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This chapter explores the principles of magnetoelasticity, a phenomenon that links the
mechanical and magnetic properties of materials. Initially discovered by James Prescott
Joule in 1842, this effect has become essential in the development of electromechanical
transducers and flexible magnetic systems. The focus is on magnonic crystals, which enable
the control of spin wave propagation by adjusting their dispersion spectrum via an external
magnetic field. This chapter also addresses magnetic straintronics, an emerging field that
leverages the magnetoelastic properties of artificial multiferroic materials. Although re-
search on spin waves under mechanical strain is still limited, preliminary studies show that
static elastic strains can influence magnetization distribution, providing additional control
over spin waves without the use of external magnetic fields. Furthermore, magphonic crys-
tals are discussed for their ability to couple magnonic and phononic behaviors, paving the
way for advanced applications in communication and information processing systems. The
interactions between spin and acoustic waves, in connection with magnetoelastic effects,
are also briefly presented.
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1 Introduction

1.1 Magnetoelasticity

Magnetoelastic effects were first discovered by James Prescott Joule in 1842 but did not
draw much attention until the next century. His work was first presented on the 16th of
February 1842 in a lecture entitled On a New Class of Magnetic Forces, at the Royal Victoria
Gallery of Manchester which was then printed in The Annals of Electricity, Magnetism, and
Chemistry, and Guardian of Experimental Science, Vol.8, p.219. He eventually published his
results in 1847 in the paper On the Effects of Magnetism upon the Dimensions of Iron and Steel
Bars in the Philosophical Magazine where he it made evident that magnetizing an iron bar
induces an increase of its length (see figure 1.1) [1, 2].

Figure 1.1: Illustration adapted from J.P. Joule’s book published in 1842, which presents the
experimental setup he utilized to measure direct magnetostriction. This setup
was pivotal in advancing our understanding of the relationship between mag-
netism and mechanical deformation in materials [2].

He was indeed the first to observe what we now refer to as the direct magnetoelastic
effect, often referred to as the Joule effect. This effect results in the appearance of a strain
field inside a magnetic object that is influenced by the magnetization strength and direc-
tion. There also exists an inverse effect, also called the Villari effect, that influences the
magnetization by applying strain to the magnetic object. These effects can be explained by
the accommodation of electron orbitals in crystalline lattices which results in the creation
of easier directions for the magnetization in the case of the inverse effect, and in a small
change of the crystalline lattice dimensions in the case of the direct effect, as schematically
presented in figure 1.2.

2



1.1 Magnetoelasticity

Figure 1.2: Diagram illustrating the schematic representation of the Joule and Villari ef-
fects, highlighting the relationship between magnetostriction and the magnetic
properties of materials.

Several papers started to emerge during the 1930s attempting to understand and theo-
rize these effects[3]. Ideas of potential applications quickly grew out of these early works.
Among them we can mention electromechanical transducers and magnetostriction oscil-
lators and filters [4]. Magnetostriction was also one of the main reasons for the use of
permalloy in industry, to prevent changes of magnetic properties in component subjected to
mechanical stress. Nowadays, with the progress of material engineering, micro- and nano-
fabrication and the emergence of giant magnetostriction [6, 7, 8], new opportunities have
arisen in the fundamental study of magnetoelastic effects and the potential industrial appli-
cations involving them [5, 9, 10, 11]. As magnetoelasticity became more and more involved
in the various topics of nanomagnetism, new fields of research appeared. For instance, we
have seen the emergence of what can be called “magnetic-straintronics,” [12, 13, 14, 15, 16]
in which elastic (static) strains imposed on the system allow control of certain magnetic
properties. To this purpose we can associate an even more emerging theme - the curvilin-
ear magnetism which allows highlighting complex magnetic textures in systems presenting
strong curvatures despite the fact that mechanical deformations are not yet taken into ac-
count in this theme [17, 18, 19, 20]. The influence of these magnetoelastic effects is also very
much studied in flexible magnetic systems which are generally composed of a magnetic de-
posit on a polymer substrate with applications ranging from everyday gadgets to aerospace
devices [21, 22, 20, 19, 26]. In operando, these devices will be subjected to complex strain
fields that can modify their magnetic properties [27, 28, 29]. For these systems, magnetoe-
lasticity can be undesirable, and it is therefore necessary to find solutions to limit its effects
[17, 18]. Therefore, despite numerous experimental studies, it is of utmost importance to
develop numerical tools to describe heterogeneous strain and magnetoelastic fields in nano-
objects [32, 33]. The numerical description of magnetic nanostructure behavior involves the
resolution of the Landau-Lifshitz-Gilbert (LLG) equation. The commonly used software al-
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1 Introduction

low one to simulate the magnetic properties of nanostructures but are rarely used to take
into account inhomogeneous strains [34, 35, 36, 37, 38]. The magnetoelastic coupling must
be,therefore , fully described at the scale of these inhomogeneities. Therefore, in a context
where very few groups try to describe precisely the magnetoelastic effects with fully cou-
pled micromagnetic/mechanical numerical simulations [33, 39, 40, 41, 42, 43, 44, 45], one
of the goals of the present thesis is to develop such tools and to relate them with some
widespreaded caracterisation techniques such as ferromagnetic resonance and Brillouin
light scattering.

In the following, we will briefly review the recent progress in the field of magnonic crys-
tals [46, 47, 48], a topic of particular focus in this thesis. Indeed magnonic crystals are
periodic magnetic structures that can control the propagation of spin waves, known as
magnons [49, 50, 51, 52, 53, 54]. The presence of magnetoelastic effects in these crystals
can give rise to a variety of intriguing phenomena. These effects depend on the nature of
the applied mechanical strains: if the strains are static, they alter the magnetic properties
in a way that is central to magnetic straintronics applications [17]. Conversely, if the me-
chanical strains are dynamic, they can induce a coupling between magnons and phonons
[1, 2, 3, 4, 5], leading to a rich landscape of coupled excitations that can be exploited for
advanced functionalities. This duality, arising from the interaction between mechanical
and magnetic properties, underpins the potential of magnetoelastic effects in enhancing
the performance and tunability of magnonic crystals.

1.2 Magnonic crystals
Over the past two decades, there has been a growing interest in the fundamental under-
standing of spin-wave propagation in magnonic crystals due to their immense potential
for a variety of applications, including microwave resonators [60], filters [61], and spin-
wave logic devices [62]. From a practical standpoint, one of the most appealing features
of magnonic crystals is their ability to easily modify the dispersion spectrum of magnons
through the application of an external magnetic field. Utilizing periodic magnetic nanos-
tructures as a functional medium in magnonic devices offer distinct advantages over con-
ventional charge-based devices. In magnonic systems, both the amplitude and the direction
(phase) of magnetization can be harnessed for information encoding, contrasting with the
scalar nature of charge. Encoding information in the amplitude of magnetization leads di-
rectly to the development of a spin-wave switch, a device capable of controlling the trans-
mission or cessation of spin wave propagation. When information is encoded in phase,
different frequencies can be employed as separate information channels, facilitating paral-
lel data processing within the same structure. This capacity for multichannel information
transmission and processing provides a significant advantage over traditional switch-based
logic devices. Furthermore, the shape anisotropy in nano-confined geometries can serve as
an effective biasing external field, enabling devices to operate at gigahertz frequencies with
minimal or no external biasing required.

The spectra of spin-wave excitations in magnonic crystals differ significantly from those
observed in uniform media. Thanks to the lateral periodic magnetic contrast, these spec-
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1.2 Magnonic crystals

Figure 1.3: Dispersion relations of spin waves, the experimental data are denoted by sym-
bols. The Brillouin zone boundaries 𝑞 = 𝑛/𝑎 are represented by dashed lines.
The magnonic crystal is a 1D periodic array of alterned permalloy and cobalt
nanowires. There is no applied magnetic field and the probed wave-vector 𝑘 is
transverse to the nanowires. Adapted from [49].

tra display characteristics such as tunable magnonic bandgaps, within which spin-wave
propagation is completely suppressed. The presence of spin-wave bandgaps have been
predicted for one-dimensional, two-dimensional, and three-dimensional systems [49, 50,
51, 52, 53, 54]. Furthermore, frequency bandgaps have been observed experimentally in
wire-like structures consisting of shallow grooves etched into yttrium-iron-garnet films, a
one-dimensional array of homogeneous Ni80Fe20 nanowires separated by an air gap [63],
and synthetic nanostructures composed of periodic arrays of alternating Ni80Fe20 nanowires
in direct contact with Co nanowires [49], also known as bi-component magnonic crystals.
It has been clearly shown that the frequency bandgaps can be tuned by the application of a
magnetic field and also by changing the lateral dimensions of the nanowires. For example,
figure 1.3 illustrates the magnonic characteristics measured using BLS, as reported by Wang
et al. [49]. In their study, they describe a magnonic crystal that exhibits tunable band gaps,
which facilitate precise control over spin-wave generation and propagation in devices such
as filters. The studied magnonic crystal was a 1D magnonic crystal in the form of a periodic
array comprising alternating contacting cobalt and permalloy nanowires.

Additionally, the bandgap structure can also be adjusted by strain-induced magnetic ef-
fects, stemming from magnetoelastic energy. This tunability of the bandgap is a crucial
property that could have significant applications in controlling the generation and propaga-
tion of information-carrying spin waves within devices utilizing these crystals. By varying
the size of the bandgap, where spin-wave propagation is entirely prohibited, only modes
capable of crossing the gap can propagate through the medium, enabling selective trans-
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1 Introduction

mission of specific spin-wave frequencies. Furthermore, the recent advancements in artifi-
cial spin-ice create new opportunities for harnessing spin-wave properties. Consequently,
developing systems that exploit magnons represents a promising strategy for information
processing in the coming decades. This brings us to the next section, which delves into
magnetoelastic effects in magnonic crystals.

1.3 Magnetic straintronic (elastic static strain)
Magnetic straintronics represents a broad field of research that has gained significant trac-
tion since the early 21st century [12, 13, 14, 15, 16]. As modern information technology
increasingly relies on electronic systems for data processing and transmission, the quest for
more efficient methods of manipulating and storing information has become paramount.
Current electronic technologies primarily depend on electrical signals, which often lead
to substantial energy consumption—over 10% of global electricity consumption can be at-
tributed to electronic devices. This underscores the need for innovative approaches that
enhance energy efficiency while maintaining or improving performance. One promising
approach in this context is the exploration of magnetoelastic properties in magnetostric-
tive multiferroic materials. These materials have the unique ability to couple magnetic and
mechanical responses, enabling a new paradigm in information technology that exploits
the interactions between magnetic fields and mechanical strains. However, the practical
application of these materials is hindered by their scarcity, as few materials exhibit both
ferromagnetic characteristics (typically found in metals) and ferroelectric properties (com-
monly associated with insulators) [66].

Figure 1.4: Switching delay versus stress for different stress ramp durations in a multiferroic
system schematized on the right. Adapted from ref. [64].

This duality is crucial for the effective implementation of multiferroic applications in
technology. To overcome this limitation, researchers have increasingly focused on the
development of artificial multiferroics. These engineered systems combine ferromagnetic
layers, often metallic, deposited on top of ferroelectric materials, creating a composite that
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1.3 Magnetic straintronic (elastic static strain)

harnesses the advantageous properties of both constituents [67]. This layered approach not
only facilitates the conversion of electric signals into mechanical strain but also allows for
a more controlled interaction between the magnetic and electric domains. By applying a
voltage to the ferroelectric layer, it is possible to generate strain that effectively modifies the
magnetic characteristics of the ferromagnetic layer, leading to significant advancements in
the control and manipulation of magnetic information. In recent years, the field of magnetic
straintronics has become a focal point for developing advanced electronic devices with var-
ious applications. These include straintronic memory systems, which promise faster data
storage and retrieval, energy-efficient switches that reduce power consumption, and inno-
vative architectures for Boolean computing that leverage the unique properties of magnetic
states [12]. The potential to create devices that operate with less energy and generate min-
imal heat is particularly appealing, especially as the demand for efficient computing solu-
tions continues to rise. At the core of electronic computing lies the transistor, a device that
encodes binary information as 0s and 1s based on its conductance state. Magnetic strain-
tronics offers a novel approach to encoding these binary states by utilizing the manipulation
of magnetic anisotropy through voltage application. By controlling the magnetic states in
this manner, it becomes feasible to switch between distinct configurations that represent 0
or 1 with remarkable efficiency. This not only leads to reduced electrical consumption but
also minimizes heat generation, which is a critical factor in the design of modern electronic
devices. Figure 1.4 illustrates the relationship between the switching delay of magnetiza-
tion and the voltage-induced stress. By associating this delay with the switching rate, we
observe an order of magnitude approaching the gigahertz range, a speed comparable to the
clock rates of contemporary CPU transistors. These results, reported by K. Roy et al. [64],
highlight the remarkable potential of magnetization switching in magnetoelastic materials
for high-speed applications. However, it is important to note that the results presented fo-
cus solely on successful switching events, which do not account for the errors that currently
limit the practical application of these devices in Boolean computing. While the errors as-
sociated with switching events remain a challenge, they are not inherently detrimental
in the context of straintronic energy-efficient memory systems. Existing error correction
methods, commonly employed in memory chip technology, can effectively mitigate these
issues, allowing for reliable data storage and retrieval despite occasional switching errors.
This adaptability is crucial for the development of memory systems that prioritize energy
efficiency alongside performance. In the system described, the switching mechanism relies
on strain-induced anisotropy, meaning that the stored information is lost when the applied
voltage is removed. This characteristic presents a limitation for non-volatile applications,
where retaining information without a constant power supply is essential.

However, alternative device geometries and configurations may address this issue, paving
the way for the implementation of non-volatile information systems such as magnetoelec-
tric random access memories (MeRAM). MeRAM combines the advantages of both magnetic
and electric functionalities, enabling data to be stored and retained even in the absence of
power. This innovative approach not only enhances the robustness of memory systems
but also offers the potential for further integration with existing semiconductor technolo-
gies. As research progresses, the exploration of diverse geometries and materials will be
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1 Introduction

Figure 1.5: Strain control induce electrically of a Y-shaped object magnetization deposited
on a piezoelectic substrate. Adapted from [65].

key to overcoming the limitations of current straintronic devices and unlocking their full
potential in next-generation computing applications. Another example is presented in fig-
ure 1.5. These results obtained by A.A. Bukharaev et al. demonstrate that the “Y-shaped”
TMR (tunneling magnetoresistance) structure exhibits multiple stable configurations due
to shape anisotropy [65]. In their study, they successfully transitioned from one stable con-
figuration to another by applying an external magnetic field, which could be alternatively
replaced by a voltage-induced magnetoelastic field. In the following paragraph, we will
provide an overview of magnonic crystals subjected to static mechanical strains. This dis-
cussion will encompass the fundamental principles governing their behavior under such
conditions, the impact of mechanical strain on their magnonic band structure and the po-
tential applications that arise from manipulating these properties.

1.4 Magnonic crystal under elastic strains

Studies on the propagation of spin waves in magnonic crystals under static mechanical
deformations are still relatively scarce. However, past and future work on these crystals
under deformation can be seen as part of magnetic straintronics. For example, Karboul
et al. investigated spin waves in a thin Ni film, demonstrating that these waves can be
controlled by applying mechanical strains. This is understandable, as the static magnetic
configuration is influenced by deformation, thereby affecting the magnetization distribu-
tion. Consequently, it becomes feasible to manipulate spin waves through these strains.
With respect to magnonic crystals under applied strain, the impact of external strain on
the evolution of the magnonic band structure remains relatively unexplored [17]. Figure
1.6, based on the concept proposed in ref. [17], demonstrates strain control in a fictitious
2D square magnonic crystal, schematically represented in figure 1.6-a), with the magnonic
bands projected along the high symmetry points of the first Brillouin zone. More precisely,
figure 1.6-b) illustrates how applying controlled strain can modulate both the average posi-
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1.5 Towards magnon-phonon coupling in magphonic crystals

Figure 1.6: a) Schematic of an ad hoc 2D magnonic crystal formed by an array of square dots
deposited on a stretchable substrate. A strain of 1% is applied to the substrate
along 𝑥 , the colors encode 𝜀𝑥𝑥 . b) Concept demonstration showing the magnonic
bands of a square 2D crystal (Γ, 𝑋 , and 𝑀 correspond to the high symmetry
points of the first Brillouin zone) in the absence and presence of applied strains.
The blue and red bands illustrate the evolution of the mean position and width
of a magnonic bandgap.

tion and width of the magnonic bands. This adjustment can occur in the GHz range without
the need for a magnetic field. Many perspectives and possibilities remain to be explored.
Due to the geometry of nanostructures, strain heterogeneity can be significant within in-
dividual nanostructures because of the presence of free surfaces (as shown in figure 1.6-a)).
In this case, different magnetic modes experience varying magnetoelastic fields, leading to
a differentiated tunability of the magnonic bands based on the spatial localization of spin-
wave modes within each nanostructure. This effect was recently proposed by Challab et
al., who demonstrated that applying a weak strain to an Ni60Fe40 antidot system results
in a significant variation in spin wave energy, reaching several tens of percent [68]. Such
position-dependent tunability is challenging to achieve with an external magnetic field ap-
plied uniformly to an array of identical nanostructures. Furthermore, one could envision
assemblies of nanostructures with varying lateral geometries (isotropic or anisotropic) or
different thicknesses, offering a wide range of distinct strain fields across different types of
nanostructures. Some of these possibilities will be explored in this thesis.

1.5 Towards magnon-phonon coupling in magphonic
crystals

We previously discussed that dynamic mechanical strains can induce coupling between
magnons and phonons [1, 2, 3, 4, 5], creating a rich landscape of coupled excitations that
can be harnessed for advanced functionalities. In this context, some research groups have
focused on so-called magphonic crystals [3, 4, 5]. A magphonic crystal is an artificial struc-
ture that simultaneously exhibits magnonic and phononic behaviors. It is designed as a pe-
riodic system for both spin and acoustic waves. For instance, the magnon and phonon dis-

9



1 Introduction

Figure 1.7: Magnon and phonon dispersion relations of Ni/Ni80Fe20 magphonic crystal. Ex-
perimental and theoretical data are denoted by symbols and continuous curves,
respectively. Measured bandgaps are represented by shaded bands and Brillouin
zone boundaries by vertical dashed lines.

persion relations in a 1D magphonic crystal (comprising alternating Ni/Ni80Fe20 nanowires
fabricated on a SiO2/Si substrate) have been experimentally measured using BLS [4, 5].
The dispersion relations are represented in figure 1.7. The dispersion relations reveal dis-
tinct magnonic and phononic band gaps, where neither spin waves nor acoustic waves can
propagate. In addition, in their work, the authors do not detect the presence of coupling
between magnons and phonons. However, due to the common frequency range, multiple
intersections between spin and acoustic dispersion branches can occur as a result of the
periodicity. These couplings are absent in homogeneous materials. In conventional crys-
tals, the first phonon band gaps are far from the GHz range in which magnetostatic spin
waves typically propagate. The coupling mechanism between spin and acoustic waves is
magnetoelastic [3]. Dynamic magnetization generates a dynamic stress in the material via
magnetostrictive effects, while the strain from the acoustic wave induces a dynamic mag-
netic field (inverse magnetostriction). If the frequency and wavelength of the stress field
from the spin wave match the frequency of the magnetic field from the acoustic wave, the
resonance condition for dynamic magnetoelastic coupling is met.

However, the magnon-phonon coupling in the same crystal (both magnonic and phononic)
is not necessarily guaranteed because each magnonic and phononic band possesses its own
width and mean frequency depending on the crystal’s geometrical design. Thus, it is funda-
mental to control magnonic or phononic dispersion branches in order to study the coupling
between them. Phononic bands are hardly tunable for a given system. Indeed, the acoustic
wave velocity depends on intrinsic parameters (material mass density, elastic coefficients)
and the geometrical features of the artificial crystal that are difficult to reversibly tune for a
given system [69]. Some groups still managed to reversibly control the phononic bands by
developing magnetoelastic phononic crystals [70, 71], electrorheological phononic crystals
[72] or by using a thermal tuning of the phononic bands [73]. However, the amplitude of
the frequency shifts is too low (a few MHz) to make interacting these phononic bands with
the magnonic ones.

10



1.6 Thesis manuscript overview

Figure 1.8: Dispersion relation for Ni80Fe20/CoFeB magphonic crystal. In the color scale,
blue and red correspond to acoustic and spin waves, respectively. Green indi-
cates coupled magnetoelastic waves. (left) Proportion of magnetic energy accu-
mulated in the system in 1 ns of excitation by acoustic wave of a given frequency.

It is thus more thoughtful to master the magnonic bands in relation to phononic ones.
As a consequence, the simplest way to tune the magnonic bands is the use of an applied
magnetic field [49]. Indeed, the application of a few hundred Gauss leads to bandgap vari-
ations of the order of 1 GHz, depending on the magnetic intrinsic properties of the crystal
(saturation magnetization, magnetic anisotropy, . . . ) and on the geometrical characteristics
of the crystal [74]. This is sufficient to potentially induce and control a magnon-phonon
coupling. However, as for more classical magnetic devices, such magnitudes of magnetic
fields requires high electrical current, which is very energy intensive [75]. In summary, the
most advanced results regarding these couplings in such crystals are likely those obtained
by P. Graczyk and M. Krawczyk. In figure 1.8, the dispersion relation of a magphonic crys-
tal is presented. Acoustic wave and spin wave branches cross at different frequencies . The
third acoustic branch overlaps with the fifth spin wave branch throughout the Brillouin
zone (labeled as C4). These dispersions show that the spin-wave and acoustic dispersions
anti-cross at some points. In ref. [3], they conclude that magphonic crystals with such a
property are promising candidates for spin wave generation. They can be used for efficient
generation of spin waves by acoustic waves in a broad band of frequencies and wave vec-
tors. The generated waves can have a nanometer wavelength much shorter than the source
wave. We will revisit these coupling phenomena in the final chapter of this thesis.

1.6 Thesis manuscript overview
This thesis presents an investigation of magnetoelasticity, bridging mechanical and mag-
netic properties, particularly in the context of magnonic crystals and their applications.
Chapter 1 discusses magnetoelasticity, which connects mechanical and magnetic proper-

11



1 Introduction

ties. It highlights magnonic crystals for controlling spin waves and magnetic straintronics.
Preliminary findings suggest that static elastic strains can influence magnetization and en-
hance spin wave control. Additionally, the chapter addresses magphonic crystals that cou-
ple magnonic and phononic behaviors and explores spin-acoustic wave interactions. Chap-
ter 2 lays the groundwork in solid mechanics, focusing on linear elasticity and the behavior
of isotropic and anisotropic crystals while preparing the reader for subsequent chapters
addressing the intricate interplay between micromagnetic and mechanical/acoustic phe-
nomena. Chapter 3 delves into micromagnetism, emphasizing the relevance of the Landau-
Lifshitz-Gilbert (LLG) equation in understanding magnetic dynamics and its contributions
from various energetic factors. The chapter also introduces the concept of magnonic crys-
tals and their periodic structures, which significantly influence spin wave behavior.

In Chapter 4, our numerical method is detailed, fully coupling micromagnetism and solid
mechanics using COMSOL Multiphysics®. This approach addresses the limitations of con-
ventional micromagnetic software in simulating complex mechanical behavior and pro-
vides a robust framework for further investigation. Chapter 5 explores experimental tech-
niques in ferromagnetic resonance (FMR) and Brillouin light scattering (BLS), fundamental
for studying magnetization dynamics and spin wave interactions in nanostructures.

Subsequent chapters (6-9) investigate the magnetic properties of periodic nanostructures,
including antidot arrays and modulated nanowires, under both static and dynamic strain.
The experimental validation and numerical simulations reveal critical insights into spin
wave dispersion and the effects of mechanical strain on magnonic properties, setting the
stage for a deeper understanding of magnon-phonon interactions in Chapter 9.

The thesis culminates in Chapter 10, which synthesizes the findings, highlighting the in-
tegration of experimental and numerical methodologies. The conclusions affirm the poten-
tial of strain-induced control over spin wave dynamics, particularly in magnonic crystals,
and outline future research directions, including the exploration of magnetic textures and
nutation phenomena under strain.
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This chapter introduces the fundamental concepts of solid mechanics, laying the ground-
work for the subsequent exploration of micromagnetic and mechanical/acoustic phenom-
ena and their coupling. The first section covers linear elasticity, detailing stress and strain
in both isotropic and anisotropic crystals, as well as polycrystalline models used in simu-
lations. These models are essential for describing surface acoustic waves, such as Rayleigh
and Love waves, which play a key role in the analyses presented later.
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2 Basics in solid mechanics

2.1 Linear elasticity
Solid mechanics is a vast and well-established field, encompassing a wide range of models
depending on the material properties, the mechanical regime, and other factors. This work
does not aim for perfect rigor but rather relies on common and simplified mechanical mod-
els to provide a practical foundation. This non-exhaustive theoretical background focuses
primarily on strain and stress in isotropic materials, cubic crystals, and anisotropic crystals
within the elastic regime, as considered in both simulations and analytical models. These
equations will then serve to describe surface acoustic waves in solids, particularly Rayleigh
and Love waves, which play a crucial role in the analyses presented in the final chapter of
this thesis.

Figure 2.1: Uniaxial traction test realized during a master’s practical work on a steel test
piece witnessing the linear elastic behavior (pink area) and a non-linear plastic
regime (green area) separated by the elastic limit at 0.2% of strain.

The elastic regime of a material refers to the reversible deformation a solid undergoes
when subjected to a load. Within this regime, the material returns to its original shape
once the load is removed, without any permanent deformation. This behavior is governed
by Hooke’s law, which establishes a linear relationship between stress and strain in elastic
materials [1]:

𝜎 = 𝑌 𝜀 (2.1)
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2.1 Linear elasticity

The expression 2.1 is valid for isotropic materials subjected to uniaxial strain and depends
on one single material property called the Young’s modulus 𝑌 , expressed in Pa. This law
reveals a linear dependency between the strain felt by the solid 𝜎 (in Pa) and the strain 𝜀

(dimensionless). The strain can be expressed as the relative elongation of the solid, and can
be written as follows:

𝜀 =

𝓁𝑓 − 𝓁𝑖

𝓁𝑖

=

𝑢

𝓁𝑖

(2.2)

where 𝓁𝑖 and 𝓁𝑓 are respectively the initial and final lengths of the object and 𝑢 is the
displacement. Hooke’s law describe the elastic regime and therefore cannot be used to
describe any mechanical behavior as shown in figure 2.1. The pink part of the traction test
shows the domain described by Hooke’s law, which expands until the elastic limit which is
typically 0.2% for metals. Inside this region all the strain is reversible, meaning that when
releasing the load, the solid will return in its original state. Above this limit, a nonlinear
regime appears which corresponds the the plastic deformation which is permanent[2]. In
the case of non-isotropic materials and non-isotropic loads, Hooke’s law is generalized by
this following form:

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗 (2.3)

or :
𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑖𝑗 (2.4)

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 (also noted 𝜎 and 𝜀) are respectively the stress and strain 𝑖𝑗 compo-
nents of the stress and strain tensors (noted 𝜎 and 𝜀), and 𝐶𝑖𝑗𝑘𝑙 and 𝑆𝑖𝑗𝑘𝑙 are respectively

stiffness and compliance 𝑖𝑗𝑘𝑙 components of their respective tensors (noted 𝐶and 𝑆) which
are material-based properties. The strain can be calculated from the displacement by:

𝜀𝑖𝑗 =

1

2 (

𝜕𝑢𝑖

𝜕𝑥𝑗

+

𝜕𝑢𝑗

𝜕𝑥𝑖 )
(2.5)

with 𝑢𝑖 the component of the displacement vector and 𝑥𝑖 the component of the space
coordinate vector. Ultimately, the matrix forms of the stress and strain are as follows:

𝜎 =

⎛

⎜

⎜

⎝

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

𝜎11 𝜏12 𝜏13

𝜏21 𝜎22 𝜎23

𝜏31 𝜏32 𝜎33

⎞

⎟

⎟

⎠

(2.6)

𝜀 =

⎛

⎜

⎜

⎝

𝜀11 𝜀12 𝜀13

𝜀21 𝜀22 𝜀23

𝜀31 𝜀32 𝜀33

⎞

⎟

⎟

⎠

(2.7)

It is important to note that those tensors are symmetric meaning that 𝜎𝑖𝑗 = 𝜎𝑗𝑖 and
𝜀𝑖𝑗 = 𝜀𝑗𝑖. The diagonal components of these tensors refer to normal stress and strain while
the non-diagonal components correspond to tangential or shear stress (also noted 𝜏) and
strain. Concerning the stiffness and compliance tensors, they are initially composed of 81
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2 Basics in solid mechanics

components. However, taking into consideration homogeneous materials and the symme-
try of the tensor, it can be reduced to only 36 material coefficients (with 21 independent
coefficients). In this case, it is convenient to use a contracted notation for the strain and
stress tensors given by table 2.1.

Stress tensor
notation

Contracted
stress notation

Strain tensor
notation

Contracted
strain notation

𝜎11 𝜎1 𝜀11 𝜀1

𝜎22 𝜎2 𝜀22 𝜀2

𝜎33 𝜎3 𝜀33 𝜀3

𝜎12 = 𝜎21 𝜎4 2𝜀12 = 2𝜀21 𝜀4

𝜎13 = 𝜎31 𝜎5 2𝜀13 = 2𝜀31 𝜀5

𝜎23 = 𝜎31 𝜎6 2𝜀23 = 2𝜀32 𝜀6

Table 2.1: Tensor and contracted notation of stress and strain

This contraction allows one to write equations 2.3 and 2.4 as:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46

𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56

𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜀1

𝜀2

𝜀3

2𝜀4

2𝜀5

2𝜀6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.8)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜀1

𝜀2

𝜀3

2𝜀4

2𝜀5

2𝜀6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16

𝑆12 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26

𝑆13 𝑆23 𝑆33 𝑆34 𝑆35 𝑆36

𝑆14 𝑆24 𝑆34 𝑆44 𝑆45 𝑆46

𝑆15 𝑆25 𝑆35 𝑆45 𝑆55 𝑆56

𝑆16 𝑆26 𝑆36 𝑆46 𝑆56 𝑆66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.9)

In elastic materials the strain energy per unit volume is given by[3]:

𝐹𝑒𝑙 =

1

2

𝐶𝑖𝑗𝜀𝑖𝜀𝑗 (2.10)

which can be expressed in a partial differentiation form as:

d𝐹𝑒𝑙 = 𝜎𝑖d𝜀𝑖 (2.11)

Because of the stress-strain relations, the differentiated energy becomes:

d𝐹𝑒𝑙 = 𝐶𝑖𝑗𝜀𝑗d𝜀𝑖 (2.12)
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2.2 The cubic case

2.2 The cubic case
The complexity of the compliance and stiffness tensors very often reduces due to the geom-
etry of the crystalline lattices. In the case of the cubic crystals, which is the most common
cases, only 3 independent elastic constants are needed instead of 21 as 𝐶11 = 𝐶22 = 𝐶33,
𝐶44 = 𝐶55 = 𝐶66, and the only non-zero non-diagonal component is 𝐶12 = 𝐶13 = 𝐶23. The
tensor is finally:

𝐶 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶11 𝐶12 𝐶12 0 0 0

𝐶12 𝐶11 𝐶23 0 0 0

𝐶12 𝐶12 𝐶11 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶44 0

0 0 0 0 0 𝐶44

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Thus, using equation 2.10, one can calculate the elastic energy for a cubic material[3, 4]:

𝐹𝑒𝑙 =

1

2

𝐶11(𝜀
2

1
+ 𝜀

2

2
+ 𝜀

2

3
) + 𝐶12(𝜀1𝜀2 + 𝜀2𝜀3 + 𝜀1𝜀3) +

1

2

𝐶44(𝜀
2

4
+ 𝜀

2

5
+ 𝜀

2

6
) (2.13)

2.3 The case of an isotropic thin film
The systems studied in this thesis are either polycrystalline or amorphous. Polycrystalline
thin films consist of aggregates of crystal grains with varying sizes and orientations, where
the macroscopic properties are influenced by the characteristics of individual grains. For
simplicity, we will assume that our polycrystalline films exhibit isotropic and homogeneous
behavior in terms of elastic properties. At the microscopic level, the elastic strain and
stress states of individual crystallites are governed by Hooke’s law, subject to the appli-
cable boundary conditions. In this context, homogenization methods are used to determine
the effective elastic coefficients, which depend on the intrinsic elastic properties of single
crystals. Among these, the Reuss and Voigt homogenization methods are the most fun-
damental approaches. They are widely recognized for providing bounds on the effective
elastic coefficients. For instance, in the case of an isotropic thin film, the effective elastic
coefficients in the Voigt model—denoted as ( 𝐶11, 𝐶12 and 𝐶44)—are given by:

𝐶 = 𝐶11 − 𝐶12 − 2𝐶44 (2.14)

where 𝐶11, 𝐶12 and 𝐶44are the elastic constants of the single crystal.

