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Abstract

The exponential growth of textual data has underscored the importance of Information Ex-
traction (IE) as a crucial subfield of Natural Language Processing (NLP). This PhD thesis
advances the state of the art in IE, with a particular focus on the Arabic language and its
dialects, which present unique challenges due to their rich morphological structure, diacritic
variability, and dialectal diversity. The research is organized around three major contribu-
tions.

Firstly, we introduce the first neural joint information extraction system designed specif-
ically for Modern Standard Arabic (MSA). This model integrates BERT-based token encod-
ing with Conditional Random Fields (CRFs) for entity and event trigger identification, and
Feed Forward Neural Networks (FFNs) for relation and event argument classification. Our
model effectively navigates the complexities of Arabic morphology, setting a new benchmark
for IE performance in Arabic.

Secondly, the thesis explores Cross-Dialectal Named Entity Recognition (NER) in Ara-
bic. We construct comprehensive datasets for Egyptian, Moroccan, and Syrian Arabic di-
alects, and explore the transferability of NER models trained on MSA to these dialects in a
zero-shot setting. This approach significantly mitigates the challenge of limited annotated
resources, enabling broader application of NER across diverse Arabic-speaking regions.

Finally, we propose a novel framework for joint IE tasks, employing Differentiable Beam
Search on Graph Recurrent Neural Networks (GRNNs). This method tackles the issue of ex-
posure bias in sequence-to-sequence models, enhancing the model’s ability to capture and
leverage interdependencies between entities, relations, and events. The approach demon-
strates robust performance across multiple languages, including Arabic, providing a versatile
tool for multilingual IE.

This thesis not only advances Arabic NLP by addressing its specific linguistic challenges
but also contributes to the broader field of multilingual information extraction, offering new
methodologies and insights for future research.

Keywords: Joint Information Extraction, Named Entity Recognition, Arabic Language Pro-
cessing.
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Chapter 1

Introduction

1.1 Information Extraction

With the exponential growth of available textual documents, Information Extraction (IE) has
emerged as a crucial subfield of Natural Language Processing (NLP) for efficiently extracting
relevant and structured information from unstructured textual data such as scientific papers,
newswires, weblogs, medical documents, and so on. There are different subtasks under the
broad field of information extraction that focus on extracting different types of information
such as named entity recognition, relation extraction, coreference resolution, entity linking,
event trigger extraction, and event argument extraction. In this thesis, we focus on four tasks
of information extraction namely:

• Entity Extraction (EE) is the task of identifying and classifying entities (such as
persons, organizations, locations, dates, etc.) mentioned in unstructured text into pre-
defined categories or types.

In IE, we distinguish between an “entity” which is an object or set of objects in the
world, and an “entity mention” which is a piece of text referring to an entity. Mentions
can be categorized as named mentions (proper names), nominal mentions (common
nouns or noun phrases), and pronoun mentions (pronouns). We also differentiate be-
tween “entity extraction”, which involves identifying these mentions and assigning
types to them, and “entity linking” which connects these mentions to their correspond-
ing entries in a knowledge base, ensuring accurate linkage to real-world entities.

• Relation Extraction (RE) is the task of identifying and classifying semantic relation-
ships or associations between entities.

• Event Trigger Extraction (ETE) and Event Argument Extraction (EAE) are closely
related tasks in IE, integral to event extraction. ETE focuses on identifying words
within text that indicate the occurrence of events or actions, categorizing them into
predefined event types. EAE complements ETE by identifying and extracting the ar-
guments associated with these events. Arguments represent entities involved in events,
fulfilling specific roles such as “agents” or other defined roles.

1



Introduction

People started protesting in Pakistan over social inequality.
PER GPEConflict

Entity Place

PHYS

Figure 1.1: Example of an Information Extraction Graph.

Our focus on the four specific tasks of EE, RE, ETE, and EAE is driven by their fun-
damental importance and interdependence in creating a comprehensive and accurate repre-
sentation of information in text. These four tasks exhibit notable similarities: The process
of ETE mirrors that of EE, both involving the identification and classification of elements in
text. Likewise, EAE parallels RE by linking event triggers to one or more associated entities,
similar to how RE connects pairs of entities based on semantic relationships.

The process involves transforming raw textual information into a format suitable for au-
tomatic analysis. The extracted information can then be used for various purposes, with a
wide range of applications, such as tracking news, monitoring public opinion, and identify-
ing emerging trends. In the business world, IE can be used to analyze competitors, extract
product details, and find customers. In healthcare, it helps extract medical data, assess dis-
ease risks, and personalize treatments. Law enforcement leverages it to extract information
from reports, identify suspects, and track criminal activities.

As an illustrative example, consider the following sentence, also depicted in Figure 1.1:
“People started protesting in Pakistan over social inequality”. The task of information ex-
traction consists of extracting the following information:

1. “People” is an entity of type Person (PER);

2. “Pakistan” is an entity of type Geo-political (GPE);

3. “Protesting” is an event trigger of type Conflict;

4. There is a relation of type Physical between “People” and “Pakistan”;

5. “Pakistan” is an event argument of type Place to the event “Protesting”;

6. “People” is an event argument of type Entity to the event “Protesting”

In this example, the information can be used to track social unrest, assess risks, and create
early warning systems.

In this thesis, we adopt a structured prediction approach where a sentence serves as
input, aiming to produce a graph structure as output. In this graph structure, entities and
event triggers are represented by nodes, while relations and arguments are represented by
arcs. This graphical representation enables capturing complex interactions and dependencies
between the various entities and events present in the text. In Figure 1.1, entities (nodes) are
highlighted in blue, triggers (nodes) in orange, relations (edges) are depicted by red arcs, and
arguments (edges) are represented by green arcs.

– 2 –



Introduction

وسیكتبونھا

and   they   will   write  it  

ھا  ون     كتب  ي  س  و 

Contact PER

Agent

Figure 1.2: Example of Arabic Morphological Complexity.

1.2 Arabic Information Extraction

Motivated by the multiple applications of information extraction, there is a compelling rea-
son to focus specifically on the Arabic language. Arabic is widely spoken by over 420
million people worldwide, with rich linguistic nuances and great cultural significance. The
Arabic language is a collection of multiple variants, with Modern Standard Arabic (MSA)
being the formal written standard used in media, culture, and education. MSA is based on
Classical Arabic (CA), the language of the Qur’an, but is more modern in vocabulary. In
contrast, Arabic dialects are the true native language forms, used for informal daily commu-
nication. They are not standardized and are primarily spoken, although they are becoming
more common in writing due to the rise of electronic communication. Arabic dialects are
loosely related to CA and are the result of the interaction between different ancient dialects
and other languages that existed in the Arab world (Habash, 2010).

Challenges of Arabic Information Extraction The field of Arabic natural language pro-
cessing has evolved significantly over the past years, with researchers developing a diverse
range of tools and models for various NLP tasks (cf. Section 2.2.5). This includes advance-
ments in text classification, sentiment analysis, and language modeling. However, despite
this progress, the area of information extraction research specifically dedicated to Arabic
text remains relatively underdeveloped compared to other languages like English or Chi-
nese. Few works have addressed entity extraction (Shaalan and Raza, 2009; Abdallah et al.,
2012; Traboulsi, 2009) and relation extraction (Ben Hamadou et al., 2010; Al Zamil and Al-
Radaideh, 2014) as independent tasks, with limited efforts directed towards event extraction.
However, no research to date has tackled these tasks in an integrated joint manner. This
gap stems from the inherent complexities of the Arabic language, which pose significant
challenges for developing robust IE systems:

– 3 –
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Diacritic Form A
�	
KY�

��
®
�
« A

�	
KY�

��
®
�
« A

�	
KY�

��
®«� A

�	
K
�
Y

���
®
�
«

Buckwalter Transliteration EaqodinaA EuqadinaA EiqodinaA Eaq adonaA

Translation Our contract
Our pyschoses
or Our knots

Our necklace
or Our decade

We complicated

Table 1.1: Example of Arabic Diacritic Variation.

• Morphological Complexity: Arabic features a rich morphological system with com-
plex derivational morphology and non-concatenative processes. This means a single
root word can have numerous derivations with varying lengths and grammatical func-
tions. For example, the verbal sentence “ Aî 	EñJ.

�
JºJ
�ð” (wsyktbwnhA 1; and they will

write it) showcases the complexity of morphology for IE tasks in several ways. As
shown in Figure 1.2, this sentence can be annotated for 3 information:

1. The letter “ø



” as an entity of type Person;

2. The subword “I.
�
J»” as an event trigger of type Contact;

3. The subword “ø



” as an event argument of type Agent.

Traditional tokenization methods that simply split text at whitespace struggle with
these variations, making it difficult to identify the core meaning and grammatical role
of each word in the context of IE tasks.

• Diacritic Variation: Arabic script uses diacritics, which are small marks above or
below letters, to distinguish sounds and grammatical features. These diacritics are
crucial for accurate understanding, as the absence of a single diacritic can completely
change the meaning of a word. Table 1.1 presents an example of diacritic variation for
the word “ A 	KY�®«” (EqdnA). The word is displayed with different diacritic forms, each
representing a different interpretation.

Missing diacritics in Arabic can drastically alter meaning posing a significant chal-
lenge for IE models that rely solely on the surface form of the text.

• Dialectal Diversity: Arabic exists in a wide range of dialects, each with distinct vocab-
ulary, grammar, and pronunciation. This diversity presents a challenge for developing
generalizable IE models that work across different dialects. For example, the word for
“bread” in modern standard Arabic is “ 	Q�.

	
g” (xbz). In Egyptian Arabic, the word for

bread is “ �
�

�
�

�
«” (Eayo$), while in Tunisian Arabic, it is“ �

é
	
KñK. A£” (TAbwnp). This diver-

sity presents a challenge for developing generalizable information extraction models
that work across different dialects.

• Limited Annotated Resources: Compared to languages like English, Arabic suffers
from a scarcity of high-quality, annotated datasets for IE tasks. The annotation process,
which involves manually labeling text data with the desired information, is expensive

1We use the Buckwalter (Buckwalter) transliteration scheme for Romanization.
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and time-consuming. This limited data availability hinders the training and evaluation
of robust NLP models for Arabic IE. Although some resources exist (Mohit et al.,
2012; Walker and Consortium, 2005; Moussa and Mourhir, 2023), they primarily focus
on entity extraction tasks or are limited to Modern standard Arabic.

Our Approach Given the complexities and unique challenges posed by the Arabic lan-
guage in the context of information extraction, it is essential to develop tailored solutions
that can handle these issues and advance the field. Addressing these challenges is critical
for several reasons. Firstly, the rich morphological structure and extensive use of diacritics
in Arabic require sophisticated models capable of parsing and understanding nuanced lin-
guistic features. Without investing in such models, it will be challenging to achieve accurate
and reliable IE from Arabic text. Secondly, the diversity of Arabic dialects presents a signif-
icant challenge. Developing adaptable systems that can generalize across different spoken
forms of Arabic is necessary to create comprehensive language technologies that serve the
entire Arabic-speaking world. Thirdly, the scarcity of annotated datasets calls for innovative
approaches to data generation and model training. Investing in the creation of annotated re-
sources and the development of models that can perform well despite limited data is essential
for advancing Arabic IE.

Methods used for IE in English can often be adapted for Arabic, although some mod-
ifications are necessary due to the unique characteristics of the Arabic language. Many
foundational tools used in processing English text have Arabic versions or equivalents. For
instance, word embeddings like Word2Vec (Mikolov et al., 2013) and GloVe (Pennington
et al., 2014) have been trained on Arabic corpora, and advanced models like BERT (Devlin
et al., 2019) have an Arabic version known as AraBERT (Antoun et al., 2020). These tools
provide robust representations of Arabic text, facilitating the application of machine learning
models to Arabic NLP tasks. Neural network architectures used for English can be applied to
Arabic as well. These models are language-agnostic at their core, meaning they can process
any input text as long as it is correctly preprocessed. For instance, tokenization, stemming,
and handling of diacritics are preprocessing steps that need to be adapted for Arabic to ensure
that the models can accurately interpret the text.

While Large Language Models (LLMs) like GPT-4 (Radford and Narasimhan, 2018)
have shown remarkable capabilities in various NLP tasks, our approach for Arabic IE uses
BERT for word representation and simpler architectures such as Conditional Random Fields
(CRFs) and Feed Forward Neural Networks (FFNs). This choice is due to several reasons.
Firstly, LLMs require extensive computational resources, making them impractical for many
research environments and applications with limited hardware. Additionally, prompting
LLMs for IE tasks is challenging and does not always guarantee good performance. BERT
captures rich contextual information without the high costs and complexities of LLMs. Sec-
ondly, combining BERT with CRFs and FFNs enables efficient and targeted modeling. CRFs
are excellent for sequence labeling tasks such as named entity recognition, while FFNs offer
simplicity and speed for less complex tasks. This balance between performance and effi-
ciency suits the specific challenges of Arabic information extraction. Lastly, our focus on
these models leverages BERT’s robust contextual embeddings while maintaining manage-
able complexity, ensuring the development of practical, high-performing IE systems for Ara-
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bic, even with resource-intensive alternatives like LLMs available. Furthermore, we leverage
transfer learning for named entity recognition in Arabic dialects, in resource-constrained set-
tings.

By addressing these issues, we make significant contributions to the field of Arabic in-
formation extraction and facilitate the development of more accurate and comprehensive
language technologies for Arabic. Detailed insights about our contributions are presented in
Section 1.4.

1.3 Interdependent Information Extraction Tasks

In the context of this thesis, we adopt a structured prediction paradigm where a sentence
serves as input, and our systems generate a graph structure as output. In this graph, entities
and event triggers are represented by nodes, while relations and arguments are represented
by arcs. This graphical representation effectively captures the complex interactions and de-
pendencies between the various elements present in the text.

Alongside the challenges related to the Arabic language, an important challenge of gen-
eral information extraction is developing models that can capture and leverage the interde-
pendence across different IE tasks.

Limitations of Pipeline Approaches Traditional approaches to IE involved pipeline struc-
tures (Chan and Roth, 2011), treating tasks in a sequential manner where each model (for
entity, relation, and event extraction) is trained separately. The entity extraction task would
be performed first, with its output (extracted entities) fed into the relation extraction task,
and so on. These pipeline approaches suffered from several limitations. First, errors made
in earlier stages propagate through the pipeline, leading to compounded inaccuracies and ul-
timately hindering overall performance. Second, valuable contextual information extracted
in one task is not readily available for the others, resulting in suboptimal performance due to
the lack of integrated task interdependence.

Rise of Joint Information Extraction Due to these limitations, recent advancements have
focused on joint information extraction, leveraging multitask learning. These models tackle
all information extraction tasks simultaneously, by using for example shared word vector
representations, or by employing parameter sharing, which consists in sharing the weights
or biases of one or more layers of the neural network. One prominent category of joint mod-
els is graph-based architectures, which leverages the output graph structure for dependency
modeling, considering entities and event triggers as graph nodes and relation and event ar-
guments as graph edges. Techniques include Graph Neural Networks (GNNs) and dynamic
message passing approaches (Luan et al., 2019; Wadden et al., 2019).

However, predicting the entire graph in joint information extraction is both computa-
tionally expensive and challenging. This complexity stems from the absence of predefined
constraints that guide other NLP tasks, such as well-defined grammatical rules. For instance,
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syntactic parsing benefits from linguistic syntax, which offers clear guidelines and reduces
ambiguity in sentence structure. In contrast, information extraction must infer relationships
and dependencies from diverse and often ambiguous text, demanding sophisticated models
to accurately capture these nuances.

Alternatively, sequential and auto-regressive frameworks have emerged as robust alterna-
tives in joint IE. These approaches (Miwa and Bansal, 2016; Yu et al., 2019) treat information
extraction as a sequence labeling problem, where each token in the input sequence is labeled
based on its role (e.g., entity type, relation, or event trigger). Popular architectures for this
approach include Recurrent Neural Networks (Rumelhart et al., 1986) and their variants or
Transformers (Vaswani et al., 2017).

However, an unexplored area in IE research is the direct modeling of the IE graph us-
ing auto-regressive frameworks. Unlike traditional approaches that process the whole input
sentence sequentially, we propose a novel methodology. We linearize the IE graph and use
auto-regressive methods for labeling, enhancing accuracy through a beam search procedure
during inference. By treating the entire IE graph as a cohesive unit, our approach aims to
capture intricate interdependencies and enhance the coherence of extracted information.

Challenges of Sequential Prediction in Joint Models While these models have shown
success in joint IE tasks, their reliance on sequential prediction introduces limitations. Dur-
ing training, these models are typically optimized by maximizing the locally normalized
likelihood of each token in the reference (gold standard) sequence given the labels of pre-
vious reference tokens. Essentially, the model learns by comparing its predictions to the
“correct” answers and adjusts its internal parameters accordingly.

A crucial discrepancy emerges during inference. The model no longer has access to
the previous correct labels; it relies solely on its own predictions from earlier steps in the
sequence. This mismatch between training with complete information and inference with
potentially erroneous predictions is known as exposure bias, which can significantly impact
model performance.

Researchers have proposed various techniques to address this issue, including: (1) Sched-
ule Sampling (Bengio et al., 2015): This technique gradually introduces the model’s own pre-
dictions during training, mimicking the inference scenario and reducing exposure bias. (2)
Curriculum Learning (Bengio et al., 2009): This approach involves progressively increas-
ing the difficulty of training tasks, starting with simpler problems and gradually introducing
more complex ones.

Our Approach Additionally, exposure bias can manifest in models that employ different
training and inference strategies. For instance, our proposed model described in the previous
paragraph uses beam search during inference, a strategy not explicitly seen during training.
To address this limitation, recent research has introduced training objectives that incorporate
the search process. These methods use continuous approximations of beam search Goyal
et al. (2018), making the search procedure differentiable. This compatibility with gradient-
based learning allows the model to understand its decoding behavior during training, leading
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to improved performance in tasks like named entity recognition and segmentation. However,
this approach hasn’t been widely explored for more complex IE tasks like graph generation,
where relations between extracted entities become crucial.

