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Résumé

Dans cette thèse, nous proposons une analyse mathématique et numérique des écoulements
viscoplastiques, avec une attention particulière portée aux fluides de Bingham. Les fluides de
Bingham, un type de fluide viscoplastique, se comportent comme des solides à faible contrainte
et comme des fluides non linéaires au-delà d’un seuil de cisaillement.

Le premier résultat de cette thèse concerne l’analyse mathématique de l’équation de Navier-
Stokes Bingham. Nous avons établi l’existence et l’unicité d’une solution faible. Dans ce travail,
nous proposons de construire une solution faible en utilisant un fluide de bi-viscosité comme
approximation. En particulier, nous avons prouvé que le tenseur de bi-viscosité converge
faiblement vers le tenseur de Bingham.

Sur le plan numérique, cette thèse propose une méthode de volumes finis efficace pour la
simulation des écoulements viscoplastiques. Dans un premier lieu, une méthode de volumes
finis caractéristiques (FVC) pour les systèmes hyperboliques unidimensionnels a été introduite.
Cette méthode est étendue aux problèmes bidimensionnels sur un millage hybride non struc-
turé. FVC intègre un contrôleur de la diffusion numérique qui permet de mieux capturer
les différents phénomènes physiques. Le dernier travail de la thèse concerne la simulation
d’écoulements de Bingham compressibles sur un maillage hybride non structuré. Un algo-
rithme de splitting est proposé, intégrant la méthode FVC pour un contrôleur de diffusion
numérique afin de simuler avec précision les équations de Bingham compressibles.

Dans l’ensemble, cette thèse représente une avancée significative dans l’analyse et la sim-
ulation des fluides viscoplastiques, offrant des aperçus précieux et des approches numériques
innovantes pour relever les défis complexes de la dynamique des fluides viscoplastiques.

Mots clés
fluide non-Newtonien incompressible, approximation des fluides non Newtoniens, solution
faible, systèmes de Navier-Stokes, fluide de Bingham, existence de solutions, équations d’Euler
compressibles, méthode des caractéristiques, méthode des volumes finis, lois de conservation,
équations de Navier Stokes compressibles, fluides de Bingham compressibles, couches limites,
plaque plane, diffusion numérique.

7



8



Abstract

In this thesis, we propose a mathematical and numerical analysis of viscoplastic flows, with a
particular focus on Bingham fluids. Bingham fluids, a type of viscoplastic fluid, behave like
solids at low stress and like nonlinear fluids above yield stress.

The first work of this thesis is focused on the mathematical analysis of the Navier-Stokes
Bingham equation. We have established the existence and uniqueness of a weak solution. In
this work, we propose to build a weak solution using a bi-viscosity fluid as an approximation.
In particular, we proved that the bi-viscosity tensor converges weakly to the Bingham tensor.

This thesis proposes an efficient finite volume method for simulating viscoplastic flows.
Firstly, a Finite Volume Characteristic (FVC) method for one-dimensional hyperbolic sys-
tems is introduced. This method is extended to two-dimensional problems on an unstructured
hybrid mesh. FVC integrates a numerical diffusion controller to better capture the various
physical phenomena. The final work of the thesis concerns the simulation of compressible
Bingham flows on an unstructured hybrid mesh. A splitting algorithm is proposed, integrat-
ing the FVC method for a numerical diffusion controller to accurately simulate compressible
Bingham equations.

Overall, this thesis represents a significant advance in viscoplastic fluid analysis and simula-
tion, offering valuable insights and innovative numerical approaches to the complex challenges
of viscoplastic fluid dynamics.

Keywords
Incompressible Bingham fluid, Non-Newtonian fluid approximation, weak solution, Navier-
Stokes equation, Bingham viscoplastic, existence of solutions, Compressible Euler equations,
Method of characteristics, Finite volume method, Conservation laws, Compressible Navier
Stokes equations, Weak compressible Bingham flows, Boundary layers, Flat plate, Numerical
diffusion.
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1.1. Motivation

1.1 Motivation
Every morning, as we wake up to a well-established routine, we experience non-Newtonian
fluids without even realizing it. When we squeeze the toothpaste tube, we find that the
toothpaste stays rigid inside, acting almost like a solid, but as soon as we apply enough
pressure, the toothpaste becomes more fluid and flows easily onto our toothbrush. As we
prepare our breakfast, we notice that the texture of our yogurt changes depending on how we
stir it. On our way to work, we pass a construction site where we see workers handling concrete,
realizing how difficult it is to pour it evenly. When we try to pour ketchup on our hamburger,
we notice how it first remains motionless in the bottle, sometimes requiring vigorous shaking
to start flowing, and then flows slowly once set in motion. Every interaction throughout the
day, whether conscious or unconscious, is marked by the subtle but significant characteristics
of so-called non-Newtonian fluids, which are truly omnipresent in our daily lives. All these
everyday experiments highlight the properties of non-Newtonian fluids, an area that this thesis
aims to explore.

Non-Newtonian fluids are fluids whose viscosity, a measure of their resistance to flow, changes
in response to applied stress or shear rate. Unlike Newtonian fluids, which have a constant
viscosity no matter what force is applied. The flow behavior of non-Newtonian fluids is com-
plicated and is impacted by various parameters, including shear rate and shear stress. This
behavior is studied by Rheology, a physical discipline that analyses how materials flow and
deform in response to different applied forces. In many industrial and geophysical domains, an
understanding of the Rheology of non-Newtonian fluids is crucial for optimizing manufacturing
processes and designing advanced uses in sectors like petroleum engineering and medicine. For
additional information on the Rheology and the non-Newtonian models, see [23, 39, 43].

This complicated behavior is converted into a mathematical complexity that results in stress-
strain laws, such as the Carreau-Yasuda, Bingham, power law, Cross, Casson, Herschel-Bulkley,
etc. Among the various classes of non-Newtonian materials, those exhibiting viscoplastic
properties are particularly interesting by their ability to strain only if the stress rate exceeds
a minimum value. Many industrial processes involve viscoplastic fluid: mud, cement slurries,
emulsions, foams, etc. The most commonly used model to account for this particular behavior
is the Bingham model [20]. Eugene Bingham, a professor at Lafayette College, gave the first
one-dimensional mathematical law for fluid behaves like a solid at low stresses and like a
non-linear fluid above a yield stress τy. Later, Prager [54, 55] showed a generalized tensor
formulation for multidimensional flows.

1.2 Mathematical models
In the eighteenth century, modern mathematical hydrodynamics was born. In 1750, Euler
expressed the belief that the mechanics of continuous media could be treated by applying
Newton’s law to the infinitely small elements that make up the continuous medium. In 1755,
Euler wrote a paper entitled Principes généraux du mouvement des fluides , in which he
developed equations to describe the behavior of fluids. These equations, known as Euler’s
equations, apply Newton’s law to fluid elements under the influence of external forces and the
pressure of neighboring elements. In Euler’s equations, the internal forces are described only
in terms of pressure. However, since the other elements of the fluids have different velocities,
an additional force (friction) is applied to the fluid element in directions tangential to the faces

14



1. Introduction

(viscosity). It was Navier who proposed equations, known as the Navier-Stokes equations, to
correct this limitation by taking viscosity into account in the context of fluid dynamics.
Fluid mechanics is based on two types of laws: conservation laws, which describe how certain
physical quantities such as mass, momentum, and energy are conserved in the system, and
constitutive laws, which describe macroscopic phenomena.

1.2.1 Conservation laws

Conservation of mass

This law implies that mass can neither be created nor destroyed, although it can be rearranged
in space or the entities associated with it can change form. This principle, also termed the law
of conservation of mass or mass conservation principle, finds expression in the mathematical
form of the continuity equation:

∂tρ+∇ · (ρu) = 0, (1.1)

here, ρ represents the density, u denotes the velocity vector field.

Conservation of momentum

The law of conservation of momentum results from the direct application of Newton’s law: the
time rate of change of the momentum in a volume V is equal to the total force acting on the
volume V . It can be mathematically expressed as:

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ∇ · τ + ρf, (1.2)

where p is the pressure, τ is the stress tensor, and f represents external forces.

Conservation of energy

The time rate of change of total energy is equal to the work done, per unit time, by all the
forces acting on the volume plus the influx of energy per unit time into the volume. It can be
mathematically expressed as:

∂t(ρE) +∇ · ((ρE + p)u)−∇ · (τu) +∇ ·Q = ρu · f, (1.3)

where E represents the total energy and Q is the energy flow.

1.2.2 Navier-Stokes equation
Equations (1.1), (1.2) and (1.3) form the Navier-Stokes system. The stress tensor and pressure
in these equations, which present the internal forces, are given by the equation of state and
Reological law respectively. Some physical hypotheses can lead to other equations which
describe certain flows.
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1.2. Mathematical models

Inviscid fluid

A first physical simplification can be made by neglecting the viscosity, conduction of the heat,
and external forces. This simplification led us to the Euler equations

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · (u(ρE + p)) = 0·

(1.4)

For an ideal gas, the energy of the system is related to these unknowns with the following
equation of state

ρE =
1

2
ρ|u|2 + p

(γ − 1)
, (1.5)

with γ is the ratio of specific heat.

Newtonian fluid

As mentioned earlier in this introduction, Newtonian fluids are characterized by a linear re-
lationship between stress and strain, which implies a constant viscosity µ. Moreover, if we
neglect the external forces, we find the Newtonian Navier Stokes equation

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p−∇ · τ = 0,

∂t(ρE) +∇ · ((ρE + p)u)−∇ · (τu) +∇ ·Q = 0·

(1.6)

where the Newtonian viscous stress tensor τ is given by

τ = µ
(
∇u +∇ut

)
− 2

3
µ(∇ · u)I· (1.7)

As the inviscid flow, the pressure is given by an equation of state.

Incompressible fluid

When the fluid is incompressible, the material derivative of the density is equal to zero, there-
fore

∂tρ+ u · ∇ · ρ = 0, (1.8)

then, the law of conservation mass become ∇ · u = 0. Moreover, assuming that the flow
is isothermal, the energy conservation equation becomes redundant and the Navier stokes
equation for an incompressible isothermal flow is given by{

∇ · u = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = ∇ · τ + ρf,
(1.9)
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1. Introduction

Barotropic fluid

A fluid in which the pressure is a function only of the density, i.e., p = p(ρ), is called a
barotropic fluid and we have the following Navier-Stokes equation{

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p−∇ · τ(Du) = ρf,
(1.10)

1.2.3 Viscoplastic fluids
Viscoplastic fluid flows constitute a significant area within the realm of non-Newtonian fluid
mechanics. This is because a notable portion of fluid flows, whether in natural or industrial
settings, are observed to display yield stress. The first one-dimensional model that describes
the stress-strain relationship, i.e. the relationship between the stress tensor and the strain
rate, was proposed by Bingham [20]

τ =

(
2µ+

τy
|γ̇|

)
γ̇ if γ̇ 6= 0,

|τ | ≤ τy if γ̇ = 0·

(1.11)

where γ̇ is the shear rate tenser and µ is the plastic viscosity. Prage [55] proposed a general-
ization of this law in the multi-dimensional case:

τ =

(
2µ+

τy
|Du|

)
Du if Du 6= 0,

|τ | ≤ τy if Du = 0,

(1.12)

which can be written as follows:
τ =

(
2µ+

τy
| Du |

)
Du if |τ | > τy,

Du = 0 if |τ | ≤ τy,

(1.13)

where Du is the strain tensor defined as Du = 1
2(∇u +∇ut). In the real world, it is rare for

fluids to conform strictly to Bingham law, even if they display a stress threshold. To extend
this model, we can use the Herschel–Bulkley model, which includes the shear-thinning property
of the plastic viscosity

τ =

(
2µ0|Du|n−1 +

τy
|Du|

)
Du if Du 6= 0,

|τ | ≤ τy if Du = 0·

(1.14)

where n ∈ [0, 2] stands for the shear-thinning coefficient and µ0 is the plastic viscosity at zero
shear rate. Another simple two-parameter model which implicitly exhibits shear expansion

17



1.3. Analytical aspects

behavior is the Casson model which can be expressed as follows:
τ =

(
2µ+ 2

√
τyµ|Du|−1/2 +

τy
|Du|

)
Du if Du 6= 0,

|τ | ≤ τy if Du = 0·

(1.15)

Other generalizations of the Bingham tensor, taking into account factors such as compress-
ibility, temperature, and time dependence, are presented in [23]. Although Bingham law is
not always adhered to in practice, it offers a valuable understanding of the behavior of many
viscoplastic fluids. Therefore, in this thesis, we focus on examining Bingham fluids.

1.3 Analytical aspects
From the moment Euler proposed his model of fluid dynamics, he recognized that his equations
would present a significant theoretical challenge and would lead to the emergence of a new
mathematical discipline.

”... Cependant tout ce que la Théorie des Fluides renferme est contenu dans ces deux
équations, de sorte que ce ne sont pas les principes de Méchanique qui nous manquent dans la
poursuite de ces recherches, mais uniquement l’Analyse, qui n’est pas encore assés cultivée,

pour ce dessein ...” 1

Euler could certainly not have known that the existence of solutions to the Navier-Stokes
equation would become one of the major mathematical questions of the 21st century.

The mathematical analysis of the incompressible Newtonian Navier Stokes equations is one
of the leading research topics that attract the attention of researchers because of the many
open questions around this system. A rigorous mathematical existence theory for Newtonian
and non-Newtonian fluids can be found in [21, 56, 34, 33, 22].
The Navier Stokes Bingham problem cannot be studied directly because the stress tensor is
not explicit below the yield stress τy and it is a discontinuous operator. Duvaut and Lions
[28] exclude the stress tensor by switching to a variational inequality for the velocity field to
overcome these difficulties. Concurrently, Basov and Shelukhin [13, 17] offered an alterna-
tive strategy, demonstrating the existence of weak solutions by employing the Bercovier and
Engelman model as an approximation for the Bingham fluid.

The first result of this thesis is a proof of the existence of a weak solution for the two-
dimensional Navier-Stokes Bingham problem (1.9)-(1.15). The proof of this result is based on
the approximation of Bingham fluid using a bi-viscosity fluid, in particular, we proved that the
bi-viscosity tensor converges weakly to the Bingham tensor. The idea of this approximation is
to consider the Bingham fluid when it behaves like a solid as a highly viscous Newtonian fluid,
by involving a second artificial viscosity which becomes infinity when the rate of deformation
tends towards zero.

1”... Everything that is held within the Theory of Fluids is contained in those two equations, so that it is not
the principles of Mechanics that are lacking for the continuation of our research, but only the Analysis, which
is still not developed enough for that purpose ...” [34]
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1.4 Numerical aspects
The Navier-Stokes equation not only poses analytical challenges but also presents considerable
numerical difficulties. Despite these challenges, Computational Fluid Dynamics (CFD) has
become an essential tool in a multitude of applications and areas of research. This field is
developing at a rapid rate thanks to our technological advances. Among the methods that have
significantly contributed to the advancement of the CFD domain is the finite volume method
(FVM), which is suitable for the numerical simulation of conservation laws. FVM is widely
used in fluid mechanics, heat and mass transfer, and other fields [69, 32, 65]. The Finite Volume
Characteristic (FVC) scheme is a FVM that has proved its effectiveness [7, 11, 15, 71, 16]. FVC
integrates the characteristics method into the reconstruction of the numerical flow.

Numerical diffusion is a prevalent issue in numerical methods, arising from the processes of
spatial and temporal discretization and the resolution schemes employed. Although difficult
to avoid, research is underway to minimize diffusion and improve the quality of numerical
simulations. Numerous studies and approaches have been carried out to reduce dissipation,
see for example [50, 40]. Another factor that characterizes numerical schemes is their cost. A
method that significantly reduces numerical diffusion but is prohibitively expensive becomes
impractical for widespread use. Consequently, the quest is to devise efficient techniques that
reduce numerical diffusion without incurring excessive costs.

This thesis introduces a novel strategy aimed at diminishing numerical diffusion. Chapter
3, outlines a method that is accurate, fast, and conservative method for one-dimensional
hyperbolic systems [5]. This approach is simple to implement, has no entropy defect as seen
in the numerical tests, and avoids solving Riemann problems. The proposed method has been
tested on the Euler equation (1.4); the results show a high accuracy of our method and, more
specifically, its ability to capture contact discontinuities. Then, we proposed, in chapter 4,
an extension of this approach to the two-dimensional Euler equation (1.4) and Compressible
Navier-Stokes equation (1.6) on unstructured hybrid mesh [4]. The results demonstrate that
the proposed approach is effective in controlling numerical diffusion and capturing the shock
and the boundary layer.

After validating our FVC solver for Newtonian flows in chapters 3 and 4, our next step,
and the main objective of this thesis, is to apply this method to compressible Bingham flows.
Numerical simulation of compressible Non-Newtonian flows is of great industrial importance,
enabling us to model the restarting of pipes carrying viscoplastic fluids [25, 44] as well as the
investigation of compressed Bingham fluids in closed pipes [52]. A recent study by Mackay and
Phillips [48] investigated the influence of compressibility, viscoelasticity, and thermal effects
on the characteristics of a Bingham flow. One-dimensional models have many applications in
industries, particularly in transmission pipelines where length is more important than diameter.
This simplified approach allows us to better understand and optimize system performance by
focusing on a single axis, making computation and prediction easier. For this reason, the
one-dimensional model has been carefully treated in chapter 5, where we propose a novel semi-
implicit finite volume approach for the one-dimensional Bingham flow 1.10. Numerical results
show, using an accuracy test, that FVC is fast and highly accurate. This was followed by a
study of the plug zone in the context of weakly compressible two-dimensional Bingham laminar
flows. Numerical results illustrate the solid-liquid behavior and the stress-strain relationship
that define Bingham fluids. This result represents a significant advance in the simulation
of viscoplastic fluids, with a new tool that integrates precision and computational efficiency.
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This approach could lead to an application that accurately simulates the complex behavior of
compressible and weakly compressible viscoplastic fluids in industrial and geophysical settings.

1.5 Organization of this thesis and contributions
The thesis consists of six chapters, each dedicated to exploring various aspects, ensuring a
comprehensive examination of the subject matter. The chapters 5, 3, and a short version of
chapter 4 have already been published ([1, 5, 4]) and the final result of this thesis, chapter 5,
will soon be submitted for publication.

Chapter 2: Homogeneous incompressible Bingham viscoplastic as a limit of
bi-viscosity fluids

In this chapter, the existence of a weak solution for homogeneous incompressible Bingham
fluid is investigated. The Rheology of such a fluid is defined by a yield stress τy and a discon-
tinuous stress-strain law. This non-Newtonian fluid behaves like a solid at low stresses and like
a non-linear fluid above the yield stress. In this work we propose to build a weak solution for
Navier stokes Bingham equations using a bi-viscosity fluid as an approximation, in particular,
we proved that the bi-viscosity tensor converges weakly to the Bingham tensor. This choice
allowed us to show the existence of solutions for a given data f ∈ L2(0, T ;V ′).

Chapter 3: A highly efficient finite volume method with a diffusion control
parameter for hyperbolic problems

This chapter proposes a highly accurate, fast, and conservative method for hyperbolic sys-
tems using the finite volume approach. This innovative scheme constructs the intermediate
states at the interfaces of the control volume using the method of characteristics. The approach
is simple to implement, has no entropy defect as seen in the numerical tests, and avoids solving
Riemann problems. A diffusion control parameter is introduced to increase the accuracy of
the scheme. Numerical examples are presented for the one-dimensional Euler equation for an
ideal gas. The results demonstrate the method’s ability to capture contact discontinuity and
shock wave profiles with high accuracy and low cost, as well as its robustness.