𝐶11 = 𝐶11 −

2

5

𝐶 (2.15)

𝐶12 = 𝐶12 +

1

5

𝐶 (2.16)

𝐶44 = 𝐶44 +

1

5

𝐶 (2.17)

while in the Reuss model they are given by (with 𝑆 = 𝑆11 − 𝑆12 −
1

2
𝑆44):
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𝐶
−1

11
= 𝐶

−1

11
−

2

5

𝑆 (2.18)

𝐶
−1

12
= 𝐶

−1

12
+

1

5

𝑆 (2.19)

𝐶
−1

44
= 𝐶

−1

44
+

4

5

𝑆 (2.20)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 + 2𝐶44 𝐶11 𝐶11 0 0 0

𝐶11 𝐶11 + 2𝐶44 𝐶11 0 0 0

𝐶11 𝐶11 𝐶11 + 2𝐶44 0 0 0

0 0 0 𝐶44 0 0

0 0 0 0 𝐶44 0

0 0 0 0 0 𝐶44

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.21)

One can note here that only two independent coefficients are remaining (𝐶11 and 𝐶44).
The following relation is thus deduced:

𝜎𝑖𝑗 = 𝐶11𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝐶44𝜀𝑖𝑗 (2.22)

From this relation 𝜎𝑘𝑘 = (3𝐶11 + 2𝐶44) 𝜀𝑘𝑘, we can rewrite the above formula as a func-
tion of the stresses:

𝜀𝑖𝑗 =

1

2𝐶44

𝜎𝑖𝑗 −

𝐶11

2𝐶44(3𝐶11 + 2𝐶44)

𝜎𝑘𝑘𝛿𝑖𝑗 (2.23)

We can define the Young’s modulus (𝑌 ) and the Poisson’s ratio (𝜈) by considering a
simple tensile mechanical test:

𝜎 =

⎛

⎜

⎜

⎝

𝜎 0 0

0 0 0

0 0 0

⎞

⎟

⎟

⎠

; 𝜀 =
⎛

⎜

⎜

⎝

𝜀𝐿 0 0

0 𝜀𝑇 0

0 0 𝜀𝑇

⎞

⎟

⎟

⎠

(2.24)

where 𝜀𝐿 and 𝜀𝑇 stand for the longitudinal and the transverse strains, respectively. They
can be written as functions of 𝐶11 and 𝐶44:

𝜀𝐿 =

𝐶11 + 𝐶44

𝐶44(3𝐶11 + 2𝐶44)

𝜎 =

1

𝑌

𝜎 (2.25)

𝜀𝑇 = −

𝐶11

2𝐶44(3𝐶11 + 2𝐶44)

𝜎 = −𝜈𝜀𝐿 (2.26)

where the Young’s modulus 𝑌 and the Poisson’s ratio (𝜈) are given by:

𝑌 =

𝐶44(3𝐶11 + 2𝐶44)

𝐶11 + 𝐶44

(2.27)

𝜈 =

𝐶11

2(𝐶11 + 𝐶44)

(2.28)
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2.4 Elastic waves in solids

The equation 2.23 can be rewritten by introducing 𝑌 and 𝜈 :

𝜀𝑖𝑗 =

1 + 𝜈

𝑌

𝜎𝑖𝑗 −

𝜈

𝑌

𝜎𝑘𝑘𝛿𝑖𝑗 (2.29)

𝜎𝑖𝑗 =

𝑌

1 + 𝜈

𝜀𝑖𝑗 +

𝜈𝑌

(1 + 𝜈)(1 − 2𝜈)

𝜀𝑘𝑘𝛿𝑖𝑗 (2.30)

2.4 Elastic waves in solids

2.4.1 Basic formalism
he previously developed framework is typically applied at the macroscopic (or sometimes
microscopic) scale. However, it does not fully describe the phenomena occurring at the
atomic scale. When a force disturbs the equilibrium of a solid medium, elastic waves are
generated and propagate as atoms oscillate harmonically. The formalism governing the
propagation equations of acoustic waves is derived from Newton’s second law of motion
[5, 6, 8, 9]:

∇⃗ ⋅ 𝜎 +
⃗
𝑓𝑣 = 𝜌

𝜕
2
𝑢

𝜕𝑡
2

(2.31)

where ⃗
𝑓𝑣 are the volume forces applied on the system, 𝜌 the mass density and 𝑢 the

particle displacement vector. By combining Hooke’s law (eq. 2.3) with Newton’s second
law (eq. 2.31), we obtain the wave equation:

𝜌

𝜕
2
𝑢𝑖

𝜕𝑡
2
= 𝐶𝑖𝑗𝑘𝑙

𝜕
2
𝑢𝑙

𝜕𝑥𝑗𝜕𝑥𝑘

(2.32)

TThis equation describes the propagation of elastic waves, whose solutions determine
the displacement of particles. By considering plane wave solutions, we can rewrite the
wave equation in a new form known as Christoffel’s equation:

𝜌𝑉
2

𝜙
𝑃𝑖 = 𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑘𝑃𝑙 = Γ𝑖𝑙𝑃𝑙

where 𝑛 is the propagation direction of the wave, 𝑃 is the polarization of the displace-
ment, 𝑉𝜙 is the phase velocity of the wave and Γ is the Christoffel tensor. According to
Christoffel’s equation, the term 𝜌𝑉

2

𝜙
corresponds to the eigenvalues of the Christoffel ten-

sor, leading to:
(Γ𝑖𝑙 − 𝜌𝑉

2

𝜙
𝛿𝑖𝑙) 𝑃𝑙 = 0 (2.33)

with 𝛿𝑖𝑙 the Kronecker coefficient. By considering solutions where all polarization com-
ponents are nonzero, we obtain the trivial solution:

Γ𝑖𝑙 = 𝜌𝑉
2

𝜙
𝛿𝑖𝑙 (2.34)

This formulation provides a foundation for understanding elastic wave propagation in
solids, particularly in anisotropic media, where the eigenvalues of the Christoffel tensor
determine the phase velocities of different wave modes.
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2.4.2 Rayleigh and Sezawa acoustic wave
Multiple types of elastic (or acoustic) waves can propagate in solids, each characterized by
its polarization. Among them, the Rayleigh acoustic wave is a transverse surface wave with
elliptical polarization in the sagittal plane. The primary component of its displacement is
perpendicular to the surface of the solid, while the displacement in the propagation direc-
tion is relatively small. As a result, this wave is actually a combination of a transverse wave
(major component) and a longitudinal wave (minor component).

A similar surface mode is the Sezawa wave, which is often regarded as an extension of
the Rayleigh wave. However, the terminology is not universally adopted; many acoustics
specialists refer to these higher-order surface waves as Rayleigh-2, 3,⋯ 𝑛. In this work,
we use the Sezawa designation to refer specifically to waves with elliptical polarization
in the sagittal plane, where the longitudinal component dominates, while the transverse
component is minor. The polarization and displacement of the solid surface associated
with Rayleigh and Sezawa waves are illustrated in figure 2.2[5, 6, 8, 10, 11, 12].

Figure 2.2: Schematic representation of the Sezawa and Rayleigh elastic waves modeled by
using Comsol Multiphysics.

2.4.3 Love acoustic wave
The Love acoustic wave is a transverse surface wave with linear polarization that is parallel
to the surface and perpendicular to the propagation direction. Unlike Rayleigh and Sezawa
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waves, the Love wave does not induce any out-of-plane particle displacement. Its existence
is particularly favored in multilayered media, especially when the propagating medium is
supported by a softer substrate. A schematic representation of its polarization is shown in
figure 2.3. In this thesis, the focus is primarily on surface acoustic waves; however, other
types of volume waves also exist:

• Shear volume waves (𝑆 waves) exhibit longitudinal polarization,

• Compression waves (𝑃 waves) have transverse polarization,

• Lamb waves propagate within thin films where the thickness is comparable to the
wavelength.

These volume waves play a role in certain applications but are not central to the analyses
presented in this work [13].

Figure 2.3: Schematic representation of the Love elastic wave modeled by using Comsol
Multiphysics.
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This chapter explores the foundational principles of micromagnetism, highlighting its
significance in both natural and technological contexts. Magnetism, a fundamental and
universal phenomenon arising from electron motion, originates from the combined effects
of intrinsic spin and orbital momentum, which together define both atomic and macro-
scopic magnetic moments. With the continuous advancement of information technology,
particularly in nanoscience, micromagnetism has become increasingly relevant due to its
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ability to leverage the vectorial nature of magnetization at the nanoscale. At the core of this
framework is the Landau-Lifshitz-Gilbert (LLG) equation, which describes the dynamics of
magnetization by incorporating multiple energy contributions, including:

• Exchange interaction, which governs the short-range coupling between spins,

• Zeeman energy, arising from external magnetic fields,

• Magnetocrystalline anisotropy, which reflects the dependency of magnetization on
crystalline symmetry,

• Magnetostatic interactions, which involve long-range dipolar effects,

• Magnetoelastic effects, which account for the coupling between magnetic and me-
chanical properties.

The chapter further examines the dynamics of spin precession, distinguishing between
propagating and non-propagating modes. These dynamics are probed through experimen-
tal techniques such as ferromagnetic resonance (FMR) and Brillouin light scattering (BLS),
which provide critical insights into spin wave behavior. Finally, the chapter introduces the
concept of magnonic crystals, emphasizing how periodicity influences spin wave disper-
sion. The discussion outlines the conditions necessary to engineer magnonic properties in
structured magnetic materials, paving the way for potential applications in spintronics and
magnon-based computing.
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3.1 Preamble
Magnetism is a fundamental property that acts and exists at every scale in the universe.
The Earth (like many celestial bodies) generates its own magnetic field that protects all liv-
ing things from solar wind, and we use magnetism on a human scale in our everyday lives
(fridge magnets, magnetic resonance imaging, motors, hard drives....). Magnetism comes
essentially from the movement of electrons around the nucleus of the atom and comprises
two contributions: the angular momentum of the electrons (intrinsic spin) and the orbital
momentum [1]. The sum of the magnetic moments of electrons defines the atomic magnetic
moment, and the sum of all the atomic magnetic moment defines the magnetic moment of
the whole solid, which is referred to as the magnetization. As modern information tech-
nology increasingly relies on the electronic properties of solids at the nanoscale (10 nm – 1
µm), it was a natural progression to extend its development to nano- and micromagnetism.
Like traditional electronics, micromagnetism is fundamentally based on electronic inter-
actions, but it offers the advantage of leveraging the vectorial nature of magnetization, as
opposed to the scalar nature of electron flow [1, 2].

Figure 3.1: Scheme of the four magnetic orders. Paramagnetic materials exhibit randomly
oriented magnetic moments in the absence of an applied field. Antiferromag-
netic materials have an antiparallel alignment of neighboring spins, resulting in
zero net magnetization. Ferromagnetic materials feature a parallel alignment of
moments, leading to spontaneous magnetization. Ferrimagnetic materials also
show an antiparallel spin alignment, but with unequal moments, producing a
nonzero net magnetization.

Magnetic materials exhibit various magnetic phases, as illustrated in figure 3.1. They can
be broadly classified based on their effective magnetization in the absence of an external
magnetic field:

• Paramagnetic and antiferromagnetic materials exhibit zero effective magnetization,

• Ferromagnetic and ferrimagnetic materials exhibit a nonzero effective magnetization.

While antiferromagnetic and ferrimagnetic materials are of great interest in the micromag-
netism community, particularly for their role in spintronic devices, this work focuses ex-
clusively on ferromagnetic materials. These materials are well understood and offer greater
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3 Elements of micromagnetism

numerical simplicity, making them more suitable for computational modeling and simula-
tions.

Figure 3.2: Scheme illustrating the analogy between the mechanical torque exerted on a
rigid body (left) and the magnetic torque applied to magnetization by a mag-
netic field (right). In the mechanical case, an external force generates a torque,
causing rotational motion around a fixed axis. In the magnetic case, the applied
magnetic field exerts a torque on the magnetization vector, leading to its preces-
sional motion around the field direction.

3.2 Landau-Lifshitz-Gilbert equation of motion
Solid mechanics and micromagnetism are closely related not only through magnetoelastic-
ity, but also because the theory of micromagnetism was originally inspired by the rotational
motion of rigid bodies. A clear analogy can be drawn between the mechanical dynamics
of a rigid body and the magnetization dynamics governed by the Landau-Lifshitz-Gilbert
equation. To illustrate this, let us consider an object attached to a pivot point 𝑂 , as shown
in figure 3.2. The torque applied to the object results in rotational motion around the pivot,
much like how an applied magnetic field exerts a torque on the magnetization, leading to
its precessional motion.

A force 𝐹 applied to a point 𝐴 generates a torque 𝑇 :

𝑇 = 𝑂𝐴 × 𝐹 =

𝑑𝐿

𝑑𝑡

(3.1)

where 𝐿 is the angular momentum. An analogous relation can then be written for the
spin momentum 𝑆:

𝑇 =

𝑑𝑆

𝑑𝑡

=

1

𝛾

𝑑�⃗�

𝑑𝑡

= �⃗� × �⃗�𝑒𝑓 𝑓 (3.2)

where �⃗� = 𝛾𝑆 is the magnetic moment 𝛾 being the gyromagnetic ratio and �⃗�𝑒𝑓 𝑓 is the
effective magnetic field applied to �⃗� . This effective field includes multiple contributions of
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3.2 Landau-Lifshitz-Gilbert equation of motion

Figure 3.3: Diagram illustrating the precession cone described by the out-of-equilibrium
magnetization. When subjected to an external magnetic field, the magnetization
vector does not align immediately but instead undergoes precessional motion
around the equilibrium direction. This motion follows a cone-like trajectory,
characteristic of the Landau-Lifshitz-Gilbert dynamics, with damping gradually
aligning the magnetization along the field direction.

the total magnetic energy of the system that will be developed in the following sections.
This equation, known as the Landau-Lifshitz equation, was later refined by T. Gilbert, who
introduced a damping term based on mechanical analogies with the behavior of rigid bodies
[3, 4]:

𝑑�⃗�

𝑑𝑡

= − ⃗𝛾𝑚 × �⃗�𝑒𝑓 𝑓 + 𝛼�⃗� ×

𝑑�⃗�

𝑑𝑡

(3.3)

where �⃗� =

⎛

⎜

⎜

⎝

𝑚𝑥

𝑚𝑦

𝑚𝑧

⎞

⎟

⎟

⎠

=
1

𝑀𝑠

⎛

⎜

⎜

⎝

𝑀𝑥

𝑀𝑦

𝑀𝑧

⎞

⎟

⎟

⎠

is the normalized magnetization, meaning that ||�⃗�|| = 1

and 𝛼 is a dimensionless constant called the damping factor.
The Landau-Lifshitz-Gilbert (LLG) equation is fundamental for describing the spatio-

temporal evolution of magnetization. While alternative formulations exist to account for
specific effects—such as the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation for spin
transfer torque [5, 6] or the second-time derivative of magnetization to capture nutation
phenomena [7, 8, 9])—the standard LLG equation remains the most widely used model for
magnetization dynamics. The LLG equation consists of two distinct terms, as illustrated in
figure 3.3:

−𝛾�⃗� × �⃗�𝑒𝑓 𝑓 (3.4)

describes the Larmor precession, where the magnetization precesses around the effective
magnetic field

𝛼

�⃗�

𝑀𝑠

×

𝑑�⃗�

𝑑𝑡

(3.5)
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represents damping, which causes the magnetization to gradually align with the effective
field, leading to an equilibrium state in the absence of external excitation. This equation is
crucial for understanding magnetization dynamics in nanostructures, including spin waves,
domain wall motion, and magnetization switching processes.

3.3 Energetic approach
As with all physical systems, a magnetic system naturally evolves toward a state of minimal
energy. The total magnetic energy density arises from multiple contributions, each exerting
a distinct influence on magnetization dynamics. In the LLG equation, the effect of energy
on magnetization is incorporated through the effective magnetic field:

�⃗�𝑒𝑓 𝑓 = −

1

𝜇0𝑀𝑠

𝜕𝐹𝑡𝑜𝑡

𝜕�⃗�

(3.6)

where the total magnetic energy density is expressed as [10, 11, 12, 13]:

𝐹𝑡𝑜𝑡 = 𝐹𝑒𝑥 + 𝐹𝑍𝑒𝑒 + 𝐹𝑎𝑛 + 𝐹𝑚𝑠 + 𝐹𝑚𝑒 (3.7)

Each term on the right-hand side represents a different contribution to the system’s energy:

• 𝐹𝑒𝑥 : Exchange energy, which favors parallel alignment of neighboring spins.

• 𝐹𝑍𝑒𝑒 : Zeeman energy, arising from the interaction with an external magnetic field.

• 𝐹𝑎𝑛: Magnetocrystalline anisotropy energy, which depends on the crystal structure
and preferential magnetization axes.

• 𝐹𝑚𝑠: Magnetostatic (demagnetizing) energy, resulting from dipolar interactions within
the material.

• 𝐹𝑚𝑒: Magnetoelastic energy, which describes the coupling between magnetization and
mechanical stress.

These five energy terms play a crucial role in magnetization dynamics and are the primary
contributions considered in our experiments and simulations.

3.3.1 Exchange interaction
The exchange energy is responsible for the coupling at the atomic scale between the neigh-
boring spins and, consequently, responsible for the magnetic order of the magnetic medium.
In ferromagnetic, materials this energy keeps the neighboring spins parallel to each other,
whereas in antiferromagnetic and ferrimagnetic materials it keeps them antiparallel. Ex-
change interaction between spin can occur in multiple ways and can take multiple forms.
Among them we can mention the direct exchange which is a short distance effect that we
are going to consider for the model development, the super-exchange that has a “long”
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3.3 Energetic approach

distance effect thanks to paramagnetic ions that act as intermediaries between two ferro-
magnetic ions, and the indirect exchange in which the exchange between spins is mediated
by the conduction electrons [14, 15, 16] (see figure 3.4).

Figure 3.4: Schematic representation of different types of exchange interactions. The red
spheres represent magnetic atoms, the purple spheres correspond to para-
magnetic ions, and the blue spheres depict conduction electrons. The di-
agram illustrates various exchange mechanisms, including direct exchange,
where magnetic atoms interact via overlap of their wavefunctions; superex-
change, where interaction is mediated through paramagnetic ions; and RKKY
(Ruderman-Kittel-Kasuya-Yosida) exchange, which occurs via conduction elec-
trons in metallic systems.

The theory of direct interaction has been described in the Heisenberg model as the over-
lap of the wave functions of the magnetic atoms or ions:

 = −∑

𝑖𝑗

𝐽𝑖𝑗𝑆𝑖 ⋅ 𝑆𝑗 (3.8)

where  is the Hamiltonian of the spin interaction, 𝑆𝑖 and 𝑆𝑗 are two distinct spins and
𝐽𝑖𝑗 is the exchange integral, which sign determines the magnetic order, it is positive 𝐽 > 0

for ferromagnetic media and negative 𝐽 < 0 for antiferromagnetic media. As the exchange
integral is dependent of the distance between the spins, it becomes quickly negligible after
the first neighbors. This Hamiltonian generalized to the continuous media considered in
micromagnetism can be expressed as:

𝐹𝑒𝑥 = 𝐴𝑒𝑥 (∇⃗ ⋅ �⃗�)

2

(3.9)

where 𝐴𝑒𝑥 (in J.m−1) is the exchange stiffness. Thus, we can associate an effective field
�⃗�𝑒𝑥 to this magnetic energy density:

�⃗�𝑒𝑥 =

2𝐴𝑒𝑥

𝜇0𝑀𝑠

∇⃗
2
�⃗� (3.10)

where 𝜇0 is the vacuum permeability and 𝑀𝑠 is saturation magnetization.
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3 Elements of micromagnetism

3.3.2 Zeeman energy

The Zeeman interaction corresponds to the effect of an external magnetic field �⃗� applied
to the magnetic moments.

�⃗�𝑍𝑒𝑒 = �⃗� (3.11)

𝐹𝑍𝑒𝑒 = −𝜇0𝑀𝑠�⃗� ⋅ �⃗� (3.12)

In the absence of other energy contributions, the Zeeman interaction forces the magne-
tization to align with the applied magnetic field �⃗� , minimizing the system’s energy.

3.3.3 Magnetocrystalline anisotropy

Magnetocrystalline anisotropy is an energy contribution coming directly from the crys-
talline configuration of the material. Due to the anisotropic spatial distribution of atoms
the spin-orbit coupling takes preferential orientations according to the crystallographic
axes. This phenomenon gives birth to easy and hard axis for the magnetization depending
on what direction minimizes the total energy of the system. Hence, the magnetocrystalline
anisotropy energy term takes different forms depending on the type of anisotropy. As the
alloys we consider have very small grain sizes, the average behavior of the material is quasi
isotropic or slightly anisotropic according one direction due to deposition conditions. Fig-
ure 3.5 is showing the energy surface for the uniaxial and cubic cases, which energy takes
the following forms [11]:

𝐹𝑎𝑛𝑖 = 𝐾1 sin
2
𝜃 (3.13)

in the case of a uniaxial anisotropy and [11]:

𝐹𝑎𝑛𝑖 = 𝐾1 (𝛼
2
𝛽
2
+ 𝛽

2
𝛾
2
+ 𝛼

2
𝛾
2

) + 𝐾2𝛼
2
𝛽
2
𝛾
2 (3.14)

in the case of a cubic anisotropy. Here, 𝛼 = sin 𝜃 cos𝜑 , 𝛽 = sin 𝜃 sin𝜑 and 𝛾 = cos 𝜃

where 𝜃 and 𝜑 are the spherical coordinates angles whereas 𝐾1 and 𝐾2 are called magne-
tocrystalline constants [17]. Generally speaking, an ad hoc uniaxial anisotropy term can be
written as:

𝐹𝑢 = 𝐾(�⃗� ⋅ 𝑢)
2 (3.15)

where 𝑢 is the anisotropy axis. Considering this form, the anisotropy field becomes :

�⃗�𝑎𝑛𝑖 =

2𝐾

𝜇0𝑀𝑠

(�⃗� ⋅ 𝑢) ⋅ 𝑢 (3.16)
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Figure 3.5: Modeling of the anisotropy energy surfaces for uniaxial magnetocrystalline
anisotropy (left) and cubic magnetocrystalline anisotropy (right). In the uni-
axial case, the energy depends on the angle between the magnetization and the
easy axis, forming a double-well potential with two equivalent minima along
the preferred direction. In the cubic case, the energy landscape exhibits four or
sixfold symmetry, depending on the crystallographic structure, with multiple
easy axes corresponding to the lowest energy states.

3.3.4 Magnetostatic interaction
When discussing magnetostatic interactions, two distinct contributions must be considered
[18, 20]. A magnetized object, such as a ferromagnet, becomes polarized according to its
magnetization orientation, generating a magnetostatic dipolar field outside the magnetic
medium. This field obeys Maxwell’s laws and is given by:

�⃗�𝑑𝑖𝑝 = 𝑀𝑠 ∭
𝜌𝑚𝑎𝑔

𝑂𝑃

||𝑂𝑃 ||
3

𝑑𝜏 +𝑀𝑠 ∬
𝜎𝑚𝑎𝑔

𝑂𝑃

||𝑂𝑃 ||
3

𝑑Σ (3.17)

where the 𝑂𝑃 is the position vector and 𝜏 and Σ are the volume and the surface respec-
tively. 𝜌𝑚 and 𝜎𝑚𝑎𝑔 are the so-called volumetric magnetic charge density and the surface
magnetic charge density defined as:

𝜌𝑚𝑎𝑔 = −∇⃗ ⋅ �⃗� (3.18)

and
𝜎𝑚𝑎𝑔 = 𝑛 ⋅ �⃗� (3.19)

where 𝑛 is the normal vector. Due to the continuity of the magnetic induction, a field
is induced within the magnetic object, opposing the magnetization. This demagnetizing
effect is often difficult to quantify, as it depends on the geometry of the object. However,
for ellipsoidal geometries, the demagnetizing field can be determined analytically [19]:

�⃗�𝑑𝑒𝑚 = 𝑀𝑠𝑁�⃗� (3.20)

with:
𝐹𝑑𝑒𝑚 =

1

2

𝜇0𝑀
2

𝑠 (𝑁𝑥𝑥𝑚
2

𝑥
+ 𝑁𝑦𝑦𝑚

2

𝑦
+ 𝑁𝑧𝑧𝑚

2

𝑧) (3.21)
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One can define𝑁 as the demagnetizing tensor and𝑁𝑥𝑥 , 𝑁𝑦𝑦 , 𝑁𝑧𝑧 the diagonal components
of this tensor such as 𝑁𝑥𝑥 + 𝑁𝑦𝑦 + 𝑁𝑧𝑧 = 1. Thus, the magnetostatic field is expressed as:

�⃗�𝑚𝑠 = �⃗�𝑑𝑒𝑚 + �⃗�𝑑𝑖𝑝 (3.22)

Those two magnetostatic contributions are shown in the simulated ellipsoid in figure 3.6.

Figure 3.6: Simulated dipolar and demagnetizing fields in a 3D ellipsoidal object, using the
Comsol Multiphysics® model developed in this work (further detailed in the
next chapters). The dipolar field results from the long-range interaction between
magnetic moments, while the demagnetizing field arises from the internal distri-
bution of magnetization within the ellipsoid. These simulations provide insights
into the spatial variation of magnetic fields and their influence on magnetization
dynamics.

3.3.5 Magnetoelastic anisotropy

The magnetoelastic energy, as discussed in the introduction, arises when a magnetic object
is subjected to mechanical stress. This stress induces a lattice deformation, leading to the
emergence of magnetocrystalline anisotropy. Figure 3.7 illustrates this effect schematically,
distinguishing between the direct and inverse magnetoelastic effects.

• Direct effect: When the magnetization orientation changes under an applied mag-
netic field, the dimensions of an initially isotropic object are modified. If the magne-
tostriction coefficient 𝜆 is positive, the object undergoes a small elongation along the
magnetization direction, while it contracts along the other two axes.
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• Inverse effect: When mechanical stress is applied, the magnetization rotates towards
the direction of applied strain (for positive 𝜆). The resulting strain is significantly
larger than in the direct effect—typically 0% to 0.2% in the elastic regime, compared
to ∼ 0.001% for the direct effect.

The magnetoelastic energy density in the elastic regime is given by:

𝐹𝑚𝑒 = 𝜀
𝑒𝑙
∶ 𝐶 ∶ 𝜀

𝑒𝑙
= 𝜀

𝑒𝑙

𝑖𝑗
𝜎𝑖𝑗 (3.23)

where 𝐶 is the elastic constants tensor and 𝜎𝑖𝑗 are the components of the stress tensor.

This expression accounts for both the direct and inverse magnetoelastic effects, through
the elastic strain:

𝜀
𝑒𝑙
= 𝜀 − 𝜀

𝑚 (3.24)

where the magnetostrictive strain tensor 𝜀𝑚 in a cubic crystal is expressed as:

𝜀
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(3.25)

with 𝜆100 and 𝜆111 the magnetoelastic constants and 𝜀𝑚 the strain tensor induced by the
magnetization in the case of a cubic crystal.

Magnetoelastic Energy in Terms of Magnetoelastic Coupling Coefficients

More generally, the magnetoelastic energy density 𝐹𝑚𝑒 can also be expressed in terms of the
magnetoelastic coupling coefficients 𝐵𝑖. In the case of a cubic crystal, the magnetoelastic
anisotropy energy is often given by [22]:

𝐹𝑚𝑒 = 𝐵1 (𝛼
2

1
𝜀1 + 𝛼

2

2
𝜀2 + 𝛼

2

3
𝜀3)

+ 𝐵2 (𝛼2𝛼3𝜀4 + 𝛼1𝛼3𝜀5 + 𝛼1𝛼2𝜀6) + 𝐵3(𝜀1 + 𝜀2 + 𝜀3) (3.26)
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Figure 3.7: Schematic representation of the direct an indirect magnetoelastic effects occur-
ring in a 3D isotropic object.

where: 𝛼1, 𝛼2, 𝛼3 are the magnetization direction cosines; 𝜀1, 𝜀2 and 𝜀3 are the normal
strain components; 𝜀4, 𝜀5 and 𝜀6 are the shear strain components; 𝐵1, 𝐵2 and 𝐵3 are the
magnetoelastic coupling coefficients.

The parameters 𝛼𝑖 represent the direction cosines of the magnetization relative to the
cubic axes, while the strains 𝜀𝑖 are measured along these axes. The magnetoelastic energy
is typically expressed in terms of magnetostriction coefficients, which requires establishing
relationships between magnetostrictive strains, magnetoelastic coupling coefficients, and
elastic constants. When stress is applied, the crystal deforms until the magnetoelastic en-
ergy 𝐹𝑚𝑒 is in equilibrium with the elastic energy 𝐹𝑒𝑙 (defined in the previous chapter). The
equilibrium strains are obtained by minimizing the total energy:

𝐹𝑡𝑜𝑡 = 𝐹𝑚𝑒 + 𝐹𝑒𝑙 (3.27)

which leads to the following equations:
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𝜕𝐸𝑡𝑜𝑡

𝜕𝜀1

= 𝐶11𝜀1 + 𝐶12 (𝜀2 + 𝜀3) + 𝐵1𝛼
2

1
+ 𝐵3 = 0 (3.28)

𝜕𝐸𝑡𝑜𝑡

𝜕𝜀2

= 𝐶11𝜀2 + 𝐶12 (𝜀1 + 𝜀3) + 𝐵1𝛼
2

2
+ 𝐵3 = 0 (3.29)

𝜕𝐸𝑡𝑜𝑡

𝜕𝜀3

= 𝐶11𝜀2 + 𝐶12 (𝜀1 + 𝜀3) + 𝐵1𝛼
2

3
+ 𝐵3 = 0 (3.30)

𝜕𝐸𝑡𝑜𝑡

𝜕𝜀4

= 𝐶44𝜀4 + 𝐵2𝛼2𝛼3 = 0 (3.31)

𝜕𝐸𝑡𝑜𝑡

𝜕𝜀5

= 𝐶44𝜀5 + 𝐵2𝛼1𝛼3 = 0 (3.32)

𝜕𝐸𝑡𝑜𝑡

𝜕𝜀6

= 𝐶44𝜀6 + 𝐵2𝛼1𝛼2 = 0 (3.33)

When equations 3.28, 3.29 and 3.30 are added together, a homogeneous expansion Δ is
obtained. This expansion is independent of the magnetization direction cosines and repre-
sents a fundamental change in the volume of the ferromagnet.

Δ = 𝜀1 + 𝜀2 + 𝜀3 =

−𝐵1 + 3𝐵3

𝐶11 + 2𝐶12

(3.34)

If we neglect this variation, we find:

𝜀1,2,3 =

−𝐵1𝛼
2

1,2,3

𝐶11 − 𝐶12

− 𝐶12Δ ≃

−𝐵1𝛼
2

1,2,3

𝐶11 − 𝐶12

(3.35)

𝜀4,5,6 =

−𝐵2𝛼2,1,1𝛼3,3,2

𝐶44

(3.36)

We then introduce the direction cosines (𝛽1, 𝛽2 and 𝛽3) between the cubic crystal and the
crystallographic axes. The relative variation is given by:

𝛿𝓁

𝓁

= ∑

𝑖,𝑗

𝜀𝑖𝑗𝛽𝑖𝛽𝑗 (3.37)

The following relation is deduced:

𝛿𝓁

𝓁

=

−𝐵1

𝐶11 − 𝐶12
(
𝛼
2

1
𝛽
2

1
+ 𝛼

2

2
𝛽
2

2
+ 𝛼

2

3
𝛽
2

3
−

1

3)

+

−𝐵2

𝐶44

(𝛼2𝛼3𝛽2𝛽3 + 𝛼1𝛼3𝛽1𝛽3 + 𝛼1𝛼2𝛽1𝛽2) (3.38)

We found the well known magnetostrictive coefficients (𝜆100 and 𝜆111) as function of the
coefficients 𝐵1 and 𝐵2 by evaluating the above equation when the crystal is respectively
magnetized along < 100 > and < 111 >:

𝜆100 = −

2

3

𝐵1

𝐶11 − 𝐶12

(3.39)
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and
𝜆111 = −

𝐵2

3𝐶44

(3.40)

These expressions highlight the influence of the elastic properties of the material on
magnetostriction and confirm the central role of the magnetoelastic coupling coefficients
𝐵1 and 𝐵2 in describing magnetoelastic anisotropy. They are widely used in the modeling of
ferromagnetic materials to predict their response to mechanical stress and their behavior
in applications such as energy conversion, spin-wave control, and magnetoelastic sensors.

3.4 Propagating and non propagating spin waves
In this work, magnetic samples are characterized using two complementary techniques that
provide information on the spin precession frequency. Ferromagnetic resonance (FMR) is
used to probe non-propagating spin-wave modes, while Brillouin light scattering (BLS) al-
lows the characterization of propagating spin-wave energies. Since results are obtained on
both continuous media and nanostructured samples, special effort is made to predict the
magnetic behavior across different geometries. This is achieved through micromagnetic
simulations and macrospin modeling, which are systematically compared with experimen-
tal data to enhance the understanding of spin-wave dynamics.

3.4.1 Magnetostatic formulation for spin precession
In most cases the study of spin precession is limited to the linear regime corresponding to
small harmonic oscillations. This consideration is almost always valid, because the nonlin-
ear regime is only achieved when forced using a strong enough excitation field or pertur-
bation. In the linear regime we can consider that:

�⃗�(𝑥, 𝑦, 𝑧, 𝑡) =

⎛

⎜

⎜

⎝

1

𝑚𝑦𝑒
𝑖𝜔𝑡

𝑚𝑧𝑒
𝑖𝜔𝑡

⎞

⎟

⎟

⎠

(3.41)

if we consider a saturated magnetization along the 𝑥-axis. Here 𝜔 is the pulsation of
the spin precession. Thus, the magnetization along the 𝑥-axis remains constant over time,
meaning that the magnetization norm is ||�⃗�|| ≥ 1, which is not really problematic for small
angles (for a precession cone angle of 5° the norm would be less than 1.01). This approxi-
mation allows one to write the total magnetization and the field contributions as the sum
of a static part and a dynamic part such as:

�⃗�(𝑥, 𝑦, 𝑧, 𝑡) = �⃗�0(𝑥, 𝑦, 𝑧) +
̃
�⃗�(𝑥, 𝑦, 𝑧, 𝑡) (3.42)

�⃗� (𝑥, 𝑦, 𝑧, 𝑡) = �⃗�0(𝑥, 𝑦, 𝑧) +
̃
⃗
ℎ(𝑥, 𝑦, 𝑧, 𝑡) (3.43)

with
̃
�⃗�(𝑥, 𝑦, 𝑧, 𝑡) = �⃗�(𝑥, 𝑦, 𝑧)𝑒

𝑖𝜔𝑡 (3.44)
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̃
⃗
ℎ(𝑥, 𝑦, 𝑧, 𝑡) =

⃗
ℎ(𝑥, 𝑦, 𝑧)𝑒

𝑖𝜔𝑡 (3.45)

at equilibrium, supposing that �⃗�0(𝑥, 𝑦, 𝑧) ≫
̃
�⃗�(𝑥, 𝑦, 𝑧, 𝑡) and �⃗�0(𝑥, 𝑦, 𝑧) ≫

̃
⃗
ℎ(𝑥, 𝑦, 𝑧, 𝑡), the

Landau-Lifshitz equation becomes :

𝑖𝜔

𝛾

̃
�⃗� = −�⃗�0 ×

̃
⃗
ℎ𝑒𝑓 𝑓 −

̃
�⃗� × �⃗�0 𝑒𝑓 𝑓 (3.46)

In practical terms, expressing the vectors in spherical coordinates is more advantageous
as many measurement setups and energy terms are dependent on angular parameters. In
the spherical coordinate system the magnetization direction defines the radial unit vector
such as

�⃗� = 𝑒𝑟 (3.47)

and
𝑑�⃗�

𝑑𝑡

=
̇
𝜃𝑒𝜃 + �̇� sin 𝜃𝑒𝜑 (3.48)

which is represented in figure 3.8 (left).