In this context, we propose an IE framework, where the four tasks are framed as a se-
quence labeling problem, using auto-regressive models for labeling the linearized IE graph,
and beam search as a decoding procedure, along with a differentiable beam search version
during training.

1.4 Contributions and Publications

In this thesis, we briefly present our contributions that address the challenges discussed in
Sections 1.3 and 1.2.

1.4.1 Contributions to Arabic Information Extraction

We contribute to Arabic information extraction through two significant works:

• ArabIE: Joint Entity, Relation, and Event Extraction for Arabic
To address the limitations of existing Arabic information extraction systems, which
have primarily focused on named entity recognition, and also address the morpho-
logical complexity of Arabic, we propose the first neural joint information extraction
system for the modern standard Arabic exploring different modelizations for the Ara-
bic text. In this model, we use BERT as a token encoder, then we perform IE in two
steps: a node (entity and trigger) identification step using CRFs, and an edge (relation
and argument) classification step using FFNs. Our results present a baseline for fu-
ture research on Arabic information extraction and show comparable performance to
state-of-the-art models for other languages such as English, Spanish, and Chinese.

Publication: Niama El Khbir, Nadi Tomeh, and Thierry Charnois. 2022. ArabIE:
Joint Entity, Relation and Event Extraction for Arabic. In Proceedings of the The Sev-
enth Arabic Natural Language Processing Workshop (WANLP), pages 331–345, Abu
Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.

• Cross-Dialectal Named Entity Recognition in Arabic
To address both the dialectal diversity and the scarcity of manually annotated resources
for Arabic dialects, we study the transferability of named entity recognition models
between Arabic dialects. We construct four datasets, including a MSA dataset and
datasets for Egyptian, Moroccan, and Syrian Arabic. By training a span-based Named
Entity Recognition (NER) model on top of a Pretrained Language Model (PLM) en-
coder on the MSA data, we demonstrate that the model can achieve acceptable perfor-
mance on the other datasets in zero-shot settings, requiring no additional annotation
effort. This work has the potential to enable the use of NER for a wider range of
applications in the Arabic context.

– 8 –

https://aclanthology.org/2022.wanlp-1.31
https://aclanthology.org/2022.wanlp-1.31


Introduction

Publication: Niama Elkhbir, Urchade Zaratiana, Nadi Tomeh, and Thierry Charnois.
2023. Cross-dialectal Named Entity Recognition in Arabic. In Proceedings of The
First Arabic Natural Language Processing Conference (ArabicNLP), Singapore (Hy-
brid). Association for Computational Linguistics.

With these two contributions, we aim to enhance language technologies dedicated to
Arabic, and facilitate advancements in areas such as information extraction from Arabic text
data.

1.4.2 Contributions to IE tasks Interdependence

We contribute to general information extraction through the following work:

Information Extraction with Differentiable Beam Search on Graph RNNs

The model we developed for Arabic IE is based on two main components: A CRF for the
step of node (entity and trigger) identification and a FFN for the step of edge (relation and
argument) classification. This model makes decisions on nodes and edges independently,
not taking into account the dependencies between the different elements. To adequately
model these dependencies, we propose a novel approach that casts graph generation as auto-
regressive sequence labeling using beam search. Such an approach presents differences
in training and decoding frameworks, which makes it prone to the exposure bias problem,
which we address by making this same model training aware of the decoding procedure us-
ing a differentiable version of beam search. Our approach outperforms non-decoding-aware
methods on a variety of datasets across different languages, demonstrating its effectiveness
in addressing exposure bias and improving IE accuracy.

Publication: Niama El Khbir, Nadi Tomeh, and Thierry Charnois. 2024. Information Ex-
traction with Differentiable Beam Search on Graph RNNs. In Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evalua-
tion (LREC-COLING 2024), pages 9084–9096, Torino, Italia. ELRA and ICCL.

1.5 Thesis Outline

Chapter 2 lays the groundwork for the research presented in this thesis. It introduces core
concepts and task definitions. Following this foundation, the chapter delves into a compre-
hensive review of recent advancements in the field of information extraction. This review
encompasses relevant areas like multitask learning and decoding strategies, establishing a
strong theoretical foundation for the proposed research.

Shifting the focus to Arabic text, Chapters 3 and 4 delve into the specific challenges of in-
formation extraction in this language, including dialectal variations. These chapters present
the proposed methods for tackling these challenges and achieving effective information ex-
traction in Arabic.
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Chapter 5 broadens the scope to general information extraction tasks beyond Arabic text.
It details the proposed method for information extraction applicable to a broader range of
languages, addressing the challenge of interdependent information extraction tasks.
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Chapter 2

Background And Literature Review

2.1 Task Definitions

This section focuses on four core tasks within information extraction that are particularly
relevant to our work: entity extraction, relation extraction, event trigger extraction, and event
argument extraction. Figure 2.1 provides a visual overview of information extraction tasks,
highlighting the tasks we address in blue. For these specific task definitions, we follow the
definitions of the Automatic Content Extraction (ACE)1 program developed by the Linguistic
Data Consortium (LDC) 2.

Information Extraction

Entity Extraction Event Trigger Extraction

Relation 
Extraction

Coreference
Resolution

Entity
Linking Event Argument Extraction

Figure 2.1: Information Extraction Tasks.

We leverage the information extraction task definitions established by the ACE program
for several reasons. Firstly, ACE definitions provide a standardized set of terms and task
specifications, ensuring clarity and facilitating comparisons with existing research. Sec-
ondly, adopting these widely recognized definitions demonstrates familiarity with estab-
lished practices and contributes to a common ground within the information extraction com-
munity.

1https://www.ldc.upenn.edu/collaborations/past-projects/ace
2https://www.ldc.upenn.edu/
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2.1.1 Entity Extraction

Entity: An entity is an object or a set of objects in the world that can be distinctly identified
and classified. Entities can range from individuals and organizations to locations, products,
and more.

Entity mention: An entity mention is a segment of text that refers to an entity. These
mentions are critical for understanding the specific instances of entities within a text.

Mention type: Entity mentions can be categorized based on how they refer to the entity.
Common types include:

• Named Mention (NAM): This refers to the entity by its proper name, such as “Albert
Einstein”, directly identifying a unique entity.

• Nominal Mention (NOM): This uses a common noun or noun phrase to describe the
entity, such as “the scientist”, providing a more general identification.

• Pronoun Mention (PRO): This refers to the entity using a pronoun, such as “he” or
“him”, typically relying on the context for identification.

Entity extraction involves the identification and classification of these mentions within a
text, assigning each mention its appropriate type. In the example sentence below, there are
four entities identified: (1) “Sam” identified as a Person (NAM), (2) “The police” identified
as an Organization (NOM), (3) “Him” identified as a Person (PRO), and (4) “Weapon”
identified as a Weapon (NOM).

Based on a communication from Sam, the police searched him for a weapon.
PERPER ORG WEA

2.1.2 Relation Extraction

Relation: A relation represents a meaningful connection between two entities. The order of
the entities and the specific type of relation provide context about the nature of that connec-
tion.

Relation type: Relation types categorize broader classes of these connections. Examples
include physical relations (PHYS), which denote spatial or locational connections, and orga-
nizational affiliations (ORG-AFF), which indicate professional or hierarchical associations.

Relation subtype: Relation subtypes further refine the specific meaning within each type,
offering a more granular understanding of the connection. In the example below, both rela-
tions are of type ORG-AFF. However, the relation subtype between “The CEO” and “Goole”
is Employment, indicating their employer-employee relationship, while the relation subtype

– 12 –



Background And Literature Review

between “Google” and “Shareholders” is Investor-Shareholder, highlighting the shares own-
ership aspect.

Additionally, specific constraints often exist on the types of entities that particular rela-
tion types can connect. These constraints are essential for maintaining the logical coherence
of the extracted relationships, ensuring that the connections made are both meaningful and
contextually appropriate. For example, a Personal-Social (PER-SOC) relation is restricted
to connecting entities recognized as persons, such as friends, spouses, or colleagues. This
prevents illogical connections, such as linking a person with a location under a social re-
lationship. Table 2.3 provides an example of these constraints, illustrating the permissible
entity types for various relation categories.

The CEO of Google met today with shareholders to discuss recent finances.

PER ORG

ORG-AFF

PER

ORG-AFF

Relation Extraction involves identifying pairs of entities within a text and then assigning
them a relation type.

2.1.3 Event Trigger Extraction

Event: An event represents a significant happening or occurrence within a text, often involv-
ing participants and a change of state. Events represent specific happenings, situations, or
developments.

Event type: An event type is a broad category used to classify events based on their general
nature. Examples include Life events, related to births, deaths, marriages, etc, and Movement
events involving movement or transportation.

Event subtype: A more specific categorization within an event type, providing a fine-grained
understanding of the event’s nature. Subtypes further differentiate events within the same
type based on specific characteristics or details. Examples of subtypes within the Life event
type might include Birth, Death, and Marriage.

Event trigger: An event trigger is a word or group of words within the event extent (the
sentence containing the event) that most explicitly signals the occurrence of the event.

Event trigger Extraction is the process of identifying these event triggers within text data and
assigning them appropriate event types. This task is similar to entity extraction in that both
involve identifying and categorizing specific elements within a text. Just as entity extraction
focuses on recognizing and classifying entities such as people, organizations, and locations,
event trigger extraction focuses on identifying and classifying occurrences or happenings.
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2.1.4 Event Argument Extraction

Event Argument: An event argument refers to an entity directly involved in the event. The
type of involvement, known as the argument role, defines the specific function or relationship
the entity has concerning the event trigger. The terms “argument” and “role” are often used
interchangeably in this context.

Event Argument Extraction is the process of identifying and classifying all relevant event
arguments from text data. This task involves recognizing the entities involved in the event
and assigning them appropriate roles based on their relationship to the event trigger. In the
example below, “father” and “hospital” serve as the roles Victim and Place, respectively,
for the event trigger “died”, which is categorized under the Life event type.

Framework of Events: An event is organized as a structured framework consisting of a
trigger and its associated arguments. The event trigger, which signals the occurrence of the
event, is linked to various arguments that provide contextual details. These arguments are
classified into specific roles that describe their participation in the event. This structured
representation is crucial for understanding the dynamics and implications of the event within
the text.

The father  died late yesterday at the hospital.

PER Life

Victim

FAC

Place

Within the framework of this thesis, our focus is exclusively on the extraction of relations
and events at the sentence level. It is noteworthy that certain alternative approaches extend
this extraction process to the document level for entities (Huang et al., 2021), relations (Xu
et al., 2022), and events (Xu et al., 2021).

2.2 Approaches to Information Extraction

In this section, we provide an overview of the different methods and concepts related to infor-
mation extraction. In Subsection 2.2.1, we explore the diverse learning paradigms used in in-
formation extraction dictating how systems acquire the ability to extract specific information
from textual sources. In Subsection 2.2.2, we present a chronological review of information
extraction techniques, focusing on both individual tasks and potentially joint approaches.
We then delve deeper into how these techniques can be classified into main paradigms used
for joint information extraction. In Subsection 2.2.5, we present an overview of Arabic NLP
and information extraction. Finally, in Subsection 2.2.4, we present some decoding methods
usually used for information extraction systems.
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2.2.1 Learning Paradigms in Information Extraction

The chosen learning paradigm in information extraction dictates how a system acquires the
ability to identify and extract specific information from text data. These paradigms define
the overall learning strategy employed by the system. The primary learning paradigms used
in information extraction include:

• Supervised Learning (Cunningham et al., 2008): This is the dominant paradigm in
information extraction due to its effectiveness and the abundance of large, annotated
datasets (cf. Section 2.3 for a comprehensive overview of these datasets). In supervised
learning, the system is trained on a dataset where each text instance is labeled with the
desired output. By analyzing labeled data, the learning algorithm identifies patterns
and relationships between text features and corresponding labels. This enables the
system to map new, unseen text data to the desired output categories.

• Unsupervised Learning (Ghahramani, 2004): Despite not being the primary focus
for information extraction tasks due to their reliance on specific information retrieval,
unsupervised learning offers valuable tools. It can be employed as a preprocessing
step, where techniques like clustering group similar text instances together. This can
help identify potential information categories or features relevant to the extraction task.
Furthermore, unsupervised approaches are being explored directly for tasks like rela-
tion extraction. Research in this area investigates leveraging unaligned parallel text for
joint named entity and relation extraction (Munro and Manning, 2012), using Varia-
tional Autoencoders (VAEs) to learn latent representations of relations (Yuan and El-
dardiry, 2021), and even achieving promising results by inferring relation types solely
from named entity types (Tran et al., 2020).

• Reinforcement Learning: This paradigm trains a system through a trial-and-error
process. The system interacts with the environment (text data in this case) and re-
ceives rewards for desired behaviors like correctly extracting information or identify-
ing relevant entities. Over time, the system learns to optimize its actions to maximize
these rewards. While reinforcement learning has potential applications in information
extraction, particularly for complex tasks or where defining clear labels can be chal-
lenging, it is still under development in this field compared to supervised learning.
Recent work explores dynamically optimizing extraction order (Huang et al., 2023)
and speeding up training with parallel agents (Sharma et al., 2017).

• Transfer Learning: Transfer learning leverages knowledge gained from solving one
problem and applies it to a different but related problem. In the context of informa-
tion extraction, pretrained models can be fine-tuned on specific extraction tasks, using
the knowledge learned from a vast amount of general text data. This approach can
significantly reduce the need for large task-specific datasets and expedite the training
process, making it particularly useful when labeled data is scarce or when dealing with
domain-specific tasks. Numerous works (Bari et al., 2020; Wu et al., 2020b) transfer
NER knowledge from English as a source language to target languages such as Arabic,
German, Dutch, Spanish, French and Chinese, with promising results.
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Figure 2.2: Learning Paradigms for Information Extraction.

Other learning paradigms include semi-supervised and weekly-supervised learning. We
summarize the main discussed learning paradigms in Figure 2.2. Our research primarily
relies on supervised learning (Chapters 3 and 5), the dominant approach due to its effective-
ness and the growing availability of large, well-annotated datasets. Supervised learning is
well-suited for tasks where achieving high accuracy is crucial. However, for the Arabic di-
alects where labeled data is scarce (Chapter 4), we explore the potential of transfer learning.
Particularly, we leverage the knowledge gained from a vast amount of general Arabic text
and adapt it to specific dialectal variations, overcoming the limitations of data scarcity for
individual dialects.

2.2.2 A Brief History of Information Extraction

Information extraction has undergone a remarkable transformation over the past few decades.
This section explores this evolution by categorizing it into four distinct eras: rule-based, ma-
chine learning, deep learning, and the emerging large language model era. While system
architectures and trends have evolved, fundamental principles often remain consistent across
various tasks. For instance, many information extraction tasks can be framed as classification
problems. In binary relation extraction, systems take two entities as input. These entities can
originate from the output of a separate entity extraction module, which is common in pipeline
systems, or directly from labeled data when focusing solely on the relation extraction task.
The task then becomes a classification problem, aiming to identify the specific relation be-
tween the entities based on the surrounding text.

Similarly, event trigger extraction involves identifying and labeling sequences of words
that correspond to event triggers within the text. Architectures effective for entity extrac-
tion, such as Recurrent Neural Networks (RNNs) and transformers, often translate well to
event trigger extraction due to their ability to capture and label textual sequences accurately.
Following event trigger identification, event argument extraction identifies and classifies en-
tities involved in the event, assigning them specific roles based on their relationship to the
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event trigger. This process shares similarities with relation extraction, where the focus is on
classifying the connections between entities and the identified event trigger.

In the following paragraphs, we will delve deeper into each era, highlighting key method-
ologies and their impact on the development of IE systems.

Rule-based Systems In the early days of IE, extracting information and automating de-
cisions relied on rule-based systems. These systems do not require complex algorithms or
vast amounts of data. Instead, they leverage the domain expertise of human specialists,
codified into a set of clear-cut rules. By mimicking human reasoning processes, rule-based
and dictionary-based systems excel in well-defined domains, offering explainable results and
consistent performance.

This approach excels in well-defined domains like named entity recognition. For in-
stance, a rule-based NER system might process a news article sentence like: “Barack Obama,
the former president of the United States, delivered a speech in Berlin, Germany”. The sys-
tem uses predefined rules to identify entities based on linguistic patterns. For example, it
might recognize a person entity if a sequence starts with a capital letter followed by other
capitalized words, or if it matches entries in a list of names. Locations might be identified
following prepositions (e.g., “in”, “on”) or by matching a list of places, while organizations
are identified as capitalized sequences not fitting the person or location patterns. The system
iteratively applies these rules to identify entities, ultimately outputting: “Barack Obama”:
Person, and “Berlin, Germany”: Location. Early examples include extracting personal
names from newspapers (Borkowski and Watson, 1967), company names (Rau, 1991), and
LaSIE (Humphreys et al., 1998), which used shallow pattern recognition and lexical patterns.

These methods relied heavily on domain experts to manually define rules for identify-
ing entities, relations, and events. They also depended on manually crafted resources like
gazetteers, which are lists of predefined entries, dictionaries, and grammatical rules. While
these systems offered explainability and reliability due to their transparent rules and ease of
maintenance, they had significant limitations. However, they also have limitations that mo-
tivated the focus of the NLP community on machine learning and deep learning approaches.
Key limitations included:

• High Manual Effort: Creating and maintaining a comprehensive set of rules is time-
consuming, labor-intensive, and requires significant domain expertise.

• Limited Scalability: Adding new knowledge or handling unforeseen situations might
require adding or modifying numerous rules, making the system less scalable for
rapidly evolving domains or complex situations.

Shift towards Machine Learning While rule-based systems offered a powerful approach
to information extraction in their early days, their limitations led to the exploration of ma-
chine learning techniques. These algorithms revolutionized IE by enabling models to auto-
matically learn patterns from data, which allows them to:
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• Adapt to Varying Linguistic Patterns: Machine learning models can ingest large
amounts of text data and uncover the subtle nuances of language. This allows them to
handle the complexities of natural language, such as ambiguity, slang, and idiomatic
expressions, that often trip up rule-based systems.

