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General Introduction

Bose-Einstein condensation is a particular state of matter due to the quantum nature of par-
ticles. It arises when a system of bosonic particles reaches a temperature threshold below
which a macroscopic fraction of the ensemble shares the same quantum ground-state wave-
function. This fraction is called the Bose-Einstein condensate (BEC). First predicted by Bose
and Einstein as a direct consequence of quantum statistics [1,2] , Bose-Einstein condensation
was soon after proposed to be at the origin of two spectacular effects displaying a tempera-
ture threshold: the flow without friction of liquid helium and the cancellation of the electrical
resistivity of some metals.

The former phenomenon, called superfluidity, was first observed in 1938 by Kapitza [3],
Allen and Misener [4] simultaneously. That same year, London [5] used the BEC model to
explain the superfluidity of liquid bosonic 4He and to describe some of its transport properties.

The latter, superconductivity, was discovered by Kamerlingh Onnes in 1911 [6], and it
took longer to build a satisfactory quantum theory by Bardeen, Cooper, and Schrieffer in
1957 [7]. In the BCS theory, superconductivity arises from the Bose-Einstein condensation of
bosonic pairs of conduction electrons.
Even if Bose-Einstein condensation is at the core of superfluidity and superconductivity, it is
difficult to test the seminal BEC theory from their experimental study. Indeed, this theory
was describing the behavior of noninteracting bosons like photons, a situation very different
from the one encountered in a liquid or a solid. This is the reason why a sustained theoretical
and experimental effort has been developed in order to produce a dilute Bose-Einstein con-
densate. In such a BEC, the effect of the interactions is weak and well described. Bogolyubov
in 1947 proposed a semi-classical description of this situation, followed by a mean-field theory
by Gross and Pitaevskii [2].
It is during the 1980s that the techniques for trapping and cooling atoms were developed.
Magneto-optical traps combine radiation pressure and Doppler cooling [8–10] to simultane-
ously trap and cool atoms, which are later transferred to a conservative trap, usually magnetic
or optical or a combination of the two. The last step is evaporative cooling [11], where the
phase-space density of the sample is increased by the selective removal of the most energetic
atoms.
First motivated by the quest for polarized hydrogen condensation, these techniques eventually
led to the first experimental evidence of Bose-Einstein condensation in a trapped gas of alkali
atoms [12,13].
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This achievement allowed to accurately study superfluidity via the observation of vor-
tices of quantized circulation [14, 15] and the observation of a critical velocity for frictionless
motion [16]. The confirmation of the Berezinskii-Kosterlitz-Thouless mechanism [17, 18] for
superfluidity in a two-dimensional BEC [19] also illustrates the potential of dilute gases for
fundamental studies. Indeed, in cold atoms experiments, the environment of the system is
well controlled; for example, the trap parameters and the collisional properties can be known
or controlled with high accuracy. It allows to compare quantitatively experimental results to
the underlying quantum theory; for example the mean-field approach of Gross and Pitaevskii
explains very well many properties of the condensate. [2].

This high degree of control also makes cold atomic systems the ideal platforms to perform
what is called quantum simulation [20]. In this situation, the cold atom experiment is a con-
trolled system simulating a given Hamiltonian, which is usually very difficult to compute. A
particular measurement in the system gives the result of the simulation. For example, one can
place a BEC in an optical lattice [21]: the Hamiltonian of the system is the Bose-Hubbard
Hamiltonian, the same which approximates the situation of Cooper pairs in a superconduct-
ing system. Other quantum systems that can be studied are dipolar gases with anisotropic
interactions [22], where one can create a supersolid [23], an exotic state of matter. Other
many-body phenomena in condensed matter could benefit from cold atoms experiments, like
the study of the quantum Hall effect [24]. Another recently developing field of research is
atomtronics [25], where one builds circuits of ultracold atoms in order to perform the equiva-
lent of electronic circuits, but with phase-coherent particles instead of electrons. Such devices
enable, for example, to build an atomic equivalent of a SQUID with a BEC [26]: where the
magnetic flux sensitivity is replaced by rotation rate detection.

Recently, there has been a renewed interest in the cold atom community for the properties
of a superfluid spread at the surface of an hollow spheroid [27]. In the case of a BEC in such
a trap, the collective modes have been theoretically studied, and their modifications at the
transition between a hollow and a conventional topology characterized [28]. The curvature
of the trap and the topology should lead to qualitatively different behavior of the quantized
vortices associated with rotation: pairs of vortices at polar-opposite points should only exist,
and their dynamics should be affected by the local curvature [29]. This topology has not been
experimentally achieved yet for a BEC because in such traps on Earth, gravity usually pulls
the atoms down, preventing them from occupying the whole space available. To circumvent
this effect, one can take advantage of a microgravity environment; this is the case for the
Cold Atom Laboratory on board the International Space Station, where an experiment which
successfully condensed rubidium atoms [30] has been launched.

In the Bose-Einstein condensation experiment at the LPL, a BEC is studied under grav-
ity in a hollow trap made of an adiabatic RF-dressed shell trap [31]. In such a trap, the
atoms are put into a static quadrupolar magnetic field and coupled to a radiofrequency field,
resulting in a bubble-shaped trap oblate along the vertical axis [32, 33]. Because of gravity,
the BEC is located at the bottom of the shell, strongly flattened in the vertical direction.
If the vertical confinement is strong enough, only the ground state of the vertical harmonic
oscillator is populated, and the Bose-Einstein condensate enters a special regime called quasi-
2D. In this regime, the LPL group has studied collective excitations of the BEC [34] and
was able to see the onset of the quasi-2D regime via the modification of the monopole mode
frequency [32]. They also studied in this regime a type of mode particular to superfluids, the
scissors mode [35], and were able to observe a local transition from normal to superfluid via
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the scissors mode’s frequency modification and link the transition to the BKT theory. Using
a rotating deformation of the trap, they were able to impart rotation to the BEC up to 18
times the superfluid critical velocity [36]. At such speed, the centrifugal force makes the atoms
climb up the walls of the shell until they form a ring; in that situation, the atoms ventured for
the first time out of the trap bottom. This was made possible by two very interesting features
of the dressed trap: its smoothness and the very good control of its rotational invariance. In
addition, a vertical force from the RF coupling is always present in the trap, usually smaller
than gravity, and can be increased either by reducing the size of the bubble, or by increasing
the amplitude of the RF field. This led the group to propose a scheme to compensate for
gravity in the shell trap on Earth in the laboratory [37].

All these studies required the accumulation of a series of data in the form of pictures of
the atomic cloud. These pictures are analyzed to extract the relevant physical parameters,
which are usually the number of atoms, the temperature of the sample, the center-of-mass
position, or the shape of the cloud. The number of images in the series varies from tens to
hundreds, especially if one has to perform statistics on the data.

Therefore, in order to accumulate enough data per day, it is useful to automatize as
much as possible the experimental process, especially because a single experimental run lasts
typically one minute. The programming and control of an experimental sequence are done
by a computer, which ensures the communication with the different devices in the laboratory.
At first, the different teams developed their own internal control systems. The BEC team
at LPL has, for example, used since the first experimental setups a C++ software written
by Jakob Reichel. It allowed to perform all the experiments cited above but could only
work on out-of-date hardware and was eventually lacking in versatility. Meanwhile, other
experimental teams put a strong effort into developing very complete software for cold atom
experiments, incorporating data analysis framework [38], and some of these projects have been
distributed [39, 40]. The BEC team decided to choose one of them for their new experiment
control system.

One has to recall that cold atom experiments are complex ones, and the optimization
of all the parameters is a long process, and a new feature in these recent projects is that
they allow for machine-learning based optimization. These algorithms are used in different
scientific communities such as quantum information [41, 42], cosmology [43–45], and even in
medical studies to detect pathologies [46]. For example, in the evaporative cooling phase, one
has to set the radio frequency ramp by maximizing the phase-space density of the cloud in
the trap, using a trial-and-error procedure. In order to have an automatic determination of
the best ramp signal, physicists started to use machine-learning algorithms to optimize all
kinds of processes in experiments [47–49] such as the size of the cloud in a magneto-optical
trap or the image analysis [50, 51]. The first algorithms used were simple genetic algorithms,
which aim at mimicking the natural selection process [52] but more complex ones have been
used, like Gaussian process regression or neural networks [53].

There have been three axes treated during my time as a PhD student. I have implemented
the new control system on the experiment, and tested the optimization of some phases in the
sequence with machine learning, along with the experimental study of gravity compensation
in the shell trap. The study of gravity compensation in the dressed-quadrupole trap is the
conclusion of the experimental investigation started during Yanliang Guo’s PhD. The experi-
mental sequence had been rethought and led to systematic studies on the different intermediate
stages of gravity compensation. In parallel, a fully numerical model has been developed to
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be compared to the experimental results. For the change of the control system, all the func-
tionalities of the former system have been re-implemented in order to take advantage of the
features of the new control system, including the easy implementation of machine-learning
algorithms in order to perform automatic optimization.

The document is divided into five chapters :

• Chapter 1 provides the reader with a description of the system studied in this thesis.
Firstly, the dressed trap used in the experimental setup is described, and its geometrical
properties are detailed. Secondly, elements of Bose-Einstein condensation are given,
including the specificity of the quasi two-dimensional regime.

• Chapter 2 describes the experimental setup and the sequence needed to achieve Bose-
Einstein condensation in the dressed trap. It begins with a reminder of the properties of
the rubidium atom and the lasers needed to cool it down. Then the cooling procedure
is described, along with the necessary equipment. Ultimately, the imaging system is
described.

• Chapter 3 describes the experimental work on gravity compensation. It starts with a
description of the mechanism that allows to cancel the effect of gravity in the dressed
quadrupole trap. Then the experimental sequence is described, with a particular empha-
sis on the fine tuning of the RF polarization to obtain the most rotationally symmetric
trap possible. The ring shaped form of the condensate that appears when gravity is
overcompensated is explained by the zero-energy point of the transverse confinement,
and a comparison of the observations with an improved numerical model is given.

• Chapter 4 is dedicated to the presentation of the Labscript suite, the new control system
installed on the experiment. It begins with the introduction of the four different pieces
of software in the suite. Then the interaction between the different devices and the
control system is detailed. This is followed by a description of the implementation of
the Labscript Suite. This chapter ends with a list of proposals for future improvements
to the new control system.

• The final chapter 5 describes the use of machine-learning algorithms in the experimental
sequence. It starts by explaining how the algorithms are implemented, and the construc-
tion of the cost to optimize is detailed. The different algorithms used are presented, and
the different optimization attempts done during the PhD are detailed and analyzed.
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Chapter 1
Elements of Bose-Einstein
condensation in radiofrequency
dressed trap.

This first chapter aims at giving a brief description of the fundamental physics motivating
the experimental work done in this thesis. There are two distinct elements to introduce: first,
the trapping of atoms in an adiabatic potential using a radio frequency field, and second, a
description of the Bose-Einstein condensation. These two notions will be introduced in this
order.

To start, the RF-induced adiabatic trapping of atoms provides a highly versatile trap
for atoms: the principle is to couple Zeeman substates in a magnetic field. This creates an
avoided crossing, hence trapping the atoms on an isomagnetic surface. It was proposed in
2001 by O. Zobay and B. M. Garraway [54] and the first implementation in the LPL group
dates back to 2003 [55]. By controlling both the magnetic and radiofrequency fields, one
can access different types of geometry, such as a double well [56], a ring-shape [57,58], and a
lattice [59,60], to name a few. This part of the chapter closely follows Ref. [61]. A presentation
of the quadrupole dressed trap used on the experimental work of the thesis will be presented.
A reader willing to know more about this trapping technique is encouraged to read Ref. [33].

As the experiment does not trap only one atom but a collection of atoms at low temper-
atures, a description of the Bose-Einstein condensation [2] will be presented. It will start by
describing the Bose-Einstein condensation. As the experiment conducted for this thesis was
done in a quasi-2D system, the last section of this chapter will be dedicated to this regime.

1.1 Trapping atoms with combined magnetic fields and RF
fields

The specificity of the experimental setup is the ability to trap atoms using a static magnetic
field and a radio-frequency field. This section aims at describing the principle of this interac-
tion. The question is: How to trap atoms at a position chosen by the experimentalist using a
static magnetic field and an oscillating magnetic field?
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1.1.1 An angular momentum coupled to a radiofrequency field

In this part, a brief description of the principle of this trap will be given. To start, there is a
static magnetic field along the 𝑧−axis B0(𝑟) = 𝐵0(r)ez, by definition of the 𝑧−axis (chosen
along the field).

Atoms in a static magnetic field

The first step to describing the behavior of atoms in our trap is to describe the interaction
between the atom and a magnetic field. Let us consider an atom having a total angular
momentum 𝐹 immersed in a static magnetic field. The total angular momentum is an operator
noted F̂, and represents the sum of the nuclear angular momentum, the orbital angular
momentum, and the electronic spin. The quantization axis is given by the direction of the
field. There exists a basis where both the modulus square of F, noted 𝐹 2, and the projection
of F along the e𝑧, noted 𝐹𝑧 are diagonal. This basis represents the eigenstates of our system
with eigenvalues:

F̂𝑧 |F,𝑚F⟩ = 𝑚Fℏ |F,𝑚F⟩ F̂
2 |F,𝑚F⟩ = ℏ2F(F + 1) |F,𝑚F⟩ (1.1)

Where F is the quantum number associated to F̂2 and 𝑚F is the quantum number associated
to F̂𝑧 which is the spin projection on the 𝑧−axis, and 𝑚F ∈ {−F,−F + 1, . . . ,F − 1,F}.
The energy of the interaction between the spin and the magnetic field is formalized by the
following Hamiltonian:

𝐻̂0 =
𝑔F𝜇𝐵
ℏ

B0 · F̂ =
𝑔F𝜇𝐵
ℏ

𝐵0(r)F̂𝑧 (1.2)

In this expression, 𝑔F is the Landé factor of the state, and 𝜇𝐵 is the Bohr magneton. The
eigenstates of this Hamiltonian are called Zeeman states and are the |𝐹,𝑚F⟩ formalised pre-
viously. The eigenenergy associated with this state is given by:

𝐸𝑚F = 𝑚F𝑔F𝜇𝐵𝐵0(r) (1.3)

As 𝑚F and 𝑔F can both be positive or negative, the eigenenergies of each state can be either
positive or negative. In order to make the distinction more visible, we introduce the parameter
𝑠 = 𝑔F

|𝑔F| , which represents the sign of the Landé factor. The energy of the states can be

rewritten as 𝐸𝑚F = 𝑠𝑚Fℏ𝜔0 where 𝜔0 is the Larmor frequency and is given by 𝜔0 =
|𝑔F|𝜇𝐵𝐵0

ℏ
and describes the spacing between Zeeman levels.

For the rubidium in the setup, we are in the situation where 𝑠 = −1 and F = 1. This leads
to the states |𝑚F⟩ characterized by 𝑚F < 0 attracted to regions where there is a minimum of
the magnetic field. In that case, we talk about "low-field seeking states". On the contrary,
when 𝑚F > 0, the atom is attracted to the regions with the greatest magnetic field, which are
referred to as "high-field seeking states." But Wing’s theorem stipulates that no maximum
magnetic field exists in free-space [62]. That’s why we trapped the atoms in a low-field seeking
state.

Radiofrequency field

In addition to the static magnetic field, an oscillating magnetic field is shone onto the atoms.
A classical description of the oscillating magnetic field is given by:

B(𝑡) = 𝐵𝑥 cos(𝜔rf𝑡+ 𝜑𝑥)e𝑥 +𝐵𝑦 cos(𝜔rf𝑡+ 𝜑𝑦)e𝑦 +𝐵𝑧 cos(𝜔rf𝑡+ 𝜑𝑧)e𝑧 (1.4)
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This is an expression using real numbers, but using complex numbers is more convenient.
In such a case, the expression becomes B(𝑡) = ℬ1𝑒

−𝑖𝜔rf 𝑡𝜖 + 𝑐.𝑐., where 𝜖 represents the RF
field’s complex polarization and ℬ its complex amplitude. The vector 𝜖 norm is equal to 1.
Furthermore, the goal of these formulae is to describe the coupling between the RF-field and
the atom in our trap, and the usual basis (e𝑥, e𝑦, e𝑧) is inconvenient. We prefer to use the
spherical basis instead, noted (e+, e−, e𝑧), where:

e+ = − 1√
2
(e𝑥 + ie𝑦) e− =

1√
2
(e𝑥 − ie𝑦) (1.5)

It should be remembered that in our example, the static field is along the 𝑧-axis and provided
that 𝐵𝑧 ≪ 𝐵0, the effect of the RF field along 𝑧 is negligible [33]. Hence, only the radiofre-
quency field in the plane orthogonal to the 𝑧-axis is considered. The expression of 𝐵0 in the
spherical basis using complex amplitude is given by:

ℬ1𝜖 = 𝐵+e+ +𝐵−e− (1.6)

Where 𝐵± = e*± · 𝜖ℬ1 = 1
2
√
2
(∓𝐵𝑥𝑒

−𝑖𝜑𝑥 + 𝑖𝐵𝑦𝑒
−𝑖𝜑𝑦). When projecting F̂ on the spherical

basis, we obtain:

F̂ · e± = ∓ 1√
2
F̂± (1.7)

With F̂+ as the raising operator and F̂− as the lowering operator. These expressions using
the Cartesian basis are: F̂± = F̂𝑥 ± 𝑖F̂𝑦.

Coupling between atoms and the radiofrequency field

Now that we have a description of the RF fields, one must describe the coupling between
the RF field and the angular momentum of the atom. Because the rf-field is an oscillating
magnetic field, the expression (1.2) holds true, and thus:

𝑉1 =
𝑠|𝑔𝐹 |𝜇𝐵

ℏ
ℬ1𝜖 · F̂𝑒−𝑖𝜔rf 𝑡 + ℎ.𝑐. (1.8)

When writing the field on a spherical basis, we ignored the component of the magnetic field
along the 𝑧−axis. This leads us to a new expression of the coupling terms using the ladder
operators F̂±:

𝑉1 = 𝑠
|𝑔F|𝜇𝐵

ℏ
[︀
− 1√

2
𝐵+F̂+ +

1√
2
𝐵−F̂−

]︀
𝑒−𝑖𝜔rf 𝑡 + ℎ.𝑐.

= 𝑠
[︁Ω+

2
F̂+𝑒

−𝑖𝜔rf 𝑡 +
Ω−
2

F̂−𝑒−𝑖𝜔rf 𝑡 +
Ω*
+

2
F̂−𝑒𝑖𝜔rf 𝑡 +

Ω*
−
2

F̂+𝑒
𝑖𝜔rf 𝑡

]︁ (1.9)

Where Ω± = ∓
√
2 |𝑔F|𝜇𝐵

ℏ 𝐵± represents the complex coupling amplitude. These terms couple
the different Zeeman sub-states |𝑚F⟩.

The total Hamiltonian of the system is given by a total of two contributions: the first
comes from the atom levels, and the second term describes the way the field and the atom
interact with one another:

Ĥ = 𝑠𝜔0F̂𝑧 + 𝑠
[︁Ω+

2
F̂+𝑒

−𝑖𝜔rf 𝑡 +
Ω−
2

F̂−𝑒−𝑖𝜔rf 𝑡 +
Ω*
+

2
F̂−𝑒𝑖𝜔rf 𝑡 +

Ω*
−
2

F̂+𝑒
𝑖𝜔rf 𝑡

]︁
(1.10)
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Another point of view is that the first term of the Hamiltonian corresponds to a precession of
𝐹 around the 𝑧-axis, and all the terms in square brackets represent all the different couplings
between the Zeeman substates and the RF field. In order to go further, one needs to see that
the Hamiltonian in (1.10) is time-dependent with rotating terms. The expression (1.10) is set
in the lab frame, which is at rest, and this does not seem practical. The oscillating terms
will introduce time dependencies, and it will be of great help to find a formulation that is
time-independent. Hence, changing the system to a rotating frame depends on:

• s - the sign of the rotation will be dictated by the sign of the Landé factor.

• 𝜔rf - the important frequency one should consider is the RF-field frequency at which
the atom is in resonance with.

This corresponds to the following transformation:

|𝜓⟩𝑟𝑜𝑡 = 𝑅̂𝑧(𝑠𝜔rf𝑡) |𝜓⟩ = exp

(︂
−𝑖𝑠𝜔rf𝑡

ℏ
𝐹𝑧

)︂
|𝜓⟩ (1.11)

Where 𝑅̂𝑧(𝑠𝜔rf𝑡) = exp
(︁
−𝑖 𝑠𝜔rf 𝑡

ℏ 𝐹𝑧

)︁
denotes the rotation corresponding to the transition from

the laboratory frame to the rotating frame around the 𝑧−axis at a frequency 𝜔rf . This trans-
formation had to be considered in the system’s time evolution. Therefore, the Schrödinger
equation giving the time evolution of the system is written as:

𝑖ℏ𝜕𝑡(|𝜓⟩) = −𝑖ℏ𝑅̂†[︀𝜕𝑡𝑅̂]︀ |𝜓⟩+ 𝑅̂†𝐻̂𝑅̂ |𝜓⟩ = 𝐻̂eff |𝜓⟩ (1.12)

In this basis, we have to introduce the detuning given by 𝛿 = 𝜔rf − 𝜔0. The effective
Hamiltonian now reads:

𝐻̂eff = −𝑠𝛿F̂𝑧+𝑠
[︁Ω+

2
𝑒𝑖(𝑠−1)𝜔rf 𝑡F̂+ +

Ω*
+

2
𝑒−𝑖(𝑠−1)𝜔rf 𝑡F̂−

]︁
+𝑠
[︁Ω−

2
𝑒−𝑖(𝑠+1)𝜔rf 𝑡F̂− +

Ω*
−
2
𝑒𝑖(𝑠+1)𝜔rf 𝑡F̂+

]︁ (1.13)

Regardless of the sign of s, the behavior will always be the same: there are two coupling
terms that don’t oscillate in the new frame; these terms are said to be resonant, and the two
remaining terms that oscillate at ±2𝜔rf ; known as the oscillating terms. Because the oscillating
terms are almost averaged out to 0, we neglect them. This leads us to consider a time scale of
order

√
𝛿2 +Ω2, and this approximation, called the rotating wave approximation, is valid as

long as
√
𝛿2 +Ω2 ≪ 𝜔rf . When this approximation is applied, only two terms remain. Their

coupling strengths are Ω𝑠 = Ω1 and Ω1 = −
√
2𝑔𝐹𝜇𝐵ℬ1

ℏ , resulting in the effective Hamiltonian
being:

𝐻̂eff = −𝑠𝛿F̂𝑧 + 𝑠
Ω1

2

[︁
F̂+ + F̂−

]︁
= −𝑠𝛿F̂𝑧 + 𝑠Ω1F̂𝑥 = 𝑠

√︁
𝛿2 +Ω2

1 F̂ · u (1.14)

This corresponds to the Hamiltonian of a particle with angular momentum F̂ coupled to an

effective magnetic field Beff =
ℏ
√

𝛿2+Ω2
1

𝑔𝑆𝜇𝐵
u𝜃. The unitary vector u𝜃 is given by:

u = cos(𝜃) e𝑧 + sin(𝜃) e𝑥 cos(𝜃) =
−𝛿√︀
𝛿2 +Ω2

1

sin(𝜃) =
Ω1√︀
𝛿2 +Ω2

1

(1.15)
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This expression corresponds to a rotation of angle 𝜃 around the 𝑦−axis. So the 𝐻̂eff has
it’s eigenstates |𝜓′⟩ = 𝑅̂𝑦(𝜃) |𝑚F⟩ with the eigenenergies 𝐸𝑚F = 𝑚Fℏ

√︀
𝛿2 +Ω2

1. This is the
dressed potential seen by the atoms in our trap.

Figure 1.1 – Representation of the upper dressed state F = 1 (red solid line) and the
bare states (black dashed line).

As shown in Fig.1.1, there is a geometrical interpretation of the different terms presented
previously. At first, the minimum of potential for the dressed state is located where the
coupling is resonant with the RF-field, i.e., where 𝜔0 = 𝜔rf . Also, the term Ω1 gives the
spacing between two dressed states when the coupling is resonant, as indicated in the scheme.
Finally, the detuning has a special role: when the detuning is positive, the upper dressed
eigenstate is almost the Zeeman state |𝑚F = 1⟩, whereas when the detuning is negative, the
eigenstate is almost |𝑚F = −1⟩. One of the rf-field effects on the atom is to flip its angular
momentum when it crosses the resonance. This observation will be used when talking about
the dressed trap loading in Chap.2.

Adiabaticity condition

The principle behind the potential studied in this thesis has been set, but one has to be careful
because the atoms can move inside the trap and trapping is not homogeneous. In order to
simplify our problem, we will look at an atom with F = 1

2 , that is, a two level system. This
gives the following effective Hamiltonian:

𝐻̂eff =

(︂
−𝛿(r) Ω1(r)
Ω1(r) 𝛿(r)

)︂
(1.16)

The description of an atom in a space-dependent system can quickly become mathemat-
ically heavy as the position and momentum operators don’t commute. We will restrict our
study to a semi-classical model. We first have to give some elements of the situation in the
trap:

• The atoms are point-like : r = ⟨𝑅̂⟩ and ΔR = 0.