Figure 3.8: Scheme of the magnetization unit vectors in the spherical coordinate system
(left). The cone on the right illustrates the decomposition of the magnetization
unit vector into its spherical components 𝑚𝜑, 𝑚𝜃 and 𝑚𝑟 . In the case of small
variations of the angles 𝜃 and 𝜑 denoted as 𝛿𝜃 and 𝛿𝜑 respectively, the pertur-
bation of the magnetization is shown within the precession cone, highlighting
the contribution of each component.

By neglecting the effect of damping, the LLG becomes:

1

𝛾

⎛

⎜

⎜

⎝

0

̇
𝜃

�̇� sin 𝜃

⎞

⎟

⎟

⎠

=

1

𝛾

⎛

⎜

⎜

⎝

0

𝑖𝜔𝛿𝜃(𝑡)

𝑖𝜔𝛿𝜑(𝑡) sin 𝜃

⎞

⎟

⎟

⎠

=

1

𝜇0𝑀𝑠

⎛

⎜

⎜

⎝

0

−
1

sin 𝜃

𝜕𝐹

𝜕𝜑

𝜕𝐹

𝜕𝜃

⎞

⎟

⎟

⎠

(3.49)
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Let us now define the equilibrium angles of the magnetization as 𝜃0 and 𝜑0 such as:

𝜕𝐹

𝜕𝜃

=

𝜕𝐹

𝜕𝜑

= 0 (3.50)

for these equilibrium angles and:

{

𝜃 = 𝜃0 + 𝛿𝜃𝑒
𝑖𝜔𝑡

𝜑 = 𝜑0 + 𝛿𝜑𝑒
𝑖𝜔𝑡

(3.51)

𝜃 = 𝜃0 + 𝛿𝜃. We can write the Taylor expansion of the energy as:

𝐹(𝜃, 𝜑) = 𝐹(𝜃0, 𝜑0) +

1

2 (

𝜕
2
𝐹(𝜃0, 𝜑0)

𝜕𝜃
2

𝜃
2
+

𝜕
2
𝐹(𝜃0, 𝜑0)

𝜕𝜑
2

𝜑
2
+ 2

𝜕
2
𝐹(𝜃0, 𝜑0)

𝜕𝜃𝜕𝜑

𝜃𝜑
)

(3.52)

{
𝜕𝐹

𝜕𝜃
= −𝑖𝜔

𝜇0𝑀𝑠

𝛾
𝛿𝜃 sin 𝜃 =

𝜕
2
𝐹(𝜃0,𝜑0)

𝜕𝜃
2

𝛿𝜃 +
𝜕
2
𝐹(𝜃0,𝜑0)

𝜕𝜃𝜕𝜑
𝛿𝜑

𝜕𝐹

𝜕𝜑
= 𝑖𝜔

𝜇0𝑀𝑠

𝛾
𝛿𝜑 sin 𝜃 =

𝜕
2
𝐹(𝜃0,𝜑0)

𝜕𝜑
2

𝛿𝜑 +
𝜕
2
𝐹(𝜃0,𝜑0)

𝜕𝜃𝜕𝜑
𝛿𝜃

(3.53)

Solving this pair of equations allows one to easily express 𝛿𝜃 and 𝛿𝜑. The final expression
we obtain for the precession pulsation is:

𝜔 =

𝛾

𝜇0𝑀𝑠 sin 𝜃

√

𝜕
2
𝐹(𝜃0, 𝜑0)

𝜕𝜃
2

𝜕
2
𝐹(𝜃0, 𝜑0)

𝜕𝜑
2

−
(

𝜕
2
𝐹(𝜃0, 𝜑0)

𝜕𝜃𝜕𝜑 )

2

(3.54)

This expression known as the Smit-Beljers equation (or as the Smit-Suhl equation) [24,
25] is used for analytical macrospin modeling of ferromagnetic resonance, especially in the
in plane configuration (𝜃 =

𝜋

2
, 𝜑 = 0):

𝜔 = 𝛾𝜇0

√

𝐻 (𝐻 +𝑀𝑠) (3.55)

and in the out-of-plane configuration (𝜃 = 0, 𝜑 = 0) where the singularity has to be
removed in order to obtain the following expression:

𝜔 = 𝛾𝜇0 (𝐻 −𝑀𝑠) (3.56)

3.4.2 Spin wave formulation in continuous media

The Smit-Beljers equation describes precisely the behavior of non-propagating spin waves
in continuous media, but one of the key aspects of spin waves (as all waves), is that they
can propagate over space. This is made possible thanks to both the dipolar field and the
anisotropy field that make the close spin directions interdependent [10, 11, 12, 13, 26].
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3.4 Propagating and non propagating spin waves

Figure 3.9: Spin waves are collective magnetization oscillations whose propagation depends

on the relative orientation of the wave vector ⃗
𝑘 and the magnetization �⃗� . On

the left, the schematic illustrates spin wave propagation, where each arrow rep-
resents an individual magnetic moment precessing collectively.On the right, the
diagram shows the three main spin wave configurations: the backward volume
mode (⃗𝑘 ∥ �⃗�), the Damon-Eshbach mode (⃗𝑘 ⟂ �⃗� , surface-localized), and the
forward volume mode (⃗𝑘 ⟂ �⃗� , bulk-propagating).

This propagation can be defined for the spin waves but also for the local effective field as
the dipolar field will contain a small dynamical part that is carried away by the spin wave.
It is, in this sense, convenient to define a potential for the dipolar field such as:

⃗
ℎ𝑑𝑖𝑝 = ∇⃗

(
𝜙𝑒

𝑖𝜔𝑡−
⃗
𝑘.𝑟

)
(3.57)

Incorporating this dynamical component for the effective magnetic field adds up a new
wave vector dependency for the spin waves frequencies. The vectorial nature of the mag-
netization field makes the spin wave dispersion highly dependent on the angle between the
magnetization direction and the spin wave propagation direction, hence it is convenient to
define typical configurations as presented in figure 3.9.

3.4.2.1 Damon Eshbach configuration

The so-called Damon-Eshbach (DE) spin waves are surface waves propagating perpendic-
ularly to the in-plane magnetization (⃗𝑘 ⟂ �⃗�) . This mode is assimilated with the uniform
mode when the wave vector is equal to zero. The DE frequency can be written as [27]:

(

𝜔𝐷𝐸

𝜇0𝛾 )

2

= 𝐻 (𝐻 +𝑀𝑠) +

𝑀
2

𝑠

4
(
1 − 𝑒

−2𝑘𝑑

)
(3.58)

This kind of propagation configuration leads to an inhomogeneous profile as the wave
amplitude is evanescent over the surface of the sample.
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3 Elements of micromagnetism

3.4.2.2 Backward volume configuration

As opposite to the DE configuration, the spin waves in the backward volume (BV) config-
uration are volume waves that have an symmetrical profile over the thickness of the film
and propagates in the direction of the magnetization orientation (⃗𝑘 ∥ �⃗�). Similarly to the
previous configuration this wave is assimilated to the uniform mode when the wave vector
is equal to 0. The analytical formula for the BV spin wave frequency can be written as:

(

𝜔𝐵𝑉

𝜇0𝛾 )

2

= 𝐻
2
+

𝐻𝑀𝑠 (1 − 𝑒
−𝑘𝑑

)

𝑘𝑑

(3.59)

3.4.2.3 Forward volume configuration

The forward volume mode (FV) propagates perpendicularly to the magnetization direction
when saturated out-of-plane [28]. This mode is rarely studied and will also be ignored
through this work. The analytical formula for the FV spin wave frequency can be written
as:

(

𝜔𝐵𝑉

𝜇0𝛾 )

2

= 𝐻
2
+ 𝐻𝑀𝑠

(

1 −
(1 − 𝑒

−𝑘𝑑

)

𝑘𝑑 )

(3.60)

Figure 3.10: pin wave dispersion of the forward volume, backward volume, and Damon-
Eshbach modes in continuous ferromagnetic films. The dispersion relations are
computed using the parameters: 𝛾 = 1.95×10

11
rad.Hz.T

−1 , 𝑀𝑠 = 7.8×10
5
𝐴.𝑚

−1
,

𝜇0𝐻 = 35 mT and a film thickness of 𝑑 = 40 nm.

These three spin wave modes are represented in the dispersion diagram in figure [3.10.
As observed in the experimental results, the energies of these spin waves can be tuned by
applying a static strain to the ferromagnetic medium. For instance, Karboul et al. studied
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the variation of the Damon-Eshbach (DE) mode under the effect of a static strain applied to
a thin nickel film [29]. This energy shift is attributed to the magnetoelastic energy induced
by the strain, which modifies the effective field in the Landau-Lifshitz-Gilbert (LLG) equa-
tion. As a result, the energies of these propagating spin wave modes can be controlled by
adjusting the applied strain, offering potential for strain-mediated magnonic devices.

3.5 Interaction with phonons
The coupling between magnons and phonons originates from magnetoelastic interactions
[30] and involves both direct and inverse magnetostriction. When dynamic magnetiza-
tion varies, it induces dynamic stress in the material due to the magnetostrictive effect.
Simultaneously, the strain associated with an acoustic wave produces a dynamic magnetic
field, illustrating the inverse magnetostrictive effect. If the frequency and wavelength of
the stress induced by the spin wave match those of the magnetic field generated by the
acoustic wave, the resonance condition for dynamic magnetostrictive coupling is fulfilled.
This interaction between magnons and phonons has been studied in semi-infinite films,
notably by Kittel [30, 31]. In this work, we investigate such coupling in thin films and ar-
rays of nanostructures. The following equations illustrate the mechanisms governing the
interaction between acoustic waves and spin waves, providing a theoretical framework for
understanding the dynamics of coupled systems.

3.5.1 Coupled equations for magnon-phonon interaction
For a spin wave propagating along the 𝑥-direction (with saturation magnetization aligned
along 𝑧), the Landau-Lifshitz-Gilbert (LLG) equation leads to the following system:

1

𝛾

𝜕𝑚𝑥

𝜕𝑡

= 𝜇0𝐻𝑚𝑦 −

2𝐴

𝑀𝑆

𝜕
2
𝑚𝑦

𝜕𝑥
2

(3.61)

1

𝛾

𝜕𝑚𝑦

𝜕𝑡

= −𝜇0𝐻𝑚𝑥 +

2𝐴

𝑀𝑆

𝜕
2
𝑚𝑥

𝜕𝑥
2

(3.62)

Similarly, for an acoustic wave propagating along 𝑥 , characterized by the displacement
field 𝑢𝑧, the equation of mechanical motion is given by:

𝜌

𝜕
2
𝑢𝑧

𝜕𝑡
2

= 𝐶

𝜕
2
𝑢𝑧

𝜕𝑥

(3.63)

Where 𝐶 is a component of the elastic tensor. When magnetoelastic anisotropy is con-
sidered, the LLG equation and the mechanical wave equation become coupled:

1

𝛾

𝜕𝑚𝑦

𝜕𝑡

= −𝜇0𝐻𝑚𝑥 +

2𝐴

𝑀𝑆

𝜕
2
𝑚𝑥

𝜕𝑥
2
− 𝛾𝐵

𝜕𝑢𝑧

𝜕𝑥

(3.64)

and

𝜌

𝜕
2
𝑢𝑧

𝜕𝑡
2

= 𝐶

𝜕
2
𝑢𝑧

𝜕𝑥

+

𝐵

𝑀𝑆

𝜕𝑚𝑥

𝜕𝑥

(3.65)
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These coupled equations illustrate the bidirectional interaction between spin waves and
acoustic waves, demonstrating how they can influence each other’s dynamics [30, 31].

3.5.2 Physical interpretation and applications
The above equations highlight how a propagating spin wave induces an elastic strain field
through the magnetostrictive effect. In turn, this strain modifies the effective magnetic field,
leading to a feedback effect that alters the spin wave propagation. This reciprocal interac-
tion is key to understanding how magnons and phonons couple in structured materials.
In continuous thin films, such interactions lead to hybrid magnon-phonon modes, which
can be detected experimentally through techniques like Brillouin light scattering (BLS). In
nanostructured systems, the geometry and periodicity of the structures play a crucial role
in defining the strength and nature of the coupling.

Controlling magnon-phonon interactions has significant implications for magnonics and
phononics, where strain-mediated effects can be used to tune spin-wave dispersion and
even enable strain-based logic devices. By engineering magnetoelastic coupling, it is possi-
ble to design reconfigurable magnonic circuits, where external strain can be used to mod-
ulate spin-wave propagation without the need for additional magnetic fields. Moreover,
these interactions can be harnessed in hybrid quantum systems, where magnons serve as
an interface for phonon-mediated information transfer in quantum technologies. The abil-
ity to dynamically control spin-wave behavior through acoustic excitations opens new av-
enues for strain-controlled magnonic transistors, phonon-driven magnonic memory, and
energy-efficient computing devices.

3.6 Spin waves in a periodic medium: magnonic crystals
As discussed in the introduction, when the magnetic properties or the geometry of a mate-
rial are periodically modulated, the propagation of spin waves is significantly altered, giving
rise to magnonic crystals. These structures, analogous to photonic or electronic crystals,
exhibit band gaps where certain spin-wave frequencies are forbidden. In the following,
we introduce the magnonic character of such periodic media using a simplified approach
based on the Landau-Lifshitz-Gilbert (LLG) equation in two-dimensional magnonic crystals
[10, 32, 33, 34].

We consider a thin ferromagnetic layer, uniformly magnetized along the 𝑥-direction, and
neglect the exchange interaction, assuming a sufficiently small wave vector 𝑘. Under these
conditions, the linearized LLG equation takes the form:

𝑖
(

𝜔

𝜇0𝐻𝛾)
𝑚𝑦 − 𝑚𝑧 + (

𝑀𝑆

𝐻
) ℎ𝑧 = 0

𝑖
(

𝜔

𝜇0𝐻𝛾)
𝑚𝑧 + 𝑚𝑦 − (

𝑀𝑆

𝐻
) ℎ𝑦 = 0

(3.66)

where we assume a perturbative approach, writing the magnetization as:

�⃗�(𝑥, 𝑦, 𝑧, 𝑡) = �⃗�0(𝑥, 𝑦, 𝑧) +
̃
�⃗�(𝑥, 𝑦, 𝑧, 𝑡) (3.67)
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with
‖
‖
‖

̃
�⃗�(𝑟, 𝑡)

‖
‖
‖
≪

‖
‖
�⃗�0(𝑟)

‖
‖

(3.68)

and an oscillatory solution of the form:

̃
�⃗�(𝑟, 𝑡) = �⃗�(𝑟)𝑒

𝑖
(
𝜔𝑡−

⃗
𝑘⋅𝑟

) (3.69)

Similarly, we assume a magnetic potential of the form:

𝜙(𝑧, 𝑡) = 𝜙(𝑧)𝑒
𝑖
(
𝜔𝑡−

⃗
𝑘⋅𝑟

) (3.70)

From this formalism, we can recover the expressions for Damon-Eshbach (DE) modes and
Backward Volume (BV) modes in continuous films by solving the system of equations.

3.6.1 Periodic structures and spin-wave band gaps
In an approximate approach, we can determine forbidden frequency bands for spin waves
by considering that the magnetic parameters of the medium—such as �⃗�(𝑟, 𝑡) and 𝜙(𝑟, 𝑡)—
are periodic functions of the in-plane position vector:

𝑟 = (𝑥, 𝑦) − for bi-dimensional magnonic crystals (3.71)

𝑟 = (𝑥, 0) − for uni-dimensional magnonic crystals (3.72)

with a lattice periodicity given by:

𝑅 = 𝑛1𝑎1 + 𝑛2𝑎2 (3.73)

where 𝑅 is an arbitrary translation vector of the Bravais lattice; 𝑎1 and 𝑎2 are the primitive
vectors of the lattice while 𝑛1 and 𝑛2 are integers. This periodicity allows us to express:

�⃗�(𝑟 + 𝑅) = �⃗�(𝑟)

𝜙(𝑟 + 𝑅) = 𝜙(𝑟)

(3.74)

Since these functions are periodic, they can be expanded in a Fourier series:

�⃗�(𝑟) = ∑
�⃗�𝑝

�⃗�(�⃗�𝑝)𝑒
𝑖�⃗�𝑝 ⋅𝑟

𝜙(𝑟) = ∑
�⃗�𝑝

𝜙(�⃗�𝑝)𝑒
𝑖�⃗�𝑝 ⋅𝑟

(3.75)

Where �⃗�𝑝 represents a reciprocal lattice vector, defined as:

�⃗�𝑝 = 𝑝1
⃗
𝑏1 + 𝑝2

⃗
𝑏2 (3.76)

where ⃗
𝑏1 and ⃗

𝑏2 are the basis vectors of the reciprocal lattice, satisfying:

𝑎𝑖 ⋅
⃗
𝑏𝑗 = 2𝜋𝛿𝑖𝑗 (3.77)
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3.6.2 Bloch theorem and spin-wave band gaps

The Bloch wave vector ⃗
𝑘 = (𝑘𝑥 , 𝑘𝑦) describes spin waves in a periodic magnetic structure.

According to Bloch’s theorem, the spin-wave solutions can be expressed as Bloch functions,
meaning that the spin waves can be restricted to the first Brillouin zone without loss of gen-
erality. Indeed, in periodic media, the interplay between wave interference and periodicity
leads to the formation of band structures, similar to those found in electronic crystals. In
such systems, Bragg reflection occurs when the spin-wave wavelength becomes compara-
ble to the periodicity of the structure, leading to constructive or destructive interference.
This results in eigenfrequency splitting, which gives rise to band gaps—frequency ranges
where spin-wave propagation is prohibited. These magnonic band gaps are direct analogs
of photonic and electronic band gaps, where the propagation of light or electrons is pre-
vented in certain energy ranges due to the periodic potential of the system. In the case
of magnonic crystals, the periodic modulation of the magnetic properties (such as satura-
tion magnetization, exchange interaction, or anisotropy) or the geometry (such as periodic
arrays of nanostructures) creates an effective periodic potential for spin waves.

Figure 3.11: Experimental and simulated frequency dispersion for a uniaxial magnonic crys-
tal under an applied field of 𝜇0𝐻 = 500 mT. The experimental data (symbols)
were obtained using BLS, while the simulated dispersion curves (solid lines)
were computed using micromagnetic modeling. The vertical dashed lines indi-
cate the first two Brillouin zones, highlighting the periodicity-induced modifi-
cations in the spin-wave spectrum. Figures adapted from [35].

3.6.3 Experimental observations and computed results
To illustrate these periodic phenomena, we present in figure 3.11 the experimental results
obtained by Gubbiotti et al. [35] for a one-dimensional magnonic crystal, consisting of a
permalloy nanowire array with a width of 350 nm and a periodicity of 470 nm, as shown
in figure 3.11-b). The experimental data, measured via Brillouin light scattering (BLS), are

52



3.6 Spin waves in a periodic medium: magnonic crystals

shown as symbols in figure 3.11-a), while the computed magnonic dispersion curves, ob-
tained using a method similar to the one discussed earlier, are shown as solid lines. The
presence of Brillouin zones in the dispersion is a clear signature of the periodicity-induced
magnonic behavior, fundamentally modifying the spin-wave excitations in the crystal.

To illustrate these periodic phenomena, we present in figure 3.11 the experimental re-
sults obtained by Gubbiotti et al. [35] for a one-dimensional magnonic crystal, consisting
of a permalloy nanowire array with a width of 350 nm and a periodicity of 470 nm, as
shown in figure 3.11-b). The experimental data, measured via Brillouin light scattering
(BLS), are represented by symbols in figure 3.11-a), while the computed magnonic disper-
sion curves, obtained using a Fourier-based method, are shown as solid lines. The clear
periodicity observed in the dispersion relations is a hallmark of magnonic band formation,
demonstrating the influence of artificial structuring on spin-wave propagation. One of the
most striking features in the experimental data is the presence of Brillouin zones, which
indicate periodicity-induced band gaps in the spin-wave spectrum. These zones alter the
natural dispersion relation of spin waves, leading to modifications in group velocity, wave-
length selectivity, and mode hybridization. Such effects are crucial for tailoring spin-wave
transport properties in magnonic devices. Additionally, the agreement between theoreti-
cal predictions and experimental results highlights the reliability of current micromagnetic
modeling techniques. These computational approaches, based on solving the LLG equation
in periodic media, allow us to predict and optimize magnonic band structures, ensuring
that experimental designs meet targeted frequency response requirements.

3.6.4 Interplay between periodicity and magnetic coupling

However, simply arranging magnetic objects periodically does not automatically result in
a magnonic crystal [120]. The elements must be sufficiently interconnected magnetically,
either through: i) dipolar interactions, or ii) a thin magnetic layer acting as a coupling
medium.

To illustrate this, we present BLS measurements from this thesis on modulated nanowire
arrays (SEM image in figure 3.12-a). These arrays are analyzed under a 50 mT applied field
along the long axis of the nanowires, allowing us to probe transverse spin wave propa-
gation. A typical BLS spectrum at 𝑘 = 19.35 𝜇m−1 is shown in figure 3.12-b), while the
full experimental dispersion is presented in figure 3.12-c). Notably, the observed spin-wave
modes appear nearly dispersionless, suggesting quantized modes in the nanowire cross-
section. Our initial objective was to identify potential magnonic effects from the nanowire
cross-section modulation, as shown in figure 3.12-d). When a 100 mT saturating field is
applied along the nanowire cross-section, we observe a weak effect near the first Brillouin
zone (10 𝜇m−1), indicating a pseudo-magnonic behavior, albeit less pronounced than in fig-
ure 3.11.

In summary, while periodicity is essential for magnonic behavior, it is not sufficient.
The elements must be strongly coupled, as demonstrated by our BLS measurements on
modulated nanowire arrays, where we observed nearly dispersionless modes and a slight
pseudo-magnonic effect.
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3 Elements of micromagnetism

Figure 3.12: a), d) SEM images showing the array of modulated nanowires and the exper-
imental configuration used for Brillouin light scattering (BLS) measurements.
(b, e) Typical anti-Stokes BLS spectra (symbols). The orange region under the
spectrum represents a fit using multiple Lorentz-Gaussian functions, with in-
dividual peaks highlighted in different colors (ranging from red to green). (c)
Spin-wave dispersion relation obtained under an applied field of 𝜇0𝐻 = 100mT.
The vertical dashed lines indicate the first two Brillouin zones, emphasizing the
influence of periodicity on the spin-wave behavior.
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The numerical simulation of magnetoelastic phenomena remains relatively uncommon
in the magnetism community, mainly due to the lack of numerical frameworks capable
of handling both complex magnetic and mechanical behaviors simultaneously. Existing
studies often focus on simple geometries like continuous films and rely on phenomenolog-
ical approximations rather than fully coupled models. In this chapter, we present a mul-
tiphysics numerical method that fully couples micromagnetism and solid mechanics. Un-
like conventional micromagnetic software, which lacks mechanical modeling capabilities,
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our approach is implemented in Comsol Multiphysics® [2], requiring the explicit imple-
mentation of the LLG equation. We detail the energy contributions involved, along with
the boundary conditions essential for accurate simulations. The method accounts for both
static strain and dynamic acoustic waves, enabling the study of strain-induced anisotropies
and magnon-phonon interactions. This work builds upon Nabil Challab’s thesis [1], where
he implemented the time-dependent LLG equation coupled with static mechanics. Here,
we extend this approach to dynamic mechanical effects, providing a versatile tool for in-
vestigating strain-controlled magnetism and hybrid magnonic-phononic systems.
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4.1 Implementation of the micromagnetic formalism

4.1 Implementation of the micromagnetic formalism
The numerical model presented in this chapter builds on the theoretical framework de-
scribed previously, incorporating the key energy contributions governing magnetoelastic
interactions. The total energy density considered in our model is given by:

𝐹𝑡𝑜𝑡 = 𝐹𝑒𝑥 + 𝐹𝑍𝑒𝑒 + 𝐹𝑚𝑠 + 𝐹𝑚𝑒 (4.1)

with the Zeeman energy density 𝐹𝑍𝑒𝑒 = −𝜇0𝑀𝑠�⃗� ⋅ �⃗� where �⃗� corresponds to the ap-
plied magnetic field, the exchange energy 𝐹𝑒𝑥 = 𝐴𝑒𝑥 (∇⃗ ⋅ �⃗�)

2

, the magnetostatic energy

𝐹𝑚𝑠 =
1

2
𝜇0𝑀𝑠

(
�⃗�𝑑𝑒𝑚 + �⃗�𝑑𝑖𝑝

)
⋅ �⃗� , where the demagnetizing field �⃗�𝑑𝑒𝑚 and dipolar field are

derived from the magnetic potential 𝜙. The magnetocrystalline anisotropy is not defined
as the crystalline state of our material is not studied in depth and exhibits a quasi-isotropic
behavior. When an anisotropy is needed we choose to either ignore it (as it is often very
small) or to generate it virtually with a magnetic field applied along the right direction. The
magnetoelastic field can be written as:

𝐹𝑚𝑒 = 𝜀
𝑒𝑙
∶ 𝐶 ∶ 𝜀

𝑒𝑙
= 𝜀

𝑒𝑙

𝑖𝑗
𝜎𝑖𝑗 (4.2)

where where the elastic strain 𝜀
𝑒𝑙 is given by:

𝜀

𝑒𝑙

= 𝜀

𝑡𝑜𝑡

− 𝜀

𝑚𝑎𝑔

(4.3)

This relation captures the bidirectional coupling between magnetism and solid mechan-
ics: the magnetically induced strain alters the mechanical response (direct effect), while
elastic deformations modify the magnetic energy, leading to changes in magnetic behavior
(indirect effect). Since micromagnetic solvers are not inherently designed for solid mechan-
ics, this method has been implemented in Comsol Multiphysics® [2], which required the
explicit implementation of the Landau-Lifshitz-Gilbert (LLG) equation in its weak formu-
lation [3]:

∫
Ω
(

𝑑�⃗�

𝑑𝑡

+ 𝛾�⃗� ∧ �⃗�𝑒𝑓 𝑓 − 𝛼�⃗� ∧

𝑑�⃗�

𝑑𝑡 )
�⃗�𝑑Ω = 0 (4.4)

where Ω is the volume and 𝑤 is a test function.

4.1.1 Frequency response simulations in Comsol Multiphysics®
Studying the frequency response of a magnetic system can be performed in three different
ways inside Comsol Multiphysics.

1. Time-domain study: i) applies an external excitation and solves for the magnetization
dynamics over time. ii) While conceptually simple, this method is computationally
expensive and impractical when scanning multiple parameters (e.g., field strength,
frequency).
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2. Eigenfrequency study (preferred method): i) Solves for the natural resonance modes
of the system without requiring an external excitation. ii) The time dependency in
the LLG equation is replaced by a frequency dependence using:

�⃗�(𝑥, 𝑦, 𝑧, 𝑡) = �⃗�0(𝑥, 𝑦, 𝑧) + �⃗�(𝑥, 𝑦, 𝑧)𝑒

𝑖𝜔𝑡

(4.5)

iii) This method is fast and provides direct access to the system’s resonance frequen-
cies, making it well suited for our study.

3. Frequency-domain study: i) Requires a harmonic excitation to probe the system at
desired frequencies. ii) Used in this work for simulations of ferromagnetic resonance
(FMR) and Brillouin light scattering (BLS) spectra, allowing us to compute the sys-
tem’s frequency response over a broad range.

These three methods can be applied to both the homemade micromagnetic approach and
the existing solid mechanics module, allowing these two physics to be computed simulta-
neously and interact with each other.

4.1.2 Handling non-local fields: exchange and magnetostatic terms
Most energy terms are straightforward to implement, but some require special treatment
due to their mathematical complexity: i) exchange field and ii) magnetostatic field. Indeed,
in the case of the exchange field �⃗�𝑒𝑥 = −

2𝐴𝑒𝑥

𝜇0𝑀𝑠

∇⃗
2
⋅ �⃗�, it is necessary to balance the derivative

order of the unknown variable �⃗� and the test function �⃗�. Additionally, the magnetostatic
field can also be challenging to formulate, as it is a non-local term with a demagnetizing
contribution inside the magnetic object and a dipolar contribution radiating outside the
magnetic body. This dipolar field is often the most time-consuming part of micromagnetic
simulations, and various methods can be used to handle it. In this work, we chose to calcu-
late it accurately by simulating a portion of the universe surrounding the magnetic object.
We hence calculate a dipolar potential 𝜙 such as:

{

∇⃗ ⋅ �⃗�𝑑𝑒𝑚 = −Δ𝜙 = −𝑀𝑠∇⃗ ⋅ �⃗� Ω𝑀

∇⃗ ⋅ �⃗�𝑑𝑖𝑝 = −Δ𝜙 = 0 Ω𝑈

(4.6)

where Ω𝑀 is the magnetic volume and Ω𝑈 is the volume around the magnetic domain
(i.e. the volume occupied by the universe). This set of equation simply comes from the
definition of the magnetic induction 𝐵 = 𝜇0(�⃗� + �⃗�) and the Maxwell Gauss’ law ∇⃗ ⋅ 𝐵 = 0.

4.1.3 Boundary conditions
In addition, the following boundary conditions have to be applied:

• The continuity of the normal component of the magnetization:
{

𝑛 ⋅ ∇⃗𝜙 = 𝑀𝑠�⃗� ⋅ 𝑛 𝜕Ω𝑀

𝑛 ⋅ ∇⃗𝜙 = 0 𝜕Ω𝑖𝑛𝑛𝑒𝑟𝑈

(4.7)
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where 𝜕Ω𝑀 and 𝜕Ω𝑖𝑛𝑛𝑒𝑟𝑈 are the boundaries of the magnetic domain and the inner
boundaries of the universe domain respectively.

• Decay condition for demagnetizing field at infinity:

𝜕𝜙

𝜕𝑟

= 𝑛 ⋅ ∇⃗𝜙 = −2

𝜙

𝑟

(4.8)

This accounts for the long-range dipolar decay, ensuring that the field vanishes at
large distances. This condition comes from the fact that the magnetic object can be
seen as a dipole at a long range, implying that

𝜙 =

𝜇0

4𝜋

�⃗� ⋅ 𝑟

𝑟
3

=

𝜇0

4𝜋

𝑀 cos 𝜃

𝑟
2

(4.9)

with 𝜃 is the angle between the position vector 𝑟 and the dipole surface. This condition is
applied at the outer border of the universe 𝜕Ω𝑜𝑢𝑡𝑒𝑟𝑈 [4].

• Continuity of the demagnetizing potential at the interface between the universe and
the magnetic object

𝜙(𝜕Ω𝑀) = 𝜙(𝜕Ω𝑖𝑛𝑛𝑒𝑟𝑈 ) (4.10)

• Conservation of the magnetization norm inside the magnetic domain Ω𝑀 :

||�⃗�|| = 1 (4.11)

• Periodic boundary conditions for spin waves in a computational unit cell
{

�⃗�𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = �⃗�𝑠𝑜𝑢𝑟𝑐𝑒𝑒
𝑖𝑘}⋅(𝑟

𝑑𝑒𝑠𝑖𝑛𝑎𝑡𝑖𝑜𝑛
−𝑟𝑠𝑜𝑢𝑟𝑐𝑒 )

⃗
𝜙𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =

⃗
𝜙𝑠𝑜𝑢𝑟𝑐𝑒𝑒

𝑖𝑘}⋅(𝑟
𝑑𝑒𝑠𝑖𝑛𝑎𝑡𝑖𝑜𝑛

−𝑟𝑠𝑜𝑢𝑟𝑐𝑒 )
(4.12)

This condition is applied on opposites faces of a computational unit cell in order to map
the magnetization and the potential from a face to another. The 𝑘 value is used to force a
phase shift between this faces and is used as a wave vector for the spin wave propagation
calculation. using 𝑘 = 0 means that the magnetization is periodically repeated over space
like in the case of continuous films and periodic nanostructures.

4.1.4 Validation Strategy
It is worth mentioning that to validate our numerical approach, we chose to simulate ref-
erence studies and compare the results with experimental data and/or analytical models.
It should be noted that some validation concerning the time domain study have been per-
formed in the past by Nabil Challab during his PhD thesis [1, 4], where he has meticulously
verified the Larmor precession, the magnetostatic field and the static strain applied on a self
supported nanostructure by comparing his simulations with analytical studies and Nmag
simulation. In the following sections, we are going to focus on the validation of the eigen-
frequency study and frequency domain studies with experimental and numerical studies
performed on ferromagnetic continuous films.
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4.2 Periodic boundary conditions and magnetostatic
field

It has been established earlier that the magnetostatic field was separated into two contribu-
tions corresponding to the demagnetizing field inside the magnetic object and the dipolar
field in the universe around it. It is then necessary to incorporate a part of the universe
into the computation which takes the form a sphere in the case of a finite object as shown
in figure 4.1-a). When incorporating the periodic boundary conditions it is not possible to
define the universe as a sphere as the universe needs to belong to the periodic cell. We de-
cided, for this matter, to define the universe only above and under the object as represented
in figure 4.1-b).

Figure 4.1: a) Geometry used to simulate a finite square dot. b) Unit cell used when periodic
boundary conditions are applied.

