
UNIVERSITÉ PARIS XIII - SORBONNE PARIS NORD (USPN)

École Doctorale Galilée

Compression d’images par apprentissage profond de bout en bout

End-to-End Deep Learning Image Compression

THÈSE DE DOCTORAT

présentée par Bouzid AREZKI

pour l’obtention du grade de

DOCTEUR EN SCIENCES POUR L’INGENIEUR

soutenue le 6 décembre 2024 devant le jury d’examen composé de :

Marco CAGNAZZO, Professeur - Université de Padova - Rapporteur

François-Xavier COUDOUX, Professeur - Université Poly. Haut de France - Examinateur

Olivier DEFORGES, Professeur - INSA, Rennes - Rapporteur

Pierre DUHAMEL, DR CNRS émérite - L2S CentraleSupélec - Examinateur

Lucile SASSATELLI, Professeure - Université Côte d’Azur - Présidente

Fangchen FENG, Mâıtre de Conférences - Université Sorbonne Paris Nord - Co-encadrant

Anissa MOKRAOUI, Professeure - Université Sorbonne Paris Nord - Directrice

Acknowledgement

First and foremost, I would like to thank Almighty God for giving me the strength,

wisdom, and perseverance to complete this thesis. Without His guidance, none

of this would have been possible.

I would like to express my deepest gratitude to my supervisors, Anissa MOKRAOUI

and Fangchen FENG, for their invaluable guidance, unwavering support, and in-

sightful feedback throughout the entire research process. Your patience, encour-

agement, and expertise have been instrumental in shaping this work.

I would also like to thank my committee members, Pierre DUHAMEL, François-

Xavier COUDOUX, Lucile SASSATELLI, Olivier DESFORGE, and Marco

CAGNAZZO, for their constructive criticism and thoughtful suggestions, which

significantly enriched my research.

I am especially grateful to my family for their endless love, encouragement, and

sacrifices. To my spouse, parents, your faith in me provided the motivation I

needed to persevere. Thank you for your patience and understanding during the

challenging moments.

A heartfelt thanks goes to my colleagues and fellow researchers in the L2TI labora-

tory, whose collaboration, camaraderie, and discussions helped make this journey

more enjoyable and intellectually stimulating. To everyone who has supported

me on this journey, I am deeply grateful.

Résumé

L’explosion des images haute résolution, couplée aux contraintes de stockage et de

bande passante, souligne l’importance de développer des techniques de compres-

sion d’images. Bien que les méthodes traditionnelles soient généralement efficaces,

elles peinent souvent à préserver la qualité d’image à des taux de compression

élevés tout en minimisant la complexité de calculs. Afin de surmonter ces défis,

cette thèse étudie l’intégration des modèles d’apprentissage profond, tels que les

réseaux de neurones convolutifs (CNN), les transformeurs et les modèles d’espace

d’état (SSM). Nous proposons trois approches novatrices. La première approche

propose le transformeur Swin sans encoder la position (Non-Positional Encoding)

(SwinNPE), qui simplifie la complexité du modèle original tout en capturant ef-

ficacement le contexte local. La deuxième approche présente une architecture de

compression d’images basée sur un modèle d’espace d’état (SSMIC). Cette ar-

chitecture trouve un bon équilibre entre efficacité de compression, complexité de

calcul et latence, la rendant idéale pour des applications en temps réel notamment

sur des dispositifs aux ressources limitées. Enfin, la troisième approche propose

un codec universel, qui s’appuie sur une architecture d’auto-encodeur variationnel

(VAE), spécifiquement entrâıné pour un seul compromis débit-distorsion. Grâce à

une stratégie de facteur d’échelle appliquée à ce VAE déjà entrainé, il devient pos-

sible de comprimer des images à différents débits sans nécessiter le réentrâınement

de ce VAE. Les résultats expérimentaux montrent bien que nos modèles de com-

pression offrent des performances compétitives en termes de complexité de calculs

et d’efficacité, rivalisant ainsi les meilleures méthodes de l’état de l’art.

Mots-clés : Compression d’image, Apprentissage profond, Auto-encodeur varia-

tional, Modèle de représentation d’état, Transformeur, Optimisation débit-distorsion,

Débit variable.

iii

Abstract

The explosion of high-resolution images, coupled with storage and bandwidth con-

straints, highlights the importance of developing image compression techniques.

While traditional methods are generally effective, they often struggle to preserve

image quality at high compression rates while minimizing computational com-

plexity. To overcome these challenges, this thesis studies the integration of deep

learning models, such as convolutional neural networks (CNNs), transformers,

and state-space models (SSMs). We propose three innovative approaches. The

first approach introduces the Swin transformer without positional encoding (Non-

Positional Encoding) (SwinNPE), which simplifies the complexity of the original

model while effectively capturing local context. The second approach presents

an image compression architecture based on a state-space model (SSMIC). This

architecture strikes a good balance between compression efficiency, computational

complexity, and latency, making it ideal for real-time applications, particularly

on resource-constrained devices. Finally, the third approach proposes a universal

codec, which relies on a variational auto-encoder (VAE) architecture specifically

trained for a single rate-distortion trade-off. By applying a scaling factor strategy

to this pre-trained VAE, it becomes possible to compress images at different rates

without the need for retraining this VAE. Experimental results clearly demon-

strate that our compression models offer competitive performance in terms of

computational complexity and efficiency, rivaling the best state-of-the-art meth-

ods.

Keywords: Image compression, Deep learning, Variational auto-encoder, Space

state representation Model, Transformer, Rate-distortion optimization, Variable-

bitrate.

v

Contents

1 Introduction 1

1.1 Thesis Context . 3

1.2 Objectives and Contributions . 4

1.3 Thesis Outline . 6

1.4 Publications . 7

1.4.1 International Conference Papers 7

1.4.2 National Conference Papers 7

2 Image Compression Using Deep Learning: State-of-the-Art 9

2.1 Introduction . 13

2.2 Background on Neural Network Models 14

2.2.1 Fully Connected Neural Network (FCNN) 14

2.2.2 Convolutional Neural Network (CNN) 15

2.2.3 Recurrent Neural Network (RNN) 17

2.2.4 Attention Mechanism . 18

2.2.5 State Space Model (SSM) 23

2.3 Auto-Encoder-Based Coding Schemes 26

2.3.1 Generic NN-based Image Compression Systems 27

2.3.1.1 Flowchart of the Coding Architecture 27

2.3.1.2 End-to-End Learning Approach 29

2.3.2 Single Rate NN Model-based Approaches 31

2.3.3 Variable-Rate NN Models-Based Approaches 37

vii

2.3.4 Entropy Coding/Entropy Models 44

2.4 Other Categories of Neural Networks-Based Image Compression Tech-

niques . 48

2.4.1 Neural Networks-Based Transform Coding Schemes 48

2.4.2 Neural Networks-Based Intra-Prediction Coding

Schemes . 49

2.5 Conclusion . 51

3 Convolutional Transformer-Based Image Compression 53

3.1 Introduction . 57

3.2 Positional Encoding in Image Compression 58

3.3 Proposed Swin Non-Positional Encoding (SwinNPE) 61

3.3.1 SwinNPE Encoder . 62

3.3.1.1 Patch Merge Block 63

3.3.1.2 Proposed CW-MSA Block 63

3.3.1.2.1 Standard W-MSA Swin Block 64

3.3.1.2.2 Convolutional Swin Block 65

3.3.2 SwinNPE Decoder . 66

3.3.3 Quantization and Entropy Model in SwinNPE 67

3.4 Experimental Results . 68

3.4.1 Experimental Settings . 68

3.4.2 Performance Analysis . 69

3.4.3 Latent Space Analysis . 73

3.4.4 Ablation Study . 75

3.5 Conclusion . 79

4 Efficient Image Compression Using Advanced State Space Models 81

4.1 Introduction . 85

4.2 Proposed State Space Model-based Image Compression (SSMIC) . . 88

4.2.1 SSMIC Encoder . 89

4.2.2 Patch Merge Block . 89

4.2.3 Visual State Space (VSS) 90

4.2.3.1 VSS Block . 91

4.2.3.2 Selective Scan Approach 92

4.2.4 SSMIC Decoder . 92

4.2.5 Quantization and Entropy Model in SSMIC 92

4.3 Proposed State Space Model-based Image Compression with Chan-

nel Wise Autoregressive (SSMIC CW) 93

4.4 Experimental Results . 93

4.4.1 Experimental Settings . 93

4.4.2 Results and Discussion . 96

4.5 Conclusion . 104

5 Universal End-to-End Neural Network for Lossy Image Compres-

sion 105

5.1 Introduction . 109

5.2 Universal End-to-End VAE for Lossy Image Compression 111

5.2.1 Objective Loss Function . 111

5.2.2 Scaling Factor Strategy . 112

5.2.3 Analysis and Discussion . 114

5.3 Experimental Results . 115

5.3.1 Experimental Settings . 115

5.3.2 Impact of the Scaling Factor on the Codec Bitrate 116

5.3.3 Results and Discussion . 117

5.4 Conclusion . 126

6 Conclusion and Future Work 127

Bibliography 131

A Appendix 149

A.1 Spatial Correlation of Latent . 149

A.2 Image Compression . 149

List of Figures

2.1 Convolution operation. 15

2.2 Workflow of a recurrent neural network cell. 17

2.3 Scaled Dot-Product Attention (left). Multi-Head Attention consists

of several attention layers running in parallel (right) (schemes taken

from [1]). 20

2.4 The Transformer - model architecture (scheme taken from [1]). . . . 22

2.5 Mamba block architecture. 25

2.6 Block diagram NN-based image compression system. 28

2.7 An outline of the simplified attention module(schemes taken from [2]). 33

(a) Non-local attention module 33

(b) Simplified attention module 33

(c) Residual Block . 33

2.8 An outline of the Residual (non-)local attention block (RNAB). . . 34

2.9 An illustration of the Transformer encoder. 35

2.10 An illustration of the hybrid block of Learned Image Compression

with Mixed Transformer Convolutional Neural Network Architec-

tures [3]. 36

2.11 Multistage LSTM auto-encoder (schemes taken from [4]). 38

2.12 Conditional auto-encoder on Lagrange multiplier λ and quantization

bin size ∆. 41

2.13 Modulated auto-encoder. 42

xi

2.14 Operational diagrams of learned compression models. 46

(a) Baseline . 46

(b) Hyperprior . 46

(c) Joint Hyperprior and Context model 46

3.1 Network architecture of our proposed SwinNPE. 61

3.2 Patch Merge block. 63

3.3 Shifted window approach in Swin block (schemes taken from [5]). . 64

3.4 Architecture of the proposed Convolutional Swin Block. 65

(a) Linear Projection . 65

(b) Swin Block . 65

(c) Convolutional Projection . 65

(d) Convolutional Swin Block 65

3.5 The architecture of the Channel-wise AutoRegressive Model. 67

(a) Channel-wise AutoRegressive Model 67

(b) Channel-wise AutoRegressive block 67

3.6 SwinNPE achieves nearly the same results as Entroformer [6] and

SwinT-CHARM [7] that relying on Positional encoding and better

RD performance than CNNs-based methods Factorized [8], Scale [9],

Mean-Scale [10], Joint Hyperprior [10] and standard codecs on the

Kodak [11] image set. 70

3.7 SwinNPE achieves nearly the same results as SwinT-CHARM [7]

and better RD performance than standard codecs on the JPEG-AI

test-set [12]. 71

3.8 Rate-Distortion (RD) performance of SwinNPE on each image of

Kodak [11] dataset. 73

3.9 The average of spatial correlation of all images on Kodak [11]. Swin-

NPE (right) achieves smaller correlation than SwinT-CHARM in

direct neighboring spatial positions (left). 74

3.10 Visualization of the reconstructed images from the Kodak dataset”Kodim23”.

The metrics of SwinNPE [↓ bpp/≈ PSNR(dB)/↑ MS-SSIM(dB)]

compared to those of SwinT, while SwinNPE employs fewer param-

eters and exhibits reduced complexity in comparison to SwinT. . . . 77

3.11 Visualization of the reconstructed images from the Kodak dataset”Kodim01”.

The metrics of SwinNPE [≈ bpp/↑ PSNR(dB)/↓ MS-SSIM(dB)]

compared to those of SwinT, while SwinNPE employs fewer param-

eters and exhibits reduced complexity in comparison to SwinT. . . . 78

4.1 Network architecture of our proposed SSMIC model. 88

4.2 A VSS block [13] consists of an SS2D block, which performs selective

scans in four parallel patterns. 90

4.3 BD-rate performance over VTM-15.0 [14] vs computational complex-

ity (GMACs) on Kodak [11]. 96

4.4 Performance evaluation on the Kodak dataset [11]. 97

4.5 Performance evaluation on the JPEG-AI dataset [12]. 98

4.6 Performance evaluation on the CLIC2020 dataset [15]. 99

4.7 Visualization of the reconstructed images from Kodak dataset”Kodim06”.

The metrics of SSMIC CW [≈ bpp/↑ PSNR(dB)/↑ MS-SSIM(dB)]

compared to those of SSMIC. 102

4.8 Visualization of the reconstructed images from the Kodak dataset”Kodim05”.

The metrics of SSMIC CW [≈ bpp/↑ PSNR(dB)/↑ MS-SSIM(dB)]

compared to those of SSMIC. 103

5.1 Universal codec image architecture. 113

5.2 1st Figure: Rate-distortion reference curve of SwinNPE and dotted

curve depicts the rate-distortion achieved by employing a single reg-

ularization point. 2nd Figure: the same dotted curve (i.e. using the

top right point of SwinNPE) with Asymmetric Gained Deep variable

bitrate model [16] on Kodak dataset [11]. 120

5.3 The dotted curve, SwinNPE optimal curve, represents the envelope

of the four rate-distortion curves obtained when successively exploit-

ing the four SwinNPE trained models (i.e. λK = λ1, λK = λ2,

λK = λ3, λK = λ4) with different values of the scaling factor s on

the Kodak dataset [11]. 121

5.4 Rate-distortion reference curves with different values of the scaling

factor s on the Kodak dataset [11]. 122

5.5 Rate-distortion reference curve of SSMIC (Section 4) and dotted

curve depicts the rate-distortion achieved by employing a single reg-

ularization point on Kodak dataset [11]. 123

5.6 Normalized histograms of the latent space of ”kodim01.png” image in

Kodak dataset [11] with SwinNPE using three scaling factors s = 0.2,

s = 0.5, and s = 0.8. The red curve shows the envelope of the

estimated Laplacian distribution characterized by its mean µ and

scale parameter b. 124

5.7 Normalized histograms of the latent space of ”kodim01.png” image in

Kodak dataset [11] with SSMIC using three scaling factors s = 0.2,

s = 0.5, and s = 0.8. The red curve shows the envelope of the

estimated Laplacian distribution characterized by its mean µ and

scale parameter b. 125

A.1 Average of spatial correlations of all images on Kodak [11] with Swin-

NPE 3 in different λ. 151

A.2 Average of spatial correlations of all images on Kodak [11] with SS-

MIC 4 in different λ. 152

A.3 Average of spatial correlations of all images on Kodak [11] with SS-

MIC CW 4 in different λ. 153

List of Tables

3.1 BD-rate performance using SwinT-CHARM [7] as reference on Ko-

dak [11]. We use ∗ to indicate the approaches for which the num-

bers are sourced from their respective papers. 72

3.2 Time Required for a Comprehensive Ablation Study. 75

4.1 BD-rate performance using VTM-15.0 [14] as reference. 95

4.2 Average latency, measured on an A100 80 Go GPU and an Intel

Xeon Gold 6330 3.10 GHz CPU, using over 2000 images at 256×256

resolution. (*) We conducted the inference without loading the

pre-trained weights because the pre-trained model was unavailable. 100

4.3 Multiply-Add Cumulation (MACs) for different image resolutions.

The last line gives the number of parameters for each model. OM

for Out of Memory. (≈) For SwinNPE (Chapter 3) we follow

the standard assumption that, in many models, each multiply-

accumulate operation corresponds to two floating-point operations. 101

4.4 Floating Point Operations (FLOPs) for different image resolutions.

OM for Out of Memory. 101

5.1 An example of one-hot representation of the scaling factor s using

1 byte. 117

xvii

5.2 Impact of the scaling factor on the birate. (∆R) quantifies the

difference in bitrate with and without the scaling factor, using the

Kodak image ”Kodim01” in two scenarios : (i) the scaling factor

is represented using one, two, or three bytes; (ii) the scaling factor

is concatenated to the latent space and undergoes entropy encoding.118

Acronyms

AD Arithmetic Decoding

AE Arithmetic Encoding

AG-VAE Asymmetric Gained Variational Auto-encoder

AR AutoRegressive

BD-rate Bjontegaard Delta-Rate

BPG Better Portable Graphics

BPP Bit Per Pixel

CCM Checkerboard Context Model

CGAM Channel-Gained Adaptive Module

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

CPU Central Processing Unit

CTMs Continuous-Time Models

CW-MSA Convolutional Window-based Multi-head Self-Attention

DCT Discrete Cosine Transform

xix

DWT Discrete Wavelet Transform

ELIC Efficient Learned Image Compression

EVC Efficient single-model Variable-bit-rate Codec

FCNN Fully Connected Neural Network

FCNNs Fully Connected Neural Networks

FLOPs FLoating-point Operations Per second

GDN Generalized Divisive Normalization

GHz GigaHertz

GMACs Giga Multiply-ACcumulate operations per second

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HEVC High Efficiency Video Coding

IGDN Inverse Generalized Divisive Normalization

LSTM Long Short-Term Memory

MACs Multiply-ACcumulate operations per second

MAEs Modulated Auto-Encoders

MHSA Multi-Head Self Attention

MLIC Multi-reference entropy model for Learned Image Compression

MLP Multi-Layer Perceptron

MLPs Multi-Layer Perceptrons

MS-SSIM Multi Scale Structural Similarity Index Measure

MSE Mean Squared Error

multi-RD multi-rate-distortion

NLAM Non-Local Attention Module

NLN Non-Local Network

NLP Natural Language Processing

NN Neural Network

NNs Neural Networks

ODEs Ordinary Differential Equations

p.p. Percentage Point

PE Positional Encoding

PSNR Peak Signal to Noise Ratio

R-D Rate-Distortion

RGB Red Green and Blue

RLAUs Residual connected Lightweight Attention Units

RMSNorm Root Mean Square Normalisation

RNAB Residual (Non-)local Attention Block

RNN Recurrent Neural Network

RNNs Recurrent Neural Networks

SABR Spatially Adaptive Bit Rate

SATD Sum of Absolute Transformed Difference

SlimCAEs Slimmable Compressive Auto-Encoders

SS2D 2D Selective Scan

SSIM Structural Similarity Indexing Measure

SSM State Space Model

SSMIC State Space Model-based Image Compression

SSMs State Space Models

subAEs sub-Auto-Encodes

SW-MSA Shifted Window Multi-head Self-Attention

VAE Variational Auto-Encoder

ViT Vision Transformer

VSS Visual State Space

W-MSA Window-based Multi-head Self-Attention

ZOH Zero-Order Hold

1. Introduction

Contents

1.1 Thesis Context . 3

1.2 Objectives and Contributions 4

1.3 Thesis Outline . 6

1.4 Publications . 7

1.4.1 International Conference Papers 7

1.4.2 National Conference Papers 7

1

1.1. Thesis Context

In the fast-evolving digital age, the need for efficient image compression is more

crucial than ever. The proliferation of high-resolution images across the internet,

combined with the constraints of storage and bandwidth, has driven the need for

advanced compression techniques. The primary goal of image compression is to

reduce the amount of data required to represent an image while preserving a level

of visual quality that meets the viewer’s expectations.

Image compression methods are broadly classified into two types: lossless and

lossy compression. Lossless techniques compress images without any data loss, al-

lowing for the exact reconstruction of the original image. However, these methods

typically result in lower compression ratios. Conversely, lossy compression tech-

niques achieve higher compression by discarding some information, which leads

to a reduction in the quality of the reconstructed image. Despite advances in re-

search, traditional image compression methods often rely on manually engineered

features, which can limit their effectiveness in preserving image quality at higher

compression rates.

Recent advancements in deep learning, particularly in neural networks, have

opened up new possibilities for image compression. Techniques such as Convo-

lutional Neural Networks (CNNs), Transformers, and more recently, State Space

Models (SSMs), have demonstrated significant potential in overcoming the limi-

tations of traditional approaches. The ability of learnable methods to adaptively

extract features from images, making them ”data-dependent”, has revolutionized

the field, offering a promising solution to these challenges. By training neural

networks on large image datasets, these models can achieve more efficient com-

pression and deliver higher-quality reconstruction at greater compression ratios

3

compared to traditional methods.

Despite the success of learnable image compression methods, they may not be

well-suited for real-time applications where both speed and efficiency are crucial.

The complexity of neural networks, particularly those with deep architectures or

attention mechanisms, often results in significant computational overhead. This

can lead to increased latency during the encoding and decoding processes, making

these approaches impractical for scenarios requiring immediate image processing,

such as video streaming, live broadcasting, or on-device image compression in

mobile applications. Additionally, the high memory and processing power re-

quirements of these models can hinder their deployment in resource-constrained

environments, such as embedded systems or devices with limited hardware capa-

bilities. Consequently, there is a growing need for more advanced techniques that

can handle the increasing complexity of these methods.

This thesis investigates the intersection of deep learning and image compres-

sion, intending to develop innovative frameworks that achieve high compression

efficiency while also reducing computational complexity and latency, making them

suitable for real-world applications. By leveraging state-of-the-art techniques,

such as convolutional and transformer models, and integrating SSMs, this re-

search aims to push the boundaries of image compression, offering solutions that

are both powerful and practical.

1.2. Objectives and Contributions

While much research on auto-encoder-based coding schemes has concentrated on

improving compression performance, this thesis will shift the focus to achieving

better compression efficiency with reduced computational costs. Specifically, we

4

aim to develop an auto-encoder-based framework that achieves higher efficiency

by reducing computational complexity and time consumption while enhancing

compression performance. Our goal is to create models that are both efficient

and effective, with fewer parameters and lower computational requirements.

The key contributions of this thesis are outlined as follows:

• First, we address the image compression problem by introducing the Swin

Non-Positional Encoding (SwinNPE) transformer. SwinNPE improves ef-

ficiency while reducing the number of model parameters. Specifically, we

generalize the Swin cell [5] and propose the Swin convolutional block, which

better handles local correlations between image patches. Additionally, this

Swin convolutional block improves the capture of the local context between

tokens. We argue that the convolutional operation inside the Swin block

serves as a more efficient alternative to positional encoding, strengthening

local dependencies and reducing overall complexity.