• Enhance Scalability for Evolving Domains: As new information emerges and lan-
guage evolves, machine learning models can continuously learn and adapt. This makes
them well-suited for domains with constantly changing terminology or vast amounts
of data that would be cumbersome to manage with rule-based systems.

Several machine learning architectures have been instrumental in advancements in infor-
mation extraction. Here are a few prominent examples:

• Support Vector Machines (SVMs) (Hearst et al., 1998) is a type of supervised learn-
ing models used for classification tasks. The basic idea behind SVMs is to find the op-
timal hyperplane that separates the data points of different classes with the maximum
margin. For entity extraction, there are two main approaches: the binary classification
one, which requires training multiple SVMs, one for each entity type, and the multi-
class SVM, where words are directly classified into various predefined entity types.
For the binary classification approach, let’s denote xi as the feature vector representa-
tion of word i in the input text, and yi as the corresponding label indicating whether
word i is part of an entity or not. The goal is to learn a function f(x) that maps each
feature vector xi to its corresponding label yi. The decision function of an SVM can
be represented as:

f(x) = sign

(
n∑

i=1

αiyiK(x, xi) + b

)

Where αi are the Lagrange multipliers, yi are the class labels (+1 for entity, -1 for
non-entity), K(x, xi) is the kernel function measuring the similarity between feature
vectors x and xi, and b is the bias term.

During training, SVMs aim to maximize the margin between the hyperplane and the
nearest data points (support vectors) of different classes, while minimizing the classi-
fication error.

Related work includes SVMs for entity extraction Takeuchi and Collier (2002); Li et al.
(2005), SVMs for relation extraction using lexical, semantic, and syntactic features
(Zhou et al., 2005) and SVMs for relation extraction using tree kernels (Culotta and
Sorensen, 2004).

• Maximum Entropy Models (MEMs) (Bender et al., 2003) are a type of probabilistic
graphical models used for classification tasks. MEMs are commonly used for entity
extraction due to their ability to handle complex feature representations and capture
dependencies between input features and output labels. In the context of entity ex-
traction, let xi represent the feature vector representation of word i in the input text,
and yi denote the corresponding label. The goal is to learn a conditional probability
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distribution p(y|x) over the label sequences given the input feature vectors. MEMs
achieve this by maximizing the entropy of the model subject to a set of constraints.
Mathematically, the probability of a label sequence y given the input sequence x can
be expressed as:

p(y|x) = 1

Z(x)
exp

(
n∑

i=1

m∑
j=1

λjfj(y,x, i)

)

where Z(x) is the normalization factor ensuring that the probabilities sum to 1, λj are
the parameters of the model, and fj(y,x, i) are feature functions that capture the com-
patibility between labels and input features at position i. During training, maximum
entropy models aim to learn the parameters λj that maximize the log-likelihood of the
training data. Once trained, they can be used to predict the most likely label sequence
for new input sequences by performing inference. MEMs have been successfully ap-
plied to various information extraction tasks, including named entity NER (Chieu and
Ng, 2002; Tsai et al., 2005)

• CRFs (Lafferty et al., 2001) are probabilistic graphical models used for sequence la-
beling tasks, making them particularly well-suited for IE tasks like entity extraction,
where the order of words is crucial for accurate entity identification. Unlike SVMs that
classify words independently, CRFs consider the dependencies between neighboring
words. They model these dependencies through a graphical structure, allowing them
to leverage contextual information when making predictions.

x1

Joe   Biden    is     the   president   of   the   United   States

x2 x3 x4 x5 x6 x7 x8

CRF Model

x9

Encoded
Input

x1

B-PER   I-PER    O        O      B-PER    O      O    B-GPE    I-GPE

x2 x3 x4 x5 x6 x7 x8 x9
Output

Figure 2.3: Conditional Random Fields for Entity Extraction.

For entity extraction using CRFs with the BIO tagging scheme, let’s denote xi as the
feature vector representation of word i in the input text, and yi as the corresponding
label (e.g., “B-PER”, “I-LOC”, or “O”), following the BIO convention. The labels indi-
cate whether a word is the beginning of an entity (B), inside an entity (I), or outside of
any entity (O). The goal is to learn a conditional probability distribution p(y|x) over
the label sequences given the input feature vectors. The probability of a label sequence
y given the input sequence x can be expressed using the CRF model as:
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p(y|x) = 1

Z(x)
exp

(
n∑

i=1

m∑
j=1

λjtj(yi−1,yi,x, i)

)

Where y is a label sequence, x is an input sequence, Z(x) is the normalization fac-
tor ensuring that the probabilities sum to 1, λj are the parameters of the model, and
tj(yi−1,yi,x, i) are feature functions that capture the compatibility between labels
yi−1 and yi given the input sequence x at position i.

During training, CRFs aim to learn the parameters λj that maximize the log-likelihood
of the training data. Once trained, CRFs can be used to predict the most likely label
sequence for new input sequences by performing inference using algorithms like the
Viterbi algorithm (Forney, 1973). Figure 2.3 illustrates the workflow of a CRF model
for entity extraction.

In Chapters 3 and 5, we opt for CRFs for entity and event trigger identification due to
their ability to effectively model the sequential nature of labels. Additionally, CRFs
excel at handling overlapping entities and complex label dependencies. References
such as McCallum and Li (2003); Patil et al. (2020) showcase the successful applica-
tion of CRFs for NER.

Although machine learning models automatically learn patterns from data and offer
greater adaptability, they can inherit biases present in the training data. If the training data
disproportionately reflects certain demographics, viewpoints, or writing styles, the model
might struggle to generalize well to unseen data and potentially produce biased outputs.
Careful data selection, cleaning, and techniques to mitigate bias are crucial for fair and ro-
bust information extraction models.

Rise of Deep Learning Recently, deep learning has become the dominant approach due to
its ability to automatically learn robust features directly from data. This eliminates the need
for extensive manual feature engineering, a time-consuming and knowledge-intensive pro-
cess that can limit performance. Additionally, deep learning architectures excel at handling
complex patterns within text data, leading to potentially superior results. The key aspects of
deep learning include enriching input representations and exploring different architectures
that we detail below.

Deep learning models for information extraction rely on informative representations of
the input text data. These representations often combine various elements to capture word
meaning and context:

• Pretrained Word Embeddings convert words into vector representations in a high-
dimensional space. These include techniques like TF-IDF (Ramos, 2003), which cap-
tures the statistical importance of words in a corpus, and word embedding methods
like Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) which learn
vector representations capturing semantic meaning and context based on surrounding
words. By providing a pretrained understanding of word meaning and relationships,
these embeddings significantly boost model performance.
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• Character Embeddings, on the other hand, represent words as sequences of vec-
tors, one for each character, enabling the handling of spelling variations and out-of-
vocabulary words. There are several ways to create character embeddings, such as
one-hot encoding, Character2Vec, and BiLSTM-based methods. Character embed-
dings offer a more granular way to represent words, allowing models to handle varia-
tions and unseen words, ultimately improving performance in tasks like named entity
recognition. Related work include character-level taggers for language-independent
NER (Kuru et al., 2016), Boosting NER with neural character embeddings (dos San-
tos and Guimarães, 2015).

• Contextual Embeddings leverage PLMs like BERT (Devlin et al., 2019) or RoBERTa
to learn how a word’s meaning can shift depending on its surrounding words within
a sentence. These models are trained on massive amounts of text data. During this
training, they learn to analyze the relationships between words and how these relation-
ships influence a word’s meaning. By analyzing word relationships during training,
these models generate dynamic word representations that capture both core meanings
and subtle nuances influenced by context. This enhances information extraction tasks
by disambiguating words, improving relationship extraction between entities, and han-
dling complex sentence structures.

• Additional Features and External Knowledge Sources can be used to enrich the
input representations and guide the learning process, including:

– Grammatical Features such as Part-of-speech (POS) tags, which classify words
as nouns, verbs, adjectives, etc., provide valuable clues about the role a word
plays within a sentence. This additional information can be particularly helpful
for tasks like named entity recognition, where identifying specific word types is
crucial.

– External Knowledge Sources such as gazetteer lookup can be integrated into
the model. This injects domain-specific knowledge and improves the recognition
of specific entities mentioned in the text.

Empowered by these informative input representations, deep learning architectures can
be employed to exploit the complex patterns within text data for information extraction tasks.
Some of the most widely used approaches include:

• Deep Neural Networks (DNNs): Early attempts used basic DNN architectures for
NER tasks Gallo et al. (2008); Lample et al. (2016); Peters et al. (2017). These net-
works learn feature representations and perform classification in a layered fashion.

• RNNs: Due to their inherent ability to handle sequential data like text, RNNs have
become a dominant force in NER. They process text one word at a time, allowing
them to capture the order and dependencies between words in a sentence. This is
crucial for tasks like NER, where recognizing entities often relies on understanding the
context of surrounding words. A powerful variant of RNNs, BiRNNs process text in
both forward and backward directions simultaneously. This allows them to capture not
only the context of preceding words but also the influence of words that follow. This
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bi-directional understanding significantly improves the accuracy of entity recognition
compared to traditional RNNs.

Let x represent a sequence of word representations in a sentence, where xi is the
feature vector representation of word i in the input text and yi is its the corresponding
label. Entity extraction can be formulated as a sequence labeling task, where the goal is
to predict the entity label for each word in the input sequence. Given an input sequence
x, a basic RNN architecture for entity extraction can be represented as follows:

ht = RNN(xt,ht−1)

ŷt = softmax(Wht + b)

where ht represents the hidden state of the RNN at time step t, xt represents the input
word embedding at time step t, ŷt represents the predicted probability distribution over
entity labels at time step t, W and b are the weight matrix and bias vector of the output
layer, and softmax is the softmax activation function.

Related work include BiLSTMs for NER in twitter messages (Limsopatham and Col-
lier, 2016), joint entity and relation extraction from biomedical text (Li et al., 2017).

• Convolutional Neural Networks (CNNs): While less common than RNNs for infor-
mation extraction tasks, CNNs excel at capturing local patterns within text data. They
work by applying filters that scan the text for specific patterns, often short sequences
of characters. A typical CNN architecture for entity extraction employs convolutional
layers with filters. These filters scan the input sequence looking for specific n-gram
patterns. The filters then activate based on the presence or strength of these patterns,
capturing local features potentially indicative of entities. Following the convolutional
layer, a pooling layer summarizes the most significant features extracted by the filters.
Finally, a fully connected layer combines these summarized features and predicts the
most likely entity label for each word in the sentence. CNNs have been extensively in-
vestigated across various information extraction tasks, demonstrating their versatility
and effectiveness. This includes research on joint entity and relation extraction (Adel
and Schütze, 2017), relation extraction specifically (Nguyen and Grishman, 2015), and
event extraction methodologies (Chen et al., 2015).

• CRFs: As discussed earlier, CRFs are probabilistic graphical models that excel at
modeling label dependencies within sequences. In the context of NER, this translates
to modeling the relationships between named entities within a sentence. By integrating
CRFs with deep learning models, we can leverage the strengths of both approaches.
Deep learning models excel at feature extraction, while CRFs excel at modeling label
dependencies. This combined approach can further improve the accuracy of named
entity recognition tasks.

Hybrid Systems While deep learning has become a dominant force in information ex-
traction, there’s still room for collaboration between deep learning models and traditional
rule-based approaches. Hybrid systems (Zhou and Su, 2002; Florian et al., 2003) aim to
leverage the strengths of both techniques. Deep learning models excel at capturing complex
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patterns and relationships within text data. However, they can sometimes lack interpretabil-
ity and struggle with limited training data. Rule-based systems, on the other hand, can be
highly interpretable and efficient for specific tasks, but they may struggle to adapt to unseen
data or complex scenarios. By combining these approaches, hybrid systems can achieve su-
perior performance. Hybrid systems can also combine multiple architectures to perform one
task. Examples include models for NER that combine RNNs with CRFs (Lee, 2017), NER
models that combine CNNs with CRFs (Strubell et al., 2017), NER models that combine
LSTMs with CNNs (Chiu and Nichols, 2016), etc.

Large Language Models for Information Extraction Recently, Large Language Models
have become a game-changer in the NLP world and have emerged as a powerful paradigm for
IE. These models, often based on transformer architectures, are characterized by their mas-
sive number of parameters, often reaching tens or hundreds of billions. This vast training
enables them to learn complex patterns from massive amounts of text data, surpassing tradi-
tional methods in IE tasks. Two primary paradigms dominate LLM-based IE approaches:

• Generative Paradigm: Generative methods exploit the LLM’s ability to synthesize
target information directly. We can provide the LLM with a carefully crafted prompt
specifying the desired output format alongside the raw text itself. For instance, given
a scientific paper, an LLM can generate a structured report highlighting experiments,
materials, methods, and results, thereby eliminating the need for complex pipelines.
Effective prompt engineering is crucial in this context, as it guides the LLM towards
the desired outcome by specifying target information types, anticipated output formats,
and relevant domain-specific knowledge.

Examples of this approach include GPT-NER (Wang et al., 2023), which transforms
NER into a text generation task by adding special tokens to mark entity boundaries, and
ChatGPT’s application for NER in various contexts (Laskar et al., 2023), demonstrat-
ing the model’s versatility but also highlighting the need for task-specific adjustments.

• Discriminative Paradigm: This approach leverages the power of labeled datasets
where text snippets are tagged with the information they contain. By training the LLM
on these examples, we equip it to recognize these patterns and classify new unseen text.
For example, in extracting key financial indicators from corporate reports, an LLM
trained on labeled datasets of revenue, profit, and assets can accurately process new
reports and identify these elements. Domain-specific fine-tuning further enhances
this process by helping the LLM adapt to the unique terminology and information
patterns relevant to the target domain. PromptNER (Ashok and Lipton, 2023) uses
entity definitions and prompts to identify entities with justifications, showcasing few-
shot learning capabilities, while research on relation extraction with GPT-3 and Flan-
T5 (Wadhwa et al., 2023) explores various supervision levels and evaluation methods.

Moreover, combining generative and discriminative capabilities can enhance performance.
For example, integrating GPT-2’s generative abilities with BERT for NER in dialogue sys-
tems (Kim et al., 2023) leverages the strengths of both models during training. Data augmen-
tation techniques, such as back-translation and paraphrasing, are also employed to address
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the challenge of limited labeled data in specific domains, further improving the performance
of LLMs.

Despite these advancements, we do not use LLMs for our IE models due to their high
computational cost, complexity in fine-tuning, and challenges in interpretability, which com-
plicate error analysis and model improvement.

2.2.3 Main Paradigms for Joint Information Extraction

In the previous section, we explored various architectures for information extraction tasks.
While these architectures can be used for individual tasks or combined for multiple tasks at
once, a common approach has been the pipeline approach, where the output from one IE
subtask is fed into the next subtask. We depict in Figure 2.4 an example of a pipeline system
for entity and relation extraction. While this sequential approach has been widely used, it
has two major limitations:

• Error Propagation: Errors made in earlier stages, like the NER stage, could not be
corrected later, when in the RE stage for example, leading to cascading errors and
hindering overall performance.

• Limited Information Sharing: Valuable contextual information extracted in one task
is not readily available for others, hindering the ability to leverage dependencies.

Recognizing these limitations, recent research has focused on joint information extrac-
tion frameworks that leverage multitask learning. These frameworks tackle all IE tasks
simultaneously, allowing for information sharing and potentially achieving superior perfor-
mance. Common approaches for joint IE include:

1. Shared Representations:

Instead of learning separate word embeddings for each information extraction task,
joint models often leverage a common word embedding layer. This layer takes words
as input and transforms them into dense vector representations, xi, that capture their
meaning and context within the text. These vector representations are then used by
all tasks within the joint model for their specific predictions. Joint models typically
employ pretrained word embeddings, such as Word2Vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014), or even more powerful contextualized embeddings
like BERT (Devlin et al., 2019) or XLNet (Yang et al., 2020). These pretrained em-
beddings are derived from large text corpora and encode rich semantic information.
They can be fine-tuned during joint model training to capture the nuances relevant to
specific IE tasks. Here’s how the PLM integration can be mathematically represented:

xi = fLM(wi)

where xi is the dense vector representation for word i in the sentence, wi is the word
itself, and fLM represents the PLM that encodes the word wi into a vector representa-
tion.
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Figure 2.4: Pipeline System for Entity and Relation Extraction.

2. Parameter Sharing:

In joint models for information extraction, parameter sharing promotes information ex-
change and reduces model complexity by using the same weights or biases for specific
layers across different tasks. This allows the model to learn parameters that benefit
multiple tasks simultaneously. There are two main approaches, that we illustrate in
Figure 2.5:

• Hard Parameter Sharing (Caruana, 1993): This method uses a single set of
weights across all tasks. The model learns a single unified representation for all
tasks, typically by sharing hidden layers while maintaining separate task-specific
output layers. An example is the works of Miwa and Bansal (2016); Zheng et al.
(2017), who use a single model with a unified set of parameters to jointly extract
entities and relations.

• Soft Parameter Sharing (Duong et al., 2015): Each task has its own set of
weights, but the model encourages them to be similar by penalizing large dif-
ferences between weights for related tasks. This approach allows for more task-
specific learning compared to hard sharing. Relevant works for information ex-
traction include those of Lin et al. (2020); Zhang and Ji (2021); Nguyen et al.
(2021a).

Several studies have explored parameter sharing in joint entity and relation extraction
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Figure 2.5: Comparison of Hard vs. Soft Parameter Sharing.

models, including multi-head selection approaches (Bekoulis et al., 2018), span-based
approaches (Dixit and Al-Onaizan, 2019), sparse parameter sharing approaches (Chen
et al., 2021a), and question-based object extraction approaches (Zhao et al., 2021).
Models using parameter sharing can improve performance by learning shared features
across tasks and reducing the overall number of parameters to be learned. However,
finding the optimal level of sharing remains a challenge. Excessive sharing might
restrict task-specific learning, while insufficient sharing might not fully exploit the
benefits of multi-task learning.