4.2.1 Implementation of Periodic Boundary Conditions (PBCs)

The application of PBCs is illustrated in figure 4.2., demonstrating their role in simulating a
small portion of an infinite thin film, thereby significantly reducing computation time. For
example, in Figure [Figure: Thin_Film_Static]-(a), we simulate a single unit cell (200×200×80
nm3) in the absence of elastic strain and with zero applied magnetic field. To ensure accurate
modeling, the automatic meshing algorithm of Comsol Multiphysics® was used to generate
the finite element mesh. A key aspect of this meshing process is maintaining the nodal
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spacing at the same order of magnitude as the exchange length:

𝓁𝑒𝑥 =

√

2𝐴

𝜇0𝑀
2

𝑆

(4.13)

Extensive verification was conducted to ensure that further reducing the mesh size did
not influence the results—except for increasing computation time.

Without PBCs (right side of figure 4.2-(a)), the structure behaves as a single square dot,
where the magnetic moment distribution naturally forms a vortex configuration due to the
shape anisotropy [5]. In contrast, when PBCs are applied to the four faces of the (𝑥, 𝑧) and
(𝑦, 𝑧) planes, we successfully replicate the behavior of a semi-infinite thin film with an 80
nm thickness, preserving the expected magnetic behavior.

4.2.2 Magnetization response under applied fields

A key feature of periodic boundary conditions is their ability to reproduce the expected
magnetic response of a thin film with no in-plane anisotropy. This is demonstrated in Fig-
ure [Figure: Thin_Film_Static]-(b), where a small magnetic field (10 mT) is applied in two
different directions: i) along the 𝑥-axis and ii) at 45° in the (𝑥, 𝑦) plane. In both cases, the
equilibrium magnetization distribution aligns perfectly with the applied field, as expected
for a thin film with negligible in-plane anisotropy. However, saturating the magnetization
along the out-of-plane (𝑧) direction proves significantly more difficult due to the demagne-
tizing field. This effect is illustrated in figure 4.2-(c), where strong out-of-plane magnetic
fields of 500 mT and 1500 mT are applied. Even under these high fields, full magnetization
saturation along 𝑧 is challenging to achieve, reflecting the strong demagnetization effects
inherent in thin magnetic films.

In summary, the implementation of PBCs in our simulations enables a computationally
efficient method for studying magnetic thin films and periodic structures. By accurately
modeling both demagnetizing effects and dipolar interactions, we ensure that our numer-
ical framework correctly reproduces the expected magnetization behavior under different
external field conditions. These considerations are critical for obtaining realistic micro-
magnetic simulations, especially in the presence of magnetoelastic coupling and spin-wave
dynamics in periodic media.
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Figure 4.2: In all images, colors encode 𝑥−component of the normalized magnetization from
-1 to +1, see color bar. (a) Calculated magnetic moment distributions at zero ap-
plied magnetic field and at equilibrium for a unit cell 200×200×80 nm3 obtained
with (left) or without (right) the defined periodic boundary conditions (PBC).
The PBC have been applied at the 4 surfaces of the (𝑥, 𝑧) and (𝑦, 𝑧) planes. (b)
Magnetic moment distributions calculated in presence of a 10 mT in-plane mag-
netic field applied either along 𝑥 or at 45° with respect to 𝑥 axis. (c) Magnetic
moment distribution calculated in presence of an out-of-plane magnetic field
(500 mT and 1500 mT, respectively).

4.3 In-plane frequency dependency of non-propagating
modes inside continuous films

Choosing ferromagnetic resonance experiments is extremely relevant in our case because it
is a frequency-resolved technique that we are going to use throughout our whole work. The
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case of continuous films is easy to model in various configurations (from in-plane to out-
of-plane) thanks to Kittel’s equation and more generally thanks to Smit Beljers’ equation
[6, 7]. We are going to focus, in a first step, on the case of an 80 nm thick permalloy
(Py, Ni80Fe20) film deposited on a Si substrate. We started by studying the frequency to
field (𝑓 (𝐻 )) dependency in the in-plane configuration. The applied magnetic field has been
swept from 0 mT to 220 mT for frequencies going from 0 GHz to 20 GHz.

Figure 4.3: a) In-plane FMR measurements obtained on Py continuous film. The thick dots
represent the experimental uniform mode (green) and the PSSW1 mode (blue).
The dashed lines represent the fitted macrospin model for the uniform (green),
PSSW1 (blue) and PSSW2 (red) modes. The insert schemes represent the profile
of each move over the thickness of the film. b) Typical experimental spectrum
obtained at a driving frequency of 12 GHz.

Figure 4.3 shows the experimental results obtained along with the analytical macrospin
model used to fit the magnetic constants of our sample. The equations used are the follow-
ing:

𝑓𝑢𝑛𝑖𝑓 𝑜𝑟𝑚 =
𝛾𝜇0

2𝜋

√

𝐻 (𝐻 + 4𝜋𝑀𝑠) (4.14)
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where 𝑑 stands for the thickness of the sample[8]. It is worth noting that even though a
very small uniaxial anisotropy was measured (about 0.5 mT of amplitude), it was neglected
in the analytical and FEM models as its value is small enough to not be relevant. From
these results we extracted a saturation magnetization 𝑀𝑠 = 8 × 10

5 A.m−1 an exchange
stiffness 𝐴 = 12 pJ.m−1 and a gyromagnetic ratio 𝛾 = 1.92 × 10

11

Hz.T−1. These constants
have been incorporated into our FEM model to accurately simulate the behavior of our
specific sample. The damping constant used is 𝛼 = 0.01 which what is typically found
in the literature for Ni80Fe20. We started with the eigenfrequency approach by applying
the magnetic field along the 𝑥 axis leading to a precession according to the 𝑦𝑧 plane. As
continuous films are perfectly homogeneous over space, we chose to simulate a small unit
cell (20 × 20 × 80 nm3 arbitrarily chosen).

Figure 4.4: Comparison between the experimental data (thick colored dots) with the eignen-
frequency simulation (linked colored circles). Insert figures represent the simu-
lated mode profile over the thickness of the 3D unit cell. The color encode the
𝑚𝑦 component of the magnetization.
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The results shown in figure 4.4 exhibit a very good qualitative and quantitative agree-
ment between the simulations and the experiments. The calculated frequencies fit almost
perfectly the experimental set of data and the mode profiles exhibit a homogeneous pro-
file for the uniform mode, and one and two modes for the first and second perpendicular
standing spin waves respectively as it is expected. One can observe that the PSSW2 has
been simulated even though it has not been measured experimentally. In reality all the
possible eigenmodes can be calculated using this method independently of the possibility
of observing them experimentally.

For the frequency domain study, we can map the magnetization response according to
a chosen harmonic excitation. To be as close as possible to experimental conditions we
applied the static magnetic field along the 𝑥-axis and the dynamical excitation along the 𝑦

axis (0.1 mT). We varied the driving frequency from 0 GHz to 20 GHz by steps of 0.1 GHz
while the magnetic field was swept from 0 mT to 220 mT by steps of 1 mT.

Figure 4.5: a) Comparison between the frequency domain study (mapping) the eigenfre-
quency study (open circles) and the macrospin model (lines). The mapping en-
codes the response of the 𝑚𝑦 component of the magnetization. b) Compari-
son between the normalized simulated FMR spectra (dashed lines) using the fre-
quency domain study and the experimental ones (lines) for driving frequencies
of 7.6 GHz (black), 7.8 GHz (blue) and 8 GHz (red).

The results obtained are presented in figure 4.5-a) and show once again good agreement
with the previous approach and the macrospin model. On the mapping, the red color shows
the presence of two modes. The intense one corresponds to the uniform mode and the less
intense one corresponds to the PSSW1. Even though the PSSW2 was observed in the sim-
ulated profiles at the right frequencies, its 𝑚𝑦 responds is too small to be visible on the
mapping, which also explains why this mode has not been observed experimentally. It is
important to precise that the relative intensity between the uniform mode and the PSSW
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4 Development of numerical method for fully coupled magneto-mechanical studies

may not be entirely representative due the pinning conditions not being well known that
have a high effect on the standing modes. Figure 4.5-b) shows the normalized simulated
FMR spectra (dashed lines) along with the experimental ones (lines) for multiple frequen-
cies. The simulation performed with a damping 𝛼 = 0.01 exhibit a line-width close to what
is observed experimentally. As expected the relative intensity decreases as the frequency
increases. This decrease is however smaller than the decrease observed experimentally.
This is mostly due to the experimental setup and especially to the copper microstrip line
which is less efficient for some frequencies. From this study it is clear that the numeri-
cal model we developed allows one to quite precisely simulate the resonance behavior of
a continuous film in the in-plane configuration. As this configuration is the simplest (the
least influenced by the magnetostatic field) and the most natural for the magnetization, the
same study will be undertaken for other configurations in the next sub-sections for further
validation.

4.4 Out-of-plane frequency dependency of
non-propagating modes inside continuous films

The out-of-plane configuration is an interesting case to study for our model validation as
the magnetization is forced along a hard axis (𝑧 axis), which lead to the creation of an
intense demagnetizing field. As for the in-plane case a simple model can be used to fit the
three different magnetic modes:

𝑓𝑢𝑛𝑖𝑓 𝑜𝑟𝑚 =

𝛾𝜇0
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These equations are only applicable when the magnetization is aligned along the out-of
plane field which corresponds to an applied magnetic field 𝜇0𝐻 = 𝜇0𝑀𝑠 ≈ 1000 mT.
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Figure 4.6: a) Out-of-plane FMR measurements fitted with the macrospin model and com-
pared with the eignenfrequency domain simulations. b) Frequency domain sim-
ulations compared with the macrospin model. The color encodes the modes
relative intensity.

Figure 4.6-a) shows the FMR experimental (dots) results along the macrospin model
(dashed line) and the eigenfrequency FEM simulations. One can observe that although we
managed to fit the uniform mode and to obtain the right tendency for the standing modes,
it remains a frequency shift between the modeled standing modes and the experimental
ones. It has been tried to change the magnetic constants in order to correct this discrep-
ancy, but no better set of constants was found. This may be corrected by adding a pinning
term to our equations, however we do not have a definitive explanation for these results.
Even though we observed this shift we still used the model’s magnetic constants for the mi-
cromagnetic simulations for both eigenfrequency method represented by the linked circles
in figure 4.6-a) and the frequency domain method represented by the colormap on figure
4.6-b). Similarly to the previous study, the macrospin model and the FEM simulations agree
very well. The colormap shows a prominent uniform mode with multiple low intensity
standing modes.
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4 Development of numerical method for fully coupled magneto-mechanical studies

Figure 4.7: a) Fmr measuments performed on the continuous film for a driving frequency
of 5𝐺𝐻𝑧. The green set of data represents the resonance frequency with re-
spct to the out-of-plane angle while the red set of data represents the resonance
peak width. b) Schematic of the magnetization and applied field configuration. c)
Comparison between the experimental data (dots), the macrospin model without
energy minimization (dashed line) and the macrospin model with energy min-
imization. d) Comparison between experiments (line and dots) and frequency
domain simulation.

4.5 In-plane to out-of-plane angular dependency of
non-propagating modes in continuous films

The two previous studies use very simple and straightforward models. With the equations
used we assume that the magnetization is aligned along the applied magnetic field, which is
a valid assumption in the in-plane and out-of-plane configurations. The in-between config-
urations necessitate to determine the angle between the applied field and the magnetization
as illustrated on figure 4.7-b), which is done by minimizing the total magnetic energy of the
system[9].
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The results obtained on figure 4.7-a) were obtained for a fixed driving frequency of 5GHz.
The magnetic field was applied at an angle 𝜃 from the normal of the sample’s surface going
from 0

◦ to 90
◦. It is clear that the resonance field 𝐻𝑟𝑒𝑠 decreases very quickly in a first

regime from 0
◦ to 10

◦ and then continues to decrease slowly in a second regime from 10
◦

to 90
◦. The FWHM referred to as Δ𝐻𝑟𝑒𝑠 is the smallest at a 0° and increases highly when

changing slightly the angle, reaching high values between 2.5
◦ and 10◦. This can be observed

directly on the 4.7-a) inserts where very thin spectra are obtained at 0◦ and 90
◦ while a

wide spectrum is obtained at 2.5◦. We fitted these results (dots) in figure 4.7-c) with an
energy minimization based macrospin model represented by the continuous line. This has
been done by expliciting the resonance frequency and the total energy with respect to the
applied magnetic field, the applied field angle and the magnetization angle. We fixed the
angle of the resonance field while the magnetization angle was interactively adjusted using
a dichotomous approach. We show the importance of minimizing the energy by comparing
it with the model without minimization. It is clear that not minimizing is only acceptable in
the in-plane and out-of-plane configurations, as this approach diverges very quickly from
reality. For this study, the eigenfrequency approach is not possible as we have to fix the
resonance frequency at 5 GHz. As we know that the magnetization is aligned with the
direction of the magnetic field only at 0◦ and 90

◦ it is necessary to perform a temporal
simulation of the system in order to obtain the exact magnetization equilibrium position
for each magnetic field value, which makes this kind of study time consuming. Figure 4.7-d)
shows the experimental data (white dots and line) superimposed on the frequency domain
simulation. The calculated dependency follows exactly the experimental tendency and the
signal width increases greatly from 90

◦ to 5
◦ before decreasing quickly around 0

◦.
Those studies under multiple FMR configuration allowed us to validate our numerical

approach for the magnetic frequency response.

4.6 Direct magneto-elastic effects inside continuous
films

Although the direct effect is not easy to highlight experimentally for small samples like
ours, it is simple to compare our simulations with the theoretical values of the magnetically
induced strain. The strain depends on the magnetization direction and is proportional to
the magnetoelastic constant:

𝜀
𝑚

𝑥𝑥
= 𝜆 (4.20)

𝜀
𝑚

𝑦𝑦
= −

1

2

𝜆 (4.21)

when the magnetization is aligned along the 𝑥-axis. More generally the magnetic strain
is written:
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This term has been integrated inside Comsol by adding a contribution to the total strain
and by modifying the native integrated equations.

Figure 4.8: Average simulated magnetic strain (circles) compared with the calculated the-
oretical value (lines) inside the unit cell with respect to a) the magnetoelastic
constant 𝜆 and b) the in-plane angle between the applied magnetic field and the
𝑥 axis for 𝜆 = 1 × 10

−5

.

We verified the good integration of the direct magnetoelastic effect by applying numer-
ically an external magnetic field on a continuous film. As this effect only depends on the
magnetoelastic constant 𝜆 and the magnetization direction, we varied these two parame-
ters. Figure 4.8-a) shows the effect of the magnetoelastic constant over the magnetic strain
tensor components 𝜀

𝑚

𝑥𝑥
and 𝜀

𝑚

𝑦𝑦
. The simulations (circles) follow perfectly the theoretical

values (line) with a linear behavior showing the expected slopes 𝑠𝜀𝑚
𝑥𝑥

= 1 and 𝑠𝜀𝑚
𝑦𝑦

= −0.5.
The magnetization direction dependency is plotted on figure 4.8-b) where 𝜑 represents
the in-plane angle between the magnetization and the 𝑥-axis. These results obtained for
𝜆 = 1 × 10

−5 follow once again perfectly the expected values for 𝜀𝑚
𝑥𝑥

, 𝜀𝑚
𝑦𝑦

and 𝜀
𝑚

𝑦𝑥
.
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4.7 Indirect magneto-elastic effects inside continuous
films

Figure 4.9: (a) Schematic of Ni60Fe40 film/ferroelectric substrate system. 𝜇0�⃗� corresponds
to the applied magnetic field. (b) Ferroelectric substrate strain calibration curve.
(c) FMR spectra obtained at 0V (blue) and 100V (red). (d) Resonance field shift
(𝜇0𝛿𝐻𝑟𝑒𝑠 = 𝜇0𝐻𝑟𝑒𝑠(0)−𝜇0𝐻𝑟𝑒𝑠(𝑉 )) as function of the applied voltage. The experi-
mental data are represented by symbols while numerical results are represented
by conbtinuous lines. (e) Resonance field shift (𝜇0𝛿𝐻𝑟𝑒𝑠) as function of the in-
plane 𝜑𝐻 . (f-g) Simulations (red lines) superimposed to the macrospin model
(black dashed lines) (g).

The simplest application of magnetoelastic effects is the case of a continuous thin film sub-
jected to strains from various sources (flexible substrate under tension or bending [11], fer-
roelectric substrate subjected to a voltage [12], effects of epitaxial interfaces [13], ...). In this
section, we show how our numerical approach described allows to take into account these
effects, whether they concern the static or the dynamic properties of the magnetization.
More precisely, we have simulated a magnetoelectric system composed of a ferroelectric
substrate on which a ferromagnetic thin film is deposited. The interest of this example is
that we were able to confront the calculations to in situ FMR experiments (voltage applied
to the substrate) [5]. The ferroelectric substrate is composed of polycrystalline PZT, more
details can be found in ref. [15]. Thus the imposed elastic strains by the substrate are trans-
mitted to the thin film which is itself magnetostrictive. Thus, this example allows to show
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a first study taking into account of the magnetoelastic coupling in micromagnetic calcula-
tions. Here, a macroscopic strain state is imposed on the edges of the substrate (along 𝑥

and 𝑦), and its distribution (in this case homogeneous) is determined numerically.
Figure 4.9-(a) shows a schematic of the studied system. A Ni60Fe40 thin film (20 nm) is

deposited on a ferroelectric substrate whose 𝜀𝑥𝑥(𝑉 ) and 𝜀𝑦𝑦(𝑉 ) are experimentally known
thanks to digital image correlation measurements, more details are given in reference [16].
𝜀𝑥𝑥 and 𝜀𝑦𝑦 vary almost linearly between 0 V and 100 V and respectively reach values of
1 × 10

−3 and −0.5 × 10
−3, their evolution are presented in figure 4.9-(b). Indeed, 𝜀𝑥𝑥 is found

to be positive whereas 𝜀𝑦𝑦 is found to be negative with a ratio 𝜀𝑦𝑦/𝜀𝑥𝑥 ≃ −0.5 making
the mechanical traction slightly biaxial. These in-plane strains will then be injected in the
micromagnetic simulations performed with a Young’s modulus 𝑌𝑁60𝐹𝑒40

= 180 GPa and a
Poisson ratio 𝜈 = 0.3. Figure 4.9-(a) presents the sweep-field FMR experiments: a static
magnetic field 𝜇0�⃗� is applied in the plane of the film. The angle 𝜑𝐻 between 𝜇0�⃗� and the
main direction of traction (𝑥) can vary from 0 to 90 degrees. On the schematic, we have also
represented the radio-frequency field (ℎ𝑟𝑓 ) imposed inside the film which allows to excite
the magnetic moments and thus probe the non-propagating modes (here only the uniform
mode is concerned). The complete study of the uniform precession mode by FMR allowed
us to determine the magnetic parameters of the Ni60Fe40 thin film, namely 𝑀𝑠 = 0.95 × 10

6

A.m−1, 𝐴 = 1.2 × 10
−11

J.m−1 and 𝛾 = 1.76 × 10
11

rad.s−1.T−1. Those parameters will be
used for the numerical simulations. Figure 4.9-(c) shows typical experimental spectra at
8 GHz for two applied voltages (0 V and 100 V). The magnetic field is applied along the
main traction (𝜑𝐻 = 0

◦) and the driven frequency is fixed at 8 GHz. We observe a shift
of the resonance field 𝜇0𝛿𝐻𝑟𝑒𝑠 = 𝜇0𝐻𝑟𝑒𝑠(0) − 𝜇0𝐻𝑟𝑒𝑠(𝑉 ) equal to ∼ +8 mT. This shift is
physically linked to the magnetoelastic field 𝜇0�⃗�𝑚𝑒 induced by the imposed in-plane strains
from the substrate deformation. The positive sign of 𝜇0𝛿𝐻𝑟𝑒𝑠 allows to deduce that the
magnetostriction coefficient of the Ni60Fe40 film 𝜆Ni60Fe40 is positive. Indeed, in this case,
𝜇0�⃗�𝑚𝑒 is aligned with 𝑥 , which decreases the resonance field (making 𝑥 an easy axis). The
complete experimental evolution (open symbols) of 𝜇0𝛿𝐻𝑟𝑒𝑠 as a function of 𝑉 is shown in
figure 4.9-(d) for several 𝜑𝐻 angle. One can observe that 𝜇0𝛿𝐻𝑟𝑒𝑠 ∼ −8 mT for �⃗� applied
at 90° that is coherent with a uniaxial magnetoelastic field aligned along 𝑥 . The complete
in-plane variations of 𝜇0𝛿𝐻𝑟𝑒𝑠 are presented in figure 4.9-(e) for several applied voltage. We
recognize the signature of a second order anisotropy axis, which is directly linked to the
voltage induced magneto-elastic anisotropy. It is clear that this magnetoelastic anisotropy
is greater the more voltage is applied. The variations presented in figures 4.9-(d) and 4.9-(e)
allow us to determine the magnetostriction coefficient for the thin film; by adjusting it, we
found a value of 𝜆Ni60Fe40 ≃ +12 × 10

−6, as already found in reference [10]. To verify this
value we compared our simulation with a macrospin model taking into consideration the
magnetoelastic energy:
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with 𝜃 and 𝜑 corresponding to the spherical angles associated with the magnetization
direction. As the magnetization is not necessarily align along the applied magnetic field
it is necessary to minimize the magnetic energy if the magnetic field is not strong enough
which has been done in figure 4.9-f,g). We can observe a quasi perfect agreement with the
simulations, confirming the correct implementation of the indirect magnetoelastic formal-
ism.

Figure 4.10: (a) Simulated (open circles) and modelled (lines) magnetoelastic field values
with respect to the applied voltage for multiple directions of the applied mag-
netic field. (b) Simulated (open circles) and modelled (lines) magnetoelastic
field values with respect to the applied field angle for multiple values of the
applied voltage. (c-d) Magnetoelastic field (arrows) and its module map calcu-
lated for different values of the applied voltage at 𝜑𝐻 = 0

◦ (c) and for different
angle at 100 V (d).

Finally, we simulated the magneto-mechanical behavior of this thin film subjected to
homogeneous strains. For this purpose, a unit cell like the one presented in the previous
section was used. The dimensions of the unit cell are 20×20×20 nm3. The PBC were applied
on the four faces of the (𝑥, 𝑧) and (𝑦, 𝑧) planes to simulate a semi-infinite film in the (𝑥, 𝑦)

plane. We verified that our results remained unchanged by considering larger unit cells
(along 𝑥 and 𝑦). As expected, the application of PBC in the mechanical equations leads
well to homogeneous induced strain fields in the film. The calculated induced magneto-
elastic fields are also homogeneous for the different considered strain states. In this regard,
figure 4.10-(a,c) (resp. 4.10-(b,d)) corresponds to the calculated induced static magneto-
elastic field for different applied voltage (resp. in-plane angle 𝜑𝐻 ) at 𝜑𝐻 = 0

◦ (resp. at 100
V) and at zero applied magnetic field. The lines in the graph correspond to the modelization
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while the open circles show the FEM simulations. The 3D cellcolors encode 𝑥−component
of the magneto-elastic field 𝜇0𝐻𝑚𝑒 while the arrows show its distribution in the volume. In
figure 4.10-(c), we observe that the amplitude of 𝜇0�⃗�𝑚𝑒 increases with the applied voltage
as shown by the arrow sizes on the 3D views. One can note that ‖‖

‖
𝜇0�⃗�𝑚𝑒

‖
‖
‖
≃ 6.3 mT at

100 V that is different to the +8 mT found for 𝜇0𝛿𝐻𝑟𝑒𝑠 at 100 V. This is due to the slightly
biaxial in-plane stress state induced by the ferroelectric substrate, due to the Poisson’s ratio
mismatch between substrate and thin film [16]. In addition, the same observation can be
done in the images of figure 4.10-(d). We notice that the 𝜇0�⃗�𝑚𝑒 is weak but not zero at 90◦,
which would have been the case for a uniaxial stress state. We have indeed verified that
when we impose a uniaxial stress state, the 𝜇0�⃗�𝑚𝑒 cancels for 𝜑𝐻 = 90

◦. In order to compare
more directly our simulations to the experimental results, we proceeded to calculations of
eigen-modes as done in the previous section but in the presence of a mechanical stress
in the film. So, we added a magneto-elastic anisotropy term to the total energy density
which is dependent on the mechanical stresses calculated in parallel with the resolution of
the LLG equation. The magnetic parameters that have been used correspond to the values
extracted from FMR experiments. Therefore, we simulated several frequency as function of
the applied magnetic field 𝑓 (𝐻 ) curves by applying magnetic field varying from 0 to 250 mT
(by steps of 10 mT) for different 𝜑𝐻 angle and at the different mechanical stress states. We
then measured on these numerically 𝑓 (𝐻 ) curves the field shifts between these curves at a
specific fixed frequency, which allows us to determine a shift similar to the one measured
experimentally (𝜇0𝛿𝐻𝑟𝑒𝑠). We are thus in the same conditions as the in situ sweep-field
FMR experiments. The continuous lines in figures 4.9-(d) and 4.9-(e) are thus the numerical
𝜇0𝛿𝐻𝑟𝑒𝑠 variations. Note that no fit parameters have been used. A very good agreement is
found for both the 𝜇0𝛿𝐻𝑟𝑒𝑠-variations at fixed 𝜑𝐻 (figure 4.9-d)) and at fixed applied voltage
(figure 4.9-e)). These results validate our approach which combines mechanical calculations
with the resolution of the LLG equation in the presence of a magnetoelastic term.
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This chapter explores the principles and experimental techniques surrounding ferromag-
netic resonance (FMR) and Brillouin light scattering (BLS), two fundamental and comple-
mentary methods in magnetism research. FMR, a widely implemented technique, remains a
cornerstone for studying magnetization dynamics, providing crucial insights into magnetic
parameters through the interaction of microwave radiation and magnetic fields. Its sensi-
tivity to damping mechanisms and magnetic anisotropy makes it an indispensable tool for
characterizing both bulk materials and nanostructures. A comprehensive description of our
experimental setup is provided, detailing broadband FMR techniques and the use of lock-in
amplification to optimize signal-to-noise ratios, allowing for precise extraction of resonance
conditions and linewidth variations. The chapter also delves into the BLS technique, em-
phasizing its ability to probe spin wave dynamics and analyze the interactions of magnons
and phonons in thin films and nanostructures. Unlike FMR, which provides global infor-
mation on magnetization dynamics, BLS offers spatial and wavevector-resolved insights,
making it particularly valuable for investigating confined and propagating spin waves. The
discussion includes the physical principles of light interaction, the role of inelastic light
scattering in resolving spin wave spectra, and the setup for BLS using tandem Fabry-Pérot
interferometry, which enables high spectral resolution and selective detection of scattered
light.
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5.1 Ferromagnetic resonance
Ferromagnetic resonance is a long time known technique that was first discussed theoreti-
cally in 1921 [1] and has been developed experimentally by Griffiths in 1946 [2] and further
theorized by Kittel in 1947 [3]. Although it is an established technique, it remains highly ef-
fective and versatile for studying magnetization dynamics, and it continues to be one of the
most widely used characterization methods in modern magnetism research. By combining
in-plane and out-of-plane behavior, one can especially determine some magnetic parame-
ters such as the saturation magnetization, the gyromagnetic ratio, the anisotropy constant
and the exchange in the case of sufficiently thick films. The working principle lies on the
excitation of the magnetic moment via the application of an external power. This forced
spin precession can be achieved by putting the magnetic sample in a resonant microwave
cavity which is then supplied at the frequency of one of its resonant modes. Looking at the
reflected intensity with respect to the applied magnetic field allows one to see the evolu-
tion of the absorbed power, which is maximum when the resonance field is reached. This
technique is sensitive enough to measure signals from very thin films (few nanometers) but
is limited by the fixed working frequencies of the cavity, and is difficult to adapt other in
situ studies. Our setup uses another method called broad-band FMR which is more versatile
(more space for in situ strain application) and allow to perform measurements on a large
window of frequency.

Figure 5.1: Schematic representation of the FMR setup, depicting the electromagnet, power
supply, radio-frequency synthesizer, and lock-in amplifier. The diagram on the
right highlights the modulation coils, the microstrip line, and the rotation rod,
which allows the sample to be adjusted within its plane. In this setup, the sample
consists of a ferroelectric actuator, designed to accommodate a magnetic layer
either through deposition or bonding.
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5.1.1 Experimental setup characteristics
Our experimental setup (shown in figure 5.1) consists of an electromagnet powered by an
Agilent E3633A DC power supply, enabling the application of a static magnetic field rang-
ing from 0 to 220 mT. The spin excitation is induced by placing the magnetic sample in
contact with a copper microstrip line, which is connected to a Hewlett-Packard 83752B
Synthesized Sweeper generating signals in the 10 MHz to 20 GHz range. The setup also
includes an SR830 Stanford Research Systems lock-in amplifier for signal detection. The
RF current flowing through the microstrip line generates a radio-frequency magnetic field,
which is oriented perpendicular to the applied static field. This configuration drives the
precessional motion of the magnetization, leading to a variation in the transmitted power
through the strip line. At resonance, the absorbed power reaches its maximum, causing
a characteristic dip in the transmission spectrum. To detect the transmitted power, the
output current from the strip line is passed through a Schottky diode, which converts the
high-frequency signal into a voltage proportional to the transmitted power. However, due
to small variations in the output signal caused by changes in the static field, the measured
signal is often buried in noise and background signals. To enhance signal detection, we
employ a modulation technique: a small alternating magnetic field ( ‖‖

‖

⃗
ℎ𝐴𝐶

‖
‖
‖
= 0.5 mT at 170

Hz) is superimposed on the static field using modulation coils. This modulated signal is fed
into the lock-in amplifier, which extracts the component at 170 Hz, significantly improving
the signal-to-noise ratio. Finally, our measurements yield the derivative of the transmitted
power with respect to the applied static field, 𝑑𝑉

𝑑𝐻𝐴𝐶

.

5.1.2 Lock-in amplification
The lock-in amplification technique is used in order to increase the FMR signal to noise
ratio. The lock-in amplifier converts an input AC signal 𝑉𝑖𝑛 into a DC signal by multiplying
it with a reference AC signal 𝑉𝑟𝑒𝑓 :

𝑉𝑖𝑛(𝑡) = 𝑉𝑖𝑛 sin(𝜔𝑖𝑛𝑡) (5.1)

𝑉𝑟𝑒𝑓 (𝑡) = 𝑉𝑟𝑒𝑓 sin(𝜔𝑟𝑒𝑓 𝑡 + 𝜙) (5.2)

where 𝜔𝑖𝑛 and 𝜔𝑟𝑒𝑓 are the frequencies of the input and reference signal respectively, and
𝜙 is the phase shift of the reference signal.

Multiplying 5.1 and5.2 gives the output signal:

𝑉𝑜𝑢𝑡 =

𝑉𝑖𝑛𝑉𝑟𝑒𝑓

2
[cos ((𝜔𝑖𝑛 − 𝜔𝑟𝑒𝑓 )𝑡 + 𝜙) − cos ((𝜔𝑖𝑛 + 𝜔𝑟𝑒𝑓 )𝑡 + 𝜙)] (5.3)

The signal being integrated over a time far larger than the input signal and the reference
signal frequencies (300 ms in our case). In this case, the maximum amplification is reached
when𝜔𝑖𝑛 = 𝜔𝑟𝑒𝑓 with a signal close to 0𝜔𝑖𝑛 ≠ 𝜔𝑟𝑒𝑓 as represented in figure5.2, meaning that

83



5 Experimental methods

the non modulated signal is suppressed. For 𝜔𝑖𝑛 = 𝜔𝑟𝑒𝑓 , the output amplitude integrated
over a long time gives:

𝑉𝑜𝑢𝑡 =

𝑉𝑖𝑛𝑉𝑟𝑒𝑓

2

cos𝜙 (5.4)

Figure 5.2: Integrated output signal over 300 ms with respect to the input frequency for a
phase shift 𝜙 = 0.

As the modulation is applied on the static field, the total field applied to the sample is:

𝐻 = 𝐻𝐷𝐶 + ℎ𝐴𝐶 sin (𝜔𝑚𝑜𝑑𝑡) (5.5)

where 𝜔𝑚𝑜𝑑 is the modulation pulsation. The output voltage measured by the FMR setup
depends on the applied modulated magnetic field:

𝑉𝐹𝑀𝑅(𝐻 (𝑡)) = 𝑉 (𝐻𝐷𝐶 + ℎ𝐴𝐶 sin (𝜔𝑚𝑜𝑑𝑡)) (5.6)

The output voltage given by expression 5.6 can be developed into the first-order Taylor
expansion such as:

𝑉𝐹𝑀𝑅(𝐻 (𝑡)) = 𝑉 (𝐻𝐷𝐶) +

𝑑𝑉 (ℎ𝐴𝐶)

𝑑𝐻

sin (𝜔𝑚𝑜𝑑𝑡) (5.7)
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Figure 5.3: Comparison between the typical Lorentzian power absorption signal (blue) and
its derivative, as measured by FMR (red). The blue curve represents the ab-
sorbed power, following a Lorentzian profile, while the red curve corresponds
to the first derivative of the Lorentzian, which is the actual signal detected in
FMR experiments. This derivative signal provides direct access to key magnetic
parameters such as the resonance field and the linewidth (FWHM), essential for
determining damping properties.

which is then multiplied by the reference signal:

𝑉𝐹𝑀𝑅(𝐻 (𝑡)) × 𝑉𝑟𝑒𝑓 = 𝑉 (𝐻𝐷𝐶) × 𝑉𝑟𝑒𝑓 sin(𝜔𝑚𝑜𝑑𝑡 + 𝜙)

+

𝑑𝑉 (ℎ𝐴𝐶)

𝑑𝐻

sin (𝜔𝑚𝑜𝑑𝑡) × 𝑉𝑟𝑒𝑓 sin(𝜔𝑟𝑒𝑓 𝑡 + 𝜙) (5.8)

The FMR signal multiplied by the reference signal comes down one part that multiplies a
constant signal 𝑉 (𝐻𝐷𝐶) signal to the reference AC signal, that becomes 0 when integrated
over time, and a second part corresponding to the multiplication of two AC signals that is
described by equations 5.3 and 5.4. Ultimately, when 𝜔𝑚𝑜𝑑 = 𝜔𝑟𝑒𝑓 the output amplified FMR
signal is:

𝑑𝑉 (ℎ𝐴𝐶)

𝑑𝐻

×

𝑉𝑟𝑒𝑓

2

cos𝜙 (5.9)

This means that the typical FMR spectra measured with this technique do not give in-
formation on the absorbed power, but instead on the variation of the absorbed power with
respect to the applied static field.