• Second, we propose a State Space Model-based Image Compression (SS-

MIC) architecture. This innovative architecture strikes a balance between

compression efficiency, computational complexity, and latency, making it

well-suited for practical multimedia processing applications. SSMIC inte-

grates state space models from the Mamba model [17] into the image com-

pression pipeline, improving contextual reasoning while optimizing compu-

tational and memory requirements. It is specifically designed for efficient

real-time image compression on resource-constrained devices.

• Finally, we propose a universal end-to-end Variational Auto-Encoder (VAE)

framework for lossy image compression. This model offers a flexible and ef-

ficient approach to variable-rate compression by employing a modulation

5

that adjusts the representation of image features, optimizing the trade-

off between bitrate and image quality. This adaptability eliminates the

need for designing multiple models (i.e. retraining across different compres-

sion rates), offering a practical solution for diverse multimedia applications

where bitrate flexibility is crucial. Experimental results demonstrate that

our VAE-based approach achieves competitive performance while signifi-

cantly reducing computational complexity, making it suitable for real-time

applications on resource-constrained devices.

1.3. Thesis Outline

This thesis is structured as follows:

Chapter 2 reviews the prominent neural network models commonly used in

the context of image compression. It also examines existing deep learning-based

image compression techniques, highlighting the gaps that this research aims to

address.

Chapter 3 introduces the Convolutional Transformer-Based Image Compression

architecture, providing an in-depth explanation of the proposed architecture with

a comprehensive analysis of the experimental results.

Chapter 4 presents an efficient image compression method leveraging advanced

state space models, detailing the architecture and demonstrating its efficiency in

comparison to state-of-the-art methods.

Chapter 5 presents a universal neural network for lossy image compression. It

details a strategy that utilizes a single variable-rate VAE framework trained for

a specific rate-distortion trade-off, allowing images to be encoded and decoded at

multiple bitrates without the need for retraining the VAE architecture.

6

Finally, Chapter 6 concludes the thesis, discussing its limitations and proposing

directions for future research.

1.4. Publications

1.4.1. International Conference Papers

• Arezki Bouzid, Mokraoui Anissa and Feng Fangchen, “Efficient Image Com-

pression Using Advanced State Space Models”, IEEE 26th International

Workshop on Multimedia Signal Processing (MMSP), Purdue University,

West Lafayette, Indiana, U.S.A, October 2–4, 2024.

• Arezki Bouzid, Feng Fangchen, and Mokraoui Anissa, “Universal End-to-

End Neural Network for Lossy Image Compression”, European Signal Pro-

cessing Conference (EUSIPCO), Lyon, France, August 2024.

• Arezki Bouzid, Feng Fangchen, and Mokraoui Anissa, “Convolutional Transformer-

Based Image Compression”, IEEE International on Signal Processing: Al-

gorithms, Architectures, Arrangements, and Applications (SPA), 154–159,

Poznań, Poland, September 2023.

Best Paper Presentation Award.

1.4.2. National Conference Papers

• Bouzid Arezki, Anissa Mokraoui and Fangchen Feng, “Compression effi-

cace d’images basée sur un modèle de représentation d’état”, 23ème édition

de la conférence Compression et Représentation des Signaux Audiovisuels

(CORESA), Rennes, France, novembre 2024.

7

• Bouzid Arezki, Fangchen Feng and Anissa Mokraoui, “Transformer-Based

Image Compression Without Positional Encoding”, 22ème édition de la

conférence Compression et Représentation des Signaux Audiovisuels (CORESA),

Lille, France, juin 2023.

8

2. Image Compression Using Deep

Learning: State-of-the-Art

Contents

2.1 Introduction . 13

2.2 Background on Neural Network Models 14

2.2.1 Fully Connected Neural Network (FCNN) 14

2.2.2 Convolutional Neural Network (CNN) 15

2.2.3 Recurrent Neural Network (RNN) 17

2.2.4 Attention Mechanism 18

2.2.5 State Space Model (SSM) 23

2.3 Auto-Encoder-Based Coding Schemes 26

2.3.1 Generic NN-based Image Compression Systems 27

2.3.1.1 Flowchart of the Coding Architecture 27

2.3.1.2 End-to-End Learning Approach 29

2.3.2 Single Rate NN Model-based Approaches 31

2.3.3 Variable-Rate NN Models-Based Approaches 37

2.3.4 Entropy Coding/Entropy Models 44

2.4 Other Categories of Neural Networks-Based Image

Compression Techniques 48

9

2.4.1 Neural Networks-Based Transform Coding Schemes . . 48

2.4.2 Neural Networks-Based Intra-Prediction Coding

Schemes . 49

2.5 Conclusion . 51

10

Summary of this Chapter

This chapter provides an in-depth overview of image compression techniques us-

ing deep learning, with a particular emphasis on auto-encoder-based approaches.

It begins by outlining traditional compression methods, followed by a review

of neural network models including Fully Connected Neural Network (FCNN),

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), atten-

tion mechanisms, and State Space Model (SSM). The focus is on auto-encoders,

highlighting their applications in both single-rate and variable-rate compression,

and demonstrating how these models enhance data representation and compres-

sion efficiency. Additionally, this chapter discusses the role of entropy coding in

optimizing compression rates, while also briefly addressing other innovative neu-

ral network approaches, such as transform coding and intra-prediction schemes.

Overall, it establishes auto-encoder-based methods as the forefront of cutting-edge

image compression techniques leveraging deep learning.

11

2.1. Introduction

Traditional image compression techniques can be classified into two main cat-

egories: predictive coding schemes, as well as transform coding schemes, [18].

Notably, the latter category has attracted considerable attention over the recent

decade. Transform coding schemes, in particular, enable the transformation of

images into new domains that possess more relevant characteristics (e.g., signal

decorrelation, frequency, multi-scale analysis, compact representation, etc) [19]

making them more suitable for effective compression.

With the advent of deep learning, transform coding schemes have witnessed a

paradigm shift. Neural networks have emerged as powerful tools for learning op-

timal representations of images, enabling adaptive and data-driven compression.

These models can capture complex patterns and dependencies in visual data,

significantly improving data reduction efficiency while maintaining high visual

quality.

While deep learning has largely driven recent advancements in image compres-

sion, other approaches, such as hybrid methods that combine neural networks

with traditional coding schemes, have also been proposed. These methods extend

conventional techniques by integrating machine learning components to optimize

both transform and prediction steps, offering promising alternatives in specific

contexts.

This chapter, however, primarily focuses on auto-encoder-based techniques

for image compression, which belong to the transform coding schemes. It pro-

vides a thorough exploration of state-of-the-art architectures, including, CNNs,

transformers, and attention-based models. Furthermore, we also provide a brief

overview of other approaches, such as neural network-enhanced transform coding

13

and predictive coding.

The remainder of this chapter is organized as follows. First, background on

Neural Networks (NNs) is provided in Section 2.2. Then, auto-encoder-based

techniques and other categories of NNs are discussed in Section 2.3 and 2.4

respectively. Finally, Section 2.5 concludes this chapter.

2.2. Background on Neural Network Models

Identifying nonlinear functions that accurately capture relationships within data

(image, text, etc.) can be quite challenging. To tackle this issue, Neural Network

(NN) were developed, as they can approximate any nonlinear function by learning

from the data they encounter. In the following subsections, we will present the

most effective neural network models, with a particular emphasis on those applied

in image compression.

2.2.1. Fully Connected Neural Network (FCNN)

The Multi-Layer Perceptron (MLP) is one of the earliest neural network architec-

tures, originating from the pioneering work of psychologist Frank Rosenblatt [20].

Inspired by natural neural networks found in the brain, Rosenblatt introduced the

concept of a perceptron. An MLP consists of stacked layers containing numerous

processing units, commonly referred to as neurons or perceptrons. Operating as

a feed-forward neural network, it includes an input layer, at least one hidden

layer, and an output layer. This structure ensures that each neuron in a layer is

densely connected to every neuron in the preceding and subsequent layers. Each

neuron receives the output from the preceding layer xl−1, where l denotes the

14

layer number, and applies specific operations to it:

y
(i)
l = gl(w

(i)
l xl−1 + b

(i)
l), (2.1)

where i is the neuron number in layer l, y
(i)
l represents the output of the neuron,

gl is the activation function, w
(i)
l are the weights of the neuron, and b

(i)
l is the bias

term.

It is important to highlight that Fully Connected Neural Networks (FCNNs),

including Multi-Layer Perceptrons (MLPs), have a wide range of applications,

ranging from natural language processing and image recognition to more complex

tasks like time series estimation and sentiment analysis. This versatility makes

them both fascinating and highly valued in the field of neural networks [21, 22],

including in deep learning-based image compression methods [23].

2.2.2. Convolutional Neural Network (CNN)

1 1 0 1 1

010110

1 0 1 0 0 1

101010

0 1 1 0 0 1

101101

1 0 1

110

1 0 1

1 2 3

654

7 8 9

31

Input Kernel OutputLoal reeptive �eld

⋆

0

Figure 2.1: Convolution operation.

A CNN is a type of artificial neural network primarily designed for computer

vision tasks, including image classification [24], object detection [25], image com-

pression [8,26], image segmentation, and feature extraction in general [27]. Unlike

15

other networks that process input data in segments, a CNN analyzes the entire

input at once. This capability allows CNNs to effectively extract features and

hidden information, which is crucial for identifying spatial hierarchies in images,

such as edges, textures, and patterns.

Typically, a CNN consists of an input layer, a series of convolutional layers,

each followed by activation functions, and an output layer. Each convolutional

layer contains one or more kernels K:

(I ∗K)(i, j) =
m=0∑
M−1

n=0∑
N−1

I(i+m, i+ n)K(m,n), (2.2)

where M and N are the dimensions of the kernel K.

During the forward pass in a two-dimensional (2D) convolution, each kernel in

K scans the input I ∈ RW×H×C across its dimensions (width W , height H and

depth C), performing the convolution operation to generate a 2D activation map

(I ∗K). The outputs from all kernels are then combined to produce the layer’s

output, as illustrated in Figure 2.1.

Depending on the specific application, a CNN typically includes additional out-

put layers beyond the convolutional ones. For instance, batch normalization layers

can be used to normalize the inputs of layers through re-centering and re-scaling,

thereby improving training stability and training speed. Pooling layers, such as

max pooling or average pooling, are also employed to reduce the dimensionality

of feature maps, providing the network with a more comprehensive view of the

input.

16

2.2.3. Recurrent Neural Network (RNN)

Jeffrey L. Elman [28] was the first to introduce the RNN structure for processing

sequential and time-series data by proposing a loop-based RNN cell. In this con-

text, activation functions initially introduced in [29] are fed back into the RNN

cell. Since this pioneering work, RNNs have achieved significant success due to

their ability to retain memory, allowing computations to consider historical infor-

mation. The unfolded structure of a recurrent neural network cell is illustrated

in Fig 2.2.

Figure 2.2: Workflow of a recurrent neural network cell.

We denote t as the time-step, x<t> as the input, y<t> as the output, and a<t>

as the activation fed back into the network cell. The variables a<t> and y<t> can

be expressed as follows:

a<t> = g1(waaa
<t−1> + waxx

<t> + ba), (2.3)

y<t> = g2(wyaa
<t> + by). (2.4)

In this context, g1 and g2 represent two activation functions. The parameters waa

and wax are applied to a<t−1> and x<t−1> respectively to compute a<t>, with ba

17

serving as the bias. Similarly, y<t> is derived by applying the parameter wya to

a<t> and adding the bias by. The output y<t> integrates information from the

current input x<t> as well as from all previous inputs {x<1>, . . . , x<t>}.

Recurrent Neural Networks (RNNs) face challenges like vanishing gradients and

short-term compared to other neural network architectures. To address these

issues and learn long-term dependencies, two specific variants, known as Long

Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU), have

been developed. More details about these architectures can be found in [30]

and [31]. Understanding these advancements is essential because RNNs are pow-

erful tools for modeling sequential and temporal data. Understanding their struc-

ture and applications is essential for leveraging their capabilities in various deep-

learning tasks, including Language modeling, machine translation, text genera-

tion, sentiment analysis, and image compression.

2.2.4. Attention Mechanism

Attention mechanisms have been successfully employed across a variety of tasks.

In machine translation, for instance, by focusing on the most relevant parts of the

input sentence, attention mechanisms have significantly improved the accuracy

of machine translation models. They have also proven effective in Text Summa-

rization [32], Image Classification [33], object detection [34] and image compres-

sion [7]. In recent years, these attention mechanisms have emerged as a crucial

component in neural networks, greatly improving model performance across var-

ious domains, including natural language processing, computer vision, and image

compression. The attention mechanism was first introduced by Bahdanau et al.

in 2014 [35] in the context of machine translation. The fundamental idea of at-

tention is to enable the model to focus on relevant parts of the input sequence

18

as it generates each part of the output sequence. This mechanism mimics the

human cognitive process of selective attention, enabling the model to emphasize

specific aspects of information while disregarding others. As a result, it enhances

the model’s capability to handle long-range dependencies and complex structures

in the data.

Despite the variations in attention mechanism, such as the additive method

proposed by Bahdanau et al. [35] or the dot-product method proposed by Vaswani

et al. [1] as illustrated in Figure 2.3, or Self-Attention (a special case of dot-

product), the fundamental process remains the same. A Score S is computed for

each pair (xi, yj) from the input sequence X = {x1, x2, . . . , xn} and the output

sequence Y = {y1, y2, . . . , ym} which represents the relevance of the input element

to the current output element. A softmax function is then applied to generate a

set of weights that reflect the importance of each input element relative to the

current output element:

αij = Softmax(S(xi, yj)). (2.5)

Building on this, a context vector Vcxt is generated through a weighted sum of

each element in the input x and its corresponding attention weight, capturing the

relevant information necessary for generating the current output element. This

context vector, combined with the model’s current state, produces the final output

element:

Vcxt(yi) =
n∑

i=1

αijxi. (2.6)

More specifically, as illustrated in Figure 2.3, ”Scaled Dot-Product Attention”

proposed by Vaswani et al. [1] computes the attention across a set of queries

19

Figure 2.3: Scaled Dot-Product Attention (left). Multi-Head Attention consists
of several attention layers running in parallel (right) (schemes taken from [1]).

simultaneously:

Attention(Q,K, V) = Softmax(
QKT

√
dk

)V, (2.7)

where queries, keys, and values are grouped into matrices Q,K, and V which are

linearly projected from the input, adding a scale factor 1√
dk
.

Transformers

The Transformer model has fundamentally revolutionized the use of attention

mechanisms in neural networks. Unlike RNNs and CNNs, which depend on se-

quential processing, the Transformer uses self-attention mechanisms to handle

input and output sequences with remarkable efficiency. The latter consists of an

encoder-decoder architecture, where both the encoder and decoder are composed

of multiple layers of self-attention and feed-forward networks, as shown in Fig-

ure 2.4. The Key components of the Transformer include Multi-Head Attention

and Positional Encoding, which will be described below.

20

Multi-Head Attention – This enhances the self-attention mechanism by allow-

ing the model to focus on different segments of the input sequence simultaneously.

Multiple attention heads h operate in parallel, each attending to different aspects

of the input. Rather than applying a single attention function, as shown in Eq. 2.7

(with dmodel-dimensional keys, values and queries), Vaswani et al. [1] project the

queries, keys and values h times using different linear projections to dk, dk, and

dv dimensions respectively. Each linear projection of these sets of keys, values,

and queries performs the attention function from Eq. 2.7 in parallel given dv-

dimensional output values concatenated and once again projected as depicted in

Figure 2.3:

MultiHead(Q,K, V) = Concat(h1, . . . , hh)W
O

hi = Attention(QWQ
i , KWK

i , V W V
i)

(2.8)

where the projections are performed through the parameter matrices WQ
i ∈

Rdmodel×dk , WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv and WO
i ∈ Rhdv×dmodel .

Positional Encoding (PE) – Since the Transformer lacks inherent sequence in-

formation, positional encodings are added to the input embeddings as introduced

in Vaswani et al. [1], to provide the model with information about the position of

each token in the sequence. The Transformer architecture in [1] employs a specific

method for positional encoding:

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
)

(2.9)

where PE(pos, 2i) and PE(pos, 2i + 1) represent the encoding for the 2i-th and

2i + 1-th dimension of the position pos respectively, pos indicates the position

21

of the token in the sequence. This approach results in a matrix with the same

dimension as the input embeddings, which can be added to the input embeddings

before feeding them into the model, as illustrated in Figure 2.4. While the sine

and cosine method is widely used, other approaches have also been proposed:

Figure 2.4: The Transformer - model architecture (scheme taken from [1]).

Learned Positional Embedding – This method allows the model to optimize the

positional representations directly from the data, allowing positional embeddings

to be learned during training rather than relying on fixed functions [1].

Relative Positional Encoding – The approach proposed by Shaw et al. [36] encodes

the relative distances between tokens rather than their absolute positions. This

relative positional encoding effectively captures local dependencies and offers more

flexibility than absolute position representations, particularly for visual tasks.

22

2.2.5. State Space Model (SSM)

SSMs offer a powerful framework for modeling dynamic systems, where observa-

tions are generated from underlying states that evolve over time. These models

characterize a system using a set of latent (hidden) variables known as states,

which evolve over time according to a state transition process. The observed

data is generated from these states through an observation process. An SSM

consists of two main components: State Transition and Observation Model.

State Transition Model – The evolution of the hidden state from one-time

step to the next can be defined as follows:

ht = f(ht−1, xt) (2.10)

where, ht denotes the hidden state at time t, ht−1 represents the hidden state at

the previous time step, f is the state transition function, and xt signifies process

noise or external inputs.

Observation Model – It defines how the observed data is generated from the

hidden state:

yt = g(ht, vt) (2.11)

Here, yt denotes the observed data at time t, g is the observation function, and

vt represents observation noise.

SSMs can be either linear, where the state transition function f and observation

function g are linear functions, or non-linear in which case f and g are non-linear

functions, suitable for systems exhibiting non-linear dynamics.

Recently Albert Gu, Karan Goel, and Christopher Ré [37] introduced ”S4”, an

efficient Modeling for handling Long Sequences using Structured State Spaces.

23

This approach is based on the classical linear state space model, which maps a

one-dimensional input signal x(t) ∈ R to a one-dimensional output signal y(t) ∈ R

through a latent state h(t) ∈ RN of dimension N , Typically, we can formulate

the process by linear Ordinary Differential Equations (ODEs):

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(2.12)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N are parameters representing neural

networks in deep learning.

To handle the discrete input sequence x = [x0, x1, . . . , xL−1] ∈ RL, the param-

eters in equation (2.12) are discretized using a step size ∆, which indicates the

resolution of the continuous input x(t) [37]. In particular, the continuous param-

eters A and B are converted into their discrete counterparts A and B using the

Zero-Order Hold (ZOH) technique, defined as follows:

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I).∆B.
(2.13)

After discretizing A and B to obtain A and B, equation (2.12) can be reformu-

lated as follows:

ht = Aht−1 +Bxt,

yt = Cht.
(2.14)

SSMs can be efficiently computed using RNNs. This recursive process can be

24

reformulated and computed as a convolution:

K = (CB,CAB, . . . ,CA
L−1

B),

y = x ∗K,
(2.15)

where L denotes the length of the input sequence x, and K ∈ RL represents the

SSM convolution kernel.

Figure 2.5: Mamba block architecture.

To enhance the efficiency of SSM computations, Mamba [17] as illustrated in

Figure 2.5, further incorporates data-dependence to capture contextual informa-

tion in equation (2.12). It proposes a novel parameterization method for SSMs

that integrates an input-dependent selection mechanism, referred to as S6. Al-

though the recurrent nature of SSMs limits full parallelization, Mamba employs

structural reparameterization tricks and a hardware-efficient parallel scanning al-

gorithm to significantly improve overall efficiency.

As a result, many studies have adapted Mamba from Natural Language Pro-

25

cessing (NLP) to the vision domain, including applications in image classifica-

tion [13,38], multimodal learning [39], and others [40–42]. These adaptations aim

to further enhance the capability of SSMs in handling complex and non-linear

time-series data. Inspired by these advancements, we aim to implement this type

of neural network for image compression.

2.3. Auto-Encoder-Based Coding Schemes

Auto-encoder-based image compression techniques have gained significant atten-

tion in recent years due to their effectiveness. In these methods, the encoder acts

similarly to the transformation stage, the quantization process mimics sampling,

and bitrate estimation serves as a form of regularization on the prior distribution.

These similarities make auto-encoders well-suited for image compression. Many

approaches have leveraged increasingly sophisticated neural network architectures

for each component to improve compression performance. However, despite their

promising results, these models have notable limitations. In addition to their

high computational cost, they are typically trained end-to-end, meaning a single

trained model can usually only generate one fixed bitrate for a given image.

Since the optimal bitrate is often unknown prior to compression, this restricts

the practical utility of such models. To address this, several studies have proposed

solutions for variable bitrate compression using deep learning. The core concept

is to train a single model, or as few models as necessary, that can generate a

variety of bitrates during inference, allowing users to select their preferred bitrate.

Furthermore, our survey highlights that a key component of these compression

models is the entropy model. This model is crucial for accurately estimating the

information content of an image, which directly influences overall compression

26

efficiency. A well-designed entropy model enables the framework to allocate bits

adaptively and efficiently, resulting in improved performance in both compression

rate and image quality. Over the past two decades, there have been significant

advancements in both neural network architecture and probabilistic models for

entropy estimation.

In the following sections, we first provide an overview of the generic architecture

and end-to-end learning approach of auto-encoder-based coding schemes for image

compression. Next, we review the most relevant models for this PhD thesis,

categorizing them based on their support for variable bitrate compression. Finally,

we explore various approaches that use different entropy models.

2.3.1. Generic NN-based Image Compression Systems

In what follows, we outline the primary architecture and its associated end-to-

end learning approach, which are commonly found in most neural network-based

image compression methods.

2.3.1.1. Flowchart of the Coding Architecture

A generic neural network-based image compression system is depicted in Fig-

ure 2.6. As illustrated in this Figure 2.6, for a given input image x, the following

steps are performed:

• Encoder: this component, denoted as E in what follows, is parameterized

by θE and generates a compact representation y often referred to as the latent

representation of the original image x which serves as the encoder’s input:

y = E(x; θE) (2.16)

27

Figure 2.6: Block diagram NN-based image compression system.