In our information extraction models (cf. Chapters 3, 4, and 5), we prioritize flexibility
and adaptability to handle the diverse requirements of each subtask. To achieve this,
we avoid employing hard parameter sharing, since it can limit the model’s ability to
specialize for each task. Instead, we use shared representations, often from PLMs like
BERT, serving as a powerful starting point for all subtasks. The use of these shared
representations can be considered a form of parameter sharing. While the parameters
themselves might not be directly shared across all subtasks, the pretrained knowledge
embedded within these representations influences all downstream tasks. Moreover,
we leverage a form of soft parameter sharing through joint training. Our information
extraction modules are optimized using a joint loss function (cf. Sections 3.2 and 5.3),
encouraging them to collaborate and share knowledge throughout the training process.

3. Graph-based Models:

Another common used type of architecture is Graph Neural Networks (GNNs). GNNs
employ message-passing techniques, where information iteratively flows between nodes,
allowing the model to understand how connected entities and events influence each
other. Additionally, attention mechanisms can be integrated within GNNs to focus on
the most relevant parts of the graph for a specific entity or event, further enhancing the
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model’s ability to make informed predictions.

Examples of related work for joint entity, relation, and event extraction include the
framework of Luan et al. (2019) that constructs dynamic “span graphs” to capture re-
lationships between entities. High-confidence entities are nodes, connected by edges
representing relations or coreference. Edge weights based on confidence scores propa-
gate information, refining entity representations within the graph. Another interesting
work is that of (Lin et al., 2020), although they don’t explicitly represent information
as a graph structure like other graph-based models. It can be considered a conceptu-
ally graph-based approach due to the final stage of searching for the globally optimal
extracted information as a unified graph, considering both local context (within a sen-
tence) and global context (across sentences). As an extension to Lin et al. (2020), the
work of Zhang and Ji (2021) leverages an Abstract Meaning Representation (AMR)
parser to construct the information extraction graph and then uses two graph-based
components: an aggregator to gather information from neighboring concepts and a
decoder to extract knowledge elements based on the AMR graph structure. (Nguyen
et al., 2021a) leverages a Graph Convolutional Network (GCN) to process a prelimi-
nary constructed information extraction graph and improve the representation of each
element by incorporating information from its connected neighbors, explicitly captur-
ing inter-dependencies between tasks.

4. Autoregressive Graph Generation Frameworks:

This approach generates the output labels sequentially, one label at a time. At each
step, the model predicts a label, i.e., entity, relation, and event types, for the current
word based on previously predicted labels and the word’s embedding. This sequen-
tial prediction allows autoregressive models to capture long-range dependencies in
text, crucial for joint information extraction tasks like relation extraction and event
argument extraction where entities and events can be far apart in a sentence. Popular
architectures include:

• Transformers (Vaswani et al., 2017): This powerful architecture has become a
leading choice for joint information extraction due to its effectiveness in cap-
turing long-range dependencies. Transformers use an encoder-decoder struc-
ture. The encoder processes the entire sentence, capturing relationships between
words. The decoder then generates label predictions sequentially, attending to
relevant parts of the encoded representation and previously predicted labels. Re-
cent work by Li et al. (2020) leverages transformers for joint information extrac-
tion, proposing a Pointer-Generator Network that combines the strengths of both
attention and copying mechanisms during label prediction. Additionally, Seo et
al. (2020) introduce a Biaffine Dependency Parsing model within a transformer
framework for joint entity and relation extraction, achieving state-of-the-art per-
formance.

• Recurrent Neural Networks: While transformers are currently dominant, RNNs,
particularly Long Short-Term Memorys (LSTMs) (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Units (GRUs) (Cho et al., 2014b), have a history of
success in joint information extraction. Their ability to handle long-range de-
pendencies makes them suitable for this task. However, they can struggle with
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vanishing or exploding gradients during training compared to transformers.

• Conditional Random Fields with Sequential Decoding (Lafferty et al., 2001):
While not strictly autoregressive in the same way as RNNs and transformers,
CRFs with sequential decoding can be categorized here. Unlike traditional CRFs
that predict all labels simultaneously, sequential decoding in CRFs allows for
label prediction one word at a time, similar to RNNs and transformers. This
enables CRFs to incorporate context from previous predictions during decoding.

Several studies have explored autoregressive frameworks for joint information extrac-
tion, such as chain-based recurrent neural networks for relation extraction (Ebrahimi
and Dou, 2015). Miwa and Bansal (2016) introduce an entity and relation extrac-
tion approach using LSTMs with sequential and tree-structured representations. Gupta
et al. (2016) explore using recurrent neural networks for joint named entity recognition
and relation extraction in the context of table-filling tasks. Wu et al. (2017) investigate
adversarial training for relation extraction. Nguyen et al. (2016) present a joint event
extraction model using recurrent neural networks. Despite their success, these models
suffer from some challenges such as:

• Exposure Bias: Autoregressive models can suffer from exposure bias, where
the discrepancy between training and decoding stages leads to error propagation.
During training, the model learns to predict labels using ground truth labels from
the dataset. However, during decoding, which is the process of generating the
output labels sequentially, the model must rely on its own previously predicted
(potentially incorrect) labels. This inconsistency can cause errors to propagate
through the sequence, negatively impacting overall performance.

• Computational Cost: Training and inference can be computationally expensive
due to the sequential nature of prediction.

In our work, we aim to explore different techniques for modeling the interdependence
between information extraction tasks (Chapter 5), particularly focusing on (1) developing
hybrid models that leverage the strengths of both graph-based and autoregressive approaches
for more robust joint information extraction, and (2) enhancing autoregressive frameworks
to address exposure bias and improve computational efficiency.

2.2.4 Decoding Strategies in IE

While our research focuses on novel techniques for Arabic information extraction and
modeling interdependence in joint extraction tasks, understanding decoding strategies
remains crucial. These strategies, often employed with autoregressive models, determine
how models generate the final output sequence based on the input text. In information ex-
traction, this translates to selecting the most probable sequence of entities, relations, and
event types. Here, we discuss some commonly used decoding strategies that can be applied
within information extraction frameworks:
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1. Greedy Decoding: Greedy decoding is a straightforward and efficient approach where
the model predicts the output sequence one token at a time. At each step, it selects the
token with the highest probability, aiming to build the most likely sequence incremen-
tally. However, greedy decoding can get stuck in local optima, leading to suboptimal
solutions in tasks requiring global context, like information extraction. Greedy decod-
ing can be formulated as follows: Let P (yt+1|y1:t, x) be the probability of the next
token given the input sequence x and the generated sequence y1:t. At each time step,
the greedy decoding algorithm selects the token with the highest probability:

yt+1 = argmaxyP (yt+1|y1:t, x)

where yt+1 is the selected token at time step t+ 1.

2. Beam Search: Beam search is a heuristic search algorithm used to find the most likely
sequence of output tokens. It maintains a fixed-size set of candidate sequences (beam
width) at each decoding step and expands them based on the probabilities of next
tokens. Beam search allows the model to explore multiple hypotheses simultane-
ously, improving the quality of generated sequences compared to greedy decoding.
The beam search algorithm can be formulated as follows: Let Bt be the set of candi-
date sequences at time step t, and P (yt+1|y1:t, x) be the probability of the next token
given the input sequence x and the generated sequence y1:t. At each time step, the
beam search algorithm selects the k most probable candidate sequences based on their
scores:

Bt+1 = Top-K(Bt × P (yt+1|y1:t, x), k)

where Top-K(S, k) selects the k elements with the highest scores from set S.

3. Viterbi Decoding (Viterbi, 1967): This method is commonly used in sequence label-
ing tasks such as part-of-speech tagging and named entity recognition. Viterbi decod-
ing uses dynamic programming to find the most probable sequence of output labels
given the input sequence. Viterbi decoding can be formulated using the Viterbi algo-
rithm, which recursively computes the highest probability path to each state at each
time step. Let vt(j) denote the probability of the most probable sequence of length t
ending in state j. The Viterbi algorithm computes vt(j) as:

vt(j) = max
i

[vt−1(i)× aij × bj(xt)]

where aij is the transition probability from state i to state j, bj(xt) is the emission
probability of observing symbol xt in state j, and i ranges over all states at time step
t− 1.

Even though our primary focus lies on novel techniques for modeling interdependence in
joint information extraction, understanding decoding strategies offers several advantages for
our work: (1) By analyzing the strengths and weaknesses of different decoding strategies,
we can make informed decisions. We can select or adapt existing autroregressive models for
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our joint information extraction framework while considering the specific decoding approach
they employ. (2) Although not our central focus, knowledge of decoding strategies allows
us to combine these with our proposed techniques for interdependence modeling to achieve
even better results in joint information extraction. This could potentially address challenges
like exposure bias and improve the quality of generated information extractions.

2.2.5 Arabic NLP and Information Extraction

Arabic NLP Initiatives A lot of efforts have been made to advance Arabic NLP research.
This is manifested by many Arabic NLP workshops and conferences. Notable examples
include the International Symposium on Computer and Arabic Language (ISCAL) editions
in 2009 and 2007, and the workshop on Computational Approaches to Arabic Script-based
Languages. Additionally, WANLP, The Arabic Natural Language Processing Workshop, has
seen seven editions, hosted at prominent conferences such as EMNLP, ACL, COLING, and
EACL, covering years from 2014 to 2022. More recently, ArabicNLP 2023 continued this
trajectory, further solidifying the commitment to advancing Arabic NLP research.

Chronology of Arabic Information Extraction The development of Arabic information
extraction mirrors the broader field, transitioning from rule-based approaches to machine
learning and, more recently, deep learning techniques. In the early stages, before the dom-
inance of machine learning, rule-based systems reigned supreme. Researchers focused on
crafting intricate rules to identify and extract entities and relationships within Arabic text.
These include Arabic name recognizers leveraging pattern matching and morphological anal-
ysis (Maloney and Niv, 1998). NERA is one of the early rule-based systems known devel-
oped for Arabic using dictionaries and regular expressions to extract 10 key named entity
types (Shaalan and Raza, 2007, 2008, 2009). Abdallah et al. (2012) improved the results of
NERA by combining machine learning and rule-based system. Other work (Traboulsi, 2009)
leveraged local grammar to extract person names, other work (Elsebai et al., 2009) leveraged
morphological analyzers and keyword-guided phrase matching. For relations, Ben Hamadou
et al. (2010) presents a rule-based system to extract functional relations from Arabic text. Al
Zamil and Al-Radaideh (2014) present a pattern-based system that uses a seed ontology to
automatically extract antonym relationships from Arabic text.

As computational power increased, statistical methods emerged, leveraging machine
learning algorithms to learn patterns from labeled data. In this context, a lot of work has
been done on entity and relation extraction, exploring different architectures such as SVMs
Benajiba et al. (2008b); Falih and Omar (2015); Hamad and Abushaala (2023), CRFs Bena-
jiba and Rosso (2008); Abdul-Hamid and Darwish (2010); Alzboun et al. (2018); Hudhud
et al. (2021), and MEMs Benajiba et al. (2007); Benajiba and Rosso (2007).

Recognizing the strengths of both approaches, some researchers investigated hybrid sys-
tems that combine rule-based and machine learning techniques (Oudah and Shaalan, 2012;
Abdallah et al., 2012; Koulali and Meziane, 2012). Finally, the recent surge in deep learning
had a significant impact on Arabic information extraction. Deep learning architectures like
BiRNNs (Ali et al., 2018) and CNNs (Benajiba et al., 2010) have demonstrated promising
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results in named entity recognition tasks.

Beyond Supervised Learning In addition to supervised learning methods, various tech-
niques have been explored for Arabic relation extraction:

• Distant Supervision: This technique leverages readily available resources like knowl-
edge bases to automatically generate training data for relation extraction (Mohamed
et al., 2015). The underlying assumption is that if two entities are linked in a knowl-
edge base with a specific relation, then this relation likely holds between mentions of
these entities in text. While convenient, distant supervision can introduce noise due to
potential inaccuracies in knowledge bases.

• Semi-Supervised Learning: This approach uses a combination of labeled and unla-
beled data to train a relation extraction model (Sarhan et al., 2016). Techniques like
pattern bootstrapping can be employed to iteratively improve the model. Starting with
a small set of labeled data, the model can be used to identify potential relation patterns
in unlabeled data. These patterns can then be reviewed by human experts for verifica-
tion and used to further train the model. This approach can be particularly useful when
labeled data is scarce.

• Cross-Lingual Learning: This technique leverages resources from languages with
more abundant labeled data, like English, to improve relation extraction in languages
like Arabic (Taghizadeh et al., 2018; Subburathinam et al., 2019; Nguyen et al., 2021b).
By transferring knowledge learned from a related language, cross-lingual models can
potentially improve performance in resource-scarce languages. This approach often
relies on techniques like multilingual embeddings that capture semantic similarities
between words across languages.

Limited Research in Event Extraction While event extraction is a valuable field of study,
research specifically focused on Arabic text remains limited. Existing work has primarily
addressed event extraction from social media data. Here are some examples:

• Focusing on Arabic tweets, AL-Smadi and Qawasmeh (2016) proposed a knowledge-
based approach for event extraction.

• Alsaedi and Burnap (2015) presented a clustering-based framework to detect real-
world events from Twitter data in Arabic.

• Harrag and Gueliani (2020) built a system that uses recurrent neural networks to ex-
tract food hazard events from social media.

• Alsaedi and Burnap (2015) proposed a method that combines clustering and Naive
Bayes to identify disruptive events from Arabic social media posts on Twitter.
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Beyond social media, Ahmad et al. (2021) developed a Graph Attention Transformer
Encoder for cross-lingual relation and event extraction, achieving promising results in struc-
tured contextual representation generation. For standard Arabic text, Baradaran and Minaei-
Bidgoli (2015) compared three classification methods for event trigger and argument ex-
traction. Their findings suggest that rule-based and SVM-based data-oriented approaches
outperform the semantic-oriented approach relying on lexical chains.

Our goal is to enhance language technologies dedicated for Arabic and pave the way for
further advancements in information extraction from Arabic text data. To achieve this, our
work in Chapters 3 and 4 advances the state-of-the-art of the field. While previous research
has primarily concentrated on named entity recognition and relation extraction, our contri-
butions extend beyond these domains to encompass event extraction, filling a crucial gap
in Arabic information extraction research. Additionally, our exploration of cross-dialectal
named entity recognition in Arabic tackles the challenges posed by dialectal diversity and
the scarcity of annotated resources, offering innovative solutions to address these issues.

2.3 Datasets for Information Extraction

Information extraction relies heavily on well-annotated datasets for training and evaluating
models. Some research communities organize shared tasks and workshops that significantly
contribute to the development of information extraction techniques. These conferences and
workshops provide crucial benchmarks and datasets for evaluating the performance of dif-
ferent approaches. Here are some prominent examples:

• Automatic Content Extraction (ACE) (Doddington et al., 2004): The ACE corpus
is a widely used dataset for information extraction tasks. It comprises data in English,
Chinese, and Arabic from sources like broadcast transcripts, newswires, and newspa-
pers. The corpus offers separate training and testing data, with a defined vocabulary of
entities, mentions, and relations between them. ACE tasks include entity detection and
tracking, relation detection and characterization, event detection and characterization,
entity linking, and timestamp extraction.

• Conference on Computational Natural Language Learning (CoNLL): The CoNLL
conferences focus on natural language understanding tasks, including named entity
recognition. The CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) dataset pro-
vides a benchmark for evaluating NER systems on newswire text.

• Message Understanding Conference (MUC) (Grishman and Sundheim, 1996): The
MUC conferences from 1987 to 1997 focused on tasks related to information extrac-
tion, including named entity recognition, relation extraction, and event detection. The
MUC datasets, notably MUC-3 and MUC-4 which are publicly available3, played a
crucial role in the early development of these techniques.

3https://www-nlpir.nist.gov/related_projects/muc/muc_data/muc_data_index.html
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• Semantic Evaluation (Sem-Eval)4: This yearly workshop offers various datasets for
tasks like relation extraction, often focusing on specific domains like scientific articles.

• OntoNotes (Hovy et al., 2006): Developed collaboratively across various US insti-
tutes, OntoNotes provides a large, human-annotated corpus encompassing diverse tex-
tual genres, such as telephone speech, broadcast news, etc., in multiple languages. It’s
a widely used benchmark for named entity recognition tasks, with each release build-
ing upon previous versions and encompassing various data sources. OntoNotes offers
a rich and challenging dataset for NER evaluation, containing around 2.945 million
tokens.

Beyond the conference/community-driven categorization, information extraction datasets
can be categorized based on various other criteria, each offering insights into their suitability
for specific tasks. Here’s an overview of common categorization methods:

• Task Focus: This categorization groups datasets based on the specific information
extraction task they support:

– Entity Extraction: These datasets focus on identifying and classifying entities
within text. Examples include MUC-7 (Chinchor, 2001), CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003), and WiNER (Ghaddar and Langlais, 2017).

– Relation Extraction: These datasets focus on identifying relationships between
previously identified entities. Examples include CoNLL 2004 (Roth and Yih,
2004), ChemProt, and NYT for The New York Times annotated corpus (Sand-
haus, 2008).

– Event Extraction: These datasets focus on identifying and characterizing events
mentioned within text data, including event types, arguments, and temporal infor-
mation. Examples include the ACE 2005 Event Corpus Walker and Consortium
(2005), and GENIA (Kim et al., 2003).

• Data Source: This categorization groups datasets based on the origin of the text data
they contain:

– News Articles: Offer a formal style and focus on current events. Examples
include MUC-7 (MUC, 1998), and the ACE 2005 Event Corpus (Walker and
Consortium, 2005).

– Social Media: Offer informal language and user-generated content. May require
specific preprocessing techniques. Examples include Twitter Event Detection
datasets (Zubiaga, 2018).

– Web Documents: Can encompass a wide variety of text types and styles, re-
quiring broader adaptation strategies for IE models. Examples include WiNER
(Ghaddar and Langlais, 2017).

• Language: This categorization groups datasets based on the language they represent:

4https://dblp.org/db/conf/semeval/index.html
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– English: The most common language for information extraction datasets, of-
fering a wider selection for training and evaluation. Examples include MUC-7,
CoNLL 2003, and the ACE 2005 Event Corpus.