• 𝛿 and Ω1 depends only on space.
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• The motion of an atom is done at constant velocity inside the trap, therefore it leads to
r(𝑡) = v𝑡

The consequence of these statements is that we pass from a problem dependent on r to a
problem that only depends on time:

𝐻̂eff =
ℏ
2

(︂
−𝛿(𝑡) Ω1(𝑡)
Ω1(𝑡) 𝛿(𝑡)

)︂
(1.17)

Now, for a given time, the Hamiltonian can be diagonalized with a unitary 𝑈̂(𝑡), and this
becomes:

𝐻̂𝐴 =
ℏ
2

(︂
𝜆(𝑡) 0
0 −𝜆(𝑡)

)︂
= 𝑈̂ †(𝑡)𝐻̂𝑈̂(𝑡) (1.18)

Where the ℏ
2𝜆 are the eigenenergies, which are now time-dependent. To know the dynamics

of the system, we start with the Schrödinger equation:

𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑡) = 𝐻̂𝐴Ψ(𝑡) (1.19)

With Ψ being the state of the atom. However, the most convenient formulation would be to
use the time-dependent yet diagonal basis of the 𝐻̂𝐴 operator. In this basis, the expression of
the state becomes Ψ(𝑡) = 𝑈̂(𝑡)Ψ𝐴(𝑡), the Hamiltonian is given by 𝐻̂eff = 𝑈̂(𝑡)𝐻̂𝐴𝑈̂

†(𝑡), and
to express the Schrödinger’s equation in this new basis gives us following expression:

𝑖ℏ
𝜕

𝜕𝑡
Ψ𝐴(𝑡) = 𝐻̂𝐴Ψ𝐴(𝑡) + 𝑖ℏ

𝜕𝑈̂ †

𝜕𝑡
𝑈̂Ψ𝐴(𝑡) (1.20)

The behavior of the system will be the following: the first term is diagonal, and as long as
the second term doesn’t become too "large", you will follow the eigenstates of your system.
This evolution is called adiabatic. The adiabatic behavior correction, i.e., the last term in the
expression (1.20), takes the following form:

ℏ
2

(︂
0 𝛾(𝑡)

𝛾*(𝑡) 0

)︂
(1.21)

Where 𝛾(𝑡) denotes the deviation from adiabatic coupling between the 𝐴 eigenstates. Its
expression is:

𝛾(𝑡) = −𝑖 𝛿̇(𝑡)Ω1(𝑡)− 𝛿(𝑡)Ω̇1(𝑡)

𝜆(𝑡)2
(1.22)

And for the non-adiabatic term to remain small, we have to ensure that it satisfies the adia-
baticity condition given by:

|𝛾(𝑡)| ≪
√︁
Ω2
1(𝑡) + 𝛿2(𝑡) (1.23)

Which, corresponds to the condition |𝜃| ≪
√︀
𝛿2 +Ω2

1 or equivalently
⃒⃒
𝛿̇Ω1−𝛿Ω̇1

⃒⃒
≪ (𝛿2+Ω2

1)
3
2

in the case of expression (1.14). There is a particular case close to point out where Ω = 0.
This means that the RF field isn’t coupled to the Zeeman sublevel. In that case, there is
necessarily a level crossing leading to spin-flip transitions that results in the loss of atoms in
the trap.
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1.1.2 The dressed quadrupole trap

The principle of trapping atoms with a dressed potential is well established. This is the time to
expose the specificity of the trap used for the experimental work in this PhD: the magnetic field
arises from two coils in an anti-Helmholtz configuration, generating a quadrupole magnetic
field. This part closely follows the Ref. [63]. The specificity of such a setup is a magnetic field
that vanishes at the center of the trap. This quadrupole field has the following expression
near the trap center:

𝐵0(r) = 𝑏′(𝑥e𝑥 + 𝑦e𝑦 − 2𝑧e𝑧) (1.24)

Where 𝑏′ is the magnetic field gradient. Arising from the field expression, one can express the
Larmor frequency felt by the atoms:

𝑙𝑏(𝑟, 𝑧) =
√︀
𝑥2 + 𝑦2 + 4𝑧2 =

√︀
𝑟2 + 4𝑧2 𝜔0(r) = 𝛼

√︀
𝑥2 + 𝑦2 + 4𝑧2 𝛼 =

|𝑔𝐹 |𝜇𝐵𝑏′
ℏ

(1.25)

As described in Sec.1.1.1, the atoms are trapped along the isomagnetic surface defined by
𝜔0 = 𝜔rf . This condition describes an ellipsoidal surface with a horizontal radius twice as
large as its vertical one. The expression on this surface is:

𝑥2 + 𝑦2 + 4𝑧2 = 𝑟2𝑏 𝑟𝑏 =
𝜔rf

𝛼
(1.26)

Furthermore, gravity pulls the atoms towards the bottom of the trap. This contribution
always aligns with the 𝑧-axis. This results in having a compressed disc of atoms at the very
bottom of our trap.

However, an important point has to be raised: the results derived do not take into account
the relative orientation of the magnetic field and the polarization of the atoms. All the
derivations of Sec.1.1.1 were performed with the magnetic field direction as the quantization
axis 𝑧. It is thus necessary to give an expression of the unitary vector along the direction of
the magnetic field that we now call u:

u =
𝑥e𝑥 + 𝑦e𝑦 − 2𝑧e𝑧√︀

𝑥2 + 𝑦2 + 4𝑧2
(1.27)

Local coupling in the trap

As stated in the previous section, the expression of the dressed potential of atoms is:

𝑉𝑚F(r) = 𝑚Fℏ
√︁
𝛿2(r) + Ω2

1(r) (1.28)

The difference between the previous expression and this one is the space dependence of the
coupling amplitude. The two contributions have significantly different behaviors:

• The detuning’s spatial dependence (𝛿(r)): this term is responsible for locating the min-
imum of potential on an isomagnetic surface. The expression of the detuning is:

𝛿(r) = 𝜔rf −
|𝑔F|𝜇𝐵𝐵0(r)

ℏ
(1.29)

• The coupling amplitude’s spatial dependence (Ω1(r)): the local coupling amplitude
had been computed in the rotating wave approximation, as stated in Sec.1.1.1. To
understand this term’s dependence, consider the magnetic field’s orientation (noted as
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u) and the RF field polarization (noted 𝜖). By taking these parameters into account,
the expression is [33] :

Ω1(r) = −
√
2
𝑔F𝜇𝐵
ℏ

ℬ1e
*
𝑠(r) · 𝜖(r) = −ΩRF e*𝑠(r) · 𝜖(r) (1.30)

ΩRF =
√
2
𝑔F𝜇𝐵
ℏ

ℬ1 (1.31)

Because the coupling is affected by the relative orientation of the field and polarization,
there may be some points where the coupling vanishes. These points will be referred to as
"holes" and they have an important role in the experimental studies conducted in chapter 3.
It is important to know where they are because they could act as an atom sink inside our
trap, and we would lose atoms if they came too close to them. This section will continue with
the calculations done in specific polarization cases.

Also, the polarization is always considered on the x-y plane. The coils that generate the
RF field were carefully aligned perpendicular to the 𝑥 and 𝑦 axes. However, if some small
misalignments are observed, they will effectively weaken the Landé factor instead of having a
direct effect on the polarization.

Circularly polarized radiofrequency

At first, the atoms stay at the bottom of the bubble (u = e𝑧) and the RF field is polarized
circularly along the 𝑧-axis in a 𝜎𝑠 state:

𝜖 = − 1√
2
(𝑠e𝑥 + 𝑖e𝑦) (1.32)

In such a case, the resonant coupling amplitude is given by:

|Ω1(r)| =
Ω0

2
(1 + 𝑠

2𝑧

𝑙𝑏(𝑟, 𝑧)
) (1.33)

Where Ω0 is the maximum of coupling on the resonant surface and 𝑙𝑏(𝑟, 𝑧) is defined in (1.25).
One can see that there are two contributions:

• The minimum of potential is at the very bottom of the bubble. This determines the
position where the atom is trapped. When the polarization is 𝜎𝑠 the maximum of
coupling is at the bottom of the bubble, whereas when the rf is 𝜎−𝑠 polarized, the
maximum of coupling is at the top. As we are interested in having the maximum
number of atoms at the bottom of the bubble, we set 𝑠 = −1.

• On the resonant surface, where the potential is equal to the coupling amplitude, it
becomes weaker and weaker as the atom gets closer to the hole. This acts as an attraction
felt by the atoms toward the hole.

On top of these contributions, one should add the gravity that pushes the atom at the bottom
of the bubble. To stay at the very bottom of the trap, the gravity had to be larger than the
variation of the coupling:

FℏΩ0 < 𝑀𝑔 𝑟𝑏 (1.34)

Where 𝑟𝑏 is defined in (1.29). An alternative formulation of this condition can be set. Let
us first define the magnetic gradient to gravity ratio: 𝛽 = F ℏ𝛼

𝑀 𝑔 . The condition can now be
reframed as:

Ω0

𝜔rf
<

1

𝛽
(1.35)
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Figure 1.2 – Transverse view of the bubble trap for circular polarization along z.
The red shade indicates the position of the cloud. The blue dot at the top shows where
the hole position is.

Interestingly enough, this condition has to be true for another reason: to stay within the
boundary of the rotating wave approximation. Therefore, one has to ensure the gradient of
Rabi coupling is strictly inferior to gravity for our atom trap to be well described by the model
we have developed so far.

As gravity plays a pivotal role, one has to take it into account to determine the position
at which the atoms are at rest in the trap. The gravity will shift downward from the position
where the atoms lie in the trap. This position will be given by 𝑧 = −𝑅 [32] with:

𝑅 =
𝑟𝑏
2

(︃
1 +

1√︀
4𝛽2 − 1

Ω0

𝜔rf

)︃
(1.36)

Around the minimum of potential, one can consider the trap harmonic and isotropic. The
atoms are squeezed at the surface of the bubble along the 𝑧-axis, and the coupling in the x-y
plane is looser. By doing a second order development of the full potential around 𝑅, one can
find the oscillation frequencies:

𝜔⊥ =
𝑔

4𝑅

(︂
1− 𝐹ℏΩ0

2𝑀𝑔𝑅

√︂
1− 1

4𝛽2

)︂ 1
2

(1.37)

𝜔𝑧 = 2𝛼

√︂
𝐹ℏ
𝑀Ω0

(︂
1− 1

4𝛽2

)︂ 3
4

(1.38)

Following [64] and for clarity’s sake, we introduce 𝛾 which describes the coupling gradient
to gravity ratio:

𝛾 =
𝐹ℏΩ0

𝑀𝑔𝑅

√︂
1− 1

4𝛽2
(1.39)

This simplifies the expression of 𝜔⊥, which now becomes:

𝜔⊥ =
𝑔

4𝑅

(︂
1− 𝛾

2

)︂ 1
2

(1.40)

The case where the radiofrequency field is circularly polarized is the one used on the exper-
imental setup. In a normal configuration, the RF frequency is 𝜔RF = 300 kHz, the magnetic
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field gradient is 25.3 kHz · µm−1 and a maximum Rabi coupling of Ω0 = 50 kHz. This corre-
sponds to 𝜔⊥ = 33.6Hz and 𝜔𝑧 = 368.35Hz. As one can see, there is an important difference
between the two oscillation frequencies, which means the trap is highly anisotropic at the
bottom of the bubble. This property will be important later on.

Linearly polarized radio-frequency

As in the previous situation, the atom stay at the bottom of the bubble (u = e𝑧), and the
RF field is polarized linearly along the 𝑥-axis (𝜖 = e𝑥):

|Ω1(r)| =
Ω0

2

√︃
1− 𝑥2

𝑙2𝑏 (𝑟, 𝑧)
(1.41)

There must be |𝑥| = 𝑟𝑏 for the coupling to vanish. Only two points in the system satisfy
this condition: the two points on the equatorial plane of the bubble at 𝑥 = 𝑟𝑏 and 𝑥 = −𝑟𝑏.
Furthermore, the minimum of potential, taking gravity into account, is the same as in the
circularly polarized case stated in (1.36).

Figure 1.3 – Transverse view of the bubble trap for linear polarization along x.
The red shade indicates the position of the cloud. The blue dots at the edges show the
two hole positions.

However, the oscillation frequencies change. There is no longer an orthogonal plane per-
pendicular to the 𝑧−axis where the coupling is always the same. The trap frequencies become:

𝜔𝑥 =

√︂
𝑔

4𝑅

[︂
1− 𝐹ℏΩ0

𝑚𝑔𝑅

√︂
1− 1

4𝛽2

]︂ 1
2

=

√︂
𝑔

4𝑅

[︂
1− 𝛾

]︂ 1
2

(1.42)

𝜔𝑦 =

√︂
𝑔

4𝑅
(1.43)

𝜔𝑧 = 2𝛼

√︂
𝐹ℏ
𝑚Ω0

(︂
1− 1

4𝛽2

)︂ 3
4

(1.44)

General results for elliptical polarization of the radio-frequency field

Here I will present the derivation of the position of the holes for an arbitrary polarization in
the horizontal plane, which can also be found in Ref. [64]. As the elliptical polarization is a
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general case, a few qualitative behaviors can be described before giving the formulae. Before
going any further, some reflections can be drawn from the linearly and circularly polarized RF
field. On the one hand, there is only one hole when the field is circularly polarized along the
𝑧-axis, either at the top for 𝜎− or at the bottom for 𝜎+. On the other hand, when the field is
linearly polarized, there are two holes on the equatorial plane of the bubble positioned along
an axis at the polar opposite position. Furthermore, for the linear polarization case, there is
a coupling anisotropy along the polarization axis, and this is something we expect to observe
for elliptical polarization. The general expression of the dot product with the orientation and
the polarization is given by [33]:

e*𝑠(r) · 𝜖(r) = |𝜖× u+ 𝑖𝑠u× (𝜖× u)|

=
1

2

√︀
1− |𝜖 · u|2 + |𝜖× u|2 + 2𝑖𝑠u · (𝜖× 𝜖*)

(1.45)

Now the elliptical polarization in the plane orthogonal to the 𝑧−axis is given by:

𝜖 = cosΘ e𝑥 + 𝑒𝑖Φ sinΘ e𝑦 (1.46)

Where Θ quantifies the amplitude ratio between the two antennas and Φ is the phase difference
between these same antennas. As detailed in this section, the trap has a shell-shaped geometry
with the atoms confined on the surface. Here is an introduction to new angular coordinates
that make the analytical expression simpler. The coordinates of the holes are determined
when |Ω1|2 vanishes, and their position is given by:⎧⎪⎨⎪⎩

𝑥 = 𝑟𝑏 sin(𝑡) cos(𝜑)

𝑦 = 𝑟𝑏 sin(𝑡) sin(𝜑)

𝑧 = 𝑟𝑏
2 cos(𝑡)

(1.47)

The cartesian coordinates account for the bubble compression along the 𝑧−axis, and the
angles 𝑡 and 𝜑 report the position of the holes on a sphere. Also, the parameters that are
tuned in the experiment are those related to the RF field; it is therefore important to know
how a change in the RF field affects the coordinates of these holes. The relation between the
two sets of parameters is given by [64]:⎧⎨⎩tan(2𝜑) = tan(2Θ) cos(Φ)

cos(𝑡) = sin(2Θ) sin(Φ)

1+
√

1−sin2(2Θ) sin2(Φ)

(1.48)

There are always two solutions for tan(2𝜑) that are aligned along an axis crossing the 𝑧-
axis, and these solutions are 𝜑 and 𝜑 + 𝜋. The 𝜑 angle represents the angle between the
polarization axes and the lab axes. The cos(𝑡) expression determines the vertical position of
the holes on the bubble, and the results for circularly and linearly polarized RF fields are
found. A representation of these two parameters is shown in Fig.1.4.

Now that the hole positions on the ellipsoid are known, having a general formula to
estimate the coupling is necessary. By taking into account the expression (1.45), the coupling
becomes:

Ω2 =
Ω2
RF

2

(︂
1− 𝑟2 + (𝑥2 − 𝑦2) cos(2Θ)− 2𝑥 𝑦 sin(2Θ) cos(Φ)

2𝑙2𝑏
− 2𝑧

𝑙𝑏
sin(2Θ) sin(Φ)

)︂
(1.49)
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(a) Cross view of the trap (b) Top view of the trap

Figure 1.4 – Schematic representation of the ellipsoid with the holes. The red dots
represent the hole. The black solid line represents the ellipsoid trap. The black dashed
line on 1.4a represents the associated sphere of radius 𝑟𝑏.

In order to have a clearer understanding of this expression, one must simplify it:

• Instead of using the x-y axis, it seems more natural to use a frame oriented along the
polarization axes: {︃

𝑥′ = cos(𝜑)𝑥+ sin(𝜑)𝑦

𝑦′ = sin(𝜑)𝑥− cos(𝜑)𝑦
(1.50)

• Let us introduce the coupling anisotropy factor in the x-y plane:

𝜂 =
1 + sin(2Θ) sin(Φ)

2
(1.51)

The values taken are between 0 and 1. When the polarization is circular, the values are
0 and 1, whereas 𝜂 = 1

2 when the polarization is linear. This anisotropy factor has an
effect on the coupling at the bottom of the bubble, which becomes:

Ω0 =
√
𝜂ΩRF (1.52)

The coupling expression becomes:

Ω2 =
Ω2
RF

2

(︂
1− 𝑟2 − 2

√︀
𝜂(1− 𝜂)(𝑥′2 − 𝑦′2)

2 𝑙2𝑏
− 2 𝑧

𝑙𝑏
(2𝜂 − 1)

)︂
(1.53)

The trap frequencies at the bottom of the trap become [64]:

𝜔𝑥 =

√︂
𝑔

4𝑅

[︂
1− 𝛾

2
(1−

√︂
1

𝜂
− 1)

]︂ 1
2

(1.54)

𝜔𝑦 =

√︂
𝑔

4𝑅

[︂
1− 𝛾

2
(1 +

√︂
1

𝜂
− 1)

]︂ 1
2

(1.55)

𝜔𝑧 = 2𝛼

√︂
𝐹ℏ
𝑀Ω0

(︂
1− 1

4𝛽2

)︂ 3
4

(1.56)
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To conclude this part, one last parameter should be mentioned. Even if the coupling anisotropy
is a convenient parameter to describe our system, let us not forget that it has a geometrical
effect on the atom in the trap. This results in a squeeze in the direction where the coupling
is strongest and a looser confinement in the opposite direction. A parameter that describes
this fact is the geometrical anisotropy factor:

𝜀 =
|𝜔2

𝑥′ − 𝜔2
𝑦′ |

𝜔2
𝑥′ + 𝜔2

𝑦′
=
𝛾
√
1− 𝜂

2− 𝛾
(1.57)

1.2 Elements of a Bose-Einstein condensate in an oblate trap

Now that the trapping mechanism has been explained for an atom, there are multiple atoms
trapped inside. The gas formed by these atoms forms a cloud of 87Rb, and when this cloud
is cold enough, a Bose-Einstein condensate forms. That is why a description of such a phe-
nomenon is needed. The study of Bose-Einstein condensation is closely linked to the study of
superfluidity and its dynamical properties, such as the presence of vortices [14].

1.2.1 Bose-Einstein condensation

The Bose-Einstein condensation - excited states saturation

This starts with the description of N bosons with no interaction. Because the ensemble is
at thermal equilibrium and is best described by the grand-canonical ensemble, the chemical
potential 𝜇 should be introduced. We consider a quantum description of our system with
discrete levels, and using the Bose-Einstein statistics, the average number of particles in a
given state j is given by:

𝑁𝑗 =
1

𝑒
𝐸𝑗−𝜇

𝑘𝐵𝑇 − 1

(1.58)

This number of atoms is positive, and it limits 𝜇 to 𝜇 < min(𝐸𝑗). By setting the ground
state energy 𝐸0 to 0 and supposing this state is non-degenerate, with 𝑁0 particle in it, the
chemical potential must be:

𝜇 < 0 (1.59)

In general, the number of particles populating the excited states can be defined by:

𝑁𝑒𝑥𝑐 = 𝑁 −𝑁0 =
∑︁
𝑗>0

𝑍

𝑒
𝐸𝑗

𝑘𝐵𝑇 − 𝑍

(1.60)

Where 𝑍 = 𝑒
𝜇

𝑘𝐵𝑇 is the fugacity, and by definition of the fugacity, 𝑍 < 1. It implies the
existence of an upper bound for the excited state:

𝑁𝑒𝑥𝑐 < 𝑁 (𝑚𝑎𝑥)
𝑒𝑥𝑐 (𝑇 ) =

∑︁
𝑗>0

1

𝑒
𝐸𝑗

𝑘𝐵𝑇 − 1

(1.61)

The only tunable parameter by the experimentalist is T. If there is 𝑁 > 𝑁
(𝑚𝑎𝑥)
𝑒𝑥𝑐 (𝑇 ), all the

atoms above 𝑁 (𝑚𝑎𝑥)
𝑒𝑥𝑐 (𝑇 ) must be in the ground state, resulting in a large population in the

ground state of the trap. Because 𝑁 (𝑚𝑎𝑥)
𝑒𝑥𝑐 (𝑇 ) is dependent on the dimension and the geometry
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of our system, it is possible that 𝑁 (𝑚𝑎𝑥)
𝑒𝑥𝑐 (𝑇 ) will not converge. In such a case, this prevents

the condensation from happening in the system.
As the maximum number of atoms in the excited states only depends on the temperature,

there exists a certain value of T below which a BEC forms when condensation is possible.
This value is referred to as the critical temperature and is noted 𝑇𝑐.

Bose-Einstein condensate with interactions

To describe the collection of atoms, the field operator noted Ψ̂(r) must be introduced. This
operator creates a particle in the system at position r. To give an expression of such an
operator, the single particle states 𝜓𝑖(r) are used alongside the creations operator 𝑎̂𝑖:

Ψ̂(r) =
∑︁
𝑖

𝜙𝑖(r)𝑎̂𝑖 (1.62)

A significant portion of the atoms in the "cold" system, that is, below the critical temperature,
are in the ground state: 𝑁0 ≫ 1. The previous field operator can be rewritten as:

Ψ̂(r) =
√︀
𝑁0𝜙0(r) +

∑︁
𝑖>0

𝜙𝑖(r)𝑎̂𝑖 (1.63)

In the model, the wavefunction associated with the condensate will be defined by the wave-
function of the ground state. In the case of a harmonic trap, this would lead to a gaussian
profile of atom density in the trap. But this is not what has been observed experimentally.
The reason is that we neglected all atom-atom interaction inside the trap. There is a need to
describe the interaction of the Rubidium quantum gas.

Qualitatively, the interactions inside the quantum gas will change the wavefunction’s
shape. A few more details about the system must be given to describe these interactions:

• The population inside the ground state is large:∫︁
|𝜙0|2dr = 𝑁0 ≫ 1 (1.64)

The consequence of this statement is that the non-commutativity of 𝑎̂𝑖 and 𝑎̂†𝑖 is negli-
gible and therefore ignored. Also, it implies that 𝑁 ≈ 𝑁 − 1.

• The interaction inside the BEC is described by "s-wave" collisions. The collision can
be modeled by a contact potential that depends only on one parameter, the scattering
length [2, 65] noted 𝑎:

𝑉𝑖𝑛𝑡(r
′, r) = 𝑔𝑖𝑛𝑡𝛿(r

′ − r) 𝑔𝑖𝑛𝑡 =
4𝜋ℏ2𝑎
𝑀

(1.65)

These interactions can either be attractive or repulsive. This behavior depends on the
sign of 𝑎.

By giving the Heisenberg equation to the field operator and replacing it with the ground state
wavefunction, a new equation is formulated [2]:

𝑖ℏ
𝜕𝜓(r, 𝑡)

𝜕𝑡
=

(︂
− ℏ2

2𝑀
∇2 + 𝑉𝑒𝑥𝑡(r) + 𝑔𝑖𝑛𝑡|𝜓(r, 𝑡)|2

)︂
𝜓(r, 𝑡) (1.66)
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This is the Gross-Pitaevskii equation, a non-linear Schrödinger equation describing accurately
an interacting Bose-Einstein condensate in a trap. There are three different terms in this
equation: the first term, depending on ∇2, is the kinetic energy; the second term describes
the trapping potential; and ultimately, the last term describes the interaction energy. This
is a mean-field description of one particle evolving in a field created by N-1 particles. To
investigate the time-independent case, we divide the time and spatial dependencies with
𝜓(r, 𝑡) = 𝜑(r)𝑒−𝑖𝜇ℏ 𝑡 and by plugging this expression into Eq.(1.66), we get:(︂

− ℏ2

2𝑀
∇2 + 𝑉𝑒𝑥𝑡(r) + 𝑔𝑖𝑛𝑡|𝜑(r)|2

)︂
𝜑(r) = 𝜇𝜑(r) (1.67)

Solving this equation will give the wavefunction of a condensate at rest.
When dealing with repulsive interactions and a large number of particles in the trap, the

kinetic energy becomes negligible. This is called the Thomas-Fermi approximation. In that
case, we will compare the kinetic term with the typical extension of the cloud of atoms, which
is related to the length scale of the trap: 𝑑𝑡𝑟𝑎𝑝 =

√︁
ℏ/𝑀𝜔2

𝑡𝑟𝑎𝑝. As long as 𝑁 𝑎 ≫ 𝑑𝑡𝑟𝑎𝑝, the
approximation holds. Rewriting Eq.(1.67) in the Thomas-Fermi regime leads to the following
expression of the density profile:

𝑛(r) = |𝜓(r)|2 = 𝜇− 𝑉𝑒𝑥𝑡(r)

𝑔𝑖𝑛𝑡
(1.68)

More specifically, in a 3D harmonic trap, it leads to a density:

𝑛(r) = 𝑛(0)
(︀
1− 𝑥2

𝑅2
𝑥

− 𝑦2

𝑅2
𝑦

− 𝑧2

𝑅2
𝑧

)︀
(1.69)

Where 𝑛(r) is positive, and 0 in all the other positions. The parameters noted 𝑅2
𝑥,𝑦,𝑧 =

2𝜇/𝑀𝜔2
𝑥,𝑦,𝑧 are the Thomas-Fermi profile; they give the full extension of the cloud along

each direction. As seen in the description of the quadrupole RF dressed trap, the oscillation
frequencies of the trap are vastly different. This leads to an anisotropic trap with strong
confinement along the 𝑧−axis.

However, the expression obtained with the Thomas-Fermi approximation has one strong
limitation. It implies a discontinuity in the spatial derivative at the very edge of the cloud,
and this leads to a divergence of the kinetic energy term. When the density of atom 𝑛(r)
is low, this approximation does not describe the system well. An estimation of the size over
which the kinetic term becomes non-negligible is:

ℏ2

2𝑀𝜉2
= 𝜇 −→ 𝜉 =

√︃
ℏ2

2𝑀 𝜇
=

1√
8𝜋 𝑎𝑛

(1.70)

𝜉 is the healing length, it is the shortest distance over which the wavefunction can change,
and it represents the minimal size over which the wavefunction passes from 0 to 𝑛.

Hydrodynamic formulation

The time-dependent Gross-Pitaevskii equation(1.66) can be reformulated to look a lot closer
to a description of a flowing fluid. This is accomplished by multiplying (1.66) by 𝜓* and
subtracting its complex conjugate:

𝑖ℏ
(︂
𝜓*𝜕𝜓

𝜕𝑡
+ 𝜓

𝜕𝜓*

𝜕𝑡

)︂
=

ℏ2

2𝑀

(︂
𝜓*∇2𝜓 − 𝜓∇2𝜓*

)︂
(1.71)
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By introducing the velocity v and the local density 𝑛:

𝑛(r, 𝑡) = |𝜓(r, 𝑡)|2

v(r, 𝑡) =
ℏ

2𝑀𝑖|𝜓|2
(︂
𝜓*∇(𝜓)− 𝜓∇(𝜓*)

)︂ (1.72)

That are injected in Eq.(1.71), and we obtain the continuity equation:

𝜕𝑛

𝜕𝑡
+∇ ·

(︀
𝑛v
)︀
= 0 (1.73)

Another way to write the wavefunction is to use the amplitude-phase representation:

𝜓(r, 𝑡) =
√︀
𝑛(r, 𝑡)𝑒𝑖𝑆(r,𝑡)

v(r, 𝑡) =
ℏ
𝑀

∇
(︀
𝑆(r, 𝑡)

)︀ (1.74)

Using this formulation in the equation (1.66), multiplying by 𝜓*, and taking the real part of
the formula, we get the new equation, which is written:

1

2
𝑀v2 +

ℏ2

2𝑀
√
𝑛
∇2
(︀√
𝑛
)︀
+ 𝑔𝑖𝑛𝑡𝑛+ 𝑉𝑒𝑥𝑡 +𝑀

𝜕

𝜕𝑡

(︂
ℏ𝑆
𝑀

)︂
= 0 (1.75)

This equation describes the dynamics of a quantum fluid. It is very close to the description
of a classical fluid, with the addition of a specific term called the quantum pressure term,

ℏ
2𝑀

√
𝑛
∇2(

√
𝑛). It should be stressed out that equations (1.75) and (1.73) are equivalent to

equation (1.66).