• Quantization and Entropy Coding: A quantizer Q, followed by an entropy

coding model, is then applied to the latent representation y, resulting in the

quantized coefficients ŷ:

ŷ = Q(y)

= Q(E(x; θE)) (2.17)

• Decoder: this component, represented by D and parameterized by θD, aims

to reconstruct the image x̃ from the encoded representation:

x̃ = D(ŷ; θD)

= D(Q(E(x; θE)); θD) (2.18)

This structure is known as an Autoencoder architecture, commonly used in deep

learning-based compression methods. The main distinctions among existing AE-

28

based approaches typically revolve around two key aspects: the employed neural

network models (Section 2.2) and the loss function along with the end-to-end

training approach used to optimize the model weights, which will be discussed in

the following sections.

2.3.1.2. End-to-End Learning Approach

An end-to-end learning approach involves jointly optimizing the entire system,

from encoding to decoding, within a single training pipeline. This means that

both the encoder and decoder, represented by the parameters (θE and θD) re-

spectively, are trained simultaneously with θP which represents the parameter of

the probability distribution estimation model (additional details will be provided

below).

To minimize a loss function that balances two main objectives: reducing the

bitrate of the encoded image while preserving the quality of the reconstructed

image. Consequently, a typical loss function L corresponds to a Rate-Distortion

(R-D) criterion defined as follows:

L(θD, θE, θP , λ) = R(θE, θP) + λD(θE, θD) (2.19)

where λ regulates the trade-off between the rateR(θE, θP) and distortionD(θE, θD)

terms.

Distortion Term – The distortion term D(θE, θD) can be defined as follows:

D(θE, θD) = Ex∼px(d(x, x̂)) (2.20)

29

where px corresponds to the probability distribution of the original image x, and

x̂ is the reconstructed image. The distortion is typically calculated using a metric

such as Mean Squared Error (MSE) or Structural Similarity Indexing Measure

(SSIM).

Rate Term – The rate term R(θE, θP) is defined as follows:

R(θE, θP) = Ey∼py(−log(qy(y))) (2.21)

where py refers to the probability distribution of the latent representation y and

qy(y) is the estimated probability distribution of y, and θP refers to the parameters

of the probability distribution estimation model. Further details on the latter are

provided below.

a) Entropy Estimation and Coding Challenges – Entropy coding is com-

putationally intensive and inherently non-differentiable, making it challenging to

integrate directly into the training process of deep learning models. As a result,

entropy estimation becomes a crucial alternative. According to information the-

ory, the bitrate of an encoded signal is fundamentally constrained by its entropy,

which can be derived from the probability distribution of the symbols within the

signal. To address this, a probability distribution estimation model, denoted as

θP , is employed to estimate the latent entropy. This entropy is then incorpo-

rated into the loss function to optimize and minimize the coding rate, as shown

in Equation 2.21. This method allows for effective rate-distortion optimization

without the computational burden of actual entropy coding during training.

b) Quantization Approximation – In the quantization step, the derivative

of the rounding function, is almost zero except at integers, making the quantizer

challenging to incorporate directly into the gradient-based optimization process.

To overcome this issue, the R-D optimization problem can be relaxed using specific

30

approximations for the quantization. For example, Theis et al. [43] and Ballé et

al. [8] proposed substituting the gradient of the quantizer and additive uniform

noise during training respectively, most existing methods follow Ballé’s approach

by adding a uniform noise to the latent representation during training [9,10,44,45],

the rate function is then approximated using a given entropy model.

It is important to note that higher values of λ increase the distortion term λD,

penalizing the model by prioritizing the distortion reduction. While this leads to

improved reconstruction quality, but it also requires higher bitrates for storage.

As a result, different models are trained for various levels of reconstruction quality

in approaches that do not support variable bitrates, as discussed in the following

section 2.3.2.

2.3.2. Single Rate NN Model-based Approaches

The field of image compression has experienced remarkable advancements with

the emergence of deep learning-based auto-encoder methods. Numerous meth-

ods and techniques have been developed, each designed to enhance compression

effectiveness through innovative architectures. In this section, rather than at-

tempting to review all methods, we aim to categorize them based on the key

techniques that have significantly contributed to the literature, emphasizing the

major advancements in the state of the art. This is what we present below.

a) Incorporating a Layer of Generalized Divisive Normalization – One

of the earliest contributions to NN-based image compression was made by Ballé et

al. [8], who introduced the use of a single layer of Generalized Divisive Normaliza-

tion (GDN) as an analysis transform, along with an Inverse Generalized Divisive

Normalization (IGDN) as a synthesis transform. GDN was found to be more effi-

cient than a sequence of linear operations with point-wise nonlinearities [26], due

31

to its spatial adaptability and inherent nonlinearity, This improves normalization

and stabilization during the training process, contributing to more efficient and

robust model performance. As a result, GDN has become a fundamental building

block for many image compression coding schemes [8], [44], [9], [10]. GDN can be

expressed as follows. Given an input vector v and its corresponding ith channel

vi, the output of GDN ui at i
th channel is expressed as follows:

ui(m,n) =
vi(m,n)

(βi +
∑

j γi,j(vj(m,n)2))
1
2

(2.22)

where (m,n) denotes the spatial location in the vector vi, j corresponds to the

channel number, and βi and γi,j are GDN parameters optimized during the train-

ing process. To retrieve the original information, the Inverse Generalized Divisive

Normalization is applied as follows:

vi(m,n) = ui(m,n)(βi +
∑
j

γi,j(uj(m,n)2))
1
2 . (2.23)

b) Improved Architectures Using GDN and Hyperprior – The work

in [44] builds upon the single-layer method introduced in [8] by proposing a Fac-

torized Model that incorporates GDN and its inverse IGDN into a stride-based

convolutional neural network for both the encoder and decoder. In this approach,

each convolutional layer is followed by a GDN layer, improving data normalization

and stability throughout the network.

An extended version of the Factorized Model [44] was developed in [9] by intro-

ducing a Hyperprior model, enabling the network to more effectively capture the

spatial dependencies in the encoder’s output. This was accomplished by stacking

an additional auto-encoder on top of the existing structure. The work by Ballé

et al. [9] established the foundation for numerous Hyperprior architectures in im-

32

(a) Non-local attention module

(b) Simplified attention module

(c) Residual Block

Figure 2.7: An outline of the simplified attention module(schemes taken from [2]).

age compression [10], [46], [2], [47]. Further details on these architectures will be

discussed in Section 2.3.4.

c) Incorporating Residual Blocks with Attention Mechanisms – While

Ballé et al. [8, 9, 44] and Minnen et al. [10] deployed CNN-based encoder and

decoder networks, studies such as in [2,46–48] and [49] explored different networks

using attention modules that have been proven to improve image restoration and

compression, as well as residual blocks that allow an increased receptive field

and optimize the rate-distortion performance. Although CNN-based methods

perform well in resource-constrained environments due to their hardware-efficient

convolution operations, their localized receptive fields [50] limit their ability to

model global context, thereby constraining overall compression performance.

The attention mechanism performs well in the global perception and thereby

benefits redundancy reduction. For instance, Chen et al. [46] propose a hybrid

method that uses residual blocks and Non-Local Attention Module (NLAM) as

basic units in the encoder-decoder pair. It is composed of three parts as illustrated

33

Figure 2.8: An outline of the Residual (non-)local attention block (RNAB).

in Figure 2.7a. The first part consists of three convolution-based residual blocks

to generate features. The second part is a Non-Local Network (NLN) proposed in

[51], and the last part is a set of three residual blocks, one 1×1 convolution and the

sigmoid activation. To achieve adaptive processing in the network, the attention

mask is applied to the input feature map via an element-wise multiplication. Chen

et al. [2] proposed a simplified version of the NLAM proposed in [46], which omits

the NLN component to reduce training time. Their approach utilizes only residual

blocks, a convolutional layer, and a sigmoid activation function, as illustrated in

Figure 2.7b.

Building on the works of [46] and [2], Patel et al. [47] proposed an image

compression scheme that features two encoder-decoder pairs composed of con-

volutional residual blocks integrated with non-local/self-attention layers. A key

aspect of their approach is the incorporation of a saliency model and a salient

mask, driven b the insight that the human eye is more sensitive to artifacts in

textured regions of images. The saliency model processes the original image to

34

generate a saliency mask, which serves two primary functions. First, it effectively

masks the quantized latent representations, ensuring that more critical areas of

the image are prioritized during compression. Second, it enables the distortion

loss to assign greater importance to salient regions, thus optimizing the overall

visual quality of the compressed image. Once the saliency mask is generated, it

is combined with an importance mask using point-wise multiplication to produce

the final latent representation. This dual-mask strategy enhances the fidelity of

the compression process, allowing details critical to viewers to be better preserved.

Figure 2.9: An illustration of the Transformer encoder.

In [48,49,52], a different Residual (Non-)local Attention Block (RNAB) is em-

ployed, which learns mixed attention maps in both channel- and spatial-wise

dimensions. This block mainly consists of a trunk branch and a (non-)local mask

branch. The trunk branch, illustrated by the blue dashed block in Figure 2.8,

consists of several Residual blocks that extract hierarchical features. Meanwhile,

the (non-)local mask branch is designed to simultaneously learn mixed attention

maps across both channel-wise and spatial-wise, adaptively re-scaling hierarchical

35

features, as illustrated by the red dashed block. While the trunk branch focuses

on capturing local structures through convolutional operations, the (non-)local at-

tention mask branch addresses long-range dependencies across the entire feature

map.

d) Transformer-Based Compression Models – Following the introduction

of the transformers in vision task [33], many studies have proposed transformer-

based approaches for image and video compression [6, 7, 53, 54]. These methods

leverage the Multi-Head Self Attention (MHSA) block introduced in [33], as illus-

trated in Figure 2.9, replacing convolutional operators in the encoder and decoder

of the VAE and/or in the entropy model.

Figure 2.10: An illustration of the hybrid block of Learned Image Compression
with Mixed Transformer Convolutional Neural Network Architectures [3].

In [6] and [53], the MHSA block [33] is employed in the entropy model and con-

text model, respectively (for more details on the context model, see Section 2.3.4).

In [7, 54], the authors utilized the Swin-Transformer block, which incorporates

a Shifted Window mechanism introduced in [5]. This hierarchical transformer

enhances efficiency by restricting self-attention computation to non-overlapping

local windows, while still enabling cross-window connections. Additionally, it of-

fers linear computational complexity with respect to image size, in contrast to the

quadratic complexity of the standard transformer block [33]. A hybrid method [3]

has also been proposed that combines both CNN and Swin-Transformer blocks [5]

36

(see Figure 2.10).

e) Incorporating Residual Blocks with Sub-Pixel Convolutions –While

deep neural networks excel over traditional image codecs in terms of rate-distortion

performance, they can be computationally intensive, particularly when incorpo-

rating attention mechanisms and transformer blocks. Additionally, since each

model is optimized for a single trade-off parameter, the network could end up

being heavy. To address this issue, an alternative type of auto-encoder utilizing

residual blocks is proposed in [43].

In this work [43], the encoder and decoder are composed of a sequence of resid-

ual blocks. The encoder primarily applies convolutions to downsampled data to

optimize computation time, while the decoder employs sub-pixel convolutions for

upsampling. This sub-pixel architecture enhances the network’s computational

efficiency, making it well-suited for high-resolution images. Furthermore, they

finetuned a pre-trained auto-encoder for different rates by introducing scale pa-

rameters, which will be further discussed in Section 2.3.3 on variable-rate neural

network models.

f) Recent Advances: State-Space Models for Image Compression –

Recently, following the adoption of Mamba from NLP to the vision domain [13,38],

[55] introduced the first image compression framework utilizing Visual State Space

(VSS) blocks [13] in both the encoder and decoder. Following the transformer

encoder architecture in figure 2.9 they replaced the Multi-head attention with S6

blocks.

2.3.3. Variable-Rate NN Models-Based Approaches

Although the rate-distortion training framework is highly effective for image com-

pression, developing a compression scheme with an adjustable bitrate is crucial for

37

Figure 2.11: Multistage LSTM auto-encoder (schemes taken from [4]).

practical applications that require precise control over target rates. Traditional

image compression methods achieve this flexibility using quantization tables to

control the quality level of the compressed image, which indirectly influence the

final bitrate.

Introducing adjustable bitrate capabilities would significantly enhance both the

efficiency and practicality of the compression system by removing the need for

retraining when trade-off parameters are modified. In previous approaches (as

discussed in Section 2.3.2), each model is tailored for a specific trade-off param-

eter, leading to the Creation of multiple models that burden the network and

reduce overall efficiency.

a) RNN-based Methods – Toderici et al. [4] addressed this challenge by

introducing the first variable-rate learned image compression method. This in-

novative approach employs a convolutional LSTM network within a recurrent

structure composed of multiple residual auto-encoders. This design enables the

network to be trained only once, while progressively transmitting bits to enhance

reconstruction quality at incrementally higher bitrates. Let Ft represent the tth

residual auto-encoder, Et and Dt denoting its corresponding encoder and decoder,

and B the binarization function. Thus, Ft can be defined as follows:

38

Ft(rt−1) = Dt(B(Et(rt−1))) (2.24)

where rt represents the residual error at iteration t, with r0 corresponding to

the original input image. The LSTM-based architecture is designed to predict

the original input image at each stage, allowing the residual to be computed in

relation to this original input:

rt = Ft(rt−1)− r0 (2.25)

The network is trained by minimizing ∥rt∥22, where t ∈ {1, .., N} and N represents

the number of residual auto-encoders. Figure 2.11 illustrates the architecture of

the multistage LSTM auto-encoder.

b) Enhancements in RNN-based Methods – Subsequently, [4] laid the

foundation for advanced LSTM-based image compression techniques [56], [57].

In this context, [56] used a recurrent neural network (RNN)-based auto-encoder,

introducing both one-shot and additive reconstruction architectures, along with

residual scaling. Using the same notation for the encoder, decoder, and binariza-

tion function, a single iteration of the network can be defined as follows:

x̂t = Dt(B(Et(rt−1))) + γx̂t−1 (2.26)

rt = x− x̂t, r0 = x, x̂0 = 0 (2.27)

where x̂t denotes the progressive reconstruction of the original image x, and rt =

x− x̂t is the residual between x and the reconstruction x̂t, with r0 = x and x̂0 = 0.

When γ = 0 (the one-shot reconstruction case), the model proposed by [56]

behaves similarly to that of [4]. In this scenario, the original image is predicted

at each stage, with the subsequent stage receiving only the residual error between

39

the original image and its predicted counterpart.

One potential problem with the one-shot reconstruction is that the decoder

might be unable to infer the original image. To address this, additive reconstruc-

tion is introduced, where γ is set to 1, and the reconstructed image is the sum

of the outputs of all iterations. In both reconstruction approaches, the residual

starts with a high range that shrinks as iterations progress. To optimize the ef-

ficiency of the encoder and decoder, an iteration-dependent gain factor is added

to scale the residuals.

In [57], the authors expanded upon the work of Toderici et al. [4], modifying

the recurrent architecture to improve information diffusion through the network’s

hidden states. They also introduced a spatially adaptive bit allocation algorithm

and employed a pixel-wise loss weighted by SSIM to enhance reconstruction qual-

ity.

c) Bottleneck Scaling – In [43], the authors introduced scale parameters

across spatial dimensions, denoted as λ ∈ RM , into the loss function:

−log2([f(x) ◦ λ] + u) + βd(x, g([f(x) ◦ λ]/λ)) (2.28)

where f, g represent the encoder and decoder, respectively and ◦ denotes point-

wise multiplication. The division is also performed point-wise, with u representing

additive uniform noise, x as the input image, and β as the Lagrange multiplier.

By incorporating sub-pixel and residual blocks, the network becomes more com-

putationally efficient and is well-suited for high-resolution images. The model

was trained incrementally.

d) Feature Modulation – In [58], the authors proposed a conditional auto-

encoder, illustrated in figure 2.12, which conditions the model on the Lagrange

multiplier across the decoder, encoder, and entropy model. Two rate control

40

parameters are presented: the Lagrange multiplier λ and the quantization bin size

∆, both serving as conditioning variables for the network. Coarse rate adaptation

to a target bitrate is achieved by adjusting the Lagrange multiplier λ, while

finer rate adjustments are made by modifying the bin size ∆ used during the

quantization of the encoded representation.

Figure 2.12: Conditional auto-encoder on Lagrange multiplier λ and quantization
bin size ∆.

Yang et al. [59] extend the concept of the scale parameter in latent space, noting

that R-D performance tends to degrade at lower bitrates, limiting the effective

bitrate range. To address these issues, they formulate the problem of variable R-D

optimization for deep image compression and propose Modulated Auto-Encoders

(MAEs), as shown in Figure 2.13. In this approach, a modulation network adjusts

the representations of a shared auto-encoder to achieve specific R-D tradeoffs,

with the modulation network being jointly trained with the modulated auto-

encoder. Akbari et al. [60] propose variable rate auto-encoder by altering the

loss function in Eq 2.29 to learn multi-rate image features, enabling the model to

41

Figure 2.13: Modulated auto-encoder.

operate at different bit rates:

L(Φ,Ψ) = 2L2 + LMS,

L2 =
∑
B∈R

∥x− x′
B∥2,

LMS = −
∑
B∈R

IM(x, x′
B)

M∏
j=1

Cj(x, x
′
B) · Sj(x, x

′
B),

(2.29)

where x′
B denotes the reconstructed image using B-bit quantizer, with B taking

values from the set R = {2, 4, 8}. This allows the network to be trained simulta-

neously at different rates. The Multi Scale Structural Similarity Index Measure

(MS-SSIM) metric LMS uses luminance I, contrast C, and structure S to com-

pare the pixels and their neighbors in x and x′. Moreover, MS-SSIM operates

at multiple scales where the images are iteratively downsampled the image by

factors of 2j for j ∈ [1,M].

Another study that addresses variable bit-rate compression is presented in [16],

where the problem of continuous rate adaptation problem is explored. Specif-

ically, the authors introduce an Asymmetric Gained Variational Auto-encoder

(AG-VAE) which incorporates a pair of gain units into the classical auto-encoder

42

architecture to achieve discrete rate adaptation within a single model, all while

incurring minimal additional computational cost. Furthermore, to enable con-

tinuous rate adaptation while maintaining good performance, exponential inter-

polation is used. The main goal of the gain unit is to exploit the existing re-

dundancies between the channels of the latent representation. The design of the

gain unit consists of a gain matrix M ∈ Rc×n where n corresponds to the num-

ber of gain vectors and c refers to the number of channels in the latent space.

Let ms = {ms,0, ...,ms,c−1} represent the gain vector s in the gain matrix, and

y be the latent representation with the ith channel denoted by yi. The rescaling

operation in the gain unit can be defined as:

ys,i = yi ×ms,i. (2.30)

This gain unit simply applies a rescaling operation that leads to a finely adjusted

latent representation and a network that allocates more bit rates for the channels

with the highest impact on the reconstruction quality.

e) Slimming – Fei et al. [45] introduced Slimmable Compressive Auto-

Encoders (SlimCAEs), where the model is trained using a rate-distortion loss

across different trade-off parameter values. A layer is considered slimmable when

part of its parameters can be discarded—typically by setting them to zero without

affecting the model’s functionality. Consequently, SlimCAE consists of K sub-

Auto-Encodes (subAEs), with each subAE utilizing more parameters than its

predecessor. The SlimCAE architecture employs slimmable convolutional layers

alongside GDN/IGDN layers, and to ensure optimal rate-distortion performance

at varying model capacities, a multi-rate-distortion (multi-RD) optimization loss

function is used during training.

43

2.3.4. Entropy Coding/Entropy Models

Entropy estimation involves the calculation of the unpredictability or randomness

of a data source, measuring the amount of information contained in a system.

Higher entropy indicates greater randomness. However, since the entropy encod-

ing is computationally expensive and impossible to incorporate into the training

structure. To this end, it becomes necessary to estimate the unknown proba-

bility distribution of the latent representation. Consequently, multiple entropy

estimation frameworks have been studied.

In this respect, multiple entropy models are proposed using a learned Hyper-

prior [9], [10], [61], statistical analysis [43], [44], [62], [63], [64], and contextual

prediction and analysis [10], [46], [65], [56], [57], [61], [66], [67].

a) Incorporating Context Model – Due to the high correlation between

spatial neighborhood pixels, a binary context model is proposed in [56] and [57] to

estimate the probability distribution. In contrast to [57], who implemented a Spa-

tially Adaptive Bit Rate (SABR) post-processing to adjust the local bit rate for

a specified reconstruction quality, Toderici et al. used a PixelRNN context-model

in [56], drawing inspiration from [68]. Their approach for probability estimation

can be described in three steps. First, an initial 7× 7 masked convolution is used

to eliminate dependencies on future codes and impose a causality constraint, and

the larger kernel size is used to increase the receptive field of the LSTM state.

Then, a masked convolution-based LSTM scans the convolution’s output line by

line, and it can capture both short- and long-term dependencies. Finally, to better

learn binary code patterns, two 1 × 1 convolutions are applied. A faster version

of the context model PixelRNN [68] is the fully convolutional PixelCNN [69] that

44

is adopted by [70], [71], [66] and [48].

While PixelRNN enforces causality through LSTMs, PixelCNN imposes this

by using masked convolutions in all of its layers. However, the sequential encod-

ing and decoding inherent in a context model can be computationally intensive.

In this reduce this computational cost, a masking approach is employed. In this

context, a mask, combined with a binarization function, efficiently encodes the bi-

nary latent. This masked approach is implemented in [70] and [66] involving three

steps to create the mask. First, an intermediate feature map from the encoder

is fed into an importance map network, generating a content-weighted impor-

tance map. Then, each element in the importance map is quantized. Finally, the

importance mask is derived from the quantized importance map.

b) Incorporating Side-information – Another interesting approach for

entropy estimation is a side-information-guided one. In this respect, in [9], Ballé

proposed a hyperprior model that uses side information to capture spatial depen-

dencies among the latent representation.

In fact, a zero-mean Gaussian distribution model with scale parameter σ2 (vari-

ance) is considered to estimate the distribution of the quantized latent distribu-

tion. Building on [9], subsequent studies have introduced more accurate entropy

models [10], [48], [2], and [61].

For example, in [10], [48], and [61], a joint model is utilized that combines an auto-

regressive context model with a mean and scale Gaussian distribution hyperprior.

