

Moreover, Ghadiyaram and Bovik introduced a pioneering NR-IQA algorithm [88],
based on Natural Scene Statistics (NSS). This algorithm exploits a deep belief network to
explore potential feature representations and trains a quality predictor. It encompasses
an unsupervised pre-training phase followed by a supervised fine-tuning stage, distin-
guishing itself as one of the earliest NR-IQA algorithms capable of predicting perceptual
image quality even when confronted with intricate combinations of distortions.

In [89], Li et al. proposed the Shearlet and Stacked Autoencoders-based No-Reference
Image Quality Assessment (SESANIA) algorithm, a versatile NR-IQA methodology
that leverages a deep neural network. SESANIA extracts fundamental features using a
multi-scale directional transformation known as the shearlet transform and characterizes
the characteristics of natural and distorted images through the summation of sub-band
coefficient amplitudes. Stacked autoencoders are employed to refine these features and
render them more distinct.

Non-Reference Image Quality Assessment (NR-IQA) algorithms offer a means to
evaluate the quality of an image without relying on a reference image or its features.
This task presents a notably challenging problem when compared to other image quality
assessment tasks. The absence of a reference image necessitates modeling the statistical
properties of a reference image, understanding the characteristics of the HVS, and
discerning the impact of distortions on image statistics in an unsupervised manner.
Furthermore, evaluating the effectiveness of a quality measure with a specific distorted
image in the absence of a reference image poses significant difficulty. Different NR-IQA
algorithms yield varying quality scores. Consequently, to enable the comparison of
different NR-IQA algorithms, the establishment of a common benchmarking system
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becomes imperative. In the following subsection, several performance evaluation metrics
for benchmarking are presented.

4.2.5 metrics

To evaluate the NR-IQA metrics, some common correlation evaluation metrics including
PLCC, SROCC, KROCC and RMSE are used, as defined below.

4.2.5.1 PLCC(Pearson Linear Correlation Coefficient)

PLCC(Qest,Qsub) = Cov(Qest,Qsub)
σ(Qest)σ(Qsub)

, (2.21)

where Qest and Qsub represent the sets of predicted and actual subjective scores,
respectively, Cov(.) signifies the covariance between Qest and Qsub, while σ(.) denotes
the standard deviation. The term PLCC serves as an indicator of the correlation between
the algorithm’s output and the subjective assessments made by human observers. It
quantifies the accuracy of the algorithm’s predictions and falls within the range of "-1"
to "+1." A value close to "+1" signifies a strong positive correlation between the two
variables, while a value close to "-1" indicates a strong negative correlation. Conversely,
a very low or zero value suggests a lack of correlation between the two variables.

4.2.5.2 SROCC(Spearman Rank-Ordered Correlation Coefficient)

SROCC(Qest,Qsub) = 1− 6∑d2
i

N(N2− 1) , (2.22)

where di represents the difference in ranks between the i-th samples of Qest and Qsub,
and m denotes the number of images in the database. The SROCC is mainly employed
to assess the monotonic relationship between two sample sets. Its value can span
from "-1" to "+1," with the same interpretational conventions as Pearson’s correlation
coefficient. N is the number of images. When there are tied observations, they are
assigned the same average rank. For instance, if three observations are tied for the third
smallest value, their ranks would be 3, 4, and 5. The average rank for these three is 4,
and each of the three observations would receive a rank of 4 [90]. Ties in data do not
pose any issues when calculating the Spearman correlation coefficient using the Pearson
formula with ranks.

4.2.5.3 KROCC(Kendall Rank Order Correlation Coeffcient)

KROCC = 2(nc−nd)
N(N − 1) , (2.23)
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where nc is the number of concordant element pairs in the dataset; nd is the number of
discordant element pairs in the dataset, and N is the number of images. KROCC is
also a good measure of the monotonicity of the two sample sets.

4.2.5.4 RMSE(Root Mean Squared Error)

RMSE =

 1
N

N∑
i=1

(MOSi−Predi)2

 , (2.24)

where MOSi is the subjective MOS value, Predi is the quality prediction score and N

is the number of images. RMSE is a direct measure of the absolute deviation between a
person’s subjective score and the algorithm’s predicted score. Its value lies between "0"
and "+1" where the value close to "+1" indicates that the two variables have a positive
correlation. Zero value implies that the two variables are not correlated.

4.2.6 Discussion

It is important to acknowledge that numerous metrics have been developed to estimate
objective image quality, considering various types of distortions such as additive noise,
blurring, or compression artifacts [58], [91]. However, the existing NR metrics for
evaluating uneven illumination, particularly in the context of medical imaging, are
limited in number [92], [93]. This gap in the literature highlights the need for a new
metric specifically designed to assess uneven illumination. In order to meet this demand,
we propose the development of a novel metric that can effectively evaluate and quantify
the impact of uneven illumination in medical images such as WCE modality. By doing
so, we aim to provide a comprehensive tool to assess and improve the quality of medical
images affected by uneven illumination, enhancing their diagnostic potential and overall
utility in clinical practice.

4.3 The SOTA image quality enhancement methods

4.3.1 Introduction

WCE image acquisition often results in degradation due to camera limitations and
environmental factors, such as a narrow aperture and small sensors producing noise and
uneven illumination, or unstable conditions causing blurry images. These distortions
can significantly hinder the experiences of clinicians and potentially lead to erroneous
diagnoses. Consequently, the development of image enhancement methods for improving
the quality of WCE images becomes imperative. These techniques aim to mitigate the
aforementioned degradations and enhance the overall quality of the acquired images for
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further image processing stage.

In the subsequent section, a comprehensive summary of the state-of-the-art image
enhancement techniques dealing with noise, blur, and uneven illumination for WCE
images is presented.

4.3.2 The SOTA image denoising methods

Noise is a prevalent distortion often encountered in video acquisition and transmission
systems. Denoising, the process of reducing or removing noise, has been a subject of
active research not only in the medical imaging domain but also in various fields of
image processing for a substantial period. State-of-the-art denoising techniques can be
categorized into three primary approaches: classical methods, dictionary learning-based
methods, and deep learning-based methods.

4.3.2.1 Classical methods

Image restoration techniques can be categorized into three two groups: the filtering-based
methods and the model-based methods. In this subsection, we make a comprehensive
overview of the state-of-the-art of these groups.

Filtering-based image restoration To enhance the efficacy of denoising, more
advanced kernels have been introduced. These encompass the bilateral filter [94],
anisotropic filtering [95], [96], SUSAN filter [97], least-mean-square adaptive filter [98],
trained filter [99], steering kernel regression [100], and edge-guided interpolation ker-
nels [101]–[104], among others. These kernels are designed to exploit the local structure
of images, including edge directions, in order to enhance the reconstruction of degraded
images.

Filtering-based methods operate on the fundamental concept of modeling the rela-
tionships between neighboring pixels within an image using a local filter. The coefficients
of this filter are determined based on the spatial distance between these pixels. To
estimate the true value of a pixel in a degraded image, a weighted average of its neigh-
boring pixels is calculated, with the weights being determined by the coefficients of the
local filter kernel or a simple function. Over the past few decades, numerous researchers
have developed various local kernels for image restoration. These include the Gaussian
filter [105], Gabor filter [106], geometric filter [20], as well as fixed-function kernels like
nearest, bilinear, and bicubic interpolation [107], [108] for image denoising.

While local filtering methods are known for their simplicity and ease of implemen-
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tation, they come with a notable drawback. They are highly susceptible to severe
degradation factors, particularly when dealing with high levels of noise or substantial
upscaling needs. This susceptibility is a result of the significant disruption of the
correlation between adjacent pixels, which hinders the accurate estimation of pixels in
the latent image.

Model-based image restoration One distinctive feature of images is their total
variation (TV), which quantifies the level of intensity variations among adjacent pixels.
It is determined by summing the absolute values of the image gradient. In high-quality
images, the TV tends to be minimal. However, when an image undergoes degradation,
such as being affected by noise, its TV experiences a significant rise.

A specific category of representation techniques, known as TV-based methods,
utilizes the total variation (TV) of images as a prior model (denoted as p(x)) to impose
regularization on the TV of the degraded image (denoted as y). The goal is to bring the
TV of the reconstructed image in line with that of the reference image (x) [109], [110].
These methods integrate the TV as a regularization component with the intention of
reinstating the TV attributes of the original image.

Total variation (TV) constitutes a well-established and early-developed category of
techniques employed in image enhancement. It measures the image’s gradient, effectively
capturing intensity variations between neighboring pixels. Mathematically, the total
variation of an image x can be expressed as follows:

TV (x) = ∥Dx∥1 , (2.25)

where D denotes the gradient operator.

In the pioneering work on TV restoration by Rudin et al. [109], the TV was utilized
as a prior model, denoted as p(x), to regulate the denoising process. The objective was
to minimize the TV of the reconstructed image, and it was formulated as follows:

argmin
x

{1
2∥y−x∥22 + λ ·TV(x)

}
, (2.26)

where the degraded image is denoted as y, while x is used to represent the recon-
structed image. The first component is the data fidelity term, which aims to align the
reconstructed image with the degraded image. The second component involves the
total variation (TV) of the reconstructed image, introducing regularization to promote
smoothness and reduce noise. The parameter λ controls the trade-off between data
fidelity and the desired level of smoothness.
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Although TV methods have proven effective, they are not without their limitations.
One significant drawback is the emergence of staircase artifacts. To tackle this challenge,
several works [111]–[114] have introduced variants of the TV model. These adjustments
involve the inclusion of higher-order image derivatives to mitigate staircase artifacts
and yield more visually attractive reconstructed outcomes.

Another drawback of the TV model is its failure to account for the orientation of
image gradients, rendering it less suitable for images with intricate textures exhibiting
dominant directions in edges and contours. To surmount this limitation, Bayram
and Kamasak [115] introduced the directional total-variation (DTV) method. DTV
incorporates weights into the image gradient coefficients based on their respective
directions, leading to a notable enhancement in denoising performance for images with
natural textures characterized by prominent directions.

Instead of working on the examination of the prior model p(x) within the image
domain, many researchers decided to work on the analysis of wavelet coefficient dis-
tributions. This leads to the introduction of prior models within the wavelet domain.
The core concept of the wavelet-based approach implies the representation of an image
x ∈ RN as a linear combination of orthogonal basis functions. These functions are
derived from a mother wavelet and involve different dilations and translations.

The wavelet transform has proven highly effective for image noise reduction tasks.
When dealing with image denoising, if we assume that the noise model involves an
identity matrix denoted as H, we can express the noisy image as y = x + η. Upon
applying the wavelet transform to these image datasets, the following results emerge:

Wy = Wx + Wη = αw + v, (2.27)

where Wy ∈ RN signifies the wavelet coefficients of the noisy image, while αw and v
represent the wavelet coefficients corresponding to the unknown clean image x and
the residual noise, respectively. The primary aim of wavelet-based denoising involves
the estimation of α̂w based on the wavelet transformation of the noisy image, denoted
as Wy. The recovered image x̂ can subsequently be reconstructed by employing the
inverse transform, expressed as x̂ = W−1α̂w.

In wavelet-based denoising algorithms, one often encounters the utilization of shrink-
age techniques, including soft or hard thresholding. These approaches serve to diminish
or eliminate wavelet coefficients falling below a specified threshold. While this threshold-
ing effectively mitigates noise, it can also lead to the deletion or substantial reduction
of minor wavelet coefficients that correspond to intricate image details. Consequently,
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the reconstructed image may fail to preserve the intended degree of detail and instead
display an excessively smoothed appearance.

4.3.2.2 Dictionary learning-based methods

Another strategy involves representing images in an alternative linear space to effi-
ciently capture their probabilistic characteristics within image structures. Typically,
a transformation domain is designed based on specific assumptions, ensuring that the
image or signal representation adheres to particular probabilistic criteria. For instance,
total-variation methods assume images are piecewise smooth with sparsely distributed
gradients. Meanwhile, the wavelet transform is formed through image representation
in an orthogonal wavelet dictionary, where wavelet coefficients feature sharp peaks
centered around zero and follow a heavy-tailed distribution. Various works in the liter-
ature have considered mathematical models like the Laplacian, generalized Gaussian,
Gaussian scale mixture, etc., to emulate the empirical distribution of images. However,
addressing the computational challenges associated with learning priors and conducting
optimization across the entire image domain remains a significant concern. Furthermore,
these approaches frequently result in excessive smoothing and the blurring of details
in the reconstructed image. This implies that an image can often be characterized
using a limited selection of basis functions chosen from a larger set. Investigations in
certain domains, such as wavelets and gradients, have provided evidence of the sparse
representation of images. This observation has served as an inspiration for numerous
research endeavors focused on image reconstruction.

In these methodologies, an image can be regarded as either an isolated signal or
in relation to other corresponding images within a dictionary. This flexibility permits
reconstruction to be executed either independently for each image or collaboratively
with neighboring images. Let’s designate the dictionary as {yi|yi ∈ RN ; i = 1, . . . ,N},
encompassing N images. The primary aim is to determine a latent representation
xi ∈ Rn for each image yi, with the condition:

yi = Hixi + ηi, (2.28)

where ηi is the additive noise in the image yi, and Hi denotes the degradation matrix
on xi.

Without loss of generality, the underlying motivation of these approaches is to
express each latent representation xi as a linear combination of K basis vectors, often
referred to as "atoms," denoted as {d1, . . . ,dj . . . ,dK |dj ∈ Rn} from a dictionary of
images D ∈ Rn×K . This can be expressed as xi = Dαi, where αi ∈ RK represents the
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vector of representation coefficients for xi. The problem presented in (2.28) can be
reformulated as:

yi = HiDαi + ηi (2.29)

The restoration of a degraded image yi is equivalent to estimating a coefficients vector
αi that satisfies the degradation model. Under the MAP framework and Gaussian noise
assumption, we have:

α̂i = argmin
αi

{||yi−HiDαi||22−λ log(p(αi))}= argmin
αi

{||yi−HiDαi||22 + λΦ(αi)}

(2.30)
In the literature, substantial efforts have been dedicated to the development of adaptive
dictionaries suited to data-specific attributes. Researchers have explored various methods,
including Principal Component Analysis (PCA)[116]–[119], sparse learning [120]–[126],
and combinations of PCA and sparsity [127]–[129]. These techniques are aimed at
building dictionaries precisely customized to match the traits inherent in the provided
dataset. Nevertheless, despite their commendable performance spanning a range of
enhancement applications, a limitation of dictionary models lies in their potential
inability to accurately represent the genuine image distribution within the vector space
constructed by the dictionary atoms D.

To overcome this constraint, it becomes crucial to investigate alternative prior models
capable of more accurately describing the true image distribution. By designing a prior
model that better fits to the underlying distribution, the potential for enhancing the
quality of the reconstructed image is heightened.

4.3.2.3 Deep-learning-based methods

Over the past few years, the field of image restoration has witnessed a significant rise in
the popularity of deep learning methods, due to the significant development of artificial
intelligence and computer vision. These methodologies seek to acquire a compact
inference or mapping function by training on collections of paired images, where one is
degraded, and the other is latent. This function is then applied to recover the original
image. The essential concept behind this learning process can be expressed as follows:

argmin
Θ

L(x̂,x) s.t. x̂ = F(y,H;Θ), (2.31)

where F(·) symbolizes the inference or mapping function, with its parameters defined
by Θ, while L(·) denotes the loss function utilized to evaluate the similarity between
the reconstructed image x̂ and the reference image x from the training dataset. Deep
neural networks, including convolutional neural networks (CNN)[130]–[138], multi-layer
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perceptrons[139], and stacked sparse denoising autoencoders [140], [141], are often
employed to represent the mapping function F(·).

Once the training phase is completed, and the parameter set Θ of the neural network
is obtained, the previously unknown latent image x̂ can be reconstructed from its
degraded observation y using the expression x̂ = F(y,H;Θ). In the past decade, Con-
volutional Neural Networks (CNN) have gained popularity for deep noise removal[142],
[143], primarily due to their capability to address complex noise scenarios. However,
they rely heavily on having high-quality noisy-clean image pairs for training, which
is a challenging endeavor. To better retain fine spatial details, CNN-based multiscale
techniques[144], [145] have been proposed. Despite the remarkable performance of deep
learning in image restoration, it does have a limitation. This limitation comes from the
fact that the parameters Θ and the mapping function F(. . .) are tailored to specific
degradation processes, such as particular noise levels. Consequently, this limits the
adaptability of the trained models for diverse image enhancement tasks.

The deep learning methodology entails the training of a model using a designated
dataset comprising images affected by a particular form and level of degradation. The
model acquires the ability to associate deteriorated observations with their corresponding
noise-free or latent counterparts. Nevertheless, when dealing with an alternative kind or
extent of degradation, the trained model might not deliver optimal results or may not
be suitable at all. This discrepancy arises from the fact that the model’s parameters and
mapping functions are intricately tailored to fit the attributes of the training dataset,
encompassing the precise degradation process employed.

As a result, using the trained models for distinct image enhancement tasks involving
different forms or distortion severity levels presents a notable challenge. In such cases,
there is a need to either retrain the model using fresh data that reflects the specific
degradation in question or create more versatile models capable of adeptly addressing
a wider spectrum of degradation scenarios. Mitigating the constraint associated with
deep-model learning’s adaptability to various degradation processes continues to be a
vibrant area of research, enabling them to effectively manage a multitude of restoration
tasks.

In the context of WCE image denoising, some of the most famous traditional image
processing methods applied to WCE images encompass the geometric mean filter[20],
Total Variation (TV)[110], and the wavelet-based approach[146]. More recently, a novel
approach[19] has emerged, which involves the utilization of the Deep Image Prior (DIP)
technique, followed by the deployment of a blind image quality assessment network. This
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approach iteratively generates a noisy image from a given noise model and subsequently
produces a clear image from the noisy one. However, a significant challenge to be noted
is that this process requires a substantial number of iterations to achieve an optimal
reconstructed image from the noise model. Consequently, the described procedure is
time-intensive and lacks efficiency in practical applications.

4.3.3 The SOTA image deblurring methods

Similar to denoising, much study has been done in recent decades with many different
image deblurring solutions on both natural and medical imaging domains. Regarding
natural images, image deblurring methods can be divided into classical image processing-
based methods and CNN-based ones.

4.3.3.1 Classical methods

Historically, traditional image deblurring techniques have included Wiener filtering [147],
the Lucy-Richardson algorithm [148], and the total variation algorithm [149]. These
algorithms primarily address non-blind image deblurring and often fail to fully leverage
the inherent prior information found in natural images. Consequently, the resulting
restored images may exhibit a lack of precision.

Recognizing the limitations inherent in classic deblurring techniques, subsequent
traditional methods have endeavored to exploit the prior information found in natural
images to enhance deblurring performance. These approaches typically extend upon the
foundation of classic algorithms by incorporating additional priors, such as the sparsity
commonly observed in natural images. By making use of the statistical attributes
inherent to natural images, these priors are employed as regularization terms to augment
the quality of deblurring results.

Furthermore, traditional methods also involve the utilization of blind deconvolution
techniques, which concurrently estimate both the original image and the blur kernel.
In 2006, Fergus et al. [150] introduced a pioneering non-parametric motion blur kernel
estimation technique, marking an early instance of blind image deblurring. Their method
encompassed the learning of a mixed Gaussian image prior and a mixed exponential fuzzy
kernel prior. Leveraging a variational bayesian (VB) criterion, the authors introduced
a non-parametric image deconvolution approach. The objective of this approach was
to estimate both the underlying image and the blur kernel without relying on prior
knowledge of specific blur characteristics.
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4.3.3.2 Deep-learning-based methods

In the domain of image deblurring, CNN-based methodologies, including Generative
Adversarial Networks (GANs), have also found practical application. GANs have been
deployed to grasp the end-to-end regression mappings, effectively connecting a blurred
input image with its corresponding high-quality image [151], [152]. However, it’s worth
noting that in the medical domain, employing generative models carries the potential risk
of introducing uncontrolled elements that could lead to inaccurate diagnostic outcomes.

To tackle this challenge, Zhang et al. [153] introduced an innovative hierarchical
representation strategy that utilizes a multi-patch network inspired by spatial pyramid
matching. This approach adeptly addresses blurred images across various scales by inte-
grating a network structure that accounts for multiple patches and their corresponding
spatial relationships.

In a more recent development, Wang et al. [154] integrated deep U-net networks
with a self-attention mechanism. This innovation allows for the efficient extraction of
local contextual information from degraded images, empowering the network to more
effectively manage the deblurring task.

These progressions in CNN-based approaches underscore the ongoing efforts to
enhance image deblurring methodologies. Researchers persistently explore novel network
architectures, incorporate attention mechanisms, and take into account the specific
demands of medical imaging to enhance the precision and efficiency of deblurring
algorithms in the medical domain.

Within the domain of WCE image deblurring, researchers have dedicated their
efforts to create specialized techniques customized for this particular field. Liu et
al. [155] introduced a modification to the standard parameter updating iteration in
total variation, incorporating the fast iterative shrinkage/thresholding technique. This
adaptation aimed to enhance the capability to manage multichannel WCE images and
elevate the overall deblurring effectiveness.

In recent investigations, researchers have turned to dictionary learning approaches
to tackle the challenges associated with WCE image deblurring. Wang et al. [156]
applied dictionary learning to extract the inter-frame relationships within WCE videos,
primarily for super-resolution applications. By exploiting the inherent redundancies
and connections among consecutive frames, they succeeded in enhancing the resolution
of the reconstructed images. Similarly, Peng et al. [157] used the dictionary learning
techniques for generating deblurred reconstructions in WCE images. This approach
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aimed to capture the underlying structure and patterns within the image content, thus
advancing the deblurring process.

These developments highlight the utilization of adapted techniques, including adapted
total variation and dictionary learning, to deal with the distinctive features and diffi-
culties inherent in WCE image deblurring. These approaches consider the particular
prerequisites and limitations of WCE imaging systems, thereby enhancing the overall
quality of the reconstructed images.

4.3.4 The SOTA uneven illumination correction methods

Uneven illumination is a common problem encountered in digital images captured by
sensors. This issue arises due to the flat nature of digital sensors used in cameras.
Pixels situated at the sensor’s center receive light rays directly, coming in at a 90-degree
perpendicular angle. However, pixels located at the corners of the sensor receive light
rays at a slight angle. This difference in the angle at which light enters results in a
gradual decrease in pixel intensity as you move from the image’s center to its edges.
Unevenly illuminated images are obtained using the following formula:

yi = xi + H, (2.32)

where the unevenly illuminated image yi is derived from the pristine source image
xi under ideal conditions. Meanwhile, the background image H is extracted through
a series of steps, starting with a low-pass filter and subsequent subtraction from the
source image. This subtraction process aims to harmonize the contrast and mitigate
the impacts of uneven illumination. To further compensate for these effects, the
subtracted image undergoes a contrast stretching procedure. Similarly, two prevalent
methods, classical and deep learning-based correction, are employed to rectify the uneven
illumination. Classical techniques assume the presence of a uniform background in the
image, occasionally containing smaller, brighter, or darker objects.

4.3.4.1 Classical methods

In the classical method, the prospective correction for uneven illumination involves
integrating two specific types of additional images taken during the image capture
process. The first type encompasses dark images, capturing the background in the
absence of any light, while the second type includes bright images taken with the object
removed from the background. Multiple images from these two sets are acquired to
minimize noise and address any lighting irregularities [158], [159]. Following this, a
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transformation function is applied to generate a corrected image.

xi = oi−di

bi−di
∗C, (2.33)

where oi, i = 1 . . .N , is the source image, N is the number of images, di and bi represent
the dark image and bright image, respectively. C is a normalization constant used for
the purpose of recovering the source image color [160], which is computed as:

C = Mean(oi)
Mean

(
oi−di
bi−di

) (2.34)

Numerous investigations have delved into perspective correction techniques for document
imaging. In [161], an approach is detailed for rectifying perspective distortion in
document images, with a particular emphasis on uncalibrated images. [162] presents a
method that relies on fuzzy sets and morphological operations to eliminate perspective
distortion and restore a front-parallel view of text using a single image. In another
work [163], the focal point is on distorting information and rectifying perspective
in Chinese document images without any prior knowledge of the image’s edge or
paragraph format. This particular study makes use of the vertical strokes and horizontal
characteristics of Chinese characters to facilitate image correction. Additionally, [164]
addresses skew correction and perspective rectification in camera-based Farsi document
images.

Within the domain of medical image processing, the correction of uneven illumination
has been a persistent challenge. Over time, several classical techniques have emerged to
tackle this problem. These approaches encompass filtering methods [165], [166] as well
as models based on the Retinex principle [167].

Filtering-based approaches, as demonstrated by the work of Leong et al. [165] and
Wang et al. [166], employ diverse filtering operations to alleviate the influence of uneven
illumination in medical images. The primary objective of these methods is to improve
the overall image quality and enhance the discernibility of structures by reducing the
negative effects of uneven illumination.