Excitation of a Bose-Einstein condensate

So far, we have described a BEC at rest. That is to say, we said nothing about the excitation
of a condensate. In an attempt to describe a small variation of the BEC, let’s first define
what a small perturbation of the wavefunction is:

𝜓(r, 𝑡) =
[︀
𝜓0(r) + 𝛿𝜓(r, 𝑡)

]︀
𝑒−𝑖𝜇 𝑡

ℏ 𝛿𝜓(r, 𝑡) = 𝐴𝑒𝑖(k.r−𝜔𝑡) (1.76)

In this expression, 𝜓0(r, 𝑡) represents a solution of the Gross-Pitaevskii equation at rest, and
the perturbation is small. This means |𝛿𝜓| ≪ |𝜓| and the perturbation is regarded as a
plane-wave. By linearising equation (1.67) and removing the higher order term in 𝛿𝜓, we get:

𝑖ℏ
𝜕

𝜕𝑡
(𝛿𝜓(r, 𝑡)) = − ℏ2

2𝑀
∇2𝛿𝜓 + 𝑔𝑖𝑛𝑡 𝑛(r)

[︀
𝛿𝜓* + 2𝛿𝜓

]︀
− 𝜇𝛿𝜓 (1.77)

This is valid when dealing with a uniform system, so when 𝑉𝑒𝑥𝑡 = 0. In that case, for a density
𝑛, the excitation spectrum, called the "Bogolyubov spectrum", is given by:

𝐸𝑘 =

√︃
ℏ2𝑘2
2𝑀

(︂
ℏ2𝑘2
2𝑀

+ 2𝑔𝑖𝑛𝑡 𝑛

)︂
=

ℏ2𝑘2

2𝑀

√︃
1 +

2

(𝑘𝜉)2
(1.78)
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Figure 1.5 – Graph displaying the Bogolyubov dispersion relation in black solid line and
the plane wave dispersion relation in dashed light blue line.

At small energy, one can see that 𝐸 = ℏ𝑐𝑘 with 𝑐 =
√︁

𝑔𝑖𝑛𝑡 𝑛
𝑀 . This corresponds to the

phononic branch of the spectrum: the elementary excitations for low k behave as soundwaves,
and 𝑐 is the speed of sound in the condensate. This is depicted in Fig.1.5. When dealing
with a non-uniform gas, the situation describing trapped gases, the calculation is modified
because of the potential. The low-energy excitations become collective modes with their own
dispersion relation [66].

Critical velocity and superfluidity

Having determined the dispersion relation of the excitation, the question of how to produce
it is still open. Let us first describe an impurity flowing inside a Bose-Einstein condensate.
The system composed of the BEC and the impurity has a constant energy. The impurity
will transfer energy to the fluid by creating elementary excitation as long as it is energetically
favorable, so:

𝐸𝑘 − ℏk · v < 0 (1.79)

According to Eq.(1.79), there is a minimum velocity below which no elementary excitations
are allowed to form [2]. This critical velocity is given by:

𝑣 > 𝑣𝑐 = min
𝑘

(︂
𝐸𝑘

ℏ𝑘

)︂
(1.80)

For a uniform gas, the critical velocity is deduced from Eq.(1.78) and corresponds to the speed
of sound in the condensate:

𝑣𝑐 =

√︂
𝑔𝑖𝑛𝑡

𝑛

𝑀
(1.81)

Another formulation of this problem is that a defect won’t interact with the BEC below a
certain velocity. This is the definition of superfluidity originally given by Landau [67].
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Rotation of a superfluid - presence of vortex

The BEC can be set to rotate. However, the BEC is a superfluid, and this implies that the
expression of the velocity field in Eq.(1.74) directly links the velocity to the phase of the
wavefunction. This expression shows the superfluid velocity is irrotational, so:

∇× v = 0 (1.82)

A quantity that gives information about how the velocity behaves is the circulation of the
velocity over a closed loop: ∮︁

𝒞
v · 𝑑l = ℏ

𝑀
∆𝒞(𝑆) =

ℏ
𝑀

2𝜋 𝑙 𝑙 ∈ Z (1.83)

So the velocity circulation is quantized, and if this circulation is not equal to 0, it implies a
phase singularity exists at a specific point. In order not to have divergence, the local density of
atoms vanishes at this particular point. This is a vortex, an excitation of the system carrying
angular momentum to a point where the local density vanishes. Such an excitation cannot
be described by the previous excitation description leading to the dispersion relation because
a vanishing density cannot be considered a small density variation. It is these vortices that
contain the rotation of the superfluid.

1.2.2 Quasi-2D regime

The anisotropy of the trap described in Sec.1.1 is large and implies that a change in geometry
has to be taken into account when describing the system. First, the criteria for having a
two-dimensional gas will be detailed. Then collective modes in this regime will be presented.
Ultimately, a brief description of a rotating BEC will be given, and a specific excitation will
be presented: the vortex.

Criteria for the 2 dimensional regime

When passing from a three-dimensional to a two-dimensional system, this system must be
compressed along one direction. This has the effect of freezing the move along the transverse
dimension, and the atoms will be assumed to be trapped inside an anisotropic harmonic trap
in this section. It implies two different sets of conditions:

• The temperature and the chemical potential have to be too low for any excited state to
be populated:

𝑘𝐵𝑇 < ℏ𝜔⊥ 𝜇 < ℏ𝜔⊥ (1.84)

• The interaction in the gas must occur in the plane. As the rubidium BEC has collisions
described by s-wave scattering, which is fully described by the scattering length, the
ground state spatial extension 𝑑𝑧 =

√︀
ℏ/𝑀𝜔2

𝑧 has to be smaller than the scattering
length:

𝑑𝑧 < 𝑎 (1.85)

The second condition is not met with the experimental setup described in this thesis. So the
BEC is not strictly 2D. But we did meet the first requirement, meaning that the system is
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described by the quasi-2D regime: the system’s dynamic is frozen along one dimension but
the collisions are still modeled as happening in three dimensions with a modified coupling:

𝑔2𝐷 =
𝑔𝑖𝑛𝑡√
2𝜋𝑑𝑧

=
ℏ2

𝑀
𝑔 𝑔 =

√
8𝜋

𝑎

𝑑𝑧
(1.86)

The parameter 𝑔 is a dimensionless coupling constant. In this regime, the equation (1.66)
stays valid as long as we integrate the wavefunction along the perpendicular direction of the
plane.

In the quasi-2D regime, 𝑁𝑚𝑎𝑥
𝑒𝑥𝑐 in Eq.(1.61) does not converge. This condition prevents

the Bose-Einsten condensation from happening in the general case for 2D system. However, a
phase transition formalized by Berezinskii [68], Kosterlitz and Thouless [18] (BKT transition)
describes the appearance of a critical phase-space transition above which a superfluid state
appears in the system [69]:

𝜌𝜆2𝑑𝐵 = 𝒟𝑐 = ln

(︂
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𝑔

)︂
(1.87)

Where 𝜆𝑑𝐵 =
√︀
2𝜋ℏ2/𝑀𝑘𝑏𝑇 is the de Broglie wavelength and T is the temperature. At

this point, the superfluid density of the system jumps from 0 to 4, which is called the BKT
"universal jump". The appearance of a superfluid density is related to a quantity called the
long-range order, which is defined by the first order correlation function of Ψ̂:

𝑔1(r, r
′) = ⟨Ψ̂†(r)Ψ̂(r′)⟩ (1.88)

If a limit exists for |r− r′| → ∞ and is greater than 0, the condensation can happen. In the
case of a 2D system below the critical temperature, the long-range order goes to zero "slowly":
the decreasing behavior is algebraic. Therefore, for a system small enough, there is coherence
in phase, leading to a superfluid state. This new object is called a quasi-condensate and has
phase fluctuations [70].

More specifically, in a 2D harmonic trap, true condensation for non-interacting particles
can occur [71]. But the repulsive interactions of rubidium prevent this phenomenon from
happening. However, a BKT transition occurs in the following conditions [72]:
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The quasi-2D regime is of special interest for studying vortices. This is for topological
reasons: when the condensate is in two dimensions, the vortex is point-like, whereas with
a three-dimensional BEC, the vortex is a line. This leads to complex behaviors related to
turbulent flows in the condensate.





Chapter 2
Experimental setup: the 87Rb BEC
machine

Preparing a Bose-Einstein condensate requires a sequence lasting from 20 s up to a few minutes
and the coordination of multiple devices. This chapter intends to present the sequence needed
to produce a BEC with the setup at the LPL. First, a presentation of the atomic properties
of rubidium will be given. Then the means to cool rubidium with lasers will be presented.
After that, the need to transport the cloud of atoms is explained, and the means by which we
transport the cloud are detailed. In addition to this, the evaporative cooling processes and
their challenges in a magnetic quadrupole trap are presented. This is done to explain how to
obtain a BEC and how to load it in the dressed quadrupole trap. Ultimately, the imaging
system is described.

A notable exclusion has been made in this chapter: the control system. This is because
we changed it during my PhD, and as such, it is the subject of Chap.4.

As the experimental setup started a decade ago, a few PhD theses had already been
written [64, 73–76] and defended. A more detailed presentation of the setup is available in
these PhDs.

2.1 The laser cooling system

2.1.1 The Rubidium and its magnetic sub-level

Rubidium is an alkali metal, that has two isotopes available: 85Rb and 87Rb. As presented in
Chap.1, the scattering length of an element is the key property to look at for Bose-Einstein
condensation. As such, only the isotope 87 can be used to obtain a BEC; the isotope 85 has
a negative scattering length, which leads to collapsing Bose-Einstein condensate [77]. The
87Rb simple electronic structures, combined with its favorable collisional properties, make it
a suitable atom for reaching Bose-Einstein condensation. From a historical perspective, it has
been one of the first atoms with which physicists observed Bose-Einstein condensation [78].

By taking into account the total angular momentum given in Sec.1.1.1, the ground state
is 2-fold degenerate with 𝐹 ∈ {0, 1}, and the 5𝑃3/2 excited state is 4-fold degenerate with 𝐹 ∈
{0, 1, 2, 3}. This transition is particularly interesting because the transition

⃒⃒
5𝑆1/2, 𝐹 = 2

⟩︀
→⃒⃒

5𝑃3/2, 𝐹
′ = 3

⟩︀
is closed with a linewidth of Γ = 2𝜋 × 5.89MHz. The closed transition is
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needed to have a magneto-optical trap (MOT), and the details of such a trapping mechanism
will be addressed in Sec.2.1.3. The only details provided here are about the lasers: to trap
atoms in MOT, one needs a closed transition and a laser that is red-detuned from the cycling
transition. In the case of rubidium, this brings a problem because the laser comes closer to
the

⃒⃒
5𝑆1/2, 𝐹 = 2
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→
⃒⃒
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′ = 2
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. When an atom is excited in the
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state,
it can decay into the

⃒⃒
5𝑆1/2, 𝐹

′ = 1
⟩︀

and is therefore no longer trapped because out of the
cycling transition. To prevent this situation from happening, a laser is used to bring back the
atoms in the cycling transition, and is referred to as the repumping beam. It is resonant with
the
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Figure 3.1 – 87Rb D2 transition hyperfine structure and the frequency of the
different lasers with wavelength 780 nm: cooling beam (MOT), repump beam (2nd

repump and Repumper) and probing beam (Probe). In the experiment, the imaging
state and the trapping state are |F = 2i and |F = 1i respectively. Figure is adapted
from [104]

3.1.2 Laser system

In our experiment, we use lasers with two different wavelengths, 780 nm and 532 nm.
The 780 nm lasers are used to cool, repump and probe the atoms. The 532 nm lasers
are used to create dipolar potentials, for confining the atoms in the vertical direction,
plugging the magnetic trap and stirring the atoms.

3.1.2.1 780nm lasers

An extended cavity diode laser: For imaging, if the linewidth of the laser is too
large, the Beer-Lambert law is modified and it is more complicated to find the atom
number. So an extended cavity laser is needed because of its narrow linewidth. The
extended cavity laser (NarrowDiode, from Radiant Dyes) is locked on the transition
of |5S1/2, F = 2i ! |5P3/2, F = 3i by saturated absorption means. It provides the
two imaging beams (horizontal and vertical) and a beam that serves as the frequency
reference for the beat note with the doubled laser.

Doubled frequency laser: It is based on a telecom 1560 nm 10 W laser whose fre-
quency is doubled in a single pass PPLN crystal. In the end, we obtain a 780 nm
laser with 1 W of useful power. Its frequency, close to the transition |5S1/2, F = 2i !
|5P3/2, F = 3i, is locked via a beat note to the reference laser. The laser can be easily
detuned for the Sisyphus cooling part. This laser (called MOT in Fig.3.1) is used not

Figure 2.1 – Hyperfine structure of the 87Rb D2 line. This is an adaptation of a graph
available in ref [79].

To cool the rubidium atoms in a MOT, the following lasers are needed:

• A laser red-detuned from the cycling transition
(︀⃒⃒

5𝑆1/2, 𝐹 = 2
⟩︀
→
⃒⃒
5𝑃3/2, 𝐹

′ = 3
⟩︀)︀

. This
laser will now be referred to as the cooling beam and is shown in Fig.2.1 as the red arrow
labeled MOT.

• A laser resonant with the (𝐹 = 1 → 𝐹 ′ = 2) transition. This beam will be referred to
as the repumping beam, and the need for such a laser is explained in Sec.2.1.3

2.1.2 The laser sources

After having assessed the different needs to cool rubidium, here is a description of the different
devices used on our experiment.



2.1 The laser cooling system 29

MOT cooling laser: In order to have enough power for magneto-optical trapping, a 10W
telecom laser at 1560 nm is frequency doubled through a single pass PPLN crystal. It delivers
1W of usable output power at 780 nm. This laser had been developed locally, and the technical
details can be found in Ref. [73]. The frequency is controlled using a beat note with a reference
laser, enabling us to detune the frequency from resonance to tens of linewidths for cooling
purposes. The beam is then divided into a part that goes to the 2D MOT and another part
that goes to the 3D MOT. A small leak from a cube is used to produce a pushing beam that
will direct the atoms from the 2D MOT chamber to the 3D MOT chamber.

The reference laser: A commercial NarrowDiode laser from Radiant Dyes provides a
reference in frequency. It is an extended cavity diode laser, and it delivers 25mW of light
resonant with the

⃒⃒
5𝑆1/2, 𝐹 = 2

⟩︀
→
⃒⃒
5𝑃3/2, 𝐹

′ = 3
⟩︀

transition and a linewidth of 20 kHz. The
laser is locked in frequency using a saturated absorption setup. It is also used for imaging
purposes.

Repumping lasers: To repump the atom into the
⃒⃒
5𝑆1/2, 𝐹 = 2

⟩︀
state, the lasers used are

Sanyo diode lasers specially calibrated to emit at 780 nm. Each diode delivers 50mW and is
placed in a temperature regulated Thorlabs box. The repumping beam used for the MOT is
locked on the

⃒⃒
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5𝑃3/2, 𝐹

′ = 2
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transition via a saturated absorption setup.

2.1.3 Magneto-optical traps

These laser sources are used for trapping and imaging. The first type of trap used in the
experiment is the magneto-optical trap. The basic idea is to have a magnetic field that
depends on the position inside the trap to lift the hyperfine structure degeneracy and a pair
of counter propagating lasers along an axis. The two laser beams have opposite circular
polarization and are both red-detuned with respect to the cycling transition of the atoms.
Because of this detuning, the atoms are not always resonant with the laser beams, which
results in the beams pushing the atoms toward the zero of the magnetic field. By using a pair
of counter-propagating laser beams in each direction, the experimentalist can trap the atom
along each desired direction.

The first MOT is the 2D MOT with the rubidium source: a rubidium cell is heated in
an oven at a temperature close to 70 ∘C. This source is directly linked to our 2D MOT
chamber. This device has been designed at SYRTE and is composed of two pairs of elongated
coils around the chamber in an anti-Helmholtz configuration and two orthogonal beams with
elongated shapes that are retroreflected. The beams are circularly polarized and composed of
both the repumping beam and the cooling beam. To direct the atoms from the 2D to the 3D
MOT, we use a pushing beam of about 2mW at the same wavelength as the 2D MOT beams.
It results in the atoms being directed to the 3D MOT chamber through a small differential
tube between the 2D MOT chamber and the 3D MOT chamber.

The second part of the experiment shown in Fig.2.2 is the vacuum chamber where the 3D
MOT is installed. This chamber is an octogonal chamber with windows that let the laser pass
through it. This is composed of three pairs of counter-propagating beams that arecircularly
polarized and come from the same source as the 2D MOT. The beams for the 3D MOT
are done using a Shäfte-Kirchhoff fiber port cluster. The aim is to bring the cooling and
repumping beam to the fiber port cluster and then mix the two incoming beams to produce
three beams. When the MOT is fully loaded, there are around 109 atoms in the trapped
vapor, with a pressure in the octogon close to 10−9 mbar. A comprehensive presentation of
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the MOT setup can be found in the references [73,74]. The flow of atoms from the 2D MOT
continuously loads the trap when a sequence is not running.

The third part of the experiment is the science cell, where the atoms are transported.

2.2 Magnetic transport, trapping and Bose-Einstein conden-
sate production

11

sions with the background gas corresponds to a lifetime
Γ−1

b = 120 s.
The calibration of the magnetic gradient is done di-

rectly with an ultracold cloud, in the following way. The
magnetic field is suddenly switched off for a short du-
ration, such that the atomic cloud starts to fall in the
gravitational field. It is then switched on again, and the
atoms oscillate along the z vertical fiber axis in both the
quadrupole and gravitational fields. The two gradients
add when the cloud is above the magnetic zero and sub-
tract below. From a parabolic fit to the data and the
knowledge of g, we infer a calibration of the imaging sys-
tem and the value of the magnetic gradient.

2. Laser system

All the 780 nm light sent onto the atoms is prepared on
a separate optical table and carried through single-mode
polarization-maintaining fibers.

For cooling and pushing Rb atoms in the 2D and 3D
MOTs, we built an agile and powerful 780 nm laser source
relying on frequency doubling of an amplified Telecom
laser [22]. A fiber-pigtailed, 2 mW, distributed-feedback
laser diode (Fitel) emitting at 1560nm feeds a 40-dB er-
bium doped fiber amplifier (Keopsys), with a maximum
output power of 10W. The second harmonic is gener-
ated in a 3×0.5×50mm3 periodically poled lithium nio-
bate (PPLN) crystal (HC Photonics). The quasi-phase
matching condition is met by regulating the tempera-

Figure 8: (Color online) Scheme of the experimental setup.
The three main chambers (2D MOT, octagonal chamber for
the 3D MOT and science cell) are visible, as well as the rail for
the transport of the magnetic coils (on the left). The MOT
beams propagate at 45◦ with respect to the x and y axes. The
moving coils are represented by a blue hollow disk. The plug
beam (in green) is aligned with the y axis. The x and y axes
cross at the center of the quadrupole trap. The remaining
part of the vacuum chamber (ionic pumps, etc.) have been
omitted for clarity.

ture of the crystal at 85 ± 0.1 ◦C with a home-made
oven. The 1560nm beam has a 70µm waist to maximize
the doubling efficiency according to the Boyd-Kleinman
model [23]. In single pass, we obtain a maximum of 2 W
of linearly polarized light at 780nm in a TEM00 mode.

The frequency control of the doubled laser is made by
beat note locking with a reference laser. This reference
laser is a 780nm, 70mW, narrow linewidth external cav-
ity laser (RadiantDye) locked by the saturated absorp-
tion technique. Its free linewidth has been measured to
3 kHz and its linewidth when locked has been estimated
at around 180 kHz. The beat note between the reference
laser and the doubled laser is frequency locked to an rf
signal of adjustable frequency around 270MHz.

By tuning the beat-note frequency we are able to sweep
the doubled laser frequency over a large span from +10Γ
to −60Γ around the 5S1/2, F = 2 → 5P3/2, F

′ = 3 cy-

cling transition of the 87Rb D2 line, where Γ is the tran-
sition linewidth, without altering the output intensity.
The intensity is independently controlled or switched off
by an acousto-optic modulator. The doubled light is then
split into four beams injected into polarization maintain-
ing fibers. Two transverse cooling beams and a weak
pushing beam, with a total power of 120mW, seed the
2D MOT. The last one is used for the 3D MOT and is
coupled to one of the two input ports of a 2 × 6 fiber
cluster (Schäfter+Kirchhoff).

At the cluster output, each of the six fibers is connected
to a compact three-lense collimator system (SYRTE Labs
design). The collimated beams are clipped to a diame-
ter of 1 in. by a quarter-wave plate directly set at the
collimator output to produce the required circularly po-
larized light. The total intensity of the six cooling beams
is 41mW·cm−2.

The repumper laser is a 70mW Sanyo laser diode, fre-
quency locked to the F = 1 → F ′ = 2 transition of the
D2 line. It is superimposed onto the 2D MOT transverse
beams before their injection into the fibers, while it is
mixed with the 3D MOT beams through the second in-
put of the fiber cluster. The repumper laser is not present
in the pushing beam, which limits the 2D MOT atomic
beam velocity and improves the recapture efficiency [24].

The plug beam originates from a high-power diode-
pumped laser at 532 nm (Spectra Physics Millennia X)
with an output power reaching 10W in a TEM00 spatial
mode. To control the laser intensity and allow for the fast
switching of the beam, we use an acoustic-optic modula-
tor with a center frequency of 110MHz. At the position
of the atoms, the optical plug power is about 6W for a
waist of 46 µm. The beam position is controlled by two
piezoelectric actuators on a mirror mount.

The power spectrum density of intensity fluctuations of
the laser beam amounts to −93dB·Hz−1 at the trap fre-
quencies, which corresponds to a calculated heating rate
of about 1 nK·s−1; see Sec. II C. Using a quadrant pho-
todiode, we characterized the pointing stability of the
plug beam. The long-term beam pointing stability is
rather good, with a drift below 1 µm over 1 week. We

Figure 2.2 – Sketch top view of the vacuum chambers of the experiment. One can see
the connection between the 2D and 3D MOT chambers and the science cell. The blue
blurry torus with an arrow next to it represents the MOT quadrupole coils, which slide
along to the science cell. The green line represents the plug beam path, which is the same
for the dimple beam. Figure taken from Ref. [80].

The science cell is a glass cell manufactured by Starna in quartz with a square section of
10×10mm and a depth of 83.5mm. Each side has a thickness of 1.25mm with a non-reflective
coating.

2.2.1 Transport: how and why?

To obtain a BEC, the sequence lasts for up to a minute. The residual pressure in the 3D
MOT chamber is 10−9mbar, ensuring a lifetime of an atom in the trap of 30 s. To improve
this lifetime, the atoms are transported to the science cell, as presented in Fig.2.2. Between the
3D MOT chamber and the science, there is a differential tube with a vacuum pump 20L · s−1.
The pressure in the science cell is 10−11mbar, with an associated lifetime of 150 s [73]. The
transport is done by using a Parker translation stage 404XR, which can go up to a maximum
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speed of 1.2m · s−1, and has an accuracy of displacement of 1.3 µm. The coils’ current is
provided by a Delta- Elektronika 15-400A current supply. Because we are raising the current
close to 400A during one second, we need to cool down the coils. That is why the wires are
hollow, and water is flowing through them, enabling efficient cooling.

Before the transport phase, the sequence starts by compressing the MOT by increasing the
in-plane gradient from 5.5G ·cm−1 (22A) to 20G ·cm−1 (90A). In parallel, the cooling beam
detuning increases, hence decreasing the effective repulsion between atoms due to multiple
cycles of emission/absorption of photons inside the cloud. After that, the quadrupole coil
current is switched off, and the cooling beam is further detuned in order to cool down atoms
via molasses and Sisyphus cooling. Once this is done, the atoms are pumped into the state
|𝐹 = 1⟩ by shutting down the repumping beam while the cooling beam is still on. The beams
are then shut, and the current is switched back on to be ramped to 87.5G · cm−1 (350A) in
150ms. The atoms are ready to be moved to the science cell in a transport session that lasts
1 s. At the end of the transport phase, the atoms are loaded into a different quadrupole trap
in the science cell with dedicated coils. After the transfer, the MOT coils slide back to their
initial position, where they remain until the beginning of the next sequence. The science cell
coils are conical, hollow, and water-cooled. They are close to the cell, allowing a maximum
gradient of 228G · cm−1.

2.2.2 RF evaporative cooling in a magnetic quadrupole trap: 1 problem
with 2 distinct solutions

Evaporation in the quadrupole trap

At the end of the transport phase, when the atoms are transferred to the quadrupole trap,
the cloud has a temperature of 150 µK. All the atoms are in the |𝑚𝐹 = −1⟩ state. This
temperature is too high to reach Bose-Einstein condensation. In order to decrease the tem-
perature and increase the phase-space density, two evaporative stages are performed. The
evaporative cooling is done by shining a RF field, which couples to the Zeeman substates.
When the coupling is resonant with the atoms having the most kinetic energy moving in the
trap, these atoms transition to a non-trapping state and are thus ejected from the trap. By
lowering the rf-field frequency slowly enough, the most energetic atoms are removed and the
cloud rethermalizes to a lower temperature.

The evaporative cooling is split into two parts for a reason detailed in the next paragraph.
The first part is done at the high magnetic field gradient value of 225.9G · cm−1. The RF
signal is generated by the same RF source as the dressing signal and is detailed in Sec.2.3 and
the antenna is oriented along the 𝑦−axis. This first ramp is linear by part, starts at 65MHz,
finishes at 4MHz and last 13.6 s. At the end of this stage, the temperature is 20 µK, and we
typically have 8x106 atoms.

Final Evaporation stage

However, a problem remains: when the temperature of the cloud decreases, the atoms stay
closer to the center of the trap, where they experience a smaller magnetic field gradient. In
such a situation, the atoms can be lost by spin-flip transition: the magnetic field can not be
followed adiabatically by the trapped atoms, resulting in a transition to non-trapping states.
These transitions are also referred to as Majorana losses [81]. To avoid this situation, one
needs to move the atom away from this region of the trap. There are two solutions: preventing
the atoms from accessing this zone or attracting the atoms away from it.
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A separate RF source is used, a Stanford SRS DS 345 with an antenna along the 𝑦−axis.
The second ramp is linear and depends on the type of laser used to change the type of trap
used.