– Multilingual Datasets: As research expands beyond English, datasets in various
languages are becoming increasingly important. Examples include CoNLL 2003,
and Wikipedia NER.

• Domain Specificity: This categorization groups datasets based on the specific domain
or field they represent:

– General Domain: Applicable to a broad range of text data and topics. Examples:
MUC-7, CoNLL 2003

– Biomedical Domain: Focuses on medical text and terminology, requiring domain-
specific knowledge for accurate extraction. Examples include Genia.

– Financial Domain: Focuses on financial news and reports, requiring an under-
standing of financial terms and entities. Examples include ChFinAnn (Zheng
et al., 2019).

In this thesis, we focus primarily on the general domain of information extraction. This
focus allows us to explore and advance methodologies applicable across diverse contexts.
To achieve this, we have selected two prominent datasets, notably CoNLL04 and ACE05.
The CoNLL04 dataset presents a comprehensive set of challenges in entity and relation ex-
traction within the English language domain. This established benchmark provides a robust
foundation for our experimental investigations. The ACE05, dataset on the other hand, ex-
tends the scope by encompassing entity, relation, and event extraction tasks across multiple
languages, including Arabic. This broader dataset allows us to explore the generalizability of
our approaches and their potential for adaptation to different languages. By leveraging these
datasets, we ensure relevance of our experimental evaluations, and align ourselves with es-
tablished benchmarks in the field, facilitating meaningful comparisons and contributions to
the information extraction field. In the following subsections, we provide detailed insights
into these two datasets.

The ACE05 Dataset The ACE 2005 multilingual training corpus (ACE05) is a reference
resource for research and development in multilingual information extraction tasks. It pro-
vides annotated text data in English, Arabic, Spanish, and Chinese, including diverse sources
like news articles, newswires, and online text. ACE05 offers rich annotations for various in-
formation extraction tasks:

• Entities: Categorized into 7 types and 45 subtypes as detailed in Table 2.1.

• Relations: Categorized into 6 types and 18 subtypes as detailed in Table 2.3.

• Event triggers: Categorized into 8 types and 33 subtypes as detailed in Table 2.2.
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Type Subtypes

Person (PER) Individual, Group, Indefinite

Organization (ORG) Government, Commercial, Educational, Entertainment,
Non-Governmental Organizations, Media, Religious,
Medical-Science, Sports

Geo-political Entity (GPE) Continent, Nation, State-or-Province, County-or-District,
Population-Center, GPE-Cluster, Special

Location (LOC) Address, Boundary, Celestial, Water-Body, Land-Region-
natural, Region-International, Region-General.

Facility (FAC) Airport, Plant, Building-or-Grounds, Subarea-Facility, Path.

Vehicle (VEH) Air, Land, Water, Subarea-Vehicle, Underspecified.

Weapon (WEA) Blunt, Exploding, Sharp, Chemical, Biological, Shooting,
Projectile, Nuclear, Underspecified.

Table 2.1: ACE05 Entity Types and Subtypes.

Additionally, ACE05 encompasses 22 event argument types (e.g., Agent, Artifact).
These solely focus on the type of entity involved in an event, distinguishing them from the
other categories that include subtypes.

There are constraints on the types of entities that can participate in each relation, depend-
ing on its type. These constraints ensure logical and contextually appropriate connections
between entities, as detailed in Table 2.3. Similarly, each event type can have predefined
event roles, which themselves must correspond to specific predefined entity types. For ex-
ample, a Marry event type can have roles such as person (the people who are married), time
(when the marriage takes place), and place (where the marriage takes place). For person, the
entity type must be Person (PER). For time, the entity type must be Time (TIME). For place,
the entity types can be Geo-Political Entity (GPE), Location (LOC), or Facility (FAC).
However, due to the extensive number of event roles, we do not present these constraints
here. Thus, for comprehensive and complete guidelines on entity, relation, and event anno-
tations, please refer to the ACE 2005 annotation tasks and specifications available at LDC
Annotation Tasks and Specifications.

The CoNLL04 Dataset The CoNLL-2004 (CoNLL04) Shared Task dataset is a bench-
mark widely used for evaluating joint entity and relation extraction methods. CoNLL04 de-
fines the four main entity types presented in Table 2.4, and five types of relations presented
in Table 2.5.
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Type Subtypes

Life Be-born, Marry, Divorce, Injure, Die.

Movement Transport.

Transaction Transfer-ownership, Transfer-money.

Business Start-org, Merge-org, Declare-bankruptcy, End-org.

Conflict Attack, Demonstrate.

Contact Meet, Phone-write.

Personnel Start-position, End-position, Nominate, Elect.

Justice Arrest-jail, Release-parole, Trial-hearing, Charge-indict, Sue, Convict, Sen-
tence, Fine, Execute, Extradite, Acquit, Appeal, Pardon.

Table 2.2: ACE05 Event Trigger Types and Subtypes.

2.4 Evaluation Metrics

Evaluating the performance of information extraction models is crucial for assessing their
effectiveness and comparing different approaches. This section explores some commonly
used metrics for evaluating various information extraction tasks. Core evaluation metrics
include:

• Precision: Measures the proportion of predicted labels that are actually correct. It is
calculated as:

Precision =
TP

TP + FP
(2.1)

Where TP denotes True Positives, the number of correctly predicted labels, and FP
denotes False Positives, the number of labels incorrectly predicted as positive.

• Recall: Measures the proportion of actual positive labels that are correctly identified
by the model. It is calculated as:

Recall =
TP

TP + FN
(2.2)

Where FN denotes False Negatives, the number of actual positive labels that the model
missed.

• F1 score: Combines precision and recall into a single metric, providing a balanced
view of model performance. It is calculated as:

F1 score = 2 · Precision · Recall
Precision + Recall

(2.3)
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Type Subtypes Arg1 Arg2

Physical (PHYS)
Located PER FAC, LOC, GPE
Near PER, FAC, GPE,

LOC
FAC, GPE, LOC

Part-whole
(PART-WHOLE)

Geographical FAC, LOC, GPE FAC, LOC, GPE
Subsidiary ORG ORG, GPE
Artifact VEH VEH, WEA

Personal-social
(PER-SOC)

Business PER PER
Family PER PER
Lasting-personal PER PER

ORG-Affiliation
(ORG-AFF)

Employment PER ORG, GPE
Ownership PER ORG
Founder PER, ORG ORG, GPE
Student-Alum PER ORG
Sports-Affiliation PER ORG
Investor-
Shareholder

PER, ORG, GPE ORG, GPE

Membership PER, ORG, GPE ORG

Agent-Artifact
(ART)

User-Owner-
Inventor-
Manufacturer

PER, ORG, GPE WEA, VEH, FAC

Gen-Affiliation
(GEN-AFF)

Citizen-Resident-
Religion-Ethnicity

PER PER, LOC, GPE,
ORG

Org-Location-
Origin

ORG LOC, GPE

Table 2.3: ACE05 Relation Types and Subtypes.

Type Definition

People (Peop) Represents individuals and pronouns referring to them.
Organization (Org) Encompasses companies, institutions, and other established entities.
Location (Loc) Includes geographical entities like countries, cities, and landmarks.
Other (Other) Covers other relevant entities, such as dates, monetary values, and

percentages.

Table 2.4: CoNLL04 Entity Types and Subtypes.

Both entity and event trigger extraction tasks commonly use the F1 score for evalua-
tion. However, relation extraction tasks require a nuanced evaluation approach due to the
complexity of predicting entity boundaries and relation types. The evaluation of relation
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Type Definition

Work_For Captures the employment relationship between a person and an organiza-
tion.

OrgBased_In Indicates the location where an organization is headquartered or operates.
Live_In Represents the place of residence for a person.
Kill Identifies acts of violence resulting in one person’s death by another.
Located_In Specifies a geographical containment, where one location is situated

within another.

Table 2.5: CoNLL04 Relation Types and Subtypes.

extraction can involve the following techniques:

• Strict Evaluation: This method requires both the correct prediction of entity bound-
aries and their types, along with the accurate prediction of the relation type between
entities.

• Relaxed Evaluation: In this approach, the focus is on correctly predicting entity
boundaries and the relation type, without strict adherence to exact entity types.

Moreover, relation extraction evaluation can include directed and non-directed assess-
ments, which determine whether the predicted order of the two entities is significant.

In event argument extraction evaluation, the assessment comprises two primary aspects:
the accurate identification of the event trigger and its corresponding type, and the precise
identification of the event argument along with its associated type.

2.5 Conclusion

In this chapter, we reviewed the core tasks of information extraction (Section 2.1), including
entity, relation, event trigger, and event argument extraction. Using ACE program definitions
ensured clarity and will facilitate comparisons with existing research in subsequent chapters.

We discussed various learning paradigms in Subsection 2.2.1 such as supervised, un-
supervised, reinforcement, and transfer learning, highlighting their contributions and limita-
tions. We emphasized that we will focus on supervised learning in all the following chapters.
The historical evolution of information extraction (Subsection 2.2.2) demonstrated a shift
from rule-based systems to machine learning and deep learning models, each enhancing the
ability to handle complex text patterns.

We also reviewed joint information extraction (Subsection 2.2.3), exploring parameter
sharing, graph-based models, and autoregressive frameworks to address limitations like error
propagation and limited information sharing. We will adopt joint multitask learning in our
work addressing the four tasks of information extraction (Chapters 3 and 5). Additionally,
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we presented decoding strategies (Subsection 2.2.4) used in information extraction, noting
that we will use greedy decoding in both Chapters 3 and 4, and beam search in Chapter 5.

We then covered specific challenges and advancements in Arabic information extraction
(Subsection 2.2.5), most of which we will address in Chapters 3 and 4.

We reviewed available information extraction datasets (Section 2.3), highlighting key
benchmarks like CoNLL04 and ACE05, which we will use to train and evaluate our models.

Lastly, we outlined evaluation metrics (Section 2.4) such as precision, recall, and F1
scores, with additional techniques for relation extraction and event argument extraction, pro-
viding a framework for assessing model performance.

This review sets the stage for the subsequent chapters, where we present our proposed
models and techniques for advancing Arabic information extraction and joint information
extraction tasks.
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Chapter 3

Joint Entity, Relation, and Event
Extraction for Arabic

3.1 Introduction

With Arabic being the world’s fifth most spoken language, and the language of regions rich
in culture and current events, extracting valuable information from Arabic texts holds signif-
icant potential across a range of domains. While information extraction has seen significant
advancements for languages like English, Chinese, and Spanish, applying these techniques
to Arabic presents unique challenges. In this work we will only focus on Modern Standard
Arabic (MSA).

Challenges of Arabic Information Extraction

• Complex Morphology: Unlike English and languages with clear word boundaries,
MSA morphology is non-concatenative. Words are formed by attaching prefixes, suf-
fixes, and roots, often blurring the lines between word and morpheme. Entities can
span across these units, making it difficult to segment text for traditional IE methods.

• Rich Vocabulary and Diacritics: MSA has a rich vocabulary with many words having
multiple meanings depending on context or on the corresponding diacritization. This
ambiguity can lead to misidentification of entities and event arguments.

• Lack of Resources: Compared to well-resourced languages like English, MSA has
limited publicly available annotated data for training IE models. This scarcity hinders
the development of robust Arabic IE systems.

Previous Work Significant research has been conducted in Arabic NER, with notable con-
tributions from studies like (Benajiba et al., 2004; Oudah and Shaalan, 2012; Naji, 2012).
However, efforts in Relation Extraction (RE) and Event Detection (ED) for Arabic have
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been limited (Taghizadeh et al., 2018; AL-Smadi and Qawasmeh, 2016). Notably, there is a
complete absence of prior work addressing these tasks jointly. This chapter aims to bridge
this gap by introducing a novel joint multi-tasking system for four crucial Arabic IE tasks:
entity, relation, event trigger, and event argument extraction.

Our Proposed Model Our model builds upon the graph-based approach developed by Lin
et al. (2020). It operates in two stages:

• Identification Stage: This stage employs two CRFs (Lafferty et al., 2001) with BIO-
based tags to identify entities and event triggers, essentially creating the nodes of our
information graph.

• Information Graph Construction: A greedy decoding strategy constructs the infor-
mation graph depicting the relationships between identified entities and event triggers
(edges of the graph).

Addressing the Challenges Arabic’s rich morphology necessitates modeling at a subword
level to accurately capture and represent entities. Thus, we explore two subword modeling
approaches:

• Word Tokenization: As a preprocessing step, we split morphologically complex
words into tokens, each of which corresponds to (or is a part of) one entity at most. An
entity can thus be modeled as a sequence of tokens using the standard BIO tags.

• Augmented BIO Tags: We modify the standard BIO scheme to encode multiple enti-
ties within a single word, eliminating the need for prior tokenization.

A detailed comparison of these approaches and their impact on IE performance is pre-
sented in Section 3.3.

Contributions This work makes the following key contributions:

• First neural joint IE model for Arabic: We present ArabIE (§3.2), the first neural
joint IE model for Arabic. It tackles four essential tasks simultaneously: Named En-
tity Recognition, Relation Extraction, Event Recognition, and Argument Detection.
On the ACE 2005 benchmark dataset, ArabIE achieves state-of-the-art results. We
show that its performance is comparable to existing top models for other languages
(Section 3.5), highlighting its potential for broader impact.

• Empirical study of tokenization and IE performance: We conduct a comprehensive
empirical study (Section 3.3) to analyze the complex interplay between tokenization
strategies and IE performance.

• Error Analysis: We perform a detailed error analysis to identify the specific weak-
nesses and limitations of our model, providing insights for future improvements and
research directions.
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3.2 Model Architecture

Given a text document as input, we aim at extracting, from each sentence, entities and binary
relations between them, event triggers, and their arguments. Formally, for an input sequence
x of length L , the information extraction task is the operation that yields, as an output, a
graph G = (V,E) whose nodes V are spans of tokens of the input sequence representing
identified entities and triggers, and whose edges E represent relations between two entities
or event roles (relations between event triggers and their arguments entities). Each node and
edge in the graph has a type. Similar to Lin et al. (2020), our model performs end-to-end IE
in four stages.

3.2.1 Token encoding

We explore various combinations of representations from different layers of BERT to encode
the input sequence, inspired by token encodings of Lin et al. (2020) for English data. After
thorough experimentation, we find that concatenating the output from BERT’s last and third-
to-last layers yields optimal performance across most subtasks. This choice is motivated
by the findings of Jawahar et al. (2019), who demonstrated that the last layers of BERT
capture rich semantic information crucial for processing Arabic texts. Before encoding,
input sequences may undergo additional (optional) tokenization as part of a preprocessing
step (see §3.3). The embedding for the i-th token xi of the input sequence x is computed as
follows:

xi = [BERTN−1
i ;BERTN−3

i ]

Here, BERTj
i represents the output vector for the i-th token from the j-th layer of the

BERT model, with N denoting the total number of layers.

3.2.2 Identification

Token embeddings are passed to a network composed of a Feed-Forward Network (FFN)
followed by a Conditional Random Field (CRF). The network leverages the BIO scheme to
identify spans of tokens corresponding to entities or event triggers within the sequence.

The FFN The FFN takes the token embedding xi of each token i in the sequence x as
input and computes a score vector yi from the BIO tag set (B-PER, I-PER, B-LOC, I-LOC,
. . ., O):

yi = FFN(xi)
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Separate CRFs for Entities and Triggers We then employ two separate CRF models, one
for entity and the other for triggers, allowing each model to specialize in its respective task.
Each CRF predicts a sequence of labels using the BIO scheme for the corresponding element
type.

Score for a Tag Path The score s(x, z) for a tag path z = (z1, ...,zL) is calculated as:

s(x, z) =
L∑
i=1

yi · zi +
L+1∑
i=1

Azi−1,zi

Here, A is the transition matrix inferred by the CRF capturing dependencies between
labels, and zi is the label predicted by the CRF for the i-th token (BIO scheme). Note that
the left term from the addition reflects the compatibility between the FFN output yi and the
predicted entity or trigger label zi, and the second term captures the transition score between
consecutive entity or trigger labels.

Labeling and Overlap The predicted label sequence from the CRFs segments the input
sequence. This ensures that identified entities and triggers won’t overlap within their respec-
tive categories (entities or triggers). However, entities and triggers can coexist within the
same token in some cases. For example, in the verb “ �

I
	
®
�
¯ð

@” (Awqft; she arrested), we can

distinguish the following annotated information:

1. The whole verb “ �
I

	
®
�
¯ð

@” is a trigger of type Justice;

2. The pronoun “ �
H” (t) is an entity of type Person.

3.2.3 Classification

At this stage, entities and triggers are identified, but their types are not yet assigned. A fixed-
size representation for each span vi is computed as the average of its word representations.

The output is passed to an FFN to obtain a score for each possible type. Again, we use
separate FFNs for entities and triggers.

Scoring relations and event roles is performed in a similar manner. An edge between two
spans is represented by concatenating their vectors. A relation edge links two entities while
a role edge links a trigger to an entity. Representations of edges are passed to an FFN to
compute a score for each relation or role type. A special none label to indicate the absence
thereof. We also use a separate FFN for relations and roles.
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3.2.4 Decoding

To construct the final information graph representing the extracted entities, triggers, rela-
tions, and event arguments, we use an unconstrained greedy decoding approach. For each
node (identified entity/trigger) and edge (relationship between nodes) in the potential graph,
we select the label type with the highest predicted score from the classification stage. This
iterative process continues until all nodes and edges have assigned types, resulting in the
final information graph.

We explored incorporating a penalty term on invalid graph configurations into the over-
all score and decoding with beam search as done by Lin et al. (2020). However, in our
experiments, neither of these approaches yielded significant improvements over the basic
unconstrained greedy decoding.

3.2.5 Training

We employ joint end-to-end training to optimize the parameters of all networks simultane-
ously. The training objective is to minimize the sum of the individual loss functions asso-
ciated with each subtask: entity/trigger identification (CRFs) and classification (FFNs) for
entities, triggers, relations, and event arguments.