Figure 5.3 shows the difference between the absorbed power signal (blue) which is a
lorentzian and the FMR measured signal (red) which is a Lorentzian derivative. From these
signals, it is very easy to extract the resonance field and the FWHM (respectively 𝐻𝑟𝑒𝑠 and
𝛿𝐻𝑟𝑒𝑠) which can be helpful in some circumstances to determine the Gilbert damping con-
stant. Fitting the experimental spectra allows one to numerically determine theses values
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by considering an asymmetric Lorentzian in the form of:

𝑉 = 𝑉𝑠 ×

𝛿𝐻
2

𝑟𝑒𝑠

(𝐻 − 𝐻𝑟𝑒𝑠)
2

+ 𝛿𝐻
2

𝑟𝑒𝑠

+ 𝑉𝑎 ×

𝛿𝐻𝑟𝑒𝑠 (𝐻 − 𝐻𝑟𝑒𝑠)

(𝐻 − 𝐻𝑟𝑒𝑠)
2

+ 𝛿𝐻
2

𝑟𝑒𝑠

(5.10)

𝑑𝑉

𝑑𝐻𝑟𝑒𝑠

=

2𝑉𝑠(𝐻 − 𝐻𝑟𝑒𝑠)𝛿𝐻
2

𝑟𝑒𝑠

((𝐻 − 𝐻𝑟𝑒𝑠)
2
+ 𝛿𝐻

2

𝑟𝑒𝑠)

2
+

2𝑉𝑎(𝐻 − 𝐻𝑟𝑒𝑠)
2
𝛿𝐻𝑟𝑒𝑠

((𝐻 − 𝐻𝑟𝑒𝑠)
2
+ 𝛿𝐻

2

𝑟𝑒𝑠)

2
−

𝑉𝑎𝛿𝐻𝑟𝑒𝑠

(𝐻 − 𝐻𝑟𝑒𝑠)
2
+ 𝛿𝐻

2

𝑟𝑒𝑠

(5.11)

where 𝑉𝑠 and 𝑉𝑎 are respectively the symmetric and anti-symmetric contribution ampli-
tudes [4, 5, 6]. This approach provides a precise characterization of magnetic damping and
anisotropy, making it a powerful tool for studying magnetization dynamics in thin films and
nanostructures. By analyzing the extracted parameters, such as the linewidth broadening
and resonance field shifts, one can gain deeper insights into intrinsic and extrinsic damping
mechanisms, spin-orbit interactions, and the influence of strain or interfacial effects.

5.2 Brillouin light scattering
Similarly to the ferromagnetic resonance technique, the Brillouin light scattering technique
(BLS) is one of the most used techniques by the magnonic community. BLS is an optical
technique that is useful for characterizing the magnetization dynamics like FMR, but has
the advantage of probing the propagating behavior (wave vector 𝑘 ≠ 0 m−1 of waves in
solids in the gigahertz range (order of 1 GHz-500 GHz) such as spin waves and acoustic
waves (atomic lattice vibrations), which makes this technique also popular in the acoustic
community. A lot of information can be extracted from BLS measurements which makes it
a popular in various domains of magnetism such as magnonics [7], magnetoelastic interac-
tions [8], interfacial Dzyaloshinskii-Moriya interaction [9] and more. The spin waves can
be excited using this technique via a radio frequency pumping, but can also be measured
without any external excitation as they exist naturally thanks to intrinsic thermal fluctu-
ations in the solid that excite them randomly. Although the second approach leads to a
weaker signal, it has the advantage of being simpler and to be easier to adapt for various
wave vector configurations, which is our does not use any external excitation.

5.2.1 Physical principle
The BLS technique is an optical technique that is based on the inelastic interaction between
light and matter to probe the intrinsic matter properties. Incident photons coming from a
laser source interact with phonons and magnons in the solid and is then diffused by these
waves. These magneto-optical and opto-mechanical inelastic interactions lead to a change
of the photon energy after diffusion which can be translated as a wavelength/frequency
shift.

The wavelength shift can occur according to two different processes presented in figure
5.4. The Stoke process results in the annihilation of a phonon or a magnon, which energy
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5.2 Brillouin light scattering

Figure 5.4: Stokes and anti-Stokes inelastic diffusion process occurring during BLS mea-
surements.

is entirely transferred to the diffused photon that, consequently, has a positive frequency
shift. As opposite, the anti-Stokes process results in the the creation of a phonon or magnon.
Part of the incident photon energy is transferred to this new wave, which translates into
a negative frequency shift. The magnons and phonons created have a frequency that is
dependent on their wave vector. It is experimentally easy to select the wave vector of
interest as the light is diffused in all directions. In most of BLS setups (if it is not all setups)
the collected light is diffused in the direction of the incident beam as presented in figure
5.5.

The scheme shows the light focused on the solid with an angle 𝜃 formed with the normal
of the surface. As the phonons/magnons creation/annihilation is due to the thermal fluc-
tuation, this makes is a “rare” event, meaning that only a few of the incident photons are
scattered. The remaining of the light is reflected and lost. The only exploitable light is the
collected diffused light that goes back in the incident beam direction. In this configuration
the different wave vectors can be written as:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

⃗
𝑘𝑖𝑛𝑐 = 𝑘 (sin 𝜃𝑥 − cos 𝜃𝑦)

⃗
𝑘𝑟𝑒𝑓 = 𝑘 (sin 𝜃𝑥 + cos 𝜃𝑦)

⃗
𝑘𝑑𝑖𝑓 = 𝑘 (− sin 𝜃𝑥 − cos 𝜃𝑦)

⃗
𝑘𝑚𝑎𝑔 =

⃗
𝑘𝑖𝑛𝑐 −

⃗
𝑘𝑑𝑖𝑓 = 2𝑘 sin 𝜃

(5.12)

As the light wave vector only depends on laser wavelength that is fixed, the magnon
wave vector is simply ⃗

𝑘𝑚𝑎𝑔 =
4𝜋 sin 𝜃

𝜆
. It is important to keep in mind that this wave vector

is not entirely well defined as the angle of collection 𝛿𝜃 is typically between 5
◦ and 10

◦.
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Figure 5.5: This figure illustrates the interaction of light with a solid surface in the context
of Brillouin light scattering (BLS), which probes magnon dynamics.The incident
beam (⃗𝑘𝑖𝑛𝑐) is directed onto the surface at an angle 𝜃 relative to the normal. Part
of the light is reflected (⃗𝑘𝑟𝑒𝑓 ) at the same angle 𝜃, following the law of reflection.
A portion of the incident light interacts with magnons (⃗𝑘𝑚𝑎𝑔 ) within the material,
leading to inelastic scattering. This interaction results in a frequency shift in
the scattered light, which carries information about the spin wave dynamics
in the material. The collected diffused light (⃗𝑘𝑑𝑖𝑓 𝑓 ) is scattered at an angle 𝛿𝜃

relative to the incident beam and is analyzed to extract information on magnon
properties. This schematic represents a typical backscattering geometry used in
BLS experiments, where the wavevector of the incident photons couples to the
spin waves inside the material, allowing for the study of magnon dispersion and
interactions in thin films and nanostructure.

5.2.2 Experimental setup

The BLS setup installed for this work is a tandem Fabry-Perot interferometer (TFP-2) which
is used both for magnon and phonon characterization.

The experimental environment is illustrated and shown in figure 5.6-a) and b-e) respec-
tively. We use a 150 mW 532 nm continuous Torus laser source with a possibility of switch-
ing with a 50 mW 473 nm continuous Spectra Physics laser source. The incident light is
first split with a glass plate (95% transition, 5% reflection). The reflected light is attenu-
ated and used as a reference beam while the transmitted light is guided towards the sample
thanks to two mirrors and focused on the sample surface thanks to a plano-concave lens.
The backscattered light is then collected by the same lens and collimated towards a second
one that focuses the light on a set of two mirrors used to guide and align the beam inside
the interferometer pinhole entrance. For this setup, we decided to design a compact sam-
ple environment by using permanent magnets. Our prototype presented on figure 5.6-b-e)
can hold a maximum of three magnets on each side of the sample for the application of a
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maximum of 130 mT more or less homogeneous over the whole sample surface. The whole
sample holder is able to rotate according to the in-plane 𝜑 angle and out-of-plane 𝜃 angle
and can be translated in the 𝑥 , 𝑦 and 𝑧 directions. This setup presents some advantages and
inconvenient, indeed, it is usually complicated to perform measurements in other configu-
rations than the Damon Eshbach one because it is necessary to change the angle between
the applied magnetic field and the incident angle. The use of electromagnets is a limiting
factor as they occupy a lot of space and end up blocking the laser beam. Our compact
permanent magnets can rotate at 360° without blocking the laser for 𝜃 = 0 − 65

◦. One of
the drawbacks of this setup is the limited magnetic field that it is possible to reach, as it is
fixed by the permanent magnets. It is also more difficult to tune the applied field. In our
prototype we can only tune it by changing the number of magnets, but the next version of
this setup which is in the process of fabrication will allow us to change mechanically the
space between the two blocks of magnets. The other drawback is the slight inhomogeneity
of the magnetic field that can lead to small differences of the measured spectra depending
on the probed surface spot.

5.2.3 Fabry-Pérot interferometer

The Brillouin Light Scattering technique takes advantage of the small energy shift of the
backscattered light. Even though the principle is similar to the Raman spectroscopy, the
probed frequencies (a few GHz) are a few order of magnitude smaller than the Raman ones
(a few THz). Hence, the BLS is a very sensitive technique as the reference light frequency
is 563.5 THz, meaning that a shift of 1 GHz represent only a change of 0.0002 %. In order
to achieve such resolution, this technique uses Fabry-Pérot interferometry (FPI). FPI uses a
set of two parallel mirrors spaced by a distance 𝐿1 that dictates the transmitted wavelength
such as:

𝑇 =

𝐹𝑇

1 + (
2Δ𝜆

𝜋𝛿𝜆
)

2

sin
2

(
2𝜋𝐿1

𝜆
)

(5.13)

where Δ𝜆 =
𝜆
2

2𝐿1

is the free spectral range (FSR) corresponding to the interval between
two transmitted wavelength and 𝛿𝜆 the transmission peak width. The transmission equa-
tion 5.13 plotted in figure 5.7 shows that only the wavelength that satisfies the condition
𝐿1 =

1

2
𝑛𝜆 are transmitted, where 𝑛 is an integer number. The 𝐹𝑇 factor is the maximum

transition that is fixed by the instrument intrinsic loss (𝐹𝑇 < 1), especially due to the mirror
reflectance.

In order to improve the frequency shift range, a second FPI is used in addition to the first
one. The spacing 𝐿2 of the second FPI is slightly different from 𝐿1, such as 𝐿2 = 𝐿1 cos𝜙,
where 𝜙 represents the angle the angle between the two FPI. This way if the transmission
peaks are superimposed for 𝑛𝜆,the next peaks will not coincide. The two FPI used in a
tandem configuration TFP, are working as a spectrometer by changing simultaneously the
𝐿1 and 𝐿2 mirror spacing [10, 11, 12].
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Figure 5.6: Experimental setup for Brillouin Light Scattering (BLS) measurements using a
tandem Fabry-Pérot interferometer (TFP-2). (a) Schematic representation of the
optical setup: a 532 nm laser is directed onto the sample, and the backscattered
light is collected and focused using plano-concave lenses. A half-wave plate
is used for polarization control. The collected light is directed towards a Fabry-
Pérot interferometer (TFP-2), which consists of two interferometric cavities (FP1
and FP2) for high-resolution spectral analysis. The photodetector records the
signal. (b) Photograph of the actual experimental setup showing the laser path
and optical components.(c) Close-up view of the sample holder, where the exter-
nal magnetic field (�⃗� ) is applied in a fixed direction. (d) Configuration allowing
the in-plane rotation of the sample by an angle 𝜑, enabling measurements at dif-
ferent orientations relative to the applied magnetic field. (e) Tilted configuration
of the sample, allowing control over the incidence angle (𝜃) of the laser, which
influences the detected wavevector of the scattered light.
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Figure 5.7: Transmission curve illustrating the spectral selectivity of the Fabry-Pérot in-
terferometer (FPI). The peaks correspond to the resonant transmission wave-
lengths at integer multiples of the cavity length (𝑛𝜆 and (𝑛 + 1) 𝜆 . 𝛿𝜆 represents
the linewidth (FWHM) of the transmission peak, which determines the spectral
resolution of the interferometer. Δ𝜆 denotes the free spectral range (FSR), the
wavelength separation between two consecutive transmission maxima. A high
finesse Fabry-Pérot interferometer, characterized by narrow linewidth (𝛿𝜆) and
large FSR ( Δ𝜆), enables precise spectral filtering, making it essential for ap-
plications such as Brillouin light scattering (BLS) and high-resolution optical
spectroscopy.

5.3 Nanofabrication techniques
For this work, all the studied samples were fabricated abroad, by the group of Prof. Adey-
eye Adekunle at the National University of Singapore and Durham University, in a clean-
room environment. The deposition was performed either by evaporation or sputtering,
depending on the sample series. The critical step in the nanofabrication process is the
nano-patterning stage. In our samples, two lithographic nano-patterning techniques were
used, which will be discussed in this section. Even though none of the samples analyzed in
this work were fabricated locally, a significant part of this thesis was dedicated to develop-
ing an in-house nano-patterning technique within the cleanroom of Université Sorbonne
Paris Nord.

5.3.1 Deep UV lithography
The most recent samples fabricated by Pr. Adeyeye’s team used the deep UV (DUV) lithog-
raphy technique at Durham University. This technique which is widespread relies on the
projection of the pattern of a photomask onto a photoresist coated on the substrate. The
photoresist is sensitive to the wavelength of the light source which is in the low UV range
in the case of the deep UV technique (typically 200−280 nm). The exposed part of the resist
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Figure 5.8: Deep UV (DUV) lithography process and resulting nanostructures. (a) Simplified
schematic of the DUV lithography technique. A high-intensity light source il-
luminates a transmissive mask containing the desired pattern. The light is then
focused and projected onto a photoresist-coated substrate through an optical
projection system. The exposure angle (𝜃) and the numerical aperture of the
system determine the resolution of the patterned structures. (b) Scanning Elec-
tron Microscopy (SEM) images of nanostructures fabricated using DUV lithog-
raphy. The images show arrays of antidots and nanorings, demonstrating the
capability of this technique to produce high-resolution periodic patterns over
large areas with excellent uniformity.

will then be removed during the development step of the process (in the case of a positive
photoresist, opposite for a negative resist). This technique has the advantage of being much
faster than the electron beam lithography (EBL) while allowing one to obtain smaller pat-
terns than the usual photolithography. The resolution 𝑟 of this technique depends mainly
on the light wavelength 𝜆 and on the numerical aperture 𝑁𝐴 of the optical system:

𝑟 = 𝛽

𝜆

𝑁𝐴

(5.14)

where 𝛽 is a factor that takes other contribution like the resist quality. A simplified
schematic of a DUV system is presented in figure 5.8-a). The incident light coming from
the light source is transmitted through the mask with the desired pattern. The light is then
passed through a complex system of mirrors and lenses (that have been simplified largely on
the scheme) that is called the projection system, that projects the pattern onto the surface
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of the substrate covered by the photoresist [13, 14, 15]. The numerical aperture is defined
by 𝜃 the projection half angle and 𝑛 the refractive index of the media between the substrate
and the projection system such as:

𝑁𝐴 = 𝑛 sin(𝜃) (5.15)

Some of the fabricated samples, designed and prepared by Jay Scott at Durham Univer-
sity, are presented in figure 5.8-b). These samples feature arrays of antidots, which are peri-
odic arrangements of nanoholes with varied geometries and spacing, tailored to investigate
their influence on magnetic and spin-wave properties. The fabrication process ensures high
precision and uniformity, making these structures particularly suitable for magnonic and
spintronic applications. The last image in the series displays a distinct variation of these
patterns, showing an array of anti-rings, where circular openings with a defined central
core introduce additional degrees of freedom in controlling the magnetic response of the
system.

5.3.2 Development of an interference lithography setup
Some of the former samples used in this work have been fabricated at the NUS in Singa-
pore thanks to a nano-patterning technique called interference lithography (IL) [16]. This
technique presents the advantage of not needing physical masks in order to induce periodic
patterns. Instead, the system uses interference of light in order to create exposed and unex-
posed regions on the photoresist. This technique, though less common than DUV lithogra-
phy, can still achieve much smaller patterns compared to conventional photolithography.
Another advantage is the significantly simpler optical setup required, making it feasible for
custom, homemade design.

During this thesis, we designed and installed our own setup which will be used for future
thesis sample nano-patterning. Some setups in the literature use two laser sources that will
interfere together as illustrated in figure 5.9-a) [17, 18]. In our case we took the Lloyd’s
mirror approach that uses a single laser source that interacts with itself [16]. Figure 5.9-
b) shows a photography ot the experimental setup of the interference lithography system
situated within the clean room at Université Sorbonne Paris Nord. The laser is a 355 nm
Cobalt Zouk® laser that have the advantage of having a long coherence length. The beam
is expanded thanks to a lens that have a short focal length (3 mm in our case) which allow
us to obtain a spot that have a diameter close to 10 cm. We installed a pinhole behind this
lens in order to filter part of the noise of the light. A collimating lens is placed after the
first lens to correct the beam’s divergence and ensure a parallel beam path. The beam then
reaches a substrate holder composed of two rotating planes. The first plane serves as the
primary substrate holder, onto which half of the beam spot is directed. The second half of
the spot hits the second plane that holds a Lloyd’s mirror which is an extremely flat mirror
(Valumax broadband mirror, 50.8×50.8 mm2, 𝜆/10, 250-600 nm) that reflects the light to the
sample. Finally, the sample is hit by the incident beam and the reflected beam that act as
two laser sources that interfere together. The scheme of the setup is shown in figure 5.9-d).
It is important to note that the Lloyd’s interferometer was custom-built by Noël Girodon-
Boulandet. The initial design is illustrated in figure 5.9-c), highlighting the various degrees
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of freedom related to rotation and translation, which are essential for achieving precise
alignment and optimal interference patterns during the lithography process.

Figure 5.9: a) Basic principle of interference lithography. The incident laser beam is split
into two paths: one is directly illuminating the substrate, while the other is re-
flected by Lloyd’s mirror. The superposition of these two beams generates an
interference pattern, which defines the periodic structure on the photoresist. b)
Photograph of the experimental interference lithography setup, installed in the
cleanroom at Université Sorbonne Paris Nord. The image highlights the key op-
tical components and their arrangement, essential for achieving high-precision
periodic nanostructures. c) Mechanical design of Lloyd’s interferometer. This
schematic illustrates the multiple degrees of freedom in the system, including
rotation (𝜑), tilt (𝜃), and vertical translation (𝑧), which are crucial for fine-tuning
the interference pattern and optimizing the exposure conditions. d) Optical path
and interference mechanism. This diagram provides a detailed overview of the
beam path in the setup. A 355 nm Cobalt Zouk® laser is used as the coherent
light source. The beam is expanded using a short focal length lens and collimated
to ensure a uniform interference pattern. The Lloyd’s mirror, positioned at 90°
to the substrate, creates an interference pattern by reflecting part of the beam
onto the photoresist-coated sample, enabling the fabrication of highly periodic
nanostructures over large areas.

The IL is a quite cheap and versatile technique that can be use only for periodic structures
patterning. A large area can be covered depending on the spot size and homogeneity in just
a few minutes. It is possible to realize more complex patterns than just lines depending on
the number of exposition, the in plane angle of the substrate and the exposition duration.

This technique is already giving good results, and is currently under calibration (led
by Walid Mnasri who has a post-doc position in the team) in order to optimize the lift-
off step of nano-fabrication. Some patterned we obtained are shown in figure 5.10 with
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5.3 Nanofabrication techniques

SEM images (top), AFM images (middle) and simulation (bottom) using a simple model of
overlapping electromagnetic waves that interfere. We can see that it is possible to obtain
simple 1D arrays like the nanowires array (figure 5.10-a)) and 2D patterns with square dots
and antidots (figure 5.10-b and c)) obtained with two expositions at 0◦ and 90

◦. With even
more exposition it is possible to complicate the variety of pattern. An example is shown in
figure 5.10-d) where the patterned was used using three expositions at 0◦, 45◦ and 90

◦. The
angle between the mirrors defines the periodicity of the array and can be changed between
each exposition in order to create more exotic patterns. It is also possible to imagine a
translation system that allows one to change the position of the substrate in order to change
the position of the interference on the surface. A few examples of simulated “more exotic”
geometry can be seen in figure 5.10-e) [17, 18, 19, 20].
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Figure 5.10: Nanopatterns fabricated using the developed interference lithography (IL)
technique, with experimental and simulated results. The images showcase vari-
ous periodic structures obtained using IL, demonstrating the technique’s ability
to generate well-ordered nanoscale patterns. (a–d) Comparison of experimen-
tal and simulated results for different nanopatterns. Top row: Scanning Elec-
tron Microscopy (SEM) images of the fabricated patterns. Middle row: Atomic
Force Microscopy (AFM) images, providing topographical details of the struc-
tures. Bottom row: Simulated patterns, based on the interference of multiple
laser exposures. The different patterns include: (a) Nanowire (line) arrays, ob-
tained with a single exposure. (b) Dot arrays, formed by two perpendicular
exposures. (c) Antidot arrays, where periodic holes are structured within a con-
tinuous film. (d) "Lace" patterns, created by superimposing multiple exposures
at different angles. (e) Simulated interference lithography patterns showcasing
additional complex structures that can be generated by varying the number of
exposures, angles, and periodicities. These simulations illustrate the potential
of IL for fabricating exotic nanostructures beyond simple periodic arrays.
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6 Characterization and simulation of
periodic arrays of nanostructures
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This chapter focuses on the characterization and simulation of periodic arrays of nanos-
tructures, specifically investigating the magnetic properties of nanoscale antidot arrays and
width-modulated nanowires. Utilizing our numerical model, we demonstrate the behavior
of continuous films under static strain, validating our approach through comparisons with
experimental results, literature, and other micromagnetic simulation software. The section
on antidot arrays highlights the intricate dynamics of ferromagnetic resonance (FMR) in
systems with varied thickness, revealing complex magnetic modes influenced by structural
geometries. The findings indicate a significant interplay between thickness and magnetic
behavior, with distinct modes identified, including Damon-Eshbach and backward volume
modes. Furthermore, we explore width-modulated nanowires, emphasizing the correlation
between localized magnetization inhomogeneities and mode frequency.
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Figure 6.1: a) Schematic illustrating the array of Ni80Fe20 antidot under investigation. The
ℎ𝑟𝑓 denotes the radiofrequency pumping field while 𝜑𝐻 represents the in-plane
angle between the applied magnetic field �⃗� and ⃗

ℎ𝑟𝑓 . b) A scanning electron
microscopy image depicting the studied array, which has a periodicity of 400
nm and a hole radius of 90 nm.

6.1 Magnetic arrays of antidots

6.1.1 Ferromagnetic resonance characterization

Nanoscale antidot arrays with a fourfold symmetry were fabricated on Si(001) substrates
using DUV lithography at 248 nm [1]. The process involved applying an anti reflective layer,
depositing Ni80Fe20 films and performing lift-off in unexposed areas. The completion of
the lift-off process was confirmed through scanning electron microscopy and atomic force
microscopy inspection. An example of scanning electron microscopy image of the samples
can be seen in figure 6.1-b). Additionally, reference samples were prepared as continuous
films during the same deposition run. Two different thicknesses, 40 nm and 80 nm, were
chosen for this study. At 40 nm, the system can be considered as predominantly 2D, where
the magnetization tends to remain in the plane even without the presence of an applied
magnetic field. In contrast, at 80 nm, the system could exhibit a more intricate behavior. In
particular, the non-propagating modes exhibit diverse profiles across the thickness, adding
complexity to their characteristics.

While the magnetic modes in continuous thin films can often be straightforwardly pre-
dicted and described using the well-established Smit-Beljers relation [2], the scenario be-
comes considerably more intricate when dealing with periodic arrays of antidots due to the
presence of holes. In these antidot arrays, the magnetostatic waves do not exhibit homo-
geneous behavior across the entire surface; instead, they become localized within specific
regions of the lattice [3, 4, 5, 6, 7, 8]. To illustrate this phenomenon, we present in figure 6.2
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Figure 6.2: FMR spectra recorded at different frequencies from the two studied arrays (40
nm and 80 nm) with 𝜑𝐻 = 0

◦ (a-b) and 𝜑𝐻 = 45
◦ (c-d). The red arrows in the 10

GHz spectra indicate the presence of a magnetostatic mode. The amplitude of
some spectra has been multiplied by a coefficient for clarity.

a set of typical spectra obtained for two thicknesses of identical antidot geometries. This
figure presents spectra obtained from both arrays, recorded at various frequencies and for
two specific angles, 𝜑𝐻 = 0

◦ and 𝜑𝐻 = 45
◦. The spectra reveal the presence of multiple

modes, indicative of complex dynamic magnetic behaviors within these arrays. For clar-
ity, red arrows have been added to the spectra measured at 10 GHz, highlighting mode
positions. The amplitudes of certain spectra have been scaled by a coefficient to enhance
clarity, this coefficient is indicated in each spectrum. Focusing on the 40 nm array at an an-
gle of 𝜑𝐻 = 0

◦, we can distinguish two prominent modes. The first mode appears at a low
magnetic field and is designated as the DE-like mode, which stands for Damon-Eshbach
like-mode. The second notable mode occurs at a higher magnetic field and is referred to
as the BV-like mode, which is short for Backward volume mode. The Damon-Eshbach and
backward volume mode designation is usually used in the case of propagating spin waves in
continuous films in order to differentiate the spin waves propagating in the in-plane direc-
tion perpendicular to the magnetization (DE) and along the direction of the magnetization
(BV). In our case we are considering two modes which can be seen as standing waves with
an effective wave vector 𝑘𝑒𝑓 𝑓 perpendicular to the magnetization (DE-like mode) or along
the magnetization (BV-like mode). In addition to these dominant modes, the spectra also
exhibit several less intense modes situated between the DE-like and BV-like modes. For ex-
ample, in the spectrum recorded at 11 GHz, “the DE-like” mode can be observed around a
magnetic field of approximately 15 mT, while the “BV-like” mode appears at a significantly
higher field of around 160 mT. Moreover, the resonance fields of both the DE-like and BV-
like modes shift with changing frequency. If we focus on the 80 nm array, a larger number
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of modes become apparent. The prominence of certain modes compared to others is much
less clear. However, the frequency dependence of the modes is rather similar. The fact that
only the thickness varies between these two arrays leads to conclude that these additional
modes result from the larger thickness, providing the modes a greater freedom to spread
across the thickness.

6.1.2 OOMMF and COMSOL micromagnetic simulations

Micromagnetic simulations under OOMMF software were conducted to investigate the
magnetic modes and their frequency dependencies in a square array of antidots [9, 10]. The
array consisted of 100 antidots (10×10 holes) with a diameter of 180 nm and a periodicity of
400 nm. Cuboid cells with a volume of 5×5×5 nm3 were used for the simulations. The sim-
ulation parameters were determined from the ferromagnetic resonance (FMR) analysis of
the reference continuous films, including the saturation magnetization (𝑀𝑠 = 8×10

5 A.m−1),
gyromagnetic ratio (𝛾 = 1.91 rad.s−1T−1) and exchange stiffness (𝐴 = 13 × 10

−12J.m−1). In-
deed, the intrinsic magnetic parameters of the samples were determined by investigating
the magnetization dynamics of Ni80Fe20 thin films of similar thicknesses (40 nm and 80 nm)
than the studied arrays of antidots using FMR technique [2, 11]. By employing the Landau-
Lifshitz-Gilbert (LLG) equation solved in spherical coordinates, we conducted an analysis
to fit our experimental data and extract the magnetic parameters that govern the behavior
of the films. In the simulations, the Landau-Lifshitz-Gilbert equation was solved with a
damping constant (𝛼) of 0.5 for both the continuous film and square array systems. The
equilibrium states were obtained by applying a static magnetic field ranging from 20 to 220

mT along the 𝑥-axis. The dynamic response of the systems was then studied by perturbing
the equilibrium state with a short magnetic field pulse applied orthogonally. The relaxation
of the system was governed by the Landau-Lifshitz-Gilbert equation with a damping con-
stant of 𝛼 = 0.008. The magnetic pulse was defined as ̃ℎ = ℎ0 ⋅ sinc[2𝜋𝑓𝑐𝑢𝑡(𝑡 − 𝑡0)], where
𝑓𝑐𝑢𝑡 was set to 25 GHz and the sampling frequency (𝑓𝑠) was 200 GHz.

Each dynamic simulation was performed over a duration of 20 ns, divided into 4000 stages
using the Runge-Kutta algorithm. The magnetization configuration was recorded for each
elementary volume and stage, and the Fourier transform method was applied to obtain the
resonance frequencies associated with the different magnetic modes. The magnetization
component 𝑚𝑦 = 𝑀𝑦/𝑀𝑠 was used for the Fourier transform, where 𝑀𝑦 represents the 𝑦-
component of magnetization and 𝑀𝑠 is the saturation magnetization. To obtain the profiles
of each mode, the system was excited by applying a cosine function at the frequency of
each respective mode. This excitation allowed us to capture the dynamic behavior and
visualize the spatial distribution of the magnetization. The resulting data were processed
using image analysis techniques to extract the detailed profiles of the modes. By analyzing
these profiles, we gained insights into the spatial localization and intensity variations of
the non-propagating modes within the system.

Figure 6.3 presents the complete dependencies of the mode frequencies as a function of
the applied magnetic field for both arrays and 𝜑𝐻 angles. The experimental data extracted
from the spectra partly presented in figure 6.2 are represented by symbols (orange circles)
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Figure 6.3: Experimental (symbols) and numerical results (colormaps) are presented with a
magnetic field applied along 0° (a-b) and 45° (c-d) for the two studied systems.
The colors represent the relative power spectral density obtained through micro-
magnetic simulations, while the symbols correspond to the experimental data.
A typical simulated spectrum (at 𝐻 = 220mT ) is shown for each graph. In ad-
dition, a small sketch of the studied systems shows the direction of the applied
field.

while the colormaps are generated from micromagnetic simulations. The colormaps pro-
vide frequency positions and relative intensities and correspond to simulated spectra for
various applied magnetic field strengths. The two schematics correspond to the experi-
mental configurations used, illustrating measurements at 𝜑𝐻 = 0

◦ (figures 6.3-a) and 6.3-b))
and 𝜑𝐻 = 45

◦ (figures 6.3-c) and 6.3-d)). At 𝜑𝐻 = 0
◦, we have the confirmation that the

number of observed modes is significantly influenced by the thickness of the array.
Specifically, in the 40 nm array, the spectra clearly display the primary modes: a solitary

mode for DE-like mode and several accompanying modes for the BV-like one. In contrast,
the 80 nm array exhibits a less distinct separation between the DE- and BV-like modes,
as previously shown in the experimental spectra (see figure 6.2). Notably, modes persist
between 5 and 10 GHz for magnetic fields exceeding 200 mT, contrasting sharply with the
absence of such modes in the 40 nm array under similar conditions. A simulated spectrum
at 220 mT is provided alongside each colormap to demonstrate the relative intensity distri-
bution of modes. The simulations effectively delineate distinct mode clusters, particularly
highlighting the DE-like and BV-like modes within the 40 nm array. The relative inten-
sities and frequency positions derived from these simulations fit well with experimental
observations.

To determine the origin of each mode in both systems, we determine the spatial profiles
of each mode by exciting the systems with a cosine function at the frequency of each mode.
The main results are presented in figure 6.4. The simulation results revealed a wide range
of possible spatial distributions for the modes. The colormap represents 𝑚𝑦 component
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Figure 6.4: Spin precession amplitudes determined at 𝐻 = 200 mT (applied along the 𝑥-
axis) obtained through micromagnetic simulations. The color coding represents
𝑚𝑦 component of the magnetization: red and blue areas indicate high precession
amplitudes, while black areas indicate zero precession amplitudes. The 𝑘𝑒𝑓 𝑓 vec-
tor in some profiles indicate an effective wave-vector that can be associated to
the mode. a) and b) correspond to profiles calculated at 𝜑𝐻 = 0

◦ while c) and d)
are profiles obtained at 𝜑𝐻 = 45

◦.

of the magnetization, the applied magnetic field being applied along 𝑥 direction, red and
blue areas indicate high precession amplitudes, while black areas indicate zero precession
amplitudes. All the presented mode profiles in figure 6.4 are determined for a magnetic field
of 200 mT, meaning that the static magnetization configuration is almost saturated along
the 𝑥-axis. In figure 6.4 -a), which pertains to the 40 nm sample with an applied magnetic
field angle 𝜑𝐻 = 0

◦, we have illustrated effective wave vectors ⃗
𝑘𝑒𝑓 𝑓 on two of the mode

profiles: one at 12.3 GHz and the other at 18.1 GHz. These two profiles correspond to what
we have previously referred to as the BV-like mode and the DE-like mode. In the first case,
we observe that the wave vector is oriented along the direction of the applied magnetic
field, (i. e. along the static magnetization). In contrast, in the second case, the wave vector
is perpendicular to the applied field. This observation is interesting as it aligns with the
characteristics of the DE and BV modes typically found in magnetic thin films. The BV-
like mode represents a situation where the spin waves propagate along the direction of the
static magnetization. On the other hand, the DE-like mode depicts a scenario where spin
waves propagate perpendicular to the magnetization direction. The other modes between
DE-like and BV-like modes correspond to a mix between them in terms of spatial area. A
similar behavior can be observed in figure 6.4 -b) for the 80 nm array at 𝜑𝐻 = 0

◦. The
BV-like mode and the DE-like are however slightly shifted in frequency and the difference
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6.1 Magnetic arrays of antidots

Figure 6.5: a) BV-like mode measured by FMR at 0◦ and 45
◦ for the 40 nm sample. Spectra

where the resonance field was equal (12 GHz at 0◦ and 14 GHz at 45◦) are shown
to compare their intensity for an equivalent static configuration. Mode profiles
were calculated for this applied magnetic field (i.e., 200 mT). b) DE-like mode
measured by FMR at 0° and 45° for the 40 nm sample. Spectra where the reso-
nance fields coincide at 200 mT were measured at frequencies of 18 GHz (0◦) and
17 GHz (45◦).

between this mode is higher (around 6 GHz for the 40 nm array and 10 GHz for the 80 nm at
200 mT). Moreover, the 80 nm array exhibits a significantly larger number of intermediate
modes between the DE- and BV-like modes. These intermediate modes (not all of which are
displayed) often exhibit lower amplitudes. They represent a combination or hybridization of
the DE-like and BV-like modes. This indicates a complex interplay between different types
of spin wave modes within the array, resulting in a richer and more intricate spectrum of
magnetic behaviors.