Retinex-based models, such as the one proposed by Han et al. [167], are inspired by
the retinex theory, which seeks to replicate the HVS’s ability to perceive the relative
reflectance of objects under varying lighting conditions. These models aim to estimate
and rectify the uneven illumination present in medical images, resulting in an improved
image quality and more accurate diagnoses.

These traditional methods play a pivotal role in addressing the challenges posed
by uneven illumination in medical image processing. However, it’s worth noting that
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the field is continuously evolving, and researchers are actively exploring CNN-based
techniques and approaches to further enhance uneven illumination correction in medical
images.

4.3.4.2 Deep-learning-based methods

Several deep learning-based approaches have been proposed to tackle the challenge of
uneven illumination correction in both natural and medical image processing. Deep
learning techniques have exhibited impressive capabilities in grasping intricate image
patterns and extracting meaningful features, rendering them particularly well-suited
for handling demanding tasks such as uneven illumination correction. These methods
exploit the potency of deep neural networks to effectively learn the relationship between
the input image and its corresponding corrected version.

For instance, [168] introduces an innovative approach to deal with non-uniform illu-
mination in underwater images using a fully convolutional network (FCN). This method
aims to enhance the visual quality of underwater images by proficiently eliminating the
undesirable effects of varying illumination, which often lead to diminished contrast and
visibility. By exploiting the potential of FCN, this approach efficiently learns to rectify
the non-uniform illumination and restore the genuine colors and details in underwater
scenes. In another work, [169] tackles the issue of nonuniform illumination in underwater
images through a maximum likelihood estimation (MLE) strategy. Additionally, [170]
addresses this concern by scrutinizing the color distribution across the mosaic and
devising a correction model grounded in statistical analysis.

Despite significant efforts, there are few methods available to tackle challenges in
WCE images. Long et al. [171] introduced a technique that relies on high-quality
guided images of the same scene to enhance the quality of low-quality WCE images
through histogram comparison. Their adaptive fraction-power transformation approach
dynamically adjusts the power value based on local image characteristics to achieve the
best possible enhancement outcomes. However, this method may face constraints when
guided images are absent or when there is substantial dissimilarity between the guided
and low-quality WCE images. Such differences could potentially introduce unwanted
artifacts and compromise diagnostic accuracy.

To address this concern, Prasath et al. [16] introduced a customized variant of the
feature-linking model (FLM) [172]. This adapted method seeks to enhance image quality
by converting RGB images into the HSV color space, leading to improved chromaticity
and the avoidance of streaking artifacts often associated with histogram-based models.
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Nevertheless, it’s worth noting that FLM relies on linking image features across multiple
scales, which may not be optimal for enhancing images with low contrast or intricate
backgrounds. Additionally, the computational complexity inherent in FLM could pose
challenges for real-time applications that require rapid image processing.

It’s worth noting that low-light enhancement and uneven illumination are separate
problems that can significantly degrade image quality. They require distinct correction
techniques for enhancement. In recent times, several low-light enhancement approaches
have been proposed for natural images, such as LIME [173], EnlightenGAN [174], and
Deep Retinex [175]. In this study, our objective is to evaluate the performance of these
methods in addressing the specific problem of uneven illumination in wireless capsule
endoscopy images.

4.3.5 Discussion

While the methods discussed earlier offer solutions for common issues like low light
conditions, noise, or low contrast, they do come with their own set of difficulties. To
elaborate, gamma correction techniques may lead to an undesirable over-amplification
of pixel values, potentially introducing various unwanted artifacts into the processed
images. Furthermore, in cases where an image exhibits a wide dynamic range or contains
regions with extremely high or low pixel values, histogram equalization can result in
the creation of non-photorealistic areas and generate images that appear artificial or
unnatural.

Considering the challenges previously mentioned, recent advancements in deep learn-
ing, particularly within the domain of deep convolutional neural networks (CNNs), have
laid the groundwork for the development of novel image enhancement solutions. Modern
deep learning models, trained on large-scale medical datasets to acquire generalizable
insights, typically fall into one of two architectural categories: encoder-decoder or
generative models. Encoder-decoder models systematically map input data to a latent
embedding space before gradually restoring it to the original resolution. While these
methods effectively reduce input dimensionality to capture essential features, they tend
to discard global contextual information, making image reconstruction challenging.
Conversely, generative networks process images with more detailed spatial features
but may generate uncontrolled features less suitable for precise medical tasks such as
pathological classification. Recently, attention-based methods have proven effective in a
variety of applications by leveraging positional information and inter-pixel relationships
to address these limitations.
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4.4 The SOTA WCE image classification methods

4.4.1 Introduction

In this section, we aim to present the state-of-the-art classification techniques for
WCE images, focusing on two main aspects: mono-pathology and multi-pathology
classification. While mono-pathology classification refers to the task of categorizing
WCE images as to whether they belong to one specific class corresponding to single
diseases or abnormalities (binary classification, e.g. bleeding, polyps, tumor, or ulcer),
multi-pathology classification involves the simultaneous identification of whether it
belongs to one in a list of trained pathologies. This task presents additional challenges
due to the complexity of detecting and differentiating multiple pathologies accurately.

4.4.2 Mono-pathology classification

Mono-pathology classification involves the task of classifying WCE images into specific
categories that correspond to individual diseases or abnormalities, typically adopting a
binary classification approach. The primary objective is to accurately ascertain whether
an image relates to a particular pathology or not. In recent times, substantial progress
has been achieved in mono-pathology classification by making use of diverse machine
learning techniques, particularly deep learning.

In [176], Maghsoudi et al. employed a method that utilized color, geometry (invariant
moments), and texture features (GLCM, Gabor, LBP, and Laws’ features). Unlike LBP,
they selected the local frequency pattern (LFP) technique to extract features, considering
the concept of partial truth. In the case of Iakovidis et al. [177], features were extracted
through a CNN, and the deep saliency detection (DSD) algorithm was utilized to identify
significant points associated with GI anomalies in frames from endoscopic videos. Guo et
al. [178] fine-tuned EfficientNet for feature extraction from endoscopic images and fused
spatial and channel features. They subsequently employed an attention network as a
classifier for binary classification. Noya et al. [179] employed a fusion of image processing
and machine learning techniques to extract features from wireless capsule endoscopy
images, encompassing both color and texture information. These features were then fed
into a boosted decision tree classifier. In the research by Leenhardt et al. [180], local
features were derived through the training of a neural network on a dataset containing
images with known pathology findings. These locally extracted features captured the
unique characteristics and patterns specific to angiectasia lesions. The algorithm then
employed these extracted local features within a classification network.
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Firstly, concerning bleeding detection, color and texture features are also extracted,
as explained in the study by Usman et al. [181]. Following this, the region of interest
(ROI) can be chosen either manually, as demonstrated in the work of Pan et al. [182], or
through the use of a region-growing algorithm, as illustrated in Sainju et al.’s approach
[183]. Furthermore, various transformations are considered to enhance the contrast
between the bleeding lesion and the surrounding normal mucosa region, as exemplified in
the research by Ghosh et al. [184]. For instance, in the studies conducted by Figueiredo
et al. [185] and Kundu et al. [186], a smoothing enhancement is carried out on the
second component of the CIE Lab transformed WCE image to amplify the contrast
between the bleeding lesion and the surrounding normal mucosa region. Subsequently,
these improved images are input into classifiers like Support Vector Machines (SVM),
as demonstrated in Ghosh et al. [187] and Fu et al. [188], or unsupervised-learning
clustering, as discussed in Jia et al. [189] and Bchir et al. [190]. Additionally, various
color spaces or coordinate systems are employed. For instance, in Xing et al.’s work
[191], the image is transformed into the polar coordinate system, and a CNN is used
to generate the saliency map. This saliency map is then combined with generated
features for classification. In Hajabdollahi et al.’s work [192], the image is converted into
different color spaces, and a Multilayer Perceptron (MLP) is applied to the concatenated
channels.

Secondly, to detect polyps, in the study referenced as [193], a combination of Gabor
texture features is employed alongside K-means clustering, followed by the extraction
of geometric features. Similarly, in [194], Gabor texture features are paired with the
SUSAN algorithm. Yuan and Meng [195] make use of the coordinates obtained from the
shaded regions of Gabor filters and the Monogenic-Local Binary Pattern (M-LBP) to
simplify component measurements. They utilize Linear Discriminant Analysis (LDA) for
classification, along with support vector machines (SVM). Conversely, other researchers
opt for invariant mapping algorithms such as the Scale-Invariant Feature Transform
(SIFT) or Histogram of Oriented Gradients (HOG) for feature extraction, as observed in
studies like [196]–[198]. These extracted features are subsequently input into classifiers,
notably SVM, as illustrated in [199]–[201].

In recent times, methods based on CNNs have gained prominence as effective
strategies for feature extraction and classification [202]. Tajbakhsh et al. [203] utilize a
deep CNN that combines both the global geometric properties of polyps and the local
intensity variation patterns along polyp boundaries to perform classification. Several
studies, including [204]–[206], employ transfer learning techniques on the WCE dataset.
These methods leverage pre-trained networks or utilize inter-frame information to
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estimate the polyp region. In such cases, a tracker that has been pre-trained on the
YOLO Residual network is often used. In [207], Yuan proposes an unsupervised deep
CNN model that uses stacked autoencoders to learn features from the latent space and
subsequently classify polyp images in WCE images.

Thirdly, in the tumor detection field, various methodologies have been applied.
Wavelet transform has been used in research studies such as [208]–[210], where it is
employed to extract texture features from the images. Similarly, the discrete cosine
transform (DCT) is utilized for texture feature extraction in [211], while the curvelet
transform is exploited in [212]. Following this, support vector machines (SVM) are
commonly employed for classification. In the study conducted by Vieira et al. [213], they
employ a multivariate Gaussian model to estimate the different distributions between
tumor and normal pixels. The maximum a posteriori probability (MAP) is subsequently
used to evaluate the likelihood between pixels in the CIE Lab color space channels,
which are assumed to follow Gaussian distributions. In the work of Mahdi et al. [214],
texture features like contrast energy are extracted and fed into an artificial neural
network (ANN)-based Fuzzy Network for classification.

Finally, regarding ulcer detection, similar to the context of tumor identification, the
extraction of color and texture features is frequently carried out using the Gabor filter
and the discrete cosine transform (DCT) [215], [216]. Souaidi et al. [217] introduce a
multi-scale method known as MS-CLBP (inclusive local binary pattern and Laplacian
pyramid) to classify lesions from a multi-scale perspective. In another study by Wang
et al. [218], RetinaNet is employed for the initial detection of ulcers. Following this,
based on the size of the identified region, the segmented patch is input into two separate
networks to further validate the accuracy of the detection. Moreover, some pre-trained
networks such as X-ception CNN [219], [220] are utilized for feature extraction, followed
by the utilization of Random Forest for classification purposes.

In the subsequent subsection, we will provide the bibliography of the multi-pathology
classification.

4.4.3 Multi-pathology classification

Accurately categorizing medical images is a vital aspect of pathology diagnosis, with the
classification of multiple pathologies within a single image being particularly challenging.
The presence of diverse pathologies increases the classification difficulty, demanding
advanced techniques for thorough analysis and interpretation. In this section, we
concentrate on the issue of multi-pathology classification and investigate the various
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strategies and methods utilized in the literature to tackle this demanding task.

In the study conducted by Sekuboyina et al. [221], the initial step involves the
conversion of endoscopy images into the CIE-Lab and YCbCr color spaces. Subsequently,
the a-channel of the CIE-Lab space is employed as the input for a convolutional neural
network (CNN) to perform classification. To tackle the issue of imbalanced data, the
Synthetic Minority Over-sampling Technique (SMOTE) is applied as a method for
oversampling the minority class. Sadasivan et al. [222] approach the task of multi-
pathology classification by partitioning wireless capsule endoscopy (WCE) images into
multiple patches. Each patch is identified using color and texture features extracted
from the chromatic components within the CIE Lab color space. Yuan et al. [223]
adopt a similar strategy, focusing on the extraction of color features from WCE images.
They employ K-means clustering to categorize the extracted features into different
groups and utilize dictionary learning for subsequent classification. In a related work by
Nawarathna et al. [224], texture features are extracted through a combination of the
Leung and Malik (LM) filter bank and a set of local binary patterns. The classification
task is then addressed using the K-nearest Neighbor algorithm.

Deep learning-based methodologies have demonstrated their effectiveness in the realm
of multi-pathology classification. Nadeem et al. [225] opt to extract a mixture of texture
features, encompassing attributes like LBP and Haralick features, in conjunction with
conventional characteristics like joint composite descriptor, auto color correlogram, color
layout, and edge histogram. This combination of diverse features is then consolidated
and funneled into a CNN for the classification task. In another approach, Lan et al.
[226] introduced a profound cascade network referred to as "Cascade-Proposal" for
multi-pathology classification. Their methodology entails the generation of a limited
count of region proposals characterized by high recall, which is achieved through a
module designed for rejecting region proposals. Concurrently, it identifies abnormal
patterns using a specialized detection module. To further enhance precision, they exploit
the multi-regional combination (MRC) technique to acquire regions of interest and apply
the salient region segmentation (SRS) method for the precise localization of significant
regions. Furthermore, they incorporate the dense region fusion (DRF) method to refine
the boundaries of objects.

In recent years, attention methods have surfaced as a leading strategy for enhancing
the classification of multiple pathologies. These attention mechanisms empower models
to choose specific areas or attributes within an image, ultimately refining the classification
performance by emphasizing pertinent details while suppressing irrelevant or noisy signals.
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Several contemporary investigations have delved into applying attention mechanisms
within this context. Xing et al. [227], for instance, introduced an approach that combines
attention mechanisms with deformation to magnify areas of interest within lesions. They
derive attention maps through self-attention and subsequently employ deformation
techniques to magnify the pinpointed lesion region. By contrasting the self-attention
maps before and after deformation, they produce a conclusive attention map for the
purpose of classification.

To tackle the issue of bias concerning value in attention loss, Guo and Yuan [228]
introduced the utilization of angular loss in the realm of classification. They imple-
mented attention mechanisms to produce diverse attention maps based on multi-level
characteristics. Furthermore, they integrated a semi-supervised method to manage data
lacking labels. Similarly, Zhao et al. [229] used multiple attention layers and adopted the
adaptive cosine loss to refine the classification process. Their objective in incorporating
attention mechanisms was to amplify the model’s capacity for discrimination.

These studies underscore the efficacy of attention methodologies in multi-pathology
classification. Attention mechanisms empower the model to concentrate selectively
on informative regions or characteristics, thereby augmenting classification precision
and resilience. Furthermore, these approaches tackle distinct challenges like value bias
and untagged data through inventive techniques like angular loss and semi-supervised
learning.

4.4.4 Discussion

In recent years, attention techniques have emerged as a prominent approach for im-
proving multi-pathology classification tasks. Attention mechanisms enable models to
selectively focus on important regions or features within an image, enhancing overall
classification performance by highlighting relevant information while suppressing irrele-
vant or noisy signals. These studies highlight the effectiveness of attention techniques
in multi-pathology classification. Attention mechanisms allow for selective focus on
informative regions or features, thereby improving classification accuracy and robust-
ness. Additionally, to address specific challenges such as value bias and unlabeled data,
innovative approaches such as self-supervised learning could be considered.

5 Conclusion

In this chapter, we briefly presented a survey of the state-of-the-art approaches including
the IQA methods, the quality enhancement methods, and the image classification
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methods. To enhance our comprehension and facilitate appropriate quality enhancement,
we will commence by elucidating different prevalent distortion models. This will furnish
us with an in-depth understanding of the distortions and pave the way for more effective
quality improvement strategies.

Among this state-of-the-art study, we also observed that the attention-based ap-
proach, while it has been well developed for both image enhancement and image
classification with very promising results, is not satisfactorily investigated. This would
be interesting to develop learning-based approaches and see to what extent these ap-
proaches can be applied to different types of tasks in WCE image processing. It’s
important to highlight that recent progress in image restoration and enhancement
techniques, particularly those leveraging machine learning, relies heavily on access to
datasets containing both corrupted and clean image pairs for effective training. In the
context of WCE, however, a noteworthy challenge persists due to the absence of a dedi-
cated quality assessment dataset. To address this challenge, it becomes imperative to
introduce a quality assessment dataset featuring WCE videos exhibiting various degrees
of distortions. Such a dataset would play a pivotal role in advancing the development
of precise and dependable image enhancement algorithms, ultimately enhancing the
diagnostic potential of WCE systems. For this purpose, in the next chapter, we will
first introduce the proposed distortion dataset for WCE images.
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The proposed distortion dataset: A Quality-Oriented
Database for Video Capsule Endoscopy (QVCED)

In this work, we propose a novel dataset called the Quality-Oriented Database for
Video Capsule Endoscopy (QVCED) which serves as the primary crucial resource
for evaluating the quality of Wireless Capsule Endoscopy (WCE) images and
videos. Serving as a benchmark, the QVCED encourages the design of learning-
based enhancement methods to address image quality assessment and enhancement
challenges in WCE. This comprehensive dataset consists of a large number of
WCE videos encompassing common distortions encountered in clinical practice,
including noise, defocus blur, motion blur, and uneven illumination. Moreover,
video quality has been intentionally degraded at varying distortion severity levels
to faithfully replicate real-world conditions. The extensive analysis demonstrates
the diversity and practical relevance of this dataset in the WCE domain that
motivates the advancement of a more precise diagnosis regarding gastrointestinal
disorders. The complete dataset is publicly available through the following link:
https://cloud.math.univ-paris13.fr/index.php/s/b74TQk7mMpHDXKT.1

Abstract

1T. -S. Nguyen, J. Chaussard, M. Luong, A. Beghdadi, H. Zaag, and T. Le-Tien, "A Quality-Oriented
Database for Video Capsule Endoscopy," 11th European Workshop on Visual Information Processing
(EUVIP), Norway, 2023 (Winner of Three-Minute Thesis (3MT) Competition Award).

https://cloud.math.univ-paris13.fr/index.php/s/b74TQk7mMpHDXKT
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1 Introduction

Wireless Capsule Endoscopy (WCE) has revolutionized medical practices for gastroin-
testinal (GI) disease screening and diagnosis [230]. However, a major challenge in WCE
is obtaining optimal image quality, which directly affects diagnostic accuracy. Indeed,
WCE image quality suffers from distortions due to the limitations of the sensor technol-
ogy and the constrained acquisition environment. For example, narrow apertures and
small sensors with limited dynamic range and sensitivity generate noise within captured
frames [19]. Especially, additive white Gaussian noise in WCE images is the accepted
standard model [20]. Unstable environments result in excessive blurriness [231] due to
the uncontrolled and random motion of the capsule, while the capsule’s limited lighting
coverage causes uneven illumination[18]. These distortions can decrease the performance
of tasks like lesion detection, recognition, and tracking in the gastrointestinal tract.

To address image quality limitation issues, due to the aforementioned distortions,
numerous learning-based algorithms [16], [19], [156] have been proposed. Specifically,
recent advancements in image restoration and enhancement techniques rely on learning-
based methods that require pairs of corrupted and clean images for training. However,
in the case of WCE, the absence of a dedicated quality assessment dataset poses a
significant challenge. Therefore, a dataset specifically designed for assessing the quality
of WCE images, with varying levels of distortions, is crucial for developing accurate and
reliable image enhancement algorithms. To the best of our knowledge, there is currently
no specialized dataset available specifically for assessing video quality in WCE. Existing
datasets commonly used for quality assessment, such as LIVE Mobile VQA [232],
KoNViD-1k[233], TID2013[234], CSIQ[235], and CID:IQ[236], have primarily focused
on natural images for over two decades. In the field of medical imaging, datasets like
RIQA[237] and LVQ[238] have been developed specifically for retinal and laparoscopic
image/video evaluation, respectively. However, it is important to note that these
datasets are not efficient for training learning-based quality enhancement techniques for
WCE images due to the inherent dissimilarities in medical imaging types and modalities.
Moreover, most medical databases are tailored for segmentation and classification tasks,
making this work a valuable contribution to fulfilling a real requirement in medical
imaging and in particular to evaluating and improving WCE image quality.

Consequently, toward the demand for a comprehensive video quality assessment
dataset, we propose the Quality-Oriented Database for Video Capsule Endoscopy
(QVCED), derived from the Kvasir-Capsule dataset [10]. QVCED covers a wide range
of scenarios with different pathologies and multiple types of distortions, prioritizing
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realistic conditions. The dataset is produced through a two-stage process. In the first
stage, reference videos that meet the required quality criteria are carefully selected from
the Kvasir-Capsule dataset [10]. Next, the reference video is subjected to a degradation
process in which a controlled level of degradation is applied by means of the physical
parameters of the used distortion generation model.

The subsequent sections of this chapter are structured as follows: Section 2 describes
the creation process of the QVCED dataset. Within this section, Section 2.1 outlines the
initial selection process for reference videos, while Section 2.2 explains the generation of
simulated distortions in the chosen reference videos. Afterward, Section 3 focuses on the
analysis and discussion of the proposed dataset. Specifically, Section 3.1 presents the
implementation and results of a subjective test, including opinion scores from expert
and non-expert observers regarding the simulated distortions. Furthermore, Section 3.2
analyzes the content diversity of the QVCED dataset. Finally, this chapter concludes in
Section 4, summarizing the key findings and implications of this work in terms of the
creation and analysis of the proposed dataset.

2 Proposed Dataset - QVCED

In this section, we describe the dataset creation process. We provide a comprehensive
overview of the methodologies encompassing the selection of reference videos (Section 2.1)
and the simulation of distortions applied to the chosen reference videos (Section 2.2).

In order to guarantee the strength and thoroughness of our dataset, we engaged in
a careful process of selecting reference videos. In Section 2.1, we detail the criteria and
methods we used to carefully choose the most representative and varied reference videos.
This essential step in the dataset creation process was guided by a precise evaluation of
video content, and quality.

After the thorough selection of reference videos, the second step is the distortion
simulation, which plays a pivotal role in our dataset creation process. Section 2.2 focuses
on explaining the details of our method for intentionally adding distortions to these
reference videos. Our methodology involved a diverse range of distortion models, each
thoughtfully designed to replicate real-world conditions and challenges.

More precisely, the first step is to select reference videos from an existing WCE
dataset. We have created a dataset comprising 20 original reference videos extracted
from the Kvasir-Capsule dataset[10]. These videos have a duration of 10 seconds, a
resolution of 336× 336 pixels, and a frame rate of 30 frames per second (fps). The
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(a) Pylorus (PY) (b) Ampulla of Vater (AV) (c) Ileocecal Valve (IV) (d) Normal Clean  
Mucosa (NCM)

(e) Reduced Mucosal
View (RMV)

(f) Blood-Fresh (BF) (g) Blood-Hematin (BH)

(h) Foreign Body (FB) (i) Erythema (ERY) (j) Angiectasias (ANG) (k) Erosion (ERO) (l) Ulcers (ULC) (m) Lymphangiectasia (LYM) (n) Polyp (PYL)

Figure 3.1: The frames extracted from reference videos in the QVCED dataset represent a diverse
range of findings.

following subsection provides a comprehensive description and the selection process of
the reference videos.

2.1 Reference Videos Selection

The selection of the reference videos aimed at optimizing a wide range of pathological
scenarios and maximizing continuous temporal information which enables a thorough
evaluation and analysis of quality enhancement algorithms, facilitating advancements in
the WCE domain.

To ensure scene content diversity, the QVCED dataset includes fourteen distinct
categories. These categories encompass various WCE findings such as Pylorus (PY),
Ampulla of Vater (AV), Ileocecal Valve (IV), Normal Clean Mucosa (NCM), Reduced
Mucosal View (RMV), Blood-Fresh (BF), Blood-Hematin (BH), Foreign Body (FB),
Erythema (ERY), Angiectasias (ANG), Erosion (ERO), Ulcers (ULC), Lymphangiectasia
(LYM), and Polyp (PYL). This diverse selection allows for a comprehensive evaluation
of algorithms and techniques in the field of WCE, covering a broad spectrum of medical
scenarios commonly encountered in clinical practice.

Some images from reference videos are shown in Fig. 3.1. In the following subsection,
the IQA metrics which are used to evaluate the quality of each video are presented.
These metrics help identify the highest-quality videos for each finding, ensuring that
the chosen reference videos meet the required quality standards which enhances the
dataset’s reliability and usefulness for various research purposes.
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2.1.1 Noise Assessment

To estimate the noise level, we employ the fast noise variance estimator proposed by
Immerkaer [239]. The process begins by converting the input image I ∈ RH×W ×3 into
grayscale, resulting in the grayscale image Igray ∈ RH×W where H,W are the height
and width of the images. A noise estimation mask, denoted as M ∈ R3×3, is then used
to estimate the standard deviation of additive white Gaussian noise in the image. This
mask is derived from two elements approximating the Laplacian of the image. The
estimated standard deviation of the noise σ̂n is computed as follows:

σ̂n =
√

π

2
Σx,y|Igray(x,y) ∗M|

6(W − 2)(H − 2) , (3.1)

where M = 2(L2−L1) with the given L1,L2:

L1 =


0 1 0
1 −4 1
0 1 0

 (3.2)

L2 =


1 0 1
0 −4 0
1 0 1

 (3.3)

The noise variance σ2
n could be estimated, as in [240], using the robust median estimator

of the highest sub-band of a Daubechies Two wavelet transform:

σ2
n = Median(HH)

0.6745 , (3.4)

where HH are the high-high band wavelet coefficients. An alternative approach is to let
σ2

n = V ariance(HH).