Although the context model benefits from the neighboring elements as input,

the fixed shape of a single Gaussian Distribution may have some limits. To address

this, a Gaussian Mixture model is used in [2] to achieve arbitrary likelihoods. The

operational diagram of the different hyperprior-based coding schemes is illustrated

in Figure 2.14.

45

(a) Baseline (b) Hyperprior (c) Joint Hyperprior
and Context model

Figure 2.14: Operational diagrams of learned compression models.

c) Enhancements in Context Model – Enhancements in context model-

ing have been proposed in [16, 52, 72–74]. A multi-scale context model was im-

plemented using multiple masked convolutions with varying kernel sizes to learn

diverse spatial dependencies simultaneously. Studies [46, 70, 75] incorporated 3D

masked convolutions to jointly exploit cross-channel and spatial correlations.

Minnen et al. [76] introduced a channel-wise autoregressive context model that

segments the channels of the latent tensor, coding each segment sequentially with

the assistance of previously coded segments. This method reduces the number

of sequential steps and surpasses the 2D context model in [10], but it only uses

cross-channel correlations, neglecting spatial correlations.

Qian et al. [77] developed a context model that combines 2D masked convolu-

tions with template matching to enhance the receptive field and provide context

adaptivity. This method identifies similar patches in previously coded positions

and uses the best match as a global reference for the entropy model.

Guo et al. [78] extended the approach in [77] by splitting the channels of the

latent tensor into two segments. The first segment is coded using a 2D masked

convolution, akin to [76]. The second segment is coded using two mechanisms:

46

MaskConv+, an enhanced version of 2D masked convolutions, and global predic-

tion. MaskConv+ utilizes spatially co-located elements from the first segment

along with local neighbors. The global prediction involves calculating the sim-

ilarity among all elements in the first segment and selecting the top k similar

elements to include in the entropy model.

e) Incorporating Attention Mechanisms and Transformers – Qian et

al. [6] replaced the CNN-based hyperprior and context model with a transformer-

based one, increasing the adaptivity of the entropy model. They proposed two

architectures for their context model: serial and parallel. The serial model pro-

cesses the latent tensor sequentially, similar to [10], while the parallel model

employs a checkerboard grouping strategy from [79] to enhance decoding speed.

A. Burakhan et al [80] introduced Contextformer as an alternative to multi-

scale context models, the latent processing of the rearranged latent sequence in a

spatial and patch-wise manner. Similar to [76], in Multi-reference entropy model

for Learned Image Compression (MLIC) [81] proposed Multi-Reference Entropy

Model that uses previously decoded slices as context, employing the attention map

of these slices to predict global correlations in the current slice. Local context

is captured using two enhanced checkerboard context-capturing techniques. In

Efficient Learned Image Compression (ELIC) [82], the authors proposed a space-

channel context model that Combines their uneven grouping model with existing

context models.

47

2.4. Other Categories of Neural Networks-Based

Image Compression Techniques

While most existing NN-based compression techniques rely on the auto-encoder

architecture (Section 2.3), other categories of works have been developed by ex-

ploiting NN in traditional predictive as well as transform coding schemes. There-

fore, we will describe these two kind of methods below.

2.4.1. Neural Networks-Based Transform Coding Schemes

Transform coding schemes have garnered significant attention in the literature.

Consequently, numerous research efforts have been focused on enhancing Discrete

Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) based coding

schemes [83–85]. For example, in [83], a CNN architecture is employed to design a

DCT-like transform for image compression. In [84], a discrete wavelet transform is

applied to the image, and the resulting wavelet subbands are processed by a CNN

to generate new high-frequency coefficients. Similarly, Akyazi et al. [85] utilized

a discrete wavelet transform on the input image, followed by a convolutional

auto-encoder to create a new latent representation. Additionally, Li et al. [86,87]

implemented a lifting scheme-based framework followed by two neural network

stages to produce the final wavelet subbands. The first stage is a low-to-high stage

that aims to reduce redundancies in the high-frequency subbands to maximize

energy compaction, the second high-to-low stage to eliminate aliasing in the low-

frequency subbands.

48

2.4.2. Neural Networks-Based Intra-Prediction Coding

Schemes

Intra-prediction is a widely employed technique for efficient image compression

that leverages pixel similarities within local neighborhoods by partitioning the

image into blocks. Each block is predicted based on its surrounding blocks, with

only the residuals being encoded. This approach draws inspiration from video

compression standards such as High Efficiency Video Coding (HEVC) [88].

Among the earliest neural network-based intra-prediction schemes, a fully con-

nected network was developed in [23] to learn the mapping of a target block using

neighboring reconstructed pixels. Unlike traditional methods that rely on a single

reference line, this network utilizes multiple horizontal and vertical reference lines

to offer richer contextual information, thereby enhancing prediction accuracy. A

dataset of images compressed at various quantization levels is employed to ensure

robust generalization across different bit rates. Two training strategies are imple-

mented: the first trains the model on the entire dataset while excluding outliers,

and the second trains separate models on angular and non-angular directions,

resulting in an improvement in prediction capabilities.

To enhance prediction performance, Hu et al. [89] introduced a spatial RNN

for intra-prediction. RNNs are stacked orthogonally to model two-dimensional

data, improving their ability to capture complex patterns through hierarchical

spatial RNNs. Convolutional layers initially map the input image into the fea-

ture space, and training is conducted using a Sum of Absolute Transformed Dif-

ference (SATD) loss function [90]. The Hadamard transform is applied to the

difference between the target and predicted block, allowing the separation of high

and low-frequency components during training, which aligns better with the rate-

49

distortion cost.

Cui et al. [91] employed a CNN for intra-prediction, using the three nearest

blocks as references rather than a single line. This approach enhances the pre-

diction performance of the target block while refining predictions of neighboring

blocks. Dumas et al. [92] proposed a dynamic approach that combines CNNs with

fully connected networks. FCNNs are found to be optimal for smaller block sizes

(8 × 8 or less), while CNNs perform better for larger blocks with fewer param-

eters. Inputs for FCNNs are flattened, whereas CNNs maintain a 2D structure,

processing top and left contexts through parallel convolutional layers.

Li et al. [93] proposed a cross-channel prediction method using a hybrid neural

network to reduce redundancies between color image channels. The network take

as input the top and left neighboring reference lines along with the co-located luma

block in a YUV setting, predicting the chroma block. The model consists of two

branches: fully connected layers extract cross-channel information from reference

lines, while convolutional layers extract spatial features from the luma block. The

outputs of these branches are fused and processed through a convolutional trunk

to predict the chroma components. The training utilizes a transform domain loss

function that computes the ℓ1 norm of the transformed residue.

Schiopu et al. [94] developed a lossless compression method for photographic

images using a CNN pixel-wise predictor. The CNN model is trained on highly

textured image regions, enabling the production of high-resolution images. Both

the CNN-based prediction paradigm and LOCO-I [95] are considered, with a lo-

cal entropy descriptor determining the appropriate predictor. Another pixel-wise

prediction approach using deep learning was proposed in [96], encoding the resid-

ual image with a context-tree-based bit-plane codec. Unlike [94,96], a block-wise

prediction approach using CNN for HEVC lossless compression was developed

and validated in [97] and [98].

50

2.5. Conclusion

After reviewing key concepts related on popular neural network models, this chap-

ter provided an overview of image compression techniques utilizing deep learning.

The existing works have been classified into three main categories: (1) Auto-

encoders-based coding schemes, (2) NN-based transform coding schemes, and (3)

NN-based intra-prediction schemes.

We focused on the auto-encoders-based coding schemes (first category), where

the flowchart of the coding architecture with its associated strategy has been

described. This category is divided into three aspects: (1) Single rate NN model-

based approaches, (2) Variable-rate NN models-based approaches, and (3) En-

tropy coding/Entropy models.

Our proposed coding approaches, outlined in Chapters 3 and 4, fall within

the first category, specifically under single-rate neural network model-based ap-

proaches (first aspect).

51

3. Convolutional Transformer-Based

Image Compression

Contents

3.1 Introduction . 57

3.2 Positional Encoding in Image Compression 58

3.3 Proposed Swin Non-Positional Encoding (SwinNPE) 61

3.3.1 SwinNPE Encoder . 62

3.3.1.1 Patch Merge Block 63

3.3.1.2 Proposed CW-MSA Block 63

3.3.1.2.1 Standard W-MSA Swin Block . . . 64

3.3.1.2.2 Convolutional Swin Block 65

3.3.2 SwinNPE Decoder . 66

3.3.3 Quantization and Entropy Model in SwinNPE 67

3.4 Experimental Results 68

3.4.1 Experimental Settings 68

3.4.2 Performance Analysis 69

3.4.3 Latent Space Analysis 73

3.4.4 Ablation Study . 75

3.5 Conclusion . 79

53

Summary of this Chapter

In this chapter, we address the image compression challenge and introduce the

Swin Non-Positional Encoding (SwinNPE) transformer.

SwinNPE improves the efficiency of the SwinT transformer while reducing the

number of model parameters. We generalize the Swin cell and propose the Swin

convolutional block, which can better handle the local correlation between image

patches. Additionally, the Swin convolutional block can capture the local con-

text between tokens without relying on positional encoding, thereby reducing the

model complexity. Our results show that SwinNPE outperforms state-of-the-art

CNN-based architectures in terms of the trade-off between bit-rate and distortion,

achieving results comparable to SwinT with 16% less computational complexity

on the Kodak dataset. These contributions were published in IEEE International

on Signal Processing: Algorithms, Architectures, Arrangements, and Applications

(SPA) 2023 and 22ème édition de la conférence Compression et Représentation

des Signaux Audiovisuels (CORESA) 2023, further validating the effectiveness of

SwinNPE in advancing the field of image compression.

55

3.1. Introduction

In the context of image compression, the advantages of positional encoding have

been illustrated through improved R-D performance in works such as [6,7]. Specif-

ically, the authors of [6] demonstrated that a 2D diamond-shaped relative position

encoding is particularly effective and offers distinct benefits. Despite its numer-

ous advantages, incorporating positional encoding in transformers can increase

the dimensionality of embeddings, leading to higher computational costs during

training and limiting the flexibility of the models. Recently, the authors of [99]

showed that positional encoding can be omitted in the attention module for image

classification without sacrificing performance. This was achieved by incorporating

convolution in the tokenization process of patches and within the self-attention

block, thereby maintaining local spatial information. It is asserted that this com-

bination of convolution and the attention mechanism leverages the strengths of

both the advantages of convolutional neural networks and transformers.

In this chapter, we present a new image compression framework called Swin-

NPE. It is based on our proposed convolutional Swin block, which combines patch

convolution and shift window-based attention in Swin without positional encod-

ing. We believe this approach enhances the capture of spatial contextual infor-

mation. Our experiments show that SwinNPE achieves comparable results to the

SwinT architecture [7], without the need for positional encoding and with fewer

parameters. The rest of this chapter is structured as follows. Positional Encod-

ing in the Context of Image Compression is discussed in Section 3.2, Section 3.3

presents the proposed Swin Non-Positional Encoding (SwinNPE). Section 3.4 il-

lustrates the experimental results. Finally, Section 3.5 provides conclusions and

perspectives.

57

3.2. Positional Encoding in Image Compression

As emphasized in Chapter 2, Positional encoding plays a crucial role in trans-

former models, which cannot inherently capture the positional relationships be-

tween input tokens. Since transformers use self-attention mechanisms, which

treat inputs as unordered sets, they are inherently position-agnostic. This makes

positional encoding essential for providing the model with information about the

relative positions of tokens, which is especially important for capturing sequential

and spatial patterns in data.

a) 1D Positional Encoding for Sequential Data – Originally introduced

in the context of sequence-based tasks, such as natural language processing, po-

sitional encoding was designed to inject positional information into transformer

models for 1D data. In such tasks, positional encoding enables the model to

differentiate between different positions in a sequence, making it capable of rec-

ognizing order and dependencies over time or across sequences (more details are

provided in chapter 2).

b) Extending Positional Encoding to 2D for Image Compression –

In image compression, where the data is inherently two-dimensional, transformer

models face a similar challenge. The spatial grid structure of images introduces

the need for the model to not only understand local texture patterns but also

capture broader spatial relationships across the image. Without explicit positional

information, transformers struggle to effectively model these spatial relationships,

limiting their potential for image compression.

To address this challenge, positional encoding is adapted to 2D grids in image

data. This adaptation enables the model to grasp the spatial coherence between

different patches or regions of an image. In the context of compression, this un-

58

derstanding is vital as it allows the model to exploit both local and global redun-

dancies in the image, thereby improving compression efficiency while preserving

important image details.

c) Approaches for 2D Positional Encoding in Transformers – In the

context of images, positional encoding can be implemented in two main ways:

• Concatenating Horizontal and Vertical Encodings: Separate encodings for

the horizontal and vertical positions are concatenated to provide the model

with information about each patch’s position within the 2D grid.

• Learnable 2D Positional Embeddings: the model learns a set of positional

embeddings based on the spatial locations of the patches within the im-

age. This learnable approach has become the most commonly used in

transformer-based image compression models. Studies such as [6] and [7]

have shown that learnable 2D positional embeddings improve the trans-

former’s ability to comprehend spatial dependencies across the image.

For example, in [6], the authors enhanced the traditional positional encoding [36]

by incorporating a diamond-shaped 2D boundary to represent spatial relation-

ships, highlighting that closer context patches contribute more heavily to com-

pression performance.

d) Computational Complexity of Positional Encoding – However, de-

spite the advantages of 2D positional encoding in improving compression perfor-

mance, it comes at a cost. Transformer models, especially when dealing with

high-resolution images, require significant memory and computational resources.

The introduction of positional encoding further increases this complexity, as the

model must account for the positional relationships between a large number of

patches in the image grid.

59

Typically, transformers for image compression divide an image into patches and

then apply positional encoding to inform the model of each patch’s location.

While this approach helps the model effectively capture both local and global

features, the increased complexity can be a limiting factor in practice, especially

for real-time applications or when resources are constrained.

e) Recent Advances: Replacing Positional Encoding with Convolu-

tions – To address the computational challenges associated with traditional po-

sitional encoding, recent research has explored alternative methods. One promis-

ing direction involves substituting positional encodings with convolutional layers.

Convolutions inherently capture spatial locality due to their sliding window mech-

anism, allowing the model to learn positional relationships without the overhead

of explicit positional encodings (refer to Chapter 2 for more details about the

convolution operation).

For instance, in [99], convolutional layers were introduced to replace positional

encodings in the classification transformer model. This approach significantly

reduces the computational load while still enabling the model to capture spatial

dependencies.

f) Applying Convolution-Based Positional Encoding to Image Com-

pression – Although the replacement of positional encoding with convolutions

has primarily been explored in fields such as natural language processing and

vision transformers, our work proposes to adapt this approach specifically for

image compression. By integrating convolutional layers into transformer-based

compression models, we aim to reduce computational complexity while maintain-

ing strong compression performance. This shift allows us to maintain the spatial

awareness required for effective compression, without the computational overhead

traditionally associated with positional encoding.

60

3.3. Proposed Swin Non-Positional Encoding (Swin-

NPE)

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
M

er
ge

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
M

er
ge

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
M

er
ge

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
M

er
ge

In
pu

t I
m

ag
e

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
Sp

lit

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
Sp

lit

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
Sp

lit

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
Sp

lit

R
ec

on
st

ru
ct

io
n

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
M

er
ge

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
M

er
ge

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
Sp

lit

C
on

vo
lu

tio
na

l
Sw

in
 B

lo
ck

Pa
tc

h
Sp

lit

Q
A
E

A
D

w
in

do
w

 s
iz

e

w
in

do
w

 s
iz

e

w
in

do
w

 s
iz

e

w
in

do
w

 s
iz

e

w
in

do
w

 s
iz

e

w
in

do
w

 s
iz

e

F
a
c
t
o
r
i
z
e
d

M
o
d
e
l

Q
A
E

A
D

C
ha

nn
el

-w
is

e
Au

to
R

eg
re

ss
iv

e
M

od
el

Figure 3.1: Network architecture of our proposed SwinNPE.

The proposed SwinNPE follows the same architecture described in Section 2.3.1,

as depicted in Figure 3.1. This architecture is composed of an encoder-decoder

structure and an entropy model. Specifically, the input image x is first encoded

by the generative encoder y = ga(x), and the hyper-latent z = ha(y) is obtained.

The quantized version of the hyper-latent ẑ is modeled and entropy-coded with

a learned factorized prior to passe through hs(ẑ) to obtain µ and σ which are

the parameters of a factorized Gaussian distribution P (y|ẑ) = N (µ, diag(σ)) to

model y. The quantized latent ŷ = Q(y−µ)+µ is finally entropy-coded and sent

to x̂ = gs(ŷ) to reconstruct the image x̂.

61

We choose the loss function to optimize the trade-off between the bit-rate R

and the quality of the reconstruction D (all the details of the loss function have

been provided in chapter 2 specifically in Section 2.3.1.2):

L = D(x, x̂) + βR, (3.1)

The rate is calculated as the negative log probability of the latent representation

given its estimated distribution with the learned factorized prior for z latent space

and channel-wise autoregressive model for y (for more details refer to chapter 2

about the Hyperprior):

R = −
∑
i

log2 (P (yi)) , (3.2)

P (yi) represnts the probability of the i element of the latent space y.

The distortion D is defined as the Mean Squared Error (MSE) between the

original image x and the reconstructed image x̂ in Red Green and Blue (RGB)

color space:

D(x, x̂) =
1

n×m× 3

n∑
i=1

m∑
j=1

3∑
c=1

(xi,j,c − x̂i,j,c)
2 , (3.3)

Ii,j,c and Îi,j,c denote the pixel value at position (i, j) in the channel c (RGB) of

the original and constructed images, respectively.

3.3.1. SwinNPE Encoder

The SwinNPE encoder is composed of both a generative encoder ga, and a hyper-

prior encoder ha, each constructed using a combination of the patch merge block,

and the proposed Convolutional Window-based Multi-head Self-Attention (CW-

MSA).

62

Figure 3.2: Patch Merge block.

3.3.1.1. Patch Merge Block

Following [7], the patch merge block contains the Depth-to-Space operation [7]

operation for down-sampling, as shown in Figure 3.2. This block also incorporates

a normalization layer and a linear layer to project the input to a specified depth

Ci. In ga, the depth Ci of the latent representation increases as the network gets

deeper which allows for getting a more abstract representation of the image. The

size of the latent representation decreases accordingly. In each stage, we down-

sample the input feature by a factor of 2 using a stride of 2 and kernel size s in

the Depth-to-Space operation [7].

3.3.1.2. Proposed CW-MSA Block

Before introducing the CW-MSA block, we first provide an overview of the stan-

dard Window-based Multi-head Self-Attention (W-MSA) block in the following

subsection.

63

3.3.1.2.1 Standard W-MSA Swin Block

Figure 3.3: Shifted window approach in Swin block (schemes taken from [5]).

Swin block [5] is a window-based multi-head self-attention block in which the

input image is partitioned into non-overlapping fixed-size windows (wg, wh for

generative and Hyperprior part respectively in swinNPE, as shown in Figure 3.1).

Unlike the global self-attention mechanism in standard Transformers presented in

Section 2.2.4, which computes attention across all tokens, the W-MSA restricts

attention to patches within each window. This approach significantly reduces the

computational complexity while retaining local context.

The Shifted Window Multi-head Self-Attention (SW-MSA) mechanism of Swin

block is illustrated in Figure 3.3. In layer l (left), a regular window partitioning

scheme is applied, where self-attention is computed independently within each

window. In the subsequent layer l+1 (right), the partitioning is shifted, creating

a new set of windows. This shift allows the self-attention in layer l + 1 to span

across the boundaries of the previous windows from layer l, thereby facilitating

connections between them and improving global context aggregation.

64

(a) Linear Projection (b) Swin Block

(c) Convolutional Projection (d) Convolutional Swin Block

Figure 3.4: Architecture of the proposed Convolutional Swin Block.

3.3.1.2.2 Convolutional Swin Block

The proposed convolutional Swin block generalizes the Swin cell [5]. As illustrated

in Figure 3.4, we replace the position-wise linear projection (see Figure 3.4(a))

with a convolutional projection (see Figure 3.4(c)) to generate the Key (K), Query

(Q), and Value (V) matrices within the attention block (for more details on the

attention block, refer to Section 2.2.4).

65

Specifically, as depicted in Figure 3.4(c) and following [99], we first reshape the

tokens into a 2D format before applying the convolutional projection. Afterward,

the tokens are flattened to obtain the Key, Query, and Value representations for

use in the Swin block [5] instead of the MHSA block:

K,Q, V = Flatten(Conv2d(Reshape2D(x))). (3.4)

This makes the attention module more sensitive to spatial context. Instead of

relying on hand-crafted positional encodings, we enable the convolution layer to

capture the positional information directly.

We use depth-wise separable convolution [99] due to its parameter efficiency.

More specifically. Specifically, the depth-wise separable convolution first applies a

2D convolution independently to each feature channel. The outcome is then con-

catenated and passed through another convolution layer. This approach reduces

both the number of parameters and computational complexity while increasing

representational efficiency, as it addresses not only the spatial dimension but also

the depth dimension. It is important to note that the proposed block is not lim-

ited to convolution operations; different forms of convolution [100, 101] can be

utilized, making the proposed convolutional Swin block particularly flexible.

3.3.2. SwinNPE Decoder

The SwinNPE decoder is composed of both a generative decoder gs, and a hyper-

prior decoder hs, each constructed using the patch split block and the convolu-

tional Swin block. In the patch split block, we reverse the merging sequence of

the patch merge block and use Space-to-Depth operation [7] for up-sampling.

66

3.3.3. Quantization and Entropy Model in SwinNPE

(a) Channel-wise AutoRegressive Model (b) Channel-wise AutoRegressive
block

Figure 3.5: The architecture of the Channel-wise AutoRegressive Model.

We use the classical strategy of adding uniform noise to simulate the quan-

tization operation, rendering it differentiable. The channel-wise autoregressive

block [76] is designed to learn an auto-regressive prior, factorizing the distri-

bution of the latent as a product of conditional distributions that incorporate

predictions from the causal context of the latents [10,61,76].