For the CRF layers, we use the negative log-likelihood of the gold BIO paths as the loss
function, denoted as LCRF:

LCRF = − log p(z∗|x) = −(s(x, z∗)− log
∑
z′∈Z

es(x,z
′))

Here, Z is the set of all possible tag paths for a given sentence.

For the FFN classifiers used in the classification stage of all tasks (entity, trigger, rela-
tions, and event arguments types), we also employ the negative log-likelihood loss function,
denoted as LFFNt:

LFFNt = −
Nt∑
n=1

y∗t
i · log(yt

i)

Here, LFFNt denotes the loss for task t ∈ {entity, relation, trigger, role}, yt
i represents the

predicted score vector for the i-th span or edge in task t, y∗t
i represents the corresponding

gold-standard label vector, Nt represents the number of training instances for task t.
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gold

مراسلتنا

concat

مراسلتنا

tok_wp

                  مراسل تنا

tok_morph

       مراسل +ة +نا

ORG PER PER-ORG

ORG PER

Figure 3.1: Examples of Different Arabic Tokenization Approaches.

3.3 Particularities of the Arabic Language

As discussed in Section 4.1 regarding Arabic’s morphology, a word in Arabic can hold two
or more entities anchored on its root or affixes. For example, consider the word “ A 	J�JÊ�@QÓ”

(mrAsltnA; our reporter). This word contains two distinct entities: “ �éÊ�@QÓ” (mrAslp; re-

porter) of type Person (PER) and A
	
K (nA; our) of type Organization (ORG)1. This example

cannot be handled by traditional sequence labeling approaches, which typically assign a sin-
gle label to each token in the sequence. Previous NER systems using sequence labeling
often treated such cases as anomalies and simply discarded subword entities (Benajiba et al.,
2008a). However, this approach results in a loss of valuable information.

We propose two solutions to address this problem detailed in the following paragraphs.

Word tokenization Subword entities typically correspond to morphemes. We, therefore,
use a morphological analyzer to tokenize words in context. The probability that each result-
ing token corresponds to multiple entities decreases dramatically. In practice, we use the
analyzer provided by CamelTools (Obeid et al., 2020) and refer to this tokenization scheme
by tok_morph.

For the example word “ A 	J�JÊ�@QÓ”, the morphological analyzer segments it into three mor-

phemes: “ A 	K+ �
è+ É�@QÓ” (mrAsl +p +nA). The first two tokens correspond to the entity

“Reporter” of type Person, while the third token “Our” corresponds to an entity of type
Organization.

To create training data for the tokenized sequences, we align each word with its cor-
responding morphemes at the character level. This alignment is then used to project gold
standard entities onto the resulting tokens. An entity is projected onto a token if the majority

1This example is taken from the ACE 2005 corpus. We use the Buckwalter (Buckwalter) transliteration
scheme for Romanization. Note that the taa’ marbuuTa ( �è; p) transforms to taa’ ( �

H; t) when attached to the

suffix ( A 	K; nA).
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of its characters align with that token. However, if multiple entities are projected onto the
same token, only one is chosen randomly.

To validate our hypotheses that morphemes are the right level for modeling entities, we
compare the morphological analyzer to Word Pieces (Wu et al., 2016), a statistical tokenizer
which does not necessarily produce valid affixes. This tokenizer produces“ A

	
J
�
K É�@QÓ” (mrAsl

tnA) for the example word where the second token is not a morphologically valid suffix and
does not exactly match the gold entity “ A 	K” (nA; our). We refer to this tokenization scheme
by tok_wp.

Data Loss Quantification Projection of entities onto tokens is not always perfect either
because an entity doesn’t correspond to a morpheme in gold data; the tokenizer doesn’t
produce a valid morpheme; or both. This results in some data loss that we quantify in
Table 3.2 for the different tokenization schemes. This data loss is taken into account during
the evaluation phase.

Consider the sentence “ 	
à@Q�
m.

Ì'@ 	á« Aî
�
DË

A�” (s>lthA En AljyrAn; she asked her about the

neighbours). Here, we have three entities:

• “ �
H” (t): entity of type person;

• “ Aë” (hA): entity of type person;

• “ 	
à@Q�
m.

Ì'@” (AljyrAn): entity of type person.

There is also a relation of type personal-social (PER-SOC) between “ Aë” and “ 	
à@Q�
m.

Ì'@” .

However, the tok_wp approach tokenizes the sentence as “ 	
à@Q�
m.

Ì'@ 	á« Aî
�
E È


A�”. The prob-

lematic aspect is the token “ Aî�E”. It combines the two entities “ �
H” and “ Aë” but doesn’t

represent either one accurately. This makes it impossible to project both entities onto the
single token. Therefore, we randomly choose one entity to project onto “ Aî�E”. If “ �

H” is

chosen, then “ Aë” is discarded. This results in the loss of the entity “ Aë” and the PER-SOC

relation between it and “ 	
à@Q�
m.

Ì'@”.

Augmented BIO Tags An alternative approach we explore is label concatenation. Here,
instead of tokenizing words and projecting entities, we combine the labels of subword en-
tities into a singlecomplex entity. For example, the word “ A 	J�JÊ�@QÓ” would be labeled as
PER-ORG using this scheme.

This approach is appealing due to its simplicity but has limitations. Firstly, it significantly
increases the size of the label set, as some words contain up to four entities. In practice, to
mitigate this issue, we restrict the label set to the labels observed in the training data. This
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Source Files Words Entities Relations Triggers Roles

NW 221 53026 17105 2674 1270 2957
BN 127 26907 9099 1606 870 1762
WL 55 20181 6234 439 130 256

Total 403 100114 32438 4719 2270 4975

Table 3.1: General Statistics of Raw Arabic ACE05.

ensures the model focuses on relevant entities encountered during training. We refer to this
tokenization scheme by concat.

Figure 3.1 summarizes the different approaches adopted on the example of the word
“ A 	J�JÊ�@QÓ”, where entities are framed in different colors w.r.t their label types.

3.4 Experimental Setup

In this section, we describe the dataset used for training and evaluation, the preprocessing
steps applied, and the evaluation metrics.

3.4.1 Dataset and Preprocessing

We use the Arabic corpus ACE05 provided by the LDC2, which consists of various document
types annotated with entities, relations, and events. The corpus encompasses broadcast news,
news wire, and weblog files, each annotated with rich information. Table 3.1 presents gen-
eral statistics of the raw Arabic ACE05 data, illustrating the distribution of words, entities,
relations, event triggers, and event arguments (roles) across different document sources.

Despite its availability since 2006, limited work has been conducted on ACE05 for entity
extraction, and no efforts have been made towards relation or event extraction. These pre-
vious works are further discussed in detail in Section 3.7. To facilitate experimentation, we
randomly split the ACE05 data into 80% training, 10% development, and 10% testing sets,
as no official split is provided. Our splits are publicly available 3 for further developments.

Segmentation Document segmentation into sentences is performed using punctuation marks,
except for the broadcast news subcorpus, which is segmented into fixed-length sentences due
to the absence of punctuation. It’s worth noting that document segmentation may result in
the loss of some entities and triggers, along with their associated relations and roles, if a
sentence boundary happens to occur within them. Comparing train rows of gold and segm
in Table 3.2 allows to quantify the data loss after the segmentation phase.

2https://catalog.ldc.upenn.edu/LDC2006T06
3https://github.com/niamaelkhbir/ArabIE
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Tokenization Split Entities Relations Triggers Roles

gold
train 26178 3801 1831 3346
dev 3296 508 235 418
test 2946 400 204 352

segm train 26065 3727 1831 3181

concat train 26065 3727 1831 3181

tok_wp train 25554 3416 1831 3176

tok_morph train 25833 3675 1829 3168

Table 3.2: Statistics of Arabic ACE05 Train, Dev, and Test Splits.

Tokenization Tokenization described in §3.3 may result in data loss which we quantify in
Table 3.2. The table shows statistics on ACE05 train, dev, and test splits. The train, dev, and
test sets are identical for all approaches. This table plays allows understanding the impact of
preprocessing steps on data. This table compares the number of entities, relations, triggers,
and roles across different stages:

• gold: Represents the original data before any preprocessing.

• segm: Represents the data after document segmentation. The difference between
textbfgold and textbfsegm rows indicates data loss due to segmentation.

• concat, tok_wp, tok_morph: These rows represent the data after applying the respec-
tive tokenization approaches. The difference between segm and these rows shows the
additional data loss introduced by each tokenization method.

Dataset Statistics In Table 3.1, we present statistics done on raw ACE05 files, where NW
denotes newswires, BN denotes broadcast news and WL denotes weblogs. Note that the
difference between role numbers here and gold role numbers of Table 3.2 is explainable by
the fact that we don’t handle time roles; arguments that refer to time. We made this choice
following (Luan et al., 2019) and Zhang et al. (2019). Thus we also consider that time and
value event arguments are not technically named entities.

We provide the following detailed statistics about the ACE05 dataset:

• Table 3.3: This table shows the distribution of entities across different entity types
(e.g., Person, Organization, Location).

• Table 3.4: This table presents the distribution of relations between entities (e.g., PER-SOC
for social relations between people).

• Table 3.5: This table shows the distribution of event triggers (e.g., Conflict, Transaction).
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Entity Facility Geopolitical Location Organization Person Vehicle Weapon
Acronym FAC GPE LOC ORG PER VEH WEA

Count 1427 7165 1215 4885 17150 418 481

Table 3.3: Statistics of Arabic ACE05 Entity Types.

Relation ART GEN-AFF ORG-AFF PART-WHLE PER-SOC PHYS

Count 338 1142 1379 903 643 314

Table 3.4: Statistics of Arabic ACE05 Relation Types.

Trigger Business Conflict Contact Justice Life Movement Personnel Transaction

Count 24 550 274 379 398 435 152 58

Table 3.5: Statistics of Arabic ACE05 Trigger Types.

Role Count Role Count

Adjudicator 91 Origin 112
Agent 282 Organization 17
Artifact 378 Person 302
Attacker 303 Place 351
Beneficiary 22 Plaintiff 12
Buyer 6 Prosecutor 22
Defendant 135 Recipient 17
Destination 275 Seller 1
Entity 584 Target 310
Giver 36 Vehicle 50
Instrument 266 Victim 364

Table 3.6: Statistics of Arabic ACE05 Role Types.

• Table 3.6: This table details the distribution of event argument roles (e.g., Agent,
Patient, Location).

• Table 3.7: This table highlights the top 10 most frequent entities in the Arabic ACE05
data. The total number of gold entities being 32420, we can easily see that the pronom-
inal entities which are in most cases subwords, are numerous. Hence the need for tok-
enization to manage them. Note that 21.88% of entities are one-character tokens and
10.18% are two-character tokens.
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Rank Entity Occurrences Rank Entity Occurrences
1 �

H (t) 2420 6 @ð (wA) 459

2 è (h) 1823 7 A
	
K (nA) 374

3 ø



(y) 1690 8 ��


KQË @ (Alr}ys; the president) 307

4 Aë (hA) 933 9 	
à (n) 282

5 Ñë (hm) 560 10

@ (>) 279

Table 3.7: Top-10 Most Frequent Entities in Arabic ACE05.

3.4.2 Hyperparameters

Hyperparameter Tuning To optimize the model’s performance, we use a combination of
predefined hyperparameter settings and a grid search approach. We trained our model for 80
epochs with a batch size of 6. We used the BertAdam optimizer with a learning rate of 5e-5
and weight decay of 1e-5 for the BERT parameters and a learning rate of 1e-3 and weight
decay of 1e-3 for other parameters.

Pretrained Language Model The primary pretrained language model we used for all ex-
periments was bert-large-arabertv2 by Antoun et al. (2020) except for tok_wp experiments,
where we used the bert-large-arabertv02 tokenizer. However, an important consideration
is the potential mismatch between the tokenization schemes tok_morph and tok_wp and
the vocabulary of the chosen BERT model. Currently, there isn’t a pretrained BERT model
specifically designed to work with these tokenization approaches.

This mismatch can lead to the model encountering tokens that are not present in its vocab-
ulary, potentially impacting performance. Despite using bert-large-arabertv2, the tok_morph
approach still resulted in a significant reduction in unknown tokens compared to the concat
approach.

To fully address this limitation and leverage the benefits of tok_morph or similar tok-
enization schemes, a BERT language model should be trained on the output generated by the
morphological analyzer. This would create a model with a vocabulary that aligns better with
the tokenized data, potentially leading to improved performance.

Computational Resources We conducted our experiments on an Ubuntu machine equipped
with an Nvidia GeForce RTX 2080 GPU with 8GB of RAM. We estimate the computational
cost to be approximately 6 GPU hours for each experiment run of Table 3.8.

3.4.3 Evaluation

We use the standard metrics: precision, recall, and F1 score to evaluate the performance of
our model on each task independently. Additionally, we calculate a macro-averaged F1 score
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Fg to provide a combined measure across all tasks, where each task’s weight is proportional
to the number of instances Nt it contains. The formula for Fg is as follows:

Fg =
1∑

t∈T Nt

∑
t∈T

NtF
t
1

We consider an entity (resp. trigger) correct if its span boundaries (start and end posi-
tions) and label exactly match those of a gold entity (resp. trigger). However, for subword
entities (§3.3), slight mismatches within a word are tolerated as long as the overall order is
preserved. For example, consider the word in Figure 3.1 tokenized using the tok_wp ap-
proach. If the model predicts “É�@QÓ” (mrAsl) as an entity of type Person and “ A 	J�K” (tnA) as
an entity of type Organization, this prediction would be considered correct. This evaluation
approach applies to all tokenization methods.

Similar to entity evaluation, we consider a relation prediction correct if the participating
entities and the relation label match the gold standard values. Likewise, we consider an event
role prediction correct if its span and label align with the gold standard annotation.

While stricter evaluation is also possible, we opted for a more relaxed approach to em-
phasize a fair comparison between the tokenization and concatenation methods. Both ap-
proaches inherently introduce data loss due to their preprocessing steps, and our evaluation
strategy accounts for this by penalizing models for the data they lose.

3.5 Results

Table 3.8 presents the results using type labels (7 entities, 6 relations, 8 triggers, and 22
roles), and Tableand 3.9 presents the results using subtype labels (44 entities, 18 relations,
32 triggers, and 22 roles) for each tokenization scheme. The scores represent the average of
three model runs, with results reported for the model achieving the best average F1 score on
the dev set.

Existing work on Arabic NER for ACE05 did not address nominal and pronominal enti-
ties (Benajiba et al., 2008a), avoiding the tokenization challenges. In contrast, our approach
handles all grammatical categories of entity mentions.

tok_morph results The tok_morph approach achieves the highest F1 score on all four
tasks. It also achieves the best overall Fg score. We suppose that the morphological in-
formation incorporated by the tokenizer plays a crucial role in this superior performance,
particularly for relation and event recognition tasks.

concat results The concat approach gets the lowest Fg score. We can notice that its perfor-
mance on triggers using type labels is quite close to that of tok_morph, but its performance
on entities is poor compared to tok_wp and tok_morph approaches. We explain this by
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Task concat tok_wp tok_morph

Entity
P: 83.66 ± 0.05
R: 82.26 ± 0.11
F: 82.96 ± 0.03

P: 84.42 ± 0.32
R: 84.05 ± 0.12
F: 84.23 ± 0.22

P: 85.04 ± 0.25
R: 85.07 ± 0.2
F: 85.05 ± 0.12

Relation
P: 59.88 ± 1.29
R: 56.88 ± 0.62
F: 58.34 ± 0.94

P: 57.92 ± 1.38
R: 53.0 ± 3.02
F: 55.29 ± 1.67

P: 62.3 ± 0.42
R: 63.5 ± 0.61
F: 62.9 ± 0.51

Trigger
P: 67.56 ± 2.38
R: 58.58 ± 0.73
F: 62.74 ± 1.45

P: 69.49 ± 0.36
R: 57.68 ± 1.89
F: 63.02 ± 1.1

P: 66.32 ± 0.51
R: 61.11 ± 1.62
F: 63.59 ± 0.81

Role
P: 55.8 ± 1.09
R: 43.75 ± 0.85
F: 49.04 ± 0.95

P: 52.75 ± 0.46
R: 40.15 ± 0.81
F: 45.59 ± 0.35

P: 57.38 ± 1.5
R: 47.25 ± 0.94
F: 51.82 ± 0.98

Fg 76.31 76.66 78.65

Table 3.8: Results on Arabic ACE05 Data Using Type Labels.

Task concat tok_wp tok_morph

Entity
P: 81.86 ± 0.18
R: 80.54 ± 0.32
F: 81.19 ± 0.25

P: 81.74 ± 0.22
R: 80.85 ± 0.13
F: 81.3 ± 0.18

P: 83.05 ± 0.44
R: 83.0 ± 0.45
F: 83.02 ± 0.44

Relation
P: 58.61 ± 1.56
R: 55.33 ± 1.33
F: 56.92 ± 1.41

P: 56.62 ± 0.48
R: 51.25 ± 1.0
F: 53.8 ± 0.77

P: 60.7 ± 0.44
R: 57.5 ± 0.5
F: 59.05 ± 0.06

Trigger
P: 64.93 ± 2.34
R: 55.88 ± 1.44
F: 60.06 ± 1.76

P: 66.97 ± 0.68
R: 56.61 ± 0.25
F: 61.36 ± 0.14

P: 64.32 ± 1.38
R: 54.41 ± 1.96
F: 58.96 ± 1.73

Role
P: 53.06 ± 1.07
R: 42.05 ± 1.39
F: 46.9 ± 1.03

P: 50.46 ± 2.45
R: 38.35 ± 0.57
F: 43.56 ± 1.28

P: 55.48 ± 2.2
R: 42.61 ± 1.14
F: 48.2 ± 1.55

Fg 74.50 74.03 76.16

Table 3.9: Results on Arabic ACE05 Data Using Subtype Labels.

the increase in the number of labels to classify in this approach; 24 entity type labels (resp.
127 entity subtype labels), such as PER-VEH, ORG-VEH, VEH-VEH (resp. PER:Group-VEH:Air,
PER:Individual-VEH:Air), instead of 7 entity type labels (resp. 44 entity subtype labels),
such as PER, LOC, VEH... (resp. PER:Group, PER:Individual, VEH:Air...) for the other
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Entity Precision Recall F1 Score

FAC P: 0.86 ± 0.00 R: 0.77 ± 0.01 F: 0.82 ± 0.00
GPE P: 0.86 ± 0.00 R: 0.84 ± 0.00 F: 0.85 ± 0.00
LOC P: 0.79 ± 0.01 R: 0.58 ± 0.02 F: 0.66 ± 0.02
ORG P: 0.73 ± 0.01 R: 0.79 ± 0.00 F: 0.76 ± 0.00
PER P: 0.88 ± 0.00 R: 0.91 ± 0.00 F: 0.90 ± 0.00
VEH P: 0.68 ± 0.00 R: 0.92 ± 0.03 F: 0.78 ± 0.01
WEA P: 0.93 ± 0.04 R: 0.72 ± 0.03 F: 0.81 ± 0.03

Table 3.10: Entity Results by Type with tok_morph Tokenization.

approaches.