Chapter 4: A finite volume scheme with a diffusion control parameter on
unstructured hybrid mesh: application to two-dimensional Navier Stokes

problem

This chapter presents a new approach to controlling the numerical diffusion in the finite
volume characteristic (FVC) scheme. The approach is a generalization of an existing one-
dimensional method, and it employs the backward method of characteristics to create inter-
face states. The approach was assessed using two-dimensional Navier-Stokes equations on
unstructured hybrid meshes. The results demonstrate that the proposed approach is effective
in controlling numerical diffusion and capturing the shock and the boundary layer.

Chapter 5: A finite volume method with a diffusion control parameter for
compressible Bingham flows

The final part of this thesis focuses on the numerical simulation of an isothermal compressible
Bingham flow, highlighting the effectiveness of the FVC with the diffusion control parameter.
In the one-dimensional scenario, we use a semi-implicit method, and for the two-dimensional
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case, we extend the FVC/diamond strategy proposed in the previous chapter for Newtonian
flows to the case of Bingham flows. The numerical results demonstrate the effectiveness of the
FVC method for the one-dimensional case, as well as its capability to simulate the plug zones
in the context of weakly compressible two-dimensional Bingham laminar flows.

Chapter 6: Conclusion and outlooks

The conclusion section of this thesis summarizes the key findings and contributions of the
research. Additionally, it delves into various potential avenues for future research.
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Chapter 2

Homogeneous incompressible
Bingham viscoplastic as a limit of
bi-viscosity fluids
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Abstract
In this chapter, the existence of a weak solution for homogeneous incompressible Bingham fluid is
investigated. The rheology of such a fluid is defined by a yield stress τy and a discontinuous stress-
strain law. This non-Newtonian fluid behaves like a solid at low stresses and like a non-linear fluid above
the yield stress. In this work we propose to build a weak solution for Navier stokes Bingham equations
using a bi-viscosity fluid as an approximation, in particular, we proved that the bi-viscosity tensor
converges weakly to the Bingham tensor. This choice allowed us to show the existence of solutions for
a given data f ∈ L2(0, T ;V ′).
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2.1. Introduction

2.1 Introduction
As well known, the motion of a homogeneous incompressible fluid is governed by the Navier-
Stokes system, which describes the balance of mass and momentum. The classical form of
this equation is restricted to fluids whose stress-strain relationship is linear. This category
of fluids is called Newtonian fluids. They have a simple molecular structure, e.g., water, air,
and alcohol. The mathematical analysis of the Newtonian Navier Stokes equations are one of
the leading research topics that attract the attention of researchers because of the many open
questions around this system (see [21, 56, 34, 33]).

To study more complex fluids, such as molten plastics, synthetic fibres, biological fluids,
paints, and greases, etc., it is necessary to consider a generalized Navier Stokes system that
models the behavior of fluids whose viscosity depends on the rate of deformation (i.e., non-
Newtonian fluids). This complex behavior is translated into a mathematical complexity which
gives rise to complex stress-strain laws, such as the Carreau-Yasuda, Bingham, power law,
Cross, Casson, Herschel-Bulkley, etc., for more details on the rheology and the non-Newtonian
models, consult [23, 39, 43]. A rigorous mathematical existence theory for non-Newtonian
fluids can be found in [22]. Among the various classes of non-Newtonian materials, those ex-
hibiting viscoplastic properties are particularly interesting by their ability to strain only if the
stress rate exceeds a minimum value. Many industrial processes involve viscoplastic fluid: mud,
cement slurries, emulsions, foams, etc... The most commonly used model to account for this
particular behavior is the Bingham model [20]. Eugene Bingham gave the initial mathemati-
cal expression in 1922 for one-dimensional flows. Later, Prager [54, 55] showed a generalized
tensor formulation for multidimensional flows. From an analytical and numerical viewpoint,
we cannot directly study the Navier Stokes Bingham problem since the stress tensor is unex-
plicit below the yield stress, moreover is a discontinuous operator (which prevents the use of
[27]). Duvaut and Lions [28] exclude the stress tensor by passing to a variational inequality
for the velocity field to overcome these difficulties. Another solution was proposed by Basov
and Shelukhin [13], they proved the existence of weak solutions of the nonhomogeneous incom-
pressible equation by using the Bercovier and Engelman model [17] as an approximation of the
Bingham fluid. In [61], Shelukhin used the same approach but with a different approximate
tensor.

Our work is based on the approximation of the Bingham tensor by the bi-viscosity tensor,
which can be used for numerical simulation (see [18, 23, 38, 6]). Other regularization choices
are possible, such as the Papanastasiou model [53] or the algebraic model proposed by Allouche
et al. [9]. The reasons behind our choice is that the bi-viscosity operator is coercive, growing,
monotonic and continuous, which are the conditions of an existence theorem given by [27]. The
idea is to construct a sequence of approximate solutions using the bi-viscosity regularization
and the theorem 1 [27], then pass to the limit to prove the existence of a weak solution.

In section 2.2, we give the setting of the problem and the functional spaces, then we present
our theorem and we give some remarks about the weak formulation. The proof is shared
over three sections; the first step is provided in section 2.3, where we propose an approximate
problem and obtain a sequence of approximate solutions. The aim of section 2.4 is to prove
various compactness results on the approximate solutions. Section 2.5 is devoted to passing
to the limit in the approximate problem; in particular, we prove that the bi-viscosity tensor
converges weakly to the Bingham tensor. In the last section, we prove the uniqueness of
solutions.
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2. Homogeneous incompressible Bingham viscoplastic as a limit of bi-viscosity fluids

2.2 Setting of the problem and main result
Let Ω be a smooth domain in R2 with Lipschitz boundary and ΩT the open set Ω × (0, T ),
where T > 0 is the final time.
We consider an unsteady flow of incompressible Bingham fluid in 2D which is governed by the
following Navier-Stokes system

∂tu+ (u · ∇)u−∇ · (τ(Du)) +∇p = f in ΩT ,

∇ · u = 0 in ΩT ·
(2.1)

Here, u is the velocity vector, p is the pressure, and τ is the stress tensor where the strain
tensor (shear tensor) is defined as

Du =
1

2
(∇u+∇ut),

and f : ΩT → R2 represents the external forces (such as gravity). The system (2.1) is equipped
with the following initial condition

u(·, 0) = u0 in Ω, (2.2)

and the homogeneous Dirichlet boundary condition

u = 0 on ∂Ω× (0, T )· (2.3)

The Bingham stress–strain constitutive law is defined as
τ(Du) =

(
2µ+

τy
|Du|

)
Du if |τ | > τy,

Du = 0 if |τ | ≤ τy·
(2.4)

Here, µ is the viscosity, τy is the yield stress and |A|2 = A : A, where the inner product is
defined as A : B =

∑
i,j

AijBij . The Bingham tensor can be written as follows:


τ(Du) =

(
2µ+

τy
|Du|

)
Du if Du 6= 0,

|τ | ≤ τy if Du = 0·
(2.5)

Let us choose some spaces. Let X be a Banach space, for each 1 ≤ p < ∞, we defined the
following function spaces :

H =
{
v ∈ L2(Ω), ∇ · v = 0, v · n |∂Ω= 0

}
,

V =
{
v ∈ H1

0 (Ω), ∇ · v = 0
}
·
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These two spaces are Hilbert spaces equipped with the scalar products respectively induced
by those of L2(Ω,R2) and of H1

0 (Ω,R2), i.e

‖v‖2H =

∫
Ω
|v|2dx and ‖v‖2V =

∫
Ω
|∇v|2dx,

We also use the following Bochner spaces:

Lp(0, T ;X) =
{
v measurable from (0,T) into X, ‖v‖pLp(0,T ;X) <∞

}
,

L∞(0, T ;X) =
{
v measurable from (0,T) into X, ‖v‖L∞(0,T ;X) <∞

}
,

where ‖v‖pLp(0,T ;X) =

∫ T

0
‖v‖pX and ‖v‖L∞(0,T ;X) = supess

t∈(0,T )
‖v‖X .

The space E2,2(V ) =
{
v ∈ L2(0, T ;V ), ∂tv ∈ L2(0, T ;V ′)

}
, is a Banach space equipped with

the norm
‖v‖E2,2 = ‖v‖L2(0,T,V ) + ‖∂tv‖L2(0,T,V ′)·

Where V ′ is the topological dual of V , and we denote by 〈·, ·〉 the duality bracket between V
and V ′.

As in [27], we call (u, τ(Du)) ∈ E2,2 × L2(ΩT ) a weak solution of the problem (2.1)-(2.4), if
u satisfies (2.2) and for all φ ∈ L2(0, T ;V ) we have∫ T

0
〈∂tu, φ〉+

∫
ΩT

τ(Du) : Dφ +

∫
ΩT

(u · ∇)u · φ =

∫ T

0
〈f, φ〉 · (2.6)

A similar formulation is given in [21], for the Navier Stokes equation in 2D.

The main result of this work is the following theorem.

Theorem 1. Assume that f ∈ L2(0, T ;V ′) and u0 ∈ H, then the Navier Stokes equation for
a Bingham fluid (2.1)-(2.4), has a weak solution such that

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), ∂tu ∈ L2(0, T ;V ′), τ(Du) ∈ L2(ΩT ).

Remarks. 1. Theorem 1, ensure the existence of a classical weak solution (u, p) ∈ E2,2 ×
D′(ΩT ), for the system (2.1)-(2.4). Indeed, if we define the distribution T = ∂tu + (u ·
∇)u − ∇ · (τ(Du)) − f , according to (2.6), we can take φ ∈ {D(ΩT ),∇ · φ = 0}, and
we have 〈T, φ〉 = 0. On the other hand, the De Rham theorem1 [26, p. 114] ensures
the existence of a primitive of any distribution that cancels on all test functions with
null divergence (see [21, th. IV.2.5]). Then, we obtain the existence of p ∈ D′(ΩT )

1A constructive proof of the theorem is given by Simon in [62].
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where T = −∇p, which implies the existence of functions (u, p) solution of (2.1)-(2.4) in
D′(ΩT ).

2. We note that this weak formulation is different from the one proposed in [61], where f
must belong to L2(ΩT ), but in our case, f belongs to L2(0, T, V ′).

3. The Lions-Magenes theorem [21], implies that the weak solution u is continuous from
[0, T ] into H.

2.3 Approximate solutions
In this section, we will build an approximate problem by regularizing the Bingham tensor
(2.4), with another operator that approximates the physical behavior of Bingham fluids and
has some analytical properties. The regularizing tensor is given by the bi-viscosity model :

τm(A) =


2mµA if |A| ≤ γm,(

2µ+
τy
|A|

)
A if |A| > γm·

(2.7)

Where A ∈M2×2 and γm =
τy

2µ(m− 1)
, m ≥ 2. The idea of this approximation is to consider

the Bingham fluid when |τ | ≤ τy (which is practically solid) as a highly viscous Newtonian
fluid, by involving a second artificial viscosity µm = mµ. Therefore, the equation (2.8) can be
viewed as an approximation of (2.6).

Theorem 2. Assume that f ∈ L2(0, T ;V ′) and u0 ∈ H, then the approximate problem (2.1)-
(2.3), (2.7), has at least a solution um ∈ E2,2 in the following sense :∫ T

0
〈∂tum, φ〉+

∫
ΩT

τm(Dum) : Dφ+

∫
ΩT

(um · ∇)um · φ =

∫ T

0
〈f, φ〉, (2.8)

for all φ ∈ L2(0, T ;V ). Moreover, um is continuous from [0, T ] into H.

Proof. This result is an application of theorem 1, proved by Dreyfuss and Hungerbühler in
[27], in other words, we will check the hypotheses (NS0)-(NS2) given in [27].

Clearly, τm satisfies (NS0) since it is a continuous function, which justifies the choice of γm.
It is easy to prove that τm(A) : A ≥ 2µ|A|2 and that |τm(A)| ≤ τy + 2µ|A|, so τm satisfied the
growth and the coercive hypotheses (NS1).
To prove the strict monotonicity of τm, i.e. (τm(A)− τm(B)) : (A−B) > 0,

∀A 6= B ∈M2×2, we distinguish three cases:
Case 1: if |A| ≤ γm, |B| ≤ γm and A 6= B, then

(τm(A)− τm(B)) : (A−B) = 2mµ|A−B|2 > 0· (2.9)
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Case 2: if |A| > γm, |B| > γm and A 6= B so

(τm(A)− τm(B)) : (A−B) =

((
τy
|A|

+ 2µ

)
A−

(
τy
|B|

+ 2µ

)
B

)
: (A−B)

= 2µ|A−B|2 + τy|A|+ τy|B| −
(
τy
|A|

+
τy
|B|

)
A : B·

By using the Cauchy–Schwarz inequality, we obtain

(τm(A)− τm(B)) : (A−B) ≥ 2µ|A−B|2 + τy|A|+ τy|B|

−
(
τy
|A|

+
τy
|B|

)
|A||B|,

and we find
(τm(A)− τm(B)) : (A−B) ≥ 2µ|A−B|2 > 0· (2.10)

Case 3: if |A| > γm and |B| ≤ γm, so

(τm(A)− τm(B)) : (A−B) =

((
2µ+

τy
|A|

)
A− 2mµB

)
: (A−B)

=

((
2mµ+

τy
|A|

)
A− 2mµB − 2µ(m− 1)A

)
: (A−B)

= 2mµ|A−B|2 +
(
τy
|A|
− 2µ(m− 1)

)
A : (A−B)·

On the other hand, we have |A| > τy
2µ(m− 1)

, which gives, in addition to the Cauchy–Schwarz
inequality :

(τm(A)− τm(B)) : (A−B) ≥ 2µ|A−B|2

+ 2(m− 1)µ|A−B|
(
|A−B|+ τy

2µ(m− 1)
− |A|

)
·

(2.11)

We also have |A−B| + τy
2µ(m− 1)

− |A| ≥ 0, then (τm(A)− τm(B)) : (A − B) > 0· Finally,

we can apply Theorem 1 of [27], with n = p = 2.

Lemma 1. Form (2.9), (2.10) and (2.11), we deduce the following inequality

(τm(A)− τm(B)) : (A−B) ≥ 2µ|A−B|2, ∀A,B ∈M2×2· (2.12)

This inequality will be used somewhere in this chapter.
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2.4 Compactness of approximate solutions
The aim of this section is to prove some results on the sequence um.

Proposition 1. The approximate solution um, constructed in Section 2.3, satisfied the follow-
ing estimations

(i) The sequence um is bounded in L2(0, T ;V ) ∩ L∞(0, T ;H).

(ii) The sequence (um · ∇)um is bounded in L2(0, T ;V ′).

(iii) The sequence τm(Dum) is bounded in L2(ΩT ).

(iv) The sequence ∂tum is bounded in L2(0, T ;V ′).

In this chapter, c denotes various constants independent of m.

Proof of (i). By taking um as a test function in the weak formulation (2.8), we obtain∫ T

0
〈∂tum, um〉︸ ︷︷ ︸
:=I1m

+

∫
ΩT

τm(Dum) : Dum︸ ︷︷ ︸
:=I2m

+

∫
ΩT

(um · ∇)um · um︸ ︷︷ ︸
:=I3m

=

∫ T

0
〈f, um〉︸ ︷︷ ︸
:=Im

· (2.13)

Let us start with the integral I1m, note that um ∈ E2,2, so we use the Lions-Magenes theorem
[21]

2

∫ T

0
〈∂tum, um〉 = ‖um(T )‖2H − ‖u0‖2H ,

then,
I1m ≥ −

1

2
‖u0‖2H · (2.14)

Now, we will prove the existence of a constant k > 0 independent of m, such that

I2m ≥ k‖um‖L2(0,T ;V )· (2.15)

The coercivity of the operator τm implies∫
Ω
τm(Dum) : Dum ≥ 2µ‖Dum‖2L2(Ω)· (2.16)

On the other hand, the Korn inequality2 ensures the existence of KΩ > 0 such that

‖∇um‖2L2(Ω) ≤ KΩ‖Dum‖2L2(Ω)· (2.17)

By integrating the inequality (4.16) on [0, T ], and using (3.26) we find (2.15).
2For more details, see chapter 2 of [22].
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For the third integral, we have∫
Ω
(um · ∇)um · um =

1

2

∑
i

∫
Ω
uim

∂

∂xi
|um|2dx = −1

2

∫
Ω
∇ · um|um|2dx = 0· (2.18)

We also have ∫ T

0
〈f, um〉dt ≤

∫ T

0
‖f‖V ′‖um‖V dt·

Using the ε-Young inequality with ε = k (the same k in (2.15)) we obtain

Im ≤
1

2ε

∫ T

0
‖f‖2V ′ +

ε

2

∫ T

0
‖um‖2V · (2.19)

From (2.14), (2.15), (2.18) and (2.19) we deduce

ε‖um‖L2(0,T ;V ) ≤ c+
ε

2
‖um‖L2(0,T ;V ) +

1

2
‖u0‖2H ·

We conclude that um is bounded in L2(0, T ;V ).

Now we will show that um is bounded in L∞(0, T ;H). Let θ ∈ (0, T ], then the function
given by φm = um1[0,θ], can be a test function in the weak formulation (2.8) and we obtain

∫ T

0
〈∂tum, φm〉︸ ︷︷ ︸
:=J1

m

+

∫
ΩT

τm(Dum) : Dφm︸ ︷︷ ︸
:=J2

m

+

∫
ΩT

(um · ∇)um · φm︸ ︷︷ ︸
:=J3

m

=

∫ T

0
〈f, φm〉︸ ︷︷ ︸
:=Jm

· (2.20)

As proved in the first part of this proof, we use the Lions-Magenes theorem

J1
m =

∫ θ

0
〈∂tum, um〉 =

1

2
‖um(θ)‖2H −

1

2
‖u0‖2H , (2.21)

moreover, we have

J3
m =

∫ θ

0

∫
Ω
(um · ∇)um · um = 0, (2.22)

and thanks to the coercivity, we get

J2
m =

∫ θ

0

∫
Ω
τm(Dum) : Dum ≥ 0· (2.23)

By using the Hölder inequality and the boundedness of um in L2(0, T ;V ), we obtain

Jm ≤ ‖f‖L2(0,T ;V ′)‖um‖L2(0,T ;V ) ≤ c· (2.24)
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From (2.21), (2.22), (2.23) and (2.24), we deduce

‖um(θ)‖2H ≤ c+ ‖u0‖2H , ∀θ ∈ [0, T ]· (2.25)

Since c is independent of θ, the sequence um is bounded in L∞(0, T ;H).

Proof of (ii). To prove this point, we need the following lemma:

Lemma 2. The space L2(0, T ;V ) ∩ L∞(0, T ;H) is continuously embedded into L4(ΩT ).

Indeed, according to the lemma 6.2 [47] we have ‖v‖2L4(Ω) ≤ c‖v‖H1
0
‖v‖L2 , for any v ∈ H1

0 (Ω)·
Then we get

‖v‖4L4(ΩT ) ≤ c‖v‖
2
L∞(0,T ;H)‖v‖

2
L2(0,T ;V )·

So, L2(0, T ;V ) ∩ L∞(0, T ;H) is continuously embedded into L4(ΩT ).
Form lemma V.11 [21],∫

Ω
(um · ∇)um · φ = −

∫
Ω
(um · ∇)φ · um, ∀φ ∈ V · (2.26)

Using Cauchy–Schwarz and Hölder inequalities, we obtain∣∣∣∣∫
Ω
(um · ∇)φ · um

∣∣∣∣ ≤ ‖um‖2L4‖∇φ‖L2 · (2.27)

Therefore,
‖(um · ∇)um‖V ′ ≤ c‖um‖2L4 ·

Consequently,
‖(um · ∇)um‖2L2(0,T ;V ′) ≤ c‖um‖

4
L4(ΩT )· (2.28)

However, the sequence um is bounded in L2(0, T ;V )∩L∞(0, T ;H) and according to the Lemma
(2), um is bounded in L4(ΩT ). Then (um · ∇)um is bounded in L2(0, T ;V ′).