Figure 3.5 illustrates the architecture of a channel-wise autoregressive model

used for processing latent representations in SwinNPE. The model is designed to

predict and decode the latent tensor components sequentially, leveraging channel-

wise autoregressive dependencies. The input feature (output of hs) is first split

into S slices, which are then processed sequentially by a series of channel-wise

autoregressive blocks. Each block predicts the parameters µi and σi for the re-

67

spective slice yi. During this processing, previously reconstructed slices ŷ < i

are concatenated with yi along the channel dimension channel dimension. As a

result, the channel dimension becomes Cin = 2C4

S
+

ŷ<i︷ ︸︸ ︷
C4

S
× (i− 1), illustrating how

the context expands as more channels are processed.

The structure ensures that each slice can only be decoded after the preceding

slice has been processed and its parameters µi and σi are available. This sequential

execution is crucial for maintaining the autoregressive property of the model.

Each Channel-wise autoregressive block consists of several layers of convolu-

tional operations, followed by ReLU activations. Specifically, there are Conv 3×3

stride 1 layers, indicating convolution operations with a kernel size of 3× 3 and a

stride of 1. The output of these convolutions is used to estimate the conditional

mean µi and standard deviation σi for the subsequent latent space entropy coding.

The output channel dimension is given by Cout =
C4

S
reflecting the contribution

of each block to the final representation for µi and σi.

3.4. Experimental Results

This section evaluates the SwinNPE architecture and compares its image compres-

sion results to the state-of-the-art approaches. In this respect, after describing the

experimental settings, we assess various End-to-End Neural network model-based

approaches in terms of compression performance and complexity.

3.4.1. Experimental Settings

The SwinNPE is trained on the CLIC2020 training set for 3.3 million steps.

During training, each batch consists of eight randomly cropped images with a

68

size of 256× 256 pixels. The SwinNPE’s performance is evaluated on the Kodak

and JPEG-AI test dataset [11, 12]. All images are center-cropped to multiples

of 256 to avoid padding. We selected Lagrange multiplier values β from the set

{0.003, 0.001, 0.0003, 0.0001} for the loss function in Equation 3.1.

ADAM algorithm is used with a learning rate equal to 10−4 and the hyper-

parameters of the architecture shown in Figure 3.1 are as follows: (d1, d2, d3, d4, d5,

d6) = (2, 2, 6, 2, 5, 1), (wg, wg) = (8, 8), (wh, wh) = (4, 4), and (C1, C2, C3, C4, C5,

C6) = (128, 192, 256, 320, 192, 192). For the autoregressive model, we use the

model proposed in [76], as presented in Figure 3.5 with S = 10 slices. The kernel

size for all convolutional Swin blocks using depth-wise separable convolution is

set to 3.

These implementations were carried out by using Keras and TensorFlow on an

NVIDIA A100 40 Go Graphics Processing Unit (GPU) and an Intel Xeon Gold

6330 3.10 GigaHertz (GHz) Central Processing Unit (CPU).

3.4.2. Performance Analysis

We compare our proposed SwinNPE model with the results of two transformers-

based architectures [6, 7] and some of the most used CNN-based image compres-

sion architectures and standard codecs. The results of SwinT [7] and Entro-

former [6] are obtained from their respective papers.

The rate-distortion curves of the different methods are illustrated in Figure 3.6

and Figure 3.7 on the Kodak dataset [11] and JPEG-AI test-set [12] respectively.

In these two figures, the Peak Signal to Noise Ratio (PSNR) and the rate values

represent the averages across all images of their respective datasets.

We summarize the number of parameters and Giga Multiply-ACcumulate oper-

69

Figure 3.6: SwinNPE achieves nearly the same results as Entroformer [6] and
SwinT-CHARM [7] that relying on Positional encoding and better RD perfor-
mance than CNNs-based methods Factorized [8], Scale [9], Mean-Scale [10], Joint
Hyperprior [10] and standard codecs on the Kodak [11] image set.

ations per second (GMACs) 1 for the tested transformer-based architectures in

Table 3.1 where we also illustrate the Bjontegaard Delta-Rate (BD-rate), using

the SwinT-CHARM as the reference for the Kodak dataset [11].

From Figure 3.6, we can clearly see that the SwinNPE outperforms all of the

tested CNN-based architectures in terms of the bit-rate/distortion tradeoff. It

1For SwinNPE, the FLoating-point Operations Per second (FLOPs) were computed using
TensorFlow. The Multiply-ACcumulate operations per second (MACs) for SwinNPE were esti-
mated by dividing the FLOPs by 2, Based on the standard assumption that, in many models,
each multiply-accumulate operation corresponds to two floating-point operations.

70

Figure 3.7: SwinNPE achieves nearly the same results as SwinT-CHARM [7] and
better RD performance than standard codecs on the JPEG-AI test-set [12].

is particularly interesting to notice that our proposed approach achieves almost

the same results to those of Entroformer [6] (orange dashed line in Figure 3.6)

while using significantly fewer model parameters (see Table 3.1). Specifically,

SwinNPE demonstrates a bit-rate saving of 5.46% compared to SwinT-CHARM,

which provides the optimal saving bit-rate saving, bringing it close to the perfor-

mance of Entroformer, resulting in only a 1.13 Percentage Point (p.p.) difference

from Entroformer.

We argue that this performance can be attributed to the convolutional layers

in the proposed convolutional Swin block, which effectively capture the local

contextual information. As demonstrated in [6], closer contextual information has

71

a greater impact on bitrate efficiency. Additionally, SwinNPE reduces correlations

among direct neighboring latent representations, thereby enhancing compression

efficiency. More details on this process are provided in the following subsection.

From Figure 3.6 and Figure 3.7, we can observe that the proposed SwinNPE

achieves results comparable to SwinT-CHARM across both datasets, despite hav-

ing fewer parameters. We emphasize that our proposed architecture offers sig-

nificant advantages over SwinT-based architecture without positional encoding 2

highlighting the benefits of combining convolutions and transformers for image

compression.

Method #parameters (M) GMACs Positional Encoding (PE) BD-rate

SwinT-CHARM* [7] 32 223 PE Relative 2D 0%
Entroforme* [6] 142.7 - PE Relative 2D 4.33%
SwinNPE 27 178 - 5.46%

Table 3.1: BD-rate performance using SwinT-CHARM [7] as reference on Ko-
dak [11]. We use ∗ to indicate the approaches for which the numbers are sourced
from their respective papers.

Figure 3.8 provides the R-D curves on each image of the Kodak dataset [11].

Each curve presents the evaluation of an image using different versions of β value

(i.e. different SwinNPE models). As expected, experiments with the same β

values reveal variability in PSNR and rate values across different images. From

the curves, a significant difference can be seen between images, highlighting the

substantial discrepancy in results when using the same approach on different im-

ages. This observation highlights the dependence of the results on the individual

characteristics of the images in the dataset.

2The results are detailed in the ablation studies in [7].

72

Figure 3.8: Rate-Distortion (RD) performance of SwinNPE on each image of
Kodak [11] dataset.

3.4.3. Latent Space Analysis

Transform coding is driven by the principle that encoding becomes more effi-

cient in the transform domain compared to the original signal space. An ideal

transform would decorrelate the source signal, enabling the use of simple scalar

quantization and a factorized entropy model without sacrificing coding perfor-

mance. Additionally, an effective prior model would introduce context adaptivity,

leveraging distant spatial relationships within the latent representation to further

enhance the compression process. This approach optimizes the trade-off between

complexity and performance while maintaining high coding efficiency.

The effectiveness of the analysis transform ga can be assessed by examining

the level of correlation in the latent signal y. Specifically, we are interested in

evaluating the correlation between nearby spatial positions, which tend to be

highly correlated in the source domain for natural images. In Figure 3.9, we

73

Figure 3.9: The average of spatial correlation of all images on Kodak [11]. Swin-
NPE (right) achieves smaller correlation than SwinT-CHARM in direct neighbor-
ing spatial positions (left).

present a visualization of the normalized spatial correlation of y, averaged across

all latent channels, comparing SwinT-ChARM3, and the proposed SwinNPE at

λ = 0.0003.

The spatial correlation in Figure 3.9 at index (i, j) corresponds to the normal-

ized cross-correlation of latents (y−µ)/σ at spatial location (w, h) and (w+i, h+j),

averaged across all latent elements of all images on Kodak [11].

The results indicate that, although all approaches yield low cross-correlation,

SwinNPE demonstrates a slight improvement in decorrelating the latent sig-

nal in direct neighboring spatial positions compared to SwinT-ChARM3, which

has a significant impact on bitrate efficiency [6]. This suggests that combin-

ing Transformer-based transforms with convolutional-based transforms introduces

less redundancy across spatial latent positions, enabling more efficient encoding

with lower bitrate costs than using Transformer-based transforms alone.

This efficiency is evident in Figure 3.10, which shows that SwinNPE achieves

74

lower bitrate costs compared to SwinT-CHARM 3 while maintaining the same

reconstruction quality in terms of PSNR. In Figure 3.11, for the same bitrate,

SwinNPE achieves better reconstruction quality (PSNR) than SwinT-CHARM 3.

Furthermore, SwinNPE has fewer parameters and lower complexity compared to

SwinT-CHARM 3, as outlined in Table 3.1. Additional details on the spatial

correlation for various λ versions of SwinNPE can be found in Appendix A.

3.4.4. Ablation Study

Method Positional Embedding Linear Projection Conv Estimated Training Time
(PE) (LP) (Kernel Size) (3M steps)

SwinNPE ✗ ✗ 3x3 1 month,
(Conv) 20 days for λi

SwinNPE with LP ✗ ✓ ✗ 1 month,
(SwinT [7] without PE) (Linear) 20 days for λi

SwinNPE with PE ✓ ✗ 3x3 1 month,
(Conv) 20 days for λi

SwinNPE with PE ✓ ✓ ✗ 1 month,
and LP (SwinT [7]) (Linear) 20 days for λi

SwinNPE variant ✗ ✗ 5x5 1 month,
(Conv) 20 days for λi

SwinNPE variant ✗ ✗ 8x8 1 month,
(Conv) 20 days for λi

Table 3.2: Time Required for a Comprehensive Ablation Study.

While we aimed to conduct comprehensive ablation studies to evaluate the indi-

vidual contributions of the components in our proposed framework, we encoun-

tered significant constraints due to limited computational resources. Such studies

3For the latent analysis, we retrained SwinT-CHARM using the publicly available code from
this repository https://github.com/Nikolai10/SwinT-ChARM/tree/master. The retrained
model produced results closely matching those reported in the original paper, ensuring the
validity of our comparisons.

75

https://github.com/Nikolai10/SwinT-ChARM/tree/master

would have allowed us to isolate and analyze the effects of key elements, including

the convolutional Swin block and positional encoding.

Table 3.2 provides a summary of the ablations we aimed to investigate to analyze

the impact of each element. The last column indicates the estimated time required

to train a single model for a specific point on the rate-distortion curve with λi.

However, the substantial computational cost associated with training multiple

model variants posed a significant challenge. Despite these challenges, we believe

the results presented still provide strong evidence of the framework’s effectiveness.

76

Ground Truth
Kodim23.png

SwinT
[0.395/39.56/20.13]

SwinNPE
[0.378/39.52/20.18]

Figure 3.10: Visualization of the reconstructed images from the Kodak
dataset”Kodim23”. The metrics of SwinNPE [↓ bpp/≈ PSNR(dB)/↑ MS-
SSIM(dB)] compared to those of SwinT, while SwinNPE employs fewer param-
eters and exhibits reduced complexity in comparison to SwinT.

77

Ground Truth
Kodim01.png

SwinT
[1.560/36.43/22.31]

SwinNPE
[1.558/36.57/22.27]

Figure 3.11: Visualization of the reconstructed images from the Kodak
dataset”Kodim01”. The metrics of SwinNPE [≈ bpp/↑ PSNR(dB)/↓ MS-
SSIM(dB)] compared to those of SwinT, while SwinNPE employs fewer param-
eters and exhibits reduced complexity in comparison to SwinT.

78

3.5. Conclusion

In this chapter, we propose SwinNPE, a transformer-based image compression

model built with convolutional Swin blocks without positional encoding. Swin-

NPE achieves comparable results to state-of-the-art methods while using fewer

model parameters and outperforming CNN-based architectures. The proposed

convolutional Swin block allows for better exploitation of spatial context with-

out the need for positional encoding, resulting in greater flexibility and fewer

parameters.

While it would be interesting to conduct ablation studies with different convo-

lution sizes to further enhance spatial context, we were limited by computational

resources. This constraint motivated us to focus on reducing the model’s com-

plexity. For future work, exploring alternative neural network architectures to

replace the attention mechanism could be a promising direction to further lower

model complexity while maintaining performance. This will be the focus of the

next chapter.

79

4. Efficient Image Compression Us-

ing Advanced State Space Mod-

els
Contents

4.1 Introduction . 85

4.2 Proposed State Space Model-based Image Compres-

sion (SSMIC) . 88

4.2.1 SSMIC Encoder . 89

4.2.2 Patch Merge Block . 89

4.2.3 Visual State Space (VSS) 90

4.2.3.1 VSS Block 91

4.2.3.2 Selective Scan Approach 92

4.2.4 SSMIC Decoder . 92

4.2.5 Quantization and Entropy Model in SSMIC 92

4.3 Proposed State Space Model-based Image Compres-

sion with Channel Wise Autoregressive (SSMIC CW) 93

4.4 Experimental Results 93

4.4.1 Experimental Settings 93

4.4.2 Results and Discussion 96

4.5 Conclusion . 104

81

Summary of this Chapter

Transformers have revolutionized learning-based image compression methods, of-

ten outperforming traditional approaches. However, these methods frequently

suffer from high complexity, limiting their practical applicability. To address this

issue, various strategies such as knowledge distillation and lightweight architec-

tures have been explored, to enhance efficiency without significantly sacrificing

performance. This chapter proposes a State Space Model-based Image Compres-

sion (SSMIC) architecture. This novel architecture balances performance and

computational efficiency, making it suitable for real-world applications. Exper-

imental evaluations confirm the effectiveness of our model in achieving a supe-

rior BD-rate while significantly reducing computational complexity and latency

compared to competitive learning-based image compression methods. These re-

sults were presented at IEEE 26th International Workshop on Multimedia Signal

Processing (MMSP) 2024 and 23ème édition de la conférence Compression et

Représentation des Signaux Audiovisuels (CORESA) 2024.

83

4.1. Introduction

Deep learning-based compression approaches often face high complexity, which

limits their practicality in real-world applications. While it is common prac-

tice to propose scaled-down models with reduced sizes, these models, although

less complex and faster, frequently suffer from significant reductions in compres-

sion performance [7]. Other approaches have been deployed to accelerate these

models while maintaining their performance. Knowledge distillation is one ef-

fective method for accelerating neural networks across various computer vision

tasks [102].

In this context, Efficient single-model Variable-bit-rate Codec (EVC) [103]

leverages mask decay in a teacher-student training framework. The core archi-

tecture replaces traditional transformers with depth-wise convolution blocks to

build a more efficient model. The mask decay technique introduces mask layers

between the convolutional layers of a large teacher model to gradually sparsify

the parameters. This leads to the automatic transformation of the larger model

into a smaller student model. These mask layers, by applying a novel sparsity

regularization loss during training, prune unnecessary channels. As the mask pa-

rameters become sparser, the teacher model is compressed into a more efficient

structure while retaining the knowledge gained from the larger model, enhancing

the performance of the smaller model without the need for training from scratch.

Despite its advantages, there are challenges associated with mask decay, including

computational overhead during training, as the process involves inserting addi-

tional mask layers and optimizing them, adding complexity compared to training

from scratch.

Another challenge lies in balancing sparsification with performance. The mask

85

decay process must effectively sparsify the teacher model’s parameters to align

with the smaller student architecture while still maintaining good compression

performance, which can be difficult to achieve. Additionally, there is a risk of

degrading model accuracy during the pruning process, making it challenging to

find the optimal balance between sparsification and overall model performance.

Another promising direction involves the development of lightweight architec-

tures [104, 105]. Recent advancements in lightweight attention mechanisms have

resulted in architectures that offer improved inference speeds for image compres-

sion [74].

In [74], Residual connected Lightweight Attention Units (RLAUs) are intro-

duced to efficiently extract global spatial information while minimizing complex-

ity. This is achieved by simplifying attention mechanisms and incorporating resid-

ual connections. The Lightweight Attention Module streamlines the typical self-

attention mechanism by ensuring that the Query and Key projection matrices are

of the same size, thereby reducing the overall number of parameters. RLAUs al-

low the model to capture global spatial dependencies efficiently without the heavy

computational load associated with standard self-attention mechanisms. Addi-

tionally, the Channel-Gained Adaptive Module (CGAM) is used to dynamically

adjust the importance of different channels in the latent space, enhancing better

compression efficiency.

Another significant contribution is found in [106], where the authors focus on

reducing the decoding complexity by introducing shallow decoding transforms.

This approach replaces traditional deep convolutional decoders with lightweight,

linear transforms. Drawing on the insight that decoder transforms in neural

compression function similarly to orthogonal transforms in traditional coding,

the authors developed a JPEG-like synthesis transform. This method divides the

latent tensor into blocks and applies efficient block-wise linear transforms, thereby

86

reducing computational complexity while enabling end-to-end optimization. To

counterbalance potential performance losses from a shallow decoder, the technique

exploits asymmetrical computational budgets by pairing a lightweight decoder

with a robust heavy encoder.

The works in [79, 107] aim to enhance the efficiency of entropy models. Al-

though AR context-based entropy models effectively capture spatial dependencies

in image latent, their sequential processing results in significant computational

complexity, limiting parallelization. To overcome this limitation, He et al. [79]

propose a parallelized Checkerboard Context Model (CCM). This model reorga-

nizes the decoding order, thereby removing the spatial location constraints im-

posed by AutoRegressive (AR) models. Ali et al. [107] introduce a correlation loss

that forces spatial decorrelation of latent, achieving an improved balance between

performance and complexity without depending on AR context models.

Despite these advancements, many approaches still face significant performance

degradation when attempting to lower computational complexity, especially in

high-resolution contexts. This challenge prompted us to explore alternative solu-

tions that effectively reduce computational demands while ensuring competitive

performance against state-of-the-art methods.

Recently, the SSMs and their variant, the Mamba model, have gained signifi-

cant attention in the field of computer vision. Originally introduced for sequence

modeling [108] in deep neural networks, SSMs unify the strengths of previous

sequence models, including Continuous-Time Models (CTMs), RNNs, and CNNs

(for more details about SSMs, CNNs, and RNNs, refer to Chapter 2 Section 2.2).

Despite their potential, SSMs have not been widely adopted due to their high

computational and memory requirements associated with the latent state repre-

sentations, connecting the input and output. The Mamba model [37] addresses

these limitations by integrating a selection mechanism into the structured SSMs

87

variants, thereby enhancing context-based reasoning ability. In this chapter, we

introduce a State Space Model-based Image Compression (SSMIC) architecture,

which emphasizes optimizing rate-distortion performance while minimizing com-

putational complexity and latency.

The remainder of this chapter is organized as follows. Section 4.2 details the

proposed SSMIC. Following that, Section 4.4 presents and discusses the experi-

mental results. Finally, Section 4.5 concludes with insights and future perspec-

tives.

4.2. Proposed State Space Model-based Image

Compression (SSMIC)

V
S

S
 B

lo
ck

P
at

ch
 M

er
ge

V
S

S
 B

lo
ck

P
at

ch
 M

er
ge

V
S

S
 B

lo
ck

P
at

ch
 M

er
ge

V
S

S
 B

lo
ck

P
at

ch
 M

er
ge

In
pu

t I
m

ag
e

V
S

S
 B

lo
ck

P
at

ch
 S

pl
it

V
S

S
 B

lo
ck

P
at

ch
 S

pl
it

V
S

S
 B

lo
ck

P
at

ch
 S

pl
it

V
S

S
 B

lo
ck

P
at

ch
 S

pl
it

R
ec

on
st

ru
ct

io
n

V
S

S
 B

lo
ck

P
at

ch
 M

er
ge

V
S

S
 B

lo
ck

P
at

ch
 M

er
ge

V
S

S
 B

lo
ck

P
at

ch
 S

pl
it

V
S

S
 B

lo
ck

P
at

ch
 S

pl
it

Q
A

E
A

D

Fa
ct

or
iz

ed
 M

od
el

Q
A

E
A

D

Entropy
Parameters

Context Model

Figure 4.1: Network architecture of our proposed SSMIC model.

The proposed SSMIC architecture follows the same architecture described in Sec-

88

tion 2.3.1, as depicted in Figure 4.1. The process begins with encoding the input

image x using the generative encoder y = ga(x). Next, the hyper-latent represen-

tation z = ha(y) is obtained through the encoder of the hyper-prior network. The

quantized version of the hyper-latent, denoted as ẑ, is modeled and entropy-coded

using a learned factorized model before being passed through hs(ẑ). The output

of hs, along with the output of the context model, feeds into the entropy parame-

ters network [10]. This network generates the mean µ and scale σ parameters for

a conditional Gaussian entropy model P (y|ẑ) = N (µ, σ2) to model y. Finally,

the quantized latent ŷ = Q(y) undergoes entropy-coded Arithmetic Encoding

(AE)/Arithmetic Decoding (AD) and is then sent to x̂ = gs(ŷ) to reconstruct the

original image x̂.

4.2.1. SSMIC Encoder

The generative and the hyper-prior encoder, ga and ha, are built with the patch

merge block and the VSS block illustrated in Figure 4.2.

4.2.2. Patch Merge Block

The patch merge block employed is identical to that used in SwinNPE (refer to

Chapter 3 in Subsection 3.3.2) patch merge block. In contrast to the convolu-

tional layer utilized in [55] for a similar purpose, this patch merge block provides

enhanced computational efficiency. Its streamlined design reduces complexity,

making it not only more resource-friendly but also easier to integrate into the

overall model architecture.

89

4.2.3. Visual State Space (VSS)

In the following section, we present the architecture of the VSS block and its

2D Selective Scan (SS2D) mechanism [13], designed to bridge the gap between

traditional 1D array scanning and 2D plane traversal. This innovative mechanism

extends selective SSM, enabling more efficient processing of visual data. While

numerous selective scan mechanisms and visual state space blocks have been

introduced in the literature (see [109]), we chose the VSS block with its SS2D

mechanism for its balance of consistent performance and ease of implementation.

The VSS block is formulated by substituting the S6 module, which serves as the

core of the Mamba architecture [17]. The S6 module is notable for concurrently

achieving global receptive fields, dynamic weights (i.e., selectivity), and linear

complexity. By integrating the SS2D, this solution delivers robust results while

maintaining simplicity in deployment.