Repealing atoms from the quadrupole center: the plug technique

This is the first solution chosen to avoid Majorana losses. In our experiment, a blue detuned
laser detailed in Sec.2.1.2 repeals the atoms from the center of the trap and therefore avoids
Majorana losses around the trap center [81] enabling Bose-Einstein condensation. At the
beginning of my PhD, this was done using a 10W laser source with a waist of 50 µm in the
atomic plane. It was later replaced by a 5W laser with a beam waist estimated at 34 µm
at the atom’s position. The beam propagates along the y-axis as shown in Fig.2.3, and a
comprehensive characterization of the trap is found in [74]. A special care was given to tune
correctly the plug position controlled by a mirror with piezoelectric adjusters.

At the start of the evaporation ramp, after the transfer from the transport trap, the
gradient is at its highest value at 225.9G · cm−1 (current at 110A) This is to compress the
cloud in order to maximize the collision rate. After a first radio-frequency ramp, the trap is
decompressed to 57.5G · cm−1 (28.5A). This is done to increase the plug effect on the atoms.
Once the trap is decompressed, a second RF ramp is shone on the atoms to reach a lower
temperature of 200 nK. At this stage, there are around 4x105 atoms total in the trap, with
2x105 condensed atoms.

62 Chapitre 3. Condensation dans un piège quadrupolaire bouché

science et nous permet d’obtenir un condensat de Bose-Einstein de rubidium. Le champ
magnétique quadrupolaire est produit par les bobines décrites dans la partie 2.1.3, et
le potentiel lumineux est créé par le laser bouchon à 532 nm décrit dans la partie 2.3.2.

Le laser bouchon peut être appliqué dans l’axe du quadrupole. Pour briser la sy-
métrie azimutale et créer un ou deux minima de potentiel au lieu d’un anneau, on
peut utiliser un laser soit elliptique [109] soit légèrement désaligné de l’axe du champ
magnétique [110]. Dans notre configuration, l’axe de propagation du laser y est perpen-
diculaire à l’axe du quadrupole z, comme pour le premier condensat de sodium produit
en 1995 [18]. La figure 3.3 schématise la configuration de notre piège quadrupolaire
bouché. Les surfaces isomagnétiques ellipsöıdales sont aussi représentées dans le plan
xz.

Figure 3.3 – Gauche : Le piège quadrupolaire bouché. Une paire de bobines
dans l’axe z crée un champ quadrupolaire qui s’annule au centre du piège. Pour
éviter les pertes Majorana à cet endroit, un faisceau bouchon se propageant
selon l’axe y est focalisé très près du centre. Il est désaccordé vers le bleu de
la transition et crée un potentiel répulsif. Droite : Les ellipses représentent
les contours des isomagnétiques du champ quadrupolaire dans le plan xz, et le
cercle au centre représente une région d’intensité constante du faisceau bouchon.

Left : The optically plugged quadrupole trap. In the z axis, a pair of coils produces the
quadrupole magnetic field, that vanishes in the center of the trap. A blue-detuned plug
beam propagating along the y axis is focused near the center. It creates a potential
barrier preventing Majorana losses. Right : The isomagnetic lines are represented by
dashed lines in the xz plane, together with a line of constant intensity of the plug
beam, orthogonal to the plane.

Le potentiel dans le piège bouché combine une partie magnétique UB(r) et une
partie optique UD(r). En présence du champ gravitationnel, il est donné par :

U(r) = UB(r) + UD(r) + Mgz, (3.28)

où g est l’accélération de la gravité. Les composantes magnétique et optique du potentiel

Figure 2.3 – Representation of the plug beam path. The blue ellipses with arrows
represent the quad coils, the dashed ellipses represent the iso-magnetic surface. The green
part shows the plug beam which is centered around the center of the magnetic center of
the trap. This figure is taken from ref [32].

Attracting atoms away the quadrupole center: a red laser

Recently, we installed a new laser in the experiment and changed the trapping mechanism.
Instead of repealing the atom from the center, a red detuned laser with 𝜆= 1064 nm is used to
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attract the atom to a position with no Majorana losses. The beam is still propagating in the y
direction and is off-centered with respect to the magnetic zero of our trap, as seen on Fig.2.4.
This ensures the atoms are always subjected to a magnetic field sufficient to avoid Majorana
losses. The main motivation to change the trapping mechanism was to avoid a shortcoming of
the plug technique: the displacement of the cloud during the loading procedure of the dressed
trap. As seen on Fig.2.6, the atoms move from point A to point B and this can imprint strong
dipolar oscillations. The tuning of the plug position had to take this into consideration,
and often the position minimizing the oscillation in the trap was not the one maximizing the
number of atoms. This is no longer the case with the dimple beam: as the atoms are below the
center of the quadrupole trap, the residual oscillation communicated to the atom during the
loading is weak. The beam is slightly anisotrope, the waists are w𝑥=68.4 µm and w𝑧=63.8 µm
with an effective power of 3.3W around the atoms in the science cell. The strategy to have
the largest BEC in the dressed trap will be detailed in Chap.5 and so far leads to a 105 atoms
in the condensate and 105 thermal atoms.

z

x

Figure 2.4 – A sketch of the hybrid trap arising from the dimple beam and the magnetic
quadrupole fields. The black ellipses with arrows represent the quad coils, and the dashed
ellipses represent isomagnetic surfaces. The red circle represents the dimple beam, and
the black spot represents the center of the trap. The dimple attracts the atom away from
the center of the trap.

2.3 Radio-frequency fields and dressed trap loading

Experimental setup

The specificity of our experiment is to study a Bose Einstein condensate inside a shell-shaped
geometry. To obtain such a geometry, one needs to "dress" the atoms with RF fields as
described in Chap.1 with RF fields. The RF field has a 𝜎− polarization onto the atoms,
ensuring the rotational symmetry of the trap and the location of the hole at the very top of
the bubble, as detailed in Chap.1. This field is produced via a set of three antennas, one along
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each axis of the experiment as shown, in Fig.2.5. The field is obtained by having the two
horizontal antennas (H1 and H2) along the x and y axes with a relative phase of 𝜋

2 and with
the same amplitude, which corresponds to a coupling amplitude Ω0. However, due to a slight
tilt in the direction of each antenna, it has been proven next to impossible to obtain such an
RF field only with the two in-plane antennas. To correct this small vertical component, a
vertical antenna referred to as H3 has been installed.

50 The superfluid recipe

compress the cloud in order to have a good collision rate for evaporation. While the
sample temperature decreases, the atomic density increases at the trap center position
and the coldest atoms spin-flip, resulting in atoms losses and heating. In order to avoid
the Majorana losses, our solution is to focus a 10 W, 532 nm blue detuned laser to plug
the center of the quadrupole trap. By doing so, the atoms are prevented from accessing
the region with zero magnetic field leading to Majorana losses. To increase the plug
barrier potential, we decompress mid-way the trap by ramping down the magnetic
gradient at 57.5 G · cm�1 (28.5 A). The potential minimum of this plugged quadrupole
trap is slightly off centered, where it can trap about 5 ⇥ 105 atoms around 200 nK.

Evaporation is performed with two distinct rf sources, and is made with linear
frequency sweeps ranging from 50 MHz to 300 kHz during approximatively 18 s.

3.2.4 Dressed quadrupole trap: the bubble trap

3.2.4.1 The rf antennas for dressing

As explained in Chapter 2, our bubble trap is obtained by dressing a quadrupole
trap with a circularly polarized rf field. Therefore, besides the coils generating the
quadrupole trap, three rf antennas are required to generate a rf field with arbitrary
polarization. These antennas are placed orthogonally surrounding the science cell,
shown in Fig. 3.3.

Figure 3.3 – Left: Sketch of the science cell between a pair of conic coils generat-
ing a quadrupole trap, taken from [102]. Right: View of the science cell surrounded
by three orthogonal antennas producing rf field.

In our experiment, a circularly polarized rf field with respect to the z axis is needed
to create a rotationally symmetric bubble trap, as mentioned in the previous chap-
ter. Theoretically, only two horizontal antennas (H2 and H1) along x and y axis and

Figure 2.5 – Representation of the dressing antennas around the science cell. Figure
taken from [76].

To be able to load the atoms from the quadrupole trap into the dressed trap, one needs
to have precise control over the amplitudes, frequencies, and phases of each signal. The
signals are generated using a direct digital synthesizer (DDS) produced by the lab’s electronic
workshop. This DDS has 8 channels, each with a 10-bit amplitude resolution, a 14-bit phase
resolution, and a 32-bit frequency resolution. More specificities on the DDS control are
available in the experiment control Chap.4, and a comprehensive characterization of the DDS
can be found in [64].

Dressed trap loading procedure

In this section, only the loading procedure for the plugged trap will be presented, as the
procedure for the dimple trap is still unsettled. Some elements will be introduced in Chap.5,
as they have been found using machine-learning algorithms. The numerical values for this
section are given for the 5W source that has been used to produce the results for the Chap.3.

Once a BEC is obtained in the hybrid trap described in Sec.2.2.2, the atomic cloud is
transferred to the bubble shaped trap. At the start of the transfer, the atoms are off-centered
from the quadrupole center at position A in Fig.2.6. This is due to the plug position: the
atoms’ positions result in a trade-off between the magnetic gradient attracting atoms towards
the trap center and the plug, which repels them from this center. The RF ramp starts by
raising the amplitude in 5ms while holding the frequency constant at 145 kHz. The atoms
are far from the resonant surface of the given RF-field and should also be beneath the RF
field’s first harmonic, not to be evaporated away. The cloud is in a position resonant with
𝜔𝑟𝑓 = 250 kHz. The frequency is then ramped from 145 kHz to 490 kHz in 120ms. The
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change in frequency expands the bubble from 37.7µm to 127.4 µm, resulting in the atoms
being localized at the surface of the bubble. The RF frequency is decreased to 300 kHz in
175ms, which corresponds to a horizontal radius of 78 µm. In parallel, we decrease the plug
power from maximum power to complete shutdown in 150ms; this ramp starts at the very
start of the dressing ramp. At the end of the transfer, the cloud reaches the B position on
Fig.2.6. The crucial point during the procedure is to avoid importing dipolar oscillations into
the dressed trap during the bubble expansion. This is done through the position tuning of
the blue detuned plug beam and the slow second part of the dressing ramp.

On top of the dressing coils, there are three coils dedicated to canceling the residual
magnetic fields near the atoms. They are referred to as the compensation coils and have been
carefully calibrated. This is because during the evaporative cooling phase, there is a change
in the magnetic gradient. If there is an offset in the magnetic field, the positions of the trap
centers at high gradient and low gradient are different. This results in exciting the dipolar
oscillations of the cloud inside the trap when the magnetic gradient is decreased. After having
carefully calibrated the coils, the remaining oscillation amplitude after loading the atoms in
the dressed trap is smaller than 4 µm.

To maintain the cloud at a low temperature, a RF knife is added to the dressing ramp,
which is an RF signal of small amplitude added on top of the dressing signal. The RF signal
is generated with the same DDS as the dressing signal and is sent to the vertical dressing
antenna. It is polarized linearly along the 𝑧−axis with a frequency 100 kHz above the dressed
trap bottom Ω0. During the first linear ramp of the dressing part, the frequency is lowered
to 20 kHz above the dressed trap bottom at the end of the ramp.

175 kHz 770 kHz 120ms

1.2MHz 175ms

5 ⇥ 105

150 nK

16mm
16.5mm 3.83 H

39.2 pF 12.0mm
3.22 H 35.0 pF

A
B

• 100 m

Figure 2.6 – Schematic representation of the loading procedure with a plugged trap.
The atoms start at position A. The bubble expands, and the atoms are resonantly dressed.
The atoms fall at the bottom of the trap in position B. Figure taken from [74].

2.4 Imaging the atomic cloud

At the end of a sequence, and regardless of the type of cloud, we want to visualize the atomic
density. To do so, we are taking an absorption picture that we extract information from. For
example, we can extract the number of atoms or the temperature. The main idea here is to
be able to compare as accurately as possible an image with atoms and another one without
them. To do so, we need to take three pictures: one with atoms and light, one without atoms
but with a light pulse, and one with neither atoms nor light pulse to evaluate the noise on the
camera. The imaging light pulses are resonant with the (

⃒⃒
5𝑆1/2, 𝐹 = 2

⟩︀
→
⃒⃒
5𝑃3/2, 𝐹

′ = 3
⟩︀
)

transition, and the beam is circularly polarized. This is the cycling transition used for the



36 Experimental setup

MOT in order to have a two-level system. It should be stressed that this imaging process
destroys the BEC.

In the following derivation, the probe is along the z axis, detuned by 𝛿 with respect to
the transition mentioned previously, which has a spectral width of Γ = 2𝜋 × 5.89MHz. The
starting point is the Beer-Lambert law along the 𝑧−direction, which gives the optical density
𝐷𝑧(𝑥, 𝑦) in the 𝑥−𝑦 plane:

𝐷𝑧(𝑥, 𝑦) = − ln

(︂
𝐼𝑡(𝑥, 𝑦)

𝐼𝑖(𝑥, 𝑦)

)︂
(2.1)

where 𝐼𝑡(𝑥, 𝑦) is the transmitted intensity and 𝐼𝑖(𝑥, 𝑦) is the incident intensity.
This law relies on the low intensity hypothesis: the incident intensity is smaller than

the saturation intensity, 𝐼𝑠𝑎𝑡 =
ℏ𝜔𝑝𝑟𝑜𝑏𝑒Γ

2𝜎0
. Where the absorption cross-section of a photon is

𝜎0 =
3𝜆2

2𝜋 and 𝜔𝑝𝑟𝑜𝑏𝑒 is the frequency of the transition. All these expressions describe well the
dilute media situation: the situation where the interaction between a photon and an atom is
independent of the other atoms. It is the case where 𝜎 is independent of the intensity 𝐼. In
that case, the optical density of the cloud is linked to the atomic density 𝑛0:

𝐷𝑧(𝑥, 𝑦) = 𝜎

∫︁
𝑛0(𝑥, 𝑦, 𝑧)𝑑𝑧 = 𝜎𝑛(𝑥, 𝑦) (2.2)

When the intensity of the beam is lower than the saturation intensity (𝐼 ≪ 𝐼𝑠𝑎𝑡), the effective
absorption cross-section of the probe beam is:

𝜎 =
𝜎0

1 + 4𝛿2

Γ2

(2.3)

Ultimately, one can deduce the atomic integrated density in the 𝑥− 𝑦 plane as follows:

𝑛(𝑥, 𝑦) = − 1

𝜎
ln

(︂
𝐼𝑡(𝑥, 𝑦)

𝐼𝑖(𝑥, 𝑦)

)︂
(2.4)

This does not depict accurately the physical situation of the experiment because either a
cold atom cloud or a Bose-Einstein condensate can be denser than what is described by the
"dilute media hypothesis". The risk here, if you use a low intensity beam probe, is for the
beam to be completely absorbed and therefore not have meaningful information to extract.
To have a better description, we have to explain what happens when a higher intensity probe
is used [64, 75, 82]. In such a situation, the absorption cross-section becomes 𝜎(𝐼) = 𝜎0

𝑐*+ 𝐼
𝐼𝑠𝑎𝑡

in such situation. Following this change, the integrated atomic density becomes:

𝜎0𝑛(𝑥, 𝑦) = −𝑐* ln
(︂
𝐼𝑡(𝑥, 𝑦)

𝐼𝑖(𝑥, 𝑦)

)︂
+
𝐼𝑡(𝑥, 𝑦)− 𝐼𝑖(𝑥, 𝑦)

𝐼𝑠𝑎𝑡
(2.5)

There is two different contributions. The first term modifies the Beer-Lambert law by adding a
dimensionless constant 𝑐* that encompasses the deviation from the ideal two-level system [64].
The second term depends directly on the probe beam intensity with and without atoms
and takes into account the multiple absorptions of a single photon. A more comprehensive
discussion can be found in [64, 75], and to use this expression, one needs to calibrate the 𝑐*.
This procedure is detailed in ref. [64]. The general picture having been set, now we will detail
the specificity of the horizontal and vertical imaging systems.
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2.4.1 Horizontal imaging

Because the atoms are trapped and spin-polarized in the ground state
⃒⃒
5𝑆1/2, 𝐹 = 1

⟩︀
, we first

need to pump them into the
⃒⃒
5𝑆1/2, 𝐹 = 2

⟩︀
state, to probe the cycling transition. To do so,

a 100 µs pulse of the repumping laser resonant with the
(︀⃒⃒

5𝑆1/2, 𝐹 = 1
⟩︀
→
⃒⃒
5𝑃3/2, 𝐹 = 2

⟩︀)︀
transition is sent to pump the atoms into the 𝐹 = 2 state. After that, a probe resonant with(︀⃒⃒

5𝑆1/2, 𝐹 = 2
⟩︀
→
⃒⃒
5𝑃3/2, 𝐹 = 3

⟩︀)︀
is sent on the atoms. The pulses are 17 µs long, with a

waist of 2.7mm along the y-axis. There are two pulses: one with the atoms, called the probe,
and one without the atoms, called the reference.

The camera used is an iXon 885D EMCCD camera from Andor, with a 1004x1002 pixel
matrix and a pixel size of 8x8µm2. After the two-images have been taken, a third image is
taken without light in order to record the noise on the camera detector. Also, an interferential
filter has been put on the camera in order to block a leak from the plug/dimple beam from
reaching the camera detector. Then a two-lens imaging system enables zooming in on the
atoms. This system has a magnification coefficient of 𝐺 = 2.17. The horizontal camera setup
performs time-of-flight imaging, and the time of flight used for the hybride trap or the dressed
trap is usually ∆𝑡 = 23ms.

2.4.2 Vertical imaging

For the vertical imaging system, the situation is slightly different. Two different cases should
be distinguished: in-situ imaging and time-of-flight imaging. Time-of-flight imaging is done in
the same fashion as horizontal imaging. However, for in-situ vertical imaging, the cloud is too
dense to be imaged in that way. If the resonant repumping beam is used, only a small fraction
of the first atoms will absorb the repumping beam. This will result in a distorted-looking cloud
on the image. In order to avoid this situation, a second repumping beam is used. To do so,
the frequency of a second laser is locked via beat note with the resonant repumping beam
and can be detuned up to 500MHz. This second beam is usually used exclusively for this
imaging purpose. This beam is detuned from the

⃒⃒
5𝑆1/2, 𝐹 = 1

⟩︀
→
⃒⃒
5𝑃3/2, 𝐹 = 2

⟩︀
transition

of 250MHz corresponding to a detuning of 42Γ. This lower absorption cross-section allows
for uniform absorption across the whole cloud.

For the camera, we use a Luca-R EMCCD from Andor with a 1004x1002 pixel matrix and
a pixel size of 8x8µm2. The vertical imaging has been designed in order to do some in-situ
imaging, hence, it requires a greater magnification than the horizontal imaging. Therefore,
a four-lens setup is installed to reach a magnification of 𝐺 = 8.4 with a depth of focus of
approximately 70 µm.

Depending on the time of flight deviation, it is crucial to adjust the vertical focus plane.
The whole system (camera and telescopes) is then mounted on a three-axis micrometric trans-
lation plate, allowing a vertical translation of the bubble imaging setup.

2.4.3 Stern-Gerlach procedure

As seen in Chap.1, the dressed state the atoms are trapped in is a linear combination of the
Zeeman substates. Therefore, when we shut down the radiofrequency field, the atoms are
projected onto the different bare substates. A residual gradient in the static magnetic field
can disrupt the imaging process, resulting in the splitting of the cloud into three clouds that
overlap each other. The fit applied to the picture can no longer be relevant for the data to be
analyzed. On can then choose to isolate the 𝑚F = 0 component, which is unaffected by the
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magnetic fields, to perform a relevant fit. The procedure is different for the horizontal and
vertical imaging setups.

Let us start by detailing the horizontal case. A delay is induced between the time at which
the radiofrequency is switched off and the time the current in the quadrupole coils is switched
off. This delay exposes the different bare states to different accelerations. The |𝑚𝐹 = 0⟩ is
not accelerated, whereas the |𝑚𝐹 = 1⟩ is repealed from the center and the|𝑚𝐹 = −1⟩ dragged
to the center. This physically separates the three sublevels.

For the vertical imaging setup, the situation is different. The three clouds fall along the
vertical axis, so to separate them would result in having one cloud out of focus, preventing
the experimentalist from seeing the two other clouds. In order to be able to have a full picture
of the cloud, the principle is different. All the atoms are adiabatically transferred to the state
𝑚F = +1 by slowly changing the RF fields’ dressing frequency in comparison with Ω0 but
quickly compared with 𝜔𝑧. Then the current in the quadrupole is shut and then the time
of flight imaging procedure is performed. This results in having a single cloud even in the
presence of a residual gradient. This procedure has been developed when imaging vortex
lattices in order to increase the visibility of each vortex. As the analysis of this work has not
yet been completed, it is beyond the scope of this PhD and will be developed elsewhere.

2.4.4 Conclusion

In this chapter, the experimental setup has been detailed. At the very beginning, the atoms
are evaporated in an oven and then trapped in a 2D MOT. This 2D MOT continuously loads
a 3D MOT in a separate vacuum chamber.

Once the 3D MOT is loaded, an experimental sequence can be launched to obtain a Bose-
Einstein condensate. The first experimental step is to prepare the atoms for transport. This
is accomplished by cooling them, pumping them into the state

⃒⃒
5𝑆1/2, 𝐹 = 1

⟩︀
, and loading

them in a purely magnetic trap. In order to observe a condensate, we need to physically
transport the atoms to the "science cell", a glass cell under higher vacuum, enabling better
optical access to the atoms. To cool the atom down, a two-step evaporative cooling phase is
performed, which leads to a BEC. Ultimately, the atoms form a BEC that is loaded inside a
quadrupole-dressed trap.

At the end of the sequence, an imaging sequence is performed either along the horizontal
𝑦−axis or the vertical axis. To interpret this image, the model used takes into account the
high intensity of the probe.



Chapter 3
Gravity compensation in the dressed
quadrupole trap: spontaneous
appearance of a ring-shaped BEC

To end this part, the last study done with the former control system is presented: the gravity
compensation inside the dressed quadrupole trap. Working in a low-gravity environment has
gained momentum in the cold atom community with initiatives such as the Cold Atom Lab
(CAL) on the International Space Station (ISS). The trap in the ISS [83] is designed to trap
and cool rubidium and potassium with appropriate cooling techniques [84] and the possibility
of a bubble-shaped trap [85]. This microgravity environment has consequences for the BEC,
such as modification of the collective modes at the surface of the bubble [28] and the critical
temperature at which the BKT transition happens. Vortex-antivortex pairs have interesting
properties, such as displaying long-range attraction [86]. Being able to cancel the effect of
gravity on Earth has also been the subject of scientific investigations with means as different
as a drop tower [87], linear optical potential [88,89] or canceling gravity by compensating the
magnetic field gradient [90].

The chapter is a description of an original way to achieve gravity cancellation in the
quadrupole-dressed trap. It will begin with an explanation of the gravity compensation mech-
anism that motivates the experimental work and an explanation of the spontaneous formation
of a ring. Then, a first conclusion is drawn from the first results obtained during Yanliang
Guo’s thesis [76]. The experimental strategy had been rethought and will be presented in the
second section, which ends with a presentation of the radio-frequency tuning, a pivotal part of
the preparation. In the last section, we present a comparison of the results with a theoretical
analysis and discuss the homogeneity of the ring.

3.1 Gravity compensation mechanism and first results

3.1.1 Gravity compensation mechanism

The trap used for this study, and described in Chap.1, has a bubble shape squeezed along
the vertical axis. To have a maximum of coupling amplitude at the very bottom of the
bubble and only one hole, the RF field has to be polarized circularly along the 𝑧−axis with
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a 𝜎− polarization. In that case, the expression of the potential within the rotating wave
approximation for atoms sitting exactly on the resonant surface is given by:

𝑉𝑡𝑟𝑎𝑝(𝑧) =
ℏΩ0

2

(︂
1− 2 𝑧

𝑟𝑏

)︂
+𝑀𝑔 𝑧 (3.1)

Where Ω0 is the maximum of RF coupling and 𝑟𝑏 is the semi-major radius of the bubble in the
equatorial plane. One can see three different contributions in (3.1), but only the 𝑧−dependent
terms will be detailed in the following paragraph. Gravity pulls the atoms toward the bottom
of the trap, whereas the 𝑧−dependent term in the coupling attracts the atom to the top.
Another expression for 𝑉𝑡𝑟𝑎𝑝(𝑧) is:

𝑉𝑡𝑟𝑎𝑝(𝑧) =
ℏΩ0

2
+

(︂
𝑀 𝑔 − ℏΩ0

𝑟𝑏

)︂
𝑧 (3.2)

(3.3)

In the previous expression, the expression of 𝑟𝑏 is given by (1.26). To be in a microgravity
environment in the trap states means that the gravity is compensated by the attraction of
the atoms toward the hole. This condition can be written as:

𝑀𝑔 =
ℏΩ0

𝑟𝑏
−→ Ω0 =

𝑀𝑔

ℏ
𝑟𝑏 =

𝑀𝑔 𝜔rf

ℏ𝛼
(3.4)

So to compensate the gravity with a fixed RF field frequency, the parameters one can tune
are the magnetic field gradient 𝛼 of the trap and the maximum Rabi-coupling Ω0.

3.1.2 Spontaneous formation of ring shaped Bose-Einstein condensate

As observed by Yanliang Guo during his PhD [76] on this experiment, when gravity is com-
pensated, the atoms spontaneously form a ring in the trap. This is because the previous
description of the system lacks an element: the transverse confinement of the trap. In the
direction transverse to the bubble, the Bose-Einstein condensate lies at the fundamental level
of the dressed trap in the quasi-2D regime. This trap can be described locally as harmonic,
and as such, one has to take into account the zero-point energy. A description of the zero-
point energy must be given, and this term is expressed as ℏ𝜔⊥(𝑧)

2 . By recalling the results of
Sec.1.1.2 and reformulating its results [76]:

𝜔⊥(𝑧) = 𝛼(𝑧)

√︃
ℏ

𝑀 Ω(𝑧)
(3.5)

with 𝛼(𝑧) = 𝛼

√︃
1 +

12 𝑧2

𝑟2𝑏
(3.6)

These expressions state that the transverse confinement is not homogeneous, implying changes
in the zero-point energy. A close look at the expression (3.5) tells us that the transverse
confinement diverges at the very top of the bubble. This is because it is the point where Ω
vanishes. Instead of looking at the position on the ellipsoid compressed along the 𝑧−axis, it is
more convenient to look at the position on a sphere, as detailed in Sec.1.1.2. The dependencies
on the angle 𝜑 have been dropped as the trap is invariant with respect to the rotation around
the 𝑧−axis, To avoid any confusion with the time 𝑡, the graphical representation of 𝑡 has been
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(a) Transverse confinement with respect to 𝜙.
(b) View of the circle having a radius of 𝑟𝑏 and the
𝜙 angle.