Proof of (iii). Clearly, (τm(Dum))m is bounded in L2(ΩT ). Indeed, we have

|τm(Dum)|2 ≤ c(τ2y + |Dum|2)·

Therefore,
‖τm(Dum)‖2L2 ≤ c+ c‖Dum‖2L2 ≤ c+ c‖um‖2V ·
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by using the first estimation, we obtain

‖τm(Dum)‖L2(ΩT ) ≤ c· (2.29)

Proof of (iv). Let us use again the weak formulation of the approximate problem. We have∣∣∣∣∫ T

0
〈∂tum, φ〉

∣∣∣∣ ≤ ∣∣∣∣∫
ΩT

τm(Dum) : Dφ

∣∣∣∣+ ∣∣∣∣∫
ΩT

(um · ∇)um · φ
∣∣∣∣+ ∣∣∣∣∫ T

0
〈f, φ〉

∣∣∣∣ ·
By using the Hölder inequality for each integral, we obtain

∫ T

0
|〈f, φ〉| ≤ ‖f‖L2(0,T ;V ′)‖φ‖L2(0,T ;V ),∫

ΩT

|τm(Dum) : Dφ| ≤ ‖τm(Dum)‖L2(ΩT )‖Dφ‖L2(ΩT )·
(2.30)

Thanks to (2.27), and to the third estimation, we obtain∣∣∣∣∫ T

0
〈∂tum, φ〉

∣∣∣∣ ≤ c‖φ‖L2(0,T ;V )· (2.31)

It follows that
‖∂tum‖L2(0,T ;V ′) ≤ c· (2.32)

2.5 Passing to the limit
In this section, we will construct a weak solution of (2.1)-(2.4) by using {um} and some
compactness results.

Proposition 2. The following convergence is proved for subsequences which are denoted by
{um}.

(i) um → u weakly in L2(0, T ;V ) and weakly-* in L∞(0, T ;H).

(ii) ∂tum → ∂tu weakly in L2(0, T ;V ′).

(iii) (um · ∇)um → (u · ∇)u weakly in L2(0, T ;V ′).

(iv) τm(Dum)→ τ(Du) weakly in L2(ΩT ).
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Clearly, the function u satisfy equation (2.6). Moreover, It is easy to see that τm(Dum)
converges weakly to some ξ in L2(ΩT ) but the principal difficulty will be to show that ξ is a
Bingham tensor.

Proof of (i) . The space L2(0, T ;V ) is reflexive, so from any bounded sequence, we can ex-
tract a subsequence which converges weakly in L2(0, T ;V ), then um converges weakly to u in
L2(0, T ;V ). On the other hand, the space L1(0, T ;H) is separable 3 which gives the weak-*
convergence in L∞(0, T ;H) of a subsequence of um, therefore we deduce (i).

Proof of (ii). We know that the differentiation operator with respect to time is continuous
in the sense of distributions, it means ∂tum −→ ∂tu, in the sense of distribution. But we
proved that ∂tum is bounded in L2(0, T ;V ′) which implies the weak convergence in this space,
therefore we deduce (ii) by the uniqueness of the limit in D′(ΩT ).

Proof of (iii). To prove this convergence we need the following strong convergence.

Lemma 3. The sequence um converges strongly to u in L2(0, T ;H) and almost everywhere in
ΩT .

This lemma is based on the compactness lemma (Theorem 5.1 [47]).
We have ∂tum → ∂tu weakly in L2(0, T ;V ′) and um → u weakly in L2(0, T ;V ), using the
compactness lemma, we obtain the strong convergence of um to u in L2(0, T ;H). Moreover,
we can extract a subsequence which converges to u almost everywhere in ΩT .

Now, we have to prove the weak convergence of (um · ∇)um to u · ∇u in L2(0, T ;V ′). Due
to the lemma 3, um → u a.e in ΩT , then for all i, j ∈ {1, 2} we have

uimu
j
m −→ uiuj , a.e in ΩT · (2.33)

We also have ∫
Ω

(
uimu

j
m

)2
dx ≤ ‖uim‖2L4‖ujm‖2L4 ·

Since, um is a bounded sequence in L4(ΩT ), (Lemma(2)), we obtain

‖uimujm‖L2(ΩT ) ≤ c·

Which gives, by applying Lemma 1.3 [47, p. 12], the following convergence

uimu
j
m → uiuj weakly in L2(ΩT ). (2.34)

3For more details you can see [59, Ch. 1]
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Let φ ∈ L2(0, T ;V ), then
∫
ΩT

uim∂iu
j
mφj = −

∫
ΩT

uimu
j
m∂iφj (according to (2.26)). (2.34),

permits to conclude that

∫
ΩT

uimu
j
m∂iφj −→

∫
ΩT

uiuj∂iφj , as m→∞·

Consequently, ∫
ΩT

uim∂iu
j
mφj −→

∫
ΩT

ui∂iu
jφj , as m→∞·

Finally, we proved that

∫
ΩT

(um · ∇)um · φ =

2∑
i,j

∫
ΩT

uim∂iu
j
mφj −→

2∑
i,j

∫
ΩT

ui∂iu
jφj =

∫
ΩT

(u · ∇)u · φ,

for all φ ∈ L2(0, T ;V ). It follows that (um ·∇)um converges to (u ·∇)u weakly in L2(0, T ;V ′).

Proof of (iv). To prove the weak convergence of τm(Dum) to τ(Du), we start by proving that
Dum converges strongly to Du in L2(ΩT ) (so almost everywhere in ΩT ).

Lemma 4. ∫
ΩT

(τm(Dum)− τm(Du)) : (Dum −Du)dxdt −→ 0, as m→ +∞·

Proof. Let us set the following notations :

I1m =

∫
ΩT

τm(Dum) : (Dum −Du), I2m =

∫
ΩT

τm(Du) : (Dum −Du)·

We proved that (um − u) ∈ L2(0, T ;V ), so we can use (um − u) as a test function in the weak
formulation of the approximate problem, and we obtain∫ T

0
〈∂tum, um − u〉+

∫
ΩT

τm(Dum) :D(um − u) +
∫
ΩT

(um · ∇)um · (um − u)

=

∫ T

0
〈f, um − u〉,

which implies that:

I1m =

∫
ΩT

τm(Dum) : D(um − u) = J1
m − J2

m − J3
m·
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Where
J1
m =

∫ T

0
〈f, um − u〉dt, J2

m =

∫ T

0

∫
Ω
(um · ∇)um · (um − u)dxdt,

and J3
m =

∫ T

0
〈∂tum, um − u〉dt·

Since um → u weakly in L2(0, T ;V ), then lim
m→∞

J1
m = 0.

On other hand, J2
m = −

∫ T

0

∫
Ω
(um · ∇)um · u, and from convergence (iv),

J2
m −→

∫
ΩT

(u · ∇)u · u = 0·

For J3
m, we use the Lions–Magenes theorem :

1

2
‖um(T )− u(T )‖2H =

∫ T

0
〈∂t(um − u), um − u〉dt+

1

2
‖um(0)− u(0)‖2H ·

Moreover,
∫ T

0
〈∂tu, um − u〉dt→ 0 as m→∞, this gives

lim
m→∞

∫ T

0
〈∂tum, um − u〉dt = lim

m→∞

1

2
‖um(T )− u(T )‖2H −

1

2
‖u0 − u(0)‖2H ·

To deduce that u0 = u(0) in H, we will prove that um(0) −→ u(0) weakly in H.
We know that E2,2 is continuously embedded into C0([0, T ];H), then um(0) is bounded in H.
On the other hand, (i) and (iii) of proposition (2) imply that um(0) converges weakly to u(0)
in V ′. Consequently, we deduce that um(0) → u(0) weakly in H. Therefore, lim

m→∞
J3
m ≥ 0,

which implies that
lim

m→∞
I1m ≤ 0· (2.35)

Now, let us prove that lim
m→∞

I2m = 0. We know that the sequence um converges weakly to u
in L2(ΩT ), so, the sequence Dum converges to Du in D′(ΩT ). In addition, (Dum)m is bounded
in L2(ΩT ), then we deduce that

Dum −→ Du weakly in L2(ΩT )·

On the other hand, τm(Du) converges strongly to ϕ in L2(ΩT ), where:

ϕ =


(
2µ+

τy
|Du|

)
Du if |Du| > 0,

0 if Du = 0·

(2.36)
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Consequently
lim

m→∞

∫
ΩT

(τm(Dum)− τm(Du)) : (Dum −Du) ≤ 0, (2.37)

which, with the strict monotonicity of τm, gives

lim
m→∞

∫
ΩT

(τm(Dum)− τm(Du)) : (Dum −Du) = 0·

Lemma 5. (Dum) converges to Du strongly in L2(ΩT ) and a.e in ΩT .

This lemma is a consequence of Lemma 4 and Lemma 1. Recall that we have the following
inequality

2µ|Dum −Du|2 ≤ (τm(Dum)− τm(Du)) : (Dum −Du)· (2.38)

Then, we deduce
lim

m→∞
‖Dum −Du‖2L2(ΩT ) −→ 0·

We know that τm(Dum) converges weakly to an element ξ in L2(ΩT ). So we must check
that ξ is a Bingham tensor. The following proof is inspired by [61], where Shelukhin et al.
studies the Bingham problem with periodic boundary conditions.

We fix the following notations

Ω+
T = ΩT ∩ {|Du| > 0}, Ω0

T = ΩT ∩ {|Du| = 0}· (2.39)

Part 1: Let us proof that |ξ| ≤ τy a.e in Ω0
T . Define

A = Ω0
T ∩ {|ξ| > τy}, φ =

ξ

|ξ|
1A, I =

∫
ΩT

ξ : φ,

Im =

∫
ΩT

τm(Dum) : φ, a = I − τymeas(A)·

Suppose that meas(A) > 0, then I =

∫
A
|ξ| > meas(A)τy, therefore a > 0.

On the other hand Im converges to I, i.e

∀ε > 0, ∃M(ε) ∈ N : ∀m ≥M(ε), I − ε ≤ Im ≤ I + ε·
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We choose ε = a
2 . Then, there exists M(a), such that

Im ≥
a

2
+ τymeas(A), ∀m ≥M(a)· (2.40)

Let m > max(M(a), η), with η = fl

(
3τymeas(A)

a
+ 1

)
+ 1, where fl is the floor function.

Furthermore, we denote

A1
m = ΩT ∩ {|Dum| ≤ γm}, A2

m = ΩT ∩ {γm < |Dum| ≤ γη}

and A3
m = ΩT ∩ {|Dum| > γη}.

We have

Im =

∫
A1

m

2mµDum : φ︸ ︷︷ ︸
:=I1m

+

∫
A2

m

(
2µ+

τy
|Dum|

)
Dum : φ︸ ︷︷ ︸

:=I2m

+

∫
A3

m

(
2µ+

τy
|Dum|

)
Dum : φ︸ ︷︷ ︸

:=I3m

·

Now calculate
|I1m| ≤

∫
A1

m∩A
2mµ|Dum| ≤

m

m− 1
τymeas(A1

m ∩A), (2.41)

|I2m| ≤ τymeas(A2
m ∩A) +

∫
A2

m∩A
2µ|Dum|

≤ m

m− 1
τymeas(A2

m ∩A)+ 2µγηmeas(ΩT ),

(2.42)

|I3m| ≤
m

m− 1
τymeas(A3

m ∩A)+ 2µ‖Dum‖L2(ΩT )

√
meas(A3

m ∩A)· (2.43)

From (2.40), (2.41), (2.42) and (2.43), we get

a

2
+ τymeas(A) ≤ m

m− 1
τymeas(A)+ 2µγηmeas(ΩT )

+ 2µ‖Dum‖L2(ΩT )

√
meas(A3

m ∩A))·
(2.44)

Due to the choice of η, we obtain γη <
a

6µmeas(ΩT )
, and we have meas(A ∩A3

m)→ 0, so

a

2
+ τymeas(A) ≤ τymeas(A)+ a

3
· (2.45)

Which is absurd, i.e meas(A) = 0, thus |ξ| ≤ τy a.e in Ω0
T .

Part 2: Let us proof that ξ = τ(Du) a.e in Ω+
T .
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Set
B1

m = Ω+
T ∩ {|Dum| ≤ γm} and B2

m = Ω+
T ∩ {|Dum| > γm}.

We have

Wm := |τm(Dum)− τ(Du)| 1Ω+
T
=
∣∣∣2µDum1B1

m
+ F (Dum)1B2

m
− F (Du)1Ω+

T

∣∣∣ ,
where, F (A) =

(
2µ+

τy
|A|

)
A, then

Wm ≤
m

m− 1
τy1B1

m
+
∣∣∣F (Dum)1B2

m
− F (Du)1Ω+

T

∣∣∣ ·
However, Dum → Du a.e in Ω+

T and the function X 7→ F (X) is continuous, then F (Dum)→
F (Du) a.e in Ω+

T . On the other hand 1B1
m
→ 0 and 1B2

m
→ 1Ω+

T
, which gives Wm → 0, i.e.

τm(Dum)→ τ(Du) a.e in Ω+
T ·

Let ψ ∈ L∞(ΩT ) be such that ψ|
Ω0
T

= 0. Let Q′ ⊂ ΩT , θm = τm(Dum) : ψ, and θ = τ(Du) : ψ.
Using the Hölder inequality, we obtain∫

Q′
|θm| ≤ ||ψ||L∞(ΩT )

√
meas(Q′)

(
τy
√

meas(ΩT ) + 2µ‖Dum‖L2(ΩT )

)
· (2.46)

Therefore θm is uniformly integrable on ΩT and θm → θ a.e in ΩT . This gives, thanks to Vitali
theorem,

∫
Ω+

T

τm(Dum) : ψ →
∫
Ω+

T

τ(Du) : ψ.

On the other hand τm(Dum) converges weakly to ξ in L2(ΩT ), then τ(Du) = ξ a.e in Ω+
T .

Finally, we proved that τm(Dum), converges weakly to a Bingham tensor and the proof is
completed.

2.6 Uniqueness of solutions
In this section, we will prove that the problem (2.1)-(2.4) has a unique solution. To do this we
are inspired by the uniqueness proof of the Newtonian Navier Stokes equation.
We consider u1 and u2 to be two weak solutions of (2.6) and introduce u = u1−u2. Therefore,
we obtain ∫ T

0
〈∂tu, φ〉+

∫
ΩT

(τ(Du1)− τ(Du2)) : Dφ +

∫
ΩT

(u1 · ∇)u1 · φ

−
∫
ΩT

(u2 · ∇)u2 · φ = 0, ∀φ ∈ L2(0, T ;V )·
(2.47)
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On the other hand, we have∫
ΩT

(u1 · ∇)u1 · φ −
∫
ΩT

(u2 · ∇)u2 · φ =

∫
ΩT

(u2 · ∇)u · φ +

∫
ΩT

(u · ∇)u1 · φ·

Let t ∈ (0, T ). Taking the function φ = u1[0,t] in (2.47) yields

∫ t

0
〈∂tu, u〉ds+

∫ t

0

∫
Ω
(τ(Du1)− τ(Du2)) : Du dxds

+

∫ t

0

∫
Ω
(u · ∇)u1 · u dxds+

∫ t

0

∫
Ω
(u2 · ∇)u · u dx︸ ︷︷ ︸

=0

ds = 0·
(2.48)

Using the Lions-Magenes Theorem we obtain

1

2
‖u(s)‖2H +

∫ t

0

∫
Ω
(u · ∇)u1 · u+

∫ t

0

∫
Ω
(τ(Du1)− τ(Du2)) : Du

=
1

2
‖u(0)‖2H ·

(2.49)

According to (2.27) and Lemma(2) we have∫
Ω
|(u · ∇)u1 · u | dx ≤ c‖u‖V ‖u‖H‖u1‖V · (2.50)

Furthermore, we can easily prove the following inequality4

(τ(A)− τ(B)) : (A−B) ≥ 2µ|A−B|2, ∀A,B ∈M2×2· (2.51)

From (2.51) and Korn’s inequality we obtain∫
Ω
(τ(Du1)− τ(Du2)) : Du dx ≥

2µ

KΩ
‖u‖2V · (2.52)

Thus,

1

2
‖u(s)‖2H +

2µ

KΩ

∫ t

0
‖u‖2V ds ≤c

∫ t

0
‖u‖V ‖u‖H‖u1‖V ds

+
1

2
‖u(0)‖2H ·

(2.53)

Using Young’s inequality, we get

‖u(s)‖2H ≤ ‖u(0)‖2H + c

∫ t

0
‖u‖2H‖u1‖2V ds· (2.54)

4We can adapt the proof of the strict monotonicity of τm.
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Thanks to the Gronwall lemma, we deduce that

‖u(s)‖2H ≤ ‖u(0)‖2H exp

(
c

∫ t

0
‖u1‖2V ds

)
, ∀t ∈ [0, T ]·

Since u(0) = 0, we get the uniqueness of the weak solutions.

Corollary 1 (Energy equality). The solution u is more than a classical weak solution. In
fact, we have u ∈ C0([0, T ];H), moreover, for all s1, s2 ∈ [0, T ], u satisfies the following energy
equality

1

2
‖u(s2)‖2L2(Ω) +

∫ s2

s1

∫
Ω
τ(Du) : Du =

∫ s2

s1

〈f, u〉+ 1

2
‖u(s1)‖2L2(Ω)· (2.55)

To prove the energy equality, we have only to take φ = u1[s1,s2] as a test function in (2.6)
and use the Lions-Magenes theorem.

Corollary 2 (Variational inequality). The weak solution given by Theorem 1 satisfies the
following variational inequality, for all φ ∈ L2(0, T ;V )∫ T

0
〈∂tu, φ− u〉+

∫
ΩT

(u · ∇)u · φ+ 2µ

∫
ΩT

Du : D(φ− u) + τy

∫
ΩT

(|Dφ| − |Du|)

≥
∫ T

0
〈f, φ− u〉· (2.56)

Proof. Let us show the following inequality∫
ΩT

τ(Du) : D(φ− u) ≤ 2µ

∫
ΩT

Du : D(φ− u) + τy

∫
ΩT

|Dφ| − τy
∫
ΩT

|Du|· (2.57)

Using the Cauchy–Schwarz inequality and with the notation (2.39), we obtain∫
Ω+

T

τ(Du) : D(φ− u) =

∫
Ω+

T

(
2µ+

τy
|Du|

)
Du : D(φ− u)

= 2µ

∫
ΩT

Du : D(φ− u) + τy

∫
Ω+

T

Du : Dφ

|Du|
− τy

∫
ΩT

|Du|

≤ 2µ

∫
ΩT

Du : D(φ− u) + τy

∫
Ω+

T

|Dφ| − τy
∫
ΩT

|Du|·

We also have ∫
Ω0

T

τ(Du) : D(φ− u) =
∫
Ω0

T

τ(Du) : Dφ ≤ τy
∫
Ω0

T

|Dφ|· (2.58)

Hence, we deduce the inequality (2.57). This implies, jointly with (2.6), the variational in-
equality.
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Remark 1. The inequality (2.56) implies that u satisfies the variational inequality proposed
by Lions and Duvaut in [28], i.e.