Relations (resp. roles) F1 score is degraded by 4.56 (resp. 2.78) points compared to that
of tok_morph even if the relation labels number is the same for these two approaches. We
explain this by the fact that when the classification and identification of entities become more
complex, the part of the loss specific to entities becomes difficult to minimize, which forces
the model to prioritize this task over the others, thus degrading relation and role performance.

tok_wp results Entity and relation performance of tok_wp is close to that of tok_morph
and better than that of concat. However, this approach gets the lowest F1 score for relation
and role tasks. This is partly due to a larger number of discarded entities in this approach than
in the other approaches. More discarded entities leads to more discarded relations, and since
we penalize each model with respect to discarded instances, this explains the discrepancy in
performance.

Type labels experiments details We present in this subsection score details of the experi-
ments of Table 3.8. Tables 3.10, 3.11, 3.12, and 3.13 shows entity, relation, trigger, and role
scores by type labels.

We do not report scores details of the subtype label experiments (Table 3.9) because they
are too numerous, and in general, the behavior and the performance of the subtype labels
experiments follow that of the type label experiments.

We notice that among the entity types, PER has the best F1 score. Likewise, among
the relation types, ORG-AFF has the best F1 score. PER and ORG-AFF represent respectively
52.87% and 29.22% of the total number of entities and relations.

Imbalanced Data Problem We notice furthermore that Business events have an F1 score
of 0; they represent only 0.5% (of the total number of events), which is a limited amount of
data to train the model to recognize this class. The same behavior (with an F1 score of 0) is
observed for role types Beneficiary, Buyer, Organization, Prosecutor, Recipient, and Seller
as they represent respectively 0.14%, 0.41%, 0.53%, 0.41%, and 0.02% of the total number
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Relation Precision Recall F1 Score

ART P: 0.59 ± 0.02 R: 0.57 ± 0.04 F: 0.58 ± 0.02
GEN-AFF P: 0.61 ± 0.02 R: 0.64 ± 0.03 F: 0.62 ± 0.02
ORG-AFF P: 0.69 ± 0.01 R: 0.77 ± 0.01 F: 0.73 ± 0.01
PART-WHOLE P: 0.53 ± 0.01 R: 0.6 ± 0.01 F: 0.56 ± 0.01
PER-SOC P: 0.66 ± 0.04 R: 0.6 ± 0.01 F: 0.63 ± 0.02
PHYS P: 0.64 ± 0.02 R: 0.21 ± 0.06 F: 0.31 ± 0.07

Table 3.11: Relation Results by Type with tok_morph Tokenization.

Trigger Precision Recall F1 Score

Business P: 0.00 ± 0.00 R: 0.00 ± 0.00 F: 0.00 ± 0.00
Conflict P: 0.60 ± 0.02 R: 0.74 ± 0.03 F: 0.67 ± 0.01
Contact P: 0.34 ± 0.02 R: 0.45 ± 0.02 F: 0.39 ± 0.02
Justice P: 0.77 ± 0.03 R: 0.51 ± 0.02 F: 0.62 ± 0.02
Life P: 0.80 ± 0.01 R: 0.87 ± 0.01 F: 0.84 ± 0.0
Movement P: 0.72 ± 0.04 R: 0.29 ± 0.05 F: 0.42 ± 0.06
Personnel P: 0.76 ± 0.04 R: 0.46 ± 0.03 F: 0.57 ± 0.03
Transaction P: 0.74 ± 0.02 R: 0.68 ± 0.02 F: 0.71 ± 0.02

Table 3.12: Trigger Results by Type with tok_morph Tokenization.

of roles. For example, the Recipient role is always incorrectly predicted by the model as
the Beneficiary role, since these two roles are very close semantically in the context of a
Transaction event.

Comparison to other languages Table 3.5 show state-of-the-art F1 scores of joint IE with
ACE05 dataset for different languages. English, Chinese, and Spanish experiments were
borrowed from Lin et al. (2020), who trained their model with type labels for entity, relation,
and roles, and with subtype labels for triggers. We thus give scores of Arabic following this
pattern. Moreover, the presented scores are those of tok_morph experiments.

Overall results Unless using concat tokenization procedure, our model assigns one label
to each input token, which establishes an upper bound on its performance since multi-label
tokens are out of its reach. For example, tok_wp experiments could at most reach a recall of
97.31 for entities, 90.75 for relations, and 93.46 for roles; i.e., at most an F1 score of 98.63
for entities, 95.15 for relations, and 96.71 for roles.

Importantly, the performance of our three systems of Table 3.8 is comparable to other
languages (Lin et al., 2020) (details in Table 3.5).

Since there was no baseline addressing the entirety of ACE05 entities, nor a system for
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Role Precision Recall F1 Score

Adjudicator P: 0.62 ± 0.13 R: 0.27 ± 0.03 F: 0.37 ± 0.03
Agent P: 0.49 ± 0.04 R: 0.40 ± 0.03 F: 0.44 ± 0.04
Artifact P: 0.72 ± 0.04 R: 0.52 ± 0.04 F: 0.60 ± 0.04
Attacker P: 0.51 ± 0.02 R: 0.60 ± 0.02 F: 0.55 ± 0.02
Beneficiary P: 0.00 ± 0.00 R: 0.00 ± 0.00 F: 0.00 ± 0.00
Buyer P: 0.00 ± 0.00 R: 0.00 ± 0.00 F: 0.00 ± 0.00
Defendant P: 0.52 ± 0.11 R: 0.14 ± 0.04 F: 0.22 ± 0.06
Destination P: 0.56 ± 0.05 R: 0.61 ± 0.04 F: 0.58 ± 0.05
Entity P: 0.41 ± 0.02 R: 0.41 ± 0.01 F: 0.41 ± 0.00
Giver P: 0.50 ± 0.14 R: 0.27 ± 0.09 F: 0.35 ± 0.11
Instrument P: 0.78 ± 0.02 R: 0.63 ± 0.05 F: 0.69 ± 0.04
Origin P: 0.65 ± 0.04 R: 0.31 ± 0.00 F: 0.42 ± 0.00
Organization P: 0.00 ± 0.00 R: 0.00 ± 0.00 F: 0.00 ± 0.00
Person P: 0.67 ± 0.03 R: 0.50 ± 0.06 F: 0.57 ± 0.04
Place P: 0.50 ± 0.03 R: 0.49 ± 0.02 F: 0.49 ± 0.03
Plaintiff P: 0.33 ± 0.47 R: 0.07 ± 0.09 F: 0.11 ± 0.16
Prosecutor P: 0.00 ± 0.00 R: 0.00 ± 0.00 F: 0.00 ± 0.00
Recipient P: 0.00 ± 0.00 R: 0.00 ± 0.00 F: 0.00 ± 0.00
Seller P: 0.00 ± 0.00 R: 0.00 ± 0.00 F: 0.00 ± 0.00
Target P: 0.55 ± 0.04 R: 0.46 ± 0.07 F: 0.50 ± 0.05
Vehicle P: 1.00 ± 0.00 R: 1.00 ± 0.00 F: 1.00 ± 0.00
Victim P: 0.62 ± 0.01 R: 0.74 ± 0.09 F: 0.67 ± 0.04

Table 3.13: Role Results by Type with tok_morph Tokenization.

Language Entity Relation Trigger Role

English 89.6 58.6 72.8 54.8
Chinese 88.5 62.4 65.6 52.0
Spanish 81.3 48.1 56.8 40.3
Arabic (Ours) 85.05 62.9 58.96 51.82

Table 3.14: State-of-the-Art F1 Scores of Joint IE for Different Languages

RE and ED, we propose tok_morph as a baseline.

3.6 Error Analysis And Discussion

Error analysis is important to understand the model’s weaknesses and to attempt to fix them
in future work. Thus, we examined a sample of 32 sentences where we found 110 remaining
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errors from experiments using the tok_morph tokenization scheme and using the type labels.

Entity Errors A significant portion of errors (23%) involve pronominal entities. These
include two types of issues:

• Missed Pronouns: The model fails to predict entities present in the gold data. Con-
sider the word “ Aî�EPXA�” (SAdrthA; confiscated it). In this case, the pronoun “ �

H” (t)
is annotated in gold data as a PER entity, which the model fails to predict. These errors
are most likely due to the absence of labeling for a considerable number of pronomi-
nal entities in the gold data. An illustrative example is found in the word “ 	á�
jÊ�ÖÏ @”

(AlmslHyn; armed), where the model incorrectly predicts the pronoun “ 	áK
” (yn) as a
PER entity, despite its absence in the gold data. However, it’s worth noting that this
pronoun was annotated 167 times in words like “ 	áK
Y«A

�
®
�
JÖÏ @” (AlmtqAEdyn; retirees),

“ 	áK
Q
	
k
�
B@” (AlAxryn; the others), and “ 	á�
J.

	
«@QË @” (AlrAgbyn; willing to).

• Misclassified Pronouns: These are errors of correctly identified entities being mis-
classified.

It’s important to note that pronominal entities comprise a substantial 31% of the total
gold entities, highlighting their importance and the potential impact of limited labeling on
model performance.

Relation Errors Two primary categories contribute to relation errors (14% of total errors):

• Missed Relations with Multiple Entities: These errors occur when entities partici-
pate in multiple relations within the same sentence. For instance, consider the gold
annotations of the sentence “ø



Qå�ÖÏ @ ÈYªË@ QK


	Pð” (wzyr AlEdl AlmSry; Egyptian Min-

ister of Justice). In this example, the word “QK
 	Pð” (wzyr; Minister) is involved in two

distinct relations: one of type ORG-AFF with the word “ÈYªË@” (AlEdl; Justice), and

another of type GEN-AFF, with the word “ø


Qå�ÖÏ @” (AlmSry; Egyptian). However, the

model only predicts the first ORG-AFF relation between the initial two words, overlook-
ing the additional relation.

• Misclassified Relation Types: This category (at least 6% of errors) involves correctly
identified entity pairs but with an incorrect relation type assigned. This often arises
due to semantic ambiguity between certain relation types, particularly those with over-
lapping contexts. For instance, distinguishing between PART-WHOLE and ORG-AFF re-
lations can be challenging due to their overlapping semantic contexts.

Figure 3.2 presents some examples of remaining relation errors for visualization pur-
poses.
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Figure 3.2: Examples of Remaining Relation Errors.

Events Errors Approximately 23.5% of the errors identified in the analysis pertains to
events, specifically triggers and roles. Among the 35 remaining event errors, a significant
portion (67%) can be attributed to annotation omissions, highlighting the need for a thor-
ough examination of the model’s performance in event detection and classification.

As an example, in the sentence “ éJ

�
®J

�
®
�
� éK. É�

�
�@” (AtSl bh $qyqyh; his brothers called

him), the model predicts the verb “É��
�@” (AtSl; called) as a trigger of type Contact. This

trigger is not annotated in the gold data but the model’s prediction seems correct because
an event of type Contact is defined in the annotation guide by: explicit phone or written
communication between two or more parties. In the annotation guide the verb called in the
sentence “John called Jane last night” is given as an example of a trigger of type Contact.

Figure 3.3 presents a recurring example of a long sentence containing several omitted
roles. In this sentence, we distinguish three errors: (1) the word “ 	á�
Òî

�
DÖÏ @” (Almthmyn; The

accused) is predicted as an Agent argument by the model, which is intuitively correct as
an Agent is defined in the annotation guide by: the attacking agent or the one that enacts
the harm. This word is incorrectly annotated in the gold sentence as an argument of type
Victim. (2) The word “ �

�A
	
P̄” (rfAq; companions) is predicted as an argument of type Agent

which is intuitively correct. This word is not annotated in the gold sentence as an argument.
(3) The word “ 	

©

KA�Ë@” (AlSAg; the jeweler) is predicted as arguments of type Victim which

is intuitively correct as a Victim is defined in the annotation guide by: the person who died.
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Figure 3.3: Examples of Remaining Event Errors Due to Annotation Omissions

This word is not annotated in the gold sentence.

3.7 Related Work

Entity Extraction Most Arabic IE work focuses on NER. We cite Naji (2012), who used
artificial neural networks for NER. Oudah and Shaalan (2012) tested a hybrid approach, in-
cluding both rule-based and machine learning approaches. Benajiba et al. (2008b) proposed
an SVM-based model with a combination of language-dependent and language-dependent
features, showing the relevance of morphological features for rich languages like Arabic. Be-
najiba et al. (2010) built a system augmented by deeper lexical, syntactic, and morphological
features that were extracted from noisy data obtained via projection from an Arabic-English
parallel corpus. Helwe et al. (2020) proposed a semi-supervised learning approach to train
a BERT-based NER model using labeled and semi-labeled datasets. The works that deal
with NER using ACE05, ACE04, or ACE03 either preprocess the data differently from ours,
which results in a very different number of entities than ours or use different entity types
than the one we used. For example, Benajiba et al. (2008b) evaluate their model separately
for each data type of ACE05 (NW, BN, WL). In addition, they remove all annotations that
they consider not oriented to the entity detection and recognition tasks, such as the nominal
and pronominal entities, and only keep the named ones, which leads them to a total number
of entities in the training and test corpora of 10218. This makes their performance incompa-
rable to ours because we evaluate the model with almost 32000 entities for all our proposed
approaches. Other work use Benajiba et al. (2010, 2009, 2008a) the same preprocessing of
Benajiba et al. (2008b). Oudah and Shaalan (2012) tested their model performance on Date,
Time, Price, Measurement, and Percent entities of ACE05, while we test our model on the
principal entity types (PER, LOC, ORG, FAC, VEH...).

Relation Extraction Arabic RE works include Mohamed et al. (2015), who proposed a
distant supervised learning model with specific features that characterize Arabic relations.
Sarhan et al. (2016) presented a semi-supervised pattern-based bootstrapping technique for
relation extraction using stemming and semantic expansion. Taghizadeh et al. (2018) used a
combination of kernel functions and the universal dependency parsing for supervised relation
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extraction. We can’t compare our work to these as relation extremities (entities) are already
recognized in a NER preprocessing, while we extract all information jointly.

Event Extraction Very little work has been done on event extraction; AL-Smadi and
Qawasmeh (2016) proposed a knowledge-based approach for event extraction on Arabic
tweets. And Alsaedi and Burnap (2015) proposed a classification/ clustering-based frame-
work to detect real-world events from Twitter. Ahmad et al. (2021) developed a Graph
Attention Transformer Encoder to generate structured contextual representations for cross-
lingual relation and event extraction working on ACE05. Yet, they haven’t addressed the
problem of the mismatch between the tokenization and the annotations; problematic entities
were simply discarded.

3.8 Conclusion and Discussion

Our work presents the first joint IE model for Arabic, achieving performance comparable to
models for other languages. We also delve into the challenge of subword entities, prevalent
in morphologically rich languages like Arabic, and propose two approaches to address them.
Our findings demonstrate the importance of incorporating morphological information for
accurate subword entity recognition. Our key findings are the following:

• Morphological Tokenizer Superiority: The morphological tokenization approach
consistently outperforms the other approaches across all tasks. We hypothesize that
the morphological information captured by this tokenizer empowers the model to bet-
ter grasp complex relations and event structures. This highlights the crucial role of
morphology in Arabic IE tasks.

• Impact of Annotation Omissions: Error analysis revealed a significant portion of
errors, particularly in event detection tasks, can be attributed to annotation inconsis-
tencies within the gold standard data. While the model makes some predictions that
differ from the gold annotations, these predictions may, in some cases, be intuitively
correct based on the provided definitions of event types and roles. This finding under-
scores the need for further investigation into model performance beyond relying solely
on gold standard accuracy metrics.

This work represents a significant step forward in Arabic NLP and aims to establish a
strong foundation for further advancements in Arabic IE tasks and within the Arabic NLP
community. However, this work acknowledges some limitations that present opportunities
for future exploration:

• Random Entity Selection: As described in Section 3.3, after the tokenization process,
if a subword still holds multiple entities, our model currently selects one randomly and
discards the others. This process leads to considerable data loss. Future work should
investigate more sophisticated methods for selecting the most relevant entity or even
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explore incorporating all potential entities. Character-based tokenization might be a
promising direction to explore for this purpose.

• Tokenization-Vocabulary Mismatch: Another problem related to the tokenization
process is that of the mismatch between the vocabulary generated by the tokenizers
and the BERT vocabulary used for token encoding (cf. Section 3.4.2). A potential so-
lution involves training a custom BERT model specifically on the output of the chosen
tokenizer.

• Limited Inter-Task Communication: Although our model uses multitask learning
during training through the loss funtion and the shared token encodings, it does not ex-
plicitly account for the interdependencies between tasks within the information graph,
as greedy search is used as a decoding strategy. The current greedy search decoding
strategy only selects the highest-scoring element for each instance. Exploring alterna-
tive decoding strategies that allow for considering a wider range of possibilities during
search could potentially improve performance.
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Chapter 4

Cross-Dialectal Named Entity
Recognition in Arabic

4.1 Introduction

In this chapter, we address the crucial challenge of Named Entity Recognition (NER) in
Arabic dialects. While our previous work (Chapter 3) has demonstrably achieved significant
progress in information extraction for Arabic, it focused on Modern Standard Arabic MSA
due to data availability. This focus limits its applicability to the vast and growing amount of
Arabic text written in dialects.