Figure 3.1 – Transverse confinement representation. These figures are taken from [76].

replaced by 𝜙 for clarity’s sake. The expression of the full shell potential with respect to 𝜙 is
given by [76]:

𝑉𝑠ℎ𝑒𝑙𝑙(𝜙) =
ℏΩ0

2
+

(︂
𝜔rf 𝑀𝑔

𝛼
− ℏΩ0

)︂
cos(𝜙)

2
+ ℏ𝛼

√︂
ℏ

𝑀 Ω0

√︀
5 + cos(2𝜙)√
8 sin

(︀𝜙
2

)︀ (3.7)

When the microgravity condition is met, the second term of the equation above cancels, and
the transverse confinement variations become dominant. This last term, plotted in Fig.3.1a,
has a minimum for 𝜙 = 0.55𝜋, slightly below the bubble equator. The model described here
shows how the atoms form a ring: when gravity is cancelled, the transverse confinement has
a minimum, which is where the atoms stay.

3.2 Experimental sequence and measurements

Now that the principle has been established, this is the time to give more details about
the experimental work done to observe the microgravity regime. This work was done to
complete what was started by Yanliang Guo during his PhD [76]. This section will start
with a presentation of the first measurements done during Yanliang Guo’s PhD time, their
limitations, and how the experimental strategy has been modified. After that, the RF field
tuning method will be explained.

3.2.1 Strategy and sequence description

One must recall that the semi-major radius of the bubble is given by 𝑟𝑏 = 𝜔rf
𝛼 as stated in

Chap.1. As the microgravity condition stated in Eq.(3.4), to cancel gravity, one must either
increase Ω0 or decrease 𝑟𝑏.

The first measurement during Y. Guo thesis was done by raising the magnetic field gra-
dient. To perform this set of measurements, the gravity compensation sequence started with
a BEC loaded in the bubble trap with a gradient of 𝛼/2𝜋 = 4.14 kHz · µm−1 with a circu-
larly polarized rf-field along the 𝑧−axis at 𝜔rf/2𝜋 = 300 kHz and a fixed maximum coupling
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amplitude. The gradient is then ramped up to a larger final value in 300ms, decreasing 𝑟𝑏.
At the end of the ramp, the trap is switched off, an image is taken by the horizontal camera
after a time of flight expansion via absorption imaging technique, and the number of atoms
is measured. We observe a dramatic fall of the atom number in the trap when 𝑟𝑏 is below
a given threshold that depends on the maximum Rabi coupling [76]. As the atoms are able
to explore the full ellipsoid surface, they spend more time close to the top of the bubble,
resulting in increased Majorana losses.

A second set of measurements has been done to look at the atomic distribution inside the
trap. This time the maximum Rabi coupling, Ω0, was increased at a fixed gradient. Once the
atoms are transferred in the bubble trap, Ω0 is raised to a final value between 2𝜋 × 79 kHz
and 2𝜋 × 112.6 kHz. An in-situ image along the vertical axis is taken at the end of the
sequence. The results of these measurements were the observation of a ring-shaped atomic
cloud, but the estimation of the gravity compensation threshold was incorrect. Therefore, the
model developed in Sec.3.1.2 is valid qualitatively, but the experimentally observed threshold
was slightly different from the threshold deduced from the model developed in Sec.3.1.2. An
important drawback of this method is the requirement of doing an RF polarization tuning for
each Ω0 value.

Figure 3.2 – Schematic representation of the evolution of the maximum coupling and
the coupling gradient during the sequence used for the second round of data collection.
The maximum coupling amplitude remains constant. The coupling gradient starts at low
value (𝛼/2𝜋 = 4.14 kHz · µm−1) and is raised at a higher final value.

To complete our study, we were interested in a systematic study of the whole ring for-
mation pattern. The conclusion from previous sets of measurements was that we observed
an inhomogeneous ring. We used the same experimental sequence as the one for the first
set of measurements and we used the imaging system along the vertical axis in the in-situ
condition. The sequence, displayed in Fig.3.2, starts with a bubble trap loaded with a BEC.
The radiofrequency field is circularly polarized with a frequency of 300 kHz and a maximum
Rabi coupling of 85 kHz. The gravity compensation condition (3.4) gives a magnetic gradient
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value of 7.54 kHz · µm−1. Once the atoms are loaded in the trap, the gradient is ramped to a
final value in 300ms. The result of this set of measurements is displayed in Fig.3.3

α/(2π) =5.77(7)

a)

b)

c)
r

θ

ρ

z

6.86(8) 7.13(8) 7.34(8) 7.40(8) 7.44(8) 7.54(8) 7.68(9) kHz/µm

Figure 3.3 – Formation of the ring-shaped BEC when the gravity is compensated by
increasing the magnetic field gradient value. The pink line represents the value at which
the gravity is compensated. This figure is taken from ref. [37]

3.2.2 Calibration of the radiofrequency field

The key element to observing the ring when gravity is compensated is the radiofrequency field
tuning. Let us first give the expression of the magnetic field related to the RF field:

Brf(𝑡) = 𝐵𝑥 cos (𝜔rf𝑡+ 𝜑𝑥)e𝑥 +𝐵𝑦 cos (𝜔rf𝑡+ 𝜑𝑦)e𝑦 +𝐵𝑧 cos (𝜔rf𝑡+ 𝜑𝑧)e𝑧 (3.8)

To observe the ring, the polarization must be 𝜎− along the 𝑧−axis. This translates to
𝐵𝑥 = 𝐵𝑦 for the amplitude of the magnetic fields in the 𝑥− 𝑦 plane and a phase difference of
these fields of 𝜑𝑦 − 𝜑𝑥 = −𝜋

2 . The magnetic field should be zero along the 𝑧−axis, so 𝐵𝑧 = 0.
In order to achieve this polarization, there are three different dressing antennas, one along
each axis of the experiment, as described in Chap.2.

On a theoretical level, assuming the rf field produced by a coil is homogeneous, one would
need only two coils to generate an elliptically polarized rf field in the 𝑥− 𝑦 plane. However,
the experimental situation has been proven more complex during Mathieu de Goër’s PhD [64].
The problem comes from the alignment of each coil: there is a small tilt for each axis such
that each coil produces a field that is not strictly aligned with the 𝑥, 𝑦 and 𝑧−axis.

To account for these misalignments, the field produced by each antenna is along a vector
noted u𝑖, which is different from the Cartesian basis vector e𝑖. The amplitude of the antenna
along the axes e𝑥 and e𝑦 should be the same, but as the antennas are slightly different and
the fields are produced along u𝑥 and u𝑦, an amplitude correction 𝛿𝐵 is introduced. This
also applies to the phase difference between these two antennas, which also requires a phase
correction, 𝛿𝜑. Furthermore, the two previously mentioned coils produce together a small
field along the axis e𝑧. This is compensated by the field −𝐵𝑧 cos (𝜔rf𝑡+ 𝜑𝑧) along the u𝑧 axis.
This coil will be referred to as the vertical antenna. Using these new parameters, one can
write Eq.(3.8) for a 𝜎− polarization, which becomes:

Brf(𝑡) = 𝐵(1+𝛿𝐵) cos (𝜔rf𝑡)u𝑥+𝐵(1−𝛿𝐵) cos (𝜔rf𝑡−
𝜋

2
+ 𝛿𝜑)u𝑦−𝐵𝑧 cos (𝜔rf𝑡+ 𝜑𝑧)u𝑧 (3.9)

In this expression, the following parameters need to be tuned:

• 𝛿𝐵 - the amplitude correction in the plane.

• 𝛿𝜑 - the phase correction in the plane.

• 𝐵𝑧 - the amplitude of the vertical antenna.



44 Gravity Compensation

• 𝜑𝑧 - the phase of the vertical antenna.

The initial tuning had been done following the procedure described in Yanliang Guo’s PhD
thesis [76], beginning with an unknown polarization close to 𝜎−. s The procedure can be
summarized as follows: first, 𝜑𝑧 and 𝐵𝑧 are changed in order to obtain two well-balanced spots.
As detailed in Sec.1.1.2, when the polarization is elliptical, there are two holes attracting the
atoms. This step is detailed in Sec.3.2.2 and aims to set the polarization of the rf-field in
the 𝑥 − 𝑦 plane by tuning 𝐵𝑧 and 𝜑𝑧. Once this is done, the polarization is elliptic in the
𝑥−𝑦, plane and the goal is now to obtain a circular polarization. The procedure is detailed in
Sec.3.2.2 and tunes 𝛿𝐵 and 𝛿𝜑 correctly. After this two-step procedure, the atoms are spread
as uniformly as possible along the circle’s circumference.

For this procedure to work, the magnetic gradient has to be large enough to observe a ring
when the RF field is well tuned. The BEC is then located at the potential minimum described
in Eq.(3.7). A shortcoming of this procedure is that the tuning is done at a high value of
magnetic gradient. The tuning of the RF field to ensure the most uniform atomic distribution
was slightly different for lower magnetic gradient values. For instance, a set of parameters
displaying an almost uniform distribution of the atoms along the circle’s circumference when
the atoms are at the bubble’s equator might show an unbalanced cloud when the atoms
are located at the bottom of the trap. Therefore, Yanliang Guo’s method to tune the RF
field needs to be corrected, and as such, the effects of each parameter change on the atomic
distribution are described. A mathematical description of these changes is found in ref. [91].

Tuning of the vertical antenna

The first parameters we changed in the previous method were those related to the vertical
antenna. 𝐵𝑧 and 𝜑𝑧 exhibit two different behaviors that are easy to identify and distinguish.

(a) (b)

Figure 3.4 – Illustration of changes in vertical antenna parameters. Fig.a represents the
situation where the vertical amplitude is too high, resulting in atoms accumulating on the
bottom left part. Fig.b represents the situation where the phase of the vertical antenna
is too high, resulting in atoms accumulating on the top left.

But before that, the first step is to describe the physical situation prior to the tuning.
The polarization is close to circular but slightly elliptical. The consequence for the atoms is
the existence of two holes they are attracted to. When gravity is compensated, this results
in having two clouds of atoms that are small and dense. The first step to tuning the RF
parameters is to bring the RF polarization into the 𝑥 − 𝑦 plane. This is accomplished by
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adjusting the parameters 𝐵𝑧 and 𝜑𝑧. When the polarization is elliptic in the 𝑥 − 𝑦 plane,
it results in two holes symmetric with respect to the 𝑧−axis, as described in Sec.1.1.2. The
effect on the atoms is to have two clouds of atoms of the same size along the diameter of the
circle.

Each parameter controlling the RF field generated by the vertical antenna has a different
role. On the one hand, 𝐵𝑧 tunes the balance of the two different spots along an axis going
from the top right to the bottom left of the images based on the camera’s orientation. When
it is poorly tuned, either the atoms accumulate on the top right of the circles when 𝐵𝑧 is too
large or on the bottom left when it is too small.

On the other hand, there is the tuning of 𝜑𝑧, which modifies the alignment of the axis
formed by the two clouds of atoms. When 𝜑𝑧 is too small, the atoms accumulate at the upper
left corner of the image; when this parameter is too large, the atoms accumulate at the lower
right corner of the circle. These two axes are not arbitrary: they are the two axes along which
the antennas in the 𝑥− 𝑦 plane are oriented .

Tuning of the in-plane antennas

Once the parameters related to the vertical antenna are correctly tuned, two clouds of similar
size along the radius of a circle are observed. It indicates that the RF field’s polarization
is elliptic and in the 𝑥 − 𝑦 plane. The motivation for this tuning is to pass from an elliptic
to a circular polarization. The starting point to tune the parameters 𝛿𝜑 and 𝛿𝐵 is two well
balanced spots of atoms.

(a) (b)

Figure 3.5 – Representation of the change in parameters for the in-plane antennas. Fig.a
is what happens when 𝛿𝜑 is not well tuned and the axis between the 2 spots is not along
the circle diameter. Fig.b shows a picture where 𝛿𝐵 is not well tuned, hence having two
spots of atoms.

The starting point to describe the behavior of the atoms is the link between the parameters
of the RF field and the holes positions, which is given by Eq.(1.48) of Chap.1. The angle 𝜑
describes the orientation of the axis defined by the two holes, which is oriented in the 𝑥 − 𝑦
plane. A direct consequence of having two distinct holes is to have two separate clouds of
atoms around the circumference of the circle [76]. As each cloud is attracted towards one
hole, the 𝜑 angle also describes the angle between the axis of the antenna and the axes of the
two atom clouds:

𝜑 =
1

2
arctan

(︀
tan (2Θ) cos(Φ)

)︀
(3.10)
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The Θ parameter controls the balance between the antenna generating the RF field along u𝑥

and the one generating the RF field along u𝑦. Φ is the difference in phase between the two
antennas. Given that the desired polarization state is 𝜎− along the 𝑧−axis, Θ has a value
close to 𝜋/4 and Φ has a value close to 𝜋/2,resulting in Θ = 𝜋/4 + 𝛿Θ and Φ = 𝜋/2 + 𝛿Φ.
Taking this into account and assuming only minor corrections are required, the expression of
𝜑 is as follows:

𝜑 =
1

2
arctan

(︂
sin (𝛿Φ)

tan(2𝛿Θ)

)︂
≃ 1

2
arctan

(︂
𝛿Φ

2𝛿Θ

)︂
(3.11)

Eq.(3.11) shows that for a fixed value of the amplitude difference 𝛿Θ, the two clouds
rotate along the circle, resulting in a change in the 𝜑. The angle 𝜑 depends on 𝛿Φ with an
arctangent behavior. This means the angle value goes from a lower value to an upper value,
passing through zero in a certain interval. This interval depends directly on the value of 𝛿Θ,
and when the two amplitudes are well-balanced, the two clouds rotate extremely quickly in
relation to the phase difference 𝛿Φ.

That is why our goal is to experimentally minimize the width of variation needed to pass
from the axis of one antenna to the axis of the other antenna. The value of 𝛿𝜑 is scanned for
each value of 𝛿𝐵. When 𝛿𝜑 is far detuned, the two atom clouds align along the axis of one of
the coils, either u𝑥 or u𝑦. During the scan of 𝛿𝜑, the span to pass from one axis to the other
is noted. The value that minimizes the width of variation is then used.

In practice, one might need to change the value a little for balancing purposes. Indeed, as
gravity is gradually compensated, the correct value for the ring-shaped BEC at the bubble’s
equator can differ slightly from the value of 𝛿Θ for a pancake BEC when the gravity is only
partially compensated. Therefore, it is useful to have a phenomenological model of how a
change with respect to a certain parameter affects the cloud.

When 𝛿𝐵 is too low, the atoms are on the bottom left to top right axis, and when this
parameter is too high, the atoms are aligned on the top left to bottom right axis. Because the
vertical antenna parameters have been tuned, there are two balanced spots with atoms that
are diametrically opposed on the circle, and tuning this parameter will make this axis rotate.
For example, in Fig.3.5b, the parameters related to the vertical antenna are well tuned as
the two clouds align with the radius of the circle, but 𝛿𝐵 is slightly detuned because the axis
formed by the clouds is close to the u𝑥 axis.

After that, only one parameter needs to be adjusted: 𝛿𝜑. This parameter controls the
way the atoms spread along the circle’s circumference. Starting with a tuned 𝛿𝐵, when 𝛿𝜑
is far detuned, there are two distinct clouds, whereas when it has the right value, the atoms
are almost uniformly distributed along the circle. The idea here is to spread the atoms as
uniformly as possible along the circle’s circumference. An example of the situation needing
to be tuned is given in Fig.3.5a. One can see the two clouds are well balanced in terms of
number of atoms, but they do not spread along the circle’s circumference.

3.2.3 Calibration of the magnetic gradient of the quadrupole trap

The ellipsoid radius depends on 𝛼, the magnetic gradient value, as expressed in Chap.1. This
magnetic gradient behaves linearly with respect to the current: 𝛼 = 𝐶I, and the value of 𝐶
is critical for correct trap modeling. The calibration of this parameter is detailed in Yanliang
Guo’s PhD thesis [76] and this section intends to provide a short description of this procedure.

The first step is to determine the vertical equilibrium position of the cloud that takes into
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account gravity:

𝑅 =
𝜔rf

2𝛼

(︃
1 +

𝜖√
1− 𝜖2

Ω0

𝜔rf

)︃
(3.12)

Where 𝜖 = 𝑀𝑔/(2ℏ𝛼) and 𝛼 is the magnetic field gradient in the horizontal plane at the
equator of the ellipsoid. A way to evaluate the radius in the vertical direction is to look at
the vertical position of a cloud after a time of flight of 23ms.

The first step is to determine the magnetic field gradient 𝛼 for a given value of 𝐼, the
current flowing through the science cell’s quadrupole coil. As Eq.(3.12) shows, the initial
position of the cloud depends on the RF frequency, and evaluating the vertical position of the
cloud gives information on the initial vertical position of the cloud as the time flight duration
is always the same. The cloud vertical position is determined by doing a fit and taking
the vertical position. To evaluate the vertical equilibrium position of the cloud, a vertical
oscillation measurement of the position of the cloud is performed. As the cloud oscillates
around the bottom of the trap, this may disrupt the results of the gradient calibration. Once
the oscillation measurement is done, a sinusoidal fit is applied to the different positions to
determine the vertical position around which the cloud oscillates. By scanning the equilibrium
position of the cloud with respect to the rf-frequency, one can obtain the curve displayed in
Fig.3.6b. By doing a linear fit on this curve, the value of 𝛼 is obtained by looking at the
linear coefficient.

Then the same measurement is done for multiple values of quadrupole current. The higher
current value was the most important for us, therefore we decided to evaluate the 𝛼 values for
52A, 56A and 60A on top of the initial value of the current 28A when the cloud is loaded
onto the bubble at the beginning of the gravity compensation ramp. The Fig.3.6a shows the
evolution of 𝛼 with respect to the quadrupole current, and by doing a linear fit, one can
deduce the value of 𝐶. The numerical value obtained is 𝐶 = 2.090(23)G · cm−1 ·A−1.

(a) (b)

Figure 3.6 – Fig.3.6a: Evolution of the magnetic field gradient with respect to the
current in the quadrupole coils. The red dots represent the measurements done. The
blue line represents the linear fit done. Fig.5.2b: Evolution of the dressing frequency with
respect to the vertical position of the center of the cloud. The value of the vertical position
of the center of the cloud is taken from a fit done after an oscillation measurement.
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3.3 Results exploitation

Once all the tuning is done, we are able to take measurements. The result for a value of
magnetic gradient of 𝛼/2𝜋 = 7.54 kHz · µm−1 is shown in the following figure.

Figure 3.7 – Ring of atoms when the RF is correctly tuned.

3.3.1 Improved numerical model

A question up in the air at the end of Yanliang Guo’s work was the apparent disagreement
between the model explained in Sec.3.1.2 and the observation done experimentally. There was
a disagreement on the estimation of the quadrupole magnetic gradient needed to compensate
for gravity. To describe the potential more precisely, one has to look at the ratio taken
into account to apply the rotating wave approximation in Chap.1: Ω0

𝜔rf
. The ratio value is

0.28 in the case of the experiment conducted, which does not satisfy the condition Ω0
𝜔rf

≪ 1
suggesting the rotating wave approximation does not describe well the experimental situation.
The inclusion of the non-resonant term is needed.

This numerical work had been done by Romain Dubessy to have a numerical evaluation
of the potential detailed in [37]. The starting point is to use a Floquet expansion in order to
include the non-resonant coupling terms in a 3D potential. It takes the ±2 photons coupling
into account in the calculation. This is how the potential referred to as 𝑉 𝐹𝑙

3𝐷(𝑟, 𝜃) in Fig.3.8 is
determined in spherical coordinates. This potential takes into account the resonant coupling
responsible for the dressing of the atoms, the gravity, and the non-resonant coupling, which
had been simplified in Sec.1.1.1. There is no mention of a 𝜑 dependence because our system is
assumed to be rotationally invariant. A numerical resolution of the Gross-Pitaevskii equation
provides a solution of the ground state of our system.

However, one can see in Fig.3.8 that 𝑉 𝐹𝑙
3𝐷(𝑟, 𝜃) lacks the positive divergence near the top of

the bubble, preventing them from reaching the zero-coupling region. To include the transverse
confinement in the potential, a similar approach to what has been developed in Sec.3.1.2 is
taken. First, for each value of 𝜃 a value of 𝑟 is found that minimizes 𝑉 𝐹𝑙

3𝐷(𝑟, 𝜃) and by this
means one can have a 2D surface that minimizes our 3D potential. Then, for each point on
the surface, the Hessian matrix of the potential is numerically computed. The eigenvalues
are then computed, and the largest gives the transverse trapping frequency. Ultimately, this
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procedure leads to the expression of a 2D potential:

𝑉 𝐹𝑙
2𝐷(𝜃) = 𝑉 𝐹𝑙

3𝐷(𝑟𝑚𝑖𝑛(𝜃), 𝜃) +
ℏ𝜔⊥(𝜃)

2
(3.13)

Where each of the term is evaluated numerically.
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Figure 3.8 – (color online) Right axis: effective potential on the surface 𝑉 𝐹𝑙
2𝐷(𝜃) (solid

red line), 𝑉 𝐹𝑙
3𝐷(𝑟𝑠(𝜃), 𝜃) (dashed blue) and 𝑉 𝑅𝑊𝐴

2𝐷 (𝑧) (dotted black). Left axis: surface
density 2D computed with the full 3D model (grey shaded area), the 2D semi-classical
model (black solid line) and 2D Thomas- Fermi solution (dashed red line). The trap
parameters are: 𝜔/2𝜋 = 300 kHz , Ω0/2𝜋 = 85.0(5) kHz and 𝛼/2𝜋 = 7.68(9) kHz · µm−1.

3.3.2 Comparison with analysis

Now that we have a numerical model to describe the experiment, let us compare it with the
data. The Fig.3.8 displays the different model used to describe the experiment: 𝑉 𝐹𝑙

3𝐷(𝑟, 𝜃)
with a dashed blue line, 𝑉 𝐹𝑙

2𝐷(𝑟, 𝜃) with a black dotted line, and 𝑉 𝑅𝑊𝐴
2𝐷 (𝜃) with a plain red line

whose expression is given in Eq.(3.7). The first conclusion one can draw from this graph is that
the numerical model encompassing the non-resonant coupling terms in 3D fails to accurately
describe the experiment: there is no minimum where the atoms would accumulate. Then the 2
different models that take into account the transverse confinement have qualitatively the same
behavior: there is a minimum near the bubble’s equator. The model that displays the most
similarity with the experimental result is the 𝑉 𝐹𝑙

2𝐷(𝜃) with a minimum close to the experimental
threshold observed experimentally. This threshold corresponds to the appearance of the local
minimum of density in the center of the cloud of atoms.

As presented in Fig.3.9, one can see the evolution from a connected cloud at the bottom
of the trap to a ring in levitation inside the trap. The top row shows the experimental data,
the middle row displays a top view of the simulation of the 3D Gross-Pitaevskii equation
done by Romain Dubessy and the bottom row shows a side view of that same simulation.
Each column corresponds to a gradient value ranging from the lowest value on the left to
the highest value on the right. The pink line is a visual representation of the value where
the gravity compensation happens in the numerical 2D model. This value is lower than the
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naive value 𝛼𝑔 in the chapter, which is 7.54 kHz ·µm−1, a position at which the ring is already
well-formed.

α/(2π) =5.77(7)

a)

b)

c)
r

θ

ρ

z

6.86(8) 7.13(8) 7.34(8) 7.40(8) 7.44(8) 7.54(8) 7.68(9) kHz/µm

Figure 3.9 – Scan of the gradient for a maximum Rabi coupling Ω0/2𝜋 = 85 kHz. Each
column represents the situation for a given gradient from lowest (left) to highest (right)
value. The line (a) represents the experimental photo taken. The line (b) represents a top
view of the simulation. The line (c) represents a side view of the simulation. The pictures
in line (a) and (b) have a size of 120 µm × 120 µm. The pictures in line (c) have a size
of 60 µm× 60 µm The pink line represents the value at which the gravity is compensated.
This figure is taken from Ref. [37]

Furthermore, the lifetime in the trap decreases when gravity is overcompensated. The
number of atoms with respect to time always follows a double exponential decay with a short
decay time of the order of 1 s and a longer decay time of the order of 10 s. As shown in
Fig.3.10a, the increase in gradient above a certain threshold leads to a reduction of both
lifetimes measured in the trap. Even if the loss mechanism is not fully understood [92], a
calculation has ruled out the possibility of 3-body losses. The three-body losses represent
the three-body recombination, a mechanism involving the formation of a molecule with two
atoms and the excess of energy being transferred to the kinetic energy of a third atom. The
expression of the loss of atoms due to this phenomenon is given by:

𝜕𝑁(𝑡)

𝜕𝑡
= −𝐾3

∫︁
𝑛3(r, 𝑡)dr (3.14)

𝑛(r, 𝑡) = |Ψ(r, 𝑡)|2 (3.15)

In the equation (3.15), Ψ is the wavefunction of the BEC in the trap, which is determined
self-consistently. The calculation was done for a ring of atoms at the equator in the bubble.
In such a case, two cases were studied: the case where the BEC is strongly confined in the
radial direction, and the case where the BEC is in 3D along the ring. For the 3D case, the
density profile was given by a Thomas-Fermi profile in 3D:

𝑛3𝐷(𝑟, 𝑧) =
𝜇3𝐷
𝑔

(1− (𝑟 − 𝑟0)
2

𝑅2
− 𝑧2

𝑅2
𝑧

) (3.16)
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Figure 3.10 – Fig.a: lifetime evolution with respect to the gradient with two time
constants. The blue curve represents the long lifetime and the red curve represents
the short lifetime. Inset: Lifetime measurement after a time of flight for a gradient of
𝛼/2𝜋 = 7.54 kHz · µm−1. The square represents the measured number of atoms and the
black line represents the double exponential decay model. Fig.b: evolution of the number
of atoms when 𝛼/2𝜋 = 7.68 kHz ·µm−1 The red and black series of points are experimental
measurements of the number of atoms. The red dots represent a serie of measurements
with a rf-knife applied during the dressing and the waiting time. The black dots represent
a serie of measurements without such rf-knife. There is no qualitative difference these
two series of measurements. The blue and orange represents 2 different models of 3-body
losses.