Figure 4.2: A VSS block [13] consists of an SS2D block, which performs selective
scans in four parallel patterns.

90

4.2.3.1. VSS Block

VSS block, originally proposed in [13], consists of a single network branch with two

residual modules, mimicking the architecture of the vanilla Transformer block [1].

Specifically, each stage in our SSMIC consists of a sequence of VSS blocks, and

the number of blocks in stage i is denoted as di (see in Figure 4.1). Given an

input feature maps f ∈ RH×W×C , we get f ′′ from a first residual module:

f ′′ = f + f ′, (4.1)

where f ′ is obtained through multiple layers as follows:

f ′ = MLP2(LN2(SS2D(σ(DWConv(MLP1(LN1((f)))))))). (4.2)

As illustrated in Figure 4.2 (see (a) and (b)), the output of the VSS block is given

by:

fout = MLP3(LN3(f
′′)) + f ′′, (4.3)

where LN represents the normalization layer; SS2D is the 2D selective scan mod-

ule; σ is the SiLU activation [110]; DWConv is the depthwise convolution; and

MLP is the learnable linear projection.

Unlike VSS block in [13], we employ Root Mean Square Normalisation (RM-

SNorm) [111] instead of LayerNorm. RMSNorm normalizes the input by centering

it around zero and scaling it based on its magnitude. In contrast to standard layer

normalization, which depends on the mean and variance, RMSNorm focuses on

the root mean square of the input. This approach not only enhances convergence

speed during training but is also computationally simpler, as it eliminates the

need to compute the mean and instead emphasizes the magnitude of the inputs.

91

4.2.3.2. Selective Scan Approach

We adopt the selective scan approach proposed in [13], which adapts input-

dependent selection mechanism [17] to vision data without compromising its ad-

vantages. The SS2D process consists of three steps, as shown in Figure 4.2 (c).

- Cross-scan: unfolds input features into sequences along four distinct traversal

paths;

- Selective scan: processes each path with a distinct S6 in parallel;

- Cross-merge: subsequently reshapes and merges the resultant sequences to form

the output feature, enabling effectively integrating information from other pixels

in different directions relative to each current pixel.

4.2.4. SSMIC Decoder

The SwinNPE decoder consists of a generative decoder gs and a hyper- prior

decoder hs, both constructed using the patch split block and the VSS block. The

patch split block is identical to that used in the SwinNPE architecture described

in Chapter 3 Subsection 3.3.2.

4.2.5. Quantization and Entropy Model in SSMIC

To simulate the quantization operation, we employ the same strategy as in Swin-

NPE (Chapter 3 Section 3.3). Our approach utilizes the context model and the

entropy parameters network from [10], which draws inspiration from traditional

coding techniques that predict the probability of unknown codes based on pre-

viously decoded latent. Unlike the architecture in [55], our approach emphasizes

computational efficiency, allowing us to achieve superior performance while main-

92

taining a streamlined and practical design.

4.3. Proposed State Space Model-based Image

Compression with Channel Wise Autore-

gressive (SSMIC CW)

We propose an alternative version of State-Space Model-based Image Compression

(SSMIC CW) that incorporates the Channel-wise AutoRegressive Model [76], as

outlined in Chapter 3 and illustrated in Figure 3.5. While this model enhances

performance, it also incurs a significant increase in computational time. This

version allows us to assess the effectiveness of our method when combined with a

robust autoregressive model, providing a contrast to the original SSMIC.

4.4. Experimental Results

This section evaluates the proposed SSMIC architecture and compares its image

compression results with state-of-the-art approaches. After outlining the experi-

mental settings, we will examine various End-to-End Neural network model-based

approaches in terms of their compression performance and computational com-

plexity.

4.4.1. Experimental Settings

The SSMIC model was trained on the CLIC2020 training set [15], employing

the same loss function used by the SwinNPE model, as outlined in Chapter 3,

93

Equation 3.1. For a comprehensive understanding of the loss function, please

refer to Chapter 2, Section 2.3.1.2, where its formulation is provided as follows:

L = D + λR,

where R represents the bitrate and D denotes the distortion.

The MSE in the RGB color space serves as the distortion metric. The La-

grangian multiplier λ regulates the R-D trade-off. We trained the SSMIC model

with values of λ set ∈ {100, 50, 30, 10}. Each training batch consisted of 8 ran-

domly cropped images, each sized 256 × 256. We performed a total of 1 mil-

lion (1M) iterations using the ADAM optimizer, with the learning rate fixed at

10−4. The hyper-parameters of the architecture, as shown in Figure 4.1, are

as follows: (d1, d2, d3, d4, d5, d6) = (2, 2, 6, 2, 5, 1) and (C1, C2, C3, C4, C5, C6) =

(128, 192, 256, 320, 192, 192).

The entropy parameters network, as in [10], comprises three consecutive convo-

lutional layers with stride equal to 1, and channel numbers 640, 512, 384 respec-

tively. The context model [10] utilizes a masked convolution [69] with a kernel

size of 5× 5 and a channel number of 384 with stride equal to 1.

Our SSMIC architecture was implemented in Pytorch using the CompressAI

library [112] on an NVIDIA A100 80 Go GPU and an Intel Xeon Gold 6330 3.10

GHz CPU.

We evaluate the performance of the model on three datasets: Kodak [11],

JPEG-AI [12], and the test set of CLIC2020 [15] including both mobile and

professional categories. During inference, images that are not multiples of 256

were zero-padded. The proposed SSMIC model is compared against several mod-

els: SwinT [7], MambaVC [55], LightweightLIC [74], LIC TCM [3], MLIC+ [81],

ELIC [82] and our previous SwinNPE model in Chapter 3. These models were se-

94

Method Kodak [11] CLIC2020 [15] JPEG-AI [12] Average

BPG444 [113] 29.86% 32.77% 43.77% 35.46%
SwinT* [7] -10.52% -6.47% -2.78% -6.03%
MambaVC* [55] -15.37% -16.69% -12.47% -14.69%
SwinNPE (Chapter 3) -5.85% -17.50% -23.56% -15.63%
LightweightLIC [74] -7.76% -23.60% -29.86% -20.40%
ELIC [82] -11.14% -27.45% -31.31% -23.30%
MLIC+* [81] -15.86% - -15.89% -
LIC TCM [3] -13.76% -30.65% -33.37% -25.92%
SSMIC (Ours) -9.81% -29.91% -25.55% -21.75%
SSMIC CW (Ours) -11.75% -27.15% -23.92% -20.94%

Table 4.1: BD-rate performance using VTM-15.0 [14] as reference.

lected for their competitive compression performance or computational efficiency.

We also present the compression performance of Better Portable Graphics

(BPG) [113] and VTM [14] as baseline comparisons. Detailed information on

the specific commands and software used to generate these results can be found

in Appendix A.

For LightweightLIC [74], LIC TCM [3], and ELIC [82] and our previous Swin-

NPE (Chapter 3), we evaluated their compression performance and complexity

efficiency using their provided pre-trained models under the same configuration

as SSMIC. For SwinT [7], MambaVC [55], and MLIC+ [81], as pre-trained mod-

els were not available, we assessed their computational complexity using their

untrained models and referenced the RD-curves from their respective papers to

evaluate compression performance. All experiments were carried out on an A100

80 Go GPU and an Intel Xeon Gold 6330 3.10 GHz CPU.

95

Figure 4.3: BD-rate performance over VTM-15.0 [14] vs computational complex-
ity (GMACs) on Kodak [11].

4.4.2. Results and Discussion

We summarize in Table 4.1, the BD-rate of SSMIC and the competitive state-

of-the-art models across three datasets. The BD-rate was calculated covering

approximately 0.4 to 1.2 Bit Per Pixel (BPP), using VTM-15.0 [14] as the refer-

ence, We use ∗ to indicate the approaches for which the numbers are sourced from

their respective papers. Note that the evaluation of MLIC+ on the CLIC2020

dataset is not provided in [81].

96

Figure 4.4: Performance evaluation on the Kodak dataset [11].

On average, SSMIC achieves a -21.75% BD-rate performance compared to

VTM-15.0 and 4.17 p.p.,translating to a relative increase from LIC TCM [3] which

delivers the best performance among the selected methods. However, the latter

is significantly more demanding in terms of computational complexity and num-

ber of parameters. This is illustrated in Fig. 4.3, which plots the BD-rate with

VTM-15.0 as an anchor versus the GMACs4 of various approaches on the Kodak

dataset. The radius of the circles represents the number of parameters of the

model. The methods positioned further towards the bottom left of the graph

demonstrate better performance. These findings confirm that our SSMIC offers

a good trade-off between BD-rate performance and computational complexity.

97

Figure 4.5: Performance evaluation on the JPEG-AI dataset [12].

We also evaluate the compression performance of different models across var-

ious bitrate ranges on the Kodak, JPEG-AI, and CLIC2020 datasets, as illus-

trated in Figures 4.4,4.5 and 4.6 respectively. The results show that the proposed

model consistently achieves performance comparable to the state-of-the-art meth-

ods while maintaining competitive computational efficiency. Indeed, we show in

Tables 4.3 and 4.4 the computational complexity in terms of MACs4 and FLOPs4,

respectively. The results cover three different resolutions, selected for their com-

4MACs and FLOPs for most models were calculated using the calflops library https:

//github.com/MrYxJ/calculate-flops.pytorch. However, for SwinNPE (as discussed in
Chapter 3), the FLOPs were computed using TensorFlow. The MACs for SwinNPE were ap-
proximated by dividing the FLOPs by 2, following the standard assumption that, in many
models, each multiply-accumulate operation corresponds to two floating-point operations.

98

https://github.com/MrYxJ/calculate-flops.pytorch
https://github.com/MrYxJ/calculate-flops.pytorch

Figure 4.6: Performance evaluation on the CLIC2020 dataset [15].

mon usage and to avoid out-of-memory issues on the utilized GPU. It is clear that

our SSMIC significantly reduces the computational complexity in terms of MACs

and achieves competitive results in terms of FLOPs compared to SwinNPE in

Chapter 3.

Table 4.2 displays the average latency over 2,000 images at a resolution of

256 × 256 on the utilized GPU. Our model shows competitive decoding times

when compared to lightweightLIC [74], while also achieving similar encoding

times. Figures 4.8 and 4.7 present a quantitative comparison between SSMIC and

SSMIC CW. Notably, SSMIC CW consistently outperforms SSMIC by achieving

superior reconstruction quality for the same bitrate, as illustrated in Figure 4.8

99

and 4.7. Additionally, further analyses of spatial correlation across different λ

values are provided in Appendix A for a more comprehensive evaluation.

Method Latency GPU (ms)

Encoding Decoding

ELIC [82] 426.94 517.15
MambaVC* [55] 14.01 73.36
LIC TCM [3] 15.23 52.46
SwinT* [7] 14.25 20.86
LightweightLIC [74] 15.62 15.56
SSMIC (Ours) 20.24 19.93
SSMIC CW (Ours) 21.54 58.41

Table 4.2: Average latency, measured on an A100 80 Go GPU and an Intel Xeon
Gold 6330 3.10 GHz CPU, using over 2000 images at 256 × 256 resolution. (*)
We conducted the inference without loading the pre-trained weights because the
pre-trained model was unavailable.

100

R
es
ol
u
ti
on

S
S
M
IC

(O
u
rs
)

S
w
in
N
P
E
(C

h
ap

te
r
3)

S
w
in
T

[7
]

L
IC

T
C
M

[3
]

E
L
IC

[8
2]

L
ig
h
tw

ei
gh

tL
IC

[7
4]

M
am

b
aV

C
[5
5]

M
L
IC

+
[8
1]

76
8
×

51
2

1
8
0
.0
5
3
G

≈
17
8.
47
7G

20
8.
78
9G

21
5.
31
6G

23
1.
93
0G

23
9.
21
3G

32
6.
11
2G

45
2.
62
2G

10
24

×
76
8

3
6
0
.1
0
6
G

≈
35
6.
95
5G

41
7.
57
0G

43
0.
63
2G

46
3.
86
1G

47
8.
42
5G

65
2.
22
4G

90
5.
24
3G

12
80

×
12
80

7
5
0
.2
2
2
G

≈
74
3.
65
5G

86
9.
95
6G

89
7.
15
0G

96
6.
37
6G

99
6.
71
9G

O
M

1.
88
59
T

#
p
ar
am

et
er
s
(M

)
35
.7
9

27
.0
0

32
.3
4

45
.1
8

33
.7
9

38
.3
9

53
.3
0

83
.5
0

R
es
ol
u
ti
on

S
S
M
IC

C
W

(O
u
rs
)

S
w
in
N
P
E
(C

h
ap

te
r
3)

S
w
in
T

[7
]

L
IC

T
C
M

[3
]

E
L
IC

[8
2]

L
ig
h
tw

ei
gh

tL
IC

[7
4]

M
am

b
aV

C
[5
5]

M
L
IC

+
[8
1]

76
8
×
51
2

21
0.
26
2G

≈
17
8.
47
7G

2
0
8
.7
8
9
G

21
5.
31
6G

23
1.
93
0G

23
9.
21
3G

32
6.
11
2G

45
2.
62
2G

10
24

×
76
8

42
0.
52
4G

≈
35
6.
95
5G

4
1
7
.5
7
0
G

43
0.
63
2G

46
3.
86
1G

47
8.
42
5G

65
2.
22
4G

90
5.
24
3G

12
80

×
12
80

87
6.
09
3G

≈
74
3.
65
5G

8
6
9
.9
5
6
G

89
7.
15
0G

96
6.
37
6G

99
6.
71
9G

O
M

1.
88
59
T

#
p
ar
am

et
er
s
(M

)
58
.3
7

27
.0
0

32
.3
4

45
.1
8

33
.7
9

38
.3
9

53
.3
0

83
.5
0

T
ab

le
4.
3:

M
u
lt
ip
ly
-A

d
d
C
u
m
u
la
ti
on

(M
A
C
s)

fo
r
d
iff
er
en
t
im

ag
e
re
so
lu
ti
on

s.
T
h
e
la
st

li
n
e
gi
ve
s
th
e
n
u
m
b
er

of
p
ar
am

et
er
s
fo
r
ea
ch

m
o
d
el
.

O
M

fo
r
O
u
t
of

M
em

or
y.

(≈
)
F
or

S
w
in
N
P
E
(C

h
ap

te
r
3)

w
e
fo
ll
ow

th
e
st
an

d
ar
d
as
su
m
p
ti
on

th
at
,
in

m
an

y
m
o
d
el
s,
ea
ch

m
u
lt
ip
ly
-a
cc
u
m
u
la
te

op
er
at
io
n
co
rr
es
p
on

d
s
to

tw
o
fl
oa
ti
n
g-
p
oi
n
t
op

er
at
io
n
s.

R
es
ol
u
ti
on

S
S
M
IC

(O
u
rs
)

S
w
in
N
P
E
(C

h
ap

te
r
3)

S
w
in
T

[7
]

L
IC

T
C
M

[3
]

E
L
IC

[8
2]

L
ig
h
tw

ei
gh

tL
IC

[7
4]

M
am

b
aV

C
[5
5]

M
L
IC

+
[8
1]

76
8
×

51
2

43
9.
61
8G

3
5
6
.9
5
5
G

41
9.
21
5G

44
1.
37
8G

46
4.
64
0G

48
0.
03
1G

81
5.
11
9G

90
5.
84
5G

10
24

×
76
8

87
9.
24
7G

7
1
3
.9
1
1
G

83
8.
43
0G

88
2.
76
1G

92
9.
27
9G

96
0.
06
2G

1.
63
02
T

1.
81
17
T

12
80

×
12
80

1.
83
17
T

1
.4
8
7
3
T

1.
74
67
T

1.
83
91
T

1.
93
60
T

2.
00
01
T

O
M

3.
77
44
T

R
es
ol
u
ti
on

S
S
M
IC

C
W

(O
u
rs
)

S
w
in
N
P
E
(C

h
ap

te
r
3)

S
w
in
T

[7
]

L
IC

T
C
M

[3
]

E
L
IC

[8
2]

L
ig
h
tw

ei
gh

tL
IC

[7
4]

M
am

b
aV

C
[5
5]

M
L
IC

+
[8
1]

76
8
×
51
2

50
1.
18
2G

3
5
6
.9
5
5
G

41
9.
21
5G

44
1.
37
8G

46
4.
64
0G

48
0.
03
1G

81
5.
11
9G

90
5.
84
5G

10
24

×
76
8

1.
00
24
T

7
1
3
.9
1
1
G

83
8.
43
0G

88
2.
76
1G

92
9.
27
9G

96
0.
06
2G

1.
63
02
T

1.
81
17
T

12
80

×
12
80

2.
08
82
T

1
.4
8
7
3
T

1.
74
67
T

1.
83
91
T

1.
93
60
T

2.
00
01
T

O
M

3.
77
44
T

T
ab

le
4.
4:

F
lo
at
in
g
P
oi
n
t
O
p
er
at
io
n
s
(F

L
O
P
s)

fo
r
d
iff
er
en
t
im

ag
e
re
so
lu
ti
on

s.
O
M

fo
r
O
u
t
of

M
em

or
y.

101

Ground Truth
Kodim06.png

SSMIC
[0.466/31.30/14.69]

SSMIC CW
[0.467/32.13/15.58]

Figure 4.7: Visualization of the reconstructed images from Kodak
dataset”Kodim06”. The metrics of SSMIC CW [≈ bpp/↑ PSNR(dB)/↑ MS-
SSIM(dB)] compared to those of SSMIC.

102

Ground Truth
Kodim05.png

SSMIC
[1.121/34.86/21.30]

SSMIC CW
[1.116/35.18/21.59]

Figure 4.8: Visualization of the reconstructed images from the Kodak
dataset”Kodim05”. The metrics of SSMIC CW [≈ bpp/↑ PSNR(dB)/↑ MS-
SSIM(dB)] compared to those of SSMIC.

103

4.5. Conclusion

In this chapter, we introduced the State Space Model-based Image Compression

(SSMIC) approach, which achieves competitive RD performance while signifi-

cantly reducing computational complexity and latency. Leveraging the strengths

of SSMs derived from the Mamba model, SSMIC enhances contextual reasoning

while effectively managing computational and memory demands. Across bench-

mark datasets, SSMIC demonstrates a significant reduction in BD-rate compared

to VTM-15.0, highlighting its effectiveness for practical applications. While this

chapter focused on investigating state space models in neural networks for image

compression, it would be worthwhile to explore a strategy that adjusts bit-rate

using a single model rather than multiple models across different bitrates. This

will be the focus of the next chapter.

104

5. Universal End-to-End Neural

Network for Lossy Image Com-

pression

Contents

5.1 Introduction . 109

5.2 Universal End-to-End VAE for Lossy Image Com-

pression . 111

5.2.1 Objective Loss Function 111

5.2.2 Scaling Factor Strategy 112

5.2.3 Analysis and Discussion 114

5.3 Experimental Results 115

5.3.1 Experimental Settings 115

5.3.2 Impact of the Scaling Factor on the Codec Bitrate . . 116

5.3.3 Results and Discussion 117

5.4 Conclusion . 126

105

Summary of this Chapter

This chapter presents variable bitrate lossy image compression using a VAE-based

neural network. We propose an adaptable image quality adjustment strategy that

innovatively adjusts the input scale exclusively during the inference phase, lead-

ing to an exceptionally efficient rate-distortion mechanism. Through extensive

experimentation, across diverse VAE-based compression architectures (CNN, Vi-

sion Transformer (ViT)) including the proposed models presented in Chapter 3, 4

and training methodologies (MSE, SSIM), our approach exhibits remarkable uni-

versality. This success is attributed to the inherent generalization capacity of

neural networks. Unlike methods that adjust model architecture or loss func-

tions, our approach emphasizes simplicity, reducing computational complexity

and memory requirements. The experiments not only highlight the effectiveness

of our approach but also indicate its potential to drive advancements in variable-

rate neural network lossy image compression methodologies. These results were

presented at European Signal Processing Conference (EUSIPCO) 2024, validating

the innovative nature and impact of our approach in the field.

107

5.1. Introduction

In most auto-encoder-based coding schemes, the Variational Auto-encoder (VAE)

seeks to optimize performance by minimizing the distortion between the original

image and its compressed-decompressed version while adhering to a specified tar-

get bitrate constraint (Section 2.3). This complex rate-distortion optimization

problem is tackled using Lagrange formalism, introducing a Lagrange multiplier

into the VAE’s objective loss function. This function typically consists of two

terms: a distortion term, measuring the difference between the original image and

its compressed-decompressed counterpart, and a rate regularization term which

enforces the bitrate constraint. During the end-to-end training process, this func-

tion guides the VAE to optimally adjust the parameters of both the encoder and

the decoder. This ensures not only optimal compression performance but also

the preservation of the quality of the reconstructed image. By minimizing the

objective function for a specific value of the Lagrange multiplier, we can iden-

tify the points on the convex hull that correspond to all possible rate-distortion

combinations. Consequently, training the VAE for each rate-distortion pair with

different values of the Lagrange multiplier results in a distinct compression model

for each specific multiplier. However, This individualized training process is both

computationally expensive and time-consuming, which restricts the flexibility of

auto-encoder-based methods in practical applications where variable bitrates are

required.

To address this issue, several strategies have been proposed to enable variable

bitrate compression using a single trained model, as discussed in Section 2.3.

For example, Yoojin et al. introduced a conditional auto-encoder that incorpo-

rates the Lagrange multiplier as a conditioning variable throughout the decoder,

109

encoder, and entropy model [58]. Theis et al. introduced a scale parameter

that allows fine-tuning a pre-trained auto-encoder for various bitrate targets [43].

Moreover, the approach proposed in [59] extends this idea by integrating a mod-

ulated auto-encoder with a VAE. Guerin Jr et al. suggested a modification to

the loss function to implement rate control within the VAE framework, although

this method requires training multiple models, each fixed to specific bitrates [114].

Similarly, other strategies have been explored, including substituting the loss term

with rate estimation or using gain units for rate adaptation [16,60]. Furthermore,

a variable quantization method that adjusts the bitrate by controlling the size of

the quantization bins has been proposed [58].

Despite these advancements, many of these strategies involve architectural

modifications, additional modules, or changes to the loss function, often leading

to increased computational complexity and memory usage. Furthermore, fine-

tuning or integrating rate-conditioned modules can significantly extend times and

elevate model complexity, and may still fall short of the compression efficiency

achieved by traditional codecs such as BPG [60]. Incorporating scale parameters

in the latent space may also introduce potential compatibility issues [43], further

complicating the model’s performance.