2.1.2 Blur Assessment

To measure the level of blur in an image, the Perceptual Blur Index (PBI) [241] was used
as a thresholding metric. The PBI metric takes into account the perceptual differences
in how the Human Visual System (HVS) perceives the addition of blur to an already
blurred image compared to a sharp one. Mathematically, the PBI is defined as the
difference between the total radial energy of the input image, denoted as ER(w), and
the total radial energy of its binomial filtered version, denoted as ERf (w). The formula
for calculating the PBI is as:

PBI = log

( 1
wmax

Σw|ER(w)−ERf (w)|
)

(3.5)

ER(w) = 1
K

ΣK |F (w,θk)|,θk = kπ

K
, (3.6)
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ERf (w) = 1
K

ΣK |Ff (w,θk)|,θk = kπ

K
, (3.7)

where F (w,θk) and Ff (w,θk) represent the centered Fourier coefficients of the input
images and its binomial filtered version, respectively, in the polar coordinates.

2.1.3 Uneven Illumination Assessment

To assess the presence of uneven illumination, the Illumination Histogram Equalization
Difference (IHED) [242] is employed. IHED measures the impact of histogram equaliza-
tion (HE) on the spatial distribution of background illuminance (BI). The evaluation
process involves converting the image into the HSV color space to extract the brightness
channel V ∈ RH×W . Subsequently, the background illuminance BI(x,y) ∈ RH×W is
extracted through the application of a low-pass filtering method of size h = H

4 . Finally,
IHED is calculated using the following formula:

IHED = σD
1

H×W

∑H−1
i=0

∑W −1
j=0 BI(x,y)

, (3.8)

where σD is the standard deviation of the difference signal D, which is computed as:

D(x,y) =|BI(x,y)−T (BI(x,y)) |, (3.9)

where T denotes the histogram equalization transformation.

A video is considered acceptable for use as a reference only if the levels of all
three distortions (i.e., noise, blur, and uneven illumination) are below a predetermined
threshold. Once the reference video is chosen, the next subsection will outline how we
simulated distortions on these selected reference videos.

2.2 Distortion Generation

We have integrated four prevalent degradations consisting of noise, uneven illumination,
defocus, and motion blur into our extensive dataset. To ensure a faithful reproduction
of each distortion, we have applied suitable mathematical models to every individual
frame of the reference video. In the current stage of our research, we only added one
type of distortion to each video, with the same severity throughout its entirety.

2.2.1 Noise Model

Noise is a common distortion in video systems, particularly in WCE. It is caused by
narrow apertures, small sensors, and limited dynamic range [19] and negatively impacts
the effectiveness of the endoscopic examination process. In our study, we included the
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(a) Reference image

(b) σn = 5 (c) σn = 10 (d) σn = 15

(e) σn = 20 (f) σn = 30 (g) σn = 40

Figure 3.2: The results of adding AWGN into the reference image with 6 different levels.

Additive White Gaussian Noise (AWGN) model in our dataset which assumes that the
video noise follows a Gaussian distribution. Mathematically, the distorted image can be
represented as:

Inoisy = I + N, (3.10)

where I represents the original image, and N∼N (0,σ2
n) represents the random noise

value following a Gaussian distribution with standard deviation σn. To control the
severity, AWGN level is configured with σn ∈ {5,10,20,30}. These various noise levels
are visually demonstrated in Fig. 3.2.
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2.2.2 Defocus Blur Model

In WCE, the wireless capsule is equipped with a fixed-focus lens endoscope [243]. This
design introduces defocus blur when objects in the scene are not precisely at the camera’s
focal distance. To simulate defocus blur, a low-pass filtering of the input image using
an isotropic Gaussian impulse response as shown in Fig. 3.4a is commonly used. The
isotropic Gaussian kernel is used to simulate the rotational symmetry around the optical
axis of the blurring effect. The impulse response associated with this blur, denoted as
hdb(x,y), is defined as:

hdb(x,y) = 1
2πσ2

db

exp−(x2 + y2)
2σ2

db

, σdb ∈ {1,2,3,5} (3.11)

The blurring extent is determined by the standard deviation parameter σdb. Increasing
σdb leads to stronger smoothing and more noticeable blurring effects. The size of the
convolution mask, denoted as Wdb, is chosen to preserve the energy of the filtered image
signal. To preserve 99% of the total energy of the Gaussian, a size of 6σdb at least is
required. The filter size Wdb should be an odd number as:

Wdb = 2×⌈3σdb⌉+ 1 (3.12)

Fig. 3.4a illustrates an example of a defocus blur kernel of standard deviation σdb = 1.
Fig. 3.3 shows us the results of adding defocus blur.

2.2.3 Motion Blur Model

The rapid and sudden movements of the capsule endoscope can cause blurring, influenced
by factors such as fast camera motions at low frame rates, the inability to adjust lens
focus, camera mechanism instability, and sensor sensitivity to light variations [243].
When the capsule endoscope moves in a straight line, it results in linear motion blur.
The blur kernel, denoted as hmb, can be formulated using two known parameters: the
direction of motion blur θmb and the length of motion blur Lmb ∈ {5,10,15,25}. The
formulation is as follows:

hmb(x,y) =


1

Lmb
, if

√
x2 + y2 ≤ Lmb

2 ,−tanθmb = x
y ,

0, otherwise.
(3.13)

We evaluate the motion in each frame in order to add a motion blur corresponding to
the actual motion of the video. In the initial stages, the Lucas-Kanade method [244] is
commonly used for estimating the movement direction of a capsule endoscope through
optical flow estimation. Two consecutive frames captured by the capsule endoscope are
subtracted and the Otsu thresholding technique [245] is applied to generate a foreground



2. Proposed Dataset - QVCED 63

(a) Reference image (b) σdb = 0.75 (c) σdb = 1

(d) σdb = 2 (e) σdb = 3 (f) σdb = 5

Figure 3.3: The results of adding defocus blur into the reference image with 5 different levels.

binary map. The optical flow is then estimated using the Lucas-Kanade method on the
center of gravity of the foreground. Fig. 3.4b illustrates an example of a motion blur
kernel, which is configured by two parameters: the direction θmb and the length Lmb.
Fig. 3.5 shows us the results of adding motion blur.

(a) Defocus blur kernel (b) Motion blur kernel

Figure 3.4: Visual representation of the blurring kernel, characterized by a defocus blur standard
deviation of σdb = 1 and motion blur with Lmb = 20,θmb = π

4 , respectively.
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(a) Reference image (b) Lmb = 5 and θmb = 0 (c) Lmb = 10 and θmb = 0

(d) Lmb = 15 and θmb = 0 (e) Lmb = 15 and θmb = 45 (f) Lmb = 25 and θmb = 0

Figure 3.5: The results of adding motion blur into the reference image with 4 different levels.
Fig. (d)-(e) shows us an example of changing the direction from 0 degrees to 45 degrees.

2.2.4 Uneven Illumination Model

The motion of the capsule endoscope, caused by the gastrointestinal tract’s peristaltic
activity and limited capsule light, can introduce uneven illumination. To simulate this
effect, the reference image is first converted from the RGB color space to the HSV color
spaces as shown in Fig. 3.6. Subsequently, we perform a pointwise multiplication of the
reference image with a mask. The coefficients of this mask, which are determined in the
spatial plane (Fig. 3.7a), can be represented mathematically as a hybrid distribution that
integrates two-dimensional distributions from one normal variable and one log-normal
variation[246] as:

p(x̂ | µ,Σ) =

 N∏
i=p+1

1
xi

 1√
(2π)N |Σ|

× exp
(
−1

2(x̂−µ)TΣ−1(x̂−µ)
)

,

(3.14)

where p,q are the normal and log-normal variants, respectively. µ is the mean vector,
Σ is the (symmetric, positive definite) covariance matrix (of size N ×N), and |Σ| is
its determinant. N is the total dimensions of two variants, x̂T = (xp ln(xq)), µ is the
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(a) Original image (b) V-channel of image

Figure 3.6: The results of converting the image from RGB to HSV color space.

vector of means.

Σ =

 σ2
1 ρ12σ1σ2

ρ21σ2σ1 σ2
2

 (3.15)

where ρi,j are the correlations between the variables, σj is the associated standard
deviation for x̂j . Fig. 3.7b,c show the generated masks of the hybrid distribution in two
different angles θ, respectively. However, in this preliminary work, only a simulated
circular-gradient mask was taken into account. As depicted in Fig. 3.8, the mask
M(x,y) ∈ RH×W is defined to conform to the dimensions of the original image.

M(x,y) = 255−
[2∆I

W

√
(x−xc)2 + (y− yc)2

]
, (3.16)

where M(xc,yc) is the circle center at coordinates (xc,yc) ∈ {(112,224),(168,168),(224,224)}.
To achieve varying levels of illumination, the difference in intensity between the brightest
pixel of the image and the darkest pixel is set as ∆I ∈ {80,100,135,170}. In the future,
we plan on using the previously defined hybrid distribution as a mask.

With uneven illumination, 4 different levels are also considered. Besides, 3 positions
(center, top-right, and bottom-right) are used to adjust the center of the circle gradient.
The level of the gradient is controlled by adjusting the ∆I (Eqs. (3.16)), where W = 336
is the size of images in the Kvasir-Capsule dataset. The following Fig. 3.9 shows us the
results.

In summary, the dataset creation process involved the simulation of four distinct
types of distortion, each type having four different severity levels. This resulted in a
total of 320 degraded videos in the QVCED dataset. A comprehensive overview of the
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Figure 3.7: Gradient masks to simulate the Uneven Illumination which is represented mathemat-
ically as a hybrid distribution.

dataset, including specific details such as the types of distortions and severity levels,
can be found in Table 3.1.

In the following section, some extensive experiments are conducted to analyze the
diversity and practical applicability of the proposed dataset.
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(a) ∆I = 80 (b) ∆I = 100

(c) ∆I = 135

Figure 3.8: Some examples of the artificial circular-gradient Uneven Illumination mask.

3 Dataset Analysis

To evaluate the proposed dataset, some experimental studies were conducted. First, a
subjective test (Section 3.1) was performed to assess and validate the dataset’s quality
and its alignment with human perception. This test evaluates how well the dataset
is perceived by human observers and ensures its overall quality. In a second round of
experiments, the statistical features of the dataset were analyzed to verify its content
diversity (Section 3.2).
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(a) Reference image

(b) ∆I = 80 and the position is
center

(c) ∆I = 100 and the position is
center

(d) ∆I = 135 and the position
is center

(e) ∆I = 135 and the position is
top-right

(f) ∆I = 135 and the position is
bottom-right

(g) ∆I = 170 and the position is
center

Figure 3.9: The results of adding uneven illumination into the reference image with 4 different
levels and 3 possible positions.
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Table 3.1: Summary of the proposed wireless capsule endoscopy video quality assessment dataset.

Number of
Reference Videos

20
Number of
Distorted Videos

320

Number
of Findings

14 Pathologies 6

Resolution
of Videos

336× 336 Frame Rate 30

Duration 10s Video Type .mp4
Number of
Distortions

4 Level of Distortion 4

Distortion Types
Noise, Defocus Blur, Motion Blur,
Uneven Illumination

3.1 Subjective Test

Prior to the main WCE subjective test, observers underwent the Ishihara 38 plates CVD
verification[247] to detect any red-green color deficiencies. Participants with an accuracy
above 70% were selected to complete the WCE subjective test, ensuring normal color
perception for accurate evaluation.

To conduct the WCE subjective testing process efficiently, a pair comparison protocol
based on the ITU-T standard[248] was implemented, following the described testing
environment.

3.1.1 Testing Environment

In the WCE quality assessment subjective test, observers were presented with randomized
pairs of distorted videos and corresponding reference videos. Randomization was
implemented to eliminate presentation order bias. For each video pair, observers were
asked to provide an opinion score indicating the perceived severity of distortion. The
implemented four-point scale corresponds to four distortion severity levels including:
(1) Hardly Visible, (2) Just Noticeable, (3) Annoying, and (4) Very Annoying. The
obtained opinion scores allowed us to assess the subjective quality of the distorted videos
compared to the corresponding reference videos. The Mean Opinion Score (MOS) for a
video is the average score given by observers for that video.

An online platform (shown in Fig. 3.10) was developed and designed to facilitate
the conduct of subjective tests. The platform underwent thorough optimization to
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ensure usability, including aspects such as background color, button size, and position.
These optimizations aimed to enhance the testing experience and make it convenient
for observers to effectively complete the task following the ITU-T standard. The source
code of the platform is available at: https://github.com/tansyab1/WCETest.

Figure 3.10: WCE subjective test window.

A total of 34 individuals, comprising 12 experts and 22 non-experts, with diverse age
groups and backgrounds, took part in subjective the experiments. Fig. 3.11 displays the
distribution of participants’ age and the duration of their involvement in the subjective
test. Participants across various age groups were included in the subjective test, as
shown in Fig. 3.11a. This diverse age distribution enhances the reliability of the test
outcomes by avoiding biases toward any specific age category. Moreover, it is clearly
noticeable from Fig. 3.11b that each participant dedicated a minimum of approximately
5 seconds to evaluate each video, demonstrating their focused attention and commitment
to efficient testing. This statistic affirms the credibility and applicability of the test’s
outcome.

3.1.2 Video Quality Score

As mentioned earlier, the evaluation includes four levels of distortion. Level 1 represents
the minimal degradation of distortion, while level 4 represents the most severe condition,

https://github.com/tansyab1/WCETest
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Figure 3.11: Age and the processing time distributions of observers participated in the subjective
experiment.

where a higher value indicates a lower-quality perception for the video observer. Fig. 3.12
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Figure 3.12: Comparison of the subjective score regarding experts and non-experts.

compares the mean scores of experts and non-experts for the proposed dataset. The
presented data illustrates that experts and non-experts hold a significant correlation
between the obtained scores. However, the experts exhibit a heightened level of attention
toward specific tasks, which enhances their sensitivity to even the slightest deviations.
Therefore, the dissimilarity is more conspicuous when examining videos exhibiting low
levels of distortion.
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3.2 Diversity Data Analysis

To analyze the dataset’s diversity and broad applicability, experiments were conducted
to verify significant variations in video content. These experiments provide valuable
insights and benefits for various image-processing tasks. A diverse dataset serves as
a valuable resource for benchmarking, validation, and training, facilitating significant
advancements in image processing.

To evaluate the content diversity of the datasets, we used deep features of dimension
4096 extracted from a pre-trained VGG-16[249] on ImageNet[250]. By employing
t-SNE (t-distributed Stochastic Neighbor Embedding) [251], we projected these high-
dimensional features onto a 2D subspace. The resulting visualization, shown in Fig. 3.13,
succinctly represents the content diversity across the datasets. The broad spectrum
displayed in the visualization illustrates the extensive range and variety of visual content
present in the dataset. In addition to the primary analysis, a further examination of
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Figure 3.13: t-SNE visualization of the embedded feature generated from 20 reference videos by
VGG-16 pre-trained network.

the dataset is conducted to analyze the distribution of image entropies, considering
both spatial and temporal information. Second-order entropy analysis provides insights
into the spatial features within the dataset, where higher entropy indicates a greater
content diversity of images. Furthermore, the incorporation of third-order entropy
analysis takes into account inter-frame information. By considering the relationships
and dependencies between consecutive frames, the third-order entropy provides a deeper
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understanding of the temporal dynamics and variations within the dataset. This analysis
offers a comprehensive perspective on the dataset’s complexity and richness. In this
work, calculations were performed on a dataset of 6000 images from 20 reference videos.
Fig. 3.14 illustrates the broad histogram of the entropies, indicating a wide range of
visual features and affirming the practical applicability, diversity, and usefulness of the
QVCED dataset.
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Figure 3.14: Distribution of Variations and Entropy among 20 reference videos.

4 Conclusion

In this chapter, we have introduced a preliminary quality assessment dataset specifically
designed for wireless capsule endoscopy. QVCED comprises four distinct distortion
types, with each type further subdivided into four levels, resulting in a total of sixteen
variations. This dataset serves as a quality assessment resource specifically targeting
the WCE domain. Especially, it addresses the previously neglected data challenge and
offers valuable insights for evaluating and analyzing the effectiveness of image and video
processing algorithms in this particular field. The dataset’s strength lies in the extensive
diversity of its visual content, enabling researchers to tackle demanding real-world
contexts. In this work, the addition of synthetic distortion to a given frame may not
have a noticeable impact if the frame is already affected by authentic distortion. In
the future, we could remove any existing distortion before applying a synthetic one.
To accurately identify and address distortion in WCE images, it is imperative to have
access to a comprehensive dataset that includes information about both the type and
level of distortion present. In the upcoming chapter, we will present our proposed
Image Quality Assessment (IQA) metric, designed specifically to evaluate the severity of
distortions, with a particular focus on addressing issues related to uneven illumination.
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The proposed IQA metric: A No-Reference Measure
for Uneven Illumination Assessment on Laparoscopy
and WCE images

A frequent degradation in video-guided surgery especially laparoscopic and in
WCE is uneven illumination, due in large part to physical limitations of the sensors
and uncontrolled lighting conditions in the internal structure of the digestive tract
and particularly at the level of the intestines. Surgical as well as postoperative task
accuracy can be seriously affected by the perceptual quality of the acquired images or
videos. In this respect, a No-Reference Image Quality Assessment (NR-IQA) metric
dedicated to uneven illumination is proposed in this work. The key idea is to analyze
the effect of contrast enhancement on the spatial distribution of the luminance
component of the signal. The results obtained through extensive experiments,
performed on dedicated databases of different medical imaging modalities including
laparoscopic images and WCE images, have shown that the proposed metric
significantly improves the state-of-the-art NR-IQA metrics when applied for uneven
illumination assessment.1

Abstract

1T. -S. Nguyen, J. Chaussard, M. Luong, H. Zaag and A. Beghdadi, "A No-Reference Measure for
Uneven Illumination Assessment on Laparoscopic Images," 2022 IEEE International Conference on
Image Processing (ICIP), Bordeaux, France, 2022, pp. 4103-4107, doi: 10.1109/ICIP46576.2022.9897302.
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1 Introduction

In the previous chapter, we mentioned about the image quality and its pivotal role in
influencing the performance of classification tasks. Indeed, the acquisition condition of
video signals and in particular the problem of non-uniform lighting, specular reflection
and noise due to physical limitations of sensors generate a visual discomfort for not
only the surgeon, which negatively affects the performance of surgery (e.g., laparoscopy)
and diagnosis (e.g., WCE). This consequently increases the risk of misdiagnosis and
uncontrolled surgical procedures with fatal and irreversible consequences [252].

More particularly, the acquired videos often suffer from uneven illumination, e.g.,
poor illumination not only in the peripheral areas of the light spot but also in the
weakly illuminated regions due to the relief and texture of the gastrointestinal tissues
[253]. Uneven illumination (UI) manifests itself as a non-uniform spatial distribution of
light, making certain regions appear more illuminated than others, regardless of the
intensity of the incident light beam. This may affect the visibility and discrimination of
the subtle features of vital roles [254]. Moreover, the performance of some subsequent
video processing and analysis tasks, e.g. segmentation or 3D reconstruction may be
negatively affected by this photometric distortion [255], [256]. It is then important to
control this distortion by measuring it accurately at the acquisition level in order to
design an effective image quality enhancement.

Therefore, an image quality assessment (IQA) which allows to objectively quantify
the levels of the illumination non-uniformity is essential for the performance of any
video-guided surgery or diagnosis system whose accuracy and reliability highly depend
on the quality of the acquired images.

While subjective assessment of image quality is a very reliable way to evaluate image
quality which can be used for benchmarking objective quality metrics, it is complex,
time-consuming and generally requires a controlled environment that should meet ITU
standard requirements [25]. Furthermore, subjective evaluation cannot be introduced
in real applications that require real-time responses and decisions. This has led to
the development of objective image quality metrics. Objective IQA methods can be
subdivided into three categories: Full-Reference IQA (FR-IQA) [26], Reduced-Reference
IQA (RR-IQA)[27] and No-Reference or Blind IQA (NR-IQA)[28]–[30]. In practice,
pristine reference images are not always available [73]. Therefore, searching for NR-
IQA measures is the most practical solution to meet real needs in many real-world
applications. NR-IQA refers to the automatic prediction of the quality of a distorted
image using its inherent features or/and prior knowledge about the distortion through
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some more or less simple image formation models.

It is worth noticing that there are also some interesting NR-IQA approaches that do
not take into account the distortion-specific features and are therefore able to predict
the image quality in the case of multiple distortions [28]–[30]. In particular, Mittal et al.
[28] proposed the Natural Image Quality Evaluator (NIQE) metric based on a natural
scene statistic model.

It should be noted that several metrics have been proposed to estimate the objective
image quality affected by different types of distortions such as additive noise, blurring
or compression artifacts [58], [91]. However, only a few NR metrics were proposed for
uneven illumination assessment and more particularly in the context of medical imaging
[92], [93]. An interesting NR-IQA metric, called Average Gradient of the Illumination
Component (AGIC), developed for Dermoscopy Images has been introduced in [92]. It
is based on the average gradient of the illumination component estimated by using a
Weber Law-based gradient measure. Firstly, the image is divided into M ×N small
rectangle patches. For patch (i, j), the gradient is defined as the max difference between
patch (i, j) with its neighbor patches.

g(i, j) = max |h(i, j)−hk(i, j)|,k = 1,2, . . .8 (4.1)

where i ∈ {1,2, . . .M} , and j ∈ {1,2, . . .N},h(i, j) and hk(i, j) represent the average
gray value of patch (i, j) and its 8-connected neighbors respectively. There is a fact that
a whispered voice in a quiet room is easily caught, but shouting in a noisy condition
may not be noticeable [93].Weber’s law is approximately true for the perception of light
intensity, that is, the perceived light intensity change is relative to the background light
intensity. Taking Weber’s law into consideration, the new gradient is defined as:

gw(i, j) = max |h(i, j)−hk(i, j)|
h(i, j) (4.2)

Then the average gradient AGIC is defined as:

AGIC = 1
M ×N

M∑
i=1

N∑
j=1

gw(i, j) (4.3)

A higher AGIC value is indicative of more pronounced uneven illumination within
an image. However, it’s important to note that this metric evaluates the image primarily
based on the average gradient level of the illumination background (IB). Consequently,
in cases where the primary area of the image is dark and there is minimal contrast or
change between the dark region and the main portion of the image, this criterion can
yield inaccurate results.
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To illustrate this point, the subsequent Fig. 4.1 presents the outcomes of testing
AGIC on a selection of videos characterized by varying degrees of uneven illumination.
For a more in-depth analysis, let’s consider that as the difference ∆v between the highest

Figure 4.1: The AGIC result on the image distorted by 4 levels of uneven illumination. The
experiment was operated on LVQ dataset [257]. The column (a) is the original image I. Column
(b) is the extracted V-channel V from the original image I. The column (c) is the IB of V which
is extracted using LPF (X = LPF (V )). The fourth column is the corresponding AGIC value of
each IB.

illuminance vcenter and the lowest illuminance vborder grows larger, the gradient value
between the bright region and the dark region will also increase. Consequently, this
escalation in gradient values signifies a corresponding increase in the degree of uneven
illumination. As depicted in Fig. 4.2, it becomes evident that the AGIC value in the last
scenario deviates significantly from what one might expect. This behavior mirrors the
observations made in real images from the LVQ dataset [257]. The findings derived from
these synthesized images lead us to the conclusion that AGIC may misinterpret and
erroneously categorize images with good overall quality and low-light backgrounds. This
misclassification occurs because AGIC relies on the assessment of the image’s average
gradient, and it may not accurately reflect the actual visual quality and characteristics
of the image.