Where 𝑅𝑧 =
√︀
2𝜇/(𝑀𝜔2

𝑧), 𝑅 =
√︀

2𝜇/(𝑀𝜔2
𝑟 ) are the two Thomas-Fermi profiles. The

chemical potential in 3D is given by 𝜇3𝐷 = ℏ√𝜔𝑟𝜔𝑧

√︀
2𝑁𝑎𝑠/(𝜋𝑟0) [57]. By using these

expressions and doing the integration, this gives:

𝑁 =
𝑁0

1 + 𝛾3𝐷𝑁0𝑡
𝛾3𝐷 =

𝐾3

16𝜋3𝑎𝑠𝑟0𝑎2𝑟𝑎
2
𝑧

(3.17)

For the 2D-case, we have made the approximation that the gas was strongly confined along
the radius. The density profile was:

𝑛2𝐷(𝑟, 𝑧) =
𝜇

𝑔2𝐷
(1− 𝑧2

𝑅2
𝑧

)
𝑒

−(𝑟−𝑟0)
2

𝑎2𝑟√
𝜋𝑎𝑟

(3.18)

In this regime, the interaction strength is modified by 𝑔2𝐷 = 𝑔/(
√
2𝜋𝑎𝑟), and so is the chemical

potential 𝜇2𝐷 = ℏ(𝜔𝑟𝜔
2
𝑧)

1/3((3𝑁𝑎𝑠/𝑟0)
2/(2(2𝜋)))1/3. By integration of Eq.(3.15), the three-

body losses in two dimensions are given by:

𝑁(𝑡) =
1

(1 + 𝛾2𝐷𝑁
4/3
0 𝑡)3/4

𝛾2𝐷 = 𝐾3
35/6(𝑎𝑠𝑟

2
0𝑎

2
𝑟𝑎

4
𝑧)

−2/3

35× 22/3𝜋8/3
(3.19)

The curves representing the 3-body losses in Fig.3.10b are in blue for the 3D regime and in
orange for the 2D case with a transverse confinement along the radius. Both are extremely
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different from the experimental data, enabling us to rule out three-body recombination as the
main loss mechanism when gravity is compensated in the trap.

3.3.3 Slightly inhomogeneous ring

As observed in Fig.3.7, there is still an inhomogeneity in the ring. The reader can distinguish
three different maxima along the circle’s perimeter. An explanation for this inhomogeneity is
the finite size of the dressing antennas used to dress the atoms.

(a) (b)

Figure 3.11 – Fig.a display a graphical representation of the amplitude variation due
to the finite size around the circle of atom. The blue curve represents the square coil, the
orange curve represents the circle coil. Fig.b display a contour plot of amplitude variation
of the finite size of the coils.

A way to explain this inhomogeneity is to look at the order of magnitude of the different
elements of the experiment. On one side, the bubble size is about 100 µm wide, and the size
of the dressing antennas is 1 cm. By comparing these 2 sizes, one can obtain an estimation
of the effect of the inhomogeneity of the field. As the bubble is a hundredth of the size of
the coil, this is typically the size of the field inhomogeneity to expect. On the other side, the
dressing frequency is of the order 100 kHz and the field inhomogeneity would mean a variation
in frequency of around 1 kHz. This value has to be compared to the chemical potential of
the ring, which is around 1 kHz. So we have a field inhomogeneity with a value comparable
to the chemical potential. This can explain the presence of maxima and minima in the atom
density along the circle. A more detailed calculation has been done by Hélène Perrin, which
leads to the graphs in Fig.3.11. There are two curves on the graph presented: the blue
curve represents the inhomogeneity computed for a square coil, and the orange curve is the
inhomogeneity computed for a circular coil. This has to do with the geometry of our dressing
coils, they are square-shaped with round edges. One can see they are alike: they display
the same number of minima and maxima at the same position, and the only difference is
the height of the maxima. There are three different minima, which is in agreement with the
observation of the ring having three maxima of density. Also, one can see a difference in
the spreading of atoms along the ring. It implies the phase difference is not exactly 𝜋

2 after
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having done the rf-tuning session as the criteria was having the most uniform spread of atom
along the circle. Fig.3.11b shows the potential inhomogeneity in the plane. The orange parts
show the minima, whereas the blue parts show the maxima. There are three "valleys", which
correspond to the minima observed on the function graph.

3.4 Conclusion

To conclude this chapter, the result of compensating gravity inside a quadrupole-dressed trap
is the spontaneous formation of a ring. When gravity is strictly compensated, this ring is long-
lived, and its lifetime decreases when the gradient overcompensates gravity. To fully depict
this system, a numerical model has been developed by Romain Dubessy in order to take into
account the out-of-resonance terms. This brings a new method to produce a ring-shaped
Bose-Einstein condensate. This work is published in the New Journal of Physics [37].





Part II

New control system and its
applications





Chapter 4
The control system: Implementation
of the Labscript-Suite

The Chap.2 detailed how to obtain a Bose-Einstein condensate through an experimental
sequence. In order to observe a BEC, multiple devices have to be coordinated to do various
tasks, such as compressing the magneto-optical trap or sending a radio-frequency field to
evaporate the atoms with the highest kinetic energy. For a laboratory setup to produce a
BEC, there are multiple requirements, such as being able to communicate with the devices,
having a time precision of one microsecond (the shortest pulses in the experimental sequence
are the imaging pulses, which last for 17 µs), and to store the data.

Prior to this system change, the group was using Manip, a homemade software coded in
C++ written to interact only with hardware pieces. To start an experimental sequence, a file
was edited to choose which steps to run. This file was then compiled, and the instructions it
held were run. At the main sequence’s end, a picture was taken and displayed on a separate
computer from the one executing the sequence. If further analysis were required, the data
were sent to a piece of software programmed in Matlab. The setup was functional, yet some
shortcomings were observed:

• The system was working on software no longer maintained: Manip was installed on a
PC working with Windows XP. If a problem happened, there was a risk of not being
able to reinstall the control system on a newer computer.

• Insufficient time precision: the clock had a frequency of 10 kHz leading to a time accuracy
of 100 µs, insufficient for the sequence. For example, to circumvent this limitation, a
pulse generator was used for the imaging pulses, achieving the time precision required.

• Partial archiving of the results: the former control system did not fully manage the
radiofrequency sources. The RF parameters were edited on a dedicated piece of software,
and the data were stored in files accessible by Manip. These files were sent to the devices,
and their execution was triggered by TTL pulses. The result was that no data were
kept except the one written in the lab textbook by the experimentalist.

The team decided to change the control system to the Labscript Suite prior to the be-
ginning of my PhD. This choice was made after a careful comparison of the different options
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readily available. The other options were the Cicero word generator [93] , an open source
control system developed by the MIT cold atom group, or ARTIQ [94], a system developed
by M-Lab in collaboration with the ion-storage group at the NIST. The Labscript Suite is
an open-source software developed by the quantum fluids group at Monash University in
Melbourne. This control system enables the user to edit a sequence file written in Python
with a dedicated library and change the values of these parameters using a graphical inter-
face. This graphical user interface was decisive in choosing the Labscript Suite. This chapter
introduces the Labscript Suite with a presentation of each of its components. Then the main
devices incorporated in the new system are presented, some major hardware updates had
been done jointly with the software changes. After, the transcription of the experimental
sequence is detailed, along with the adaptation of the data analysis system to the Labscript
Suite. Ultimately, some proposals on how the setup can be improved are given.

4.1 The new control system: Labscript-Suite

4.1.1 General architecture

The Labscript Suite is an open source control system developed by the Monash University
cold atoms group [38, 95, 96]. The cornerstone of this system is Labscript, a library they
developed in Python that translates high-level instructions given by the experimentalist into
low-level instructions understandable by the different devices. In the context of computer
science, a library is a set of functions and objects usable by a programmer. IQuadBEC.constant(

t=tBEC,value=28,units=’A’) is an example of such an instruction written by the experimentalist
in Labscript language, where the output IQuadBEC is set to 28 Ampere at the timecode
tBEC. The units here allow the user to change the output expression. The default unit is
voltage, but it is often more convenient to express the command in a different unit. As for the
example given above, which drives a current supply, it is more useful to express the output in
amperes. This change of unit is taken into account via a transfer function coded by the user
and assigned to the analog output; this will be detailed in Sec.4.2.2.

One of Labscript’s purposes is to write down an experimental sequence in a Python file,
and the sequence writing will be detailed in Sec.4.3.1. It also allows the user to get an interface
with the different devices in the lab; this work will be detailed in the Sec.4.2. In this same
section, a description of the connection table, a key dependency of our system will be given.

Each experimental realization is stored in a HDF5 file called a shot file. This format is the
acronym for Hierarchical Data Format, which stores different types of information in a tree
structure. The most complex data, such as an image at the end of an experimental sequence,
is stored as a dataset, whereas simpler data, such as the value of a parameter, is stored as an
attribute. This file is used as a unique vector of information inside the control system, and
each experimental realization is stored in a separate file.

This is shown in Fig.4.1 as the red arrows in the scheme, which show the path of a shot
file. The shot file will now be referred to either as the shot file or the HDF file. We can
see that the control system is composed of four independent pieces of software: Runmanager,
BLACS, Runviewer, and Lyse. This section will follow the path of a shot-file through the
system, following the red arrow from top to bottom. This will start with Runmanager and
the shotfile generation, then BLACS will be introduced and how a shotfile is run, followed
by the data analysis system through Lyse, and ultimately Runviewer will be presented. Each
of these pieces of software has a graphical user interface (GUI) developed using PyQt, the
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Python version of the application programming interface Qt. Also, the pieces of software and
their different processes communicate using the ZeroMQ library.

Figure 4.1 – A scheme of the interaction of the different components of the Labscript
Suite. The red arrows show the usual path a HDF shot-file of a sequence takes during a
sequence execution. A black arrow pointing toward a box indicates a dependency on the
software it points to.

4.1.2 Runmanager

The first piece of software in the system is Runmanager. The experimentalist writes a sequence
in a Python file using Labscript to describe the desired sequence. This file cannot be used
directly by the system, and the first step is to generate an HDF file associated with the python
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file. This is the role of Runmanager: to compile the sequence file. It takes the Python file
and the numerical value of each parameter stored in Runmanager to generate the HDF shot
file.

The other role of Runmanager is to change the parameters’ values easily in the sequence.
As presented in Fig.4.2, the different values are available through the graphical user interface
of Runmanager and can be easily modified. These values can be organized through groups
of parameters, which are accessible through the column on the left of the GUI. The top
group in this column gives access to a Python console that displays error codes when an error
occurs, either in the compilation process or when a programming error has been made in the
sequence file. For each variable, there is a name, the numerical value associated, a unit, which
is given only as a visual indication, and an expansion status. This last item refers to the
option of scanning the numerical value of a parameter. It is often useful to execute a series
of experimental sequences that differ only by the numerical value of one parameter. A series
of numerical values can be given as a python tuple, an array of values, and when asked to
compile, Runmanager will generate one shot file per value in the tuple. Multiple parameters
can be scanned together, the organization of the parallel scan is determined in the Axes group
and modifies the expansion item. The numerical value’s order can be randomized when the
‘shuffle’ option is chosen. All the parameters and their values are stored in an HDF file, and
multiple HDF files containing parameters can be opened in parallel.

Figure 4.2 – Graphic user interface of Runmanager.
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There are multiple options in Runmanager about the compilation, such as whether to run
the sequence directly; in that case, the file is sent to BLACS; or to view the file; the file is
then sent to Runviewer, a signal visualizer. These paths are shown in Fig.4.1.

4.1.3 BLACS

BLACS is the acronym for "Better Lab Apparatus Control System". This is the piece of
software responsible for interacting with the different devices. As such, it interacts with
the different device drivers, the software interface between the computers, and the devices
themselves. Each order given to a device is executed internally by BLACS in a subprocess
dedicated to this device. When a problem occurs in the subprocess, it does not prevent
BLACS from operating, and the problem is signaled to the user. The interaction between the
devices and the system is done by editing the connection table and will be detailed in Sec.4.2.
BLACS has two different modes:

• In manual mode, the user can interact directly with devices.

• In buffer mode, the sequence is executed. When this mode is on, the user can no longer
interact with the devices, and all actions are prevented by the system in order not to
disturb the execution of the sequence.

Figure 4.3 – Graphic user interface of BLACS during a sequence with multiple shots.
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Once a shotfile has been compiled by Runmanager, BLACS is given a reference to the
file as shown in Fig.4.1 by the top "run" red arrow. This reference is stored in the queue,
waiting to be executed. The graphical depiction of the queue can be seen in Fig.4.3 on the
left part of the graphical user interface. This queue can be managed by the user through the
buttons around the left column; as such, it can be paused, and the execution of the HDF file
can be repeated or aborted if needed using the top buttons. The buttons on the side of the
queue allow the user to empty the queue, reorder it, and add or suppress a specific element.
When a sequence is executed, BLACS enters buffer mode and leaves it at the end of the shot
execution. After a sequence has been executed, its reference is passed to Lyse for further
analysis.

When no sequence are executed, BLACS is in manual mode. In this case, the experimen-
talist may interact with the different devices using the graphical user interface of BLACS. For
instance, in Fig.4.3, in the right panel, each analog output can be changed manually.

4.1.4 Lyse

After the execution of a sequence is finished, the shot file reference is sent to Lyse for the data
to be analyzed. Lyse is short for "analysis". It is the part of the piece of software dedicated to
data analysis, which is done through analysis scripts coded by the experimentalist. The main
analysis script written for the Rubidium experiment at the LPL will be detailed in Sec.4.3.2.
The main graphical user interface of Lyse is shown in Fig.4.4 is split into three parts:

• On the top left: interaction with the analysis scripts. The analysis scripts are loaded
into the graphical user interface in order to be executed. There are two kinds of analysis
scripts: the single-shot routine, which analyzes the data contained in only one script,
and the multishot script, which analyzes the data over multiple files. For instance, an
analysis script determining the number of atoms on a picture is written as a single-
shot analysis script, whereas a script analyzing the oscillation of the cloud from several
pictures would be a multi-shot analysis script. The script can be unselected in order
not to be applied to the incoming shot files. To write the analysis file, there are certain
restrictions on using standard libraries. It is strongly suggested to use numpy [97],
scipy [98], and matplotlib [99] in order to perform certain calculations, whereas some
libraries are impossible to use without encountering problems (PyQt, for example). The
most used analysis script present in Fig.4.4 is AbsorptionImagingAnalysis. Its role will
be detailed in Sec.4.3.2 and one of its functions is to copy the image onto the shotfile.
As such, it is executed on each incoming file.

• On the bottom left: representation of the numerical value of the parameters in the
sequence. The different parameters are written in the shot-file, as described in Sec.4.1.2.
When working on the laboratory setup, it is often useful for the experimentalist to
check the value of certain parameters. This is possible using this part of Lyse’s GUI,
which displays a spreadsheet called a dataframe. On top of each column, the name of
each parameter is displayed, and the value for each file is loaded. Also, analysis script
results can be saved in the shot file and shown in the same dataframe. As there are
numerous parameters in a sequence, the experimentalist can choose which parameter to
display. It is vital not to display the uninteresting parameters for the user; otherwise, the
dataframe becomes confusing and useless. An example of this selection can be viewed
in Fig.4.4. The experimentalist was tuning the dimple beam position, and as such, only
the parameters related to this part of the experiment are displayed.
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• On the right: a Python console gives information when the script is executed. This is
where the information related to the execution of a script is displayed. When a script
cannot be executed because of an error, this is where the error message will print. The
experimentalist can also use this part to display the result of an analysis, for instance.
As seen in Fig.4.4, the results of the fit are displayed in this console. The reader can
see the different physical parameters, such as the spatial extension of the model or the
number of atoms detected. The details about the fitting procedure are mentioned in
Sec.4.3.2.

4.1.5 Runviewer

Runviewer is an optional yet helpful piece of software to visualize the signal delivered to each
output. Fig.4.5 shows the window of Runviewer. The top left of the window is dedicated
to the file loading, and each file has an assigned color. The checkbox on the left allows the
user to choose whether or not to display the data from the file. On the bottom left, the user
chooses which signal to display, and the right side of the window displays the different graphs.
All these graphs show the evolution of the voltage with respect to time. All the different
outputs that can be displayed, whether numerical or analog, are referred to as "channels".
For each channel, the graph shows a line of color for each file. As seen in Fig.4.5 for the
pineblaster_0_clock_line graph, the black line displays the signal of the first file, and the red
line is associated with the second file.

Figure 4.5 – Runviewer’s window.
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4.2 Hardware control

One interesting feature of Labscript Suite is its wide support for different devices. When a
specific one is not directly available, there is a clear path to interface with it, as detailed in the
online documentation. This opportunity enables the incorporation of many devices specific
to the experimental setup; some examples will be detailed in this section.

1 from labscript import *
2 from labscript_devices.PineBlaster import PineBlaster
3 from labscript_devices.NI_DAQmx.labscript_devices import NI_PXIe_6738
4 from labscript_devices.NI_DAQmx.labscript_devices import NI_PXIe_6535
5 from labscript_utils.unitconversions import *
6 from Functions_Transferts import *
7

8 ### Our Own Modules / Devices ###
9 from user_devices.CameraRb import CameraRb

10 from user_devices.DDS_Stanford_Static import DDS_Stanford_Static
11 from user_devices.DDS_BBB_RFbox import DDS_BBB_RFbox
12

13 ### Connection table
14 ### Clock
15 PineBlaster(name=’pineblaster_0 ’ ,usbport=’COM4’)
16 ### Analogics
17 NI_PXIe_6738(name=’Analogics_card ’,parent_device = pineblaster_0.clockline ,
18 clock_terminal=’/Dev3/PFI0’, MAX_name=’Dev3’,
19 max_AO_sample_rate =400e3)
20 ### Numerics
21 NI_PXIe_6535(name=’Num_Card_Computer ’,parent_device=pineblaster_0.clockline ,
22 clock_terminal=’/Dev3/PFI0’, MAX_name=’Dev2’)
23 NI_PXIe_6535(name=’Num_Card_Water ’ ,parent_device=pineblaster_0.clockline ,
24 clock_terminal=’/Dev3/PFI0’, MAX_name=’Dev1’)
25

26 ### Declaration of the numerical outputs:
27 ### Rack facing computer:
28 Shutter( name=’ClicClacPlug ’,parent_device=Num_Card_Computer ,
29 connection=’port0/line0’ , delay =(0,0) , open_state =0)
30 DigitalOut(name=’SwitchIGBTs ’ ,parent_device=Num_Card_Computer ,
31 connection=’port0/line3’ , inverted=True)
32

33 ### Declaration of the analog outputs:
34 AnalogOut(name=’IQuadTMHaut ’,parent_device=Analogics_card ,connection=’ao0’,
35 unit_conversion_class = TF_AlimMOT_TMHaut)
36 AnalogOut(name=’IQuadTMBas ’ ,parent_device=Analogics_card ,connection=’ao1’,
37 unit_conversion_class = TF_AlimMOT_TMBas )
38

39 ### Declation of Camera
40 CameraRb( name=’CameraLuca ’ , parent_device=Num_Card_Water ,
41 connection=’port0/line4’ , exposure_time =20e-3, BIAS_port = 55544)
42

43 ### Declaration of RF DDS
44 DDS_Stanford_Static(name=’StanfordEvap ’, parent_device=Num_Card_Computer ,
45 connection=’port2/line0’, com_port=’COM20 ’)
46 DDS_BBB_RFbox(name=’Rfbox’, parent_device=Num_Card_Computer ,
47 connection=’port3/line7’, ip = ’192.168.180.50 ’, port =55566)

Listing 4.1 – Extract of the connection table

In order for the Labscript Suite to operate, the experimentalist needs to edit the connection
table. This is a Python file listing all the different instruments and their properties that are
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interfaced to work in the Labscript Suite system. The role of the connection table is to declare
the names of each output that can be used by the system. Once the Python file is written, it
is not directly usable by the Labscript Suite. The experimentalist needs to compile it using
Runmanager to obtain the HDF version needed for BLACS and Runmanager to operate. An
extract of the connection table is displayed in List.4.1; only a small portion of the devices and
outputs have been kept for this illustrative example.

The following section presents the new pieces of hardware, starting with the clock, then
the numeric and analogic output systems, which have been changed, all the RF generators we
use, and ultimately the camera workflow.

Figure 4.6 – The interaction scheme of the different devices.Each arrow shows a link
between devices, and the direction of the arrow shows the direction of the information
flow.

4.2.1 The clock

To achieve Bose-Einstein condensation, a sequence of actions run with accurate timing is
needed, requiring coordination of the devices. A common time reference is shared in the form
of a clock signal. The clock system has been adapted to the new system requirement:

• In the previous control system, there was a "true" clock generated by one of the output
cards. This card was a National Instrument PCI-6713, and the clocking signal was
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distributed across the different devices using a dedicated bus. The clock’s refreshing
rate was set at 10 kHz (time step of 100 µs) for all analogical and numerical output. This
situation leaves one question open: how to deal with processes needing time precision
below 100 µs? This was the case for the imaging pulses lasting for a few microseconds. To
solve this problem, a pulse generator able to generate microsecond pulses was triggered
through the clocked main system.

• In the Labscript Suite, for the system to work-a pseudoclock is needed, and a device pro-
viding a non-uniform clocking signal is required. This means the signal does not change
once per timestep; instead, it changes only when one of the outputs must change. For
instance, to generate a 10ms pulse, there will be a first clock signal at the beginning of
the pulse and a second clock signal at the end of the pulse. Fig.4.5 shows a represen-
tation of this clock with the channel called Pineblaster_0_clock_line. One can see
that there are times when no change is made and that at other times the signal changes
a lot over a short period of time. This is typically what happens when a ramp is used
during the sequence. The algorithm used for the pseudoclock to work is more complex
than the case where a "true" clock is used, but it is also more flexible. An example of
such flexibility is the ability for the user to adapt the sample rate for each ramp.

To implement the pseudoclock, we use the Texas Instrument EK-TM4C129EXL, a micro-
controller card specially programmed to perform this task. The program for the pseudoclock
is open source and available on GitHub, as noted in this reference [100].

For our clock to be functional, a calibration of the microcontroller was done by generating a
ramp in Labscript Suite and measuring the time between the first change and the last change
using an oscilloscope. After measuring this time interval, we compare it to the ramping
time set by the user, and then the microcontroller code is changed to reach better accuracy.
The main focus of this optimization was to minimize the jitter when executing a sequence.
This method of looking at the time precision of the pseudoclock is very far from the usual
experimental condition: having a ramp lasting for minutes is not realistic. This method gives
an overestimation of the jitter, the cumulative error in the timing, which was 196ms for a
5min ramp with a sample rate of 10 kHz.

That is why an estimation of the jitter is needed with "true" experimental conditions.
This measurement has been done in parallel with the day-to-day use of the experiment with
the sequence defined in Sec.4.3.1. In parallel with the sequence, a numerical output is raised at
the start of the sequence and lowered 17 s seconds later. As a comparison, the total sequence
lasts for 45 s. Using an oscilloscope, we zoom in on the 17 s time code after the numerical
output has been raised; this is our time reference. We measure the difference between the time
reference and the lowering of the numerical output. We use a 17 s time difference because the
full sequence was too long for the oscilloscope memory, and the first part of the sequence is
where the most instructions are given, hence the biggest contribution to the time jitter. This
time jitter corresponds to a relative error of 0.4 × 10−6 which is acceptable and allows the
setup to be fully functional.

4.2.2 Numerical and analog outputs

The change in output management devices was one of the main motivations to change the
software. This system needed some changes as the connections were aging. In the former
system, the output cards were directly inserted inside the computer; there were three different
output cards, each of which was connected to a box into which the BNC cables were plugged.
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A drawback of this system was its heterogeneity: the different analog outputs did not have
the same resolution, and special care was given to the output attribution depending on how
sensitive an output was to obtaining a BEC. Also, some cards were failing with random offsets
appearing on the outputs.

The output connections in the new system take a different approach. As detailed in
Fig.4.6, a PXIe 1073 rack is used to host one PXIe-6738 card for the analog outputs and two
PXIe-6535 cards for the numerical outputs. The rack is connected using a NI PCI Express
host card inside the computer. In total, this provides 64 (two times 32) numerical outputs
and 32 analog outputs with a 16-bit resolution. In order to coordinate all these outputs, the
pseudoclock signal is sent to the PXIe-6738 card via a TTL cable.

Specifically, the analog outputs deliver a voltage signal to the different devices. The
commands sent to the devices are sent in volts unless stated otherwise. It is often more
comfortable to work with a unit that matches the delivered signal used by the device that is
driven, and to perform this task, a transfer function is available to the user. For each device
driven by an analogical output, a transfer function has been coded that allows the user to
specify which unit suits the given command best. Multiple units can be given to the same
device; an example is the frequency-shift command sent to the AOM: the user can give a
command either in MHz or in numbers of D2 transition linewidth. A detailed usage for the
sequence will be provided in Sec.4.3.1 and in Fig.4.3 where the choice is given to the user to
select in which units the command will be passed to the device.

The output cards are connected to three home-made connector boxes realized by the lab’s
electronic workshop. This enables the experimentalist to plug in the BNC cables connecting
the devices to the laboratory control system. However, as output cards are sensitive electronic
devices, to protect the cards and the connectors from ground loops, optocouplers are installed
on each BNC connector. This isolates the control system, preventing electrical damage.

4.2.3 Radio-frequency generation

The RF generation system uses three main devices. There are two Stanford SRS DS 345
function generators (commonly referred to as Stanford) on the one hand, and on the other
hand, a homemade DDS [64] from the lab’s electronic workshop. They have different purposes
for the experiment.

The Stanfords are used for two reasons: to perform one of the RF ramps for evaporative
cooling and to have a small RF signal used for trap spectroscopy. There is one device for
each function. These function generators are driven using serial ports, which are no longer
used in modern computers. To get around this problem, the devices are connected to the
local network with a serial-to-Ethernet adapter and talk to each other over the network with
special software. To interact with these devices in the Labscript Suite, the classes dedicated
to the interface between the control system and the Stanford SRS were coded, demonstrating
the ability to implement devices specific to the setup.

The homemade DDS is the main device generating radio-frequency signals. Its role is
pivotal, as it generates the first RF evaporation field and the dressing RF field. It can generate
two kinds of signals: a ramp, which is a linear signal in part, such as the evaporative cooling
ramp; and a pattern, which provides much more complex signals. An example of such a
signal is the radiofrequency signal used to set the BEC into rotation using the rotating bucket
method described in Ref. [64]. The instructions to be executed by the homemade DDS are
generated as arrays. As an example, to execute a sequence where the Bose-Einstein condensate
is generated, loaded in the bubble trap, and then set into rotation, the DDS will receive a
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array for the evaporation signal, another array for the bubble trap loading procedure, and a
last array for the rotation pattern. The problem we are facing is that the DDS has limited
memory, and only one array can be loaded at a time. To tackle this problem, a development
card with a microprocessor was added to the setup, acting as a buffer memory for the DDS.
As such, the radiofrequency arrays are generated at the beginning of the sequence and stored
in the buffer memory during the sequence. Before the radiofrequency signal is needed, the file
is loaded onto the DDS, and then the ramp or pattern is executed at a convenient time. The
DDS can only do one thing at a time, and when a ramp instruction is loaded, another ramp
can not be executed in parallel. This results in dead times in the sequence, which need to be
taken into account. The loading time of a ramp was measured to be around 100ms whereas
the loading time of a pattern to set the trap into rotation is around 2 s. A rotation pattern
has to be carefully implemented as the loading time is a dead time. For the experimenter to
be able to load the pattern, he or she must add some waiting time before the execution time.