〈∂tu(t), φ− u(t)〉+
∫
Ω
(u(t) · ∇)u(t) · φ+ 2µ

∫
Ω
Du(t) : D(φ− u(t))

+ τy

∫
Ω
(|Dφ| − |Du(t)|) ≥ 〈f, φ− u(t)〉,

(2.59)

for any φ ∈ V . The proof of this result is given in [28, p. 300-301].

2.7 Conclusion and outlook
As mentioned in the introduction, this work aims to prove the existence of the Navier Stokes
equation solution for an incompressible homogeneous fluid that follows the Bingham model.
In the first step, we constructed an approximate problem using the bi-viscosity model, which
behaves like a Newtonian fluid under weak stress and like a non-Newtonian fluid when the
stress rate is great than the yield stress. After this approximation, we applied the theorem
presented by Dreyfuss and Hungerbuhler in [27], and then a weak solution to the problem in
question was constructed by passing to the limit. This analysis shows that the conditions of
Theorem 1 [27] is sufficient but not necessary since the Bingham tensor does not satisfy them.
Another essential advantage of our theorem is that the membership of the function f to the
space L2(ΩT ) is not necessary (which is the case in [61, 13]). The next objective is to extend
Theorem 1 to a thixotropic Bingham model, i.e., the yield strength is linearly dependent on the
structural parameter, which follows a first-order rate equation taking into account the decay
and accumulation of the material structure. The study of the non-homogeneous case may also
be the subject of future work. The convergence of the Bingham solution to The Newtonian
solution, when τy → 0, can be proved. A long-term objective is to analyze the non-Newtonian
Navier Stokes equation, more complicated than the Bingham model, as Herschel–Bulkley and
Casson models.
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parameter for hyperbolic problems
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Abstract
This chapter proposes a highly accurate, fast, and conservative method for hyperbolic systems using
the finite volume approach. This innovative scheme constructs the intermediate states at the interfaces
of the control volumes using the method of characteristics. The approach is simple to implement, has no
entropy defect as seen in the numerical tests, and avoids solving Riemann problems. A diffusion control
parameter is introduced to increase the accuracy of the scheme. Numerical examples are presented for
the the one-dimensional Euler equation for an ideal gas. The results demonstrate the method’s ability
to capture contact discontinuity and shock wave profiles with high accuracy and low cost, as well as its
robustness.
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3.1. Introduction

3.1 Introduction
A complementary approach to experiment and modeling, numerical simulation is one of the
three pillars of scientific research. Fluid mechanics is one of the pioneering sectors in this
triangle, and the development of numerical schemes well suited to fluid mechanics is a subject
that interests numerical scientists. One of the difficulties is reconciling accuracy and robustness
with a reasonable computational cost, but the complications can be quite different depending
on the targeted applications. Thus, despite the numerous works and the advances in a subject
that is still relevant today [2, 66], it is quite natural that there is no uniformly efficient method
in all regimes.

In the context of the numerical approximation of hyperbolic systems of conservation laws,
several methods based essentially on the solution of the Riemann problem have been retained,
and concern shock capturing schemes [3, 67, 46, 57, 68]. These methods propose strategies
allowing the exact solution of the Riemann problem at each interface, which makes them ex-
pensive. In order to reduce the computational time, other approaches propose an approximate
solution to the Riemann problem. For example, Roe and Harten [57, 58, 35] provided schemes
based on the evaluation of numerical flux from the exact solution of the linearized problem, and
the industry widely uses these schemes because they can capture shock waves with reasonable
accuracy.

The main goal of this chapter is to describe a new method that can be an excellent tool
for simulating most compressible flow phenomena. The proposed scheme belongs to a class of
numerical schemes that incorporates the method of characteristics in reconstructing numerical
flux. The classical version (without the diffusion control parameter) of this approach is called
the Finite Volume Characteristics (FVC) scheme and has been proposed by Benkhaldoun and
Seaïd in [16] and used in the context of shallow water flow [7, 11, 15, 71].

The proposed scheme is easy to implement, fast, and it accurately solves hyperbolic systems
of conservation laws; moreover, it avoids the resolution of Riemann problem in the time inte-
gration process, and it is conservative. To approximate the characteristic curves, an iterative
process is used, and the intermediate states are calculated using polynomial interpolation.
These features are demonstrated using several reference problems for the Euler equations
[24, 2]. The presented results provide accurate solutions with a low computational cost. The
implementation procedure is described. It is simple to program and generates the numerical
results for compressible Euler equations.

This chapter is structured as follows: a brief description of the mathematical model will be
presented in Section 3.2. Section 3.3 is devoted to presenting the process of construction of the
numerical scheme. Then, the results of the simulation will be presented in Section 3.4. The
accuracy and the efficiency of the method are discussed, and some conclusions are presented
in Section 3.5.

3.2 Governing equation
We consider the one-dimensional Euler equations modeling the dynamics of non-viscous fluid
[65, p. 1-12]

∂W
∂t

+
∂F(W)

∂x
= 0, (3.1)
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where

W =


ρ

ρu

E

 , and F(W) =


ρu

ρu2 + p

u(E + p)

 , (3.2)

where ρ is the density of the fluid, u is the fluid particle velocity, E is the total energy and p
is the pressure. The state equation links ρ, u, p and E as

E = ρ

(
1

2
u2 + e(ρ, p)

)
, (3.3)

where e is the specific internal energy; for ideal gases it has a following expression

e(ρ, p) =
p

(γ − 1)ρ
, (3.4)

with γ is the ratio of specific heats, it is a constant that depends on the particular gas, e.g.
γ = 1.4 for air. Another quantity that expresses the ratio of the local velocity of the fluid to
the sound speed in this same fluid is called Mach number, which is a dimensionless number
defined as

M =
u

c
, (3.5)

where c is the sound speed in a gas. For an ideal gas, we can express c by

c =

√
γp

ρ
, (3.6)

c varies with the nature and temperature of the fluid. So, the Mach number does not corre-
spond to a fixed speed; it depends on local flow conditions. Generally, the speed is categorized
by its corresponding regimes [70]. For example, subsonic regime (M < 0.8), transonic regime
(0.8 ⩽M < 1.2), supersonic regime (1.2 ⩽M < 5) and hypersonic regime (M ⩾ 5).

A simple calculation shows that the system can be written in a quasi-linear form

∂tW + JF∂xW = 0, (3.7)

where JF is the Jacobian matrix of the physical flux F given by

JF =


0 1 0

(γ − 3)u
2

2 (γ − 3)u γ − 1

(γ−1
2 u2 −H)u H + (1− γ)u2 γu

 ,

here, H is the total specific enthalpy defined by

H =
E + p

ρ
. (3.8)
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The matrix JF has three eigenvalues: λ1 = u − c, λ2 = u, and λ3 = u + c. and the
corresponding eigenvectors are

r1 =


1

u− c

H − uc

 , r2 =


1

u

u2

2

 , and r3 =


1

u+ c

H + uc

 . (3.9)

There are other mathematical quantities related to the quasi-linear Euler equations called
the Riemann invariants that are constant along the characteristic curves; the right and left
Riemann invariants are

RI1 = u− 2c

γ − 1
, and RI2 = u+

2c

γ − 1
. (3.10)

Another form of Euler equations using the primitive variables can be formulated as

∂tW + AW∂xW = 0, (3.11)

where

W =


ρ

u

p

 , and AW =


u ρ 0

0 u 1
ρ

0 γp u

 . (3.12)

However, it turns out that for non-smooth solutions, the non-conservative formulations give in-
correct shock solutions. This point has been noticed for shallow water equations [65, Subsection
3.3]. Despite this, non-conservative formulations have some advantages over their conservative
counterpart when analyzing equations [42, 64].

3.3 Numerical method
In this section, we present our method for Euler equations (3.1). The method consists of two
steps, predictor and corrector; in the first step, we construct the intermediate states using
the method of characteristics, while in the second step, the numerical flux in the conservative
discretization will be built using the physical flux.

3.3.1 Conservative discretization
The space-time evolution of the fluid motion is described by a vector function W(x, t), whose
components are three flow-dependent variables. Computationally, this function is replaced
by Wn

i , which is an approximation of W(i∆x, n∆t), where, for simplicity, ∆x and ∆t are
considered small constants that define a computational space-time grid. To properly capture
the shocks generated by the equation system (3.1), W was chosen as W(x, t), the vector
of variables in the model continues. P.D. Lax [45] addressed the fundamental problem of
determining the (n+ 1) time-level solution from n-level data by creating interface states at
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location such as (i+ 1/2)∆x and proposed the following discretization

Wn+1
i −Wn

i

∆t
+

Fn
i+1/2 − Fn

i−1/2

∆x
= 0. (3.13)

Lax showed that we would recover the partial differential equation (1) when ∆x and ∆t go to
zero in (3.13), with a good construction of Fi+1/2 from the values of W in some neighborhood
of i + 1/2. Then, given the initial data W0

i for all i, we can use equation (3.13) to construct
the solution at the next instant. Thus, we define Wn

i as follows

Wn
i =

1

∆x

∫ (i+1/2)∆x

(i−1/2)∆x

∫ (n+1)∆t

n∆t
W(x, t)dtdx, (3.14)

and Fn
i±1/2 := F

(
Wn

i±1/2

)
are the numerical fluxes at xi±1/2 := (i± 1/2)∆x and time tn :=

n∆t. The spatial discretization of equation (3.13) is complete when a numerical construction
of the fluxes Fn

i±1/2 is chosen. In general, this construction requires a solution of Riemann
problems at the interfaces xi±1/2. From a computational viewpoint, this procedure is very
demanding and may restrict the application of the method for which Riemann solutions are
not available.

In the present work, we reconstruct the intermediate states Wn
i±1/2 using the method of

characteristics. The fundamental idea of this method is to impose a regular grid at the new
time level and to backtrack the flow trajectories to the previous time level. At the old-time
level, the quantities that are needed are evaluated by interpolation from their known values
on a regular grid.

3.3.2 Method of characteristics
This method for hyperbolic systems of conservation laws can be carried out componentwise,
provided that the conservative equations can be rewritten in an advective formulation. In gen-
eral, the advective form of the system under study is built such that the conservative variables
are transported with the same velocity field. In the current study, we apply our method to
the Euler equations; we first reformulated the system of equations (3.1) in an advective form as

∂tW + u∂xW = G(W), (3.15)

where

W =


ρ

ρu

E

 , and G(W) =


−ρ∂xu

−ρ∂xu− ∂xp

−E∂xu− ∂x(pu)

 . (3.16)

G is considered as a source term of the transport equation (3.15), which will be discretized
later using the finite difference method for the derivatives it contains.
This version of the equation is used to reconstruct the intermediate states Wn

i+1/2 using the
method of characteristics. We calculate now the characteristic curves xc(s) associated to
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(3.15) as 
dxc(s)

ds
= u (xc(s), s) , s ∈

[
tn, tn + αn

i+1/2∆t
]
,

xc

(
tn + αn

i+1/2∆t
)
= xi+1/2,

(3.17)

where u is the velocity of the fluid flow. Note that xc(s) is the departure point at time s
of a particle that will arrive at the gridpoint xi+1/2 in time tn + αn

i+1/2∆t, with αn
i+1/2 is a

parameter less than 1, that controls the temporal grid, see Figure 4.3; the choice of αn
i+1/2 is

discussed in subsection 3.3.3. The method of characteristics does not follow the flow particles
forward in time, as the Lagrangian schemes do; instead, it traces backwards the position at
time tn of particles that will reach the points of a fixed mesh at time tn+αn

i+1/2∆t. Therefore,
the method avoids the grid distortion difficulties that the conventional Lagrangian schemes
have. Hence, the solution of (3.17) can be expressed in an integral form as

xi xi+1

xi−1/2 xi+1/2

tn

tn + αn
i+1/2

∆t

tn + αn
i−1/2

∆t

xi+3/2
xi+2

x

t

Ŵn
i+1/2

Wn
i+1/2

xc

Figure 3.1: Sketch of the method of characteristics: A fluid particle at gridpoint xi+1/2 is
traced back in time to xc.

xc (tn) = xi+1/2 −
∫ tn+αn

i+1/2
∆t

tn

u (xc(s), s) ds. (3.18)

The integral in (3.18) can be computed numerically using a quadrature method, which generally
leads to a non-linear equation in xc(tn). A root-finding algorithm is subsequently required to
solve this equation. In our simulations, we used a quadrature method of order 0 which gives
us

xc (tn) = xi+1/2 − αn
i+1/2∆tu (xc(tn), tn) (3.19)

then we used the fixed point method to solve equation (3.19). Thus, once the characteristic
curves xc (tn) are accurately calculated, the intermediate solutions Wn

i+1/2 of a generic function
W(xi+1/2, tn + αn

i+1/2∆t) are reconstructed using

Wn
i+1/2 = Ŵ

n

i+1/2 +

∫ tn+αn
i+1/2

∆t

tn

G(W (xc(s), s)) ds, (3.20)

where Ŵ
n

i+1/2 = W (xc (tn) , tn) are the solutions at the characteristic foot computed by in-
terpolation from the gridpoints of the control volume where the departure points reside, see
Figure 3.1 for an illustration. For instance, linear-based interpolation polynomials can be
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formulated component by component as

Ŵ
n

i+1/2 = Wn
i +

Wn
i+1 −Wn

i

∆x

(
xc(tn)− xi(tn)

)
, (3.21)

Note that another polynomial interpolation can be used for smooth solutions. However, we
have noticed that there is no significant improvement if we change the order of interpolation.
This is justified by the fact that the information about the characteristic curve xc(tn), which
lies between cell i and i+ 1, is given by these cells. Due to the approximation of the integral
in equation (3.20) by the rectangle method, the numerical fluxes in (3.13) are reconstructed
using

Wn
i+1/2 = Ŵ

n

i+1/2 + αn
i+1/2∆tG(Ŵ

n

i+1/2), (3.22)

such that the derivatives it contains G are calculated by a finite difference between cells i and
i+ 1 for the interface i+ 1/2.
Finally, the FVC scheme with the diffusion control parameter αn

i+1/2 can be written as fellows

Wn+1
i = Wn

i −
∆t

∆x

(
F
(

Wn
i+1/2

)
− F

(
Wn

i−1/2

))
, (3.23)

where Wn
i±1/2 are calculated using (3.22), and F is the physical flux given in (3.2). The process

to compute αn
i+1/2 will be discussed in the following section.

3.3.3 Control parameter αn
i+1/2

The choice of the control parameter is based on the stability analysis presented by Benkhaldoun
and Seaïd in [16]. This analysis leads us to propose a control parameter αn

i+1/2 calculated locally
and at each time step with the following formula,

αn
i+1/2 = α̃i+1/2 +

(
1

2
− α̃i+1/2

)
ϕ(ri+1/2) (3.24)

where
α̃i+1/2 =

∆x

2∆tSi+1/2
, and Si+1/2 = max

k

(
max

i

(∣∣∣λki ∣∣∣, ∣∣∣λki+1

∣∣∣)) (3.25)

here λki is the kth eigenvalue of (4.12), Si+1/2 is the local Rusanov speed and ϕ(ri+1/2) is a
slope limiter. The results, presented in Section 3.4, were obtained using the Minmod limiter;
note that other slope limiters functions can be used, as van Albada function. The ratio ri+1/2

is given by
ri+1/2 =

qi − qi−1

qi+1 − qi
(3.26)

where
qi = max

i

(∣∣∣∣ui + 2ci
γ − 1

∣∣∣∣, ∣∣∣∣ui − 2ci
γ − 1

∣∣∣∣) , (3.27)

and
ϕ(r) = max(0,min(1, r)), lim

r→∞
ϕ(r) = 1 (3.28)
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we note that if ϕ = 1, we have αn
i+1/2 =

1
2 and as proved in [16, Lemma. 3.2] the method is a

second-order scheme. On the other hand, when ϕ = 0, then αn
i+1/2 = α̃i+1/2 which, combined

with (4.27), give us a stable and TVD scheme (thanks to Lemma 2.2 [16]).

3.3.4 The FVC Algorithm
In summary, below is the algorithm of the FVC method with the local diffusion parameter

Algorithm 1 FVC method for compressible Euler equations
W = (ρ, ρu,E);
Initialize conditions;
for each time iteration do

Compute the time step ∆t;
Compute αn

i+1/2 for all interfaces; /*Using formula (3.24)*/
Compute xc(tn); /*Using formula (3.18)*/
Compute Wn

i+1/2 for all interfaces; /*Using formula (3.22)*/
Compute the solution Wn+1 ; /*Using formula (3.23)*/
Update the solution: Wn+1 ←−Wn;
Apply boundary conditions;

end for

3.4 Numerical results and discussions
In order to evaluate the accuracy, performance, and robustness of our method, we applied it to
Euler equations (3.2) with a series of numerical tests. In this chapter, we consider a perfect gas
with a specific heat ratio γ = 1.4. The computational domain is Ω = [0, 1], and the boundary
conditions are transmissive. The exact solutions are performed using the open-source code
[19].

We compare our results with those given by Rusanov [60], Roe [57], and HLL [36] methods.
For time discretization, we use a first-order Euler scheme, and the time step ∆t is adjusted
according to the following CFL condition

∆t = Cr
∆x

max
i

(√
2αn

i+1/2Λ
n
i

) (3.29)

where Cr is the Courant number and Λi = max
k

(|λki |) is the spectral radius of the Euler
equations.
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3.4.1 Sod shock tube
Sod shock tube problem [63] with a sonic point in rarefaction is one of the most important
tests since it evaluates the satisfaction of the entropy property of numerical methods. The
solution to this problem consists of a right shock wave, a right traveling contact discontinuity
wave, and a left sonic rarefaction wave [65]. The initial condition is defined as


ρ0(x < 0.5) = 1,

u0(x < 0.5) = 0.75,

p0(x < 0.5) = 1,

and


ρ0(x ≥ 0.5) = 0.125,

u0(x ≥ 0.5) = 0,

p0(x ≥ 0.5) = 0.1·
(3.30)
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Figure 3.2: Sod shock tube: density ρ (top left), velocity u (top right), pressure p (bottom
left) and total energy E (bottom right) at time t = 0.2s with 200 regular cells.

The numerical results presented in this section were calculated with 200 cells and Cr= 0.8.
In Figure 3.2, we compare our method to the exact solution at time t = 0.2s.
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Figure 3.3: Sod shock tube: density ρ (top left), a zoom on ρ around the sonic point (top
right), Much numberM (bottom left) and a zoom onM around the sonic point (bottom right)

at time t = 0.2s with 200 regular cells.

We note that the shock, the contact, and the rarefaction are correctly captured. Figure 3.3
shows a comparison between our method, Roe scheme, HLL, and Rusanov schemes. It is clear
that our method is more accurate. Another essential advantage of the FVC scheme is that it
perfectly approximates the rarefaction wave, including the sonic point, which is not the case
for the Roe scheme, where the entropy problem appears. The same error has been observed
in [65, p. 227] for the Godunov scheme and other schemes (see [65, p. 280]).

Figure 3.4 represents the behavior of FVC scheme in respect to the choice of αn
i+1/2. It

is clear that choosing αn
i+1/2 = 1

2 implies the creation of oscillations. On the other hand,
choosing αn

i+1/2 = 1 gives a stable scheme, but the results are more diffused than the case of a
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Figure 3.4: Sod shock tube: numerical solution profile according to the choice of the param-
eter αn

i+1/2 at time t = 0.2s with 200 regular cells.
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Figure 3.5: Sod shock tube: Riemann invariant (left) and parameter αn
i+1/2 (right) at time

t = 0.2s with 200 regular cells.

variable αn
i+1/2. These numerical results are consistent with our comments in section (3.3) on

the reason behind the choice of the control parameter αn
i+1/2.