Recently, Wang et al. [93] proposed an interesting UI measure based on the standard
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(a) (b)

(c) (d)

(e)

Figure 4.2: The AGIC results on the synthesis image distorted by 4 levels of uneven illumination.
Images (a) to (e) are the uneven illumination mask with a variant gradient level. From (a)
to (d) the level of uneven illumination was increased one by one. The image (e) has the same
gradient level compared to (d) but instead of using the same position, the mask is created with a
different position to have a mask with a larger region of dark which is expected as an inefficient
case of the AGIC. The corresponding AGIC indexes are at the top of each image using equation
(4.3).

deviation of the V component in the HSV (Hue-Saturation-Value) color space for
microscopic images. They take the Standard Deviation of Value (SDV) channel of the
HSV(hue-saturation-value) color space as an objective indicator to assess the image
illumination. In HSV color space, V represents the brightness of pixel points. The SDV
score is defined as follows:
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SDV =

√∑M
i=1

∑N
j=1(V (i, j)−µv)2

M ×N − 1 , (4.4)

where M,N represent the size of the V channel of the input image, µv represents
its pixel mean, and V (i, j) is the pixel value of i-th row and j-th column. It is capable
of depicting the distribution of image illumination. The standard deviation reflects
the degree of dispersion between the image pixel value and its pixel mean value. The
smaller the standard deviation, the smaller the image contrast. Therefore, the smaller
the SDV score, the more uniform the image illumination distribution. Fig. 4.3 shows us
the used sample image in the SDV paper.

Figure 4.3: Some image examples used in [93]. Row (i) is the original image. Row (ii) is the
corresponding V-channel when they convert the image from RGB color space into HSV color
space.

Nonetheless, it’s important to highlight that this method is directly applied to the V-
channel of the image. Therefore, its effectiveness is more pronounced when dealing with
images that possess a simple background and where the object within the image does
not significantly impact the background illuminance (BI). However, when confronted
with images featuring intricate backgrounds and multiple objects, the accuracy of this
method can indeed diminish. To substantiate this point, the test results conducted
on the LVQ dataset are presented in Figure 4.4. These results demonstrate how the
method’s performance may falter in scenarios characterized by complex backgrounds
and numerous objects within the image.

As previously discussed, it’s evident that the SDV method appears to be well-suited
for images featuring uncomplicated backgrounds. However, in the context of WCE
images, the presence of diverse backgrounds influenced by the surface and shape of the
GI tract introduces a unique set of challenges. Directly applying the SDV method to
the V-channel of such images can indeed pose difficulties when attempting to accurately
estimate uneven illumination due to the intricate nature of these backgrounds.
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Figure 4.4: The SDV result on the LVQ [257] dataset. Row (i) is the original image. Row (ii)
is the corresponding V-channel when they convert the image from RGB color space into HSV
color space. The corresponding SDV values are on the top of each column.

All these methods and others have limitations both on the nature of the image signal
and the field of application considered and more specifically the way the problem is
formulated. Indeed, the few methods that seem interesting are based on optical models
leading to an ill-posed problem that can only be solved by adding constraints or some
priors [92] that cannot be rationally justified, or on data-dependence learning models
[93].

In this work, we introduce a novel simple NR-IQA method based on the analysis of
the local variations of BI components of images. The standard deviation of the difference
signal between the BI values of the observed image and its histogram-equalized version is
used as a physical measure to capture the effect of non-uniform lighting. The underlying
idea is related to the observation that the more the image is affected by the UI effect, the
more the contrast enhancement (CE) side-effect will accentuate the difference between
the BI values of the image before and after CE, as illustrated in Fig. 4.6.

The main contributions of this work and the strengths of the proposed method are
summarized and highlighted in the following.

• A new efficient NR-IQA metric for UI is proposed.

• The proposed metric outperforms the state-of-the-art methods when applied to
UI in both laparoscopic images and WCE images.

• This metric could be adapted and applied to other imaging modalities.

• The proposed method does not require an image formation model, nor specific
priors on the nature of the signal.
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2 Proposed Method

Input image V-channel Low-Pass
Filter

RGB

HSV

RGB to HSV
Converter background illuminance (BI) Histogram Equalization

+

-
Absolute operator

IHED Model

Equalized BI imageDifference signal

Figure 4.5: Block diagram of the proposed uneven illumination assessment method.

The proposed UI assessment metric is based on the analysis of the contrast enhance-
ment effect on the degraded image. The basic idea is to quantify the effect of histogram
equalization on the spatial distribution of BI. A similar idea has been proposed in a
method for blind estimation of the blur in natural scenes [241].

Fig. 4.5 illustrates the process of uneven illumination assessment based on the
analysis of the BI, estimated according to the algorithm described below.

i. The distorted image is converted to the HSV color space (Section 2.1).

ii. By assuming that the background illuminance is a slowly varying signal, as done
in [258], the BI is estimated by filtering the image with a low-pass box filter of
large size.

iii. Once the BI is estimated, the uneven illumination assessment metric is computed
from the standard deviation of the difference between BI and its equalized version
E (Section 2.3).

2.1 Color Space Conversion

As mentioned, the HSV color space is one of the most appropriate representations for
quantifying color and luminance changes in an image [93]. Given a RGB color image
of size M ×N , the three channels R, G and B are first scaled into the range [0, . . . ,1]
resulting in:

[R′,G′,B′] = [ R
255 ,

G
255 ,

B
255] (4.5)
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Then, the difference ∆ between the largest and smallest scaled channel is extracted for
each pixel:

∆ = mmax−mmin, (4.6)

mmax = max(R′,G′,B′), (4.7)

mmin = min(R′,G′,B′) (4.8)

After that, the two smallest scaled channels are subtracted off, and divided by the
difference between the largest and the smallest to generate the hue, H ∈ RM×N :

H′ =



undefined if ∆ = 0
G′−B′

∆
if mmax = R′

B′−R′

∆
+ 2 if mmax = G′

R′−G′

∆
+ 4 if mmax = B′

(4.9)

H = H′× scaleh, (4.10)

The brightness, V ∈ RM×N , is based on the brightest colour channel:

V = mmax× scalev (4.11)

The saturation, S ∈ RM×N , is the difference between the largest and smallest colour
channel values divided by the maximum channel value as:

S =

 0 mmax = 0
∆

mmax
× scales mmax , 0

, (4.12)

where M,N is the width and height of the image and scaleh, scales, scalev represents
the corresponding channel scale.

2.2 Background Illuminance Estimation

The estimation of background illuminance is a well-studied research topic in computer
vision and several methods from the simplest to the most sophisticated ones have been
proposed in the literature [259], [260]. The BI can be estimated using the variational
framework for retinex (VFR) model [261] or empirical mode decomposition (EMD) [262].
However, these methods require solving a time-consuming optimization problem. We use
a simple solution based on linear low-pass filtering (LPF). The background illuminance
BI ∈ RM×N is then estimated as follows:

BI = G⊛V, (4.13)



84
Chapter 4. The proposed IQA metric: A No-Reference Measure for Uneven

Illumination Assessment on Laparoscopy and WCE images

where G ∈ Rl×l is the LPF kernel of size l× l and ⊛ denotes the convolution operator
and V is the brightest component defined in (4.11). Here, a large-size kernel G is used
to estimate the background illuminance:

l = 1
4 min(M,N) (4.14)

Fig. 4.6(d) - Fig. 4.6(f) illustrate some examples of the estimated BI maps.

2.3 Uneven Illumination Assessment

The first operation to be performed at this stage is the transformation of the input BI
map by Histogram Equalization (HE).

Note that histogram equalization is a monotonic nonlinear pixel-value mapping
aiming at transforming the pixel values of the input image to obtain an output image
with uniform distribution. This operation has the effect of further accentuating the dark
areas and brightening the light areas, thus generating an amplification of the global and
local contrast.

Let T denote the histogram equalization transformation. The BI map is histogram
equalized leading to E ∈ RM×N :

E(i, j) = T (BI(i, j)) (4.15)

Then, the difference signal D ∈ RM×N is computed as:

D(i, j) =|BI(i, j)−E(i, j) | (4.16)

It can be observed through Fig. 4.6(j) - Fig. 4.6(l) that the proposed transformation
has a different effect on the signal depending on the amount of UI on the input image.

As mentioned previously, the effect of HE is an amplification of the global and local
contrasts as it gives more weight to bright pixels and low weight to dark pixels. As a
consequence, it will highlight the UI effect as perceived through the equalized BI map.
This observation inspired us to use the standard deviation, σD, of the difference signal
D, to quantify the UI effect.

σD =

√∑M−1
i=0

∑N−1
j=0 (D(i, j)−µD)2

M ×N − 1 , (4.17)

where µD is the mean of D. However, this index is inefficient in quantifying UI in the
case of very low-light scenarios, when the background illuminance gradient is low and
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makes the variations hardly noticeable. To address this issue, we introduce a novel
index based on Illumination Histogram Equalization Difference (IHED). It is computed
as follows:

IHED =

√∑M−1
i=0

∑N−1
j=0 (D(i,j)−µD)2

M×N−1
1

M×N

∑M−1
i=0

∑N−1
j=0 BI(i, j)

(4.18)

Note that (4.18) expresses the relationship between the uneven illumination effect and
the equalized difference with regard to the BI map. High IHED values correspond to
severe UI.

It should be noted that IHED was proposed before we established the QVCED
database for WCE. Consequently, we began by assessing IHED using a dataset of
laparoscopic images that was readily available. Subsequently, we extend its applicability
and evaluate its effectiveness on the WCE dataset.

3 Performance Evaluation on laparoscopic images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.6: Original images at different UI levels ((a)-(c)).The corresponding BI maps of V
component ((d)-(f)). The equalized BI images ( E signal) ((g)-(i)). The difference signals D
between the BI maps (BI of the original and the corresponding equalized version) ((j)-(l)).
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In order to quantitatively evaluate the performance of the proposed method, firstly,
the IHED is evaluated for assessing uneven illumination on laparoscopic images and is
compared to both FR-IQA and NR-IQA methods.

3.1 Dataset

To quantitatively evaluate the performance of the proposed method on laparoscopic
images, the LVQ [257] dataset is considered. This dataset contains 10 reference videos
with 10 seconds duration and 25 fps frame rate. Each reference video is affected by UI at
4 different levels covering typical scenarios. The dataset contains the Mean Opinion Score
(MOS) corresponding to 9 Expert observers’ and 20 Non-Expert observers’ evaluations.
The subjective tests are performed in a controlled environment following the main ITU
standard requirements. The details of the experimental setup are described in [257].

3.2 Correlation with Human Quality Judgment

As mentioned above, very few studies have been devoted to NR-IQA methods for UI.
Therefore, we considered some non-specific distortions NR-IQA metrics including NIQE
[28], VIIDEO [29], BRISQUE [73], and NIQE-K [263]. Besides these measures, two
UI-dedicated metrics AGIC [92] and SDV [93] are also considered. To better evaluate
the performance of the proposed index, we also use the conventional FR-IQA methods
including PSNR and SSIM [26].

The consistency of the considered metrics is analyzed using two statistical criteria
including Spearman’s rank order correlation coefficient (SROCC), and Pearson’s linear
correlation coefficient (PLCC).

Table 4.1: The correlation comparison on the LVQ dataset.

SROCC for
expert scores

SROCC for
non-expert scores

PLCC for
expert scores

PLCC for
non-expert scores

PSNR 0.9530 0.9372 0.9452 0.9561FR
metrics SSIM 0.9580 0.9503 0.9847 0.9926

NIQE 0.5620 0.5420 0.6655 0.6618
NIQE-K 0.5828 0.5768 0.6936 0.6814
BRISQUE 0.2635 0.2980 0.2973 0.3142
VIIDEO 0.4281 0.3888 0.4035 0.3983
AGIC 0.2191 0.1781 0.2231 0.2012
SDV 0.6012 0.5477 0.6769 0.6311

NR
metrics

IHED (ours) 0.9058 0.9047 0.8367 0.8571
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As can be seen from Table 4.1, IHED clearly outperforms the considered NR-IQA
methods with a large margin and competes well with conventional FR-IQA metrics.

In order to further analyze the prediction performance of the proposed method, we
provide a visual illustration through a scatter plot of the subjective rating (MOS) of
both Expert and Non-Expert versus the objective score obtained with IHED on the
LVQ dataset. As shown in Fig. 4.7, each point (’+’) represents one test video. The red
curve shown in Fig. 4.7 corresponds to the logistic function. IHED’s points are close
to each other and have a strong correlation with MOS. This further confirms the high
performance of the proposed metric.
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Figure 4.7: Scatter plots of MOS versus prediction of IHED on the LVQ dataset. IHED versus
the Expert MOS (left). IHED versus Non-Expert MOS (right).

4 Performance Evaluation on WCE images

As mentioned in Chapter 3, the process of generating the distortion dataset involved
simulating four types of distortion including noise, blur and uneven illumination, with
each type having four levels of severity. This led to the inclusion of 80 distorted videos
corresponding to uneven illumination within the QVCED dataset. The precise informa-
tion such as the distortion types and their severity levels was presented in Table 3.1.
A total of 34 participants, consisting of 12 experts and 22 non-experts, representing
various age groups and backgrounds, participated in the subjective experiments.

4.1 Correlation with Human Quality Judgment

Firstly, the correlation with human quality judgment is also analyzed using two statis-
tical measures including Spearman’s rank order correlation coefficient (SROCC), and
Pearson’s linear correlation coefficient (PLCC) as shown in Table 4.2.
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Table 4.2: The correlation comparison on the QVCED dataset.

SROCC for
expert scores

SROCC for
non-expert scores

PLCC for
expert scores

PLCC for
non-expert scores

PSNR 0.9188 0.9202 0.9152 0.9116FR
metrics SSIM 0.9322 0.9313 0.9471 0.9392

NIQE 0.7621 0.7410 0.7555 0.7561
NIQE-K 0.7448 0.7428 0.7336 0.7314
BRISQUE 0.6692 0.6980 0.6837 0.6825
VIIDEO 0.6681 0.6589 0.6521 0.6483
AGIC 0.4277 0.4199 0.4281 0.4212
SDV 0.8082 0.8117 0.8229 0.8311

NR
metrics

IHED (ours) 0.9060 0.9061 0.8995 0.8970

The IHED method also demonstrates its superiority when compared to other NR-IQA
techniques due to the similarities between the laparoscopic and WCE image environments.
The shared characteristics significantly contribute to the exceptional performance of
IHED, making it a highly effective choice to evaluate the uneven illumination not only in
both laparoscopic images and WCE images but also in other medical imaging modalities.
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Figure 4.8: Scatter plots of MOS versus prediction of IHED on the QVCED dataset. IHED
versus the Expert MOS (left). IHED versus Non-Expert MOS (right).

To further assess the predictive capabilities of our proposed method, we also present
a visual representation using a scatter plot to compare the subjective ratings (MOS)
from both Expert and Non-Expert participants to the objective scores obtained using
IHED on the QVCED dataset. The red curve in Fig. 4.8 represents the logistic function
in which IHED’s data points are also closely clustered and exhibit a strong correlation
with MOS.
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5 Conclusion

This research endeavor has introduced a highly efficient No-Reference Image Quality
Assessment (NR-IQA) method explicitly tailored to address the challenge of uneven
illumination (UI) in laparoscopic images and WCE images. Our pioneering approach re-
volves around a meticulous examination of pixel value fluctuations within the background
illuminance, meticulously extracted using histogram equalization. This innovative strat-
egy leverages the inherent insensitivity of background illuminance to image content,
effectively conquering the intricate challenges posed by complex backgrounds frequently
encountered in the domain of medical imagery. Moreover, our novel metric incorporates
the weighted average intensity of the background illuminance, equipping it with a
significant advantage, especially in scenarios characterized by low-light conditions. It is
noteworthy that our method not only outperforms existing NR-IQA techniques but also
exhibits competitive performance comparable to FR-IQA methods. This underscores
its potential for extensive application within the realm of medical image analysis, offer-
ing tangible benefits across a diverse spectrum of medical image types and scenarios.
Consequently, there is a compelling case for the extension of this methodology to the
assessment of image quality in other imaging modalities, where uneven illumination
remains a pertinent concern.

Following the acquisition of distortion severity information, the subsequent chapter
will exploit this data to introduce a novel image quality enhancement technique. This
technique will be designed to effectively mitigate issues related to noise, blur, and uneven
illumination, while accommodating variations in their levels across different scenarios.
The proposed method will leverage the insights gained from the distortion severity
assessment, allowing for tailored and adaptive image enhancement strategies that can
significantly improve the quality of images captured in diverse conditions.
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The proposed image quality enhancement method:
TCFA: Triplet Clustering Fusion Autoencoder for
Quality Enhancement of Wireless Capsule Endoscopy
Images

Wireless Capsule Endoscopy (WCE) images are prone to degradations (such as
noise, blur, or uneven illumination), which may adversely affect the reliability of the
diagnosis. In this work, we propose a novel method, called Triplet Clustering Fusion
Autoencoder (TCFA), for enhancing the quality of WCE images. The method not
only deals with the three types of degradations including noise, blur, and uneven
illumination but also considers different levels of distortion severity. The main
contributions presented in this work are the following: We introduce a distortion
level encoder that classifies the severity of each type of distortion using the triplet
loss function. Furthermore, we propose a variational cross-attention module that
allows to extract both global and structural local information for efficient uneven
illumination correction. Third, a pre-trained network is used to extract relevant
structural features from WCE images. These contributions significantly improve
the performance of image enhancement tasks, as demonstrated through extensive
experiments on WCE images of the Kvasir-Capsule dataset. The proposed method is
extensively evaluated on images with multilevel distortions, demonstrating superior
performance compared to several state-of-the-art methods.1

Abstract

1T. -S. Nguyen, M. Luong, J. Chaussard, A. Beghdadi, H. Zaag and T. Le-Tien "TCFA: Triplet
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1 Introduction

The introduction of Wireless Capsule Endoscopy (WCE) has completely transformed how
we investigate and treat patients with suspected small bowel diseases. This technology,
which first appeared in the year 2000, represents a significant advancement in small
bowel examinations [230]. Unlike traditional endoscopy, which is limited to the upper
GI tract (duodenum) and lower GI tract (terminal ileum), WCE allows us to see the
entire gastrointestinal (GI) tract, including areas that were previously inaccessible
[264]. Before the advent of WCE, the small intestine, which makes up 75% of the total
length and 90% of the surface area of the GI tract, remained a challenging frontier for
conventional endoscopy because it couldn’t be directly visualized internally or in its
entirety by any method [265].

While WCE has revolutionized and taken a prominent place in the screening and
diagnosis of GI disease, a major challenge in WCE is its poor image quality, due to
several physical factors depending on the acquisition system and the environment, which
adversely affects diagnostic accuracy. Indeed, degradation is frequently produced during
WCE image acquisition due to the physical limitations of the image sensors used and
the uncontrolled acquisition environment. For example, WCE cameras with a narrow
aperture and small sensors with a restricted dynamic range typically produce noise in
the acquired frames [19]. Additionally, images captured under unstable circumstances
exhibit excessive blurriness [231]. Significantly, the inherent motion of the capsule,
caused by the peristaltic activity of the GI tract, combined with the light-coverage
limitation of the capsule’s camera [18] introduces uneven illumination. The existence of
these distortions has compromised the quality and resulted in the efficiency of advanced
activities, such as the identification, and monitoring of GI abnormalities. Therefore, a
WCE image enhancement method is evidently required to improve the quality of the
acquired images, further increasing the accuracy and reliability of GI lesion detection.

To mitigate the effect of distortions and improve the quality of WCE images, numer-
ous algorithms have been proposed[266]–[268]. More precisely, Vani et al.[266] introduced
a fusion technique that incorporates histogram equalization and color restoration, aiming
to enhance contrast, reduce noise, and improve visibility in areas of lower illumination.
Similarly, Long et al.[267] employed a fraction-power transformation incorporated with
histogram modification, integrating a guide image, to increase contrast and improve
image details in poor illumination scenarios. Besides, in [268], with the context of
WCE videos, histogram mean and variance regarding each WCE frame are sequentially
calculated to equalize the image intensity and smooth out hue fluctuations over time.
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While the mentioned methods comparatively address general low-light situations, noise,
or low contrast, they do present certain challenges. Specifically, gamma correction
techniques can result in excessive amplification of pixel values and introduce various
artifacts to the processed images. Additionally, when an image possesses a high dynamic
range or includes regions with extremely high or low pixel values, histogram equalization
can produce non-photorealistic areas and yield images that appear unnatural.

By considering the mentioned challenges, the recent advancements in deep learning,
particularly in the field of deep convolutional neural networks (CNNs)[269], have placed
a foundation for the development of new enhancement solutions. Current deep learning
models, which can acquire generalizable priors from large-scale medical datasets, typically
employ one among two architectures: An encoder-decoder or a generative model. The
encoder-decoder models[270], [271] gradually map the input to an embedding latent
space before gradually reverting to the original resolution. Although these methods can
effectively reduce the dimensionality of input data, aiming to capture the most important
features, the global contextual information is discarded, making image reconstruction
exceedingly difficult. On the other side, the generative networks[152], [174] process
images with more detailed spatial features. These networks, however, are less successful
in the medical aspect since they generate uncontrolled features that result in less accurate
outcomes in perspective medical tasks such as pathological classification. Recently, the
attention-based methods[272], [273] were demonstrated to be effective in a variety of
applications by exploring the positional information and the inter-pixel relationship.

Inspired by the attention-based advantages, in this work, we propose the TCFA
method that addresses four levels of distortion severity and effectively handles different
types of degradation, including noise, blur, and uneven illumination. It should be noted
that, unlike the low-light condition where the entire image is dimly illuminated, uneven
illumination presents a notable disparity. In the case of uneven illumination, areas
in close proximity to the camera are excessively bright, while the distant regions are
completely dark. Therefore, it is essential to take into account features relating to the
precise region within the image affected by uneven illumination. This feature plays a
critical role in developing an effective enhancement technique that specifically targets
and addresses these affected regions.

In addition to the information about the affected regions, understanding the severity
level of the distortions is equally significant. This information impacts the intensity of
enhancement techniques applied. Different severity levels require varying degrees of
correction methods to effectively mitigate the distortion effect presented in the image.



94
Chapter 5. The proposed image quality enhancement method: TCFA: Triplet

Clustering Fusion Autoencoder for Quality Enhancement of WCE images

Therefore, considering both the affected regions and severity levels enhances the overall
accuracy and efficacy of the enhancement process.

It should be noted that, in our case where we assume that uneven illumination
forms a circular pattern, the distortion severity in each image patch is dependently
related to the image patch position. Based on that idea, VCAM modifies the model’s
attention by aligning the level of uneven illumination for each image patch, represented
as the attention key, based on the relationship to the patch’s position, represented by
the attention query, to bring the distribution of the attention key closer to a standard
normal distribution. By imposing this constraint, the attention mechanism is guided
to selectively focus on distorted regions in a more controlled and standardized manner.
Additionally, we employ the perceptual loss function to secure the quality of enhanced
images by considering dissimilarity in high-level features between the reconstructed
images and the reference images [274]. Our primary contribution lies in an efficient
enhancement method for improving WCE images. This method effectively manages
diverse distortion levels through the application of the triplet loss function. Additionally,
it introduces a variational cross-attention module that enhances cross-attention learning
by constraining attention distribution. Furthermore, our approach incorporates a
pre-trained network that preserves essential high-level image features.

The subsequent sections of this chapter are structured as follows. Section 2 presents
the recent related enhancement methods applied on both WCE. Subsequently, Section 3
provides a detailed account of the proposed TCFA. Afterward, Section 4 focuses on
the experimental results. In particular, Section 4.1 presents the implementation of the
simulated dataset while Section 4.2 concentrates on the ablation study, illustrating the
importance of each component of TCFA. The proposed method’s performance is then
presented and evaluated in Section 4.3. Finally, this chapter concludes in Section 5,
summarizing the key findings and implications of this work.

2 Related Works

In this section, we present recent advancements in enhancement techniques employed
in WCE. The focus of this section is to provide a comprehensive overview of the most
relevant studies concerning denoising, deblurring, and addressing uneven illumination
in WCE images.
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2.1 Denoising

Noise is a commonly observed distortion that is frequently experienced in video ac-
quisition and transmission systems and denoising has been an actively investigated
subject within not only the medical image domain but also various image process-
ing fields. State-of-the-art denoising approaches include conventional methods such
as BM3D[275], total variation (TV)[276] and dictionary learning-based methods[277].
Although these methods have demonstrated promising results, the main difficulty is
the ability to preserve subtle details. Recently, Convolutional Neural Networks (CNNs)
have become popular for deep noise removal[142], [143] due to their ability to handle
complex noise, but rely on high-quality noisy-clean image pairings for training, which
is a non-trivial-problem. To better preserve fine spatial details, CNN-based multiscale
techniques[144], [145] have been proposed. However, such models may fail in case of
strong noise as they may be confused with the texture feature of the image.

Regarding WCE image denoising approaches, the most representative classical
image processing methods applied to WCE images are the geometric mean filter[20],
TV[110], and the wavelet-based approach[146]. More recently, the deep image prior
(DIP) technique[19] followed by a blind image quality assessment network to iteratively
generate the noisy image from the noise model and then a clear image from a noisy
image. Nevertheless, the considered challenge is that numerous iterations are necessary
to obtain an optimal reconstructed image from a noise model. Consequently, the
aforementioned process is time-consuming and not efficient in practice.