At 𝜑𝐻 = 45
◦, the DE- and BV-like modes are still present for both thickness. It is interest-

ing to note that the spatial area occupied by the BV-like mode is now lesser than the DE-like
mode. This explains what we have observed in the FMR experimental spectra; namely, an
inversion of the relative intensities between these two main modes occurs when the sam-
ple is rotated by 45

◦. To go further, we have calculated the intensity ratio (𝑟 =
𝐼0◦

𝐼45◦
) of the

mode intensities for the 40 nm array along the two different directions (see figure 6.5). The
experimental value of this ratio (𝑟𝑒𝑥𝑝) has been calculated from the amplitude of FMR peaks
and the simulated (𝑟𝑠𝑖𝑚) one has been extracted from the simulated spectral density:

Mode 𝑟𝑒𝑥𝑝 𝑟𝑠𝑖𝑚

mode 0.31 0.33
BV-like mode 1.6 1.4

The comparison between the experimental and simulated intensity ratios indicated a
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6 Characterization and simulation of periodic arrays of nanostructures

Figure 6.6: Comparison between a) Comsol simulations performed with the frequency do-
main solver and b) the OOMMF simulations. c) The mode profiles obtained with
the eigenfrequency solver were compared with the mode profiles calculated with
OOMMF.

high level of agreement for both modes. Micromagnetic simulations allowed us to deter-
mine both the positions of the peaks as well as their relative intensities. They highlighted
the simultaneous measurement of DE and BV modes within the antidot arrays. It con-
firmed that the additional modes in the 80 nm array were due to a larger thickness. The
presence of numerous magnetic modes in magphonic crystals benefits the magnon-phonon
coupling [12, 13, 14]. When phonon and magnon branches intersect, new forbidden bands
can emerge, controlling wave propagation within the material. This capability could sup-
port applications like frequency filtering and enhanced spintronic devices, using these new
properties for advanced signal processing.

The modes calculated with OOMMF allow us to have a reference in order to verify our
Comsol simulations[15, 16]. The comparison is shown in figure 6.6 where we started to
reproduce the FMR simulations. We can see on the 𝑓 (𝜇0𝐻 )mapping (figure 6.6-a,b)) that the
results obtained with our Comsol simulations are very close to the experiments and seem
more consistent than the OOMMF ones. This could be due to the lack of periodic boundary
conditions in our OOMMF model. It is interesting to see that our highest experimental mode
in terms of frequency seems to badly reproduce by the Comsol simulation. The main modes
profile have then been compared with both software in figure 6.6-c). Their correspondence
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6.2 Width modulated nanowires

is almost perfect, which confirms the accuracy of our model.

6.2 Width modulated nanowires

In order to further the comparison of our approach with experiments, we have conducted
FMR measurements on more complex objects. For this purpose, a 20 nm thick Ni80Fe20
periodic array of width-modulated nanowires [17, 18] deposited on Si have been studied.
A scanning electron microscope image is presented as an insert in figure 6.7-a), one can
note the width modulation of the nanowire which makes this array more complex from a
geometrical point of view. Thus, the width is modulated so that the largest part is 230 nm
wide and the thinnest part is 150 nm.while the periodicity of the array is around 600 nm
(along 𝑦) and the modulation periodicity is 280 nm (along 𝑥). This modulation creates local
inhomogeneities in the magnetization which creates several possibilities for the localized
magnetic modes as compared to a uniform nanowire geometry.

Figure 6.7: FMR results obtained for the same array of width modulated nanowires for
thicknesses of a) 5 nm, b) 10 nm, c) 20 nm, d) 40 nm, e) 50 nm and f) 70 nm. The
dot colors indicates the relative intensity of the modes. The darker the modes,
the more intense they are.

Figure 6.7-a-f) shows the influence of the thickness on the number of modes, but also on
their quality. The 5 nm thick sample showed only two modes very close in frequency that
had a very small intensity. As the thickness increases, other modes appear and the signal
gets stronger. For the 50 nm and 70 nm thick samples a lot of modes can be measured
(between 7 and 8 modes) but the signal starts deteriorating. For this part of the study we
chose to focus on the sample that gave us the best signal which is the 20 nm thick sample
presented in figure 6.7-c).
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6 Characterization and simulation of periodic arrays of nanostructures

Figure 6.8: a) Typical sweep-field FMR spectrum recorded at a different driven frequency
(from 7 to 15.5 GHz) in a 20 nm thick Ni80Fe20 width-modulated array of
nanowires with a magnetic field applied along the nanowires (along 𝑥 direc-
tion). The insert shows a scanning electron microscopy image of this array: the
periodicity of the array is 600 nm along 𝑦 while the width-modulation periodic-
ity is 280 nm (larger width is 230 nm and the thinnest is 150 nm). b) Experimental
(filled symbols) and simulated frequency (open symbols) variations of the mode
frequencies as function of the magnetic field of array of nanowires. The insert
shows a typical mesh of the representative elementary volume used for the sim-
ulations. c) Top view of the calculated 3D magnetic mode profiles where colors
encode 𝑚𝑦 (see scale-bar). d) Edited result from [18]

Figure 6.8-b) presents typical spectra obtained for a magnetic field applied along the
nanowires (along 𝑥) at multiple driven frequencies. One can clearly note the presence of at
least five distinguishable modes of different amplitudes and of different linewidths. Similar
to the thin film, we have first defined a representative elementary volume which is pre-
sented as an insert in 6.8-c). The magnetic mode energies and their 3D profiles have been
then calculated. We have been able to identify the five experimental modes by compar-
ing the numerical and experimental variations of their frequencies (see open symbols in
figure 6.8-c)). Typical extracted 3D modes are presented in 6.8-c); we found a good corre-
lation between the experimental magnetic mode amplitudes and their calculated profiles:
the larger the spin precession region, the larger the amplitude. This correlation is also valid
for the experimental linewidth of the modes: the larger the region involved by the preces-
sion of the mode, the larger the experimental linewidth. Figure 6.8-d) shows the work of
L. L. Xiong & al. in which they studied similar samples. The profile presented here were
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6.2 Width modulated nanowires

obtained by them in the paper presented in [18] in which they used LLG micromagnetic
simulator to perform their simulations. They did not simulate a 20 nm thick geometry but
we selected a mix of what they obtained for 10 nm and 30 nm. We can easily see that the
profiles obtained in our work with our numerical method are very consistent with what is
obtained with more conventional micromagnetic softwares as they are almost identical as
those calculated by this other group with LLG micromagnetic simulator and by us with the
previous OOMMF study.

In the following chapter, the magnetoelastic energy term is incorporated into the LLG
finite element resolution to account for the indirect magnetoelastic effect induced by the
presence of external strain.
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7

7 Elastic strain effects in periodic
arrays of nanostructures

Contents
7.1 Magnetic arrays of antidots under static strain . . . . . . . . . . . 114
7.2 Control of magnetic mode energies in a modulated array of nanowires 117

The previous chapters presented measurements obtained on thin films, antidots array
and modulated nanowires arrays free of strain as well as experiments performed on strained
continuous films. In this chapter, periodic nanostructures submitted to strain will be studied
experimentally in a first step and then by purely numeric simulations.

113



7 Elastic strain effects in periodic arrays of nanostructures

7.1 Magnetic arrays of antidots under static strain
For this study a 20 nm thick array of antidot made of a Ni60Fe40 alloy was deposited on a
127.5 µm thick polyimide substrate (also known as Kapton®) by interference lithography.
The resulting array presented holes with a diameter 𝐷 = 250 nm separated by a period of
𝑎 = 600 nm as represented on figure 7.1-a). The experimental setup used for the in situ
strain and measurement was the same as what has been presented for the continuous film
strain experiment [1, 2]. The polymer substrate was then glued on the same type of ferro-
electric actuator on which voltage was applied in order to transmit strain from the actuator
to the substrate and the periodic structure.We extracted the mechanical and magnetic con-
stants from previous work and from literature, meaning that they are close to our materials
characteristics but not entirely accurate. Indeed, characterizing the mechanical properties
of metamaterials and especially with such small thickness is not trivial. For the mechan-
ical aspect we used Poisson’ ratios 𝜈N𝑖60F𝑒40 = 0.3 and 𝜈Kapton = 0.3, and Young’s moduli
𝑌N𝑖60F𝑒40 = 205 GPa and 𝑌Kapton = 4 MPa. For the magnetic constants we used and exchange
constant 𝐴𝑒𝑥 = 13 pJ.m−1, a saturation magnetization 𝑀𝑠 = 9.5 × 10

5 A.m−1, a gyromagnetic
ratio 𝛾 = 1.76 × 10

11 rad.Hz.T−1 and a magnetostriction at saturation of 𝜆 = 12 × 10
−6.

The ferroelectric actuator calibration for the 𝜀𝑥𝑥 and 𝜀𝑦𝑦 with respect to the applied volt-
age was implemented inside our mechanical model in order perform a biaxial mechanical
stress. Periodic and anti-periodic boundary conditions for the mechanical displacement
were applied on opposite faces of the unit cell, as illustrated by the arrows on figure 7.1-a),
such as: {

𝑢𝑠𝑟𝑐 = −𝑢𝑑𝑠𝑡

𝑣𝑠𝑟𝑐 = 𝑣𝑑𝑠𝑡

(7.1)

for faces aligned along the 𝑥 axis and:
{

𝑢𝑠𝑟𝑐 = 𝑢𝑑𝑠𝑡

𝑣𝑠𝑟𝑐 = −𝑣𝑑𝑠𝑡

(7.2)

for faces aligned along the 𝑦 axis, with the displacement vector
⎛

⎜

⎜

⎝

𝑢

𝑣

𝑤

⎞

⎟

⎟

⎠

. It is worth men-

tioning that using only one unit cell for the mechanical test led to some inaccuracy for the
calculated values in mesh elements close to the cell borders. These inaccuracy where not
present for the magnetism aspect of the simulation. In order to overcome this issue, we
decided to use a 3 × 3 cell only for the mechanical part, which lead to accurate values of
the strain field in the center cell in which we perform the magnetic simulations. Unlike
the case of continuous films, the presence of the holes lead to a heterogeneous strain and
stress field as shown in the 7.1-b) calculated 𝜀𝑥𝑥 (top) and 𝜀𝑦𝑦 (bottom) profiles. We can see
that the heterogeneity are concentrated over the whole thickness of the magnetic layer and
quickly start to vanish in the polymer substrate until it becomes entirely homogeneous in
depth. Having these heterogeneity led to an average strain lower to what is applied on the
substrate as it is shown on figure 7.1-c). The average strain field still evolve linearly with
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7.1 Magnetic arrays of antidots under static strain

Figure 7.1: a) Schematic illustrating the array of Ni60Fe40 /polymer/ferroelectric substrate
stacking The arrows show how the strain is applied. b) Profile of the 𝜀𝑥𝑥 and
𝜀𝑦𝑦 strain field calculated in the 3 × 3 geometry. c) Comparison between the
ferroelectric substrate voltage calibration and the simulated average strain field
components. d) Profile of the simulated 𝜀𝑥𝑥 (blue) and 𝜀𝑦𝑦 (red) components of
the strain tensor along the cutline represented by the white dashed lines in b).
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7 Elastic strain effects in periodic arrays of nanostructures

Figure 7.2: FMR spectra obtained at 0𝑉 (red) and 100𝑉 (blue) for a magnetic applied along
the a) 𝑥 direction and b) the 𝑦 direction, for a driving frequency of 8 GHz.

respect to the applied voltage but due to the lower strain transmission that can observed on
figure 7.1-d) and the mechanical contrast between the polymer and the metal, it is not pos-
sible to obtain the average strain in these two layers. Similar experiments were performed
by N. Challab et al. in multiple directions between the applied magnetic field and the main
strain direction [2].

For this study we focused on the results obtained at a 0° angle and 90° angle between the
applied magnetic field and the 𝑥 direction which we define as the principal strain direc-
tion. Figure 7.2-a) shows the comparison between the FMR spectrum obtained at 0V in red
lines and the spectrum obtained when applying 100V in blue lines with the magnetic field
applied along the 𝑦 direction. One can observe a clear decrease of the resonance fields of
approximately 8.4 mT, which is characteristics of materials with a positive magnetostric-
tive constant [1, 2, 3, 4, 5]. The opposite happens in figure 7.2-b) where the magnetic field
is applied along the 𝑥 axis, meaning that we observe an increase of the resonance field by
changing the applied voltage from 0𝑉 to 100𝑉 . This behavior is characteristic of materials
with a positive magnetostrictive constant 𝜆, which creates an easy direction for the magne-
tization in the direction of the tensile strain while creating a hard plane in the perpendicular
direction. It is worth noting that the spectra on figure 7.2-b) exhibit a better signal than fig-
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7.2 Control of magnetic mode energies in a modulated array of nanowires

ure 7.2-a) and show two different modes. It is possible that the second mode also exists in
figure 7.2-a) but are covered by the noisy background. We can also see a small difference
of the resonance field of the two 0 V spectra. This could be explained by the possible pres-
ence of an anisotropy that could be either intrinsic of the material deposited or generated
by residual strain after the gluing of the Kapton on the piezoelectric substrate [5]. In both
cases we can ignore these effect by not plotting the resonance field but the resonance field
shift defined as:

𝛿𝐻𝑟𝑒𝑠 = 𝐻𝑟𝑒𝑠(0) − 𝐻𝑟𝑒𝑠(𝑉 ) (7.3)

It is interesting to notice that the main mode in figure 7.2-b) has a resonance field shift
almost two times higher than the second mode, meaning that the voltage-induced strain do
not affect all the magnetic modes the same way.

The static configuration of the magnetization influences highly the magnetoelastic field
which has been represented by the arrows in figures 7.3-a) and 7.3-b) for angles of 0◦ and
90

◦ respectively. The color-map represents the norm of the magnetoelastic field over the
surface of the array of antidots defined as:

�⃗�𝑚𝑒 =

3𝜆

𝑀𝑠

⎛

⎜

⎜

⎝

𝑚𝑥𝜎𝑥𝑥 + 𝑚𝑦𝜎𝑥𝑦 + 𝑚𝑧𝜎𝑥𝑧

𝑚𝑥𝜎𝑥𝑦 + 𝑚𝑦𝜎𝑦𝑦 + 𝑚𝑧𝜎𝑦𝑧

𝑚𝑥𝜎𝑥𝑧 + 𝑚𝑦𝜎𝑧𝑦 + 𝑚𝑧𝜎𝑧𝑧

⎞

⎟

⎟

⎠

(7.4)

where 𝜎𝑖𝑗 are the components of the stress tensor. As the stress and strain field are het-
erogeneous, the magnetoelastic field perceived by the magnetization is also heterogeneous.
The experimental and numerical resonance field shift has been represented on figure 7.3-c)
where the positive shift (in red) has been obtained for a 0

◦ angle and the negative shift (in
blue) for a 90° angle. The corresponding calculated mode profile has been inserted in front
of each curve, and we managed to obtain very consistent results between experiments and
simulation. The difference in shift between the different modes can be seen experimentally
and numerically and have, according to us, two main origins that are the heterogeneous
magnetoelastic field that influences differently the modes depending on their spatial local-
ization and the slope at the driving frequency of each mode in the 𝑓 (𝐻𝑎𝑝𝑝) dependency. The
simulation obtained are close to what was expected for material mechanical and magnetic
constants found in the literature that could be refined slightly to obtain even better results.
Nonetheless this tool we developed is consistent enough to be used for magneto-mechanical
studies on complex geometries, which is why some work that we could not realize experi-
mentally are going to be presented on a purely numerical aspect in the following sections
and chapters.

7.2 Control of magnetic mode energies in a modulated
array of nanowires

The previous case was characterized by a homogeneous strain field, thus simpler to solve in
terms of induced magnetoelastic field. However, in modern objects of nanomagnetism, the
presence of strain gradients related to complex geometries requires a numerical modeling
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7 Elastic strain effects in periodic arrays of nanostructures

Figure 7.3: The magnetoelastic field is calculated for a field applied along b) the 𝑥 axis and c)
the 𝑦 axis at 100V. d) Resonance field shift obtained experimentally (light dots)
and numerically (dark light and dots) for the magnetic field applied at a 0 degree
angle with the 𝑥 axis (red) and at a 90° angle (blue) for a resonance frequency of
8GHz.
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taking into account the heterogeneous localization of the strains and thus the associated
magnetoelastic field [4, 14, 15, 16, 17, 18, 19, 6, 7, 8, 9, 10, 11, 12, 13]. The approach developed
here allows to perform this kind of resolution and will be illustrated in this section by the
numerical study of the magneto-mechanical properties of modulated nanowires already
discussed.

For this study, we employed the same magnetic parameters as presented in figure 7.1.
Since Ni80Fe20 is non-magnetostrictive, we opted to use a magnetoelastic constant 𝜆 of
3 × 10

−5, which is typical for ferromagnetic polycrystalline thin films. Additionally, we
utilized a Young’s modulus 𝑌 of 180 GPa and a Poisson ratio 𝜈 of 0.3 for the purpose of this
study. These chosen parameters provide a reasonable approximation for the magnetoelastic
behavior in the absence of direct experimental measurements.

Modulated nanowires were numerically submitted to external strains along their main
axis (𝑥). PBC were adopted so that the representative unit cell (identical to that used in
the previous chapter) allows the determination of the whole behavior. Different external
strains were applied (from 0% to 0.2% with 0.05% step). Figure 7.4-(a) shows the in-plane
strain (𝜀𝑥𝑥 , 𝜀𝑦𝑦) maps at the top surface of the unit cell (right images) for a macroscopic
applied strain of 𝜀𝑥𝑥 = 0.2%. We observe that the strain fields are heterogeneous in (𝑥, 𝑦)

plane but homogeneous over the thickness. This is due to the width modulation of the
nanowires; indeed, nanowires without modulation would have presented much more ho-
mogeneous strain fields. These inhomogeneities are illustrated on the left graph where we
have represented a cut along the nanowire (dashed line in the maps). It is interesting to
note that the variations of 𝜀𝑥𝑥 and 𝜀𝑦𝑦 are respectively located around +0.2 and -0.06 which
correspond to the macroscopic values of 𝜀𝑥𝑥 and 𝜀𝑦𝑦 .

These heterogeneous values naturally give rise to a heterogeneous magnetoelastic field.
This is illustrated in figure 7.4-(b) where the amplitude of 𝜇0�⃗�𝑚𝑒 has been calculated from
the strain fields presented in figure 7.4-(a) and the equilibrium magnetization distribution
(see left map of figure 7.4-(b)) obtained in the absence of the applied magnetic field for a
macroscopic strain 𝜀𝑥𝑥 = 0.2%. It should be mentioned that 𝐻𝑚𝑒 and the magnetization
distribution are obtained in a self-consistently scheme. This magnetoelastic field configu-
ration is thus directly linked to the strain field configuration and more particularly to that
of 𝜀𝑥𝑥 since the magnetic moment are mostly oriented in the 𝑥 direction. We have followed
the evolution of the frequencies of the different magnetic modes identified in the previous
section at different macroscopic strain values. Figure 7.5 (left graph) shows the frequency
shift (𝛿𝑓 = 𝑓 (0)− 𝑓 (𝜀𝑥𝑥)) obtained for an applied macroscopic strain of 0.2%, for increasing
applied magnetic field. It is interesting to note that not all modes show the same frequency
shift for a given magnetic field. Moreover, the lower frequency modes have the largest 𝛿𝑓 .
For instance, at zero applied field mode 1 has a frequency shift of 𝛿𝑓 ∼ 2.4 GHz while it
is twice as low for mode 5 (𝛿𝑓 ∼ 1.2 GHz ). These lowest frequency modes 𝛿𝑓 are also
the most affected by the applied magnetic field. In order to emphasize this phenomenon
we plotted the 𝛿𝑓 evolution of each mode with respect to the applied macroscopic strain
at 0 mT and 100 mT. In figure 7.5 (right graphs), we observe an almost linear dependency
of the modes to the applied strain which has been experimentally observed in the elas-
tic regime in saturated magnetic configurations [4, 2]. These graphs show that the lowest
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7 Elastic strain effects in periodic arrays of nanostructures

Figure 7.4: (a) Top view of the spatial distribution of the induced in-plane strains 𝜀𝑥𝑥 and
𝜀𝑦𝑦 inside the nanowires for a macroscopic applied strain of 𝜀𝑥𝑥 = 0.2%. Cross-
sections are shown on the right side of these strain maps. They were obtained
from the black dotted lines on the mapping images, the colors correspond to a
single pixel stretched along 𝑦 and serves as a guide for the eyes. (b) Top view
of the spatial distribution of the amplitude of the induced magnetoelastic field
calculated in absence of applied magnetic field (‖‖

‖
𝜇0�⃗�𝑚𝑒

‖
‖
‖
). The corresponding

magnetic moment distribution is also represented.
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7.2 Control of magnetic mode energies in a modulated array of nanowires

Figure 7.5: Left graph: frequency shift as function of the applied magnetic field; the fre-
quency shift corresponds to the difference between the mode energies calcu-
lated at 𝜀𝑥𝑥 = 0.2 % and at 𝜀𝑥𝑥 = 0 %. Right graphs: frequency shift of the
different magnetic modes as function of 𝜀𝑥𝑥 for an applied field of 100 mT along
the nanowires (i. e. along 𝑥) and in absence of applied field.

Figure 7.6: Top view of the spatial distribution of the magnetic modes calculated at 𝜀𝑥𝑥 = 0.2

% and at 𝜀𝑥𝑥 = 0 %. The upper (resp. lower) section of each map has been
computed with a strain of 0% (resp. 0.2%).
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7 Elastic strain effects in periodic arrays of nanostructures

frequency modes are getting closer to the higher modes behavior as the magnetic field
increases, which can be related to the experimental and numerical data shown in figure
7.2-(c). Indeed, we observe in this figure that the mode evolution slopes are different for
each mode at low magnetic field which gives birth to a differentiated mode control with the
applied strain. As the applied field increases, the slopes tend to equalize which explains the
tightening evolution of all the modes as function of 𝜀𝑥𝑥 . To understand the observation of
such a difference at low applied field, we scrutinized the spatial distribution of each mag-
netic modes at minimum (𝜀𝑥𝑥 = 0 ) and maximum applied strain (𝜀𝑥𝑥 = 0.2%). The different
spatial distributions of the five modes are presented in figure 7.6; the upper (resp. lower)
half corresponds to maps obtained at a strain of 0% (resp. 0.2%). It is interesting to notice
that the lowest frequency modes (especially modes 1 and 2) show a clear variation of their
spatial distribution whereas the higher frequency modes remain mainly in the same spatial
region. This is most probably related to the progressive saturation of the magnetization
close to the borders of the modulated nanowires and would explain why at high applied
field the lowest frequency modes 𝛿𝑓 is highly reduced. These modes frequency shift are
only observable thanks to the coupling between the LLG and the equations of mechanics in
the case of magnetostrictive materials. In the case an infinite non magnetostrictive material
(𝜆 = 0) no shift is observed numerically, however in the case of the modulated nanowires
array a very small shift (negligible compared to the magnetoelastic effect) is observed due
to the slight shape modification induce by the strain.
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8 Spin wave dispersion
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This chapter explores spin wave dispersion in both strained and strain-free magnetic
structures, beginning with experimental validation using ferromagnetic resonance (FMR)
and Brillouin light scattering (BLS). We measure a 40 nm permalloy continuous film, con-
firming our simulations’ accuracy, particularly for phonons and spin waves in Damon-
Eshbach and backward volume configurations. We then investigate the impact of static
strain on spin wave dispersion in magnonic crystals, employing BLS on a 20 nm Ni60Fe40
antidot array. The experimental results show significant frequency shifts, validating our
numerical simulations. Next, we examine the effects of uniaxial strain on antidots de-
posited on a ferroelectric substrate (PZT), demonstrating how strain alters the magnonic
band structure and frequency modes. Finally, we simulate square magnetic dots on polymer
substrates, revealing that increased separation reduces interactions and affects spin wave
quantization. This chapter lays the groundwork for understanding how mechanical strain
influences magnonic properties in various magnetic structures.
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8 Spin wave dispersion

8.1 Experimental validation of the model
The results obtained in the previous chapters where obtained using the FMR technique. As
the excitation is applied homogeneously over the whole surface, the measured magnetic
modes are excited in a static manner. Simulating this behavior was easily done by simply
applying continuous periodic boundary conditions such as �⃗�𝑑𝑠𝑡 = �⃗�𝑠𝑟𝑐. This condition
cannot be applied when working with propagating waves like spin waves and acoustic
waves. These two types of waves can be measured simultaneously with the Brillouin light
scattering, which make it convenient to simulate them also simultaneously [1, 2, 3]. Some
study in the literature use Comsol Multiphysics in order to simulate the acoustic behavior of
phononic crystals using the solid mechanics module (or directly the acoustic module) [4, 5],
but none of the work found where performed on continuous films, except in the paper of
Babu et al. [6] where they simulate both magnon and phonon an their coupling in thin films.
Even though our work is not directly focused on acoustic waves, it is important for us to
first verify the reliability of this numerical approach firstly because we drew inspiration
from the acoustic wave calculation for our spin wave simulations, and secondly because it
can be interesting to study both waves together in order to couple them through magnon-
phonon interaction [7, 1, 2, 3, 4, 5], which will be the subject of the next chapter. The
way the acoustic wave are calculated in Comsol is close to the approach we use for our
magnetostatic modes, but instead of continuous boundary conditions, Floquet Boundary
conditions are used [13]. These conditions more often qualified as Bloch conditions impose
a phase shift on opposite faces of the unit cell such as the displacement field 𝑢 is written
[14]:

𝑢𝑑𝑠𝑡 = 𝑢𝑠𝑟𝑐𝑒
−𝑖

⃗
𝑘⋅(𝑟𝑑𝑠𝑡−𝑟𝑠𝑟𝑐) (8.1)

This way it is easy to control numerically the wave vector ⃗𝑘 of the acoustic wave. This is
a rather simple but efficient method that allows one to simulate the phonon behavior using
the eigenfrequency approach. The displacement field is only dependent on the material
properties and the applied load, follows simply the second Newton’s law

∑ 𝐹 = 𝑚𝑎 (8.2)

which, in terms of solid mechanics, is more frequently written:

−𝜔
2
𝜌𝑢 = ∇⃗ ⋅ 𝜎 + 𝐹𝑉 (8.3)

where 𝜔 is the pulsation, 𝜌 is the material mas density, 𝜎 is the strain tensor and 𝐹𝑉 are
volume forces that are not considered in our case. In order to account for spin waves and
acoustic waves at the same time was convenient to apply the same boundary conditions for
the magnetization, which we integrated inside Comsol Multiphysics such as:

�⃗�𝑑𝑠𝑡 = �⃗�𝑠𝑟𝑐𝑒
−𝑖

⃗
𝑘⋅(𝑟𝑑𝑠𝑡−𝑟𝑠𝑟𝑐) (8.4)

As the term 𝑟𝑑𝑠𝑡−𝑟𝑠𝑟𝑐 finally corresponds to the period of the unit cell, it becomes evident
that the calculation lead to folded branches in the dispersion curves that we have no method
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8.1 Experimental validation of the model

to unfold numerically. It is then only relevant to perform the simulations inside the limit
of the first Brillouin zone.

Figure 8.1: BLS spectra obtained with a 532 nm wavelength for a wave vector of 12.5 µm−1

for the a) phonon analysis configuration, b) spin waves analysis in Damon-
Eshbach configuration and c) spin waves analysis in backward volume configu-
ration. The experimental spectra are represented in bold lines while the colored
area represent the fitted spectra. d) Entire dispersion curves obtained for the cor-
responding phonons (black), DE configuration magnons (blue) and BV configu-
ration magnons (red). The dots represent the data extracted from experimental
spectra while the dashed lines represent the simulations.

In order to have a reference to confront with this approach to reality we performed BLS
measurement on a 40 nm Py continuous film deposited on a SiO2/Si substrate. Our TFP2
BLS setup allows us to selectively analyze phonon and magnon by changing the incident
light polarization and to shift from a backward volume configuration to Damon-Eshbach
one by rotating our permanent magnets. The results obtained are shown in figure 8.1. We
can see that using a 𝑃 polarized incident light in figure 8.1-a) and 𝑆 polarized incident light
in figures 8.1-b) and 8.1-c) allowed to completely isolate the signal coming from phonons
and magnons, respectively. It is quite interesting to see that three peaks can be observed
in the phonons spectrum in figure 8.1-a) which we expected to correspond to the Rayleigh
and first two Sezawa acoustic modes.
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8 Spin wave dispersion

Figure 8.2: Mode profile of the calculated quasi-transverse acoustic wave (Rayleigh) and the
two quasi-longitudinal acoustic waves (Sezawa 1 and 2). The color encodes the
𝑧-component of the displacement field in the case of the transverse wave and
the 𝑥-component of the displacement field in the case of the longitudinal wave.

Looking at the simulations of the acoustic waves represented by black dashed lines in
figure 8.1-d) which modes profiles are represented in figure 8.2 we can affirm that these
modes were indeed correspond to Rayleigh and Sezawa [6]. It is important to note that
forth one corresponding to the Love acoustic wave was also simulated but not represented
as it is difficult to be observe with this technique [15]. The simulations performed are
very accurate and reproduced almost exactly the behavior of the Rayleigh mode which
has a polarization mainly transverse to the surface normal, and the Sezawa modes that are
longitudinal waves with a polarization mainly in-plane in the direction of propagation. The
quantitative agreement between simulations and experiment is also comforting because
the acoustic study is trickier than the magnetic one. Indeed, the results depend highly on
the materials stacking (Ni80Fe20(40 nm)/SiO2(400 nm)/Si) and their mechanical properties
which cannot be extracted easily experimentally and that can be highly affected by other
parameters like the layers adhesion. For these simulations we used values found in the
literature and presented in table 8.1:
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8.1 Experimental validation of the model

Ni80Fe20 SiO2 Si
𝜈 0.3 0.17 0.28

𝐶11(GPa) 275 75.2 166
𝐶12(GPa) 118 15.4 64
𝐶44(GPa) 78 29.9 80

Table 8.1: Mechanical properties of the materials composing the sample.

These results obtained for the phonons are in themselves not very important in the con-
text of this chapter, but still allow us to verify this approach in thin films, which has not
been extensively done in the literature. We then simulated the spin wave dispersion using
this approach adapted for the micromagnetic formalism we implemented for the DE config-
uration (⃗𝑘 ⟂ �⃗�) and for the BV configuration (⃗𝑘 ∥ �⃗�). In both cases, we manage to measure
two modes corresponding to the DE and first PSSW in figure 8.1-b) and to the BV and first
PSSW in figure 8.1-c). The magnetic constants have been determined experimentally using
FMR and are given in table 8.2.

𝛾 (rad.Hz.T−1) Ms(𝐴.𝑚−1) 𝐴(J.𝑚−1)
1.95 × 10

11
7.8 × 10

5
13 × 10

−12

Table 8.2: Magnetic properties of the 40 nm thick permalloy continuous film

One can see that the measured spin waves in figure 8.1-d) are nicely reproduced by our
FEM model using the Floquet boundary conditions. The DE mode frequency in blue (ex-
periments in dots and simulation in dashed lines) starts around 6 GHz and increases very
quickly with the wave vector and starts to reach an asymptotic value of approximately 15

GHz, and we can observe a slight increase of the standing mode around 17 GHz in blue.
This behavior was reproduced numerically (dashed lines) but seems to be slightly overesti-
mated by the model. We tried changing the mesh refinement and the unit cell size in order
to verify if this overestimation was due to the model or to computing inaccuracy, however
changing these parameters lead to the same PSSW evolution. Figure 8.3-a) show the pro-
file of these two modes in the Damon-Eshbach configuration at multiple states of the wave
half period. As expected the DE mode has an evanescent profile of the 𝑚𝑥 component of
the magnetization which is at the origin of the experimental intensity asymmetry observed
at around 7.5 GHz in figure 8.1-b) between the Stokes and anti Stokes part of the spectrum
[16]. The experimental backward configuration represented in red dots in 8.1-d) is very well
reproduce by the simulations in red dashed lines. Unlike the DE mode, the calculated BV
mode profile presented in figure 8.3-b) has a completely homogeneous intensity over the
thickness of the continuous film, which is coherent with the symmetric intensity measured
in figure 8.1-c) [16].
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8 Spin wave dispersion

Figure 8.3: Mode profile of the calculated spin waves in the Damon Eshbach and backward
volume configurations. a) The color encodes the 𝑚𝑥 component of the magneti-
zation in the case of the Damon Eshbach configuration and b) the 𝑚𝑦component
in the case of the backward volume configuration.

As for the FMR measurements shown in the previous chapters we compared our simula-
tions to analytical models presented in figure 8.4. In this graph we compared the simulation
in dashed lines for the different modes with a model where the effect of exchange is not
taken into account (thin dashed line) and an other where the exchange is taken into ac-
count. For the backward volume mode we observe a clear agreement with the exchange
model with an increase of the frequencies at high wave vector, while the other show only a
decrease of the frequencies. The PSSW in this configuration slightly diverges at high wave
vector. In the case of the DE mode we can clearly see a divergence between the exchange
model and the simulations that seems to follow the non-exchange model. The PSSW in this
configuration also increases more quickly than the model at high wave vector similarly to
what we saw with the experimental data. Despite these slight discrepancies we managed
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8.2 Magnonic crystal dispersion

to adapt the phonon approach to the magnon frequency calculation which will allow us to
study the case of magnonic crystals in the following studies.