In Figure 3.5 we plot the Riemann invariants (left) and the variations of αn
i+1/2 computed

using Riemann invariants (right), this figure shows us that αn
i+1/2 is involved in the area where

the shock, the rarefaction and the contact discontinuity appear.

In Table 3.1 and Figure 3.6, we compare the L1 error for the shock tube problem using
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Figure 3.6: L1 error plot (logarithmic scales) for Sod shock problem at time t = 0.2s.

different schemes. This table confirms what we said previously about the accuracy of the FVC
method compared to the Rusanov scheme, HLL scheme, and a modified Roe scheme. The
convergence rate for our method is close to 0.77 while it is equal to 0.59, 0.60 and 0.58 for
Roe, HLL and Rusanov respectively.
In Table 3.2, we present the computational times for each method. As shown in this table, our
method is faster than other schemes, which is one of the most important advantages of our
method.

Table 3.1: Sod shock tube: L1-error for the density at time t = 0.2s.

Mesh Rusanov Roe* HLL FVC
Error Order Error Order Error Order Error Order

100 3.0879e-2 - 1.5499e-2 - 1.5683e-2 - 7.7572e-3 -
200 2.1485e-2 0.5233 1.0066e-2 0.6226 1.0076e-2 0.6382 4.4211e-3 0.8111
400 1.4603e-2 0.5571 6.6070e-3 0.6075 6.6654e-3 0.5962 2.6685e-3 0.7284
800 9.6443e-3 0.5986 4.3727e-3 0.5954 4.3878e-3 0.6032 1.5500e-3 0.7837
1600 6.3116e-3 0.6117 2.8986e-3 0.5932 2.9005e-3 0.5972 8.8431e-4 0.8097
3200 4.1210e-3 0.6150 1.9484e-3 0.5731 1.9492e-3 0.5734 5.3636e-4 0.7213
*Roe with Harten entropy correction [35] with δ = 10−2.

3.4.2 Vacuum test
We now turn to the well-known vacuum test, which is used to evaluate the performance of
numerical methods for low-density flows. The solution consists of two symmetric rarefaction
waves and a stationary contact discontinuity. This problem can be found in [65], and the initial
conditions are
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Table 3.2: Computational times in seconds for Sod shock tube problem.

Gridpoints Rusanov Roe* HLL FVC
100 0.19 0.55 0.203 0.208
200 0.821 2.22 0.821 0.86
400 3.26 9.10 3.33 3.14
800 13.11 36.84 13.35 11.83
1600 53.52 145.38 54.74 46.05
3200 210.662 585.17 217.69 181.34
Note: The CPU time was measured on Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz processor.
*Roe with Harten entropy correction [35] with δ = 10−2.


ρ0(x < 0.5) = 1,

u0(x < 0.5) = −2.0,
p0(x < 0.5) = 0.4,

and


ρ0(x ≥ 0.5) = 1,

u0(x ≥ 0.5) = 2.0,

p0(x ≥ 0.5) = 0.4·
(3.31)

In Figure 3.7, we compare the FVC scheme to the numerical solution computed with the
Rusanov method, HLL method, and to the exact solution with 200 regular cells and Cr=0.8
at t = 0.15s. The rarefaction waves are captured, and we note that in the contact wave zone,
where density and pressure are close to zero, the results are acceptable, and , we notice that
the positivity of the solution is numerically preserved under the CFL condition (4.27). We
recall that the Roe scheme fails on this problem, but a modified version can be used (see, for
example, Einfeldt et al. [30]).

In Figure 3.8, we present the variations of αn
i+1/2 (right) and the Riemann invariants (left);

this figure shows us that αn
i+1/2 adapts itself where the stationary discontinuity appears which

give us a good approximation of the velocity profile in this zone.

3.4.3 Robustness test
In this section, we will perform the robustness of our method using two benchmarks; these
tests were proposed in [65]. The first one consists of a strong right shock wave, a contact
discontinuity, and a left rarefaction wave, and we have:


ρ0(x < 0.5) = 1,

u0(x < 0.5) = 0,

p0(x < 0.5) = 1000,

and


ρ0(x ≥ 0.5) = 1,

u0(x ≥ 0.5) = 0,

p0(x ≥ 0.5) = 0.01.

(3.32)

The second test consists of a strong left shock wave, a contact discontinuity, and a right
rarefaction wave; the initial conditions are

ρ0(x < 0.5) = 1,

u0(x < 0.5) = 0,

p0(x < 0.5) = 0.01,

and


ρ0(x ≥ 0.5) = 1,

u0(x ≥ 0.5) = 0,

p0(x ≥ 0.5) = 100.

(3.33)
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Figure 3.7: Vacuum test: density ρ (top left), velocity u (top right), pressure p (bottom left)
and total energy E (bottom right) at time t = 0.15s with 200 regular cells.

In Figure 3.9 we present the numerical solutions of Euler equations with initial data (3.32)
obtained by FVC scheme, Roe scheme, HLL scheme and by Rusanov scheme with 2000 grid
cells at time t=0.012s. All schemes show a correct agreement with the exact solution but
as we can see in the density curve (left top), FVC scheme is more accurate on the contact
discontinuity.

Figure 3.10 shows the numerical solutions of Euler equations with initial data (3.33) obtained
by FVC scheme, Roe scheme, HLL and by Rusanov scheme with 2000 cells at time t = 0.035s.
The difference between this problem and the previous one, is that the velocity is negative. As
in Figure 3.9, we note that our method captured the contact discontinuity better than other
schemes.
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Figure 3.8: Vacuum test: Riemann invariant (left) and parameter αn
i+1/2 (right) at time

t = 0.15 s with 200 regular cells.

3.4.4 A low-speed contact discontinuity
In this section, we check the ability of our method to resolve slowly–moving contact discon-
tinuities and also a stationary contact discontinuity. Toro et al. [65] proposed two problems;
the first one corresponds to an isolated stationary contact wave and the initial data is given
by


ρ0(x < 0.5) = 1.4,

u0(x < 0.5) = 0,

p0(x < 0.5) = 1,

and


ρ0(x ≥ 0.5) = 1,

u0(x ≥ 0.5) = 0,

p0(x ≥ 0.5) = 1·
(3.34)

The second one corresponds to an isolated contact moving slowly to the right, where the
initial data is 

ρ0(x < 0.5) = 1.4,

u0(x < 0.5) = 0.1,

p0(x < 0.5) = 1,

and


ρ0(x ≥ 0.5) = 1,

u0(x ≥ 0.5) = 0.1,

p0(x ≥ 0.5) = 1·
(3.35)

Figure 3.11 and Figure 3.12 show the numerical results obtained by FVC, HLL, Roe, and
Rusanov, compared to the exact solution with 200 cells at time t=2s. In Figure 3.11, we can
see that the numerical results obtained by our method are very similar to those obtained by
Roe scheme, where the contact is perfectly captured unlike the Rusanov scheme and HLL who
diffuse. For the slow-moving contact test (3.35), we remark on the density curve that our
method is more accurate than Roe, HLL and Rusanov. For the velocity, which is supposed to
be constant, there is a small oscillation that appears in all numerical solutions but is smaller
in the case of FVC we mention that for this sensitive benchmark, we used a constant αn

i+1/2.
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Figure 3.9: Robustness test: density ρ (top left), velocity u (top right), pressure p (bottom
left) and total energy E (bottom right) at time t = 0.012s with 2000 regular cells.

3.5 Conclusions and outlook
In this work, we proposed an accurate finite volume method for solving hyperbolic problems
with application to the one-dimensional Euler equations. This method does not need the
Jacobian matrix or solving a Riemann problem, which makes it a simple method to implement.
The proposed method has been tested using several benchmarks; the results show the high
accuracy of our method and, more specifically, its ability to capture contact discontinuities.
An essential advantage of this method is that it converges to the entropic solution, i.e., the
physical solution, without any entropic correction. Moreover, the method is fast and highly
accurate.
In the next chapter, we will extend this method to multidimensional problems on unstructured
meshes, with application to several physical problems.
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Figure 3.10: Robustness test: density ρ (top left), velocity u (top right), pressure p (bottom
left) and total energy E (bottom right) at time t = 0.035s with 2000 regular cells.
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Chapter 4

A finite volume scheme with a
diffusion control parameter on
unstructured hybrid mesh:
application to two-dimensional
Navier Stokes problem
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Abstract
This chapter presents a new approach to controlling the numerical diffusion in the finite volume

characteristic (FVC) scheme. The approach is a generalization of the one-dimensional method proposed
in the previews chapter, and it employs the backward method of characteristics to create interface
states. The approach was evaluated using two-dimensional Navier-Stokes equations on unstructured
hybrid meshes. The results demonstrate that the proposed approach is effective in controlling numerical
diffusion and capturing the shock and the boundary layer.
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4.1. Introduction

4.1 Introduction
In recent years, computational fluid dynamics (CFD) has played a crucial role in various en-
gineering and scientific applications, particularly in the modeling and simulating of complex
flow phenomena. One of the essential components of CFD is the numerical scheme employed
to solve the governing equations. The finite volume characteristics (FVC) scheme is a widely
used method in this context, [16, 15, 72, 71] owing to its ability to provide accurate and effi-
cient results.

Accurate simulation of supersonic flows, where fluid velocities exceed the speed of sound, is
crucial for aerospace applications. One of the most famous examples of this type of flow is
supersonic flow over a flat plate. The importance of this problem stems from the fact that
the solutions for supersonic viscous flow over a flat plate could be extrapolated to derive pa-
rameters for high-speed flow over slender surfaces held at constant temperatures [29]. Viscous
supersonic flow over a flat plate has been the subject of several studies [10, 31, 41]. Kalita et
al. [41] present a rigorous study of the effect of numerical diffusion on the numerical solution
of supersonic viscous flow over a flat plate.

In this chapter, we present a significant enhancement to the FVC scheme by introducing
a control diffusion parameter. Unlike the initial version of the scheme, where α was a freely
chosen constant. The new formulation αn

ij (see section 4.3.1.1) depends on time and space,
and is computed locally at each interface between cells i and j, thereby providing improved
robustness and adaptability. This advancement paves the way for greater flexibility in handling
complex computational scenarios with the FVC scheme, striking a balance between accuracy
and computational efficiency ultimately leading to more reliable and insightful outcomes in
the field of CFD.

In Section 2, we present the compressible Navier Stokes equation. Following this, Section 3
introduces the finite volume characteristics method, incorporating the diffusion control param-
eter for unstructured hybrid meshes. Section 4 is dedicated to the application of the proposed
technique to Euler and Navier Stokes equations. Subsequently, numerical results and exam-
ples are showcased in Section 4, leading to a discussion on the accuracy and efficiency of the
method. The chapter is concluded in Section 5 with conclusions and perspectives.

4.2 Governing equations
We consider The two-dimensional compressible Navier-Stokes equations for modeling the dy-
namics of viscous fluids. In the form presented hereafter, the variables retained to describe
the conservation laws are the density ρ, the velocity vector u := (u, v), the total energy E, the
temperature T and the pressure p

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p+∇ · τ = 0,

∂t(ρE) +∇ · ((ρE + p)u) +∇ · (τu)−∇ · (κ∇T ) = 0·

(4.1)
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The viscous stress tensor τ is given by

τ =
2

3
µ(∇ · u)I− µ

(
∇u +∇ut

)
· (4.2)

For ideal gases, the energy of the system is related to these unknowns with the following
state law

p

ρ
= RT, ρE =

1

2
ρ|u|2 + p

(γ − 1)
, (4.3)

with γ is the ratio of specific heats, it is a constant that depends on the particular gas (e.g.
γ = 1.4 for air), κ is the heat conduction, Pr is the Prandtl number, R is the gas constant and
µ is viscosity coefficient.

To simplify the presentation of the mathematical model, we rewrite the system (4.1) in a
conservative vector form

∂tW +∇ · Fc(W) = ∇ · Fd(W,∇W), (4.4)

where

W =


ρ

ρu

ρv

ρE

 , Fc(W) =


ρu

ρu2 + p

ρuv

u(ρE + p)

ρv

ρuv

ρv2 + p

v(ρE + p)

 , (4.5)

Fd(W,∇W) =


0

τxx

τxy

uτxx + vτxy + κ∂xT

0

τxy

τyy

uτyx + vτyy + κ∂yT

 · (4.6)

With

τxx = µ

(
4

3
∂xu−

2

3
∂yv

)
, τxy = µ (∂xv + ∂xv) and τyy = µ

(
4

3
∂yv −

2

3
∂xu

)
·

4.3 Numerical method
In this section, we formulate the Finite Volume Characteristic scheme with a diffusion control
parameter to solve equation (4.7). The method uses an unstructured hybrid mesh to facili-
tate grid generation for complex configurations of the computational domain. As mentioned
in previous works [16, 71, 72], the method requires two steps and can be interpreted as a
predictor-corrector following the first idea presented in [14]. In the predictor step, the method
of characteristics is used to determine the intermediate values to evaluate the numerical flux,
while in the correction step, a fully conservative solution is obtained.

In section (4.3.1), we outline the numerical approach proposed for the case of an Inviscid
flow (µ = 0). In this case the equation (4.1) reduces to the following form
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
∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t(ρE) +∇ · (u(ρE + p)) = 0,

(4.7)

therefore, the conservative form (4.4) becomes

∂tW +∇ · Fc(W) = 0, (4.8)

Secondly, we examine the case of viscous flow, in section (4.3.2), by combining the FVC method
and the diamond scheme. This approach requires a primal mesh for the convective flux and a
diamond mesh for the diffusive flux (see Fig. 4.1).

Control volume Diamond cell

Figure 4.1: Primal mesh and control volumes (left) diamond mesh and diamond cell (right).

4.3.1 Inviscid flow
Suppose that the computational domain Ω is divided into a finite number of control volumes
Ω = (Ωi)i∈I , with I a finite set of indices. We will further assume that the mesh is admissible
in the finite volume discretization sense under cell-centered formulation [32, section 10.1].
Integrating equation (4.8) over a control volume Ωi, gives the following integral system

d

dt

∫
ΩiWdV +

∫
∂Ωi

Fc(W) · n dσ = 0, (4.9)

n is the normal vector to the edge ∂Ωi of the cell Ωi in the outward direction, dV and dσ are
respectively the surface element and the length element. According to the framework of the
finite volume method, the semi-discrete equation associated with (4.8) is defined as

dWi

dt
= − 1

|Ωi|
∑
j∈Ni

|γij |Φ(Wij ,nij), (4.10)

where
Wi =

1

|Ωi|

∫
ΩiWdV , and Φ(Wij ,nij) '

1

|γij |

∫
γij

Fc(W) · nijdσ, (4.11)
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Wi represents the average quantity stored at the cell center of cell Ωi. Wij and Φ(Wij ,nij)
refer to the intermediate state and the numerical flux, respectively, computed at the interface
γij between cells Ωi and Vj .

Ωi

Ωj

nij

γij

xi

y

x

Ωi

τij
nij

uτ
uη

u

Figure 4.2: Generic control cells (left) and projected velocity frame (right).

In this paragraph, we set some notation:

• pi: vertex of Ωi,
• xi: centroid of the cell Ωi,
• γij : boundary face between the cells Ωi

and Vj ,
• |γij |: length of γij ,

• |Ωi|: volume of the cell Ωi,
• ∂Ωi: boundary of the cell Ωi,
• Pi: the perimeter of the cell Ωi.
• nij : unit normal to γij , outward to Ωi

such as, nji = −nij .

and Ni is the set of neighboring cells of the cell Ωi. The spatial discretization of equation
(4.10) is complete when a numerical construction of the flux Φ (Wij ,nij) is chosen. In general,
this construction requires the solution of Riemann problems at the interfaces. From an algorith-
mic point of view, this procedure is very demanding. It may limit the application of the method
when the solutions to the Riemann problem are complex or even impossible. This is why we
have opted for constructing intermediate states Wij using the method of characteristics, and
the numerical flux is then calculated using the physical flux as Φ (Wij ,nij) := Fc (Wij) ·nij .
The basic idea of this method is the imposition of a non-regular spatial grid at the subsequent
temporal instance and retracing the flow paths to the preceding temporal instance.

To construct the intermediate states Wij , we first rewrite the system in an advection form.
For this, we use a projected velocity model whose velocity components are projected onto the
frame R = (Vi; τ⃗ , η⃗) (Fig. 4.2 right). The advection model we found is an equation whose
solution we can calculate in an almost exact way. Let η⃗ := (nx, ny)

T be the unit outward
normal to the edge of the cell Ωi and τ⃗ := (τx, τy)

T is the tangential vector, knowing that,
(τx, τy) = (−ny, nx). The projected velocity model associated with the Euler equations (4.8)
is reformulated as (4.12), see [72, section 3.2.1].

∂U

∂t
(t,X) + uη(t,X)

∂U

∂η
(t,X) = S(U(t,X)), (4.12)
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where

U =


ρ

ρuη

ρuτ

ρE

 , S(U) =


−ρ∂η(uη)

−ρuη∂η(uη)− ∂ηp
−ρuτ∂η(uη)

−ρE∂η(uη)− ∂η(puη)

 . (4.13)

U is the projected conservative unknown, uη is the normal speed, and S(U) is the right-hand
side that contains other terms of the system. The method of characteristics that is used traces
the backward position at time tn of a particle that will reach the gridpoint point X⋆ (arrival
gridpoint) of a fixed mesh at time tn+αn

ij∆t (see Fig 4.3). The characteristic curves associated
with (4.12) are the solutions of the following ODE.

dXc(t)

dt
= uη(t,X

c(t))n, t ∈ [tn, tn + αn
ij∆t],

Xc(tn + αn
ij∆t) = X⋆.

(4.14)

A numerical integration method can calculate the solution (characteristic curves) of (4.14).
Generally, the second-order methods lead to a non-linear equation in Xc(tn). A root-finding
algorithm is subsequently required to solve this equation. Once the characteristic curves are

tn +αn
ij∆t

tn

X⋆

Xc(tn)

Û n
ij

X⋆

tn +αn
i′j′∆t

x
y

t

Figure 4.3: Sketch of the method of characteristics: A particle at X⋆ gridpoint is traced
back in time to Xc(tn) where the intermediate solution Ûn

ij is interpolated.

identified, the advection equation (4.12) can be solved using

U(tn + αn
ij∆t,X⋆) = U(tn, X

c(tn)) +

∫ tn+αn
ij∆t

tn

S(U(s,Xc(s))) ds. (4.15)

The projected solution on the interface γij is computed using the following formula

Un
ij = Ûn

ij + IF(Û
n
ij), (4.16)

where IF is the approximation of the integral in (4.15) and Ûn
ij =

∑
k∈V (Xc)

βk(X
c)Un

k , with

V (Xc) is the neighbor set of all cells that share at less a vertex with the face γij and βk(Xc) is
the interpolation weight. The normal derivative terms in S are evaluated using the diamond
scheme, see [72, section 3.2.3] for more details. The time discretization of the semi-discrete
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equation (4.10) is based on an explicit scheme of order one. Let tn = n∆t with t0 = 0
representing the initial time. If we denote Wn

j as the mean value in cell Vj of the solution at
time tn. The fully-discrete formulation of the equation (4.9) is given by

Wn+1
i = Wn

i −
∆t

|Ωi|
∑
j∈Ni

|γij |Φ(Wn
ij ,nij). (4.17)

4.3.1.1 Local diffusion control parameter αn
ij

In this section, we propose a control diffusion parameter that follows the same approach as
the one we proposed for one-dimensional hyperbolic systems [5]. The objective of this chapter
is to provide a simple way to extend this approach to the two-dimensional hyperbolic system.
The construction of the diffusion control parameter is based on the analysis presented in [16].
On each cell Ωi, we define the local diffusion control parameter αn

i as follow

αn
i = ᾱn

i +

(
1

2
− ᾱn

i

)
ψi (4.18)

where
ᾱn
i = max

k∈Ni

(
|γik|

2∆tSik

)
, and Sik = max

l

(
max

(∣∣∣λli∣∣∣, ∣∣∣λlk∣∣∣)) (4.19)

here λli is the lth eigenvalue of normal flux, and ψi is the Barth-Jespersen limiter function
[12], we note that other limiter functions can be used. In this context, we have implemented
a ratio that constrains the calculation involving Riemann invariants. Additional information
can be found in [5]. Then the local diffusion control parameter for the interfaces is given by
αn
ij = max(αn

i , α
n
j ).