The signals to load and start the ramp are sent through TTL pulses. This organization is
specific to this setup and requires a dedicated device in the Labscript Suite to interact with.
The classes to interact with the device through Labscript Suite have been written by Romain
Dubessy and the DDS, and the card forms a single device to be interacted with.

4.2.4 Camera workflow

The two cameras are controlled separately. An Andor Ixon camera, responsible for the hor-
izontal imaging, is controlled through an acquisition card, whereas an Andor Luca camera,
responsible for the vertical imaging, is controlled using a USB connection. These cameras are
driven by a different computer than the one running the Labscript Suite. They are controlled
directly with a driver written in C++ by Romain Dubessy, who also wrote the Python inter-
face between the camera drivers and the Labscript Suite. Both these devices are not clocked;
they are not synchronized with the pseudoclock. The two cameras have a special sequence to
start the image acquisition procedure that is triggered using a TTL pulse, synchronized with
the light probe pulses at the end of the sequence. At the end of the experimental sequence
executed by BLACS, the image files are stored on the computer controlling the camera.

4.3 Adaptation of the software to our requirements

The control system has now been presented in Sec.4.1 and the new devices have been intro-
duced in Sec.4.2. It is time to explain the different choices made during the system change.

Firstly, the transcription of the sequence will be explained, along with the requirements
for the sequence file to comply with Labscript Suite. The main idea behind this transcrip-
tion is to use the new system’s features, like the ability to change the variable values using
Runamanager, while making minimal changes to the sequence structure.

Secondly, the main data analysis script will be detailed. In order to take advantage of
Labscript Suite, the previous data analysis system has been adapted to the new system. This
has been done through a single-shot analysis script for Lyse, then copying the images in
the HDF file and allowing the experimentalist to manipulate the image via a graphical user
interface. On top of that, some basic analysis can be performed.
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4.3.1 Transcription of the sequence

The main sequence has been transcribed from the previous system to the new one. It has
been concluded while using the previous system that using a single, modular sequence is
more practical than working with multiple sequence files, each focused on one task. The
organization of the file is important, and before the sequence, strictly speaking, there are
two preparation steps. The first step required by the Labscript Suite formalism is the local
connection table. It is a subset of the global connection table presented in the introduction to
Sec.4.2. Every device and output mentioned in the file must be defined in the local connection
table; otherwise, the sequence compilation is not possible. The second sequence step is the
definition of the RF ramps and patterns, in order for them to be edited through Runmanager.

The sequence starts with the instruction start(). The first step is the initialization of
the time variable and the definition of the numerical value of each output at the start of the
sequence. After that, some numerical values are changed in certain situations. An example of
such a change is the time of flight, which can be adjusted to the cloud temperature depending
on the sequence. The rest of the sequence is a succession of instruction blocks, starting with
a boolean value and followed by instructions. An example of a block is given below:

1 #### Compression of the MOT:
2 if s2_Compress :
3 ### Description
4 print("2- MOT Compression" )
5 ### Wait
6 t+= dtCompressWait
7 ### Do
8 t+=- dtLowerRepump
9 PRepump.constant(t=t,value=PRepumpLow)

10 t+= dtLowerRepump
11 if dtCompress >0 :
12 IQuadTMBas.ramp(t=t,duration=dtCompress , initial=IMOT_TM_Bas ,
13 final=MOTCompress*RapportBasHaut ,
14 samplerate =10000 , units=’A’)
15 IQuadTMHaut.ramp(t=t,duration=dtCompress , initial=IMOT_TM_Haut ,
16 final=MOTCompress ,samplerate =10000 ,
17 units=’A’)
18 if s1_Pre_Cooling :
19 BeatNote.ramp(t=t,duration=dtCompress , initial=PrecoolFreq ,
20 final=CompressFreq ,samplerate =10000 , units=’gamma’)
21 else:
22 BeatNote.ramp(t=t,duration=dtCompress ,initial=MOTWait ,
23 final=CompressFreq , samplerate =10000 , units=’gamma’)
24 PMOTBeam.ramp(t=t,duration=dtCompress ,initial=MOTPower ,
25 final=CompressPower ,samplerate =10000 , units=’rel’)
26 t+= dtCompress
27 else:
28 IQuadTMBas.constant(t=t,value=MOTCompress*RapportBasHaut ,units=’A’)
29 IQuadTMHaut.constant(t=t,value=MOTCompress ,units=’A’)
30 BeatNote.constant(t=t,value=CompressFreq ,units=’gamma’)
31 PMOTBeam.constant(t=t,value=CompressPower ,units=’rel’)
32 print(f"WARNING:dtCompress has an ivalid value. Value:{ dtCompress}s.
33 Should be stricly superior to 0.")
34 ### Hold
35 t+= dtCompressHold

Listing 4.2 – Example of instruction bloc: the MOT compression bloc
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The code example in List.4.2 gives an illustration of Labscript syntax adapted to the
sequence. As presented in Sec.4.2.2, the commands given to analogical outputs such as
IQuadTMBas specifies a units. For IQuadTMBas, as it drives a current supply, it is more convenient
to use the ampere as a unit. The presence of a boolean at start was to use the Runmanager
interface while having to do as little code edition as possible. The booleans related to the
sequence blocks, such as is s2_Compress in the code displayed, are grouped together in a ded-
icated group, as seen in Fig.4.7. The number inside their names orders them according to
their places in the sequence, thus preserving the structure of the group. Runmanager has a
very visual representation of a boolean with a box that can be ticked when true or unselected
when false. On top of that, during the transcription, a security was added in order not to
have any problem with the compilation and execution of a ramp: in case the ramp passed a
zero or negative ramping time, the instruction is changed, and a warning message is displayed
in the Runmanager python console. At the very end of the sequence, the system is set in the
same state as the initial one, which allows a MOT to be loaded continuously.

In order to be easily managed, the variables related to each block or group of blocks are
stored inside a dedicated group in order. This organization allows for efficient management
of variables.

Figure 4.7 – Display of the sequence group content.

Some other sequences have been written, but their focus was different; their aim was to
do a specific calibration requiring a sequence. This is the case, for example, for the shutter
timing calibrations or the molasses expansion observation.
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4.3.2 Data Analysis

Prior to the control system transition, a data analysis system had been coded by the research
team to display the absorption images and do a first step of analysis. This system was split
into two parts. To visualize the results, a first piece of software called "Vision" was created in
C++ and was only available in Windows XP. A more in-depth analysis was done by a second
piece of software developed using Matlab. To adapt this whole system was tedious, and it
was quicker to analyze the team’s needs and code a new analysis script. Here are the main
elements wanted to use the new system optimally:

• The shot file should be used as a unique vector of information: Having all the information
in the same file and ordered according to the Labscript Suite hierarchy makes it easier
to use all the possibilities of Lyse. As such, the image files should be copied into the
HDF file.

• The image files obtained after the sequence have to be processed in order to observe
the atoms: Three files are generated after a sequence in order to have an absorption
picture. These files contain images of the pulse with and without the atoms, and the
last picture is taken without either light or atoms to take into consideration the noise
on the camera. On top of that, an algorithm that reduces the fringes on the absorption
image [101] is added to reduce the noise on the images. The expressions used for the
analysis are presented in Sec.2.4.

• Display and manipulation of the image: In total, there are four different images to
display. The result of the calculation presented above is the main picture to display,
but it is often useful to look at the raw data taken, for monitoring purposes.

• Quantitative analysis of the images: In order to have quantitative information, one
must compare the result to a theoretical model. Therefore, a fitting tool must be easily
available to the user.

All these needs were considered, and an analysis script was written. I developed a script
using Matplotlib for the graphical interface and the curve plot using Numpy [97] for the
calculus performed on matrices and Scipy [98] for the fitting routines. All of the above
operations are written in a single-shot script used in Lyse. The graphical user interface
of this script is shown in Fig.4.8. The large picture on the left is the zoomed-in picture,
which is referred to as the region of interest. On the left side and at the bottom are the
integrated profiles, displayed by blue lines. On the right side, there is a representation of the
full absorption image, which shows two different rectangles on it. The green rectangle shows
the area of interest, and the white rectangle shows the background compensation area, which
is used as a reference by the algorithm that gets rid of the fringes. Both of these areas can be
modified by the user through the graphical user interface using a rectangle selector on the full
picture and the three buttons at the bottom of the full image. On top of the full image, there
are three smaller images that display the raw data from absorption imaging. The rightmost
image is the pulse with the atom, the middle image is the pulse without the atoms, and the
leftmost image displays the image without the atoms. These images are useful to detect when
there is a problem with the light pulses and the shutter. Ultimately, the slider at the bottom
determines the extremes of the color code of the image that often need to be adapted.

At first, the script only displayed the results, but we quickly realized that being able to fit
the data without having to edit the script was a valuable feature. As such, I added the radio
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button at the bottom of the full absorption picture. It allows the user to modify the fit model
directly using the graphical interface. Only the region of interest is analyzed by the fitting
procedure. Once a fit is done, some additional curves are plotted on top of the integrated
profiles. As it can be observed in Fig.4.8, there are an orange solid curve and a green dashed
curve displayed on the integrated profiles. This is because a bimodal fit has been applied to
analyze the image, considering there is a part of the cloud that is thermal and the rest of the
cloud is condensed. The orange curve represents the full contribution of the model, whereas
the dashed green curve is the contribution of the thermal part. The physical quantities, such
as the temperature of the cloud or its extension, are extracted from the fit, displayed in the
Python console of Lyse, and stored in the shotfile. This allows the experimentalist to access
the data from the fit using other analysis scripts, which has proven useful, for example, when
looking at oscillations of the cloud in the trap.

Figure 4.8 – Display of our main analysis script.

4.4 Conclusion and future improvements

The transition to the new control system has been successfully implemented. The set-up is
fully functional, and all the different devices previously used in the old control system are us-
able with the Labscript Suite. The new control system is also more efficient at acquiring data.
To give the reader an idea of this improvement, before the transition we were taking around
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200 images a day, a figure that has been increased by a factor of 3 with the new system. This
is mainly due to an easier handling of the parameters related to the radiofrequency control,
and the generation of multiple shot files and their sequential executions, which drastically
reduce the dead times between sequence executions.

The new control system is useful and efficient, but the situation can still be improved.
In order to do so, the next step is to integrate a laser lock management system inside the
Labscript Suite. By having an automated check of the laser lock status before the execution
of the sequence, the reliability of the system would be increased as the sequence would be
executed only when the lasers are locked. The ideal solution would be an automated relock
procedure. This would ensure that any long set of measurements could still be used without
the need for a constant check by the experimentalist.



Chapter 5
Optimization of the experiment via
machine-learning algorithms

The new control system, Labscript Suite, enables the experimentalist to use the different
features, increasing the performance of the experiment. However, the experiment tuning
process remains a long process that one wishes to optimize. A way to achieve this aim is to
use a machine-learning algorithm to optimize the experiment according to a given criterion.
These algorithms are becoming increasingly popular amongst the physics community and
lead to an increase in performance in atomic physics like optimizing a magneto-optical trap
[48], producing a BEC in the shortest time span [102] or finding suitable constraints for a
cosmological model [103].

On the laboratory experimental setup, some repetitive optimization tasks are done every
day, such as the fine-tuning of the plug position. The optimization criterion was always
the same: having the largest number of atoms at the lowest temperature possible. The
results given by the machine learning algorithm to perform this kind of optimization had been
demonstrated [53], we decided to follow these first results to automate these optimizations.

First, a description of the interactions between Labscript-Suite, the new control system,
and M-LOOP [104], the machine learning package chosen, will be presented, along with a
description of the cost to minimize. Then, the algorithms used to optimize the experiment
will be described. Ultimately, the experimental optimization session will be detailed and the
results commented.

5.1 Implementation specificity

5.1.1 M-LOOP and its interaction with the Labscript-Suite

One of the new desirable features that would be interesting to have is the automatic opti-
mization of the experiment given a certain criterion. The aim is to automate a part of the
repetitive tasks done on a day-to-day basis by the experimentalist in order to be more efficient.
A concrete example of such a task would be tuning the dimple beam position described in
Sec.2.2.2: this task consists in finding the position of the dimple beam that maximizes the
number of atoms in the BEC in the hybrid trap. It is a simple task done once or twice a day
and takes from a few minutes up to an hour.
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In order to implement this automation, M-LOOP [104] was chosen. It is a Python li-
brary developed by Australian scientists working on cold atom experiments. M-LOOP is the
acronym for machine-learning online optimization package. Machine-learning refers to the
type of algorithm used to perform the optimization, and online optimization refers to an opti-
mization where there is a lack of knowledge about the problem [105]. A direct consequence is
the potential non-existence of an improved solution to such a problem. Moreover, the library
has a visualization option, enabling the experimentalist to see the result of its optimization se-
quence. Different algorithms have been implemented, such as differential evolution, Gaussian
process regression, and the Nelder-Mead algorithm, to name a few.

Figure 5.1 – Representation of M-LOOP integration with the feedback loop and the
routine storage.

The integration of M-LOOP inside the Labscript Suite is done via the project called
analysislib-mloop [106]. This project is used through script by Lyse, as shown in Fig.5.1. For
the sequence to be compiled without the intervention of the experimentalist, Runmanager
is controlled remotely by Lyse using a command line in the analysis script. Also, a routine
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storage is used to store intermediate calculations during the optimization session. This routine
storage allows the user to store some information for the analysis of multiple files that are not
stored inside the shot files.

The experimentalist prepares an optimization session by editing a configuration file. As we
are dealing with online optimization, a stopping criterion needs to be defined before the session
starts. This is done by defining two quantities: the maximum number of runs in the session
and the maximum number of runs without improvement. The experimentalist also details the
upper and lower bounds for each parameter (based on his knowledge of the experiment). In
this configuration file, the parameters selected to be changed in the optimization session are
set. For each parameter, three values must be given: the upper bound, the lower bounds and
the initial value for the first run of the session. The algorithm used to optimize this session
can be changed in this file. The experimentalist must be cautious that every parameter is
defined and active in Runmanager. And most importantly, the name of the cost to optimize
is defined.

5.1.2 Construction of a cost to minimize

For the algorithm to work, one must define a criterion to optimize, which in optimization
language translates into a cost to minimize. We decided to maximize the number of atoms
in the Bose-Einstein condensate. This corresponds to maximizing the central density after a
time of flight, as the BEC expands more slowly than the thermal cloud surrounding it.

(a) (b)

Figure 5.2 – Illustration of the difference between the absorption imaging picture and
the cost picture. The situation corresponds to the image taken after the first stage of
evaporative cooling. 5.2a is an absorption imaging picture. 5.2b is the area over which
the cost associated with the picture taken in 5.2a is calculated.

As detailed in Sec.4, to extract the physical quantities of the cloud, a fit is performed
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on the final picture. From the information given by the fit, physical quantities such as the
temperature are determined. This brings a level of complexity to the cost evaluation: if the
cost is based on the physical quantities, when the fit procedure fails, the cost is meaningless.
It happens when the number of atoms is low and the cloud is wide. In such a situation, the
fit analysis is often incorrect. So the question is: how to build a cost that is robust to a
fit failure and enables the experimentalist to increase the phase-space density? The strategy
for the cost evaluation relies uniquely on studying the atomic density of the cloud [53]. The
global aim is to maximize the number of atoms inside a given area, resulting in maximizing
the phase-space density of the cloud.

Let me detail the automatic procedure to determine the cost step by step. First the
position of the maximum atomic density is determined. Its coordinate are deduced from the
atomic density integrated profile along the camera axis. It has been observed experimentally
that using the integrated profile to determine the maximum reduces the sensitivity to the
pixel-to-pixel fluctuation. Then a circle mask is applied around the position of the previously
determined maximum: all the pixels inside the circle are left untouched, whereas the pixels
outside the circle are set to zero. Then the number of atoms detected on each pixel is added,
this quantity is called Σ. Therefore, Σ is the number of atoms inside the mask. In order to
have a decreasing function with respect to the increasing atom number and because the cost
should be sensitive to large improvements over this measurement and almost ignore small
changes, the cost used to evaluate a picture is given by:

Cost = − log
(︀
max(Σ, 1)

)︀
(5.1)

The deep blue part of Fig.5.2b is all the pixels set to zero, and the colorful circle is the area
contributing to the cost.

5.2 Presentation of the algorithms

Here, the algorithms used during the optimization session are presented. Only the Gaussian
process regression had been used directly for optimization purposes. The differential evolution
algorithm had been used to initialize the Gaussian process regression algorithm by providing
a set of data to initialize the optimization session.

5.2.1 Differential evolution

The differential evolution algorithm is an algorithm that mimics the mechanism of natural
selection [107]. The idea is to look for improvements in a starting population via hybridization
and spontaneous mutation.

The situation starts with a set of configurations generated randomly:
{︀
X1,X2, . . . ,X𝑖

}︀
.

The set of configurations is known as the population. The first step of the algorithm is
to select randomly 3 elements amongst the population noted as X𝑝 , X𝑞, and X𝑟 and to
construct a new vector V = X𝑝 +

(︀
X𝑞 − X𝑟

)︀
. Then the next configuration to be tested,

X𝑛𝑒𝑤, is determined by selecting each component randomly from either V or X𝑖. The cost
associated with this new configuration, Y𝑛𝑒𝑤, is determined by running it experimentally.
Finally, if the cost Y𝑛𝑒𝑤 < Y𝑖, the new pair takes the place of the pair

{︀
X𝑖,Y𝑖

}︀
, and if that

is not the case, the new pair is dismissed. The process is repeated a certain number of times.
This algorithm is not expansive in terms of calculation, but it converges slowly towards an
optimum.
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On the experiment, this algorithm is used to ‘train’ the main algorithm, which is the
Gaussian Process Regression detailed in Sec.5.2.2. This algorithm needs a collection of data
to be used, therefore the differential evolution algorithm is applied to select a set of couples
{configuration, cost}.

5.2.2 Gaussian Process Regression

The Gaussian process regression (GPR) takes a different approach: based on the previous
measurements done on the experiment, the algorithm makes an educated guess on which
configuration to evaluate next. The main idea is to exploit the previously acquired data
to infer a new configuration to optimize a given criterion. I will start by introducing some
elements of probability theory. Then the foundational concept of this algorithm is presented:
the Gaussian Process. It is followed by a small derivation on how the inference is done in
order to extract new information about the problem. Ultimately, the algorithm applied to
the experiment is detailed with an example, and a way to incorporate the fluctuation in the
measurements is presented. This part is based on chapter 2 of [108].

First, this algorithm relies on probability theory, and more precisely, on conditional prob-
ability. The main idea is to look at the likelihood of event A occurring given that event B
has already taken place. This probability is denoted by the mathematical expression P(𝐴|𝐵)
and its expression is:

P(𝐴|𝐵) =
P(𝐴 ∩𝐵)

P(𝐵)
if P(𝐵) ̸= 0 (5.2)

The use of conditional probability is ubiquitous in numerous fields requiring statistical analy-
sis. Its application includes analyzing the efficacy and dependability of drug testing protocols.
Another key mathematical object to introduce is the multivariate normal distribution. A nor-
mal distribution is one of the best-known mathematical objects: it is a probability distribution
with a bell-shaped curve that peaks at a given value 𝑚 and a width 𝜎. The full mathematical
expression of a random variable 𝑋’s normal probability distribution function with respect to
the value 𝑥 is:

𝑓𝑋(𝑥) =
1√
2𝜋𝜎

exp

(︂−(𝑥−𝑚)2

2𝜎2

)︂
(5.3)

And the probability to find the variable 𝑋 between 𝑥 = 𝑎 and 𝑥 = 𝑏 is:

P(𝑎 < 𝑋 < 𝑏) =

∫︁ 𝑏

𝑎

1√
2𝜋𝜎

exp

(︂−(𝑥−𝑚)2

2𝜎2

)︂
d𝑥 (5.4)

Now suppose the reader is interested in having multiple random variables all following the
same joint probability distribution. The previous definition needs to be extended to pick a
random vector. To fully determine the multivariate normal distribution, one should specify:

• The mean vector 𝜇: a vector of 𝑛 component, 𝑛 being the number of random element
desired. This is the central value centered on which the random vector peaks.

• The covariance matrix Σ: a square matrix of size 𝑛. This matrix’s elements each have
their own meaning. The diagonal elements determine the variance, or the width, of
the distribution of each component. The off-diagonal terms represent the covariance,
a measure of how two components of the random vector evolve with respect to one
another. If the covariance is positive between the variables A and B, when the variable
A increases, the variable B increases. If the covariance is negative, when A increases,
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the variable B decreases.
The Σ matrix is symmetric and positive semidefinite.

The probability density function of the 𝑛-dimensional multidimensional Gaussian is:

𝑓X(𝑥1, · · · , 𝑥𝑛) =
1√︀

(2𝜋)𝑛 det(Σ)
exp
(︀
−(x− 𝜇)TΣ−1(x− 𝜇)/2

)︀
(5.5)

As a normal distribution is fully defined by its mean and variance, another notation is 𝑋 ∼
𝒩 (𝑚,𝜎) for the one dimensional case and X ∼ 𝒩 (𝜇,Σ) for the multidimensional case. This
means 𝑋 ‘follows’ the distribution specifies afterward.

Let us now formulate the problem. We start with a set of data composed of pairs of
configurations and costs; this is the training data set. It is noted 𝒟 = {(x𝑖, 𝑦𝑖)|𝑖 = 1, · · · , 𝑛} =
{𝑋,y} where 𝑋 is the matrix with the 𝑛 configuration vectors and y is the vector with the 𝑛
associated costs. We don’t know how our cost function will behave a priori. This means the
cost function is considered random but repeatable, which means if the same configuration is
evaluated twice, the same result will be obtained. The cost 𝑦 is defined as follows:

𝑦 = 𝑓(x) (5.6)

And no fluctuation is considered at first.
To model the cost function, a Gaussian process is used; it is a collection of random variable

where a finite number of these random variables share a joint Gaussian distribution [108,109].
This object is fully specified by its:

• mean function:
𝑚(x) = ⟨𝑓(x)⟩ (5.7)

• covariance function:

𝑘(x,x′) = ⟨(𝑓(x)−𝑚(x))(𝑓(x′)−𝑚(x′))⟩ (5.8)

Where ⟨𝑋⟩ is the average value of 𝑋. The Gaussian process is related to the function 𝑓(x)
by:

𝑓(x) ∼ 𝒢𝒫(𝑚(x), 𝑘(x,x′)) (5.9)

The Gaussian process is a generalization to an infinite dimension of a multidimensional normal
distribution. By convention, the mean function is set to 0, and the covariance function used
is:

𝑘(x,x′) = exp

(︃
−1

2

𝑛∑︁
𝑖=1

𝜂𝑖(𝑥𝑖 − 𝑥′𝑖)
2

)︃
(5.10)

This is known as the radial basis function. In the expression (5.10), x and x′ are two configu-
rations expressed as vectors of size 𝑛, which is the number of parameters in the optimization
sequence. The terms 𝑥𝑖 (respectively 𝑥′𝑖) refers to the 𝑖−th component of the vector the x
(respectively x′). Finally, the terms 𝜂𝑖 are inversely proportional to the square of the charac-
teristic length scale associated with the 𝑖-th element of the vector.

This allows us to associate a normal distribution with the cost vector. Also, one wishes
to evaluate the function at the arbitrary configuration x* and to have an estimation of the
associated cost before the evaluation of 𝑓(x*). The starting point is to write the joint Gaussian
distribution associated to the set of data composed of the 𝐷 vectors of the training data set
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plus the expression of our arbitrary point x* based on the property of the Gaussian process.
Because the cost functions follows the Gaussian process, the cost vector then follows the
normal distribution This normal distribution is given by Eq.(5.11) where the mean has been
set to 0 based on the properties of the Gaussian process. The covariance function 𝑘, given by
Eq.(5.10), allows one to write the normal distribution’s covariance matrix.

[︂
y
𝑦*

]︂
∼ 𝒩

(︀
0,

⎛⎜⎜⎜⎝
𝑘(x1,x1) · · · 𝑘(x1,x𝐷) 𝑘(x1,x*)

...
. . .

...
...

𝑘(x𝐷,x1) · · · 𝑘(x𝐷,x𝐷) 𝑘(x𝐷,x*)
𝑘(x*,x1) · · · 𝑘(x*,x𝐷) 𝑘(x*,x*)

⎞⎟⎟⎟⎠)︀ (5.11)

To simplify the notation we set:

• The covariance matrix of the training data set 𝐾 = 𝐾(𝑋,𝑋) where the covariance
matrix 𝐾(𝑋,𝑋 ′) between two data sets 𝑋 and 𝑋 ′ that can be of different sizes 𝐷 and
𝐷′ is defined by

𝐾(𝑋,𝑋 ′) =

⎛⎜⎝𝑘(x1,x
′
1) · · · 𝑘(x1,x

′
𝐷′)

...
. . .

...
𝑘(x𝐷,x

′
1) · · · 𝑘(x𝐷,x

′
𝐷′)

⎞⎟⎠
• The covariance vector kT

* =
(︀
𝑘(x*,x1) · · · 𝑘(x*,x𝐷)

)︀
= 𝐾(x*, 𝑋) = 𝐾(𝑋,x*)T

• The variance associated to the new configuration 𝑘* = 𝑘(x*,x*)

There is now a full expression for the joint multivariate Gaussian distribution of the
cost vector. However, there is only one element worthy of interest in this vector: the cost
𝑦* = 𝑓(x*). To go a step further, a property of the Gaussian normal distribution is needed, the
conditional marginalization property of the joint normal distribution [110]. It states that x
an 𝑛-dimensional normal distribution noted 𝒩 (𝜇,Σ) can be partitioned into a p-dimensional
and a q-dimensional normal distribution with 𝑛 = 𝑝+ 𝑞:

x =

[︂
x1

x2

]︂
∼ 𝒩 (𝜇,Σ) 𝜇 =

[︂
𝜇1

𝜇2

]︂
Σ =

[︂
Σ11 Σ12

Σ12 Σ22

]︂
(5.12)

In Eq.(5.12):

• 𝜇1 is a vector with 𝑝 terms and 𝜇2 is a vector with 𝑞 terms.

• Σ11 is a 𝑝× 𝑝 matrix, Σ12 is a 𝑝× 𝑞 matrix, Σ21 is a 𝑞× 𝑝 matrix, Σ2 is a 𝑞× 𝑞 matrix.
All these matrices are sub-matrices of Σ.