Figure 8.4: Comparison between the simulations in thick dashes lines and analytical mod-
els taking into consideration the effect of the exchange in continuous lines and
analytical models without the effect of the exchange.

8.2 Magnonic crystal dispersion

8.2.1 Comparison between BLS measurements and simulations

In this section, we focus on the effect of static strain on the spin wave dispersion of magnonic
crystals. Since these studies will be entirely numerical, it is first necessary to validate our
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8 Spin wave dispersion

computational approach by comparing the simulated dispersion relations with experimen-
tal data. To this end, we performed Brillouin Light Scattering (BLS) measurements in the
Damon-Eshbach configuration, which is particularly well suited for observing magnonic
band structures. The studied sample consists of a 20 nm thick Ni60Fe40 antidot array, with
hole radii of 70 nm and a lattice period of 420 nm (see figure 8.5). The magnetic parameters
were determined using ferromagnetic resonance (FMR) measurements on a continuous film
fabricated under the same conditions, and the extracted values are summarized in Table 8.3.

𝛾 (rad.Hz.T−1) Ms(𝐴.𝑚−1) 𝐴(J.𝑚−1)
1.88 × 10

11
12 × 10

5
8 × 10

−12

Table 8.3: Magnetic properties of the Ni60Fe40 used for the magnonic crystal

Figure 8.5: Scanning Electron Microscopy (SEM) image of the studied antidot magnonic
crystal. The sample consists of a 20 nm thick Ni60Fe40 film patterned into a
square lattice of circular antidots. The hole diameter is 140 nm, and the lattice
period is 420 nm, as indicated by the yellow annotations.

Experimental Spectra and Data Processing

Studying magnonic crystals via BLS leads to more complex spectra, similar to FMR mea-
surements, but requires significantly longer acquisition times. This is due to the fact that, in
structured systems, each spin wave mode occupies a much smaller magnetic volume com-
pared to uniform modes in continuous films. Figure 8.6-a) presents a typical BLS spectrum
obtained from the sample (light gray curve), where four distinct modes can be observed in
both the Stokes and anti-Stokes regions. To extract these modes, we numerically fitted the
spectrum using a convolution of eight Lorentzian functions (colored dashed lines), with the
resulting fit shown in colored areas. The experimental dispersion relation, extracted from
BLS measurements, is shown in figure 8.6-b) (red dots). This dataset is superimposed onto
the simulated band structure, which was obtained for a magnonic crystal with the same
structural and magnetic parameters as the experimental sample.
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8.2 Magnonic crystal dispersion

Figure 8.6: a) Brillouin Light Scattering (BLS) spectrum measured in the Damon-Eshbach

configuration
(

⃗
𝑘 ⟂ �⃗�)

)
at an applied magnetic field of 110 mT, for a wave vec-

tor 𝑘 = 2.88 𝜇𝑚
−1. The experimental spectrum (gray curve) reveals multiple spin

wave modes. The peaks were fitted using a superposition of eight Lorentzian
functions (dashed lines), with the resulting fit shown as the shaded area. b) Com-
parison between experimental and simulated spin wave dispersion. The red dots
represent the BLS-extracted dispersion relation, superimposed on the simulated
magnonic band structure (color map). The relative intensity of the simulated
spin wave modes is encoded in color and data point size (brighter/larger mark-
ers correspond to stronger intensity). The inset mode profiles correspond to the
experimentally observed modes, represented at 𝑘 = 0 µm−1. The red and blue
contrast illustrates the dynamic magnetization component (𝑚𝑦), indicating the
spatial distribution of each mode within the antidot lattice.
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Comparison Between Experiment and Simulation

As described earlier in this manuscript, the simulations were computed only for 𝑘 ∈ [0;
𝜋

𝑎
],

and the data were mirrored to reconstruct the full Brillouin zone. This approach reduces
computational time, as the Floquet boundary conditions naturally enforce band folding.
The simulated band structure is presented as a color map in figure 8.6-b), where the relative
intensity is encoded in both color scale and data point size (brighter/larger points indicate
stronger intensity).

By comparing the simulated and experimental dispersion relations, we observe a strong
agreement between both datasets, confirming the validity of our computational approach.
The profiles associated with each experimentally detected mode were analyzed at 𝑘 = 0

µm−1 for clarity. The first mode (~5 GHz) is localized at the edges of the antidots and is
highly sensitive to the exchange interaction strength. This mode exhibits minimal wavevec-
tor dependence. The two higher-frequency modes correspond to: i) a Damon-Eshbach-like
(DE-like) mode (~16 GHz) and ii) a Backward Volume-like (BV-like) mode (~12 GHz), previ-
ously identified in an earlier chapter. Both modes are accurately reproduced by simulations,
in terms of frequency positioning and relative amplitude.

However, a fourth mode (~8 GHz) is detected in BLS but does not clearly correspond to
any visible feature in the simulations. Its nature and origin remain unclear. One possibility
is that it may correspond to a computed mode near 10 GHz, whose profile is also shown
in figure 8.6. While this hypothesis appears reasonable—since the amplitude of the experi-
mental mode is comparable to the simulated branch—we cannot fully confirm this interpre-
tation. The unexpectedly low frequency of this mode remains unexplained. Nonetheless,
the overall agreement between experiment and simulation is remarkably strong, validating
our computational approach and providing a solid foundation for the subsequent numerical
studies on strain-induced effects in magnonic crystals.

Figure 8.7: Schematic representation of the sample in the direct space and in the reciprocal
space.
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8.2.2 Effect of static strain on magnonic crystal
Previous studies have demonstrated that applying strain to control static magnetic modes
is an efficient method for tuning spin wave frequencies. Both numerical simulations and
experimental results have confirmed that strain-induced modifications lead to significant
frequency shifts of various spin wave modes. The modes observed in FMR at 𝑘 = 0 µm−1

correspond to the initial points of dispersion curves at the Γ point of the reciprocal space
(see figure 8.7). This implies that the entire magnonic band structure should be affected by
static strain, leading to a global shift of the magnonic branches.

Our initial plan was to perform BLS measurements on the same sample previously stud-
ied using FMR. However, we encountered significant technical challenges when switching
to BLS. The sample structure consisted of a 20 nm thick antidot array deposited on Kap-
ton®, a polymer substrate that was glued onto a piezoelectric substrate. While Kapton® is
widely used for flexible electronics and strain experiments, its strong acoustic signature in
BLS spectra posed a major issue.

As shown in figure 8.8 , we performed BLS measurements on an antidot array deposited
on Kapton®, using two different configurations: one in a magnon-detection configuration
(red spectrum), where a half-wave plate was used to isolate the magnetic signal, and an-
other in a phonon-detection configuration (black spectrum), where the acoustic phonon
signal was directly measured. The results reveal that both spectra exhibit similar features,
indicating that the strong phonon background completely masks the magnetic signal, even
when using optical polarization filtering. Although the magnon-sensitive configuration at-
tenuates the phonon signature, the residual acoustic contribution remains too dominant,
making it impossible to reliably extract small frequency shifts due to strain.

Figure 8.8: BLS signal obtained on nanostructures deposited on Kapton. The black spectrum
show the signal in the phonon analysis configuration while the red spectrum
show the signal obtained in the magnon analysis configuration.

Another limiting factor is the low thermal resistance of polymer substrates, which re-
stricts the laser power that can be used in BLS experiments. This results in extremely long
acquisition times, making the measurement process impractical. To mitigate these issues,
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several alternative approaches were considered. One option was to increase the magnetic
layer thickness to at least 200 nm, which would enhance the magnetic signal relative to
the substrate’s acoustic background. However, thicker films exhibit lower strain transmis-
sion, reducing the effectiveness of strain-induced magnon tuning. Another option was to
replace the polymer substrate with a ferroelectric material, allowing direct deposition of
the nanostructures onto a rigid piezoelectric substrate. This would eliminate the phonon
noise from Kapton® and enable a clearer magnetic signal in BLS spectra. Unfortunately,
such samples could not be fabricated within the timeframe of this PhD.

Given these challenges, we opted to focus on numerical simulations to investigate the
effect of static strain on magnonic crystals, which is discussed in the following section.

8.2.3 Numerical Study of Magnonic Crystals on a Ferroelectric
Substrate

Using a ferroelectric substrate in order to control the magnonic branches has been dis-
cussed for a few years but has never really been realized experimentally nor numerically.
Using our numerical model we can now easily see the effect of an heterogeneous strain field
in complex structures. For this study we numerically decided to simulate an antidot with
magnetic properties close to what can be found in the literature for CoFeB alloys that tend
to be more magnetostrictive than NiFe alloys. This magnonic crystal is deposited on top
of a PZT substrate which is not numerically used for its piezoelectric properties but for its
mechanical properties. Indeed, even though it is possible to easily apply a real voltage with
these simulations with Comsol’s AC/DC module, we decided to only apply an artificial uni-
axial strain on the substrate. The reason for this is that adding another level of complexity
with a third module increases the computing time for probably not much added value to the
results. The geometry has a period 𝑎 = 400 nm and holes diameter 𝐷 = 160 nm. We limited
the study to uniaxial strain in the range 𝜀 = [0% − 0.2%] applied to the substrate which
corresponds to the typical elastic range of metals (above this value the antidot would be
plastically deformed) and which can be realistically reached using ferroelectric substrates.

CoFeB PZT

𝜈 0.28 0.3
𝐶11(GPa) 250 135
𝐶12(GPa) 100 68
𝐶44(GPa) 75 22

𝛾 (rad.Hz.T−1) Ms(𝐴.𝑚−1) 𝐴(J.𝑚−1) 𝜆(×10
−6
)

1.88 × 10
11

10 × 10
5

10 × 10
−12

20

Table 8.4: Mechanical and magnetic properties of the materials composing the sample

As for the previous chapter study, the magnetic features are calculated in the unit cell
represented in figure 8.9-a) at the center of the 3 × 3 geometry. For the whole study the
magnetization is saturated along the 𝑥-axis thanks to an external magnetic field of 50 mT.
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The mechanical properties are computed in the entire 3 × 3 cell represented in figure 8.9-
b). The color mapping represents the 𝜎𝑥𝑥 and 𝜎𝑦𝑦 components of the stress tensor after
application of a uniaxial strain of 0.2% (0.1% on each face of the substrate) along the 𝑥-axis as
represented by the wide arrows. We can see that the stress is quasi uniform in the substrate
as it is a continuous media and we can especially see that the 𝜎𝑦𝑦 component of the stress
tensor is close to 0 GPa even if the 𝜀𝑦𝑦 is not 0 due to the conservation of the volume of the
solid. Nonetheless, due to the presence of the holes, a 𝜎𝑦𝑦 stress is induced in the structure
layer leading to a maximum value of 180 MPa in the border of the holes. Figure 8.9-c) show
the average value of the 𝜀𝑥𝑥 and 𝜀𝑦𝑦 of the strain tensor in the magnonic crystal volume. As
mentioned the conservation of the volume lead to a non 0 𝜀𝑦𝑦 strain We can also observe that
as the strain is applied on the substrate and because we have a mechanical contrast between
the substrate and the nano patterned film, the average strain in the magnonic crystal is not
0.2% but closer to 0.17%. Similarly, the average stress tensor main components are plotted
in figure 8.9-d). As mentioned earlier the average 𝜎𝑦𝑦 is different from 0 GPa thanks to the
holes presence, however it is clear that this value is almost insignificant next to 𝜎𝑥𝑥 and
will not play a great role in the band shifts.

For each applied strain, we used the same method use in the previous section for the
magnonic band calculation. As the spin wave behavior vary depending on their propagation
direction and the magnetization direction we decided to draw inspiration to the electronic
band structure representation and to simulate how the spin wave evolve across the First
Brillouin Zone (FBZ) between the four high symmetry points represented in figure 8.10-a).
Using the frequency domain method we simulated “pseudo-BLS” spectra (shown in figure
8.10-b)) at those symmetry points in absence of strain (black) and at 0.2% of uni-axial strain
(red). The peculiar vectorial nature of spin renders very different the 𝑋 and 𝑌 symmetry
points that would be identical for electronic or phononic band structures for example. We
can see that at the X point the spin wave response is very close to the behavior at the Γ point
in the center of the FBZ forecasting almost no magnonic effect in the case where ⃗

𝑘 ∥ �⃗� .
As opposite, the Y and M symmetry points present spectra very different from the Γ one
which make them a lot more interesting for magnonic purpose.

Comparing the spectra at 0% and 0.2% of strain we observe a clear shift of the spin wave
modes in the four symmetry points. Similarly to what has been shown in the previous
chapter, the modes are not all shifted the same way, which is made clear by looking at the
first two modes of each spectra. The modes profiles associated to the spectrum Γ at 0% of
strain are represented in figure 8.10-c). It is quite clear that some of these modes can be
grouped by family as their spacial profile are very similar. This is the case of the modes
between 8 GHz and 12 GHz and those between 12 GHz and 15 GHZ. Some of these modes
are very close in frequency meaning that they would probably overlap in real BLS spectra
that have larger spectral with than the calculated ones. It is also interesting to see that there
is a progressive evolution of the spatial profile of each consecutive mode.
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8 Spin wave dispersion

Figure 8.9: a) Equilibrium configuration of the magnetization calculated for the unit cell
(delimited by dashed lines). This configuration has then been repeated to a 3 × 3
cell to show the perfect periodicity of the magnetization. b) 𝜎𝑦𝑦 (top) and 𝜎𝑥𝑥

(bottom) components of the stress tensor calculated in the 3 × 3 cell for 0.2%

of uniaxial strain applied on the substrate. Associated average c) strain and d)
stress in the magnonic crystal unit cell.
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Figure 8.10: a) Representation of the first Brillouin zone (FBZ) showing the simulated 𝑀 −

𝑌 − Γ − 𝑋 − 𝑀 − Γ path. b) Simulated spectra at 0% (black) and 0.2% (red) of
applied strain at each high symmetry point of the FBZ. c) Representation of the
modes profiles calculated at the Γ point for the unstrained magnonic crystal.

Using the eigenfrequency solver we calculated the modes frequency when moving con-
tinuously from each symmetry point to an other. The path taken is 𝑀 − 𝑌 − Γ−𝑋 −𝑀 − Γ

and is represented by the arrows in figure 8.10-a). The results are plotted in figure 8.11-a)
in the case of the unstrained magnonic crystal and in 8.11-b) in the case of 0.2% of applied
strain. The dispersion diagrams show clearly that some propagation direction are less suit-
able for magnonic effects. This is the case for the Γ − X direction we mentioned, as we can
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observe very few frequency changes for the spin wave in this part of the diagram. We can,
however, see strong changes in the modes intensities, meaning that some of the small mode
observed in Γ become very prominent in X and vice versa. The same behavior can be seen
in the M− Y direction, which is equivalent to the X − Γ direction but shifted at the border
of the FBZ. This can be explained by the fact that there is often a dipolar coupling between
each nanostructure of a magnonic crystal meaning that the spin waves can propagate in
long range trough the dipolar field thanks to small changes of the latter induced by the spin
precession . However, in the case where ⃗

𝑘 ∥ �⃗� the propagation direction is perpendicular
to the precession cone plane which is not optimal for taking advantage of the dipolar field.
This is confirmed by the Y − Γ and the X −M directions corresponding to ⃗

𝑘 ⟂ �⃗� where
the frequency and the intensity of the mode are very dependent on the wave vector. The
M− Γ direction is an hybrid of X −M and Y − Γ as the wave propagation direction forms a
45

◦ angle with the magnetization, and it is possible to see some similar features with those
two regions. It is important to mention that most of the experimental work found in the
literature only focus on the Y − Γdirection for practical reasons. Indeed, the BLS technique
is hard to adjust to other directions as they necessitates to rotate the direction of the applied
magnetic field, meaning that the electromagnet ends up obstructing the incident beam. The
use of the permanent magnets of our setup would prove to be helpful for this specific type
of study which will be performed in future work by the team.

By comparing the results at 0% and 0.2% of strain we easily recognize the same type of
band structure with a shift of the magnonic branches. In parallel to what was observed in
the simulated spectra, we can clearly see a difference in the frequency shit of the different
modes. The difference is especially visible when comparing the first two modes in the Γ − X

region, as the first mode is only slightly affected by the strain while the second one seems
to be the most affected. As a results, the bandgaps between the spin wave modes are not
only shifted, but also changed in size. This as been quantified by looking at some of the
bandgaps that we identified by the colored areas in figure 8.11-a). The same simulations
have also been performed for in between values of applied strain to see the progressive
evolution of the bandgaps size. Figure 8.11-c) shows that none of the bandgaps stay still
while applying strain. Thanks to the applied strain up to 0.2% we manage to change the size
of the bandgaps of a few hundreds of megaHertz, and even 1 GHz for the purple bandgap
that seems to be especially sensitive of the energy of the system. It is also interesting to
note that positive and negative change of the bandgap size can be observed corresponding
respectively to an opening or a closing of the gap. Such behavior could be observed using a
static field to change the magnetic system energy (the effect would be slightly different due
to the heterogeneity of the strain field), however, what makes this study remarkable is that
the use of voltage induced strain is both very energy efficient and compact for significant
changes in the band structures [17].
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8.2 Magnonic crystal dispersion

Figure 8.11: a) Magnonic band diagram simulated on the unstrained crystal. The colored
rectangles represents the considered bandgaps. b) Same diagram simulated for
the crystal strained at 0.2%. The relative intensity of the calculated modes is
encoded by the brightness and the size of the plotted data. c) Bandgap size for
various strain representing the same bandgaps shown in a).
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Figure 8.12: a) Dispersion diagram simulated for the Γ − Y direction of the FBZ. The legend
corresponds to the period of the array. b) Scheme of the array configuration for
a period of 150 nm (left) and 300 nm (right). The center of the scheme represents
the simulated equilibrium configuration of the magnetization in both cases.

8.2.4 Numerical study of magnonic crystals deposited on a polymer
substrate

The use of rigid substrate like in the case of the previous study is common and the most
suited for devices. However, this kind of substrate is very limited in terms of maximum
strain reachable, due to their brittleness and due to the strain transmitted to the magnetic
object that lead to the risk of creating cracks. Choosing a polymer with a high mechanical
contrast with the magnetic film could solve both these issues in the case of space nanostruc-
tures like magnetic dots [18, 19, 20, 21]. For this study we decided to use the same magnetic
material and to simulate square magnetic dots with dimensions 150 × 150 × 20 nm3. In a
first step, before considering applying strain, we started to artificially separate the nanos-
tructures, passing from a continuous film (nanostructures linked together) to completely
separated and decoupled nanostructures. We only focus on the Γ − Y direction as we saw
that it is the most suited direction to observe magnonic branches.

Figure 8.12-a) shows the evolution of the magnonic band structure with the period of the
array. The magnetization is in each cases saturated along the 𝑥 direction using a 150 mT
magnetic field. The first diagram show the case of a period of 150 nm which correspond
to a case where all the structures are linked as represented on the scheme bellow. The
simulations show multiple modes which are joined at the center and at the border of the
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FBZ. This “zigzag” band structure is in fact logical and completely expected as it reproduces
exactly the behavior of the continuous film DE-mode when the branches are unfolded.

As we start separating the dots, one can immediately see some change in the band struc-
ture. Indeed, looking at the 151 nm and 160 nm periods we start seeing gaps appearing
between the branches and shift of other modes. The more we continue separating the
structures the less they are coupled together as we can see on the 200 nm period where
the magnonic branches starts to flatten. Ultimately they become too distant to interact to-
gether and the dispersion diagram becomes completely flat as represented for the period of
300 nm. In this last case, we found some quantized spin wave modes in the section of dots.

One can see that the dimension of the array plays a big role, especially in the case of
low thicknesses, and quickly transform a completely coupled array of dots to a an array
of completely isolated dots, which also can we observed on the static configuration. It is
of course not possible to control experimentally the period of a magnonic in this manner.
However, the concept of spacing the dots in a specific geometry is quite feasible and could
be achieved using very soft polymers like PDMS. Current work is lead in the team to per-
form such experiments on PDMS substrates (polydimethylsiloxane), which has a very low
Young’s Modulus (𝑌 = 750 kPa, 𝜈 = 0.49 ) compared to the metals. With such materials,
it could be possible to reach up to 50% of strain without damaging the array and the sub-
strate, if we manage to obtain good adhesion between the metal and the polymer [17]. This
approach would be even more interesting than just changing the period as the direction of
the applied strain with respect to the magnetization orientation would also have an impact
on the dispersion diagram.

Finally, we simulated the dispersion diagrams in the case where the uniaxial strain is
applied along the 𝑥-axis and in the case where it is applied along the 𝑦-axis, while still
saturating the magnetization along the 𝑥 direction on the structure with a 200 nm period.
Figure 8.13 summarize the results in both cases.

The top view of the starting geometry is represented on the left with the strain on the
substrate (which is equal to 0 as we start at 0% of strain) and with the static magnetization
configuration which is saturated along the 𝑥-axis. The final object for 30% of strain is
represented on the top right part of the figure. We can observe on the perspective view
that the 𝜀𝑦𝑦 component of the strain field is, as expected, 0.3 in the substrate but equal to
0 in the magnetic dot. Indeed the mechanical contrast between the two materials is too
high to transmit any strain from the polymer to the metal, meaning that the magnetic layer
would not be damaged in real experimental conditions. This also means that the change
in the spin wave behavior is, this time, not due to magnetoelastic effects but due to purely
geometric effects. On the top view we can see a clear elongation of the substrate along the
𝑦 direction and a contraction along the 𝑦 direction. This leads to two consequences. Indeed
, the contraction leads to a decrease of the distance between the dots along the 𝑥-axis which
strengthen the magnetization (which can be seen on the top view), leading to an increase
of the magnetic modes frequencies. On the other hand, the elongation leads to a increase
of the distance of the nanostructures along the 𝑦-axis, which decreases the interactions
between the dots and leads to a flattening of the dispersion diagram. The exact opposite
happens when the strain is applied along the 𝑥 direction (bottom). The resulting object of
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the 30% strain is represented on the bottom right, where we can see on the perspective view
that the 𝜀𝑥𝑥 component of the strain has exactly the same profile as the 𝜀𝑦𝑦 component on
the top right object. The top view shows that the elongation and contra contraction are
this times inverted. As a result, as the the dots are closer along the 𝑦 axis and further away
along 𝑥 , the array of dots is starting to behave like an array of isolated nanowires oriented
along the 𝑦-axis. This can be seen on magnetization static configuration represented on the
top view where we can see that the external field is no longer enough to saturate properly
the magnetization that wants to rotate along the 𝑦 direction. This leads in the decrease of
the main magnonic branches frequencies (bottom dispersion diagrams). At the same time,
as the dots are closer along the 𝑦-axis, their dipolar interaction is increase, leading to larger
magnonic branches.

Figure 8.13: Dispersion diagram calculated for 0%(left), 15% (middle) and 30% (right) of
strain applied on the PDMS substrate along the 𝑦 direction (top) and the 𝑥 di-
rection (bottom). The colors represent the strain values and the 𝑚𝑥 component
of the magnetization.

This work shows that using strain for spin wave control can be done in multiple ways and
lead to different behaviors depending on the sample geometry, the nature of the substrate
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8.2 Magnonic crystal dispersion

and the type of applied strain. We have also shown thanks to simulations that it is possible
to have a significant impact on the spin wave behavior by strain induced magnetoelastic
effects as discuss throughout this whole manuscript, but also by strain induce geometrical
effects, which is a rich field of research that deserves to be further explored.
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This chapter examines magnon-phonon interactions, a growing focus in the magnetoe-
lastic field [1, 2, 3, 4, 5, 6, 7]. Initial BLS measurements on magnetic films on silicon were in-
conclusive due to experimental limitations, such as the narrow anticrossing gap in materials
like Ni60Fe40 and CoFeB, and the in-plane polarization of Love phonons, which are difficult
to observe using BLS. Simulations on a Ni80Fe20/SiO2/Si system with an adjusted magne-
toelastic constant revealed a small coupling gap between BV magnons and Love phonons.
Increasing the magnetoelastic constant enhanced this gap, suggesting materials like FeGa or
Terfenol-D could improve detection. The chapter also explores how coupling changes with
the angle between magnetization and wave vector and investigates strain control to shift
magnon-phonon interactions. Finally, coupling was observed in bi-component magphonic
crystals, though not in mono-component structures, highlighting the need for further re-
search in this complex area.
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9.1 Coupling in unstrained continuous films

9.1.1 Experimental limitations and motivation for simulations
This last chapter is dedicated to the magnon phonon interaction, which importance is grow-
ing more and more in the magnetoeslatic field community. We initially carried out a series
of BLS measurements in order to observe such coupling inside continuous magnetic films
deposited on Si substrate. However, the lack of resolution of our experimental setup has
limited our capability of measuring such sensible phenomenon. The first limitation is a
physical one. Indeed, the magnon-phonon coupling is characterized by an anti-crossing
between the magnon branches and the phonon branches [8]. The more the material is
magnetoelastic the wider is the anti-crossing gap [3, 13, 9, 11, 12]. Nonetheless, for com-
monly used materials likes Ni60Fe40 or CoFeB this gap is less than 0.5 GHz. If the modes are
too broad (as in our case), it becomes very difficult to observe any mode repulsion between
magnons and phonons, even by fitting the BLS spectra. Another physical issue arises from
the nature of the phonon that can couple with magnons. The mode that is known to inter-
act well with the BW-magnon in the accessible range of energies and wave-vector by BLS
is the Love phonon one, which is ironically also difficult to observe by the BLS technique
as its polarization is purely in-plane and thus do not generate any ripple effects needed for
the inelastic backscattering of light of opaque materials [14]. The only way of seeing them
is at the anti-crossing region where the Love acoustic wave transitions from acoustic to
magnetic. Seeing the appearance of a mode close to the magnon is hence a clue that a cou-
pling occurs, but as mentioned, the width of the spin wave mode can completely cover this
new mode [8]. In some cases it is possible to also couple the spin wave with the Rayleigh
acoustic mode. This coupling is too small to be observed in common configurations (DE
and BW) however the gap size is maximum when the magnetization direction and the wave
vector form a angle close to 45

◦ [15]. Unfortunately in most cases we could not managed to
make these two modes to cross because the spin wave frequency is higher than the acoustic
waves in the whole wave-vector range accessible by BLS.

9.1.2 Identifying magnon-phonon coupling via simulations
We decided to numerically look for this kind of coupling by simulated the same thin film
composed like Ni80Fe20/SiO2/Si as in the previous chapter. However, even is the permalloy
is supposed to be non magnetostrictive we decided to fix its magnetoelastic constant to
𝜆 = 2 × 10

−5, a value closer to reality, as it is indeed very difficult to obtain Ni80Fe20 with
strictly zero magnetostriction [16]. Contrary to the situation where magnetic modes can be
controlled by strain, the magnetoelastic energy in this case is not strong enough to allow
for the observation of significant coupling between the magnetic and elastic components.
Indeed, we recall that the energy term is expressed as:

𝐹𝑚𝑒 = 𝜀
𝑒𝑙
∶ 𝐶 ∶ 𝜀

𝑒𝑙
= 𝜀

𝑒𝑙

𝑖𝑗
𝜎𝑖𝑗 (9.1)

and only affects the magnetic behavior when the object is subjected to strain. In order to
properly compute this effect it is necessary to modify the solid mechanics equation in order
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Figure 9.1: a) Simulated dispersion diagram showing both elastic (blue) and magnetic (red)
modes for a Ni80Fe20/SiO2/Si thin film with a magnetostriction constant of 𝜆 =

2×10
−5. The backward volume spin wave mode (red) remains nearly flat, whereas

the Rayleigh, Love, and Sezawa acoustic modes (blue) exhibit a strong wave vec-
tor dependence. The color transition near 10 GHz suggests a magnon-phonon
hybridization region, where spin waves and elastic waves interact. b) Effect of
magnetostriction on the coupling region. Simulations with different values of
the magnetostriction constant (𝜆) illustrate how increasing magnetoelastic cou-
pling alters the dispersion relations. Higher values of 𝜆 lead to stronger mode
repulsion and more pronounced hybridization effects in the magnon-phonon
interaction zone.

to add the magnetic strain 𝜀
𝑚 such as the elastic strain can be written 𝜀
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(9.2)

Under these conditions, the acoustic waves can be influenced by the spin wave preces-
sion and vice versa. This means that the surface oscillations generate local stress (and strain)
via indirect magnetoelastic effects, which affect the spin wave precession. In turn, In turn,
this precession generates local stress via direct magnetoelastic effects, influencing the sur-
face mechanical oscillations. The simulations presented in figure 9.1-a) show the crossing
between the BV magnon and the Sezawa, Love and Rayleigh phonons with an external mag-
netic field of 100 mT. The color of the plot points is indicative of the elastic aspect in blue
and magnetic aspect in red of each mode. Among the three acoustic waves, it is clear that
the Love acoustic mode interacts with the spin wave, as evidenced by the repulsion between
the two branches. In this configuration, the Sezawa mode appears to show no interaction,
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while the Rayleigh mode is only very slightly influenced by the BV mode. The Love/BV
gap, although relatively small, has a frequency spacing of approximately 0.4 GHz. In con-
trast, experimental spectra can extend up to 2 GHz wide, or even wider depending on the
damping characteristics of the material. This significant width can complicate the obser-
vation of coupling between the modes, making it an extremely delicate task. To enhance
the visibility of this coupling and achieve a greater gap, it is essential to select materials
that possess higher magnetostriction constants. This necessity is illustrated in the simu-
lation shown in figure 9.1-b), which highlights how different materials can influence the
coupling behavior. Indeed, figure 9.1-b) shows the evolution of the gap formed by the cou-
pling between the Love and BV waves when the magnetoelastic constant is varied. We can
clearly observe that when 𝜆 = 0, no coupling occurs, demonstrating that this phenomenon
is solely attributed to magnetoelastic effects. As the magnetoelastic constant increases, the
gap widens in a linear manner, indicating that this coupling could be significantly easier
to measure using materials known for exhibiting giant magnetostriction constants, such as
FeGa alloys or Terfenol-D. Reports indicate that FeGa alloys can achieve values of approx-
imately 200 × 10

−6 [17, 18], while Terfenol-D can reach values around 1000 × 10
−6 [19, 20].

9.1.3 Angular dependence of coupling

Furthermore, as previously mentioned, the coupling depends on the spin wave propagation
configuration and it is interesting to study how the coupling between the magnons and the
Love and Rayleigh evolve with respect to the angle between the magnetization direction
and the wave-vector [1, 7]. This angle dependency have been simulated and the results
are presented in figure 9.2. In practice, we varied the angle of the applied magnetic field
between 0 and 90° relative to the 𝑥-direction, without changing the propagation direction
of the spin waves being probed. Since the layer lacks any anisotropy (shape or otherwise),
the static magnetization aligns along the magnetic field direction. Under these conditions,
we probe DE-type waves at 0° and BV-type waves at 90°. In figure 9.2-a), we represented the
obtained dispersion of the spin waves and the acoustic ones (Love and Rayleigh waves). The
dashed red curves represent the dispersion in each cases without coupling (i. e. obtained
with 𝜆 = 0).

We first observe that the only waves affected by the angle of the applied magnetic field
are obviously the magnetic modes, or at least for 𝜆 = 0. As expected, the spin waves pro-
gressively evolve from the backward behavior to the Damon-Eshbach behavior and crosses
the phononic branches at increasing frequencies. The thick dots represent the portion of
the dispersion curves near the crossing between the magnon and phonon branches with
the coupling phenomena taken into account in the simulations, and their color once again
gives indication on the elastic (blue) or magnetic (red) behavior of each mode. One can see
that the anti-crossing is extremely dependent on the angle for both the Rayleigh and Love
waves. Indeed, in the case of the Love mode, the anti-crossing gap size is maximum at 0◦

(BV) and progressively decreases until 45◦ where the gap is almost entirely closed. Above
45

◦ the gap starts to increase again until reaching 90
◦ (DE) which has the second largest

gap. In the case of the Rayleigh acoustic wave the exact opposite happens.
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9.1 Coupling in unstrained continuous films

Figure 9.2: a) Numerically calculated dispersion relations for different angles between the
magnetization direction and the wave vector. The wave modes are color-coded
based on their elastic (blue) or magnetic (red) nature. The Love and Rayleigh
acoustic modes are indicated, while multiple spin wave branches interact with
them at specific frequencies, leading to magnon-phonon coupling regions (white
areas). The angular dependence of these interactions is highlighted on the right.
b) Relative bandgap size evolution for the Love and Rayleigh mode interac-
tions as a function of the propagation angle. The bandgap size varies non-
monotonically, with Love modes (red) exhibiting maximum coupling at 0° and
90°, while Rayleigh modes (blue) dominate around 45°. This behavior empha-
sizes the strong anisotropy of magnetoelastic interactions in the system.

At 0◦ the gap is initially closed and increases until reaching 45
◦ which corresponds to the
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largest gap observed for the Rayleigh. Above 45
◦ the gap decreases until it closes entirely

again at 90◦. These gap variations are shown in figure 9.2-b), where two opposite trends can
clearly be observed. Overall, the gap formed between the spin waves and the Love wave is
larger than the gap formed with the Rayleigh one. It is worth mentioning that measuring
the size of this kind of gap is not ideal, as the two closest points are located at different
wave vectors, causing the gap to be tilted. Because of this it is not meaningful to think in
terms of frequency gap. Instead we chose to plot the gap size in pixels measured on the
graph picture normalized by the largest gap (Love gap at 0◦). This approach may not be the
most rigorous but still give us insights on the relative band-gap size.