In this chapter, we propose a novel approach to variable bitrate lossy image

compression using a VAE-based neural network, effectively addressing the limi-

tations of existing methods. Our strategy stands out by allowing flexible adjust-

ment of image quality using only a single trained model, eliminating the need

for architectural modifications or retraining. Rather than depending on intri-

cate rate control mechanisms, our approach adjusts the input scale in the image

space exclusively during the inference process. This significantly simplifies the

implementation while maintaining the flexibility to adapt to different bitrates.

By leveraging this efficient scaling mechanism, we demonstrate that our method

110

achieves accurate performance, with lower computational complexity compared

to existing state-of-the-art techniques. This streamlined strategy offers a practical

solution for achieving variable bitrate compression.

5.2. Universal End-to-End VAE for Lossy Image

Compression

The VAE designed for image compression efficiently learns to represent input

data in a latent space by minimizing an objective loss function composed of

two main components: faithful reconstruction of input data to reduce distortion,

and regularization of the latent space to control the rate. The regularization

component prevents the latent space from becoming too complex, promoting more

understandable and useful representations. By computing all VAE parameters to

minimize this objective function, the model adopts a holistic training approach.

Essentially, the VAE is engineered to optimize the rate-distortion pair, with a

fixed regularization point. This ensures a balanced compromise between data

compression and reconstruction quality, tailored to specific requirements dictated

by the regularization. To simplify the training process, this work suggests using

a single end-to-end trained VAE model for image compression, emphasizing the

minimization of the objective function.

5.2.1. Objective Loss Function

Assuming the VAE has been trained for a specific regularization point λK that

yields an optimal rate-distortion pair (DK , RK) (e.g. the point furthest to the

right on the rate-distortion curve), the minimization of the objective loss function

111

can be expressed as follows:

L(θK , ϕK , λK) = DK + λKRK , (5.1)

with

DK = D(x, x̂) = D(x, gϕK
(Q(fθK (x)))), (5.2)

and

RK = R(ŷ) = R(Q(fθK (x))), (5.3)

where D is the distortion between the original image x and its compressed-

decompressed version x̂ given by x̂ = gϕ(Q(fθ(x))). Q is the quantization op-

erator. fθ() concerns the encoder side with θ parameters and gϕ() being the

decoder side with ϕ parameters. R is the estimated bit-rate.

5.2.2. Scaling Factor Strategy

Our universal codec image architecture is illustrated in Figure 5.1. More details

are given below.

Now, suppose that the encoder and decoder are ready for use, meaning that all

the parameters of the VAE have been carefully calculated for a given λK according

to the objective function described below. To compress the original image at a

bit-rate different from the one for which the codec was configured, we propose to

reduce the dynamic range of the original image. To achieve this, we introduce a

scaling factor, denoted s, belonging to the interval]0, 1[. The original image x,

intended for compression, is then scaled by this factor s as follows:

xs = s× x (5.4)

112

Figure 5.1: Universal codec image architecture.

before being fed into the VAE encoder for compression.

In the decoding process, the compressed stream ŷ is sent to the VAE decoder.

The compressed-decompressed image is then rescaled. In addition to the error

induced by the already trained VAE (i.e., DK), an additional error arises from

the scaling and rounding operations, as the compressed-decompressed image is

deduced from x̂′ = ⌊ x̂s

s
⌋ (where ⌊.⌋ denotes the rounding operation). Thus, we

can conclude that:

D(x, ⌊ x̂s

s
⌋) ≥ DK = D(x, x̂). (5.5)

Let us recall that the proposed universal codec has been frozen for a specific

objective function L(θK , ϕK , λK) that corresponds to a given operating mode

(i.e., DK , Rk). According to Eq. 5.5, the distortion has increased compared to

113

the original distortion (ie.e, DK) induced by the frozen encoder. To maintain this

objective loss function L(θK , ϕK , λK), a reduction in the bitrate is consequently

enforced. As a result, a new rate-distortion pair (DKs , RKs) can be inferred

without the need to retrain the VAE compression architecture for an additional

regularization point.

This proposed scaling factor strategy enables the construction of multiple VAE

codecs that operate in various modes, all relying on a single VAE frozen for a spe-

cific operational mode. This will be supported by the experiments we conducted,

with the results analyzed in section 5.3.

5.2.3. Analysis and Discussion

The scaling strategy outlined in the previous section enhances the practicality of

our method by enabling variable-rate compression without requiring additional

training for different rate-distortion points. Unlike existing state-of-the-art meth-

ods, which often require complex architectural modifications or retraining for

each bitrate setting, our strategy leverages the generalization ability of neural

networks. This allows us to efficiently adjust compression parameters during

inference, making our approach both universal and adaptable to various com-

pression needs. Compared to state-of-the-art methods, our solution is simpler

and more computationally efficient, while still delivering accurate performance in

terms of both bitrate and image quality.

However, when the scaling factor s becomes too small (i.e. when the image

dynamics are shrunk drastically), compression performance deteriorates signifi-

cantly, as the added distortion outweighs the benefits of bitrate reduction. This

is consistent with very low bitrate coding. This also depends on the chosen oper-

ating point of the frozen codec.

114

Additionally, attempting to apply scaling factors outside the]0, 1[interval

would result in performance issues, as the VAE was not trained on such val-

ues, potentially leading to domain-shifting problems that degrade neural network

performance.

5.3. Experimental Results

This section shows that the strategy proposed in the previous section enables the

construction of the complete rate-distortion curve with only one selected pair of

points (DK , RK), relying solely on a single VAE model that has already been

trained for the corresponding regularization point λK .

5.3.1. Experimental Settings

Different end-to-end neural network architectures have been selected:

• Fully convolutional based methods: Factorized Hyperprior, Scale Hyper-

prior [9] and Joint Autoregressive and Hierarchical Priors [10];

• Convolutional methods with attention modules: Discretized Gaussian Mix-

ture Likelihoods and Attention Modules [2];

• Transformer-based methods: SwinNPE (Chapter 3) and (iv) Space State

Model (Mamba model): SSMIC (Section 4).

The trained models are those provided by the CompressAI framework [112],

including 8 different regularization values (i.e. λi), except for [2] with 6 reg-

ularization values. All models are optimized based on MSE and MS-SSIM as

distortion metric in RGB color space, and the quantization is performed using

torch.round().

115

In the case of SwinNPE (Chapter 3), we trained the model on the CLIC2020 [15]

dataset using 4 regularization values λ1 = 0.003, λ2 = 0.001, λ3 = 0.0003, λ4 =

0.0001 and employed tf.round() for quantization. The evaluation was performed

on the Kodak dataset [11].

For SSMIC (Section 4), same as SwinNPE with different regularization values

λ1 = 100, λ2 = 50, λ3 = 30, λ4 = 10, for Asymmetric Gained Deep [16] method,

we extracted the results from their paper.

During the experimental process, we select the regularization point λK at which

the VAE image compression has been trained to achieve an optimal rate-distortion

pair (DK , RK) according to the minimization of the objective loss function. We

define 9 scaling factors s = 0.1, 0.2...0.8, 0.9 that belong to the interval]0, 1[.

5.3.2. Impact of the Scaling Factor on the Codec Bitrate

We adopt a naive one-hot representation for the scaling factor s, as illustrated in

Table 5.1, which encompasses 256 possible scaling factors. In this representation,

each possible value of s is mapped to a specific 1-byte binary sequence. For

example, s = 0.1 is encoded as 10000000 and s = 1.0 as 00000000.

Additionally, Table 5.2 illustrates the impact of this encoded scaling factor s on

the bitrate per pixel for the Kodak image ”Kodim01”. ∆R quantifies the difference

in bitrate with and without the scaling factor. Specifically, the table details how

encoding using one, two, or three bytes influences the bitrate increase, whether s

is concatenated with the latent space ŷ or encoded independently without entropy

coding. Overall, the effect of encoding s on the bitrate is minimal and negligible,

ensuring that the introduction of a scaling factor does not impact the overall

compression performance. Additionally, one can observe that it is unnecessary to

encode the scaling factor with the latent space.

116

Scaling Factor s se (encoded s) on 1 byte

0.1 10000000
0.2 01000000
0.3 00100000
0.4 00010000
0.5 00001000
0.6 00000100
0.7 00000010
0.8 00000001
0.9 11111111
1.0 00000000

Table 5.1: An example of one-hot representation of the scaling factor s using 1
byte.

5.3.3. Results and Discussion

In the various plots presented in Figures 5.2,5.4 and 5.5, the solid rate-distortion

curves correspond to reference curves obtained from the model trained at differ-

ent regularization points, with inference performed on each trained model. In

contrast, the dotted rate-distortion curves correspond to curves generated using

a single trained model. For each new rate-distortion point, this trained model is

inferred with an input image that has been scaled by a factor s.

Figure 5.2 depicts the rate-distortion reference curve of SwinNPE (Chapter 3).

We choose λK = λ4 and employ this trained SwinNPE to generate the dotted

rate-distortion curve, as explained below. Notably, this curve fits perfectly with

the reference curve for a bitrate greater than 0.4 bpp.

A performance comparison with the Asymmetric Gained Deep Image Compres-

sion With Continuous Rate Adaptation [16] shows that our strategy yields similar

results. Figure 5.3 highlights the significance of selecting the trained SwinNPE

model as a universal model. Indeed, it is observed that depending on the chosen

117

Encoded Scaling Factor s 1 byte 2 bytes 3 bytes

∆R ∆R ∆R
s concatenated with the latent
space ŷ using entropy coding 3× 10−4 6× 10−4 9× 10−4

s alone without entropy coding 2× 10−5 4× 10−5 6× 10−5

Table 5.2: Impact of the scaling factor on the birate. (∆R) quantifies the dif-
ference in bitrate with and without the scaling factor, using the Kodak image
”Kodim01” in two scenarios : (i) the scaling factor is represented using one, two,
or three bytes; (ii) the scaling factor is concatenated to the latent space and un-
dergoes entropy encoding.

regularization point (i.e., λK = λ1, λK = λ2, λK = λ3, or λK = λ4), the rate-

distortion curve (referred to as the SwinNPE optimal curve in this figure) fits

better to the reference curve while expanding the range of possible rates. Since

the scale factor strategy increases distortion at the expense of reduced bitrate,

relying on a model trained with a specific regularization point is crucial for en-

suring excellent quality of the compressed-decompressed image while maintaining

a low bitrate.

In Figure 5.4, the dotted distortion-rate curve is generated based on the top-

right regularization point, i.e., λK , of the corresponding solid reference curve for

each image compression method. One can observe that our strategy allows for

fitting the rate-distortion of the reference curves for Scale Hyperprior [9], Joint

Autoregressive and Hierarchical Priors [10], and Discretized Gaussian Mixture

Likelihoods and Attention Modules [2]. However, for Factorized Hyperprior [9],

the performance decreases compared to the reference (up to ≈ 1dB) when signif-

icantly reducing the dynamic range of the image (i.e. when s is too small).

To grasp the impact of the scaling factor s, Figure 5.6 and 5.7 displays the

normalized histograms of the latent space for SwinNPE (Chapter 3) and SSMIC

118

(Chapter 4.2) respectively, using the kodim01.png image from the Kodak dataset

[11]. The histograms exhibit a Laplacian distribution that narrows as the scale

s decreases, with increased amplitude indicating a higher level of sparsity in the

latent space.

The common feature of the VAE used is that quantization is fixed, and the pa-

rameters of this quantization are not fine-tuned during the learning process. This

imparts a level of flexibility to the regularization point, influencing the trade-off

between rate and distortion. Introducing the scale factor is akin to incorporat-

ing an additional form of uniform quantization, which increases the distortion

according to the rounding step to recover the original image.

119

Figure 5.2: 1st Figure: Rate-distortion reference curve of SwinNPE and dotted
curve depicts the rate-distortion achieved by employing a single regularization
point. 2nd Figure: the same dotted curve (i.e. using the top right point of
SwinNPE) with Asymmetric Gained Deep variable bitrate model [16] on Kodak
dataset [11].

120

Figure 5.3: The dotted curve, SwinNPE optimal curve, represents the envelope
of the four rate-distortion curves obtained when successively exploiting the four
SwinNPE trained models (i.e. λK = λ1, λK = λ2, λK = λ3, λK = λ4) with
different values of the scaling factor s on the Kodak dataset [11].

121

Figure 5.4: Rate-distortion reference curves with different values of the scaling
factor s on the Kodak dataset [11]. 122

Figure 5.5: Rate-distortion reference curve of SSMIC (Section 4) and dotted curve
depicts the rate-distortion achieved by employing a single regularization point on
Kodak dataset [11].

123

µ
=

−
0.00275,b

=
1.80,

B
P
P
=
1.558

(a)
s
=

1.0
(w

ith
ou

t
scale

fa
cto

r)

µ
=

−
0.00318,b

=
1.58,

B
P
P
=
1.298

(b
)
s
=

0.8

µ
=

−
0.00330,b

=
1.29,

B
P
P
=
0.822

(c)
s
=

0.5

µ
=

−
0.00197,b

=
0.95,

B
P
P
=
0.244

(d
)
s
=

0.2

F
igu

re
5.6:

N
orm

alized
h
istogram

s
of

th
e
laten

t
sp
ace

of
”kodim

01.pn
g”

im
age

in
K
o
d
ak

d
ataset

[11]
w
ith

S
w
in
N
P
E

u
sin

g
th
ree

scalin
g

factors
s
=

0.2,
s
=

0.5,
an

d
s
=

0.8.
T
h
e
red

cu
rve

sh
ow

s
th
e
en
velop

e
of

th
e
estim

ated
L
ap

lacian
d
istrib

u
tion

ch
aracterized

b
y
its

m
ean

µ
an

d
scale

p
aram

eter
b.

124

µ
=

0.
00
06
6,
b
=

0.
63
,

B
P
P
=
1.
18
2

(a
)
s
=

1.
0
(w

it
h
ou

t
sc
al
e
fa
ct
or
)

µ
=

0.
00
04
9,
b
=

0.
39
,

B
P
P
=
0.
95
1

(b
)
s
=

0.
8

µ
=

0.
00
04
9,
b
=

0.
39
,

B
P
P
=
0.
54
0

(c
)
s
=

0.
5

µ
=

−
0.
00
01
1,
b
=

0.
32
,

B
P
P
=
0.
13
3

(d
)
s
=

0.
2

F
ig
u
re

5.
7:

N
or
m
al
iz
ed

h
is
to
gr
am

s
of

th
e
la
te
n
t
sp
ac
e
of

”k
od
im

01
.p
n
g”

im
ag
e
in

K
o
d
ak

d
at
as
et

[1
1]

w
it
h
S
S
M
IC

u
si
n
g
th
re
e
sc
al
in
g
fa
ct
or
s

s
=

0.
2,

s
=

0.
5,

an
d
s
=

0.
8.

T
h
e
re
d
cu
rv
e
sh
ow

s
th
e
en
ve
lo
p
e
of

th
e
es
ti
m
at
ed

L
ap

la
ci
an

d
is
tr
ib
u
ti
on

ch
ar
ac
te
ri
ze
d
b
y
it
s
m
ea
n
µ
an

d
sc
al
e
p
ar
am

et
er

b.

125

5.4. Conclusion

This chapter proposed a universal end-to-end VAE for lossy Image Compression

using a single image codec specifically designed to operate at variable bitrates.

Our innovative strategy leverages a single trained VAE model to dynamically

adjust the input image scale during the inference process, leading to an efficient

rate-distortion mechanism. Our approach is applicable to various VAE-based

image compression frameworks, including those using CNNs and attention mech-

anisms. Through several experiments, we have shown that this approach has

the potential to enhance variable-rate neural network image compression tech-

niques by minimizing complexity and memory usage. Future research will focus

on evaluating our method using perceptual metrics and comparing it with other

perceptual VAE-based approaches across diverse datasets.

126

6. Conclusion and Future Work

With the growing interest in vision-based applications, this thesis is primarily

dedicated to developing an innovative framework for image compression that

achieves high compression efficiency while minimizing computational complexity

and latency. This makes it well-suited for real-world applications and resource-

constrained environments. More specifically, driven by the advancements in deep

neural network techniques, including convolutional and transformer models, as

well as the integration of State Space Models (SSMs), our primary objective was

to combine these powerful tools to create a robust and practical framework for

image compression.

a) Summary of Contributions – In the following, we outline the key contri-

butions of this work and discuss potential future extensions.

• Our first contribution is the development of a transformer-based image com-

pression model, SwinNPE, which utilizes convolutional Swin blocks without

positional encoding. SwinNPE achieves performance on par with state-of-

the-art methods while requiring fewer model parameters and surpassing

CNN-based architectures. The design of the convolutional Swin block en-

hances the ability to leverage spatial context without relying on positional

encoding, leading to increased flexibility and reduced parameter count.

• The second contribution focused on the State Space Models (SSMs). We

proposed a State Space Model-based Image Compression (SSMIC) approach

127

that leverages the strengths of SSMs, as derived from the Mamba model.

This approach enhances contextual reasoning while effectively managing

computational and memory requirements. As a result, SSMIC achieves com-

petitive performance while significantly reducing computational complexity

and latency, making it a promising candidate for high-quality real-time vi-

sual data compression with further optimizations.

• Our final contribution centers on variable bitrate image compression frame-

works. We introduced a universal end-to-end VAE for lossy image com-

pression, presenting a flexible and practical solution for variable-rate lossy

image compression that can be applied to various VAE-based models. This

approach eliminates the need to retrain the model for different compression

rates, significantly enhancing the usability of compression systems across

diverse scenarios while ensuring efficiency.

b) Perspectives – Here are some suggested future directions.

• It would be valuable to investigate the integration of diverse convolutional

architectures, such as ConvNeXT, into the SwinNPE model. This explo-

ration could facilitate more precise modeling of complex spatial relation-

ships and patterns, potentially enhancing image compression performance

without sacrificing the computational complexity.

• A promising direction to explore is the development of hybrid methods

that combine convolutional architectures with state-space models. Convo-

lutional models are highly effective at capturing local dependencies, while

state-space models, paired with selective scan paths, can efficiently capture

both local and global dependencies. This hybrid approach could improve

128

the factorization of pixel dependencies and provide richer spatial context,

leading to better compression outcomes.

• In SSMIC, we utilized a selective scan approach that adapts an input-

dependent selection mechanism for vision tasks without being restricted

to any specific task. An interesting avenue for future research is to tai-

lor this selective scanning method specifically for image compression. By

proposing optimized traversal paths, we aim to enhance the factorization of

dependencies among pixels, reduce redundancy, and maintain a lightweight

architecture.

• Moreover, SSMIC shows promising potential for video compression as well.

By extending the selective scanning method to handle residual or tempo-

ral correlations, we can more effectively exploit the redundancies between

consecutive frames in video sequences. This approach could lead to more

efficient compression by dynamically adjusting the scan paths based on both

spatial and temporal dependencies, which would optimize the overall com-

pression process for video data.

• Another intriguing research direction is studying the performance of the uni-

versal end-to-end VAE for lossy image compression across various perceptual

and deep learning-based metrics. It would be particularly interesting to in-

vestigate how this universal approach performs in video compression where

temporal correlations are incorporated, potentially opening new avenues for

next-generation video compression techniques.

129

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances

in Neural Information Processing Systems (NeurIPS), vol. 30, Curran As-

sociates, Inc., 2017.

[2] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image compres-

sion with discretized gaussian mixture likelihoods and attention modules,”

in IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 7936–7945, 2020.

[3] J. Liu, H. Sun, and J. Katto, “Learned image compression with mixed

transformer-cnn architectures,” in 2023 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 14388–14397, 2023.

[4] T. George, M. O. Sean, H. Sung Jin, V. Damien, M. David, B. Shumeet,

C. Michele, and S. Rahul, “Variable rate image compression with recurrent

neural networks,” in International Conference on Learning Representations

(ICLR), 2016.

[5] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,

“Swin transformer: Hierarchical vision transformer using shifted windows,”

in 2021 IEEE/CVF International Conference on Computer Vision (ICCV),

pp. 9992–10002, 2021.

131

[6] Y. Qian, X. Sun, M. Lin, Z. Tan, and R. Jin, “Entroformer: A transformer-

based entropy model for learned image compression,” in International Con-

ference on Learning Representations (ICLR), 2022.

[7] Y. Zhu, Y. Yang, and T. Cohen, “Transformer-based transform coding,” in

International Conference on Learning Representations (ICLR), 2022.

[8] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimization of

nonlinear transform codes for perceptual quality,” in Picture Coding Sym-

posium (PCS), pp. 1–5, 2016.

[9] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational

image compression with a scale hyperprior,” in International Conference on

Learning Representations (ICLR), 2018.

[10] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and hi-

erarchical priors for learned image compression,” in Advances in Neural

Information Processing Systems (NeurIPS), vol. 31, 2018.

[11] R. Franzen, “Kodak lossless true color image suite,” http://r0k.us/

graphics/kodak, 1999.

[12] JPEG-AI, “Jpeg-ai test images,” https://jpegai.github.io/test_

images/, 2020.

[13] Y. Liu, Y. Tian, Y. Zhao, H. Yu, L. Xie, Y. Wang, Q. Ye, J. Jiao, and

Y. Liu, “VMamba: Visual state space model,” in The Thirty-eighth Annual

Conference on Neural Information Processing Systems (NeurIPS), 2024.

[14] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. Sullivan, and J.-R. Ohm,

“Overview of the versatile video coding (vvc) standard and its applica-

132

 http://r0k. us/graphics/kodak
 http://r0k. us/graphics/kodak
https://jpegai.github.io/test_images/
https://jpegai.github.io/test_images/

tions,” IEEE Transactions on Circuits and Systems for Video Technology

(TCSVT), vol. 31, pp. 3736–3764, 10 2021.

[15] G. Toderici, W. Shi, R. Timofte, L. Theis, J. Balle, E. Agustsson, N. John-

ston, and F. Mentzer, “Workshop and challenge on learned image compres-

sion (clic2020),” 2020.

[16] Z. Cui, J. Wang, S. Gao, T. Guo, Y. Feng, and B. Bai, “Asymmet-

ric gained deep image compression with continuous rate adaptation,”

in IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 10527–10536, 2021.

[17] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective

state spaces,” ArXiv, vol. abs/2312.00752, 2023.

[18] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding

using wavelet transform,” IEEE Transactions on Image Processing (TIP),

vol. 1, pp. 205–220, April 1992.