2.2 Deblurring

Similar to denoising, much study has been done in recent decades with many different
image deblurring solutions on both natural and medical imaging domains. Regarding
natural images, image deblurring methods can be divided into classical image processing-
based methods and CNN-based ones. A traditional method such as Total Variation
(TV)[149], [155] involves using blind deconvolution techniques to estimate both the
original image and the blur kernel concurrently. In the second category, as to CNN-
based methods, Generative Adversarial Networks (GANs)[151], [152], have also been
proposed to learn the end-to-end regression between a blurry input image and the
corresponding sharp image. However, the generative model is not particularly effective
in the medical field as it produces uncontrolled patterns that may pose a risk of inaccurate
diagnosis. To overcome this challenge, Zhang et al.[153] demonstrated a hierarchical
representation using a multi-patch network inspired by spatial pyramid matching to
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handle blurry images on different scales. Lately,[154] incorporated deep U-net networks
with the concept of self-attention technique to efficiently capture the local context of
the degraded images.

Likewise, in the domain of WCE images, some efforts have been made for deblurring.
Liu et al.[155] modified the updating iteration of the regular parameter in total variation
using the fast iterative shrinkage/thresholding technique to deal with multi-channel
images. In recent times, dictionary learning techniques[156], [157] have been employed
to extract the inter-frame relation in WCE videos for super-resolution and synthesizing
deblurring reconstructions.

2.3 Uneven Illumination Correction

Uneven illumination correction has long been a concern in medical image processing
with a few classical methods such as filtering[165], [166], or retinex-based model[167].
Despite significant efforts towards this end, the number of approaches developed to
address this challenge in WCE images remains limited. Long et al.[171] proposed to
leverage the information from high-quality guided images of the same scene to improve
the quality of low-quality WCE images by histogram comparison. The adaptive fraction-
power transformation method modifies the power value based on local image features
to achieve optimal enhancement results. However, the method’s effectiveness may be
limited in situations where guided images are not available or when significant variation
exists between the guided images and the low-quality WCE images. In such cases,
the approach may introduce artifacts or distortions into the enhanced images, thereby
compromising their diagnostic accuracy. To address this challenge, Prasath et al.[16]
proposed a modified feature-linking model (FLM)[172] that enhances image quality
by converting RGB images to the HSV color space, thereby improving chromaticity
and avoiding streaking artifacts commonly associated with histogram-based models.
However, a limitation of FLM is its reliance on linking image features across multiple
scales, which may not be effective in enhancing images with low contrast or complex
background structures. Furthermore, the computational complexity of FLM may pose a
limitation, particularly in real-time applications that require fast image processing.

In the closely related but not overlapping context, it should be noted that low
light and uneven illumination are two distinct problems that can significantly degrade
the image quality. They are independent problems that require different correction
techniques to enhance the quality. In recent times, regarding the natural image domain,
several low-light enhancement approaches[173]–[175] are also proposed to increase
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visibility. In this work, our objective is also to evaluate the performance of these methods
to determine their effectiveness in dealing with the problem of uneven illumination.

3 Proposed Method
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Variational Cross-Attention
Module (VCAM)

Concatenation

Reference Image

Enhanced Image

Input Image

Positive Image

Negative Image

Pre-trained ResNet-152

C
onv

B
atchN

orm

R
elu

C
onv

B
atchN

orm

R
eluIn Out

D
eC

onv

B
atchN

orm

R
elu

D
eC

onv

TanhIn Out

(b) Encoder architecture

(c) Decoder architecture(a) TCFA architecture

Figure 5.1: (a) Overview of the proposed TCFA. Shaded circles represent processed images, bullet
shapes represent deterministic functions, • represents a bifurcation, and red boxes represent
cost terms. Dotted lines exclusively indicate the data path which is available only during the
training phase. (b) The encoder architecture used in the DIE and DLE. (c) The employed decoder
architecture used in the DID.

In this section, we commence by presenting an overview of the proposed TCFA
pipeline. Subsequently, we focus on each fundamental component comprising TCFA.
then, we elucidate the formulation and analysis of the loss function in detail.

As depicted in Fig. 5.1 (a), TCFA encompasses a dual-branch autoencoder hierar-
chical network, encompassing three primary modules: the Distorted Image Projector
(DIP) which consists of elements of the Distorted Image Encoder (DIE) and the Dis-
torted Image Decoder (DID); the Distortion Level Encoder (DLE); and the Variational
Cross-Attention Module (VCAM).

3.1 Overall Pipeline

In this work, we present a novel two-branch method. The first branch prioritizes
the preservation of local features through the implementation of the Distorted Image
Encoder (DIE). The local feature refers to specific characteristics or attributes within
the image that are present on a smaller, localized scale within the image such as edges,
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textures, or patterns. The second branch integrates the Distortion Level Encoder (DLE),
which captures and extract multi-level distortion feature by clustering the images into
different groups related to distortion levels utilizing a triplet loss function (5.9), enabling
effective handling of severity variations. Subsequently, the two features are inputs into
the innovative Variational Cross-Attention Module (VCAM). This module, inspired by
the cross-attention technique[278], considers both the local image features (obtained
from DIE) and distortion severity information (obtained from DLE), thereby leading
to improved enhancement outcomes. Finally, the Distorted Image Encoder (DID) is
utilized to decode the concatenation of local image features (obtained from DIE) and
attention-fused features (obtained from VCAM) to reconstruct the enhanced image.

Given a degraded image I ∈ R3×H×W , the DIE ΦD extracts the local features
XD ∈ RC×Hx×Wx in the latent space. C = 64,Hx = Wx = H

4 are feature dimensions,
H = W = 336 are the height and width of the input image. Simultaneously, the DLE
Φdl is applied to I to extract the distortion level information Xdl ∈ RC×Hx×Wx . Next,
the VCAM utilizes a cross-attention mechanism to capture positional dependencies
between the distortion severity and the corresponding image patch position to generate
attention-fused features Xaf ∈ RC×Hx×Wx . Finally, the DID Φ̂ is utilized to decode the
concatenation X̂ ∈ R2C×Hx×Wx , X̂ = concat(XD,Xaf ) of distorted image features and
attention-fused features to obtain the enhanced image Î.

3.2 Distorted Image Projector (DIP)

As mentioned before, the proposed DIP includes the Distorted Image Encoder (DIE)
using the CNN backbone, as shown in Fig. 5.1(b), which contains two convolution
blocks. Each convolution block consists of one convolution layer followed by Batch
Normalization layers and a Rectified Linear Unit (RELU) activation function. The DIE
module typically converts the input image I into the latent space, thus extracting local
features XD.

On the other hand, the Distorted Image Decoder (DID) is implemented to reconstruct
the enhanced images using the decoder architecture (Fig. 5.1(c)) of two deconvolution
layers or transposed convolution layers. It upsamples the concatenated features X̂ ∈
R2C×Hx×Wx , where feature dimension C is set to 64 for the first deconvolution layer
and 3 in the following deconvolution layer, to generate the output image with the same
dimensions as the input. The kernel size is set as 3, stride as 2, and the momentum
used in Batch Normalization is set to 0.1 for all convolution and deconvolution layers.
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3.3 Distortion Level Encoder (DLE)

We propose the DLE to encode the distorted image into another latent space where the
triplet loss function[279] clusters the distortion level features into different populations.
Similar to DIE, the DLE consists of two convolution blocks, and each block contains
a convolution layer followed by a Batch Normalization layer with a RELU activation
function (with C = 64,k = 3,s = 2).

More precisely, the DLE is trained using the triplet loss which encourages that
dissimilar pairs be distant from any similar pairs by at least a certain margin value as:

ltriplet = max
(∥∥∥Xdl−X+

dl

∥∥∥2

F

−
∥∥∥Xdl−X−

dl

∥∥∥2

F
+ m,0

)
,

(5.1)

where I is the input image, and Xdl ∈ RC×H×W is the extracted distortion level feature
of I. The positive image I+ is a randomly chosen image by the DLE Φdl, having the
same distortion level as I, and X+

dl is the extracted distortion level feature of I+. On
the other hand, the negative image I− is a randomly-chosen image by the DLE Φdl,
having a different distortion level from I, with m as the margin hyperparameter, and
X−

dl is the extracted distortion level feature of I−.

3.4 Variational Cross-Attention Module (VCAM)

Besides noise and blur, we also target uneven illumination correction. Uneven illumina-
tion correction is challenging due to the requirement for global information from the
entire image. It is necessary to utilize both the distorted image feature XD and the
distortion level feature Xdl. Inspired by[278], we designed the VCAM to establish a
correspondence between them and perform feature aggregation.

First, the distorted image feature XD ∈ RC×Hx×Wx and the distortion level feature
Xdl ∈ RC×Hx×Wx are divided into non-overlapping local windows of size M ×M with
a total number of HxWx

M2 windows. In this work, Wx = Hx = H
4 and M = 8. Then,

the attention mechanism jointly learns the WQ,WK ,WV ∈ Rd×dmodel ,d = M2C,WP ∈
R

HxWx
M2 ×dmodel which are the query (Q), key (K), value (V) and position weight matrices

with dmodel = 512, respectively.

Q = XDWQ + WP ,

K = XdlWK + WP ,

V = XdlWV + WP

(5.2)
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Additionally, in this work when the uneven illumination is supposed to have a
circular-shape background illuminance as appears in (5.14), it is noticeable that the
level of distortion present in each image patch has a dependent relationship with its
position within the image. To guide the network to focus on the distorted regions in a
controlled manner by capturing that relationship, we apply a parameter transformation
that enforces the distribution of the key generated from the distortion level feature to
be close to a standard normal distribution:

K′ = K + Q ∗ ϵ, (5.3)

where ϵ∼N (0,1).

Subsequently, the multi-head variational cross-attention module (Multihead VCAM)
is used to extract the multi-head attention information Z ∈ RC×d, from various repre-
sentation subspaces, which is divided into h heads for learning in parallel (in this work,
h = 8), and each head’s output dimension is dhead = dmodel

h .

Z = concat(head1, . . . ,headh)WO (5.4)

headi = V arCrossAtten(WQ
i Q,W K

i K′,W V
i V), (5.5)

where WQ
i ,WK

i ,WV
i ∈ Rdmodel×dhead , WO ∈ Rdmodel×d are learnable weights. The

attention is computed by encoding the distorted image feature as queries and the
distortion level feature as both keys and values:

V arCrossAtten(Q,K′,V) = softmax

(
QK′T
√

dhead

)
V (5.6)

Afterward, the LayerNorm (LN) layer is added and the residual connection is
employed. Finally, the output attention-fused feature is defined as:

Xaf = LN(Z + XD)⊙Xdl, (5.7)

where ⊙ denotes the element-wise multiplication.

3.5 Loss Function

The proposed TCFA model will be trained using an appropriate loss function, with
given input distorted images Ii ∈ R3×H×W , i = 1 . . .N , N is the number of distorted
images, which aims to achieve the following objectives:

• Learning a useful representation Î ∈ R3×H×W of the distorted input image through
a nonlinear dimensionality reduction by autoencoder (AE). Hence, the loss related
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to the reconstruction error of the AE, Lrec, is given by the dissimilarity between
distorted and enhanced images.

Lrec = 1
N

N∑
i=1

(∥∥∥Ii− Îi

∥∥∥2

F

)
(5.8)

• Minimizing the distance between extracted distortion features of the random
similar image pairs (Ii,I+

i ) having similar distortion level and maximizing the
distance between extracted distortion features of the random dissimilar image
pairs (Ii,I−

i ) having different distortion level by Distorted Level Encoder Φdl and
at least a certain margin value m.

Ltl =
N∑

i=1
max

(∥∥∥Φdl(Ii)−Φdl(I+
i )
∥∥∥2

F

−
∥∥∥Φdl(Ii)−Φdl(I−

i )
∥∥∥2

F
+ m,0

) (5.9)

• Estimating the difference between the generated attention key distribution and
the standard normal distribution. To estimate it, the Kullback-Leibler divergence
loss LDL is considered as the dissimilarity Euclidean distance:

LDL =−1
2

N∑
i=1

(
1 + log(∥Qi∥2F )−∥Ki∥2F −∥Qi∥2F

)
, (5.10)

where Qi and Ki are the query and key generated by the VCAM corresponding
to the image Ii, respectively.

• Learning the high-level image feature representations extracted from pre-trained
convolutional neural networks which are essential for further image reconstruction.
The perceptual loss Lp is defined as the dissimilarity between the features of the
enhanced images Iref

i and reference images generated by the ResNet-152 network
ΦRN pre-trained on the ImageNet dataset:

Lp = 1
N

N∑
i=1

(∥∥∥ΦRN (Ii)−ΦRN (Iref
i )

∥∥∥2

F

)
(5.11)

The global loss function is defined as:

Lt = Lrec +Ltl +LDL +Lp (5.12)

4 Experiments

In this section, we first provide details of the experimental setup including the dataset
and environment which are employed in our study. Subsequently, we conduct a series of
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comprehensive ablation studies to thoroughly evaluate each component of our proposed
TCFA. Finally, we proceed to assess the effectiveness and efficiency of TCFA by applying
it to various image enhancement tasks using simulated datasets. A comparative analysis
is then conducted to assess its performance compared to recent works in the considered
field.

4.1 Dataset and Implementation Details

To create the environment, Adam optimizer[280] is used for training and the model uses
a batch size of 32 and a learning rate of 10−3 for 100 epochs. For a fair comparison, the
competing methods all use their default parameter settings. Code will be available at
https://github.com/tansyab1/TCFA.

For the dataset, we evaluate the proposed method on the proposed distortion dataset
QVCED (Chapter 3). In this work, in each type of distortion including Additive White
Gaussian Noise (AWGN), Defocus Blur, and Uneven Illumination, four severity levels
are considered and applied to generate the distorted images. For each level of distortions,
the training, validation, and testing set contain respectively 5000, 500, and 4000 images.
These selected images are classified as having the best quality in QVCED to be used as
reference images for distortion simulation. After preparing the reference images, the
distortion is then added to generate the dataset that will be used in the subsequent
experiments.

To simulate the noise, the Additive White Gaussian Noise (AWGN) model is
incorporated into our dataset which assumes that the noise present in the video follows
a Gaussian distribution. To control the severity, AWGN level is configured with
σn ∈ {5,10,20,30}.

Regarding the defocus blur, a commonly used approach involves incorporating an
isotropic Gaussian kernel to accurately model the rotational symmetry around the
optical axis that arises from the blurring effect caused by simulated defocusing of the
lens. The corresponding impulse response, denoted as hdb(x,y), can be mathematically
expressed as follows:

hdb(x,y) = 1
2πσ2

db

exp−(x2 + y2)
2σ2

db

, σdb ∈ {1,2,3,5} (5.13)

To simulate the uneven illumination, the reference image is first converted from RGB
color space to HSV color space. A normalized circular gradient mask is then applied to
the V-channel. The simulated circle-gradient mask M(i, j) ∈ RH×W that matches the

https://github.com/tansyab1/TCFA
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dimensions of the original image, is defined by:

M(i, j) = 255−
[2∆I

W

√
(i− ic)2 + (j− jc)2

]
, (5.14)

where M(ic, jc) is the circle center in (ic, jc) ∈ {(112,224),(168,168),(224,224)}. Differ-
ent levels of illumination are achieved by controlling the difference of intensity between
the central pixel of the image and the darkest pixel of the border and setting it in
∆I ∈ {80,100,135,170}.

Once the environment and the dataset are prepared, we proceed to conduct an abla-
tion study aimed at analyzing the hyperparameters of the loss function and evaluating
the significance of each component within the TCFA scheme. The objective of this
study is to gain insights into the impact of different hyperparameter settings on the
overall performance of TCFA, as well as to assess the individual contributions of each
component in achieving the desired image enhancement outcomes.

4.2 Ablation Study

Within this subsection, our analysis focuses on examining the influence of the margin
parameter on the triplet loss function in order to determine the margin that generates the
distortion level feature with the most effective discrimination. Moreover, we thoroughly
scrutinize each individual component of the TCFA, providing a comprehensive and
detailed analysis. Furthermore, our evaluations encompass image denoising, deblurring,
and the correction of uneven illumination, utilizing a range of diverse quality assessment
metrics.

4.2.1 Triplet Loss Margin

By employing the proposed Distortion Level Encoder, which follows the triplet loss
function defined in (5.9), the margin parameter denoted as m assumes a crucial role and
necessitates meticulous selection. The reason behind this importance lies in its potential
impact on the discrimination capabilities of the extracted features. Consequently, a
comprehensive evaluation is conducted through a consequent test, wherein the margin
parameter m ∈ {1,2, . . . ,32,64} is varied to determine the optimal margin value that
produces the most favorable outcomes in terms of discrimination. To assess the dis-
crimination, evaluation metrics such as the Davies-Bouldin score[281] and Silhouette
score[282] are employed where a lower Davies-Bouldin score and higher Silhouette
score indicate better clustering. By utilizing these evaluation metrics, this study can
quantitatively assess the quality of the extracted features and determine the most
suitable margin for each type of distortion data. The obtained comparison results are
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Figure 5.2: Quantifying discrimination in clustering results using Davies-Bouldin score and
Silhouette score.

presented in Fig. 5.2. Notably, it is noticeable that the margin value of m = {8,4,32}
exhibits the best discrimination for the triplet loss regarding noise, blur, and uneven
illumination, respectively. Additionally, a decrease in discrimination performance is
observed after increasing the margin after the selected value. This occurrence indicates
that setting the margin too high, beyond the discriminative capacity of the Distortion
Level Encoder, adversely affects the performance. Consequently, this study emphasizes
the importance of selecting appropriate margin values while considering the trade-off
between discrimination ability and architecture. Based on these findings, the consequent
experiment of each kind of distortion will be conducted using the corresponding margin
value.

4.2.2 Effect of each TCFA’s component

In this study, we would like to analyze the effect of individual sub-components of TCFA,
specifically the VCAM, and DLE, on the performance of the TCFA model. Firstly, we
devised an architecture without attention mechanisms, incorporating only the DIP and
DLE. The features extracted from the DLE are directly combined with one of the DIE.
Subsequently, the integrated features are then fed into the DID for further processing.
This architecture allows focusing on the importance of the VCAM while leveraging the
capabilities of the DIP and DLE for feature extraction and representation.

Secondly, as part of our modifications, we have similarly decided to remove the
DLE from the architecture. As a result, the architecture now primarily focuses on the
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remaining components, named self-attention architecture, wherein the features extracted
solely from the DIE are directly supplied to the VCAM. By implementing this revised
architecture, our objective is to thoroughly investigate and assess the significance and
impact of the DLE in contributing valuable features to the attention-based architecture.

Input Target Without Variational
Cross-Attention Module

Without Distortion
Level Encoder TCFA

Figure 5.3: Visual comparisons obtained from the ablation study conducted on TCFA. Rows 1 to
3 represent different elements, including the distorted image inputs, the reference image, outputs
from TCFA without the VCAM, outputs from TCFA without the Distortion Level Encoder,
and outputs from the final version of TCFA, respectively. The visual assessment focuses on
addressing issues such as noise, blur, and uneven illumination. Notably, the final version of
TCFA demonstrates the most significant improvement in mitigating these aforementioned issues
and produces visually appealing results. For a closer examination of the image details, please
zoom in.

As shown in Fig.5.3, the outcomes obtained from both the non-attention and self-
attention architectures are unsatisfactory, highlighting the effectiveness of TCFA in
image enhancement, particularly in the task of correcting uneven illumination. Unlike
noise and blur, where either global contextual features or local features alone may
not be enough, both global contextual features and local features must be taken into
account. The local feature extracted through the convolution operation captures the
relationship between neighboring regions, highlighting their smooth intensity transition.
On the other hand, the global feature focuses on enhancing the overall quality of specific
regions. Therefore, the absence of either feature will lead to an unsatisfactory outcome,
especially when dealing with uneven illumination.
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Indeed, the absence of the VCAM (as seen in the third column) leads to images
with black regions, indicating that the enhancer only relies on local features from a
local image patch. In contrast, the attention-based architecture without the DLE
focuses on global structural features and improves results compared to the non-attention
architecture (fourth column). However, the outcome is still imperfect due to the lack
of smooth transitions between regions which generates the box effect easily to be
observed in the outer of the image, which arises from the absence of local features.
Evidently, these results indicate that introducing distortion-level information into the
cross-attention mechanism is beneficial for image enhancement tasks. This suggests
that immigrating the knowledge of distortion levels into the attention mechanism can
improve the network’s focus in a controlled manner compared to original self-attention,
and then effectively address WCE image distortion associated with different severity.

4.3 Comparison With State-of-the-Arts

This subsection involves an evaluation of TCFA’s performance in comparison to other
advanced methods. We carried out various experiments to achieve this, such as analyzing
visual quality, statistical comparison, and performing full-reference/no-referenced image
quality assessment comparisons. The following sections will provide more details on
these experiments. More precisely, we comprehensively compare the proposed method
against a range of denoising, blurring, and uneven illumination correction techniques.
Additionally, we assess the performance of several low-light enhancement methods to
determine their efficacy in addressing the uneven illumination problem. By emphasizing
the disparity between low-light conditions and uneven illumination, we can obtain a
more thorough understanding of the relative strengths and limitations of each kind of
method, as well as its potential practical applications.

4.3.1 Image Quality Assessment Comparison

We compare our method with recent state-of-the-art methods which focus on denoising,
deblurring, and uneven illumination correction. Furthermore, we aim to validate the
effectiveness of the low-light enhancement methods in scenarios with uneven illumination.
First, three full-reference metrics that are considered in the comparison experiments
are Peak signal-to-noise ratio (PSNR), the structural similarity index measure (SSIM),
and Visual information fidelity (VIF). Second, in situations where it is not possible to
access the original reference content or when there are limitations in terms of storing
or transmitting reference content, the use of no-reference quality metrics becomes
especially significant. Therefore, to evaluate the performance of the proposed method in
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the enhancement task, two No-Reference metrics including Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE), and Natural Image Quality Evaluator (NIQE)
are also considered. It should be noted that the high value of NIQE presents worse
quality. Moreover, to illustrate the superiority of the proposed method on specific
uneven illumination problems, the metric known as LOE (Lightness Order Error) is
taken into account to assess the enhanced image quality. LOE plays a crucial role in
measuring the degree of distortion in the lightness of the enhanced images, with lower
LOE values indicating superior enhancement results.

In addition, computing the number of images with the best quality can provide
valuable insights into the overall performance of the enhancement algorithm. By
analyzing the method having the highest number of enhanced images that achieve the
best quality, we can evaluate the effectiveness of the algorithm in improving image
quality and determine whether it is suitable for practical applications. As a result, we
will incorporate this quantity test (QT) of analyzing the number of images with the
best quality into our assessment of various no-reference metrics (as shown in Fig. 5.4 to
Fig. 5.6. This will enable us to obtain a comprehensive understanding of the algorithm’s
performance and make well-informed decisions regarding its practical application.

Table 5.1: Quantitative comparison with state-of-the-art denoising methods in terms of five
image quality assessment metrics

Image Quality Assessment Metrics
PSNR↑ SSIM↑ VIF↑ BRISQUE↑ NIQE↓

BM3D[275] 35.33 0.9079 0.6818 56.09 9.99
CycleISP[142] 33.65 0.9164 0.6429 51.27 9.97
DANet[143] 35.79 0.8864 0.6291 39.29 6.95
DIPNet[19] 37.43 0.9245 0.6010 55.73 13.26
VDNet[283] 36.83 0.9344 0.6496 49.79 13.10

MPRNet[284] 36.34 0.8889 0.6260 39.66 8.65
MIRNet[144] 39.01 0.9364 0.6785 51.65 8.59
Uformer[154] 38.43 0.9483 0.6907 52.19 6.83

TCFA 39.34 0.9761 0.7055 56.25 6.37

Our proposed TCFA method outperforms the compared reconstruction methods
in all metrics and quantity tests also, as shown in Table 5.1 to 5.3, demonstrating its
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Figure 5.4: Quantitative comparison with state-of-the-art denoising methods in terms of the
quantity test on BRISQUE/NIQE.

Table 5.2: Quantitative comparison with state-of-the-art deblurring methods in terms of five
image quality assessment metrics.

Image Quality Assessment Metrics
PSNR↑ SSIM↑ VIF↑ BRISQUE↑ NIQE↓

TV[155] 31.40 0.9108 0.6575 49.40 10.77
DBGAN[151] 37.75 0.9271 0.6350 54.72 10.27

Deblur-
GANv2[285]

37.43 0.9156 0.6282 58.01 10.50

DMPHN[153] 37.92 0.9346 0.6465 54.85 10.26
MPRNet[284] 38.04 0.9271 0.6430 57.43 10.49
MIRNet[144] 40.07 0.9259 0.7074 59.38 9.05
Uformer[154] 39.49 0.9433 0.7457 59.36 9.21

TCFA 40.05 0.9518 0.7517 60.06 8.61
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Figure 5.5: Quantitative comparison with state-of-the-art deblurring methods in terms of the
quantity test on BRISQUE/NIQE.