4.3.2 Viscous flow
In this section, we explain how to use the FVC method with the diffusion control parameter
for the Navier Stokes problem on an unstructured mesh. The integration of equation (5.43),
gives

d

dt

∫
Ωi

WdV +
1

|Ωi|
∑
j∈Ni

|γij |Φ(Wij ,nij) =
1

|Ωi|
∑
j∈Ni

|γij |Ψ(Wij ,∇Wij ,nij), (4.20)

whereΦ(Wij) is the approximation of the inviscid flux by the FVC method, ∇Wij is the gradi-
ent of W of at the interface γij and Ψ(Wij ,∇Wij ,nij) is an approximation of Fd(W,∇W) ·n
at the interface γij .

The construction of the numerical flux Ψ is based on the approximation of the gradient of
velocity u and temperature T at the interface γij . As mentioned in the introduction, we use
the diamond scheme for the construction of these gradients and we have

∇uij =

(
t(∇uij)
t(∇vij)

)
=

1

2|Dij |

(
(uS − uN ) tnLR |γLR|+ (uj − ui) tnij |γij |
(vS − vN ) tnLR |γLR|+ (vj − vi) tnij |γij |

)
, (4.21)
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and
∇Tij =

1

2|Dij |
((TS − TN )nLR |γLR|+ (Tj − Ti)nij |γij |) , (4.22)

where the values of u and T at the points S and N are represented by the variables uS =
(uS , vS) and uN = (uN , vN ) for the velocity and by TS TN for the temperature (see Figure
4.4) and they are computed using the least squares method.

S

N

R

L
nij

nLR

Interface γij .
Diamond Dij .

Vertices of the primal mesh
Centers of the primal mesh
Interface γLR.

Figure 4.4: Diamond Dij and notations.

Ψ (Wij ,∇Wij ,nij) =


0

τ ijxx

τ ijxy

uijτ
ij
xx + vijτ

ij
xy + κ∂xTij

0

τ ijxy

τ ijyy

uijτ
ij
yx + vijτ

ij
yy + κ∂yTij

 ·nij (4.23)

where
uij =

ui + uj

2
, τ ijxx = µ

(
4

3
∂xuij −

2

3
∂yvij

)
, τ ijxy = µ (∂xvij + ∂xuij)

and
τ ijyy = µ

(
4

3
∂yvij −

2

3
∂xuij

)
·

The fully-discrete formulation of the equation (4.1) is given by

Wn+1
i = Wn

i −
∆t

|Ωi|
∑
j∈Ni

|γij |Φ(Wn
ij ,nij) +

1

|Ωi|
∑
j∈Ni

|γij |Ψ(Wij ,∇Wij ,nij)· (4.24)

4.3.3 Algorithm
In summary, below is the algorithm of FVC scheme with the local diffusion parameter αn

ij for
compressible Navier Stokes equation
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Algorithm 2 FVC scheme for 2D compressible Navier Stokes equations
W = (ρ, ρu, ρv, ρE);
Initialize conditions;
for each time iteration do

Compute the time step ∆t;
Compute αn

ij for the interface γik
Compute Xc(tn);
Compute the projected solution Un

ij on γij ;
Compute the discrete gradients ∇uij and ∇Tij ;
Compute the solution Wn+1 using (4.24);
Update the solution: Wn+1 ←−Wn;
Apply boundary conditions;

end for

4.4 Numerical results
In this section, we present numerical results for the Euler equation and the Navier Stokes
equation. In both cases, the time steps are limited by a CFL condition. For Euler equation
the time step ∆t is given as follows

∆t = Crmin
i,j∈I

 γij√
2αn

ijΛ
n
ij

 · (4.25)

Cr is the Courant number and Λij is the spectral radius of the normal flux.

For the compressible Navier-Stokes equation, Gassner et al. [49] propose to rewrite the
diffusion flow using diffusion matrices, and they propose a hyperbolic time and parabolic time
step.

∆t = Cr
1√

1
∆t21

+ 1
∆t22

, (4.26)

with

∆t1 = min
i,j∈I

 γij√
2αn

ijΛ
n
ij

 , ∆t2 = min
i,j∈I

 γ2ij

max
i∈I

(
max

(
3µ

4ρi
,
κ

ρiR

))
 , (4.27)

4.4.1 2D Sod shock tube test
This section examines the one-dimensional shock tube problem in a two-dimensional setting
Ω = [0, 0.06]× [0, 1] and the initial condition is defined as

(ρ0, u0, v0, p0) =

{
(1, 0.75, 0, 1) if x ≤ 0.5,
(0.125, 0, 0, 0.1) otherwise· (4.28)
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The numerical results presented in this section were calculated with a Cartesian mesh composed
of 600×40 cells and Cr = 0.8 and we use the same exact solution as in the 1D case as a reference
solution.
In Fig. 4.7 (left), we present a cross-section in the x-direction of the numerical results computed
using our method, Roe and Rusanov. In Fig. 4.7 (right), we present αn

ij at t=0.2s.

Figure 4.5: 2D Sod shock tube: the density distribution at t=0.2s using Rusanov (top),
FVC (middle) and Roe (bottom)

Figure 4.6: 2D Sod shock tube: the local control diffusion parameter αn
ij at t=0.06 (top),

t=0.13 (middle) and t=0.2 (bottom).

As the 1D shock tube test [5], we note that the shock, the contact, and the rarefaction are
better captured using the FVC scheme. Moreover, the FVC scheme (unlike the Roe scheme)
does not generate an artificial shock around the sonic point.
In Fig 4.9 we compare the L1 error using different schemes. It confirms that FVC method is
more accurate than Rusanov scheme, and Roe scheme with Harten entropy correction [35].
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Figure 4.7: 2D Sod shock tube: cross-section of the density distribution (left) and cross-
section of the control parameter αn

ij variation (right) along the x-direction at time t = 0.2s.
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Figure 4.8: 2D Sod shock tube: cross-section of the axial velocity (top left), pressure (top
right) and Mach number (bottom) along the x-direction at time t = 0.2s.
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Figure 4.9: L1 error (logarithmic scales) for 2D sod shock problem at time t = 0.2s.

4.4.2 2D explosion test
Here, we solve a two-dimensional explosion problem on the computational domain Ω = [−1, 1]×
[−1, 1] and the following initial condition

(ρ0, u0, v0, p0) =

{
(1, 0, 0, 1) if

√
x2 + y2 ≤ 0.5,

(0.125, 0, 0, 0.1) otherwise· (4.29)

The numerical results presented in this section were calculated with a hybrid mesh composed
of 22 236 non-uniform cells and Cr = 0.8. We use the numerical solution obtained by Roe
scheme on 106 cells as a reference solution. Fig. 4.10 shows the bird’s eye views of the density
(left) and the local diffusion parameter (right) at t=0.2s. To better understand these results,
we plot the cross-section in Fig 4.11, which shows us that the method is more accurate than
Roe and Rusanov schemes (left). In addition, the right figure shows us that αn

ij adapts itself
to get a less diffused solution. The FVC scheme exhibits a minor oscillation at the end of the
rarefaction wave; this oscillation vanishes as the number of cells is increased.

Figure 4.10: 2D explosion: the bird’s eye view of density distribution (left) and bird’s eye
view of the local control diffusion parameter αn

ij variation (right) at t=0.2s
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Figure 4.11: 2D explosion: cross-section of the density distribution (left) and cross-section
of the control parameter αn

ij variation along the radial direction(right) at t=0.2s.

4.4.3 Supersonic flow over a flat plate
The main aim of this particular test case is to validate the numerical results obtained for the
scenario governed by the Euler equation. In addition to the presence of a boundary layer, this
flow configuration also gives rise to the formation of a shock wave, as shown in Figure 4.12.
This dual characteristic represents an interesting challenge for our approach and check the
ability of the diffusion control parameter α to detect the shock to better capture it.

y

x

Γ∞

Much = 3

Boundary Layer
Shock

Γw

Figure 4.12: Various zones for viscous supersonic flow over a flat plate.

The flow is assumed to be uniform at the far-field boundary Γ∞, and we impose

ρ∞ = 1, u∞ =

(
cosα
sinα

)
, p∞ =

1

γM2
∞
, and T∞ =

1

γ(γ − 1)M2
∞
, (4.30)
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where α is the angle of attack and M∞ is the freestream Mach number. On the wall boundary
Γw, we assume the no-slip condition together with an inhomogeneous Dirichlet condition on
the temperature (isothermal wall):

uw = vw = 0 and Tw =

(
1 +

γ − 1

2
M2

∞

)
T∞, (4.31)

while the density is free of any condition.

The numerical results presented in this section were with a Cartesian mesh composed of
8142 cells, as shown in Figure 4.13, and Cr = 0.4. We use the numerical solution obtained by
the second order Roe scheme as a reference solution. The initial condition of the problem is
given by the freestream condition.

Figure 4.13: Cartesian mesh for the flat plate problem with 8142 cells.

In Figure 4.14, the numerical outcomes from employing the FVC scheme, Roe scheme, and
Rusanov scheme are compared, with each method’s results organized into rows one, two, and
three, respectively. The comparison spans two moments in time: t = 3 showcased in the first
column and t = 10 in the second column. Across all three numerical solutions, the formation
of the boundary layer is evident, alongside the shock wave, which becomes less pronounced in
the Rusanov scheme due to its inherently high diffusivity.

For a more detailed comparison, Figure 4.15 depicts the velocity u profiles at two different
positions, x = 2 in the first column and x = 4 in the second column, at three distinct times
across the rows. These visualizations demonstrate the shock wave and its movement over time.
It is observable that the FVC scheme more accurately captures the shock wave compared to
the Roe scheme, while in the Rusanov case, the shock wave is nearly obscured by numerical
diffusion. This comparison underscores the effectiveness of the diffusion control parameter α
in identifying and accurately modeling shock waves, highlighting its critical role in enhancing
the precision of fluid dynamics simulations.
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Figure 4.14: Mach number M with FVC (first row), Roe (second row) and Rusanov scheme
(third row) at time t = 3 (first column) and t = 10 (second column) with 8142 cells for the

flat plate problem (α = 0, M∞ = 3).
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Figure 4.15: u-velocity profile for flat plate benchmark at time t = 3 (first row), t = 6
(second row), t = 10 (third row) with 8142 cells for the flat plate problem (α = 0, M∞ = 3).

78



4. A finite volume scheme with a diffusion control parameter on unstructured
hybrid mesh: application to two-dimensional Navier Stokes problem

4.5 Conclusions
In conclusion, this chapter presents a significant enhancement to the FVC scheme by introduc-
ing the novel formulation of the α parameter, which was previously a free choice constant in
the initial version of the scheme [16]. With the αn

ij formulation, we have successfully made the
FVC scheme is more robust and adaptable. The numerical results of this study demonstrate
remarkable shock resolution and high accuracy in smooth regions, while effectively eliminating
nonphysical oscillations in proximity to shock zones. Furthermore, its ability to capture the
boundary layer and shock in viscous flows validates the effectiveness of the approach. Although
the numerical calculations have been focused on the compressible Navier Stokes equations, the
versatility of the present scheme allows direct extension to various fluid flow problems in 2D
and 3D dimensions, as well as for non-Newtonian flows, which is the objective of the next
chapter.
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Chapter 5

A finite volume method with a
diffusion control parameter for
compressible Bingham flows
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Abstract
The final part of this thesis focuses on the numerical simulation of an isothermal compressible Bing-
ham flow, highlighting the effectiveness of the FVC with the diffusion control parameter. In the one-
dimensional scenario, we use a semi-implicit method, and for the two-dimensional case, we extend the
FVC/diamond strategy proposed in the previous chapter for Newtonian flows to the case of Bingham
flows. The numerical results demonstrate the effectiveness of the FVC method for the one-dimensional
case, as well as its capability to simulate the plug zones in the context of weakly compressible two-
dimensional Bingham laminar flows.
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5.1 Introduction
This chapter focuses on the compressible flow of Bingham fluids, known by their yield stress
behavior. These fluids pose challenges for numerical modeling because of the implicit char-
acteristics of their stress tensor. In this context, the FVC method, enhanced by a diffusion
control parameter, emerges as an effective approach for solving the compressible Bingham
equation accurately. The methodology outlined in the chapter covers the discretization and
numerical methods crucial for tackling the intricate challenges associated with simulations of
Bingham flows, providing innovative insights into the prediction and comprehension of these
fluid behaviors.

5.2 One-dimensional Bingham equation

5.2.1 Governing equation
The one-dimensional mathematical model that describes the dynamic of a Bingham fluid is
given by 

∂tρ+ ∂x(ρu) = 0 in ΩT ,
∂t(ρu) + ∂x

(
ρu2
)
− ∂x(τ(∂xu)) + ∂xp = ρf in ΩT ,

u(·, 0) = u0 and ρ(·, 0) = ρ0 in Ω,
(5.1)

where ρ is the density of the fluid, u is the fluid particle velocity, p is the pressure given as a
function of density1, f represents external forces, and τ is the Bingham stress tensor

τ(∂xu) =

(
µ+

τy
|∂xu|

)
∂xu if ∂xu 6= 0,

|τ | ≤ τy otherwise

(5.2)

Here, µ is the viscosity, τy is the yield stress and ΩT the open set (0, L)× (0, T ), where L > 0
and T is the final time.
The well-posedness for this problem has been investigated in [8], where the author shows the
existence and uniqueness of strong solutions for the one-dimensional Bingham flow.

5.2.2 Numerical method

5.2.2.1 Regularisation method

The operator (5.2) becomes implicit below the yield stress, making it challenging to directly
simulate a Bingham flow. To overcome this issue, we can regularize the stress tensor using
an explicit tensor that approximates the behavior of a Bingham fluid. Various regularization
methods can be used; an overview of these methods is provided in [23].

1) Papanastasiou [53]:
µε (|∂xuε|) = µ+

τy
|∂xu|

(
1− e−

|∂xuε|
ε

)
(5.3)

1In this section, we take p = aργ , where a and γ are positive constants.
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τε(∂xuε) =

(
µ+

τy
|∂xu|

(
1− e−

|∂xuε|
ε

))
∂xuε (5.4)

2) Bercovier and Engelman [17]:

µε (|∂xuε|) = µ+
τy√

ε2 + |∂xuε|2
(5.5)

τε(∂xuε) =

(
µ+

τy√
ε2 + (∂xuε)2

)
∂xuε (5.6)

3) Bi-viscosity model [18]: This model approximates the behavior of a Bingham fluid as a
highly viscous Newtonian fluid when τ ≤ τy (practically solid). We have employed this
approximation to construct a weak solution for an incompressible Bingham flow.[1].

µε(|∂xuε|) =
{
µ+

τy
|∂xuε| if |∂xuε|≥ τyε

µ(1−ε) ,

µ/ε otherwise (5.7)

τε(∂xuε) =

{ (
µ+

τy
|∂xuε|

)
∂xuε if |∂xuε|≥ τyε

µ(1−ε) ,

µ∂xuε
ε otherwise

(5.8)

Among these three models, the second one is the simplest to use because it offers a C∞ estimate
of µε, consequently, we use the Bercovier and Engelman approximation, and the problem to
solve is

(Pε) :


∂tρε + ∂x(ρεuε) = 0 in ΩT ,

∂t(ρεuε) + ∂x
(
ρεu

2
ε

)
− ∂x

((
µ+

τy√
ε2 + (∂xuε)2

)
∂xu

)
+ ∂xp(ρε) = ρεf in ΩT ,

uε(·, 0) = u0 and ρε(·, 0) = u0 in Ω,
(5.9)

5.2.2.2 Time splitting algorithm

To solve numerically the problem (Pε), we use the standard time splitting algorithm.

The following procedure is used to calculate the values of ρn and un. Assume that ρn, un
are known. First, we solve the compressible Euler equation and obtain un+ 1

2 , ρn+
1
2 :

(Pn+1/2
ε ) :


ρn+

1
2 − ρn

∆t
+ ∂x (ρ

nun) = 0,

ρn+
1
2un+

1
2 − ρnun

∆t
+ ∂x

(
ρn(un)2 + pn

)
= 0.

(5.10)
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In the second step we obtain un+1, ρn+1 by solving

(Pn+1
ε ) :


ρn+1 − ρn+

1
2

∆t
= 0,

ρn+1un+1 − ρn+
1
2un+

1
2

∆t
− ∂x(τε(∂xun+1)) = ρn+

1
2 fn+

1
2 .

(5.11)

As the first equation trivially gives ρn+1 = ρn+1/2, only the second one is needed.

5.2.2.3 Finite volume characteristic method for barotropic Euler equation

The approach we follow in this chapter consists of solving the following hyperbolic problem

∂tW + ∂xF(W) = 0, (5.12)

where

W =

 ρ

ρu

 , and F(W) =

 ρu

ρu2 + p(ρ)

 . (5.13)

As demonstrated in chapter 4, the FVC method is an efficient approach for hyperbolic systems.
To apply this method, we start by rewriting the system (5.13) in its advective form:

∂tW + u∂xW = G(W), (5.14)

where

G(W) =

 −ρ∂xu

−ρ∂xu− ∂xp

 . (5.15)

This version of the equation is used to reconstruct the intermediate states Wn
i+1/2 using the

method of characteristics. We calculate now the characteristic curves xc(s) associated to (5.14)
as 

dxc(s)

ds
= u (xc(s), s) , s ∈

[
tn, tn + αn

i+1/2∆t
]
,

xc

(
tn + αn

i+1/2∆t
)
= xi+1/2,

(5.16)

where u is the velocity of the fluid flow. Note that xc(s) is the departure point at time s
of a particle that will arrive at the gridpoint xi+1/2 in time tn + αn

i+1/2∆t, with αn
i+1/2 is a

parameter less than 1, that controls the temporal grid.This parameter is calculated locally and
at each time step with the following formula,

αn
i+1/2 = α̃i+1/2 +

(
1

2
− α̃i+1/2

)
ϕ(ri+1/2) (5.17)

where
α̃i+1/2 =

∆x

2∆tSi+1/2
, and Si+1/2 = max

k

(
max

i

(∣∣∣λki ∣∣∣, ∣∣∣λki+1

∣∣∣)) (5.18)
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here λki is the kth eigenvalue of (5.13), Si+1/2 is the local Rusanov speed and ϕ(ri+1/2) is a
slope limiter. The results, presented in this section, were obtained using the Minmod limiter.
The ratio ri+1/2 is given by

ri+1/2 =
qi − qi−1

qi+1 − qi
(5.19)

where
qi = max

i

(∣∣∣∣ui + 2ci
γ − 1

∣∣∣∣, ∣∣∣∣ui − 2ci
γ − 1

∣∣∣∣) , (5.20)

and
ϕ(r) = max(0,min(1, r)), lim

r→∞
ϕ(r) = 1 (5.21)

The solution of (5.16) can be approximate as follow

xc (tn) = xi+1/2 − αn
i+1/2∆tu (xc(tn), tn) (5.22)

then we used the fixed point method to solve equation (5.22). Thus, once the characteristic
curves xc (tn) are accurately calculated, the intermediate solutions Wn

i+1/2 of a generic function
W(xi+1/2, tn + αn

i+1/2∆t) are reconstructed using

Wn
i+1/2 = Ŵ

n

i+1/2 +

∫ tn+αn
i+1/2

∆t

tn

G(W (xc(s), s)) ds, (5.23)

where Ŵ
n

i+1/2 = W (xc (tn) , tn) are the solutions at the characteristic foot computed by linear-
based interpolation

Ŵ
n

i+1/2 = Wn
i +

Wn
i+1 −Wn

i

∆x

(
xc(tn)− xi(tn)

)
, (5.24)

Due to the approximation of the integral in equation (5.23) by the rectangle method, the
solution at the interfaces is reconstructed using

Wn
i+1/2 = Ŵ

n

i+1/2 + αn
i+1/2∆tG(Ŵ

n

i+1/2), (5.25)

such that the derivatives contained in G are calculated by a finite difference between cells i
and i+ 1 for the interface i+ 1/2.
Finally, the FVC scheme with the diffusion control parameter αn

i+1/2 can be written as fellows

Wn+1/2
i = Wn

i −
∆t

∆x

(
F
(

Wn
i+1/2

)
− F

(
Wn

i−1/2

))
, (5.26)

where Wn
i±1/2 are calculated using (5.25), and F is the physical flux given in (5.13).
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5.2.2.4 Implicit finite volume method for viscoplastic equation

Integrating the problem Pn+1
ε over a control [xi−1/2, xi+1/2] we obtain

ρn+1
i = ρ

n+ 1
2

i ,

ρn+1
i un+1

i = ρ
n+ 1

2
i u

n+ 1
2

i +
∆t

∆x

[(
τε

(
∂xu

n+1
i+1/2

))
−
(
τε

(
∂xu

n+1
i−1/2

))
+ ρ

n+ 1
2

i f̄
n+ 1

2
i

]
.