[19] S. Mallat and F. Falzon, “Analysis of low bit rate image transform coding,”

IEEE Transactions on Signal Processing (TSP), vol. 46, no. 4, pp. 1027–

1042, 1998.

[20] F. Rosenblatt, “The perceptron: a probabilistic model for information stor-

age and organization in the brain,” Psychological review, vol. 65(6), pp. 386–

408, 1958.

[21] O. T. Ilya, N. Houlsby, K. Alexander, B. Lucas, Z. Xiaohua, U. Thomas,

Y. Jessica, K. Daniel, U. Jakob, L. Mario, and D. Alexey, “Mlp-mixer: An

all-mlp architecture for vision,” in Neural Information Processing Systems

(NeurIPS), 2021.

133

[22] H. B. Pedro, Z. Oleksandr, and T. João, Paulo, “A covid-19 time series

forecasting model based on mlp ann,” Procedia Computer Science, vol. 181,

pp. 940–947, 2021.

[23] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully connected network-based

intra prediction for image coding,” IEEE Transactions on Image Processing

(TIP), vol. 27, no. 7, pp. 3236–3247, 2018.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[25] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on Com-

puter Vision (ICCV), pp. 1440–1448, 2015.

[26] V. L. Ballé, Johannes and E. P. Simoncelli, “Density modeling of images

using a generalized normalization transformation,” in International Confer-

ence for Learning Representations (ICLR), 2016.

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in 2014 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–

587, 2014.

[28] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2,

pp. 179–211, 1990.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “(1986) de rumelhart,

ge hinton, and rj williams, learning internal representations by error propa-

gation, parallel distributed processing: Explorations in the microstructures

of cognition, vol. i, de rumelhart and jl mcclelland (eds.) cambridge, ma:

Mit press, pp. 318-362,” 1988.

134

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN

encoder–decoder for statistical machine translation,” in Empirical Methods

in Natural Language Processing (EMNLP), pp. 1724–1734, Association for

Computational Linguistics, Oct. 2014.

[32] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. rahman Mohamed,

O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-

to-sequence pre-training for natural language generation, translation, and

comprehension,” in Annual Meeting of the Association for Computational

Linguistics, 2019.

[33] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,

and N. Houlsby, “An image is worth 16x16 words: Transformers for image

recognition at scale,” in International Conference on Learning Representa-

tions (ICLR), 2021.

[34] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and

S. Zagoruyko, “End-to-end object detection with transformers,” in Euro-

pean Conference on Computer Vision (ECCV) 2020, pp. 213–229, Springer

International Publishing, 2020.

[35] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

135

[36] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative po-

sition representations,” in North American Chapter of the Association for

Computational Linguistics, 2018.

[37] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with struc-

tured state spaces,” ArXiv preprint ArXiv:2111.00396, 2021.

[38] L. Zhu, B. Liao, Q. Zhang, X. Wang, W. Liu, and X. Wang, “Vision

mamba: Efficient visual representation learning with bidirectional state

space model,” ArXiv, vol. abs/2401.09417, 2024.

[39] Y. Qiao, Z. Yu, L. Guo, S. Chen, Z. Zhao, M. Sun, Q. Wu, and J. Liu, “Vl-

mamba: Exploring state space models for multimodal learning,” ArXiv,

vol. abs/2403.13600, 2024.

[40] G. Chen, Y. Huang, J. Xu, B. Pei, Z. Chen, Z. Li, J. Wang, K. Li, T. Lu, and

L. Wang, “Video mamba suite: State space model as a versatile alternative

for video understanding,” ArXiv, vol. abs/2403.09626, 2024.

[41] H. Guo, J. Li, T. Dai, Z. Ouyang, X. Ren, and S.-T. Xia, “Mambair:

A simple baseline fornbsp;image restoration withnbsp;state-space model,”

in European Conference on Computer Vision (ECCV) 2024, Proceedings,

p. 222–241, Springer-Verlag, 2024.

[42] J. Ma, F. Li, and B. Wang, “U-mamba: Enhancing long-range dependency

for biomedical image segmentation,” ArXiv, vol. abs/2401.04722, 2024.

[43] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression

with compressive autoencoders,” in International Conference on Learning

Representations (ICLR), 2017.

136

[44] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized im-

age compression,” in International Conference on Learning Representations

(ICLR), 2017.

[45] Y. Fei, H. Luis, C. Yongmei, and M. Mikhail G., “Slimmable compressive

autoencoders for practical neural image compression,” in IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2021.

[46] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang, “End-to-end

learnt image compression via non-local attention optimization and improved

context modeling,” IEEE Transactions on Image Processing (TIP), vol. 30,

pp. 3179–3191, 2021.

[47] Y. Patel, S. Appalaraju, and R. Manmatha, “Saliency driven perceptual im-

age compression,” in IEEE Winter Conference on Applications of Computer

Vision (WACV), pp. 227–236, 2021.

[48] L. Zhou, Z. Sun, X. Wu, and J. Wu, “End-to-end optimized image compres-

sion with attention mechanism,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, 2019.

[49] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, “Residual non-local attention

networks for image restoration,” in International Conference on Learning

Representations (ICLR), 2019.

[50] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective

receptive field in deep convolutional neural networks,” in Proceedings of the

30th International Conference on Neural Information Processing Systems

(NeurIPS), NIPS’16, p. 4905–4913, Curran Associates Inc., 2016.

137

[51] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”

in IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 7794–7803, 2018.

[52] V. Hajihashemi, H. E. Najafabadi, A. A. Gharahbagh, H. Leung, M. Youse-

fan, and J. M. R. S. Tavares, “A novel high-efficiency holography image

compression method, based on HEVC, wavelet, and nearest-neighbor in-

terpolation,” Multimedia Tools and Applications, vol. 80, p. 31953–31966,

2021.

[53] A. B. Koyuncu, H. Gao, A. Boev, G. Gaikov, E. Alshina, and E. Steinbach,

Contextformer: A Transformer with Spatio-Channel Attention for Context

Modeling in Learned Image Compression, p. 447–463. Springer Nature

Switzerland, 2022.

[54] R. Zou, C. Song, and Z. Zhang, “The devil is in the details: Window-based

attention for image compression,” in Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), pp. 17492–

17501, June 2022.

[55] S. Qin, J. Wang, Y. Zhou, B. Chen, T. Luo, B. An, T. Dai, S.-T. Xia,

and Y. Wang, “Mambavc: Learned visual compression with selective state

spaces,” ArXiv, vol. abs/2405.15413, 2024.

[56] T. George, M. O. Sean, H. Sung Jin, V. Damien, M. David, B. Shumeet,

C. Michele, and S. Rahul, “Full resolution image compression with recur-

rent neural networks,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2017.

138

[57] J. Nick, V. Damien, M. David, C. Michele, S. Saurabh, C. Troy, H. Sung Jin,

S. Joel, and T. George, “Improved lossy image compression with priming

and spatially adaptive bit rates for recurrent network,” in IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2018.

[58] Y. Choi, M. El-Khamy, and J. Lee, “Variable rate deep image compression

with a conditional autoencoder,” 2019 IEEE/CVF International Confer-

ence on Computer Vision (ICCV), pp. 3146–3154, 2019.

[59] F. Yang, L. Herranz, J. v. d. Weijer, J. A. I. Guitián, A. M. López, and

M. G. Mozerov, “Variable rate deep image compression with modulated

autoencoder,” IEEE Signal Processing Letters (SPL), vol. 27, pp. 331–335,

2020.

[60] M. Akbari, J. Liang, J. Han, and C. Tu, “Learned variable-rate image com-

pression with residual divisive normalization,” in 2020 IEEE International

Conference on Multimedia and Expo (ICME), pp. 1–6, 2020.

[61] L. Jooyoung, C. Seunghyun, and B. Seunghwa, “Context-adaptive entropy

model for end-to-end optimized image compression,” in International Con-

ference on Learning Representations (ICLR), 2019.

[62] A. Eirikur, M. Fabian, T. Michael, C. Lukas, T. Radu, B. Luca, and

G. Luc Van, “Soft-to-hard vector quantization for end-to-end learning com-

pressible representations,” in Conference on Neural Information Processing

Systems (NeurIPS), 2017.

[63] D. Minnen, G. Toderici, S. Singh, S. J. Hwang, and M. Covell, “Image-

dependent local entropy models for learned image compression,” in IEEE

International Conference on Image Processing (ICIP), pp. 430–434, 2018.

139

[64] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learning image

and video compression through spatial-temporal energy compaction,” in

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 10063–10072, 2019.

[65] N. Ken, M. Shin-ichi, M. Takeru, and O. Daisuke, “Neural multi-scale image

compression,” in Asian Conference on Computer Vision (ACCV), 2018.

[66] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convolutional

networks for content-weighted image compression,” in Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 3214–3223, June 2018.

[67] J. Cai and L. Zhang, “Deep image compression with iterative non-uniform

quantization,” in IEEE International Conference on Image Processing

(ICIP), pp. 451–455, 2018.

[68] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recur-

rent neural networks,” in International Conference on Machine Learning

(ICML), vol. 48, pp. 1747–1756, 2016.

[69] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and

K. Kavukcuoglu, “Conditional image generation with pixel-cnn decoders,”

in Conference on Neural Information Processing Systems (NeurIPS), 2016.

[70] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V.

Gool, “Conditional probability models for deep image compression,” in

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 4394–4402, 2018.

140

[71] O. Rippel and L. Bourdev, “Real-time adaptive image compression,” in

International Conference on Machine Learning (ICML), vol. 70, pp. 2922–

2930, 2017.

[72] Z. Cui, J. Wang, B. Bai, T. Guo, and Y. Feng, “G-vae: A continuously vari-

able rate deep image compression framework,” ArXiv, vol. abs/2003.02012,

2020.

[73] J. Zhou, “Multi-scale and context-adaptive entropy model for image com-

pression,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2019.

[74] Z. He, M. Huang, L. Luo, X. Yang, and C. Zhu, “Towards real-time prac-

tical image compression with lightweight attention,” Expert Systems with

Applications, vol. 252, p. 124142, 2024.

[75] H. Liu, T. Chen, Q. Shen, and Z. Ma, “Practical stacked non-local attention

modules for image compression,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR) Workshops,

June 2019.

[76] D. Minnen and S. Singh, “Channel-wise autoregressive entropy models for

learned image compression,” in 2020 IEEE International Conference on

Image Processing (ICIP), pp. 3339–3343, IEEE, 2020.

[77] Y. Qian, Z. Tan, X. Sun, M. Lin, D. Li, Z. Sun, H. Li, and R. Jin, “Learning

accurate entropy model with global reference for image compression,” in

IEEE International Conference on Learning Representations (ICLR), pp. 1–

17, May 2021.

141

[78] Z. Guo, Z. Zhang, R. Feng, and Z. Chen, “Causal contextual prediction for

learned image compression,” IEEE Transactions on Circuits and Systems

for Video Technology (TCSVT), vol. 32, no. 4, pp. 2329–2341, 2021.

[79] D. He, Y. Zheng, B. Sun, Y. Wang, and H. Qin, “Checkerboard con-

text model for efficient learned image compression,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 14771–14780, 2021.

[80] A. B. Koyuncu, H. Gao, A. Boev, G. Gaikov, E. Alshina, and E. Steinbach,

“Contextformer: A transformer with spatio-channel attention for context

modeling in learned image compression,” in European Conference on Com-

puter Vision (ECCV), pp. 447–463, Springer, 2022.

[81] W. Jiang, J. Yang, Y. Zhai, P. Ning, F. Gao, and R. Wang, “Mlic: Multi-

reference entropy model for learned image compression,” in Proceedings of

the 31st ACM International Conference on Multimedia, MM ’23, ACM, Oct.

2023.

[82] D. He, Z. Yang, W. Peng, R. Ma, H. Qin, and Y. Wang, “Elic: Efficient

learned image compression with unevenly grouped space-channel contextual

adaptive coding,” 2022 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 5708–5717, 2022.

[83] D. Liu, H. Ma, Z. Xiong, and F. Wu, “Cnn-based dct-like transform for

image compression,” in MultiMedia Modeling, pp. 61–72, Springer Interna-

tional Publishing, 2018.

142

[84] E. Ahanonu, M. Marcellin, and A. Bilgin, “Lossless image compression using

reversible integer wavelet transforms and convolutional neural networks,”

in Data Compression Conference (DCC), p. 1, March 2018.

[85] P. Akyazi and T. Ebrahimi, “Learning-based image compression using con-

volutional autoencoder and wavelet decomposition,” in Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops, p. 5, June 2019.

[86] X. Li, A. Naman, and D. Taubman, “A neural network lifting based sec-

ondary transform for improved fully scalable image compression in jpeg

2000,” in IEEE International Conference on Image Processing (ICIP),

pp. 1606–1610, 2022.

[87] H. Ma, D. Liu, R. Xiong, and F. Wu, “iwave: Cnn-based wavelet-like trans-

form for image compression,” IEEE Transactions on Multimedia (TMM),

vol. 22, no. 7, pp. 1667–1679, 2020.

[88] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the

high efficiency video coding (hevc) standard,” IEEE Transactions on Cir-

cuits and Systems for Video Technology (TCSVT), vol. 22, no. 12, pp. 1649–

1668, 2012.

[89] H. Yueyu, Y. Wenhan, L. Mading, , and L. Jiaying, “Progressive spatial

recurrent neural network for intra prediction,” IEEE Transactions on Mul-

timedia (TMM), vol. 21, no. 12, p. 3024–3037, 2019.

[90] W. Pratt, J. Kane, and H. Andrews, “Hadamard transform image coding,”

Proceedings of the IEEE, vol. 57, no. 1, pp. 58–68, 1969.

143

[91] W. Cui, T. Zhang, S. Zhang, F. Jiang, W. Zuo, Z. Wan, and D. Zhao,

“Convolutional neural networks based intra prediction for hevc,” in Data

Compression Conference (DCC), pp. 436–436, 2017.

[92] T. Dumas, A. Roumy, and C. Guillemot, “Context-adaptive neural network-

based prediction for image compression,” IEEE Transactions on Image Pro-

cessing (TIP), vol. 29, pp. 679–693, 2020.

[93] Y. Li, Y. Yi, D. Liu, L. Li, Z. Li, and H. Li, “Neural-network-based cross-

channel intra prediction,” ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMM), vol. 17, no. 3, 2021.

[94] I. Schiopu, Y. Liu, and A. Munteanu, “Cnn-based prediction for lossless cod-

ing of photographic images,” in Picture Coding Symposium (PCS), pp. 16–

20, 2018.

[95] M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, “Overview of jpeg-

2000,” Data Compression Conference Proceedings (DCC), 05 2000.

[96] I. Schiopu and A. Munteanu, “Deep-learning-based lossless image cod-

ing,” IEEE Transactions on Circuits and Systems for Video Technology

(TCSVT), vol. 30, no. 7, pp. 1829–1842, 2020.

[97] I. Schiopu, H. Huang, and A. Munteanu, “CNN-based intra-prediction for

lossless HEVC,” IEEE Transactions on Circuits and Systems for Video

Technology (TCSVT), vol. 30, no. 7, pp. 1816–1828, 2020.

[98] L. Wang, A. Fiandrotti, A. Purica, G. Valenzise, and M. Cagnazzo, “En-

hancing hevc spatial prediction by context-based learning,” in IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 4035–4039, 2019.

144

[99] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,

“Cvt: Introducing convolutions to vision transformers,” in Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV),

pp. 22–31, October 2021.

[100] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable

convolutional networks,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pp. 764–773, 2017.

[101] L. Chi, B. Jiang, and Y. Mu, “Fast fourier convolution,” Advances in Neural

Information Processing Systems (NeurIPS), vol. 33, pp. 4479–4488, 2020.

[102] L. Beyer, X. Zhai, A. Royer, L. Markeeva, R. Anil, and A. Kolesnikov,

“Knowledge distillation: A good teacher is patient and consistent,” in Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recog-

nition (CVPR), 2022.

[103] W. Guo-Hua, J. Li, B. Li, and Y. Lu, “Evc: Towards real-time neural image

compression with mask decay,” in The Eleventh International Conference

on Learning Representations (ICLR), 2022.

[104] G. Wu, W.-S. Zheng, Y. Lu, and Q. Tian, “Pslt: a light-weight vision trans-

former with ladder self-attention and progressive shift,” IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 2023.

[105] S. Mehta and M. Rastegari, “Mobilevit: Light-weight, general-purpose, and

mobile-friendly vision transformer,” in International Conference on Learn-

ing Representations (ICLR), 2022.

145

[106] Y. Yang and S. Mandt, “Computationally-efficient neural image compres-

sion with shallow decoders,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pp. 530–540, 2023.

[107] M. S. Ali, Y. Kim, M. Qamar, S.-C. Lim, D. Kim, C. Zhang, S.-H. Bae, and

H. Y. Kim, “Towards efficient image compression without autoregressive

models,” Advances in Neural Information Processing Systems (NeurIPS),

vol. 36, 2024.

[108] A. Gu, I. Johnson, K. Goel, K. Saab, T. Dao, A. Rudra, and C. Ré,

“Combining recurrent, convolutional, and continuous-time models with lin-

ear state space layers,” Advances in neural information processing systems

(NeurIPS), vol. 34, pp. 572–585, 2021.

[109] R. Xu, S. Yang, Y. Wang, Y. Cai, B. Du, and H. Chen, “Visual mamba: A

survey and new outlooks,” ArXiv preprint ArXiv:2404.18861, 2024.

[110] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation func-

tions,” ArXiv, vol. abs/1710.05941, 2018.

[111] B. Zhang and R. Sennrich, “Root mean square layer normalization,” Ad-

vances in Neural Information Processing Systems (NeurIPS), vol. 32, 2019.

[112] J. Bégaint, F. Racap’e, S. Feltman, and A. Pushparaja, “Compressai: a py-

torch library and evaluation platform for end-to-end compression research,”

ArXiv, vol. abs/2011.03029, 2020.

[113] F. Bellard, “Bpg image format,” http://bellard.org/bpg/, 2018.

[114] N. D. Guerin, R. C. da Silva, M. C. de Oliveira, H. C. Jung, L. G. R.

Martins, E. Peixoto, B. Macchiavello, E. M. Hung, V. Testoni, and P. G.

146

 http://bellard.org/bpg/

Freitas, “Rate-constrained learning-based image compression,” Signal Pro-

cessing: Image Communication, Elsevier, vol. 101, p. 116544, 2022.

147

A. Appendix

A.1. Spatial Correlation of Latent

In this Appendix, we provide visualizations of the spatial correlation maps for

SwinNPE (in Chapter 3), SSMIC (in Chapter 4), and SSMIC CW (in Chapter 4)

at different λ, as shown in Figures A.1, A.2, and A.3 respectively.

One can observe that the correlations in SSMIC CW are lower than those in

SSMIC. Additionally, in the spatial correlation for SwinNPE, the larger the λ

value, the lower the correlation in the latent space.

A.2. Image Compression

BPG444: We get BPG software from http://bellard.org/bpg/ and use command

as follows:

bpgenc −e x265 −q [qua l i t y] −f 444

−o [encoded b i t s t ream f i l e] [input image f i l e]

bpgdec −o [output image f i l e] [encoded b i t s t ream f i l e]

VTM-15.0: VTM is sourced from https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM.

The command is:

VVCSoftware_VTM/bin/EncoderAppStatic -i [input YUV file]

-c [config file]

-q [quality] -o /dev/null -b [encoded bitstream file]

149

http://bellard.org/bpg/
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM

-wdt 1976 -hpt 1312 -fr 1 -f 1

--InputChromaFormat =444 --InputBitDepth =8 --ConformanceWindowMode =1

VVCSoftware_VTM/bin/DecoderAppStatic -b [encoded bitstream file]

-o [output YUV file] -d 8

150

Figure A.1: Average of spatial correlations of all images on Kodak [11] with
SwinNPE 3 in different λ.

151

Figure A.2: Average of spatial correlations of all images on Kodak [11] with
SSMIC 4 in different λ.

152

Figure A.3: Average of spatial correlations of all images on Kodak [11] with
SSMIC CW 4 in different λ.

153

	Introduction
	Thesis Context
	Objectives and Contributions
	Thesis Outline
	Publications
	International Conference Papers
	National Conference Papers

	Image Compression Using Deep Learning: State-of-the-Art
	Introduction
	Background on Neural Network Models
	Fully Connected Neural Network (FCNN)
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)
	Attention Mechanism
	State Space Model (SSM)

	Auto-Encoder-Based Coding Schemes
	Generic NN-based Image Compression Systems
	Flowchart of the Coding Architecture
	End-to-End Learning Approach

	Single Rate NN Model-based Approaches
	Variable-Rate NN Models-Based Approaches
	Entropy Coding/Entropy Models

	Other Categories of Neural Networks-Based Image Compression Techniques
	Neural Networks-Based Transform Coding Schemes
	Neural Networks-Based Intra-Prediction Coding Schemes

	Conclusion

	Convolutional Transformer-Based Image Compression
	Introduction
	Positional Encoding in Image Compression
	Proposed Swin Non-Positional Encoding (SwinNPE)
	SwinNPE Encoder
	Patch Merge Block
	Proposed CW-MSA Block
	Standard W-MSA Swin Block
	Convolutional Swin Block

	SwinNPE Decoder
	Quantization and Entropy Model in SwinNPE

	Experimental Results
	Experimental Settings
	Performance Analysis
	Latent Space Analysis
	Ablation Study

	Conclusion

	Efficient Image Compression Using Advanced State Space Models
	Introduction
	Proposed State Space Model-based Image Compression (SSMIC)
	SSMIC Encoder
	Patch Merge Block
	Visual State Space (VSS)
	VSS Block
	Selective Scan Approach

	SSMIC Decoder
	Quantization and Entropy Model in SSMIC

	Proposed State Space Model-based Image Compression with Channel Wise Autoregressive (SSMIC_CW)
	Experimental Results
	Experimental Settings
	Results and Discussion

	Conclusion

	Universal End-to-End Neural Network for Lossy Image Compression
	Introduction
	Universal End-to-End VAE for Lossy Image Compression
	Objective Loss Function
	Scaling Factor Strategy
	Analysis and Discussion

	Experimental Results
	Experimental Settings
	Impact of the Scaling Factor on the Codec Bitrate
	Results and Discussion

	Conclusion

	Conclusion and Future Work
	Bibliography
	Appendix
	Spatial Correlation of Latent
	Image Compression