Table 5.3: Quantitative comparison with state-of-the-art uneven illumination correction methods
in terms of six image quality assessment metrics.

Image Quality Assessment Metrics
PSNR↑ SSIM↑ VIF↑ BRISQUE↑ NIQE↓ LOE↓

AFGT[171] 21.16 0.9163 0.4798 44.54 5.28 1094
FLM[16] 18.80 0.8092 0.7672 42.67 5.73 974

LIME[173] 25.02 0.7847 0.5692 40.54 5.43 946
RetinexNet[175] 26.47 0.8500 0.8261 45.10 4.83 1199

Enlighten-
GAN[174]

29.21 0.9732 0.8425 50.20 5.06 709

MIRNet[144] 28.21 0.9782 0.8375 43.55 5.15 1033
FCN[166] 28.63 0.9819 0.8269 43.79 4.78 853

Uformer[154] 28.29 0.9786 0.8324 43.46 5.03 887
TCFA 30.46 0.9870 0.8501 46.37 4.54 747

superiority. Compared to the current state-of-the-art approach Uformer, our method
improves the quality performance, especially in uneven illumination situations indicating
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Figure 5.6: Quantitative comparison with state-of-the-art uneven illumination correction methods
in terms of the quantity test on BRISQUE/NIQE/LOE.

that our model is able to effectively exploit the relationship between distorted image
feature and the distortion level features which boost the attention performance.

Since neural networks are well known to be very efficient when they are tested in
different levels of distortion (blind enhancement), we propose to evaluate the performance
of different enhancement methods with respect to the degraded level. For this reason,
for each kind of distortion, images affected by each of the four levels are separately
tested and compared.

Fig. 5.7 illustrates the performance of various methods on different quality assessment
metrics at varying levels of distortion. As previously mentioned, these plots serve to
confirm the high efficiency and effectiveness of recent deep-learning methods such as
Uformer[154], EnlightenGAN[174], and MIRNet[144] in comparison to earlier methods
like LIME[173] and CycleISP[142] in extracting deep features from original images.
Moreover, these plots demonstrate the impact of increasing distortion levels on the
performance of these methods. It is evident that the aforementioned CNN-based methods
exhibit a significant drop in performance with increasing distortion levels. However,
recent methods such as Uformer[154], EnlightenGAN[174], MIRNet[144], as well as the
proposed method appear to be less sensitive to distortion levels. Importantly, the results
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Figure 5.7: Effect of the distortion level on the performances for different enhancement methods.
The first column shows a performance comparison among different denoising methods. The
second column highlights the performance of deblurring methods, while the third column presents
the comparative results for correcting uneven illumination.

also indicate that our proposed TCFA method outperforms state-of-the-art approaches
and exhibits greater robustness to serious degradation.
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4.3.2 Visual Quality Comparison

As shown in Fig. 5.8,5.9,5.10, which presents a visual illustration of the reconstructed
results with various methods, TCFA’s results are closest to the reference images. Indeed,
our method outperforms others in some aspects. Firstly, as we can observe in the first
row of denoising, our approach is better able to recover image details, which can be
attributed to the high PSNR achieved by minimizing the reconstruction loss. In contrast,
other methods tend to over-enhance images, leading to unexpected blurring. Secondly,
as shown in the second row of deblurring, our network produces visually clearer results
compared to other methods, which are only able to partially remove the blurry effect.

Furthermore, when it comes to handling uneven illumination, it has been observed
that certain low-light enhancement methods such as LIME, and RetinexNet tend to
produce over-exposure artifacts, which may even exhibit missing information. Meanwhile,
the results obtained by Uformer are generally darker compared to other methods. The
results from EnlightenGAN, FCN and MIRNet are also unsatisfactory in producing
visually pleasing results in terms of both brightness and naturalness. On the other hand,
TCFA is able to successfully enhance the dark areas while preserving the texture details
and avoiding over-exposure artifacts. This visualization underscores the drawbacks
associated with many low-light enhancement methods and highlights the potential of
TCFA as a superior solution.

4.3.3 Statistical Comparison

The box chart compares the distribution of quality assessment scores for different
enhancement methods on denoising, deblurring and uneven illumination. Each box
represents the Interquartile Range (IQR) of each metric for each method, with the
median score indicated by a line within the box. The whiskers extend to the highest
and lowest values within 1.5 times the IQR, while outliers beyond this range are
plotted as individual points. In Figure 5.11, the detailed statistics of the number of
outlier points are summarized to provide insight into the data. Additionally, for a
comprehensive comparison, the statistics of reference images (Ref.I.) are presented based
on No-Reference IQA metrics.

As presented in the box plots shown in Fig. 5.11a and Fig. 5.11d, it is evident that
there is a significant variation in the denoising performance among the compared methods.
Especially, the median SSIM score of TCFA was substantially higher (0.98) compared
to the other methods, whose median scores ranged from 0.89 to 0.93. Additionally, the
IQR of DANet[143] was considerably lower than that of the other methods, indicating
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Figure 5.8: Visual comparison of the reconstruction methods of denoising.
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Figure 5.9: Visual comparison of the reconstruction methods of deblurring.
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Figure 5.10: Visual comparison of the reconstruction methods of uneven illumination correction.
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Figure 5.11: Statistical Comparison of different enhancement methods. The first column shows
a comparison among different denoising methods. The second column highlights the performance
of deblurring methods, while the third column represents the comparative results for correcting
uneven illumination. The first row and the second row show the box plots of the results from
different enhancement methods while the third row illustrates the pairwise comparison of the
corresponding method on different IQA metrics. In each box plot, the number of outliers related
to each considered method is also presented.

that it was less efficient in its performance. On the other hand, MIRNet[144] exhibited
the widest IQR and the most outliers, implying that its performance was less predictable.
Overall, these results clearly highlight the substantial difference in performance among
the various denoising methods, with TCFA demonstrating the most effective denoising
performance for WCE images.

The box plots generated in Fig. 5.11b and Fig. 5.11e revealed that TCFA blurring
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had the highest median score compared to the other tested methods. In addition, TCFA
blurring had a narrow IQR and few outliers, indicating that it performed consistently
across a majority of the quality metrics. On the other hand, Uformer[154] had a similar
median score to TCFA blurring but exhibited a wider IQR and more outliers, implying
that its performance may not be as reliable across diverse image types and scenarios.
Notably, both TCFA blurring and Uformer outperformed the other tested methods,
suggesting that they may be the optimal choices for blurring images.

In the context of uneven illumination correction, low-light enhancement techniques
were also evaluated to assess their effectiveness in addressing the problem. Results
from Fig. 5.11c and Fig. 5.11f revealed that deep-learning-based low-light enhancement
methods outperformed two traditional techniques for uneven illumination correction.
This finding highlights the potential of deep-learning techniques in addressing issues
related to uneven illumination and suggests that they may be a promising alternative for
uneven illumination correction. Additionally, it is worth noting that while EnlightenGAN
demonstrated competitive performance in terms of median values, the performance of
TCFA consistently ranked among the top three methods with the best performance.
This finding suggests that while EnlightenGAN may offer a viable option for certain
applications, TCFA may be the more reliable choice overall.

Nonetheless, when evaluating multiple methods using individual image quality
assessment (IQA) metrics, it is unsatisfactory to conclusively establish the overall
superiority of any one method. This is because each method can be optimized based
on the specific metric being evaluated. Therefore, further investigation and evaluation
are required to fully assess and compare the performance of these methods in various
scenarios and contexts. Due to the drawbacks of evaluating methods using singular
IQA metrics, we have selected the pairwise comparison [286] as a more comprehensive
alternative for this study. This statistical test allows for a head-to-head comparison of
two methods by analyzing their performance across a range of IQA metrics. As a result,
we can produce a concise and dependable comparison of all considered methods, covering
multiple IQA metrics. This will enable us to obtain a more meticulous comprehension
of the advantages and limitations of each method, and consequently, derive more robust
conclusions regarding their overall performance.

To conduct pairwise comparisons, it is important to establish comparison labels.
While there is no definitive guideline for determining the number of labels or points to
be used, increasing the number of differentiation options can lead to greater difficulty
for the evaluator in justifying their placement. In this study, we have opted to use a
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3-point scale as shown in Table 5.4:

Table 5.4: Pairwise Comparison technique - conversion scale.

Ratings Description Conversion Inverse

BT
Row’s method exhibits better performance

compared to the column’s concerning one IQA metric.
1 WT

AGA
Row’s method exhibits the same performance

compared to the column’s concerning one IQA metric.
1/2 AGA

CWT
Row’s method exhibits worse performance

compared to the column’s concerning one IQA metric.
0 BT

Fig. 5.11g, 5.11h, and 5.11i shows the pairwise comparison results with respect to
denoising, deblurring, and uneven illumination correction, respectively. It is evident
that the TCFA method displays superior performance in comparison to other methods
across several IQA metrics. This substantiates the conclusion that TCFA is a promising
approach for image quality enhancement, given its consistently high-performance scores
across various metrics. This finding carries significant implications, suggesting that
TCFA could potentially serve as a robust candidate for practical applications in the
field of image processing and analysis.

5 Conclusion

In summary, the novel Triplet Clustering Fusion Autoencoder (TCFA) method presented
in this study serves as an effective solution to elevate the quality of WCE images across
various distortion levels, encompassing noise, blur, and uneven illumination. By adeptly
categorizing the severity levels of each distortion type and adeptly extracting both local
and global information from the degraded images, the TCFA method demonstrates a
substantial enhancement in the performance of image enhancement tasks. Altogether,
the TCFA method represents a promising avenue for ameliorating the quality of WCE
images, with the potential to significantly bolster the accuracy and efficacy of medical
diagnosis and treatment. With image quality enhanced, the subsequent chapter will
delve into the classification phase, further advancing the capabilities of this approach in
the domain of medical image analysis.
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The proposed image classification method: Dilated
Window-based Self-Attention Self-Supervised Learn-
ing for Classification in Wireless Capsule Endoscopy

The recent development of Wireless Capsule Endoscopy (WCE) has seen a surge
in interest in computer-aided and vision-based solutions, aiming to automate the
detection of abnormalities within imagery. While these developments hold great
promise, one of the fundamental hurdles in building an effective computer-aided
diagnostic (CAD) system for WCE lies in the limited availability of labeled data.
To address these complexities and reduce the labeled-data requirement, we propose
a novel self-supervised learning method, Dilated Window-based Self-Attention
Self-Supervised Learning (DWSA-SSL), tailored for distinguishing various WCE
pathologies. Recognizing the challenges posed by the inter-class similarity and intra-
class variance in the WCE dataset, we introduce the Shifted-Dilated Window-based
Self-Attention (S-WDSA) module within a Transformer-based architecture. This
module generates attention maps that encompass not only image patches within
the attention window but also their interactions with surrounding windows. The
contributions outlined in this study have a profound impact on the enhancement
of image classification tasks, as substantiated by a series of extensive experiments
conducted on WCE images sourced from the Kvasir-Capsule dataset. Our proposed
method undergoes rigorous evaluation on images characterized by significant class
imbalance, showcasing its remarkable performance compared to several state-of-
the-art approaches.1

Abstract
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1 Introduction

Gastrointestinal (GI) cancers constitute a significant portion of digestive system cancers,
and became a prevailing concern for public health policies. In 2020, the United States
recorded over 300k fresh instances of digestive system cancer diagnoses, with GI tract
cancers representing a substantial portion. Correspondingly, an estimated 80k individuals
might have succumbed to GI tract cancers during the same year [287].

Wireless capsule endoscopy (WCE) [288] has emerged as a highly effective tool for
investigating disorders within the gastrointestinal tract and enables painless imaging
of the intestine. However, the widespread applicability and adaptation of WCE face
significant challenges related to factors such as efficiency, tolerance, safety, and per-
formance. Moreover, the manual analysis of the extensive dataset generated by WCE
presents a time-consuming task requiring specialized skills from medical professionals
[289]. Consequently, there has been a growing interest in developing CAD solutions to
address these concerns and enable automated analysis for the detection of abnormalities.

In the area of medical image analysis, one of the key challenges of developing a
CAD system is the availability of labeled data, particularly when it comes to WCE
images [290]. The process of manually annotating and labeling large datasets is not
only time-consuming but also requires expertise and domain knowledge from medical
professionals. Consequently, the limited availability of labeled WCE images poses a
significant obstacle to training accurate and reliable models. Therefore, the use of
unlabelled data holds great promise. By effectively harnessing the untapped information
contained within unlabelled WCE images, it becomes possible to train models that
are better equipped to detect abnormalities, classify different pathologies, and support
medical practitioners in their diagnostic tasks.

Recently, the exploration of semi-supervised learning (SSL) [291] techniques within
the domain of WCE image processing presents an opportunity to overcome the limita-
tions imposed by the scarcity of labeled data. While semi-supervised learning can be
advantageous in certain scenarios, it also has some drawbacks when applied to WCE
image classification. Indeed, WCE datasets with labeled data are often scarce and
expensive to obtain, as they require expert annotations. This scarcity of labeled data
restricts the effectiveness of semi-supervised learning, as it heavily relies on a small set
of labeled examples to guide the learning process. Insufficient labeled data can lead to
sub-optimal performance and limited generalization. Besides, semi-supervised learning
algorithms usually make assumptions about the underlying data distribution. More
precisely, to efficiently generate the pseudo label for unlabeled data, the labeled data
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has an assumption to be clustered. In WCE image classification, these assumptions
may not hold true due to the complex and diverse nature of gastrointestinal images.
The inter-class similarity and intra-class variance in the WCE dataset play a challenge
in generating discriminative features for pseudo-label learning. If the labeled data is not
representative of the entire data distribution or contains biases, the classifier may learn
and propagate those biases, resulting in biased predictions. Moreover, unlabeled data,
which is abundant in semi-supervised learning, may contain noise, outliers, or irrelevant
samples. When incorporating this noisy data into the training process, the classifier can
inadvertently amplify the impact of the noise, leading to erroneous predictions. Noise
in the unlabeled data can adversely affect the performance and reliability of the WCE
classification model.

To deal with these labeled-data requirement difficulties, we propose a novel Dilated
Window Self-Attention Self-Supervised Learning (DWSA-SSL) method to identify by
classification from WCE images, various GI pathologies/findings, namely erythema,
angiectasias, blood-fresh, erosion, ulcers, lymphangiectasia, polyp, and normal clean
mucosa. Besides, the inter-class similarity and intra-class variance in the WCE dataset
present a challenge in generating discriminative features for classification. In fact, the
regions around the lesion can be considered as a joint criterion to classify the presented
pathology. From this observation, we propose the Shifted-Dilated Window-based Self-
Attention (S-WDSA) in the Transformer-backbone which generates the attention map
between not only the image patches in the attention window but also in-cooperated
surrounding windows.

The training phase of the proposed two-branch SSL method is performed with two
main tasks including the pretext task and the downstream task. In the pretext task,
known as the upstream task for pre-training, both online and target branches are used
to guide the model to learn intermediate representations of unlabelled WCE images.
The target is only updated from the knowledge transfer process of the online branch.
Once the pretext task, the downstream task training is processed only on the target
model to the specific WCE classification task. Downstream tasks are provided with less
quantity of labeled WCE images. In the testing phase, the target model is evaluated
with the WCE image testing set.

The main contributions of our work can be summarized in three points:

• We propose a comprehensive asymmetric SSL network structure for WCE image
classification. It is successful in understanding the underlying structural meaning
of WCE images which is beneficial for the practical downstream task in the second
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branch. The ability to train SSL models with unlabeled WCE images speeds up
the overall training process and empowers the model to learn underlying semantic
features without introducing label bias.

• We propose to use the transformer-backbone to reduce the redundant and noisy
information for image classification thus avoiding biased performance. Transformer
can highlight the most important regions in images. Therefore, it is beneficial
to introduce the attention mechanism to focus on lesions while making diagnosis
predictions. Moreover, the proposed S-WDSA module generates a hybrid attention
embedding that is based on both image patches in the attention windows and
between in-cooperated surrounding windows. By integrating information from both
local and global contexts, the S-WDSA module enriches our model’s understanding
of the image, thereby enhancing its ability to make accurate and contextually
informed diagnostic predictions.

• In self-attention, the learned attention maps of some blocks and heads are fre-
quently dominated by a few pixel pairs which makes the attention map biased to
some specific region. To ease this case, we propose a scale-soft-cosine attention
approach that computes the attention logit of the pixel pair by a soft-cosine
function which results in the attention map value being much milder than in the
original configuration.

The subsequent sections of this work are structured as follows. Section 2 presents the
recent related classification methods applied on WCE. Following this, Section 3 covers the
fundamental concept of self-supervised learning while also engaging in a comprehensive
discussion of several established self-supervised methods that have notably influenced
and inspired the development of our proposed approach. Subsequently, Section 4
provides a detailed account of the proposed method. After that, Section 5 furnishes the
experimental results, encompassing the ablation study and a thorough comparison with
state-of-the-art methods. These results offer empirical validation of the efficiency of our
proposed approach, further substantiating its contributions to the field. Finally, this
chapter concludes in Section 6, summarizing the key findings and implications of this
work.

2 Related Works

Significant efforts have been directed towards the development of robust and efficient
methods for classifying abnormalities in Wireless Capsule Endoscopy (WCE) images.
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These endeavors can be broadly categorized into three primary groups: traditional
machine learning techniques, deep learning-based methods, and more recent attention-
based approaches.

Within the domain of conventional machine learning-based methods, diverse tech-
niques have been explored and employed for a range of tasks, including classification,
regression, and clustering. In a study by Sekuboyina et al. [292], the initial step
involves the conversion of endoscopy images into CIE-Lab and YCbCr color spaces.
Subsequently, the a-channel of the CIE-Lab space serves as input for a convolutional
neural network (CNN) to conduct classification. To tackle the challenge of imbalanced
data, the Synthetic Minority Over-sampling Technique (SMOTE) is implemented as a
method for oversampling to address the imbalance issue. Sindhu et al. [293] initially
extracted conventional SIFT features in conjunction with Haralick texture features.
These two sets of features are then merged to define the characteristics of image patches,
which are subsequently fed into a Neural Network (NN) for supervised classification.

In a related study carried out by Sharif et al. [294], a combination of geometric
attributes and CNN-derived features is employed. The geometric attributes are generated
through the transformation of the image into the CIELab color space, followed by the
application of a thresholding technique. Concurrently, CNN features are extracted using
the VGG16 and VGG19 networks. These combined features are then used as input for
K-nearest neighbor classification.

Working toward the achievement of Deep Learning-based methods’ efficacy, which
has been substantiated in multi-pathology classification [225], [295], the procedure
involves extracting texture attributes. These attributes encompass features such as local
binary patterns and haralick features, in addition to more traditional descriptors like
joint composite descriptor, auto color correlogram, color layout, and edge histogram.
These various features are amalgamated and input into a CNN for the classification
task.

Lan et al. [226] introduce a novel deep cascade network known as cascade-proposal,
tailored for multi-pathology classification. Their method encompasses two primary
components: firstly, the generation of a limited set of region proposals with high recall,
achieved via a region proposal rejection module; in parallel, the identification of abnormal
patterns through a detection module. To pinpoint regions of interest, they employ the
multi-regional combination (MRC) technique, and for precision in region localization,
they use the salient region segmentation (SRS) method. Additionally, they integrate
the dense region fusion (DRF) method to enhance the refinement of object boundaries.
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Sadasivan et al. [222] tackle the challenge of multi-pathology classification by
segmenting WCE images into multiple patches. Each patch is characterized based on
extracted color and texture attributes derived from the chromatic components found
within the CIE Lab color space. To categorize these patches, K-means clustering is
applied to group the extracted attributes into distinct clusters, followed by the utilization
of dictionary learning for classification purposes.

In recent years, attention techniques have emerged as a prominent approach for
improving multi-pathology classification tasks. Attention mechanisms enable models
to selectively focus on important regions or features within an image, enhancing over-
all classification performance by highlighting relevant information while suppressing
irrelevant or noisy signals. Several recent studies have explored the application of
attention mechanisms in this context. Xing et al. [227], [296] proposed a method that
incorporates attention mechanisms and deformation to zoom in on lesions. They extract
attention maps using self-attention and then use deformation techniques to zoom in
on the identified lesion region. By comparing the self-attention maps before and after
deformation, they generate a final attention map for classification.

To address the challenge of value bias in attention loss, Guo and Yuan [297],
[298] introduced the use of angular loss for classification. They applied attention
mechanisms to generate different attention maps of multi-level features. Additionally,
they incorporated a semi-supervised approach to handle unlabeled data. In a similar
vein, Zhao et al. [299] employed multiple attention layers and used the adaptive cosine
loss for classification refinement. By incorporating attention mechanisms, they aimed
to enhance the discriminative power of the model.

These studies highlight the effectiveness of attention techniques in multi-pathology
classification. Attention mechanisms allow for selective focus on informative regions
or features, thereby improving classification accuracy and robustness. Additionally, to
address specific challenges such as value bias and unlabeled data, innovative approaches
such as self-supervised learning could be considered. For this reason, we propose a new
approach dilated window self-attention SSL which learns from the data itself. We can
train the proposed model not only to look at the main problem area in the image but
also to consider the nearby parts. By doing so, the model not only understands the
main features but also learns how it’s related to the surrounding parts.

Using self-supervised learning is like having a two-in-one benefit. It helps the model
pay attention to the right things and also learn from the context around those things.
This double learning helps us improve how we classify different diseases. It’s like having
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Figure 6.1: A model is first trained with a pretext task with unlabeled data, then fine-tuned on
the downstream task with a limited amount of labeled data. Usually, convolution layers, which
are mostly responsible for learning representations, are transferred. A few fully connected layers
towards the end are changed or retrained.

a better map of what’s happening in the picture, making our predictions more accurate
and dependable. Before we explain our method in detail, we’ll first talk about the basic
idea of SSL in the next section.

3 Basic concept of Self-Supervised Learning

Self-supervised learning allows us to exploit a variety of labels that come within the
data itself. Producing a dataset with clean labels is expensive but unlabeled data is
being generated all the time. To make use of this much larger amount of unlabeled
data, one way is to set the learning objectives properly so as to get supervision from
the data itself.

Since a self-supervised model does not know the actual labels corresponding to
the inputs, its success depends on the design of the pretext tasks to generate the
pseudo-labels from part of the input data. Final performance on the pretext task is not
important, but we hope that the learned intermediate representations can capture good
information and be beneficial to a variety of downstream tasks.

Fig. 6.1 illustrates the process of transferring knowledge from self-supervised training
to supervised training. Once the training of the pretext task network is done, we save
the convolutional layers, which are responsible for generating learned representations.
Then, we train a supervised downstream network with a limited amount of labeled
data, by adding fully connected layers and placing a classifier head. This concept of
knowledge transfer has been embraced by numerous SSL techniques for classification,
which have proven their efficacy in acquiring meaningful representations from unlabeled
data.
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SimCLR: [300] (Chen et al, 2020) introduced an uncomplicated framework for
the contrastive learning of visual representations. This method focuses on acquiring
representations for visual inputs by enhancing agreement between variously augmented
views of the same data sample through the use of a contrastive loss function within the
latent space.

Figure 6.2: A simple framework for contrastive learning of visual representations.

i. Randomly sample a minibatch of N samples and each sample is applied with two
different data augmentation operations, resulting in 2N augmented samples in
total.

x̃i = t(x), x̃j = t′(x), t, t′ ∼ T (6.1)

ii. Given one positive pair, other 2(N−1) data points are treated as negative samples.
The representation is produced by a base encoder f(.):

hi = f(x̃i), hj = f(x̃j) (6.2)

iii. The contrastive learning loss is defined using cosine similarity sim(., .). Note that
the loss operates on an extra projection layer of the representation g(.) rather
than on the representation space directly. But only the representation h is used
for downstream tasks.

zi = g(hi), zj = g(hj)

L(i,j)
SimCLR =− log exp(sim(zi,zj)/τ)∑2N

k=1⊮[k,i] exp(sim(zi,zk)/τ)
(6.3)

where ⊮[k,i] is an indicator function: ⊮ if k , i, 0 otherwise.

SimCLR needs a large batch size to incorporate enough negative samples to achieve
good performance. Fig. 6.3 presents the learning process of the SimCLR algorithm.
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Figure 6.3: The algorithm for SimCLR [300].

BYOL: In contrast to the previously mentioned approaches, BYOL (Bootstrap Your
Own Latent) [301] presents an intriguing deviation. Remarkably, BYOL asserts that
it attains cutting-edge performance without the need for negative samples. Instead, it
utilizes two neural networks, namely the online and target networks, which collaborate
and mutually learn. The target network, characterized by parameter ξ, shares the same
architecture as the online network, parameterized by θ, but with weights smoothed
using the Polyak averaging technique, represented as ξ← τξ + (1− τ)θ.