In such a case, the distribution of x1 conditioned to x2 is the joint normal distribution 𝒩 (𝜇̄, Σ̄)
where:

(x1|x2) ∼ 𝒩 (𝜇̄, Σ̄) 𝜇̄ = 𝜇̄1 +Σ12Σ
−1
22 (x2 − 𝜇2) Σ̄ = Σ11 − Σ12Σ

−1
22 Σ21 (5.13)

Using Eq.(5.13), one can write the conditional probability of 𝑓(x*) taking into account
the training dataset with parameters 𝑋 and associated results f and the new configuration
x*, which is:

(𝑓(x*)|x*, 𝑋, f) ∼ 𝒩 (kT
*𝐾

−1f , 𝑘* − kT
*𝐾

−1k*) (5.14)
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Therefore, Eq.(5.14) is the probability distribution of the cost at a given configuration x*.
Before going any further, a few elements need to be pointed out. First, we have a probability
density distribution based on the training data set and the new configuration expression. Also,
the normal distribution in one dimension is specified by its mean and its variance, and the
mean of the Gaussian is also its most probable outcome. This means the mean value of the
distribution specified in Eq.(5.14) gives an estimation of the cost for every configuration the
experimentalist wants to consider. Similarly, the variance of this probability density function
gives the value of the width of the distribution around the mean value. It can be viewed as
an estimation of the uncertainty on the expected results as defined by the mean value. In
short, with this normal distribution, the experimentalist has an estimation of the cost and
the uncertainty associated with it for each point in the configuration space.

A risk function, based on the probability density function of the cost, determines which
configuration to evaluate next. The choice of this risk function reflects the strategy the
experimentalist wishes to implement to minimize the cost [111]. In the case of the acquisition
function used by M-LOOP, the cost function finds the minimum of the cost determined by:

ℛℒ(𝑓(x*)|x*) = Expected Cost + Uncertainty (5.15)

The quantity ℛℒ is referred to as the risk. The cost is the mean value of the probability
density distribution function, and the uncertainty is its standard deviation, the square root
of the variance. Using Eq.(5.14), this risk writes in our case ℛℒ(𝑓(x*)|x*) = kT

*𝐾
−1f +√︀

𝑘* − kT*𝐾−1k*. The aim is to minimize this function, so find:

𝑦𝑚𝑖𝑛|x* = argmin
𝑦𝑒𝑠𝑡

(ℛℒ(𝑦𝑒𝑠𝑡|x*)) (5.16)

In the expression above, 𝑦𝑒𝑠𝑡 is the estimated value of the function. Because the exact value
of the function is unknown, one can only rely on the estimations obtained by using the
Gaussian Process for both cost and uncertainty. It is worth reminding the reader that our
cost is negative and the value of the standard deviation of the normal distribution function is
necessarily positive; therefore, an increase in the standard deviation is detrimental to the risk
function. This strategy can be understood as the will to prioritize a moderate, almost certain
gain — a small improvement with low uncertainty - over a hypothetical great improvement
- large improvement with a large uncertainty. Once 𝑦𝑒𝑠𝑡 is determined, the experiment runs
it and the associated cost is computed. The pair composed of the new configuration and its
cost is added to the set of data, and the algorithm starts once again by doing a regression
with the updated set of pairs composed of configuration and cost.

An example of the way the GPR operates is given in Fig.reffig:illustrateGPR. The function
𝑓(𝑥) = 𝑥 sin(𝑥) is the function unknown to the GPR and the aim is to find a minimum on
the curve based on the data obtained. The red dots are the points already evaluated and
where the function behavior is known. Based on these data, a probability density function
is determined using Gaussian process regression. Using this probability density function, the
mean of the cost function is determined for each point and is represented as the dark blue line
on the graphs. Because the model is probabilistic, this mean has a certain confidence interval
associated with it, and the light blue area around the mean value represents the zone around
the mean where it is estimated that there is 95% chance for the value of the function to be
in that range. Using the acquisition function, the next point to evaluate is determined to be
close to 𝑥 = 5 as it is the point where there is a maximum chance to find a point having a
lower value with the most certainty given the data known in Fig.5.3a. Once the function is
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evaluated, the situation becomes 5.3b. The uncertainty area becomes smaller around the last
point evaluated.

The advantages of the Gaussian process algorithm are its quick convergences and the low
amount of data to be initialized. Also, after the session has finished, the length-scale value
will be known, which gives the experimentalist some information about which parameters are
the most important. The drawback is that this algorithm is computationally intensive and
becomes slow when there are dozens of parameters in the optimization session.

(a) (b)

Figure 5.3 – Illustration of an example of decision-making using Bayesian optimization
using a function of one variable. 5.3a represents the situation before the next point is
determined. 5.3b represents the situation after the new configuration has been evaluated.

The situation depicted in Fig.5.3 is an example given without noise, that is to say there is
no fluctuation on the experiment. This situation does not faithfully represent an experimental
realization on the laboratory setup because two identical realizations of the sequence lead to
slightly different absorption imaging pictures, thereby, associating slightly different costs. One
of the Gaussian process regression interesting feature for the experimentalist is its ability to
take into account the noise on measurements. This is done by modifying the expression of
cost by introducing a small noise, 𝜖:

𝑦 = 𝑓(x) + 𝜖 𝜖 ∼ 𝒩 (0, 𝜎𝜖) (5.17)

The fluctuation is assumed to be Gaussian, centered around 0, and with a variance 𝜎𝜖. In
order to take these fluctuations into account, one needs to slightly change the covariance
function:

cov(𝑦𝑎, 𝑦𝑏) = 𝑘(x𝑎,x𝑏) + 𝜎2𝜖 𝛿𝑎,𝑏 (5.18)

This leads to an additional term inside the covariance matrix of Eq.(5.11) which becomes:[︂
y
𝑦*

]︂
∼ 𝒩

(︀
0,

(︂
𝐾 + 𝜎2𝜖 𝐼𝐷 k*

kT
* 𝑘*

)︂)︀
(5.19)
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In Eq.(5.19), 𝐼𝐷 refers to the identity matrix of dimension 𝐷. The change in the covariance
matrix brings a change in the probability density function, which becomes:

𝑓(x*)|x*, 𝑋, f ∼ 𝒩 (kT
* (𝐾 + 𝜎2𝜖 𝐼𝐷)

−1f , 𝑘* − kT
* (𝐾 + 𝜎2𝜖 𝐼𝐷)

−1k*) (5.20)

We get a prediction very similar to the noiseless prediction, the main difference being the
addition of a term in the inverse matrix to determine both the variance and the mean. Up
until now, we did not implement the possibility of adding an uncertainty to the cost function
in the experiments we performed. This could be relevant for a future improvement of the
optimization procedure.

5.3 Results obtained using machine-learning algorithms

The results presented here show the results obtained following various optimization sessions.
This section had been modified after the defense to incorporate the latest set of data. A
presentation of each series of optimization will be presented alongside a problem which had
been discovered during a careful investigation of our data.

5.3.1 Transfer from the hybrid trap to the dressed trap: Identification of
an important parameter

In parallel with the implementation of M-LOOP, the change of BEC production in the science
cell was implemented. The hybrid trap was done by plugging a blue-detuned laser beam
focused on the trap center and is now done by attracting the atoms away from the trap
center. Both of these methods are presented in Sec.2.2.2. Once a Bose-Einstein condensate
had been observed in the new hybrid trap, referred to as the dimple trap, many attempts
had been made to load the BEC in the dressed trap. In order to improve the dressed trap
loading, an optimization session concerning the dressing ramp and the progressive extinction
of the dimple laser beam was run. This corresponds to a session with six parameters, and
the part of the sequence that is optimized is shown in Fig.5.4. The optimization session
may be summarized by attempting to answer the question: How to synchronize the dimple’s
extinction with an adapted radiofrequency ramp?

The first conclusion drawn from this attempt was the need to change the geometry of the
cost window. Due to the strong anistropy of the oblate BEC, the cloud is strongly confined
in the vertical direction of the trap inside the bubble and after a 23ms time of flight the
anisotropy inverts and the cloud expands more in the vertical direction, resulting in an oval-
shaped cloud on the imaging system for the BEC [112]. In order to take this effect into
account, the geometry of the cost window has been changed to an oval shape.
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.

Figure 5.4 – Representation of the sequence’s signals.

The optimization session is organized in two phases. First, a training phase of 20 shots
is performed with the differential evolution algorithm. Then the Gaussian process is used to
determine which configuration should be evaluated next. Each fifth sequence, the differential
evolution algorithm is used to determine the next shot. The cost evolution with respect to the
number is shown in Fig.5.5 where the cyan triangles represent the configurations determined
with differential evolution algorithm and the blue dots are the configurations obtained with
the Gaussian process regression. This session stopped after 180 iterations. This number has
been determined to have optimization session which lasts for at most 3 hours, in order to
avoid some drifts of the experiments which can not be compensated by the experimentalist
during the optimization session.

At the end of the optimization sequence, MLOOP provides various information. Amongst
these information, we are particularly interested in the best configuration evaluated during
the session and the sensitivity estimation for each parameters. This sensitivity estimation is
obtained by looking at the characteristic length scale for each parameters, the shorter this
length-scale is, the more sensitive the parameter is. These information are shown in Tab.5.1
but they are not directly coming from MLOOP.
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Figure 5.5 – Graph displaying the evolution of the cost with respect to the Run number
for the trap transfer optimization.

Actually, during the data analysis phase, we discovered that the parameters analysis by
MLOOP was different from the situation described in Sec.5.2.2: the covariance function used
during the optimization session was the following:

𝑘(x𝑖,x𝑗) = exp

(︃
−1

2

𝑑(x𝑖,x𝑗)
2

𝑙2

)︃
(5.21)

Showing that the characteristic length scale was imposed to the same for all parameters.
In order to get information about the individual characteristic length scale of each pa-

rameter, I perform a posterior analysis on the data, which is a Gaussian process regression
using the whole set of data from the optimization session. This is the ultimate step of the
optimization session, but this last step is not equivalent to the full optimization session: as
MLOOP performs an online optimization, the data are analyzed throughout the optimization
session to determine the next configuration to be evaluated. Therefore, analyzing the whole
set of data a posteriori is not equivalent to using the Gaussian process regression algorithm
to optimize the experiment, as the analysis lacks the step-by-step component of the GPR
optimization session.
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variable name
(unit)

Pre-optimization
configuration

Post-optimization
configuration

Length-scale
(dimensionless)

∆𝑃𝑗

dressFreq1 (kHz) 276.49 207.62 0,17433 200 kHz - 300 kHz
dressFreq2 (kHz) 331.83 300.00 10,0 300 kHz - 400 kHz
dtRfDressPart1
(ms)

130.05 87.07 0,01813 50ms - 500ms

dtRfDressPart2
(ms)

312.7 66.1 0,26817 50ms - 500ms

dtDimpleRemove
(ms)

345.19 209.78 0,07165 50ms - 500ms

dtDimpleRemove
Offset (ms)

319.67 297.22 0,05492 50ms - 600ms

costs -9.353 -10.106

Table 5.1 – The variables optimized for the transfer procedure. For each of them, there
is the starting value and the optimized value. The initial and final costs are also given.

In Tab.5.1, I choose to display the dimensionless characteristic length-scales in order to
compare the length-scale of each parameter. They are defined by 𝑙̃𝑗 = 𝑙𝑗/∆𝑃𝑗 where ∆𝑃𝑗

is the allowed range of variation fixed by the experimentalist. One of the parameters stands
out: dressFreq2, wich has a large dimensionless characteristic length-scale, which means the
variation of this parameter, in its allowed range, does not change the cost of a realization.
The most sensitive parameter, the parameter having the lowest dimensionless characteristic
length-scale, is dtRFDressPart1 highlighting, the sensitivity of this parameter. Then, the
dtDimpleRemove and dtDimpleRemoveOffset are the most sensitive, insisting on the impor-
tance of the coordination between the dimple beam shutting down and the RF field being
switched on.

The optimization of this part of the experiment had been successful, as it doubled the
number of atoms in the BEC, passing from 5× 104 to 105. This illustrates a case where the
M-LOOP package can be useful: when a modification is implemented on the experiment and
an optimization has to be done where we have very little knowledge on the behavior of the
cost with the parameters, the algorithm can save time by exploring more efficiently the space
of possible parameters and finding an optimum in a shorter time.

5.3.2 Pre-transport phases: an optimization with numerous parameters

Once M-LOOP had been implemented within the new control system, optimization of the
pre-transport stage of the sequence was tried. This part of the sequence is described in
Sec.2.2.1. As a reminder, this corresponds to the pre-compression phase, the molasses and
Sisyphus cooling phase, the pumping to F = 1 stage and the final compression stage before
transport. In total, this optimization sequence takes into account the 15 parameters presented
in Tab.5.2. In order to analyse the cloud profile on the camera, the cloud has to be translated
and transferred in the quadrupole science cell, up to the first evaporation stage. This is the first
stage at which a picture of the atom can be taken with our imaging system of magnification
2.4 and with 15ms.
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The first attempts gave a mixed result: M-LOOP ran the optimization sequence, which
converged toward an optimum, but the cloud of atoms was indistinguishable from the cloud
prior to the optimization sequence. The cost associated with both of these situations was
−14.8. Because we wanted to be sure that an improvement could be found using machine
learning on the laboratory set-up, the parameters had been changed to a degraded config-
uration, corresponding to a cost of −11.4 for a circle with a radius of 500 µm. During the
redaction time, we realized there was a problem with the characteristic length-scale for each
parameter, this problem has been detailed in Sec.5.3.1.

Figure 5.6 – Graph displaying the evolution of the cost with respect to the Run number.

Once the thesis had been submitted, by changing the script used by Lyse to run MLOOP,
I was able to run an optimization session for this problem with independent length-scale. This
session of optimization led us to the graph presented in Fig.5.6 which shows the evolution
of the cost with respect to the run number inside the optimization sequence. Each point
represents an experimental sequence, and one can see that a point has two different colors:
either purple or blue. These two colors refer to the kind of algorithm used to determine the
cost evaluated: the cyan triangles represent the configuration determined with the differen-
tial evolution algorithm, whereas the blue dots are the configuration determined using the
Gaussian process regression. The optimization session starts with the execution of 31 se-
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variable name
(unit)

Pre-optimization
configuration

Post-optimization
configuration

Length-scale
(dimensionless)

∆𝑃𝑗

PRepumpLow
(relative output
power)

0.1228 0.074211 0.127863 0 - 0.7

dtCool (ms) 0.01951 0.039006 0.174819 5ms - 50ms

MOTCompress
(A)

96.72 74.971733 0.226653 23A - 180A

RapportBasHaut
(dimensionless)

1.089 1.031691 0.352091 1.0 - 1.2

dtQuadMinOn
(ms)

0.001153 0.005000 0.542579 0ms - 10ms

CompressPower
(relative output
power)

0.7493. 1.0 0.672400 0 - 1.0

dtSisyphus (ms) 0.005138 0.001 1.031072 1ms - 10ms

dtF1 (ms) 0.004565 0.001 10.0 1ms - 10ms

dtLowerRepump
(ms)

0.000629 0.033553 10.0 0ms - 50ms

CompressFreq (Γ) -5.11. -8.0 10.0 −8× Γ - 0× Γ

MolassesFreq (Γ) -20.1. -10.0 10.0 −30×Γ - −10×Γ

SisyphusPower
(relative output
power)

0.8701 0.676249 10.0 0.5 - 1.0

IQuadMax (A) 336.6 355.706584 10.0 200A - 390A
dtCompress (ms) 0.00294 0.002 10.0 2ms - 30ms

dtQuadRamp
(ms)

0.2545 0.219858 10.0 75ms - 300ms

Table 5.2 – The variables optimized. For each of them, we give the starting value and
the optimized value.

quences determined with the differential evolution algorithm as the initialization phase. The
Gaussian process regression algorithm then determined the next configuration almost always:
every fifth sequence, a configuration is determined using the differential evolution algorithm
that is why there are cyan triangles after the training session. This session stopped because
the maximum number of sequences had been reached for an optimization session (which was
180 sequences). The best situation discovered during this sequence was similar to the starting
configuration (prior to degradation), with a configuration close to the discovered optimum.
This allows for the different values to be compared to one another.

In the end, the different parameters have been ordered in increasing order in Tab.5.2:
the lower the value, the more sensitive the parameter is determined to be, compared with the
allowed range. Similarly to the value presented in Sec.5.3.1, the maximum value of a character-
istic length-scale is 10, therefore all the parameters below dtSisyphus are deemed not sensitive
at all. Also, the most sensitive parameters, PRepumpLow, dtCool and MOTCompress are
the parameters of the molasses phase, indicating how sensitive this part of the sequence is.
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Furthermore, the parameter RapportBasHaut is a correction applied to the down coil during
the transport from the MOT chamber to the science cell. The differential tube is about 2mm
wide, it is therefore crucial to tune the cloud’s height correctly during the transport phase.

To conclude the part on the pre-transport optimization phase, let me sum up the main
elements we can draw from these experiments. First, when the configuration is altered by
the experimentalist, MLOOP finds better configurations with lower costs than the initial
configuration. Then, for a part of the sequence that had been optimized over the years, such
as the pre-transport phase, MLOOP doesn’t find a greatly superior configuration. Ultimately,
using the Gaussian Process Regression algorithm with MLOOP gives an estimation of the
sensitivity of each parameter through the characteristic length scale.

5.4 Conclusion on machine learning uses

In the laboratory, machine learning has been successfully implemented. It executes the desired
optimization session, and hence, certain tasks could be partially automated, such as the
dimple position adjustment. Ideally, the main algorithm used to execute machine learning
optimization, the Gaussian regression process, provides information on the sensitivity of each
parameter.

By performing an optimization of the pre-transport phase, no increase in the number of
atoms was observed. This part of the sequence had already been optimized by the team in
an efficient manner.

The use of the machine-learning algorithm was much more interesting on the newly im-
plemented dimple hybrid trap. When transitioning from a plugged trap to a dimple trap, the
optimization session has been programmed to optimize the transfer from the dimple trap to
the dressed trap. In this way we improved the atom number loaded in the dressed trap by a
factor of two. A further analysis of the two optimization runs we performed allow us to access
the sensitivity of the sequence to the various parameters, which is interesting information for
future improvements of the sequence and even of the setup. If we find that a parameter is
especially sensitive, we can modify the setup in order to stabilize this parameter in the best
possible way and reduce its noise, if any (power supplies, laser frequency stabilization, etc.).
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This manuscript shows the work done during my PhD in the BEC team of the LPL, which
had a two-fold goal: on the one hand, the implementation of a new control system and the
wise use of its new features; on the other hand, the study of gravity compensation on the
laboratory experimental setup.

The main achievement in this manuscript is the implementation of a new control system,
the Labscript Suite, which modified deeply the modus operandi deeply. All the information
about an experimental sequence is now stored in a unique information vector: the HDF file.
The graphic user interface enables the rapid change of numerical values of parameters, and
some new features such as the randomized generation of shot files prevent certain biases from
appearing on the set of data. With the execution of the instruction of the sequence on one
hand and an interface to interact with the different devices on the other, some repetitive tasks
such as the calibration of a new device or the scanning of a parameter are easier to do. The
data analysis has been simplified and has become more versatile. The user may write some
short script to a perform very specific task previously took longer to do, such as display the
evolution of the number of atoms during a parameter scan. This new system has been fully
implemented and works as intended, and the different options described previously help to
greatly increase the setup productivity. As a comparison, with the previous control system,
it took a day to execute 200 sequences, whereas for a similar task, these same sequences are
done in less than 4 hours. Also, the time precision of the system has been improved, and our
imaging pulses are sent directly using the output system. This simplifies the setup as it is no
longer necessary to use dedicated devices to execute short pulses. The next step to improving
the experiment is to increase the autonomy of the setup: when data are taken, the role
of the experimentalist is to make sure nothing perturbs the execution of the measurements.
Therefore, one must always check that the lasers are locked; otherwise, the atoms can no longer
be trapped or imaged. This requires the full attention of the experimentalist and is exhausting
when done all day long. A solution would be to implement a laser lock management system
that can detect when a laser lock breaks and lock it back on the reference automatically.

With the new control system, some machine-learning algorithms have been implemented.
Thanks to the M-LOOP library, different optimizations on the experiment had been done in
order to maximize the number of atoms at the end of the sequence. We tested this optimization
on sequence part prior to the transport of the atom. No improvement was found in terms of
the number of atoms, which indicates our setup was optimally tuned prior to the optimization
session. These optimizations had also been done while implementing a new trapping solution
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for the atom; the algorithm being used to optimize the atom transfer to the dressed trap.
In such a situation, the machine-learning solution has been interesting. It increases by a
factor of two the number of atoms in the dressed trap. Up until now, we did not make use
of the ability to independently adjust the characteristic lengths of each parameter that we
optimized. We plan to upgrade our program to implement this possibility in the near future,
as it would allow the user to determine which parameters are the most sensitive during an
optimization session. Even without this refinement, the machine-learning algorithm appears
to be an efficient means to obtain information on a newly implemented devices. It has been
useful in optimizing a certain part of our sequence, but a more comprehensive study can be
done. This can be done by investigating other algorithms, such as neural networks, to do
the same task and comparing the efficiency of the different algorithms. Finally, other uses
of machine learning can be investigated. One of the critical aspects of our experiment is
the absorption imaging technique, which is prone to certain types of imaging noise. Some
algorithms have been tested to reduce the noise on the images and improve the quality of the
imaging system in the setup [113].

On top of this technical improvement, I worked on a systematic study of gravity cancella-
tion inside the quadrupole dressed trap. This work started during Yanliang Guo’s PhD and
continued through mine. Inside the trap, the atoms are pushed to the bottom of the bubble
by gravity and feel an attraction towards the holes on top of the bubble. By increasing the
attraction toward the zero of coupling, the gravity effects are cancelled. This was done for
the atoms to spread on the whole surface of the bubble, but instead it was observed that the
atoms spontaneously form a ring. This is due to the inhomogeneous transverse confinement.
The ring shaped BEC has been observed during Yanliang Guo’s PhD. While a qualitative in-
terpretation was given, evidencing the role of the zero-point energy of the transverse motion, a
quantitative comparison to the data remained to be done. To this aim, a numerical model has
been developed by Romain Dubessy that takes into account terms beyond the rotating wave
approximation. This model fit the data particularly well, as seen in Chap. 3. This enables
us to look at the influence of a microgravity environment on a BEC inside a trap. As the
micro-gravity environment for cold atoms is studied more and more with a scientific project
such as the Cold Atom Lab (CAL) on the ISS [114], this result shows the influence a spatially
inhomogeneous coupling has on a BEC. In fact, even for experiments in the microgravity of
the ISS, it is necessary to take into account the variation of zero-point energy in the trap as it
becomes the most important phenomenon inside the trap. A potential next step to investigate
physics in a microgravity environment would be to set the ring shaped cloud into rotation. It
is expected that a modification of the cloud topology would lead to a new vortex distribution
when this cloud is set into rotation [29,115].

Finally, I want to mention an experimental project I have been involved in: the study of
vortex lattices in the Bose-Einstein condensate. This part of the work had not been mentioned
in the PhD because the data are currently being analyzed. As presented in this manuscript,
the Bose-Einstein condensate is a superfluid, and when it is set into rotation, instead of having
rotating flow, some vortex appears inside the trap as presented in Chap.1. When they appear
in the trap, they spontaneously form a lattice with a triangle-shaped cell in the trap with more
or less disorder. Models to describe the behavior of the lattice had been studied extensively
by theoreticians since the 1970s [18, 116]. It is predicted that a lattice with a triangular unit
cell will be formed, and this lattice will be destroyed by the appearance of defects undergoing
phase transition from the lattice, which has a translational order and a rotational order, to
a hexatic phase, where the translational order is destroyed while the orientational order is
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preserved. During this data acquisition period, we saw the appearance of the vortices at
the bottom of the trap. A wide scan had been done over the parameters related to rotation
and different situations were observed regarding the vortices: some pictures displayed well
organized vortex lattice as can be seen in the figure below and in other cases the vortices
were disorganized. These experiments had been the first ones done right after the Labscript
Suite was implemented in the new setup. The goal is to perform a more systematic study of
the vortex melting phenomenon that was observed qualitatively during the PhD of Mathieu
de Goër [64]. The data are currently under analysis by the team, and a tentative comparison
with existing models is ongoing.

An example of a vortex lattice obtained by rotating a trap deformation.
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Résumé

Dans cette thèse est présentée l’implémentation d’un système de contrôle d’une expérience
d’atomes ultra-froids. Celui-ci permet d’accélérer l’acquisition de données et d’utiliser des
algorithmes d’apprentissage automatique pour optimiser le fonctionnement de l’expérience.
Les caractéristiques du nouveau système sont présentées ainsi que la suite logicielle permet-
tant le contrôle et l’analyse des données. Les différents algorithmes utilisés sont décrits ainsi
que les premiers résultats d’optimisation obtenus. Dans l’expérience, un condensat de Bose-
Einstein de gaz d’atomes de rubidium est confiné à la surface d’un ellipsoïde de révolution.
Cette géométrie originale de piégeage provient de l’habillage des atomes par un champ ra-
diofréquence dans un piège quadrupolaire magnétique.

Dans cette géométrie il est possible de compenser l’effet de la gravité, et je présente
les résultats expérimentaux obtenus. Nous observons la formation spontanée d’un anneau
condensé proche de l’équateur de la bulle, et nous interprétons ce comportement par un effet
de l’énergie de point zéro du confinement transverse. Un modèle plus élaboré nécessitant
l’introduction de termes au-delà de l’approximation de l’onde tournante est comparé aux
données expérimentales.

Mots-clefs : Condensation de Bose-Einstein, potentiel adiabatique, microgravité, système
de contrôle, Labscript Suite, optimisation, apprentissage automatique

Abstract

This thesis presents the implementation of a control system for an ultra-cold atom experiment.
This system allows for the acceleration of data acquisition and the use of machine learning
algorithms to optimize the operation of the experiment. The characteristics of the new system
are presented, as well as the software suite allowing the control and analysis of the data. The
different algorithms used are described, as well as the first optimization results obtained. In
the experiment, a Bose-Einstein condensate of rubidium atoms is confined to the surface of
an ellipsoid of revolution. This original trapping geometry comes from the dressing of the
atoms by a radiofrequency field in a magnetic quadrupole trap.

In this geometry, it is possible to compensate for the effect of gravity, and I present the
experimental results obtained. We observe the spontaneous formation of a condensed ring
near the equator of the bubble, and we interpret this behavior as an effect of the zero point
energy of the transverse confinement. A more elaborate model requiring the introduction of
terms beyond the rotating wave approximation is compared to the experimental data.

Keywords: Bose-Einstein condensation, adiabatic potential, radiofrequency dressed atoms,
microgravity, control system, Labscript Suite, optimization, machine learning
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