(5.27)

By setting ∂xun+1
i+1/2 =

un+1
i+1 − u

n+1
i

∆x
and using Bercovier regularisation we get

ρn+1
i un+1

i = ρ
n+ 1

2
i u

n+ 1
2

i +
∆t

∆x
ρ
n+ 1

2
i f̄

n+ 1
2

i

+
∆t

∆x

 µ

∆x
+

τy√
∆x2ε2 +

(
un+1
i+1 − u

n+1
i

)2
 (

un+1
i+1 − u

n+1
i

)

−∆t

∆x

 µ

∆x
+

τy√
∆x2ε2 +

(
un+1
i − un+1

i−1

)2
 (

un+1
i − un+1

i−1

)
,

(5.28)

to solve (5.28), we use the fixed point method :2µ∆t
∆x +

τy∆t√
∆x2ε2+

(
un+1,k
i+1 −un+1,k

i

)2
+

τy∆t√
∆x2ε2+

(
un+1,k
i −un+1,k

i−1

)2
+∆xρ

n+1/2
i

un+1,k+1
i

−

µ∆t
∆x +

τy∆t√
∆x2ε2+

(
un+1,k
i+1 −un+1,k

i

)2

un+1,k+1
i+1 −

µ∆t
∆x +

τy∆t√
∆x2ε2+

(
un+1,k
i −un+1,k

i−1

)2

un+1,k+1
i−1

= ∆tρ
n+ 1

2
i f̄

n+ 1
2

i +∆xρ
n+1/2
i u

n+1/2
i .

Therefore, we have to solve the following linear system


A1 −B1

−B1 A2 −B2

. . . . . . . . .
. . . . . . −BNx−1

−BNx−1 ANx





un+1,k+1
1

...

...

...
un+1,k+1
Nx


=



C1
...
...
...

CNx


, (5.29)
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where 

Bi =
µ∆t

∆x
+

τy∆t√
∆x2ε2 +

(
un+1,k
i+1 − un+1,k

i

)2 , i = 0, . . . , Nx,

Ai = Bi−1 +Bi +∆xρ
n+1/2
i , i = 1, . . . , Nx,

Ci = ∆tρ
n+ 1

2
i f̄

n+ 1
2

i +∆xρ
n+1/2
i u

n+1/2
i , i = 2, . . . , Nx − 1.

C1 = ∆tρ
n+ 1

2
1 f̄

n+ 1
2

1 +∆xρ
n+1/2
1 u

n+1/2
1 +B0u

n+1
0

CNx = ∆tρ
n+ 1

2
Nx

f̄
n+ 1

2
Nx

+∆xρ
n+1/2
Nx

u
n+1/2
Nx

+BNxu
n+1
Nx+1

(5.30)

To address the linear system (5.29), one may employ traditional direct or iterative ap-
proaches. Given that the matrix is tridiagonal, Thomas’s method serves as an efficient strat-
egy for managing this system. This method allows for the solution to be obtained through
O(n) operations, contrasting with the O(n3) operations necessitated by Gaussian elimination.
An additional factor favoring this method is the presence of a dominant diagonal within our
matrix, which guarantees the algorithm’s convergence [37]. Consequently, the problem (5.29)
can be resolved utilizing the subsequent formula. Therefore, the problem (5.29) can be solved
using the following formula

un+1,k+1
i = λiu

n+1,k+1
i+1 + ri, for i = Nx − 1, . . . , 2. (5.31)

where 

λi =
Bi

Ai −Bi−1λi−1
for i = 2, . . . , Nx − 1,

ri =
Ci +Bi−1ri−1

Ai −Bi−1λi−1
for i = 2, . . . , Nx.

λ1 = B1/A1, r1 = C1/A1,

un+1,k+1
Nx

= rNx .

(5.32)

We stop the iteration procedure when
∥∥un+1,k+1 − un+1,k

∥∥ ≤ εtol .

Remark 2. Note that if we want to use a different regularization, the coefficients of the matrix
in (5.29) will change. For example, if we use Papanastasiou regularisation, the coefficients of
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the matrix are given by

Bi =
µ∆t

∆x
+

τy∆t∣∣∣un+1,k
i+1 − un+1,k

i

∣∣∣
1− e

|un+1,k
i+1 − un+1,k

i |
εdx

 , i = 0, . . . , Nx,

Ai = Bi−1 +Bi +∆xρ
n+1/2
i , i = 1, . . . , Nx,

Ci = ∆tρ
n+ 1

2
i f̄

n+ 1
2

i +∆xρ
n+1/2
i u

n+1/2
i , i = 2, . . . , Nx − 1.

C1 = ∆tρ
n+ 1

2
1 f̄

n+ 1
2

1 +∆xρ
n+1/2
1 u

n+1/2
1 +B0u

n+1
0

CNx = ∆tρ
n+ 1

2
Nx

f̄
n+ 1

2
Nx

+∆xρ
n+1/2
Nx

u
n+1/2
Nx

+BNxu
n+1
Nx+1

(5.33)

5.2.2.5 Algorithm

In summary, below is the algorithm of the numerical method proposed to approximate the
solution of a Bingham flow using FVC with a control diffusion parameter and a regularized
tensor

Algorithm 3 FVC-Regularisation method for 1D compressible Bingham Flow
W = (ρ, ρu);
Initialize conditions;
for each time iteration do

Compute the time step ∆t;
Solve Euler problem:

Compute αn
i+1/2 for all interfaces;

Compute xc(tn);
Compute Wn

i+1/2 for all interfaces;
Compute the solution Wn+1/2 ;
Update the intermediate solution: Wn+1/2 ←−Wn;
Update Wn+1/2 on boundary;

Solve viscoplastic problem:
Choose ε and εtol

k=0 and un+1,k = un+1/2

While ||un+1,k+1 − un+1,k||> εtol do
un+1,k ←− un+1,k+1

Compute un+1,k+1 using (5.31)
k++

Update the solution: Wn+1 ←− (ρn+1/2, ρn+1/2un+1);
Apply boundary conditions;

end for
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5.2.3 Numerical results
As the approach proposed in this chapter is a semi-implicit method, the time step ∆t is limited
by the following CFL condition

∆t = Cr
∆x

max
i

(√
2αn

i+1/2Λ
n
i

) (5.34)

where Cr is the Courant number and Λi = max
k

(|λki |) is the spectral radius of the barotropic
Euler equations.

5.2.3.1 Accuracy test

To evaluate the FVC method with a diffusion control parameter for Bingham flow, we use the
analytical solution proposed in [51].

The exact velocity is given by

ue(t, x) =


tx if 0 ≤ x ≤ 1

t if 1 ≤ x ≤ 3

t(4− x) if 3 ≤ x ≤ 4

(5.35)

For a = 1/2 and γ = 2 the exact density is given by

ρe(t, x) =



e−
t2

2 if 0 ≤ x ≤ 1

ex−1− t2

2 if 1 ≤ x ≤ 1 + t2

2

1 if 1 + t2

2 ≤ x ≤ 3
1

4− x
if 3 ≤ x ≤ 4− e−

t2

2

e
t2

2 if 4− e− t2

2 ≤ x ≤ 4.

(5.36)

Using the Bercovier regularization, the following function is a term source of (5.9)-(5.40)

ρef =



xe−t2/2 +
(
1 + t2

)
if 0 < x < 1,

ex−1− t2

2 + e2x−2−t2 + t

(
µ+

τy√
ε2 + t2

)
if 1 < x < 1 + t2

2 ,

1 + t

(
µ+

τy√
ε2 + t2

)
if 1 + t2

2 < x < 3

1− t2 + 1

(4− x)3
if 3 < x < 4− e−

t2

2

e
t2

2 (4− x)
(
1− t2

)
if 4− e− t2

2 < x < 4.

(5.37)

Initially, ρ(·, 0) = 1 and u(·, 0) = 0. For the boundary conditions, we use homogeneous
Dirichlet boundary conditions.
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Figure 5.1 illustrates the numerical solutions obtained using finite volume methods, specif-
ically Roe, Rusanov, and FVC, each paired with the regularization technique introduced by
Bercovier, alongside the exact solution delineated by equations (5.35)-(5.36). Across the three
ε values examined, it’s observable that the FVC method coupled with Bercovier regulariza-
tion exhibits lesser diffusion compared to the other methodologies, thereby achieving greater
precision. This enhanced accuracy is attributable to the implementation of a control diffusion
parameter.

To support this observation, the L1 and L2 errors concerning density were calculated, as
detailed in Table 5.1 and Table 5.2. These tables explicitly demonstrate that the FVC method
surpasses both the Roe and Rusanov schemes in terms of accuracy. The presence of the control
diffusion parameter in the FVC method significantly contributes to its ability to produce solu-
tions that are closer to the exact values, minimizing errors and diffusive effects that typically
challenge numerical simulations of fluid flow, particularly in complex Bingham fluids.

In Table 5.3, the computational times for each method are presented. As depicted in the
table, our approach outperforms other schemes, which can be attributed to the efficiency of
the FVC method, as demonstrated in the preceding chapter on the Euler equation.

Table 5.1: L1 Errors for the density ρ with µ = 10−3 and τy = 2.

ε Mesh Rusanov Roe FVC

10−2

200 4.030943e-02 3.089232e-02 2.236029e-02
400 2.523166e-02 2.145582e-02 1.703005e-02
800 1.881412e-02 1.751807e-02 1.559115e-02
1600 1.562118e-02 1.543954e-02 1.489059e-02

10−4

200 3.030419e-02 1.858219e-02 1.475899e-02
400 1.531041e-02 1.030015e-02 6.076885e-03
800 8.466159e-03 5.867581e-03 3.461764e-03
1600 4.407962e-03 3.022328e-03 1.698364e-03

10−6

200 3.020988e-02 1.857224e-02 1.466148e-02
400 1.521494e-02 1.018462e-02 5.973536e-03
800 8.364665e-03 5.746597e-03 3.348680e-03
1600 4.301818e-03 2.890213e-03 1.572311e-03

5.2.3.2 Bingham flow under the gravitational force

In this benchmark, the objective is to examine the response of a Bingham fluid to applied
forces. For this purpose, a flow scenario under gravitational force is considered, where the
force term f in equation (5.9) is represented by f = g sin(θ), with g denoting the gravitational
constant and θ representing the angle of inclination. This scenario can be likened to a Bingham
fluid flowing through a pipeline tilted at an angle. The initial conditions are set with a density
ρ(·, 0) = 1 and u(·, 0) = 0. Homogeneous Neumann boundary conditions are applied to the
edges of the domain. The fluids viscosity µ0 is set to 10−3, a = 1/2, and γ = 2.
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Table 5.2: L2 Errors for the density ρ with µ = 10−3 and τy = 2.

ε Mesh Rusanov Roe FVC

10−2

200 3.923155e-03 2.889723e-03 2.128153e-03
400 1.865139e-03 1.513830e-03 1.207284e-03
800 1.011378e-03 8.926398e-04 7.770246e-04
1600 6.033298e-04 5.643922e-04 5.241236e-04

10−4

200 3.301246e-03 2.074852e-03 1.488531e-03
400 1.321787e-03 8.894142e-04 5.049370e-04
800 5.624510e-04 3.882260e-04 2.146503e-04
1600 2.361940e-04 1.640668e-04 8.675113e-05

10−6

200 3.297434e-03 2.073599e-03 1.484124e-03
400 1.318483e-03 8.852815e-04 5.009955e-04
800 5.597705e-04 3.851663e-04 2.117027e-04
1600 2.340508e-04 1.616917e-04 8.447040e-05

Table 5.3: CPU times for Bingham problem with µ = 10−3 and τy = 2.

ε Mesh Rusanov Roe FVC

10−2

200 3.98 5.00 3.54
400 11.93 15.07 8.36
800 48.14 56.21 30.42
1600 189.45 231.09 124.03

10−4

200 6.50 8.26 5.65
400 23.57 28.76 17.74
800 97.82 104.16 69.43
1600 359.28 386.20 257.17

10−6

200 7.00 9.29 6.13
400 26.36 31.29 19.56
800 102.76 106.23 72.49
1600 354.31 397.34 263.64

The numerical results presented in this section were calculated using FVC scheme for the
convective part with Cr = 0.8, and Bercovier regularization (5.40) with ε = 10−3 for the
viscoplastic part.

In Figure 5.2, the velocities at different times (rows) are presented for various values of τy
(columns). For an angle equal to 3◦, the velocity is nearly zero when the yield stress τy is set
to 50. This implies that the fluid behaves like a solid, even under applied force. For a fluid
with a smaller yield stress, we observe that the velocity at t = 4 is different from zero but stays
near zero. However, when we apply the same force (i.e., the same angle) to a Bingham fluid
with τy = 1, we observe that the fluid flows immediately. In other words, the force is strong
enough to transport the fluid. To better understand and validate the physical behavior of a
Bingham fluid, we increase the angle θ (i.e., the force f). In contrast to the previous case, the
fluid moves even for τy = 50, indicating that applying such force allows us to set the fluid in
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Figure 5.1: Compressible Bingham problem: density ρ (left), velocity u (right) for ε = 10−2

(first row), ε = 10−4 (second row) and ε = 10−6 (third row) with τy = 2 and µ0 = 10−3 at
time t = 1s with 400 regular cells.

motion. these results are consistent with the physical behavior of this kind of Non Newtonian
fluids.
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Figure 5.2: Velocity u with τy = 50 (first column), τy = 20 (second column) and τy = 1
(third column) at time t = 0 (first row), t = 1.33 (second row), t = 3.11 (third row) and t = 4

(fourth row) with 200 regular cells.
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5.3. Two-dimensional compressible Bingham flow

In Figure 5.3, we present the velocity u over time for various values of τy. Additionally,
Figure 5.4 illustrates the relationship between u and τy at time t = 4. These two figures
confirm the observations previously discussed.
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Figure 5.3: Velocity-time for a Bingham flow under the gravity force with θ = 12◦ (left) and
θ = 3◦.
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Figure 5.4: Velocity as a function of the yield stress τy at time t = 4.

5.3 Two-dimensional compressible Bingham flow
In this section, we apply FVC method with the diffusion control parameter α to solve the
compressible 2D Bingham equation on a hybrid unstructured mesh.
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5.3.1 Governing equation
Let Ω be a domain in R2 and ΩT the open set Ω× (0, T ), where T > 0 is the final time. The
2D compressible Bingham equation is given by:

∂tρ+∇ · (ρu) = 0 in ΩT ,
∂t(ρu) +∇ · (ρu⊗ u) +∇p−∇ · τ(Du) = ρf in ΩT ,
u(·, 0) = u0 and ρ(·, 0) = ρ0 in Ω,

(5.38)

In the given system, ρ represents the fluid density, u = (u, v)t is the velocity vector, p stands
for the pressure given as as function of the density, and τ is the Bingham stress tensor where
the strain tensor (shear tensor) is defined as Du = 1

2(∇u+∇ut), and f = (fx, fy) : ΩT → R2

represents external forces.

The Bingham stress–strain constitutive law is defined as
τ(Du) =

(
2µ+

τy
|Du|

)
Du if |τ | > τy,

Du = 0 if |τ | ≤ τy·
(5.39)

Here, µ is the viscosity, τy is the yield stress and |A|2 = A : A, where the inner product is
defined as A : B =

∑
i,j

AijBij .

As previously discussed in chapter 1, the peculiarity of the Bingham stress tensor stems from
its implicit nature, requiring the introduction of a regularization tensor. To address this, we
adopt the Bercovier and Engelman regularization [17]:

τε(Du) =
(
2µ+

τy√
ε2+ | Du |2

)
Du (5.40)

Using this regularization we get the following problem:

∂tW +∇ · Fc(W)−∇ · Fd(∇W) = Q(W), (5.41)

where

W =

 ρ

ρu

ρv

 , Fc(W) =

 ρu

ρu2 + p

ρuv

ρv

ρuv

ρv2 + p

 ,

Fd(∇W) =

(
2µ+

τy√
ε2+ | Du |2

) 0

∂xu
1
2(∂yu+ ∂xv)

0
1
2(∂yu+ ∂xv)

∂yv

 ,

and

Q(W) =

 0

ρfx

ρfy

 ,
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5.3. Two-dimensional compressible Bingham flow

5.3.2 Discretisation and numerical method
To solve the problem (5.41), we applied a splitting strategy, which involves solving the following
hyperbolic problem in the first stage:

∂W
∂t

+∇ · Fc(W) = 0

W (x, y, tn) = Wn(x, y),

(5.42)

then, we get W
(
x, y, tn+1/2

)
from W (x, y, tn). The second step consists of solving the follow-

ing equation: 
∂W
∂t
−∇ · Fd(∇W) = Q(W)

W (x, y, tn) = Wn+1/2(x, y),

(5.43)

where tn = n∆t, with ∆t is the time step. The process of selecting this time step will be
examined in more detail later in this chapter.

For the spatial discretization, we use a primal-Diamond mesh, a strategy that has proven
its effectiveness in the case of the compressible Navier Stokes equation. As mentioned in the
introduction, one of the aims of this thesis is to propose a finite volume method that reduces
numerical diffusion. The following sub-section will therefore explain how the proposed FVC
method can be applied to problem (5.42).