The primary objective is to acquire a representation denoted as ”y” that can be
applied in subsequent tasks. The online network, defined by the parameter θ, comprises
three key components: an encoder denoted as fθ, a projector called gθ, and a predictor
referred to as qθ.

The target network shares an identical architectural structure with the online network
but employs a distinct parameter, denoted as ξ. The parameter ξ is updated using
Polyak averaging with the θ parameter, as expressed by the equation: ξ← τξ + (1− τ)θ.
Given an image x, the BYOL loss is constructed as follows:

i. Create two augmented views: v = t(x);v′ = t′(x) with augmentations sampled
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Figure 6.4: The model architecture of BYOL. After training, we only care about fθ producing
representation, y = fθ(x), and everything else is discarded. sg means stop gradient.

t∼ T , t′ ∼ T ′

ii. Then they are encoded into representations: yθ = fθ(v),y′ = fξ(v′)

iii. Then they are projected into latent variables: zθ = gθ(yθ),z′ = gξ(y′)

iv. The online network outputs a prediction: qθ(zθ)

v. Both qθ(zθ) and z′ are L2-normalized, giving us: q̄θ(zθ) = qθ(zθ)/|qθ(zθ)|

vi. The loss LBYOL
θ is MSE between L2-normalized prediction q̄θ(z) and z̄′

vii. The other symmetric loss L̃BYOL
θ can be generated by switching v′ and v; that is,

feeding v′ to online network and v to target network.

viii. The final loss is LBYOL
θ + L̃BYOL

θ and only parameters θ are optimized.

In contrast to the majority of widely adopted contrastive learning methods, BYOL
takes a unique approach by not utilizing negative pairs. While many bootstrapping
techniques depend on pseudo-labels or cluster indices, BYOL directly leverages the
latent representation for bootstrapping.

MoCo & MoCo-V2: Momentum Contrast (MoCo [302]) provides a framework of
unsupervised learning visual representation as a dynamic dictionary look-up. The
dictionary is structured as a large FIFO queue of encoded representations of data
samples.

Given a query sample xq, we acquire a representation for the query by utilizing an
encoder, denoted as q = fq(xq), and then obtain a collection of key representations,
k1,k2, . . ., stored in a dictionary. These key representations are generated through
encoding with a separate momentum encoder, ki = fk(xk

i ). It’s worth noting that within
this collection, there exists a single positive key, k+, which corresponds to the query
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Figure 6.5: Illustration of how Momentum Contrast (MoCo) learns visual representations.

q. The authors construct k+ by creating a duplicate of xq with additional variations.
Subsequently, they apply the InfoNCE contrastive loss [303], using a temperature
parameter denoted as τ , to compare one positive sample against a set of N − 1 negative
samples:

LMoCo =− log exp(q ·k+/τ)∑N
i=1 exp(q ·ki/τ)

(6.4)

In MoCo, a dictionary based on a queue system offers us the advantage of reusing
representations from the immediately preceding mini-batches of data. It’s important
to note that the MoCo dictionary does not possess differentiability in the form of a
queue, which means we cannot rely on back-propagation to update the key encoder,
denoted as fk. One simplistic approach could involve using the same encoder for both
fq and fk. However, MoCo takes a distinct approach by suggesting the utilization of a
momentum-based update mechanism, incorporating a momentum coefficient denoted
as m ∈ [0,1). To elaborate, let’s designate the parameters of fq and fk as θq and θk,
respectively.

θk←mθk + (1−m)θq (6.5)

MoCo’s strength, when contrasted with SimCLR, lies in its ability to disentangle
batch size from the number of negatives. SimCLR, on the other hand, necessitates
large batch size to secure a sufficient pool of negative samples, and it faces a decline in
performance when batch sizes are reduced.

4 Proposed Method

In this section, we provide a comprehensive and detailed description of the proposed
DWSA-SSL method. This description will focus on the intricacies of the method,
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Figure 6.6: The pipeline of the proposed DWSA-SSL method. T1,T2 are image augmentations.
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w are the online prediction of z′,z′

w, respectively. k′′,k′′
w are the target

projections (key) of y′′,y′′
w, respectively. EMA: Exponential Moving Average. sg means stop-

gradient.

explaining its components, functionalities, and underlying principles.

Taking inspiration from MoBY [304], our proposed method represents a fusion of two
widely recognized self-supervised learning strategies: MoCo v2 [305] and BYOL [301].
It inherits key elements such as the momentum-based architecture, key queue, and the
application of the contrastive loss, which are drawn from MoCo v2. Additionally, it
adopts characteristics like asymmetric encoders, dissimilar data augmentations, and the
momentum scheduling mechanism present in BYOL.

Fig. 6.6 presents an illustration of the proposed method. It comprises two encoders:
an online encoder and a target encoder. Each of these encoders is composed of a
backbone and a projector head (a 2-layers MLP). Notably, the online encoder introduces
an additional prediction head (also a 2-layers MLP), creating an asymmetry between
the two encoders. During training, the online encoder receives updates through gradient
computations, while the target encoder undergoes adjustments through a moving average
process, employing momentum updates at each training iteration.

4.1 Algorithm

Firstly, our proposed approach operates on pairs of distorted images’ embeddings. To
elaborate, when given a batch of N images represented as X = x1, . . . ,xN , we generate
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two sets of distorted views denoted as X′ = {x′
1, . . . ,x′

N} and X′′ = {x′′, . . . ,x′′} using
two distinct stochastic data augmentation techniques, T1 and T2, respectively.

Subsequently, we employ two transformers, denoted as fθ and fξ, along with two
projectors, gθ and gξ, each characterized by parameters θ and ξ. These components are
used to generate corresponding embeddings, namely z′, z′

w, k′′, and k′′
w. It’s important

to note that z′ and k′′ represent embeddings associated with attention at the image
patch level, whereas z′′

w and k′′
w represent attention at the window level, generated

using the Shifted-Dilated Window-based Self-Attention Transformer. Further details
regarding the backbone will be provided in Section 4.2.

[z′,z′
w] = gθ(fθ(x′)) (6.6)

[k′′,k′′
w] = gξ(fξ(x′′)) (6.7)

To simplify the notation, we assume that the outcomes produced by the projector
have been normalized to unit vectors. In order to introduce an asymmetry into the
architecture, the predictor, denoted as pγ , is responsible for generating the queries,
namely q′ and q′

w, derived from the embeddings z′ and z′
w.

[q′,q′
w] = pγ([z′,z′

w]) (6.8)

4.1.1 Training phase

The training phase of the proposed two-branch SSL method consists of two primary
tasks, the pretext task and the downstream task

i. During the pretext task, which serves as the upstream task for pre-training,
both the online and target branches are utilized to guide the model in learning
intermediate representations from unlabeled WCE images. The knowledge transfer
process from the online branch updates the target branch exclusively.

ii. After completing the pretext task, the downstream task training is conducted
solely on the target model, focusing on the specific WCE classification task. The
downstream tasks are provided with a smaller quantity of labeled WCE images.

In our setting, we apply the same momentum encoder technique as proposed in MoCo
[302], such that only the parameter θ is updated through backpropagation, and the
parameters ξ is the exponential moving average of the parameter θ. At time step t, we
have:

ξt = EMA(θt) = αξt−1 + (1−α)θt (6.9)
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Figure 6.7: Overview of SSL approaches.

4.1.2 Testing phase

In the testing phase, the downstream model of self-supervised learning is used to
validate the image. This involves employing the trained downstream model, which
has been trained using self-supervised learning techniques, to classify the pathologies.
The downstream model acts as a validation mechanism, leveraging the knowledge and
representations learned during the self-supervised learning phase to make informed
judgments about the image’s attributes.

4.1.3 Loss function

Intuitively, the loss function simultaneously addresses two objectives. The first compo-
nent of the loss aims to bring the embeddings of various augmentations of the same image
(referred to as the positive pair) closer together. Conversely, the second component
endeavors to push the negative pair in opposite directions from each other, ultimately
minimizing their exponent. The formulation of this loss function is inspired by the
InfoNCE loss [303], which employs a categorical cross-entropy loss to distinguish the
positive sample from a set of unrelated noise samples.

More precisely, most recent studies typically adhere to the following definition of a
contrastive learning objective, which allows for the incorporation of multiple positive
and negative samples. In this context, we have the data distribution denoted as pdata(.)
over Rn and the distribution of positive pairs, represented as ppos(., .), over Rn×n. It’s
essential that these two distributions adhere to the following conditions:
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• Symmetry: ∀x,x+,ppos(x,x+) = ppos(x+,x)

• Matching marginal: ∀x,
∫

ppos(x,x+)dx+ = pdata(x)

To help an encoder f(x) to learn a L2-normalized feature vector, the contrastive learning
objective is:

Lcontrastive =

E (x,x+)∼ppos,

{x−
i }M

i=1
i.i.d∼ pdata

[
− log ef(x)⊤f(x+)/τ

ef(x)⊤f(x+)/τ +∑M
i=1 ef(x)⊤f(x−

i )/τ

]

≈ E (x,x+)∼ppos,

{x−
i }M

i=1
i.i.d∼ pdata

[
− f(x)⊤f(x+)/τ + log

( M∑
i=1

ef(x)⊤f(x−
i )/τ )]

=−1
τ
E(x,x+)∼pposf(x)⊤f(x+)

+Ex∼pdata

[
logEx−∼pdata

[ M∑
i=1

e(f(x)⊤f(x−
i )/τ)]]

(6.10)

where M is the number of negative samples. Therefore, the InfoNCE can be written
into:

LInfoNCE = −1
N

N∑
i=1

f(x)⊤f(x+) + τ

N

N∑
i=1

log
M∑

j=1
ef(x)⊤f(x−

i )/τ (6.11)

Given that the lesion can be represented not only within the attention window but also
identified by the neighboring regions, it becomes imperative to enhance the efficiency
of its representation. By capturing the spatial relationships and dependencies among
adjacent regions, we propose a novel Window-based Contrastive Loss LWC as:

LWC(q′,q′
w,k′′,k′′

w) =−1
N

N∑
i=1

q′⊤
i k′′

i

cos(q′
w−i,k′′

w−i)

+ τ

N

N∑
i=1

log
M∑

j=1
e

(
q

′⊤
i

k′′
j

cos(q′
w−i

,k′′
w−j

) /τ

)
,

(6.12)

where cos(.) denotes the cosine similarity. The occurrence of inter-class similarity and
intra-class variance can be attributed to the resemblance observed in the surrounding
regions of the lesion. Consequently, using cosine similarity enables the model to
effectively consider and measure the similarity between these entities. By employing
cosine similarity, the model incorporates a quantitative assessment of the similarity,
which aids in discerning both the resemblances and disparities within and across different
classes.

In the following section, we would like to provide the details of the used backbone in
the proposed method, named Shifted-Dilated Window-based Self-Attention (S-DWSA)
Transformer.
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Figure 6.8: The architecture of the S-DWSA Transformer.

4.2 S-DWSA Transformer backbone

An overview of the S-DWSA Transformer architecture is presented in Figure 6.8. It first
splits an input RGB image into non-overlapping patches by a patch-splitting module,
like ViT. Each patch is treated as a “token” and its feature is set as a concatenation
of the raw pixel RGB values. In our implementation, we use a patch size of 4× 4 and
thus the feature dimension of each patch is 4× 4× 3 = 48. A linear embedding layer is
applied to this raw-valued feature to project it to an arbitrary dimension (denoted as
C).

Several S-DWSA Transformer blocks are applied to these patch tokens. The S-DWSA
Transformer blocks maintain the number of tokens (H/4×W/4 ), and together with
the linear embedding are referred to as “Stage 1”.

To produce a hierarchical representation, the number of tokens is reduced by patch-
merging layers as the network gets deeper. The first patch merging layer concatenates
the features of each group of 2× 2 neighboring patches and applies a linear layer on
the 4C-dimensional concatenated features. S-DWSA Transformer blocks are applied
afterward for feature transformation, with the resolution kept H

8 ×
W
8 . This first block

of patch merging and feature transformation is denoted as “Stage 2”. The procedure
is repeated twice, as “Stage 3” and “Stage 4”, with output resolutions of H

16 ×
W
16 and

H
32 ×

W
32 , respectively.

4.2.1 S-DWSA Transformer block

The S-DWSA Transformer is established by substituting the standard multi-head self-
attention (MSA) module within a Transformer block with a module inspired by the
shifted windows technique derived from the Swin Transformer [306], while maintaining
consistency in the remaining layers. As illustrated in Fig. 6.9, an S-DWSA Transformer
block comprises a Shifted-Dilated Window-based MSA module, followed by a 2-layer
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Figure 6.9: Two successive S-DWSA Transformer Blocks.

MLP incorporating GELU non-linear activation functions in between. Following each
MSA module and each MLP, we apply a LayerNorm (LN) layer, and we incorporate a
residual connection after each module.

It’s notable that exploiting varied drop path rates within the residual connections in
an asymmetric style has shown its benefits, particularly in addressing tasks like image
classification and the application of Transformer architectures, as previously seen in
works such as [306], [307]. Consequently, it becomes imperative to subject this aspect
to thorough examination through an ablation study, which we will delve into further in
Section 5.2.

Assuming that each window accommodates patches in a P ×P arrangement, the
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initial module utilizes a standard window partitioning strategy that commences from
the top-left pixel. In this setup, the dilated space is established with a value of ds = 1
(as shown in Fig. 5.3). Subsequently, the subsequent module adopts a windowing
configuration that deviates from the preceding layer’s setup by shifting the windows
by (⌊P

2 ⌋,⌊
P
2 ⌋) patches from the regularly partitioned windows. This shift in window

partitioning also results in a corresponding shift in the dilated window. Therefore,
consecutive computations of S-DWSA Transformer blocks are computed as follows:

[zlw ,z′
l−1] = LN(DWSA(zl−1)), (6.13)

ẑl = [z′
l−1 + β(Conv(zlw))] + zl−1, (6.14)

zl = LN(MLP (ẑl)) + ẑl, (6.15)

[zl+1w
,z′

l] = LN(S-DWSA(zl)), (6.16)

ẑl+1 = [z′
l + β(Conv(zl+1w

))] + zl, (6.17)

zl+1 = LN(MLP (ẑl+1)) + ẑl+1, (6.18)

where zl and zlw denote the output features regarding patch-level attention and window-
level attention at the layer l, β is the regular parameter that controls the impact of
two attention elements, respectively; Conv denotes the convolution layer for shape
consistency. DWSA and S-DWSA denote Dilated Window-based Self-Attention using
regular and shifted window partitioning configurations, respectively. The shifted window
partitioning approach introduces connections between neighboring non-overlapping
windows in the previous layer and the relation between surrounding windows which is
found to be effective in image classification. In the subsequent section, we will present
the details of the Dilated Window-based Self-Attention (DWSA) module.

4.2.2 Shifted-Dilated Window-based Self-Attention

The standard Transformer architecture for image classification [308] both conduct global
self-attention, where the relationships between a token and all other tokens are computed.
The global computation leads to quadratic complexity with respect to the number of
tokens, making it unsuitable for many vision problems requiring an immense set of tokens
for dense prediction or to represent a high-resolution image. Inspired by the Shifted
Window-based Self-Attention (S-WSA) of Swin Transformer [306], we propose a novel
Shifted-Dilated Window-based Self-Attention (S-DWSA) to simultaneously compute
self-attention within local attention windows and the attention based on surrounding
windows (Fig. 5.3). The Dilated Window-based Self-Attention (DWSA) is formulated
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Figure 6.10: An illustration of the Shifted-Dilated Window-based Self-Attention. In layer l,
a regular window partitioning scheme is adopted, and self-attention is computed within each
window (patch-level). On the right, the window-level attention is calculated based on 9 dilated
surrounding windows. In layer l + 1, the window partitioning is shifted, and the self-attention
computation in the new windows crosses the boundaries of the previous windows in layer l,
providing overlapping among them.

as:
z = Attention(Q,K,V) = softmax(sim(Q,K⊤)√

d
+ B)V, (6.19)

where B is the relative position bias term for each attention head; Q,K,V are the
query, key, and value matrices; d is the query/key dimension. The relative position
bias encodes relative spatial configurations of visual elements and is shown critical in a
variety of visual tasks, especially for dense recognition tasks such as object detection.

However, in the original self-attention computation, the similarity terms of the pixel
pairs are computed as a dot product of the query and key vectors. As mentioned in
[309], when this approach is used in large visual models, the learned attention maps
of some blocks and heads are frequently dominated by a few pixel pairs. To ease this
issue, in the Dilated Window-based Self-Attention (DWSA) module, the attention logit
of query qi ∈Q and key kj ∈K by a scaled soft-cosine similarity approach has been
proposed as:

sim(qi,kj) =
∑N

m,n(smnqimkjn)√∑N
m,n smnqimqin

√∑N
m,n smnkjmkjn

/ts, (6.20)

where smn = similarity(featurem,featuren) and ts is a learnable scalar, non-shared
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across heads and layers. In this work, the Jaccard coefficient is considered as the
similarity index. If there is no similarity between features (smn = 1,smn = 0 for m , n),
the given equation is equivalent to the conventional scaled-cosine similarity formula.
Unlike scaled-cosine similarity proposed in [309], scaled soft-cosine similarity can capture
the underlying similarities, taking into account not just the direction of the feature
vectors, but also their semantic magnitude. This enables a better comparison, allowing
for accurate discrimination to handle inter-class similarity and intra-class variance in
WCE image classification.

5 Experimental results

To assess the efficiency of the novel methodologies, comprehensive experiments have been
undertaken. The initial set of experimental trials is aimed at studying the impact exerted
by distinct parameters inherent to the formulated S-DWSA framework. Subsequently, a
comparative analysis is executed between the aforementioned S-DWSA architecture and
contemporary cutting-edge classification techniques. This comparative assessment is
designed to discern the relative performance and capabilities of the proposed approach
concerning established state-of-the-art methods within the domain of WCE classification.

5.1 Experimental setting

In this subsection, we will focus on the optimization process, provide a comprehensive
overview of the dataset employed, and explore the selection of metrics for conducting
meaningful performance comparisons.

Following the preceding section, the proposed methodology encompasses a dual-
encoder configuration: an online encoder and a target encoder. Each of these encoders
comprises a foundational backbone and a projector head, realized as a two-layer Multi-
Layer Perceptron (MLP). A distinctive attribute of the online encoder is the inclusion
of an auxiliary prediction head, also a two-layer MLP. This introduction of asymmetry
between the two encoders delineates their respective roles.

5.1.1 Optimization

The training process of the online encoder is updated through gradient-based updates,
while the target encoder is refined via a momentum-based moving average mechanism
(EMA) during each iteration of the training process. The training process embraced
by our models follows a two-stage routine. The initial phase encompasses what we
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refer to as the ”pretext task,” which acts as the upstream pre-training stage. In this
step, both the online and target branches facilitate the acquisition of intermediate
representations through the use of unlabeled WCE images. The mechanism through
which knowledge is transmitted from the online branch to the target branch embodies a
transfer process, wherein updates propagated through the online branch intricately refine
and exclusively enhance the target branch. This process stage is accomplished over 100
epochs, indicating a defined period during which this knowledge transfer phenomenon
transpires. The optimization detail of the proposed network is shown in Algorithm 6.1.

Subsequently, in the second step, the comprehensive model training proceeds, exclu-
sively centering its focus on the target model. The training process is geared towards the
specific task of WCE image classification. Notably, the downstream tasks in this context
are reliant on a more limited reservoir of labeled WCE images. A consistent learning
rate of 0.001 and a stable weight decay rate of 0.05 are employed in the experimental
sphere, yielding commendable performance. The optimization of hyperparameters is a
critical endeavor in our methodology. Parameters such as the key queue size, the initial
momentum value for the target encoder, the temperature τ , the influence factor β,
and the drop path rates are all subject to hyperparameter tuning, ensuring an optimal
configuration for the peak performance.

5.1.2 Dataset

Experiments were conducted using the Kvasir-Capsule dataset, as outlined in the work
of Smedsrud et al. (2021) [10]. This dataset encompassed a total of 38,837 well-labeled
WCE images representing eight distinct pathological conditions as shown in Fig. 6.11,
alongside an additional 400,000 unlabeled data instances.

More precisely, the labeled WCE images were subjected to a randomized allocation
process to facilitate a four-fold cross-validation procedure, ensuring equitable distribution
across all pathology categories. Notably, the distribution of data within each pathological
class remained uniform after the random partitioning. To diversify the available data,
a set of augmentations, inclusive of horizontal and vertical flips, as well as rotations
(at angles of 0◦, 90◦, 180◦, and 270◦), were systematically employed, resulting in an
eight-fold expansion of the data volume. The subsequent visual representation presents
the distribution of labeled images associated with each distinct class.
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Algorithm 6.1: Pseudo code of DWSA-SSL in a PyTorch-like style.

1 # encoder: S-DWSA transformer-based encoder

2 # proj: projector

3 # pred: predictor

4 # odpr: online drop path rate

5 # tdpr: target drop path rate

6 # m: momentum coefficient

7 # t: temperature coefficient

8 # queue1, queue2: two queues for storing negative samples

9 f_online = lambda x: pred(proj(encoder(x, drop_path_rate=odpr)))

10 f_target = lambda x: proj(encoder(x, drop_path_rate=tdpr))

11 for v1, v2 in loader: # load two views

12 q1’, q2’, q1’_w, q2’_w = f_online(v1), f_online(v2) # queries:

N×C

13 k1”, k2”, k1”_w, k2”_w = f_target(v1), f_target(v2) # keys:

N×C

14 # symmetric loss

15 loss = window_contrastive_loss(q1’, k2”, q1’_w, k2”_w, queue2)

+ window_contrastive_loss(q2’, k1”, q2’_w, k1”_w, queue1)

16 loss.backward()

17 update(f_online)# optimizer update: f_online

18 f_target = m * f_target + (1. - m) * f_online # momentum

update: f_target

19 update(m) # update momentum coefficient

20 def contrastive_loss(q, k, q_w, k_w, queue):

21 k_f = k/cos(q_w,k_w)

22 # positive logits: N×1

23 l_pos = torch.einsum(’nc,nc->n’, [q,

k_f.detach()]).unsqueeze(-1)

24 # negative logits: N×K

25 l_neg = torch.einsum(’nc,ck->nk’, [q, queue.clone().detach()])

26 # logits: N×(1+K)

27 logits = torch.cat([l_pos, l_neg], dim=1)

28 # labels: positive key indicators

29 labels = torch.zeros(N)

30 loss = F.cross_entropy(logits / t, labels)

31 # update queue

32 enqueue(queue, k)

33 dequeue(queue)

34 return loss
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Figure 6.11: The number of images in the various Kvasir-Capsule labeled image classes.

5.1.3 Evaluation metrics

Five assessment metrics were employed to evaluate the effectiveness of the classification
process. These metrics encompass the overall accuracy of the classification, the precision
which quantifies the ratio of correctly predicted positive observations to the total
predicted positives, the recall which measures the ratio of correctly predicted positive
observations to the total actual positives, the F1-score that harmonizes precision
and recall, and lastly, the Matthews correlation coefficient (MCC) that encapsulates
the quality of binary classification predictions. Furthermore, in the context of a
comprehensive evaluation, computations were conducted to determine the count of
parameters involved in the process as well as the number of Floating-Point Operations
Per Second (FLOPS), thereby facilitating a comprehensive benchmarking analysis.

In the subsequent section, these specified metrics will play a pivotal role in the
establishment of an ablation study. This study is designed to meticulously assess and
understand the performance and impact of each discrete constituent comprising the
proposed methodology. Through this examination, we seek to gain comprehensive
insights into the contribution and effectiveness of every element within the proposed



144
Chapter 6. The proposed image classification method: Dilated Window-based

Self-Attention Self-Supervised Learning for Classification in WCE

(c) Blood-Fresh (BF)(a) Erythema (ERY) (b) Angiectasias (ANG)

(e) Erosion (ERO) (f) Ulcers (ULC) (g) Lymphangiectasia (LYM) (h) Polyp (PYL)

(d) Normal Clean  
Mucosa (NCM)

Figure 6.12: Eight pathological classes in the Kvasir-Capsule dataset [10].

approach. By systematically dissecting and evaluating each component, we aim to
discern their individual significance and the collective impact they exert on the overall
system performance. This endeavor will give a better understanding of the inner
mechanism and will guide us in optimizing its constituent parts for enhanced outcomes.

5.2 Ablation study

In this dedicated section, a meticulous process of ablation is embarked upon, strategically
focusing on pivotal design elements inherent to the proposed network architecture.

Firstly, a comprehensive analysis is dedicated to the hyper-parameters employed
within the proposed network. This investigation aims to focus on the effects and
implications of the chosen hyper-parameters on the network’s performance and overall
functionality. Through meticulous examination, we seek to uncover the relationships
between the various hyper-parameters and their impact on the network’s behavior.
This analytical effort ultimately contributes to a deeper understanding of the network’s
intricacies, allowing for informed adjustments and optimizations that can potentially
enhance its performance.