In order to interpret this angle dependency, our first intuition relied on the polariza-
tion of each wave which would make sense in the backward case as the magnon and Love
have approximately the same polarization, while the Rayleigh phonon have a polarization
perpendicular to that of the magnons. However, in the DE case, the opposite should be
observed, which in not the case according to our simulations. According to the work of
Wang et al., [6] the coupling strength is controlled by the angular momentum of chiral
phonons. Other authors like evoke a high dependence of the sense of precession (right-
handed or left-handed) which is at the origin of the non reciprocal coupling [1]. A case of
the latter phenomenon will be illustrated in the next section. This non reciprocity makes
complex and non-trivial the interpretation of the coupling observed in figures 9.2-a) and
9.2-b), that have been obtained for positive angles between (⃗𝑘 and �⃗�). In order to further
understand this phenomena we plan in the future to realize complementary simulations,
especially simulations involving magnons and phonons propagating in opposite directions.

9.2 Elastic control of the magnon-phonon interaction

9.2.1 Strain control of the coupling in continuous films
The coupling observed previously rely on magnetoelastic effects naturally present in the
material. In addition to this effect, we can consider applying an additional static strain to
shift the magnonic band structure while keeping the acoustic band structure unchanged.
This approach could potentially enhance the interaction between the two systems and allow
for further investigation into their coupling behavior. This method provides the opportu-
nity to manipulate the frequency at which the magnon-phonon interaction takes place. By
applying additional static strain, we can effectively shift the resonance conditions, thereby
enabling more precise control over the interaction dynamics between the magnons and
phonons. Moreover, if the applied saturating magnetic field is sufficiently small (i. e. lesser
than the induced magnetoelastic field), it becomes possible to tune the direction of the mag-
netization by applying elastic strain. This means that one could gradually transition from
BV configurations to DE configurations, providing a new degree of freedom for exploring
the coupling effects between spin waves and acoustic waves.

In this regard, we simulated the previously studied continuous film, this time applying an
external magnetic field of 𝜇0𝐻 = 20 mT (instead of 100 mT) in the 𝑥-direction, along with a
magnetoelastic constant of 𝜆 = 40 × 10

−6. This adjustment was made to better visualize the
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9.2 Elastic control of the magnon-phonon interaction

Figure 9.3: a) Simulated dispersion diagram obtained on a strained Ni80Fe20 magnetic film at
0% (blue), 0.1% (green) and 0.2% (red) of applied strain. b) Same sample subjected
to compression (0.2%). The orange and light blue curves represent respectively
the dispersion diagram for a positive or negative angle formed between ⃗

𝑘 and
�⃗�.

coupling effects between the magnon and phonon modes. With this lower applied magnetic
field, it will be possible to change the direction of the static magnetization by applying a
negative strain (compression). Precisely, since 𝜆 is positive, a positive strain will create an
easy axis aligned with the direction of the applied strain, while a negative strain will induce
an easy plane that is perpendicular to the direction of the applied strain. If the strain is
sufficiently strong to counteract the external magnetic field, the magnetization will rotate
towards either the positive or negative 𝑦-direction.

In the initial phase, we focused on applying positive strain in the 𝑥−direction, as depicted
in figure 9.3-a). We examined three specific strain values: 0% (dark blue), 0.1% (green), and
0.2% (red). This application of positive strain significantly influences the magnetization
in the 𝑥-direction, leading to a noticeable shift of the BV magnon toward higher frequen-
cies. As a result of this strain application, we observed that the coupling between the Love
phonon and the magnon becomes slightly stronger, indicating an enhanced interaction be-
tween these two modes. Conversely, the coupling with the Rayleigh wave remains un-
affected and remains at zero throughout this process. This finding suggests that applying
positive strain is an energy-efficient method for controlling the frequency at which the cou-
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pling occurs. Following the analysis of positive strain effects, we then applied a compressive
strain of 0.2% along the 𝑥-axis. With the chosen magnetostriction constant (𝜆 = 40 × 10

−6)
and the applied magnetic field (𝜇0𝐻 = 20 mT) we manage to make the magnetization rotate
(the rotation is induced by the compressive strain) until it reaches equilibrium at a +50

◦ or
−50

◦ angle. As we still look at the waves propagating along the 𝑥−direction, the spin wave
do not exhibit a BV behavior, but a behavior close to the 45

◦ discussed in figure 9.2 of the
previous section. The results are shown in figure 9.3-b). As there is no preferential direc-
tion between +50

◦ (orange) and −50
◦ (light blue) we simulated both. It is interesting to see

that even though the absolute values of the angle formed between �⃗� and ⃗
𝑘 are the same,

we observe two different coupling behavior while the frequency evolution are identical.
This confirms that the complexity of the coupling mechanics is not trivial and that non-
reciprocal behaviors of the coupling occur depending on positive or negative precession
direction relative to the elastic wave polarization [7].

9.2.2 The peculiar case of magphonic crystals
Lack of coupling in mono-component magnonic crystals

Given the well-established magnon-phonon coupling in thin films, we initially expected
a similar interaction to emerge naturally within magnonic crystals, where periodic struc-
turing modifies both magnetic and acoustic wave propagation. However, our simulations
consistently failed to reveal any clear coupling between magnon and phonon branches in
the studied structures. This absence of interaction persisted across various geometries,
including nanowire arrays, suggesting a fundamental limitation in conventional mono-
component magnonic crystals. The most plausible explanation lies in the spatial localiza-
tion mismatch between the magnetic and acoustic modes, which prevents efficient coupling
and hybridization [4, 5]. The mode profiles of spin waves and phonons may not overlap
sufficiently within the periodic lattice, thereby hindering energy exchange and resonant
interactions.

Enhancing magnon-phonon coupling using bi-component structures

To circumvent this issue, we explored an alternative approach by simulating bi-component
magnonic crystals, where the unit cell contains two distinct magnetic materials instead of a
single homogeneous material [3]. This design eliminates the non-magnetic voids present in
traditional antidot or nanowire arrays, thereby increasing the interaction volume for both
wave types. As shown in figure 9.4, introducing a bi-component structure successfully
restores magnon-phonon coupling, evidenced by the presence of anti-crossing features in
the dispersion relations.

For these simulations, we selected CoFeB (matrix) and Ni80Fe20 (dots) as representative
materials, though we adjusted their magnetoelastic constants artificially to 𝜆1 = 10 × 10

−6

and 𝜆2 = 30×10
−6. to enhance the coupling effects. The analysis of the unstrained dispersion

diagram clearly demonstrates the presence of hybridized modes, where magnons in the
backward volume configuration strongly interact with a phononic branch corresponding
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to the Love acoustic mode in a continuous film. This result confirms that magnon-phonon
interactions can be engineered within magnonic crystals, offering new perspectives for
strain-mediated wave control in magnetoacoustic devices.

Strain control of magnon-phonon interactions

Furthermore, applying a uniaxial strain to the system selectively shifts the magnonic band
structure, while leaving the acoustic bands largely unperturbed. This unique characteris-
tic where strain can modify spin wave dispersion without significantly affecting phonon
modes creates opportunities to tune the coupling conditions dynamically, increasing the
likelihood of crossing and anti-crossing phenomena. Given the inherent complexity and
richness of the band structure in magnonic crystals, such tuning capabilities could pave
the way for novel strain-controlled hybrid magnon-phonon systems, which remain largely
unexplored.

Perspectives and future research directions

It is essential to highlight that the absence of observable coupling in mono-component
magnonic crystals does not imply that such interactions are fundamentally impossible. In-
stead, it underscores the need for a more systematic investigation of material choices, ge-
ometries, and excitation conditions. Magnon-phonon interactions are highly anisotropic,
meaning that their manifestation depends critically on magnetization orientation and prop-
agation direction, factors that could potentially reveal coupling in specific configurations
that were not explored in this thesis [1].

Future research should therefore aim to refine the design principles of magphonic crys-
tals, including investigations into alternative material systems, complex geometries, and
strain engineering strategies. By systematically optimizing coupling conditions, it may be
possible to unlock stronger and more versatile magnon-phonon interactions, paving the
way for next-generation strain-tunable magnetoacoustic devices.
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9 Magnon-phonon interaction

Figure 9.4: Strain-induced modifications in the dispersion of a bi-component periodic struc-
ture.The top schematic illustrates the bi-component periodic structure used in
simulations, consisting of alternating regions with different magnetostrictive
constants (𝜆1, 𝜆2) embedded in a non-magnetic matrix. a) Simulated dispersion
diagram at 0% strain, showing the interaction between elastic (blue) and mag-
netic (red) waves. The circled region highlights a specific coupling point be-
tween spin waves and acoustic modes. b) Simulated dispersion diagram at 0.2%
applied strain. The introduction of strain modifies the band structure, shifting
the coupling regions and altering the hybridization conditions. The circled re-
gion shows a displacement of the coupling point compared to the unstrained
case, demonstrating the tunability of magnon-phonon interactions through me-
chanical deformation.
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This chapter presents the conclusions of our research on magnetoelastic effects and the
strain control of spin wave dynamics, emphasizing the originality of integrating exper-
imental and numerical approaches. We developed a numerical method using COMSOL
Multiphysics®, successfully validating it through various experiments involving contin-
uous ferromagnetic films and nano-patterned structures. Our findings demonstrate the
potential to significantly influence spin wave frequencies through applied strain, partic-
ularly in magnonic crystals, revealing distinct mechanisms of magnetoelastic effects and
geometrical phenomena. Looking ahead, we aim to conduct experiments aligned with our
simulations, addressing challenges encountered during this thesis. Future work will explore
the induction of magnetic textures in multi-component geometries under strain, the effects
of mechanically curved objects on magnetization configurations, and the investigation of
nutation phenomena under strain.
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10.1 Conclusion
This work and more generally the research of the team focuses on magnetoelastic effects
and strain control of the spin wave dynamics. Tackling this field of research not only by the
experimental prism but also by the numerical approach made this work especially original
as it is very rarely done. This lack of numerical support in the field is indeed due to a lack of
tool for this type of study coupling the micromagnetism and the solid mechanics problems.
Developing the numerical method under Comsol Multiphysics® was in our sense the best
option as the solid mechanics physics was already incorporated inside the software, and the
latter is developed for such coupled studies. However incorporating the micromagnetism
formalism and making sure to correctly couple the equations was a task that needed metic-
ulous validation with experimental and theoretical models support. Our validation process
covered in a first step simple cases like continuous ferromagnetic films studied by FMR in
multiple configurations, followed by a strain test in situ which was perfectly reproduced by
the simulations and the macrospin model.Validation was also obtained on nano patterned
structures with and without strain. Those experiments showed us that it is possible to sig-
nificantly control the magnetic modes in a differentiated manner using a voltage applied
on a piezoelectric substrate. The experiments shown in this work are mainly obtained on
magnetostatic modes as some issues were faced on the sample signal in BLS spectroscopy.
Nonetheless a few experiments were lead with this technique on thin films and magnonic
crystal in order to validate the spin wave simulations performed using the Floquet-Bloch
periodic boundary conditions we incorporated. Overall, all the validations show very close
agreement between simulations, models, and experiments which lead us to use this tool
to simulated the behavior of the magnonic band structures of an antidot magnonic crystal
subjected to up to 0.2% of strain in the case of a regular rigid substrate. Those simula-
tions showed that it is conceivable to significantly change the spin wave frequencies at
0.2% of strain (which can be obtained by applying voltage on a ferroelectric substrate) and
to change consequently the magnonic bandgaps due to the differentiated mode frequency
shift. We also went up to 30% in the case of a magnonic crystal made of ferromagnetic dots
deposited on PDMS (polymer) substrate. This had the effect of changing the overall shape
of the crystal, leading to a change in the spin wave dispersion configuration. These two
numerical cases involve different mechanisms, as the first one involve purely the magne-
toelastic effects, while the second one relies on purely geometrical phenomena. Finally, we
saw that it is possible to simulated also the magnon-phonon coupling using our simulations
and that by using static strain, we manage to shift the frequency at which this coupling hap-
pens. This numerical model we developed is promising for future studies, which is why we
would like to address some perspectives for the future.

10.2 Perspectives
As discussed throughout this manuscript we plane to perform all the experiments on all the
simulations we performed in this work. Indeed, all that have been simulated was initially
thought to be performed experimentally. However, some sample issues, and not anticipated
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problems put a stop on the initial plan. We hope that after calibration of the interference
lithography setup I developed, it will be straightforward to design locally the samples and
to overcome the issues we faced during my PhD. This will be hopefully done during the
future PhD of Ulrich Leuga who will be following this work. I would like to share in these
perspectives some preliminary studies and work I have been a part of that were made pos-
sible using this numerical tool.

10.2.1 Magnetic textures induced by strain

Figure 10.1: Simulations of the equilibrium state of the magnetization in a 20 nm thick of the
bi component periodic structure under uniaxial strain (𝜀𝑥𝑥 = 0.2%) schematized
in the top left part of the figure with 𝜆1 = −2 × 10

−5 and 𝜆2 = 2 × 10
−5.

Through all this manuscript we focused on mono-component geometries for our experi-
ments and simulations. However, in the final part of chapter 9, we explore the potential
of bi-component magphonic crystals for magnon-phonon coupling. Beyond this concept,
we believe that an even more promising field lies in the manipulation of magnetic textures
through strain application in multi-component geometries. Indeed, the possibility of comb-
ing materials having positive and negative 𝜆 opens the possibility of inducing locally com-
pletely opposite behaviors in regard to the applied strain. Let us consider a bi-component
geometry initially magnetized along the 𝑥 direction and subjected to a uniaxial strain along
the 𝑥−axis. For the material with the positive magnetostriction the strain will make the 𝑥

axis an easy direction for the magnetization, while for the negative magnetostriction ma-
terial, the strain will create an easy plane for the magnetization perpendicular to the 𝑥 axis
(𝑦𝑧 plane). This will result in regions in space where the magnetization wants to point to-
wards the 𝑥 direction and others where the magnetization wants to align along the 𝑦−axis.

Figure 10.1 illustrates this effect. We chose to work with the typical Ni80Fe20 (cylinder
core) and CoFeB (matrix) alloys considered in this manuscript with 𝜆1 = −20 × 10

−6 and
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𝜆2 = +20 × 10
−6. The period is 𝑎 = 400 nm and the diameter of the core is 𝑑 = 180 nm.

A uniaxial strain of 0.2% is applied along the 𝑥-axis without any external magnetic field.
The competition between the core and the matrix behavior creates these regions in the core
where the magnetization is almost along the 𝑦 axis and regions in the matrix almost aligned
along the 𝑥 axis and in between regions where the magnetization is directed diagonally. As
the magnitude of ‖𝜆‖ increases, these effects become more pronounced.

Figure 10.2: Simulations of the equilibrium state of the magnetization in a 200 nm thick of
the bi component periodic structure under uniaxial strain (𝜀𝑥𝑥 = 0.2%) with
𝜆1 = −100 × 10

−6 and 𝜆2 = 100 × 10
−6. The color mapping on the left encode

the 𝑦 component of the magnetization for the top and bottom view of the unit
cell. The arrows on the right part show the configuration of the magnetization
inside the cylinder core.

Let us now consider the same object but with a thickness of 200 nm and 𝜆1 = −100 ×

10
−6 and 𝜆2 = 100 × 10

−6 subjected to the same strain. The larger thickness gives more
freedom for the magnetization to adopt stable configurations while the larger 𝜆 constant
amplifies the local magnetoelastic effects in the 𝑥 direction for the matrix and in the 𝑦

direction fore the cylinder core. As a result, the magnetization is fully aligned along the
𝑥 axis in the matrix as represented by the green color in figure 10.2, while in the core the
magnetization minimizes its energy by adopting a vortex configuration. This vortex can
be seen in the right part of figure 10.2 where the arrows represent the magnetic moments
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inside the cylinder core. On the top an bottom view of the color map we can see that the
magnetization go in opposite directions in the top and bottom faces in order to minimize
the magnetic energy of the system. This is only possible because the magnetoelastic field
acts as an anisotropy, meaning that there is no preferential direction between positive and
negative in the 𝑦-axis. This magnetic texture can be selectively induced or suppressed
through precise modulation of the applied strain. It is important to mention that in this
study we applied the strain directly on the magnetic object however in a real case the strain
would be transmitted from a substrate, which could lead to non negligible strain gradient
over the thickness depending on the material used and the thickness of the magnetic layer.
Nonetheless we would still expect the apparition of magnetic textures.

Figure 10.3: Simulations of the equilibrium state of the magnetization in a 20 nm thick of the
bi component nanowires array under uniaxial strain (𝜀𝑥𝑥 = 0.2%) schematized
in the left part of the figure with 𝜆1 = −100× 10

−6 and 𝜆2 = 10× 10
−6. The color

map on the right encode the 𝑦 component of the magnetization.

As a last example, we show the case of an array of bi-component nanowires (figure 10.3
made of the same materials as before (𝜆1 = −100 × 10

−6 and 𝜆2 = 100 × 10
−6). The array

chosen has a thickness of 𝑡 = 20 nm, a periodicity of 𝑎 = 600 nm and each nanowire
is 300 nm wide. The simple geometry makes things even more straightforward in this
case where the magnetization in the positive 𝜆 regions is aligned along the 𝑥 axis while
it is aligned along the 𝑦 direction the negative 𝜆 regions. In this case we imposed the
periodicity of the magnetization but is cannot exclude the possibility of having an anti-
symmetric configuration in the 𝑦−direction for consecutive nanowires. If we consider spin
waves propagating in this type of structure, we could imagine that the magnonic band
structure would be significantly altered by the application of elastic strain. Indeed, with
no strain, we would observe a typical band structure for a bi-component nanowire crystal,
similar to those studied by Wang et al. (see introduction of the manuscript). However, once
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a positive strain is applied, there would be substantial shifts in the bands corresponding
to the material whose static magnetization has switched. The opposite effect occurs under
negative strain. The band variations, on the order of 5 GHz, are noteworthy from a band
structure engineering perspective.

These three examples highlight the wide range of magnetic textures that can be induced
through elastic strain, provided the appropriate materials are selected for real-world ap-
plications. This could open new avenues for researchers studying magnetic textures and
domain walls, and even more so for the field of reconfigurable magnonics. These textures
could be switched “on” and “off” by controlling the voltage applied to a ferroelectric sub-
strate, for example, enabling dynamic manipulation of magnonic properties. As mentioned,
the case presented in figure 10.3 is particularly compelling because switching the mag-
netization direction directly affects the magnetic modes and spin wave frequencies. Re-
versing the magnetization in one material or the other would also result in non-reciprocal
changes in the magnetic band structures, due to the differing material properties. This can
be achieved by applying either positive strain (switching the negative 𝜆) or negative strain
(switching the positive 𝜆). [1, 2, 3, 4, 5, 6, 7, 8]

10.2.2 Mechanically curved objects

Figure 10.4: Mechanically bended nanowire. The color map encodes the 𝜎𝑥𝑥component of
the strain field.

The possibility of coupling the complex mechanical tests and micromagnetism inside our
simulations allow us to also study the case of mechanically curved nano-metric or micro-
metric objects. This topic is already under study in the context of the thesis of Maya Khelif
in the team who studies the magnetoelastic and shape effect of magnetic objects curved
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mechanically. An example is given in figure 10.4 where an initially flat nanowire is bended
mechanically. The bending test generates a gradient of stress over the thickness of the
object. The latter is thus subjected to flexion in the top surface (positive stress) and com-
pression in the bottom surface (negative stress). At the center of the nanowire exists a line
that is call the neutral axis where the stress is equal to 0 GPa.

As discussed in the previous section, the magnetostrictive material do not react the same
way to positive and negative strain and stress which mean that the magnetization can adopt
complex configurations if the the magnetoelastic coefficient is sufficient. This has been il-
lustrated by the simulations she performed in figure 10.4 where the use of a high magnetoe-
lastic constant forces the magnetization in perpendicular directions above and below the
neutral axis. In the case where 𝜆 = −100 × 10

−6 the magnetization is aligned along 𝑦 on top
and 𝑥 at the bottom of the wire (figure 10.4-a) while the opposite happens for 𝜆 = 100×10

−6

(see figure 10.4-b). This is a simple case that opens a lot of opportunities regarding strain
applied to flexomagnetism and curvilinear magnetism. [9, 10, 11, 12, 13, 14]

Figure 10.5: Magnetization configuration in the CoFeB bended nanowire for a) 𝜆 = −10 ×

10
−5 and b) 𝜆 = 10 × 10

−5. The color encode the 𝑚𝑥 component of the magneti-
zation.

10.2.3 Strain control of nutation
Nutation has been a subject of debate since a long time in the community since its formula-
tion as no irrefutable evidence of its existence have been shown. Nonetheless some groups
have been publishing some numerical results on this phenomenon and some others try to
measure high frequency signals that could be attributed to nutation. This phenomenon,
like precession, can be assimilated to the motion of a rigid body like a rotating spinner. In
addition to the precession motion , an other higher frequency oscillation can be supposedly
happening at very small amplitudes and at frequency in the sub terahertz regime (∼ 0.1− 1

THz). This additional motion can be formulated by adding a nutation term involving the
second time derivative of the magnetization in the LLG

𝑑�⃗�

𝑑𝑡

= − ⃗𝛾𝑚 × �⃗�𝑒𝑓 𝑓 + 𝛼�⃗� ×

𝑑�⃗�

𝑑𝑡

+ 𝜂�⃗� ×

𝑑
2
�⃗�

𝑑𝑡
2

(10.1)
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where 𝜂 is the nutation parameter (∼ 1ps). In the context of an investigation lead on
nutation in the team, we decided to implement this phenomenon into our numerical model
in order to confront it with a macrospin model. From this study we raised a few points that
are worth to be addressed.

Figure 10.6: a) Evolution of the magnetization over time showing nutation oscillations on
top of the precession motion. b) Calculated eigenmodes frequency with respect
to the nutation parameter.

Figure 10.6-a) shows the temporal simulation of the magnetization inside a continuous
film initially magnetized along the 𝑦-axis. At time 𝑡 = 0𝑠 a short excitation out-of-plane
is applied in order to initiate precession. As this precession motion starts, it is possible
to see very rapid oscillation that attenuate after a short time that are what we call the
nutation motion. It becomes evident that the presence of this term gives rise to new eigen
modes that we calculated using the eigen solver. The calculated modes with respect to the
nutation parameter have been plotted in figure 10.6-b). These six modes have been obtained
on a 20 nm thick Ni80Fe20 film saturated with an external field of 100 mT. The three lower
frequency modes are the uniform and two first PSSW associated with precession, while the
three higher frequency modes are the uniform and two PSSW associated with nutation.
We can see that for 𝜂 = 0 ps the nutation modes are diverging toward infinite frequency
meaning that only precession exist. As 𝜂 increases the nutation frequencies decreases. It is
also intriguing to observe that the precession frequencies are also affected by the nutation
parameter which has also been observed with the colleagues analytical model. This means
that if nutation do exist and if these results are correct, it would imply that the magnetic
constants measured without taking into account the nutation parameter are not exact and
only compensate its effect of the frequency. To go further we also calculated the effect of
strain on the frequencies and the nutation dispersion with 𝜂 = 1 ps.
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Figure 10.7: a) Simulated FMR frequencies of the precession uniform mode (blue) and the
nutation uniform mode (red) for 0% and 0.2% of uniaxial strain. b) Simulated
dispersion curve for the precession (blue) and nutation modes (red) in the DE
and BV configurations.

Figure 10.7-a) show the frequency with respect to the applied magnetic field (correspond-
ing to typical FMR measurements) at 0% and 0.2% of uniaxial strain along the direction of
the magnetization. We can see that the nutation and precession uniform modes evolve
approximately the same with the applied magnetic field. By applying strain we manage
to shift both modes by a few gigahertz meaning that the nutation is globally affected by
the magnetic energy of the system similarly to other usual modes. On the other hand, on
figure 10.7-b) we have calculated the dispersion of both modes in the DE and BV config-
urations. By comparing nutation and precession spin waves, it appears that the nutation
spin waves frequencies evolve completely differently. Indeed, in the BV configuration, the
frequency decreases faster than the precession spin waves. In the DE configuration, the
nutation dispersion show almost no change while the precession mode increases highly.

This behavior has still not be observe with BLS measurements, which explains partially
this debate subsisting concerning the existence of magnetic nutation

These perspectives we discussed in this last part of the manuscript allow one to foresee
a plethora of future experimental and numerical work around magnetoelastic coupling and
strain control of the magnetization dynamics in magnetic structures like magnonic crystals.
[15, 16, 17, 18, 19]
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material, allowing for the study of magnon dispersion and interactions in
thin films and nanostructure. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Experimental setup for Brillouin Light Scattering (BLS) measurements us-
ing a tandem Fabry-Pérot interferometer (TFP-2). (a) Schematic represen-
tation of the optical setup: a 532 nm laser is directed onto the sample, and
the backscattered light is collected and focused using plano-concave lenses.
A half-wave plate is used for polarization control. The collected light is di-
rected towards a Fabry-Pérot interferometer (TFP-2), which consists of two
interferometric cavities (FP1 and FP2) for high-resolution spectral analysis.
The photodetector records the signal. (b) Photograph of the actual exper-
imental setup showing the laser path and optical components.(c) Close-up
view of the sample holder, where the external magnetic field (�⃗� ) is applied
in a fixed direction. (d) Configuration allowing the in-plane rotation of the
sample by an angle 𝜑, enabling measurements at different orientations rel-
ative to the applied magnetic field. (e) Tilted configuration of the sample,
allowing control over the incidence angle (𝜃) of the laser, which influences
the detected wavevector of the scattered light. . . . . . . . . . . . . . . . . 90

5.7 Transmission curve illustrating the spectral selectivity of the Fabry-Pérot
interferometer (FPI). The peaks correspond to the resonant transmission
wavelengths at integer multiples of the cavity length (𝑛𝜆 and (𝑛 + 1) 𝜆 .
𝛿𝜆 represents the linewidth (FWHM) of the transmission peak, which de-
termines the spectral resolution of the interferometer. Δ𝜆 denotes the free
spectral range (FSR), the wavelength separation between two consecutive
transmission maxima. A high finesse Fabry-Pérot interferometer, charac-
terized by narrow linewidth (𝛿𝜆) and large FSR ( Δ𝜆), enables precise spec-
tral filtering, making it essential for applications such as Brillouin light scat-
tering (BLS) and high-resolution optical spectroscopy. . . . . . . . . . . . . 91
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5.8 Deep UV (DUV) lithography process and resulting nanostructures. (a) Sim-
plified schematic of the DUV lithography technique. A high-intensity light
source illuminates a transmissive mask containing the desired pattern. The
light is then focused and projected onto a photoresist-coated substrate through
an optical projection system. The exposure angle (𝜃) and the numerical
aperture of the system determine the resolution of the patterned struc-
tures. (b) Scanning Electron Microscopy (SEM) images of nanostructures
fabricated using DUV lithography. The images show arrays of antidots and
nanorings, demonstrating the capability of this technique to produce high-
resolution periodic patterns over large areas with excellent uniformity. . . 92

5.9 a) Basic principle of interference lithography. The incident laser beam is
split into two paths: one is directly illuminating the substrate, while the
other is reflected by Lloyd’s mirror. The superposition of these two beams
generates an interference pattern, which defines the periodic structure on
the photoresist. b) Photograph of the experimental interference lithogra-
phy setup, installed in the cleanroom at Université Sorbonne Paris Nord.
The image highlights the key optical components and their arrangement,
essential for achieving high-precision periodic nanostructures. c) Mechani-
cal design of Lloyd’s interferometer. This schematic illustrates the multiple
degrees of freedom in the system, including rotation (𝜑), tilt (𝜃), and verti-
cal translation (𝑧), which are crucial for fine-tuning the interference pattern
and optimizing the exposure conditions. d) Optical path and interference
mechanism. This diagram provides a detailed overview of the beam path in
the setup. A 355 nm Cobalt Zouk® laser is used as the coherent light source.
The beam is expanded using a short focal length lens and collimated to en-
sure a uniform interference pattern. The Lloyd’s mirror, positioned at 90° to
the substrate, creates an interference pattern by reflecting part of the beam
onto the photoresist-coated sample, enabling the fabrication of highly pe-
riodic nanostructures over large areas. . . . . . . . . . . . . . . . . . . . . 94
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5.10 Nanopatterns fabricated using the developed interference lithography (IL)
technique, with experimental and simulated results. The images show-
case various periodic structures obtained using IL, demonstrating the tech-
nique’s ability to generate well-ordered nanoscale patterns. (a–d) Com-
parison of experimental and simulated results for different nanopatterns.
Top row: Scanning Electron Microscopy (SEM) images of the fabricated
patterns. Middle row: Atomic Force Microscopy (AFM) images, providing
topographical details of the structures. Bottom row: Simulated patterns,
based on the interference of multiple laser exposures. The different pat-
terns include: (a) Nanowire (line) arrays, obtained with a single exposure.
(b) Dot arrays, formed by two perpendicular exposures. (c) Antidot arrays,
where periodic holes are structured within a continuous film. (d) "Lace"
patterns, created by superimposing multiple exposures at different angles.
(e) Simulated interference lithography patterns showcasing additional com-
plex structures that can be generated by varying the number of exposures,
angles, and periodicities. These simulations illustrate the potential of IL for
fabricating exotic nanostructures beyond simple periodic arrays. . . . . . . 96

6.1 a) Schematic illustrating the array of Ni80Fe20 antidot under investigation.
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in-plane angle between the applied magnetic field �⃗� and ⃗

ℎ𝑟𝑓 . b) A scan-
ning electron microscopy image depicting the studied array, which has a
periodicity of 400 nm and a hole radius of 90 nm. . . . . . . . . . . . . . . 100

6.2 FMR spectra recorded at different frequencies from the two studied arrays
(40 nm and 80 nm) with 𝜑𝐻 = 0

◦ (a-b) and 𝜑𝐻 = 45
◦ (c-d). The red arrows

in the 10 GHz spectra indicate the presence of a magnetostatic mode. The
amplitude of some spectra has been multiplied by a coefficient for clarity. . 101

6.3 Experimental (symbols) and numerical results (colormaps) are presented
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systems. The colors represent the relative power spectral density obtained
through micromagnetic simulations, while the symbols correspond to the
experimental data. A typical simulated spectrum (at 𝐻 = 220mT ) is shown
for each graph. In addition, a small sketch of the studied systems shows the
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𝑥-axis) obtained through micromagnetic simulations. The color coding rep-
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lated at 𝜑𝐻 = 0
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◦. . . . . . . 104
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6.5 a) BV-like mode measured by FMR at 0◦ and 45
◦ for the 40 nm sample. Spec-

tra where the resonance field was equal (12 GHz at 0◦ and 14 GHz at 45◦)
are shown to compare their intensity for an equivalent static configura-
tion. Mode profiles were calculated for this applied magnetic field (i.e., 200
mT). b) DE-like mode measured by FMR at 0° and 45° for the 40 nm sample.
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7.4 (a) Top view of the spatial distribution of the induced in-plane strains 𝜀𝑥𝑥

and 𝜀𝑦𝑦 inside the nanowires for a macroscopic applied strain of 𝜀𝑥𝑥 = 0.2%.
Cross-sections are shown on the right side of these strain maps. They were
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respond to a single pixel stretched along 𝑦 and serves as a guide for the eyes.
(b) Top view of the spatial distribution of the amplitude of the induced mag-
netoelastic field calculated in absence of applied magnetic field (‖‖
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‖
‖
‖
).
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8.6 a) Brillouin Light Scattering (BLS) spectrum measured in the Damon-Eshbach
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⃗
𝑘 ⟂ �⃗�)

)
at an applied magnetic field of 110 mT, for a wave

vector 𝑘 = 2.88 𝜇𝑚
−1. The experimental spectrum (gray curve) reveals mul-

tiple spin wave modes. The peaks were fitted using a superposition of
eight Lorentzian functions (dashed lines), with the resulting fit shown as
the shaded area. b) Comparison between experimental and simulated spin
wave dispersion. The red dots represent the BLS-extracted dispersion rela-
tion, superimposed on the simulated magnonic band structure (color map).
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Résumé
La straintronique magnétique est un domaine en plein essor, orienté vers le
développement de capteurs avancés et de technologies innovantes de trai-
tement et de stockage de l’information, en exploitant des systèmes magné-
tiques soumis à des contraintes mécaniques. Ce mariage entre mécanique
et magnétisme est rendu particulièrement prometteur grâce à la magnétoé-
lasticité, qui se traduit à la fois par une modification des propriétés magné-
tiques sous l’effet de déformations, et par l’apparition de déformations in-
duites par des variations de la configuration magnétique. L’objectif de ce tra-
vail est d’explorer l’évolution des fréquences propres des ondes de spin dans
des couches ferromagnétiques continues et dans des structures nanostructu-
rées périodiquement, appelées cristaux magnoniques, lorsqu’elles sont sou-
mises à des déformations. Cette étude est menée expérimentalement via les
techniques de résonance ferromagnétique et de spectroscopie par diffusion
Brillouin. En parallèle, un modèle numérique par éléments finis est déve-
loppé, intégrant de manière complète le couplage entre micromagnétisme et
mécanique des solides, pour pallier les limitations des logiciels classiques de
simulation micromagnétique face aux problèmes complexes liés aux essais
mécaniques. Les résultats montrent un contrôle efficace des fréquences et
des bandes magnoniques dans le régime élastique, ainsi que la possibilité de
prédire des couplages potentiels entre ondes de spin et ondes acoustiques.

Summary
Magnetic straintronics is a rapidly growing field aimed at developing ad-
vanced sensors and innovative technologies for information processing and
storage by leveraging magnetic systems subjected to mechanical strain. This
combination of mechanics and magnetism is particularly promising due to
magnetoelasticity, which manifests in two ways: changes in magnetic prop-
erties when the system is deformed, and the appearance of deformations
caused by changes in the magnetic configuration. The goal of this work
is to study the evolution of the eigenfrequencies of spin waves in continu-
ous ferromagnetic films and periodically nanostructured layers, known as
magnonic crystals, under mechanical strain. This is investigated experi-
mentally using ferromagnetic resonance and Brillouin light scattering spec-
troscopy. Additionally, a finite element numerical model is developed to fully
couple micromagnetism and solid mechanics, addressing the limitations of
conventional micromagnetic simulation software when dealing with com-
plex mechanical testing scenarios. The results demonstrate effective con-
trol over these frequencies and magnonic band structures within the elastic
regime, as well as the potential for predicting coupling effects between spin
waves and acoustic waves.
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