5.3.2.1 Finite volume characteristic method for convective flux

In this section, we formulate the FVC scheme with a diffusion control parameter to solve
equation (5.42). As previously indicated, we employ a hybrid mesh, which is a mixture of
structured and unstructured cells. For a better understanding of the method, the reader is
encouraged to read the previous chapter. Suppose that the computational domain Ω is divided
into a finite number of control volumes Ω = (Ωi)i∈I , with I a finite set of indices.
Integrating equation (5.42) over a control volume Ωi, gives the following integral system

d

dt

∫
Ωi

WdV +

∫
∂Ωi

Fc(W) · n dσ = 0, (5.44)

where n is the normal vector to the edge ∂Ωi of the cell Ωi in the outward direction. According
to the framework of the finite volume method, the semi-discrete equation associated with (5.42)
is defined as

dWi

dt
= − 1

|Ωi|
∑
j∈Ni

|γij |Φ(Wij ,nij), (5.45)

where
Wi =

1

|Ωi|

∫
Vi

WdV , and Φ(Wij ,nij) '
1

|γij |

∫
γij

Fc(W) · nijdσ, (5.46)

Wij is the intermediate state and at the interface γij between cells Ωi and Ωj and Φ(Wij ,nij)
refer to and the numerical flux at the interface γij . nij is the unit normal to γij , outward to
Ωi, and Ni is the set of neighboring cells of the cell Ωi.
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The spatial discretization is complete when a numerical construction of the flux Φ (Wij ,nij)
is chosen. In the FVC method, this construction is achieved through the numerical flux, and
we have Φ (Wij ,nij) = Fc (Wij) · nij .
To construct the intermediate state Wij , we start by building the projected velocity model.
The equation (5.42), can be writing as follow

∂

∂t

∫
Ωi

ρ dV +

∫
∂Ωi

ρuηdσ = 0, (5.47)

∂

∂t

∫
Ωi

ρu dV +

∫
∂Ωi

(ρuuη + pnx) dσ = 0, (5.48)

∂

∂t

∫
Ωi

ρv dV +

∫
∂Ωi

(ρvuη + pny) dσ = 0, (5.49)

where n = (nx, ny)
T represents the normal vector, and τ = (−ny, nx)T denotes the tangential

vector.. uη = u · n is the normal velocity and uτ = u · τ is the tangential velocity.
Using the fact that Euler equation is invariant by rotation, i.e. TFc · n = Fc(TW), with

T =

1 0 0
0 nx ny
0 −ny nx

 , (5.50)

we get the following equations(
∂

∂t

∫
Ωi

ρu dV

)
nx +

(
∂

∂t

∫
Ωi

ρv dV

)
ny =

∂

∂t

∫
Ωi

ρuηdV = −
∫
∂Ωi

(
ρu2η + p

)
dσ, (5.51)

and

−
(
∂

∂t

∫
Ωi

ρu dV

)
ny +

(
∂

∂t

∫
Ωi

ρv dV

)
nx =

∂

∂t

∫
Ωi

ρuτdV = −
∫
∂Ωi

ρuηuτdσ· (5.52)

Consequently, we get the following system

∂ρ

∂t
+
∂ρuη
∂η

= 0,

∂ρuη
∂t

+
∂

∂η

(
ρu2η + p

)
= 0,

∂ρuτ
∂t

+
∂

∂η
(ρuηuτ ) = 0.

(5.53)

The projected velocity model associated with the equation (5.42) is

∂U

∂t
(t,X) + uη(t,X)

∂U

∂η
(t,X) = S(U(t,X)), (5.54)
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where

TW = U =

 ρ

ρuη

ρuτ

 , S(U) =

 −ρ∂ηuη
−ρuη∂ηuη − ∂ηp
−ρuτ∂ηuη

 . (5.55)

The characteristic curves associated with (5.54) are the solutions of the following ODE.
dXc(t)

dt
= uη(t,X

c(t))n, t ∈ [tn, tn + αn
ij∆t],

Xc(tn + αn
ij∆t) = X⋆.

(5.56)

The local diffusion control parameter is given by αn
ij = max(αn

i , α
n
j ) where αn

i is chosen as
follow

αn
i = ᾱn

i +

(
1

2
− ᾱn

i

)
ψi (5.57)

where
ᾱn
i = max

k∈N(i)

(
|γik|

2∆tSik

)
, and Sik = max

l

(
max

(∣∣∣λli∣∣∣, ∣∣∣λlk∣∣∣)) (5.58)

here λli is the lth eigenvalue of normal flux, and ψi is the Barth-Jespersen limiter function [12].
The solution of (5.56) can be determined by numerical integration:

Xc (tn) = X⋆ −
∫ tn+αn∆t

tn

uη (s,X
c(s))nds. (5.59)

By using a root-finding algorithm, we find characteristic curves Xc(tn). After the determina-
tion of the characteristic curves, the advection equation (5.54) can be solved using

U(tn + αn
ij∆t,X⋆) = U(tn, X

c(tn)) +

∫ tn+αn
ij∆t

tn

S(U(s,Xc(s))) ds. (5.60)

The solution U at the characteristic feet is computed using a local least squares interpolation.
The normal derivative terms in S are evaluated using the diamond scheme. Now, we can
deduce the solution Wn

ij at the interface γij using the transformation T−1

Wn
ij = T−1Un

ij =

1 0 0
0 nxx −ny
0 ny nx

 ρ
ρuη
ρuτ

 ·
Finlay, the fully-discrete formulation of the equation (5.42) is given by

Wn+1/2
i = Wn

i −
∆t

|Ωi|
∑
j∈Ni

|γij |Fc(Wn
ij) · nij . (5.61)
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5.3.2.2 Diamond scheme for the viscoplastic flux

In this section, we use the diamond scheme to solve equation (5.43), This approach has been
used for the compressible Navier-Stokes equation (see chapter 4).
We integrate the equation (5.43), and we get

d

dt

∫
Ωi

WdV −
∫
∂Ωi

Fd(∇W) · n dσ =

∫
Ωi

Q(W)dV, (5.62)

the semi-discrete equation linked to (5.43) using the finite volume approach is given by

dWi

dt
=

1

|Ωi|
∑
j∈Ni

|γij |Ψ(∇Wij ,nij) + Q(Wi) (5.63)

∇Wij is the gradient of W of at the interface γij and Ψ(∇Wij ,nij) is an approximation of
Fd(∇W) · n at the interface γij . To construct the flux Ψ, we employ the physical flux, wich
implies

Ψ (Wij ,nij) = Fd (Wij) · nij =

(
2µ+

τy√
ε2+ | Duij |2

)(
0⃗

Duij

)
· nij (5.64)

This discretization will be complete once we build the tensor Duij =
1

2
(∇uij +∇ut

ij) on the
interfaces. We propose to construct the gradient of the velocity using the diamond scheme,
and we have:

∇uij =

(
t(∇uij)
t(∇vij)

)
=

1

2|Dij |

(
(uS − uN ) tnLR |γLR|+ (uj − ui) tnij |γij |
(vS − vN ) tnLR |γLR|+ (vj − vi) tnij |γij |

)
, (5.65)

where the values of u = (u, v) at the points S and N are represented, respectively, by the
variables uS = (uS , vS) and uN = (uN , vN ) (see Figure 4.4) and they are computed using the
least squares method. The fully-discrete formulation of the equation (5.43) is given by

Wn+1
i = Wn+1/2

i +
∆t

|Ωi|
∑
j∈Ni

|γij |Ψ(∇Wn+1/2
ij ,nij) + ∆tQ(Wn+1/2

i ) (5.66)

5.3.3 Algorithm
In summary, below is the algorithm of the FVC-Regularization method with the local diffusion
parameter αn

ij for compressible Bingham flow
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Algorithm 4 FVC-Regularization method for 2D compressible Bingham flow
W = (ρ, ρu, ρv);
Initialize conditions;
for each time iteration do

Compute the time step ∆t;
Compute αn

ij for the interface γik
Compute Xc(tn);
Compute the projected solution Un

ij on γij ;
Compute the discrete gradients ∇uij ;
Compute the solution Wn+1;
Update the solution: Wn+1 ←−Wn;
Apply boundary conditions;

end for

5.3.4 Numerical results
As the approach proposed in this chapter is explicit, the time step∆t is limited by the following
CFL condition

∆t = Cr
1√

1
∆t21

+ 1
∆t22

, (5.67)

with

∆t1 = min
i,j∈I

 γij√
2αn

ijΛ
n
ij

 , ∆t2 = min
i,j∈I

 γ2ij

max
i∈I

(
µb,i
ρi

)
 , (5.68)

where Cr is the Courant number and Λi = max
k

(|λki |) is the spectral radius of the barotropic

Euler equations (5.42) and µb,i =
(
2µ+

τy√
ε2+ | Dui |2

)
is the Bingham viscosity on Ωi.

This formula is inspired by a work concerning the Navier-Stokes equation [49].

5.3.4.1 Compressible isothermal Bingham flow in pipelines

In many studies, researchers often overlook the effects of compressibility, focusing primarily
on incompressible flow regimes. However, in this work, we specifically address the case of
weakly compressible Bingham fluids. By accounting for the impact of compressibility along
with the viscoplastic behavior of the fluid, we aim to provide a more comprehensive under-
standing of flow dynamics, particularly in scenarios where these two factors play significant
roles. This approach allows us to explore nuanced interactions between fluid compressibility
and viscoplasticity, shedding light on phenomena such as plug zone formation, as is shown in
Figure 5.5, in the context of weakly compressible flows.
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Plug flow region L

L/10

Figure 5.5: Velocity profile of a Bingham flow (left) and Newtonian flow (right).

In this work, we consider a fluid with an isothermal compressibility β constant, i.e.

β =
1

ρ

(
∂ρ

∂p

)
, (5.69)

which gives the following equation of state:

p = p̃+
1

β
ln

(
ρ

ρ̃

)
, (5.70)

where p̃ and ρ̃, are the density and the pressure at the reference state, respectively. In this
section we take p̃ = 0, ρ̃ = 1, L = 1, and β = 10−3. In the present study, Reynolds number
Re and Bingham number Bn are used. These two numbers are defined as

Re =
ρ̃urL

µ
, and Bn =

τyL

µur
, (5.71)

where ur denotes a reference axial velocity, assumed to be equal to 1 in this section, the initial
condition is defined as (u0, v0, p0) = (1, 0., p̃). The numerical results presented in this section
were calculated with a Cartesian mesh composed of 20 × 200 cells, and Cr = 0.1, and the
regularization parameter ε used in 5.40 is set to 10−2.

Figure 5.6: Cartesian mesh of the pipe with 4000 cells.

In Figure 5.7, axial velocity is shown for laminar Bingham flow. In the first line, the evolution
of axial velocity is shown for Bn = 0, corresponding to a Newtonian fluid. Comparing this
line with the second, where Bn = 2.5, we notice that the fluid behaves differently at the center
of the pipeline, where velocity appears constant, indicating a plug zone. This phenomenon
becomes clearer as the Bingham number increases.
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Figure 5.7: Evolution of the axial velocity u of laminar flow in a pipe with Re = 500 for
different values of Bn.

The plug zone may be difficult to distinguish in Figure 5.7, which is why the axial velocity
profile in the vertical direction is shown in Figure 5.8. In this figure, the formation of plug
zones is more clearly visible and we can see that for Bingham flows, the velocity is constant
at the center and behaves almost like Newtonian fluids near the pipeline wall. Moreover, the
size of this zone increases with time, which is justified by the fact that shear stresses decrease
with time.
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Figure 5.8: Axial velocity profiles calculated For Re = 500 at time t = 1.6× 10−3 (left-top),
t = 3.2× 10−3 (right-top), t = 5× 10−3 (left-bottom), and t = 1.6× 10−3 (right-bottom).
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Figure 5.9: Shear rate |Du| (left) and axial velocity u(y) (right) for Bn = 2.5 and Bn = 0.
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Figure 5.10: Shear stress |τ | with a zoom on the unyielded zone for Bn = 2.5 and Bn = 0.

One of the significant physical indicators to identify these plug zones, also known as unyielded
zones, is the shear rate |Du|. As mentioned in the introduction of this thesis, Bingham fluids
can behave like solids. This is reflected in having a zero shear rate, even when the fluid is
subjected to a non-zero shear stress. This physical behavior was obtained using our FVC
approach, as shown in Figures 5.9 and 5.10. The presence of a yielded zone, where Du = 0
and |τ | ≤ τy, indicates that the velocity is not zero but constant. This allows us to envision a
flow where the fluid behaves like a solid, moving in blocks at the center of the pipeline.
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Figure 5.11: Evolution of the axial velocity u in the pipe center y = L/20 (left) and next to
the pipe wall y = L/100 (right).

We now study the impact of pipe walls on the behavior of a Bingham flow. For this purpose,
we present, in Figure 5.11, a comparison between the axial velocity u at the center of the pipe
y = L/20 and next to the wall y = L/100. As shown in this figure, the difference between
Bingham flow and Newtonian flow is most noticeable at the center of the pipeline, whereas
this difference becomes smaller near the wall. This is justified by the fact that at the center
of the pipeline, the shear stress is smaller than the yield stress tauy (5.10), which gives rise to
the formation of the plug zone. However, the shear stress is very large near the walls, so the
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fluid behaves like a non-Newtonian liquid, and when the shear rate is very low (initially), the
Bingham fluid behaves like a Newtonian liquid.
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Figure 5.12: Evolution of the shear rate |Du| next to the pipe wall y = L/100.

0 10 20 30

Times 3  10
-4

0

0.5

1

1.5

2

2.5

|D
u

|

At the pipe center

Bn=2.5

Bn=5

Newtonian

Bn=10

0 5 10 15 20

0

2

4

10
-3

10 15 20 25 30

0

5

10
10

-3

Figure 5.13: Evolution of the shear rate |Du| in the pipe center y = L/20.

This test case demonstrates the capability of the FVC method to simulate the behavior of
a Bingham flow with all its complexities. It also shows that plug zones are present in the case
of weakly compressible model, which may be more realistic than an incompressible model.

5.3.4.2 Flow in inclined pipe

We consider a pipeline inclined by an angle θ, as shown in Figure 5.14, neglecting friction and
the vertical component of the gravitational force, i.e. Q(W) = (0, ρg sin(θ), 0)T . We use a
non-slip boundary conditions and (ρ0,u0) = (1,0).
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g
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Figure 5.14: Geometry of a two-dimensional inclined pipe.

Figure 5.15 show the evolution of flow in a pipe inclined at an angle of 15 degrees. the
behavior of a Bingham fluid is well illustrated by the presentation of viscosity, where it can be
seen that viscosity is greater in the central region and decreases towards the walls Γw, where
deformation rate |Du| is higher.

Figure 5.15: Velocity distribution u (left) and Bingham viscosity µB (right) with µ = 10−3,
τy = 10−3 and θ = 15◦ at t = 3.10−3 (a), t = 6.10−3 (b), and t = 9.10−3 (c).

To better visualize the results, Figure 5.16 is provided, each displaying a cross-sectional
representation of velocity and viscosity along the y-direction at two distinct time points.

The final figure, Figure 5.17, showcases a comparative examination of how the velocity profile
varies with changes in the yield stress. This analysis contrasts the results obtained from the
one-dimensional (1D) scenario, providing a multidimensional perspective on the impact of yield
stress on fluid behavior.
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5. A finite volume method with a diffusion control parameter for compressible
Bingham flows
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Figure 5.16: Cross-section of velocity distribution u (left) and Bingham viscosity (right)
along the y-direction with µ = 10−4, τy = 10−3 and θ = 15◦.
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at t = 10−3.

5.4 Conclusion
In this chapter, we have presented a splitting algorithm that addresses the challenges posed
by compressible Bingham problems using the FVC method. Numerical results for the 1D
case have shown that the FVC method proposed in this thesis is more accurate than the
Roe scheme, and its rapidity makes it an effective approach for the numerical simulation of
Bingham flows. The main result of this chapter is the simulation of the unyielded zones present
in the case of 2D Bingham flow, demonstrating the solid behavior of Bingham fluids above
the yield stress τy, and examining the impact of the wall on the behavior of a Bingham. This
development is remarkable because it represents a major advance in the simulation of weak
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5.4. Conclusion

compressible viscoplastic fluids, and opens the door to many future developments, including
the comparison of compressible and incompressible cases and the application of our method
to a non-isothermal model, for example, [48]. Above all, it is a very important step for us to
move from an explicit solver to a semi-implicit solver, which will enable us to test more test
cases without thinking about the time step which can be very small in some cases.
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Chapter 6

Conclusion and perspectives

In this thesis, we have taken a comprehensive approach to studying viscoplastic fluids and
achieved both theoretical advancements and numerical analysis innovations. On the theoreti-
cal side, we have demonstrated the existence of weak solutions to the incompressible Bingham
Navier-Stokes equation. The numerical part of this thesis aimed to overcome the issue of
numerical dissipation, which is one of the main obstacles to accurately simulating all physi-
cal phenomena. We accomplished this by developing a finite volume method with a control
diffusion parameter for one and two dimensional compressible Bingham problems.

In chapter chapter 2, we constructed an approximate problem using the bi-viscosity model,
which behaves like a Newtonian fluid under weak stress and like a non-Newtonian fluid when
the stress rate is greater than the yield stress. After this approximation, we built a weak
solution to the problem in question by passing to the limit.
The second contribution, chapter 3, of this thesis is the development of an accurate finite
volume method for solving one-dimensional hyperbolic problems. The proposed method has
been tested using several benchmarks; the results show the high accuracy of the method and its
ability to capture contact discontinuities. Moreover, the method is fast and highly accurate.
Then, in chapter 4, we have extended this approach to the two-dimensional compressible
Navier-Stokes equation using the FVC-diamond strategy. In the last work on this thesis,
we introduced a splitting algorithm that takes care of handling the challenges presented by
the FVC method and the diamond method. The numerical results presented in this chapter
confirm the effectiveness of our methodology and pave the way for its practical implementation
in real industrial scenarios.

All these analytical and numerical results encourage us to continue working on these aspects,
and give us good directions for future works. Some of this works are already in progress, such
as the use of the FVC method to simulate incompressible flows (Mach ≤ 0.3) using a weak
compressibility approach. Another work in progress, in collaboration, aims to use a machine
learning model to reduce numerical diffusion by choosing a finite volume scheme adapted to
each interface. Future work also aims to combine the FVC method with the work carried out
as part of the ADAPT project, which focuses on dynamic mesh adaptation.
A natural extension of this work is to generalize these numerical results, not the analytical
ones, to the three-dimensional case.
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Abstract

In this thesis, we propose a mathematical and numerical analysis of viscoplastic flows, with a
particular focus on Bingham fluids. Bingham fluids, a type of viscoplastic fluid, behave like
solids at low stress and like nonlinear fluids above yield stress.

The first work of this thesis is focused on the mathematical analysis of the Navier-Stokes
Bingham equation. We have established the existence and uniqueness of a weak solution. In
this work, we propose to build a weak solution using a bi-viscosity fluid as an approximation.
In particular, we proved that the bi-viscosity tensor converges weakly to the Bingham tensor.

This thesis proposes an efficient finite volume method for simulating viscoplastic flows.
Firstly, a Finite Volume Characteristic (FVC) method for one-dimensional hyperbolic sys-
tems is introduced. This method is extended to two-dimensional problems on an unstructured
hybrid mesh. FVC integrates a numerical diffusion controller to better capture the various
physical phenomena. The final work of the thesis concerns the simulation of compressible
Bingham flows on an unstructured hybrid mesh. A splitting algorithm is proposed, integrat-
ing the FVC method for a numerical diffusion controller to accurately simulate compressible
Bingham equations.

Overall, this thesis represents a significant advance in viscoplastic fluid analysis and simula-
tion, offering valuable insights and innovative numerical approaches to the complex challenges
of viscoplastic fluid dynamics.
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