Subsequently, we turn our attention to assessing the performance disparities between
the Shifted-Dilated Window-based Self-Attention mechanism and the initial Window-
based Self-Attention design. Additionally, an in-depth analysis is conducted on the
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scale-soft-cosine attention approach. Through rigorous and systematic analysis, our
objective is to unravel the efficacy and consequential influence exerted by these distinct
attention mechanisms upon the overall performance of the network. This experiment
enables us to extract valuable insights that can aid in shaping a well-informed decision-
making process, especially in the context of selecting the most suitable attention
mechanism for realizing optimal network outcomes.

5.2.1 Ablation on hyper-parameters

Within each ablation experiment, a singular hyper-parameter is subjected to variation,
while the remaining hyper-parameters are maintained at their default values. This ap-
proach allows for an isolated assessment of the impact that individual hyper-parameters
exert on the system’s behavior and performance. By systematically altering one hyper-
parameter at a time and observing resultant changes, we gain insights into the intricate
interplay between these parameters and the overall system dynamics. This method-
ological rigor ensures a comprehensive exploration of the hyper-parameter landscape,
facilitating a nuanced understanding of their individual contributions.

Firstly, the employment of asymmetric drop path rates has proven to be advantageous.
Drop path has emerged as an effective regularization technique in the context of
supervised representation learning, particularly when dealing with image classification
tasks and Transformer architectures. In our analysis, we also investigate the impact of
this regularization strategy, as outlined in Table 6.1.

Table 6.1: Ablation study on the drop path rates of online and target encoders, while holding
other parameters at default including queue size K = 2048, temperature τ = 0.1, momentum
α = 0.99, regular parameter β = 0.75

Online dpr Target dpr
Top-1

Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

MCC (%)
Macro-avg Weighted-avg Macro-avg Weighted-avg Macro-avg Weighted-avg

0.05 0.00 97.52 71.51 98.89 66.53 87.89 68.78 98.88 83.47
0.10 0.00 97.78 71.65 97.62 66.74 87.98 68.93 97.53 85.36
0.20 0.00 97.87 69.53 97.70 65.62 85.83 69.80 98.82 85.35
0.10 0.10 95.51 69.72 96.64 66.66 87.84 65.92 92.69 83.89

Increasing the drop path regularization rate from 0.05 to 0.1 for the online encoder
has proven to be a strategic adjustment that brings about positive outcomes in the
domain of representation learning. This favorable impact can be attributed to its
capacity to potentially mitigate the prevailing issue of overfitting. By enhancing the
regularization rate, the model demonstrates a greater ability to generalize and capture
underlying patterns in the data, resulting in more robust and meaningful representations.
However, when the same drop path regularization is introduced to the target encoder, a
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contrasting and rather unexpected trend emerges. This adjustment leads to a discernible
reduction of not only 2.36% in the top-1 accuracy score, marking a significant decline
from 97.87% to 95.51% but also other comparative metrics. This noteworthy decrease in
accuracy underscores a clear and detrimental impact on the performance of the target
encoder. The pronounced drop in accuracy suggests that the higher regularization rate
of 0.1 might be inducing excessive suppression of information within the target encoder.
Instead of enhancing generalization, the increased regularization appears to hinder the
encoder’s ability to capture intricate details and fine-grained features present in the data.
As a result, the model’s capacity to discriminate and classify accurately is compromised,
leading to a substantial degradation in overall performance.

Next, the temperature hyperparameter τ embedded within the loss function, as
denoted by Equation (6.12), governs the degree to which the model prioritizes the
negative samples from unlabeled data, thereby optimizing the discrimination of features.
Our experimental investigations encompassed the evaluation of network performance
across different values of τ . The corresponding comparative metrics are reported in
Table 6.2.

Table 6.2: Ablation study on the temperature τ , while holding other parameters at default
including queue size K = 2048, momentum α = 0.99, regular parameter β = 0.75 and online
encoder drop rate of 0.1

Temperature
τ

Top-1
Accuracy (%)

Precision (%) Recall (%) F1-Score (%)
MCC (%)

Macro-avg Weighted-avg Macro-avg Weighted-avg Macro-avg Weighted-avg
0.05 95.67 69.77 94.71 64.72 86.82 66.56 95.52 83.55
0.10 97.78 71.65 97.62 66.74 87.98 68.93 97.53 85.36
0.20 97.64 71.25 97.58 65.72 86.91 67.63 97.83 84.56
0.50 97.60 70.56 97.71 65.53 86.89 67.73 98.50 86.57

The results unveil a discernible pattern: as τ is varied within the range of 0.05 to
0.5, the performance of our method exhibits an initial increase followed by a subsequent
decrease. It becomes evident that an extreme case of disregarding the feature distribu-
tion of unlabeled data (τ = 0.05) fails to yield satisfactory classification performance.
Conversely, a network trained with excessive emphasis on negative samples of unlabeled
data (τ = 0.5) is prone to deteriorating performance. This occurs due to the potential
misclassification of truly pseudo-labeled samples into distinct classes, resulting in error
accumulation.

The appropriately selecting the value of τ = 0.1 effectively enhances the accuracy of
deeply learned features, consequently elevating the overall classification performance.
This empirical observation underscores the pivotal role that the temperature hyperparam-
eter plays in striking a balance between leveraging negative samples for discrimination
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and avoiding the pitfalls of overemphasis and misclassification.

Lastly, an analysis is conducted to ascertain the effectiveness of the queue size in
the attention product. This analysis aims to provide insights into how the queue size
influences the performance of the attention mechanism. By investigating the impact of
varying queue sizes, we aim to uncover the optimal configuration that maximizes the
mapping performance of the attention mechanism, thereby contributing to enhanced
model outcomes.

Table 6.3: Ablation study on the queue size, while holding other parameters at default including
temperature τ = 0.1, momentum α = 0.99, regular parameter β = 0.75 and online encoder drop
rate of 0.1.

Queue Size
K

Top-1
Accuracy (%)

Precision (%) Recall (%) F1-Score (%)
MCC (%)

Macro-avg Weighted-avg Macro-avg Weighted-avg Macro-avg Weighted-avg
1024 95.83 68.59 95.52 64.70 85.70 65.82 96.76 87.37
2048 97.78 71.65 97.62 66.74 87.98 68.93 97.53 85.36
4096 96.72 67.70 98.57 67.61 86.98 68.84 97.84 80.46
8192 96.82 67.73 99.51 65.59 82.52 68.58 94.85 83.41

As we can see in Table 6.3, a larger queue size allows the model to store a more
diverse and extensive set of features, thereby enhancing its capacity to recognize intricate
patterns within the data. This, in turn, contributes to better generalization and higher
accuracy on unseen data. However, over-increasing queue size might come at the cost
of the model’s overall performance, as it might not be able to learn and adapt to the
underlying data distribution effectively.

5.2.2 Ablation on scale-soft-cosine attention

Table 6.4 provides a comprehensive evaluation of the performance impact derived from
applying the proposed scale-soft-cosine attention methodologies within the suggested
architectural framework. The experimental results showcase notable enhancements in
accuracy across different attention logits. Specifically, the observed improvements are
quantified at approximately +0.2%, and more than +0.3% of all metrics for the respective
logits categories, thereby highlighting the pronounced benefits of these techniques.

A pivotal observation is the stabilizing influence exerted by the scale-cosine attention
during the training process. As demonstrated in Fig. 6.13, the activation values for
the S-DWSA Transformer at deeper layers exhibit a propensity for explosive growth
in the case of the large model size. In contrast, the newly introduced version of the
model demonstrates significantly milder behavior in this regard. This holds crucial
significance, as the original attention multiplication mechanism leads to divergence
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Table 6.4: Influence of the scale-soft-cosine attention logits in the proposed architecture on the
classification performance.

Logits
Top-1

Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

MCC (%)
Macro-avg Weighted-avg Macro-avg Weighted-avg Macro-avg Weighted-avg

Scale-dot 98.27 70.91 97.79 65.36 86.55 67.59 96.70 84.37
Scale-
cosine

98.46 71.10 98.44 66.19 87.21 68.12 96.71 84.81

Scale-
soft-cosine

97.78 71.65 97.62 66.74 87.98 68.93 97.53 85.36

during self-supervised pre-training for expansive models, while the scale-soft-cosine
attention effectively mitigates this issue, resulting in stable training progress.
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Figure 6.13: The Signal Propagation Plot for various attention logits.

Moreover, in comparison to the scale-cosine attention approach, the proposed soft-
cosine attention manifests a more pronounced distribution of activation. This attribute
facilitates superior propagation of activation signals across the neural network’s layers,
particularly during the initial stages of training (initialization). This dynamic aids
in establishing a solid foundation for the training process and enhances the potential
for efficient information transfer across the network. Therefore, we can confidently
conclude that the utilization of the scale-soft-cosine attention mechanism yields tangible
benefits for our proposed architecture. Therefore, in the subsequent subsection, we
embark on an ablation study of the S-DWSA Transformer integrated with the scale-
soft-cosine attention mechanism. This investigation is undertaken to highlight the
superior performance and efficacy of the proposed method in comparison to other SSL
architectures.
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5.2.3 Ablation on the Shifted-Dilated Window-based Self-Attention

The outcomes of ablating the shifted window approach across the three other SSL
architectures are reported in Table 6.5. Notably, the DWSA-SSL Transformer model
demonstrates superior performance compared to other methods. Specifically, the
improvements are quantified at +1.17%, +1.1%, and +0.92% top-1 accuracy for the
respective methods, thereby highlighting the noticeable benefits of the proposed method.

Table 6.5: Comparison of different SSL architectures.

Method Params (M) FLOPs (G)
Top-1

Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

MCC (%)
Macro-avg Weighted-avg Macro-avg Weighted-avg Macro-avg Weighted-avg

MOCO v2 45 4.9 96.61 70.89 97.76 63.71 88.95 76.71 93.67 86.90
BYOL 42 4.6 96.68 66.86 95.68 58.69 86.52 61.54 95.51 76.79
MOBY 29 4.5 96.86 46.91 92.74 50.61 76.50 48.88 94.70 73.50

DWSA-SSL 31 4.6 97.78 71.65 97.62 66.74 87.98 68.93 97.53 85.36

These results notably underscore the efficacy of incorporating shifted windows as a
mechanism for establishing interconnections among windows across preceding layers. The
substantial performance gains across diverse tasks affirm the advantage of this approach,
suggesting that the utilization of shifted windows contributes to enhanced modeling
capabilities and more effective information propagation throughout the network. This
phenomenon can be attributed to the fact that the encoder concentrates its processing on
crucial regions, precisely determined by the Shifted-Dilated Window-based Self-Attention
(S-DWSA) modules. This focused attention enables the extraction of pertinent features,
thereby facilitating precise and robust classification of abnormalities.

Furthermore, it’s important to note that the incorporation of window-level atten-
tion confers additional benefits to the architecture, resulting in a noteworthy 0.92%
improvement in accuracy. This is owing to the fact that the window-level attention map
is capable of encapsulating valuable texture information from the neighboring areas.
The integration of such texture details proves advantageous, subsequently leading to en-
hanced classification performance. This interplay between patch-level and window-level
attention mechanisms thus demonstrates their synergistic effect in achieving improved
classification outcomes.

To further analyze the effectiveness of the window-level attention feature, we turn
our attention to the hyper-parameter β. The purpose of this analysis is to delineate
the optimal combination that maximizes the performance benefits achieved through the
synergy of these attention mechanisms.

As discernible from Table 6.6, an interesting pattern becomes evident concerning the
hyper-parameter β. Specifically, when β assumes a value of 0.75, the method attains
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Table 6.6: Influence of the window-level attention in the proposed architecture on the classification
performance.

Beta
Top-1

Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

MCC (%)
Macro-avg Weighted-avg Macro-avg Weighted-avg Macro-avg Weighted-avg

0.50 95.70 68.64 98.53 65.94 86.87 68.76 94.98 84.57
0.75 97.78 71.65 97.62 66.74 87.98 68.93 97.53 85.36
1.00 95.83 70.53 95.76 63.57 85.62 67.98 94.54 82.64
1.50 92.64 67.71 93.59 64.77 84.63 67.88 93.88 82.64
2.00 92.83 65.91 92.50 63.67 81.89 61.71 91.68 80.51

its peak performance. This observation underscores the pivotal role played by this
hyper-parameter in influencing the method’s efficacy. A value of β at this level effectively
capitalizes on the salient information originating from the adjacent regions, resulting
in heightened performance outcomes. However, a subsequent increase in β triggers an
influx of redundant information, ultimately culminating in misclassification events. This
empirical insight underscores the delicate balance that β strikes between leveraging
surrounding context and avoiding the perils of information redundancy, consequently
delineating the optimal configuration for achieving peak method performance. Subse-
quent to conducting the ablation study, the optimal parameters that yield the most
optimal performance characteristics are selected for the purpose of comparing against
the current state-of-the-art benchmarks.

5.3 Comparison with state-of-the-art methods

In this section, we looked at how well our method works by comparing it to eleven
other related approaches in classifying images from WCE. We also explained the other
methods we compared against in Section 2. We tried out these methods on our own
dataset and showed the results for comparison.

Table 6.7: Performance comparison with state-of-the-art methods.

Method
Top-1

Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

MCC (%)
Macro-avg Weighted-avg Macro-avg Weighted-avg Macro-avg Weighted-avg

Sekuboyina et al.[292] 91.64 27.58 84.74 25.68 91.60 26.70 87.50 46.67
Sindhu et al.[293] 88.58 23.62 81.79 17.50 88.70 18.53 83.80 47.41
Sharif et al.[294] 93.99 25.75 89.94 33.78 93.61 28.92 91.58 74.30
Cao et al.[295] 86.54 30.90 78.57 31.93 86.75 28.73 81.61 73.48
Lan et al.[226] 96.51 63.59 95.80 61.72 96.96 66.94 94.79 45.07

Sadasivan et al.[222] 89.55 30.75 81.98 36.75 89.76 32.55 85.83 57.57
Xing et al.[296] 93.83 53.61 90.84 38.75 93.79 40.76 90.85 58.69
Xing et al.[227] 96.66 66.74 95.61 58.92 96.52 61.75 95.80 79.99
Guo et al.[297] 96.93 46.75 92.66 50.70 96.74 48.50 94.69 40.76
Guo et al.[298] 94.97 35.54 88.83 40.69 94.62 37.91 91.98 61.41
Zhao et al.[299] 90.89 25.51 81.82 27.91 90.78 26.75 96.69 76.33

DWSA-SSL 97.81 71.53 97.50 66.79 87.58 68.85 97.58 85.36
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Our comprehensive evaluation is presented through two main channels: Firstly,
table 6.7 exhibits metrics used to assess the overall performance in comparison to state-
of-the-art techniques. The results are unequivocal: Our approach surpasses established
methodologies in the domain of WCE image classification. Notably, the work by Xing
et al. (2020) [227] emerges as the closest competitor across all evaluation criteria.
Particularly remarkable is the significant enhancement our method showcases over
this benchmark, achieving an improvement of 2-3% across all evaluated metrics. This
accentuates the capability of our method to discern crucial attributes within WCE
images, even when confronted with unlabelled data.

Table 6.8: Model complexity comparison with state-of-the-art methods.

Method Params (M) FLOPs (G)
Throughput
images / s

Sekuboyina et al.[292] 7.6 1.1 2665.2
Sindhu et al.[293] 3 1 2691.6
Sharif et al.[294] 220 35 94.4
Cao et al.[295] 132 7.63 832.8
Lan et al.[226] 138 15.5 410.8

Sadasivan et al.[222] 143 19.67 143.6
Xing et al.[296] 102 9 1261.6
Xing et al.[227] 86 18.25 343.6
Gou et al.[297] 102 9 1262
Gou et al.[298] 46 5.2 898.8
Zhao et al.[299] 86 16.85 332.8

DWSA-SSL 31 4.6 1060.8

Secondly, our exploration extends to the realm of model complexity. Our model
comprises 31 million parameters, significantly fewer than other deep learning-based
architectures like Sharif et al. [294] with about 220 million parameters, and VGG16-based
models (Cao et al. [295], Lan et al. [226]) with around 130 million parameters. Despite
the fact that our attention-based model integrates a more extensive array of parameters
compared to the conventional machine learning approaches, the computational overhead
associated with this augmented complexity remains well-contained and manageable. It
is noteworthy that the heightened intricacy within our model is counterbalanced by its
remarkable performance, which notably outshines the results achieved by traditional
machine learning methods. This substantiates the appropriateness of the investment
in terms of model complexity, considering the substantial enhancement in predictive



152
Chapter 6. The proposed image classification method: Dilated Window-based

Self-Attention Self-Supervised Learning for Classification in WCE

capability and overall effectiveness.

Turning to computational efficiency, due to our meticulous optimization of Floating
Point Operations (FLOPs), the throughput of our approach has undergone a noteworthy
augmentation. This enhancement is particularly remarkable as it is a direct result of
our method’s efficient utilization of computational resources, leading to substantial
gains in processing speed and overall efficiency. More precisely, our model achieves
a diagnostic speed of approximately 1000 images/ sec. For a complete WCE video
containing 55,000 images, our method requires around 55 seconds for analysis, using
a batch size of 32. This real-time diagnostic capability, alongside its strong accuracy,
underscores the promising potential of our approach in real-world clinical applications.

6 Conclusion

In this chapter, we introduce a pioneering self-supervised learning paradigm, harnessing
a revolutionary Dilated Window Self-Attention Self-Supervised Learning (DWSA-SSL)
as its foundational architectural framework. Distinguished from the Vision Transformer
(ViT), the novel S-DWSA Transformer backbone grants us the capacity to not only ap-
praise the acquired representations but also subject them to a comprehensive evaluation
in subsequent tasks, such as the classification of pathologies within the context of WCE
images.

A distinctive contribution of our method is the application of window-level attention,
a concept that guides the model’s focus not only toward the lesion region but also toward
the pertinent neighboring areas. By facilitating this expanded focus, the model becomes
proficient in incorporating contextual cues, thereby empowering it to aptly classify
the diverse pathologies found within WCE images. As evidenced by our findings, the
performance of the proposed method was significantly overcome with, or experiences only
slight deviation from, the results achieved by supervised methods. This nuanced outcome
signifies a potential avenue for refinement within the domain of self-supervised learning
with Transformer architectures. Our optimism is that these outcomes will catalyze
advancements in self-supervised learning methods designed specifically for Transformer
architectures, ushering in a new era of enhanced performance and understanding in the
realm of medical image analysis.
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This chapter provides a summary of the work presented and the conclusions drawn
from this work. It lists the contributions to knowledge already achieved in this research
and provides directions for future work.

1 Summary and conclusion

In this thesis, we have investigated some issues related to image classification in WCE
imaging. In particular, we have focused on an important factor, namely image quality,
affecting the image classification performance.

Chapter 2: In this chapter, we introduced and discussed the key concepts of our
proposed methods, which encompass aspects like No-Reference Image Quality Assessment
(NR-IQA) metrics, image quality enhancement techniques, and classification methods.
Furthermore, we delved into the existing research works that have been instrumental in
shaping and inspiring our research journey throughout the course of my thesis. This
chapter provides a foundational understanding of the concepts and influences that
underpin our research endeavors.
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Our initial task, as detailed in Chapter 3, revolves around the development of a
dataset, a fundamental component crucial for the effective implementation of learning-
based enhancement techniques. This dataset serves as the basis upon which our
enhancement method relies for effective learning and improvement. To address the
dearth of dedicated quality assessment datasets tailored for Wireless Capsule Endoscopy
(WCE) videos, we proposed the creation of the Quality-Oriented Database for Video
Capsule Endoscopy (QVCED), a dataset specifically designed to evaluate the quality of
WCE videos. It comprises a diverse array of scenarios, encompassing various pathologies
and multiple types of distortions at varying levels, thereby emphasizing realism. The
dataset creation process involves two stages: the careful selection of reference videos
meeting quality criteria from the Kvasir-Capsule dataset and subsequently subjecting
these reference videos to a degradation process, simulating distortions to generate a
comprehensive dataset with diverse video quality variations. This work underscores the
dataset’s significance, showcasing its diversity and broad applicability through a series
of experiments across different modalities.

Chapter 4 focused on addressing uneven illumination (UI) issues in laparoscopy
and WCE images. We introduce a novel UI assessment metric, namely Illumination
Histogram Equalization Difference (IHED), based on the impact of contrast enhancement
on image background illuminance. By quantifying how histogram equalization affects the
spatial distribution of background illuminance, we can effectively evaluate and measure
uneven illumination levels. To enhance sensitivity in scenarios with subtle variations,
we propose an index that divides the standard deviation of the brightness channel by
the mean intensity. Experiments on medical images validate our method’s superior
performance compared to existing IQA methods. This UI assessment metric plays
a crucial role in our image enhancement methodology, enabling precise identification
of areas affected by uneven illumination and ultimately improving image quality and
diagnostic capabilities in different medical imaging modalities.

The creation of our specialized dataset for video quality assessment in the domain
of Wireless Capsule Endoscopy (WCE) and the proposed quality assessment metric are
foundational steps in the development of our image enhancement method. In our third
research work, Chapter 5, we introduced the Triplet Clustering Fusion Autoencoder
for Quality Enhancement of WCE images (TCFA) method for enhancing WCE image
quality, drawing inspiration from attention-based advantages. TCFA employs a dual-
branch autoencoder hierarchical network comprising the Distorted Image Projector
(DIP), Distorted Image Encoder (DIE), Distorted Image Decoder (DID), Distortion
Level Encoder (DLE), and Variational Cross-Attention Module (VCAM). The method
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is extensively evaluated on images with varying distortion levels, demonstrating its
superior performance compared to existing methods. These evaluations rigorously
assess the method’s effectiveness in addressing various image distortions, consistently
showcasing its enhanced capabilities in restoring and enhancing image quality.

In our final research contribution, we expand upon the ideas introduced in Chapter 6
by delving into Self-Supervised Learning (SSL) for image representation. Our SSL
approach outperforms standard supervised methods across seven downstream tasks and
offers a promising alternative to traditional Convolutional Neural Networks (CNNs)
with its Transformer-based backbone. The SSL network comprises two encoders, online
and target, with an asymmetrical structure. During training, the online encoder updates
with gradients, while the target encoder evolves through a moving average of the online
encoder. Within each encoder, a hybrid attention mechanism within the Transformer-
based backbone captures essential contextual information. This design enhances the
SSL network’s robustness and discriminative abilities, especially in classifying WCE
images.

2 Future work and perspectives

Apart from some promising results, the proposed methods have still some limitations
which need to be improved. They are listed below:

i. The effectiveness of the learning-based methods proposed in this thesis relies
significantly on the collection of standard image datasets used for building the
training set. This is because the training set might be skewed towards standard
images. Typically, a larger dataset of standard images is essential to create a
high-quality training set. Consequently, considerable memory capacity is often
needed for this purpose.

ii. It’s important to note that our work does not encompass all possible types of
distortion that can occur in WCE images, and real-life scenarios may introduce ad-
ditional distortions like specular reflection. This is particularly noteworthy because
our IQA metrics rely on the presence of background illuminance. The presence of
specular reflection in WCE images has the potential to impact the performance
of these IQA metrics. Specular reflection, due to its unique characteristics, can
introduce variations in the illuminance, potentially affecting the accuracy of the
quality assessment process. Therefore, the presence of such distortions should be
considered when applying IQA metrics to WCE images in real-world situations.
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iii. Both the image enhancement method and the classification method heavily rely
on the attention mechanism. It’s important to note that training these methods
with attention mechanisms can be computationally intensive and time-consuming.
Additionally, their implementation demands substantial computational hardware
resources to achieve optimal results. Therefore, the efficient utilization of attention
mechanisms in these methods necessitates robust hardware support and patience
during the training process.

As perspectives, some issues will be considered in the future. We can list some important
tasks as follows:

i. To address the reliance on standard image datasets, future research should focus on
the creation of more diverse and comprehensive training datasets that encompass
a wider range of image variations and distortions. This could involve collecting
real-world data and incorporating different levels of distortion, including less
common artifacts like specular reflection, etc. Moreover, the previously defined
hybrid distribution could be employed to accurately simulate uneven illumination,
enhancing the realism of our distortion models.

ii. Developing IQA metrics that are more resilient to various types of distortion,
including specular reflection, is crucial. Future research can focus on designing
metrics that are less sensitive to background illuminance and better equipped to
handle complex illumination scenarios.

iii. Further research into algorithmic efficiency, such as designing attention mechanisms
that require fewer computations, can enhance the speed and efficiency of attention-
based models.

“Any intelligent fool can make things bigger, more
complex, and more violent. It takes a touch of genius
and a lot of courage to move in the opposite direction.

” E. F. Schumacher
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