Linguistic Diversity in Arabic Dialects and Challenges Arabic is renowned for its rich
linguistic diversity, with over 20 distinct dialects and approximately 100 regional variants
spoken across the Arab world. These dialects are widely used in everyday communication,
particularly in digital spaces. The rise of social media platforms and online communication
in Arabic dialects necessitates tools capable of understanding these rich linguistic variations.
This emphasizes the urgent need for NLP models that can effectively handle this linguistic
diversity.

However, this diversity poses unique challenges in the context ofNER, including:

• Linguistic Variation: Arabic dialects exhibit significant linguistic variation in terms
of phonology, morphology, syntax, and lexicon. This variation can pose challenges
to developing unified global modeling NER approach, as the same entity may be rep-
resented differently across different dialects. Consider the word “Car”. In MSA, the
word for “Car” is “ �èPAJ
�” (syArp), while in Moroccan Darija, the commonly used term

is “ÉJ
K. ñ
	
J£” (Tnwbyl). In Tunisian Darija, the commonly used term is “ �éJ.ëQ»” (krhbp),

and in Saudian dialect, they use the term is “ �éJ.»QÓ” (krhbp).

• Scarcity of annotated data: Annotated data for Arabic dialects is scarce compared to
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MSA. The limited availability of labeled datasets constrains the training and evaluation
ofNER models, as machine learning algorithms typically require large amounts of
annotated data for good performance. We discuss the few existing datasets in Section
4.7.

Leveraging Cross-Lingual Transfer Learning Our research is driven by the goal of
bridging the linguistic gap between MSA and Arabic dialects, specifically in the context
of entity extraction. To do so, we leverage a successful technique from related areas of NLP:
cross-lingual transfer learning.

In cross-lingual transfer learning, knowledge is transferred from a well-resourced lan-
guage with abundant training data, such as MSA in our case, to a low-resource language
with limited annotated data, such as Arabic dialects. This approach has demonstrated strong
performance in cross-lingual entity extraction, particularly when using English as the source
language and targeting languages like Spanish, German, and MSA (Chen et al., 2021b; Wu
et al., 2020a; Jain et al., 2019a). The ACE05 dataset (Walker and Consortium, 2005) has
also proven to be a valuable resource for cross-lingual information extraction (Ahmad et al.,
2021; Subburathinam et al., 2019; Nguyen et al., 2021b) from English as a source language
to target languages such as Spanish, Chinese, and MSA, as it provides annotations for en-
tity, relation, and event extraction for these four languages following the same guidelines.
The cross-lingual entity extraction approach allows us to exploit the capabilities of models
trained on MSA data and adapt them to dialectal text, even with limited dialectal annotations.

Contributions This work makes the following key contributions:

• Creation of dialects Dataset: We introduce a NER dataset manually annotated for
three dialects: Moroccan, Egyptian, and Syrian. This dataset is used for evaluation
purposes;

• Extensive experimentation: We train an efficient span-basedNER model on already-
available MSA data and analyze its transferability to other dialects. We also explore
the inverse setting where we train on dialects and evaluate their transferability to MSA.

4.2 Dataset and Annotation

In this section, we introduce the datasets used in our work: Modern Standard Arabic dataset
and Arabic Dialects datasets (Moroccan, Egyptian, Syrian). We detail their construction
processes and the annotation guidelines employed.

4.2.1 Modern Standard Arabic Dataset

Data Source and Selection Our MSA dataset leverages the Arabic Corpus ACE 2005
(Walker and Consortium, 2005). This corpus offers a rich collection of text data from di-
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Figure 4.1: Example of Annotations from our Dialect Dataset.

verse sources like news wires, broadcast news, and weblogs. It includes annotations for
seven entity types (e.g., Person, Location), three entity mention types (e.g., Name, Nomi-
nal Construction), and coreference information.

Our Modern Standard Arabic dataset is sourced from the Arabic Corpus ACE05 (Walker
and Consortium, 2005). The ACE corpus comprises a rich collection of text data from di-
verse sources, including newswires, broadcast news, and weblogs. As described in Chapter
2, this corpus includes annotations for seven distinct entity types, namely persons (PER), or-
ganizations (ORG), geopolitical entities (GPE), locations (LOC), facilities (FAC), vehicles (VEH),
and weapons (WEA). In addition to entity types, it annotates three entity mention types: names
(NAM), nominal constructions (NOM), and pronouns (PRO). The corpus offers annotations
for both flat and nested entities, further including coreference information.

We opted to focus on a subset of the ACE 2005 corpus, specifically targeting sentences
relevant to NER. Here is a breakdown of our selection choices:

• Focus on NAM and NOM entities: We opted to concentrate exclusively on the recog-
nition of named entities and nominal constructions while excluding pronouns. ACE
2005 is notable for its detailed annotation, including pronouns, which is uncommon
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in the typical named entity recognition task that primarily deals with nominal enti-
ties and names. Pronoun usage exhibits considerable variation, displaying nuanced
distinctions not only between dialects but even within distinct regions of the same
dialect. Consequently, accurately annotating pronouns across dialects presents prac-
tical challenges and potential ambiguity, due to their strong contextual reliance and
the absence of comprehensive dialect-specific guidelines. The inclusion of pronouns
is therefore left to future work. For clarity, named entities include examples such as
“ 	
àñk. ” (John) and “ é<Ë @ @ Ð @P” (rAm AAllh; Ramallah), while nominal entities include

examples like “ú


×AjÖÏ @” (AlmHAmy; The lawyer) and “ZA 	JJ
Ó” (mynA’; Port). Pronomi-

nal entities, which we chose to exclude, include terms such as “Ñë” (hm; they), “ 	
�ªK.”

(bED; some), and “ 	
àðQ�


�
J»” (kvyrwn; many).

• Focus on flat entities: We opted to concentrate exclusively on flat entities, omitting
nested entities and coreference resolution. This choice simplifies the task significantly
by reducing complexity in both annotation and modeling. Nesting and coreference,
while valuable areas of study, introduce intricate challenges, especially in dialectal
Arabic, where linguistic variations are prevalent. Focusing on flat entities streamlines
our research process, making it more scalable for testing across dialects.

Dataset Construction We also extracted an additional 350 MSA sentences to train an
MSA model and evaluate it on the 500 sentences for reference. More details can be found in
the results section (5.5)

Based on these methodological decisions, we constructed our MSA dataset by randomly
selecting 500 sentences from the ACE05 corpus. Tables 4.1 and 4.2 (first columns) provide
detailed statistics about these sentences. This dataset serves two purposes:

1. Training a model to analyze its transferability to dialects.

2. Evaluating models trained on dialectal datasets.

For reference purposes, we created an additional 350 MSA sentence dataset for training
a dedicated MSA model. This model’s performance will be evaluated on the original 500-
sentence dataset. The results section (Section 5.5) will provide more details on this additional
dataset.

4.2.2 Annotation Guidelines for Dialects

We introduce concise yet comprehensive annotation guidelines that were used in the anno-
tation of our dialectal datasets. These guidelines closely follow the ACE guidelines that
were used for the MSA dataset. The detailed reference is provided by the Linguistic Data
Consortium (LDC) guidelines1.

1https://www.ldc.upenn.edu/collaborations/past-projects/ace/annotation-tasks-and-specifications
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1. Person (PER): This entity type is used for individual human beings. It includes:

• Names and surnames of individuals. Example: “ú



	
æÓðP

�
IJ
Ó” (myt rwmny; Mitt

Romney)

• Group of people. Example: “ �éÊKAªË @” (AlEA}lp; The family).

• Saints and other religious figures. Example: “ é
�
<Ë
�
@” ({lla ‘h; God).

2. Organization (ORG): This entity type is used for corporations, agencies, and other
groups of people defined by an organization structure. It includes:

• Commercial organizations. Example: “ �
I

	
¯ñ�ðQºJ
Ó” (mykrwswft; Microsoft)

• Government organizations. Example: “ �éJ
ºÊÖÏ @
�
éK
QjJ. Ë @“ (AlbHryp Almlkyp; Royal

Navy).

• Educational organizations. Example: “XPñ 	
®
	
KA
�
J�

�
éªÓAg. ” (jAmEp stAnfwrd; Stan-

ford University).

• Political parties. Example: “ú


Í@Q�. J
ÊË @ H.

	QmÌ'@” (AlHzb AllybrAly; Liberal Party).

• Media. Example: “ A�	
� @

�
éËA¿ð” (wkAlp AnsA; ANSA agency).

3. Location (LOC): This entity type is used for geographical entities such as mountains,
rivers, seas, and regions that aren’t politically defined. Example: “ñºJ
�ºÓ ñJ


	
K ÈAÖÞ

�
�”

($mAl nyw mksykw; Northern New Mexico).

4. Geographical/Social/Political Entity (GPE): This entity type is used for geographi-
cal regions that have a political distinction. This includes countries, states, provinces,
and cities. Example: “ A¾K
QÓ


@” ( mrykA; America).

5. VEH (Vehicle): This entity type is used for entities that are primarily designed for trans-
porting goods or people from one place to another. Example: “ �éK. Q«” (Erbp; vehicle).

6. Weapon (WEA): This entity type is used for devices used with intent to inflict damage
or harm.

• Exploding. Example: “ÉK. A
	
J
�
¯” (qnAbl; Bombs).

• Chemical. Example: “ 	PA 	ªË @” (AlgAz; Gas).

• Underspecified. Example: “hC�” (slAH; Weapon).

7. FAC (Facility): This entity type is used for buildings or structures. It includes buildings,
houses, factories, stadiums, office buildings, gymnasiums, prisons, museums, space
stations, barns, parking garages and airplane hangars, streets, highways, airports, ports,
train stations, bridges, and tunnels. Example: “PA¢ÖÏ @” (AlmTAr; The airport).
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We adhere to these guidelines by annotating the smallest constituent of flat entities. For
example, consider the entity “ �èYj�

JÖÏ @
�
HAK
BñË@ É¢�.” (United States champion). In this case,

we annotate �
èYj

�
JÖÏ @

�
HAK
BñË@ (bTl AlwlAyAt AlmtHdp; United States) as GPE and “É¢�.” (bTl;

champion) as PER. If our task involved nested entities, we would have provided additional
annotations for the entire nested entity “ �èYj�

JÖÏ @
�
HAK
BñË@ É¢�.” as PER.

4.2.3 Annotation Process of the Dialect Datasets

Our dataset for Arabic Dialects is sourced from the xP3x corpus Muennighoff et al. (2022).
The xP3x corpus comprises a vast collection of prompts and datasets across 277 languages,
covering 16 distinct NLP tasks. We specifically used the section containing sentence pairs
and their translations in three Arabic dialects: Moroccan, Egyptian, and Syrian. To ensure
the accuracy and reliability of our annotations, we followed these steps:

• Data Selection: We randomly selected 500 sentences from the xP3x corpus for each
dialect and tokenized them using whitespace.

• Annotator Training: Our annotation process was supervised by a single proficient
annotator, with native fluency in the Moroccan dialect and possessing a strong grasp
of Egyptian and Syrian dialects. The annotator received comprehensive training on
the annotation guidelines, including real-world examples of dialectal variations and
potential disambiguation challenges.

• Annotation Tool: We used a web-based annotation tool called Label Studio2 widely
used forNER tasks. This tool provides an intuitive interface for annotators to efficiently
highlight relevant text spans and assign the corresponding entity type.

Given the limited dataset size, employing a single annotator was advantageous for main-
taining consistency, coherence, and manageable workloads, thereby reducing inter-annotator
discrepancies and ensuring uniform annotation styles.

4.3 Task Definition and Modeling

In this section, we provide a detailed overview of theNER task and the model architecture
employed for this task.

Dataset statistics After the annotation process, we only retained sentences containing en-
tities for our experiments.

Table 4.1 summarizes key statistics for each dialectal dataset, including the number of
sentences, tokens, and total named entities identified. As can be observed, MSA exhibits a

2https://labelstud.io/
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Stat MSA Mor. Egy. Syr.

Sentences 500 378 353 361
Tokens 14168 6780 6533 6034
Entities 3030 970 831 956

Table 4.1: Dialect Dataset Statistics.

Ent MSA Mor. Egy. Syr.

FAC 143 83 63 71
GPE 923 249 229 331
LOC 160 191 142 89
ORG 413 112 77 109
PER 1269 278 264 307
VEH 52 45 50 41
WEA 70 12 6 8

Table 4.2: Dialect Dataset Statistics by Entity Type.

higher number of entities compared to the dialectal datasets. This can be attributed to factors
such as the formal nature of MSA texts often containing more explicit references to named
entities compared to informal communication channels found in dialectal data.

Table 4.2 provides a detailed breakdown of the distribution of named entity types across
each dialectal dataset. The most frequent entity types include person (PER), geopolitical
entities (GPE), and organizations (ORG), reflecting the inherent nature of language where these
categories are commonly referenced in text.

Figure 4.1 showcases examples of annotated sentences from our dialectal dataset.

Named Entity Recognition as Sequence Labeling Following the work of Zaratiana et al.
(2022a,b), we frame the task ofNER as a span classification problem. Given an input se-
quence: x = {xi}Li=1, our objective is to classify all potential spans within the sequence,
defined as:

y =
L⋃
i=1

L⋃
j=i

sijc (4.1)

Here, i, j, and c correspond to the start position, end position, and span type, respectively.
The probability of a specific span classification y given the input sequence x is represented
as:
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pθ(y|x) =
exp

∑
sijc∈y ϕθ(sijc|x)
Zθ(x)

(4.2)

In this equation, ϕθ(.) is the span scoring function, and Zθ(x) is the partition function.
During training, our objective is to minimize the negative log-likelihood of the gold span
classifications.

Training loss During training, our assumption allows us to bypass the need to explicitly
evaluate the partition function Zθ(x) to compute the loss. The loss for a single sample
(x,y) ∈ T is simply the sum of loss for all spans in the input:

L(x,y) = −
∑
cij∈y

log p(cij|x) (4.3)

where,

p(cij|x) =
expϕθ(cij|x)∑
c′∈C expϕθ(c′ij|x)

(4.4)

This loss is minimized over the training set using a stochastic gradient descent algorithm.

Decoding During inference, our aim is to determine:

y∗ = argmax
y∈Y

∑
sijc∈y

ϕθ(sijc|x) (4.5)

In other words, we seek to identify the span labeling configuration that achieves the
highest score. For unconstrained span classification, a straightforward approach is to assign
the label with the highest score to each individual span, as follows:

sijc∗ = argmax
c

ϕθ(sijc|x) (4.6)

Nonetheless, this decoding approach is not optimal since it may result in structural con-
straint violations. In our context of flat entities, overlapping entity spans are strictly pro-
hibited. A more efficient solution, as presented in (Zaratiana et al., 2022a,b), employs a
two-stage decoding process. Initially, spans predicted as non-entities are filtered out, fol-
lowed by the application of a maximum independent set algorithm to the remaining spans to
determine the optimal set of entity spans.

Token and Span Representations We compute the span score ϕθ(sijc|x) by performing a
linear projection of the span representation, which is derived from a 1D convolution applied
to token representations obtained from a transformer-based model (eg. BERT):

sijc := wT
c Conv1Dk([hi;hi+1; . . . ;hj]) (4.7)
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Here, hi ∈ RD represents the token representation at position i, k signifies the size of
the convolutional filter (corresponding to the span length), and wc ∈ RD denotes a learned
weight matrix associated with span label c.

4.4 Experimental Setup

In this section, we detail the experimental setup, the employed hyperparameters, and the
evaluation metrics for ourNER model on Arabic dialects.

4.4.1 Token Encodings

To encode our input tokens, we leverage a comprehensive set of eight pretrained language
models, each exhibiting unique characteristics and training data sources. Here’s a breakdown
of the chosen PLMs:

• Modern Standard Arabic (MSA) Focused Models:

– ARBERTv2: (Abdul-Mageed et al., 2021): A large-scale pretrained masked lan-
guage model for MSA with 12 attention layers, 12 heads, 768 hidden dimensions,
and 163M parameters, trained on 61GB of Arabic text.

– CAMeLBERT-MSA (Inoue et al., 2021): A collection of pretrained BERT mod-
els for MSA, trained on a diverse dataset of 107GB, totaling 12.6 billion tokens.

• Dialectal Arabic Focused Models:

– MARBERTv2 (Abdul-Mageed et al., 2021): A large-scale pretrained masked
language model for both DA and MSA, trained on 1B Arabic tweets (128GB text,
15.6B tokens), using the same architecture as ARBERT (BERT-base) without
next sentence prediction.

– CAMeLBERT-DA (Inoue et al., 2021): A collection of pretrained BERT models
for Arabic dialects, trained on a diverse dataset of 54GB, totaling 5.8 billion
tokens.

• Mixed MSA and Dialect Models:

– AraBERTv2 (Antoun et al., 2020): The dataset consists of 77GB Arabic text
from diverse sources. It uses the same architecture as BERT-Base.

– CAMeLBERT-Mix (Inoue et al., 2021): A collection of pretrained BERT models
for Arabic, including MSA, DA, and CA, trained on a diverse dataset of 167GB,
totaling 17.3 billion tokens.

• Multilingual Models:
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– mBERT (Devlin et al., 2019): The multilingual version of BERT pretrained on
the top 104 languages with the largest Wikipedia using a masked language mod-
eling (MLM) objective.

– mDeBERTav3: A multilingual version of DeBERTa (He et al., 2020) trained with
CC100 multilingual data.

By employing this diverse set of pretrained language models, we aim to explore their
effectiveness in handling named entity recognition tasks across the chosen Arabic dialects
(Moroccan, Syrian, Egyptian).

4.4.2 Hyperparameters

Hyperparameter Tuning To optimize the model’s performance, we use a combination of
predefined hyperparameter settings and a grid search approach. Here’s an overview of the
key hyperparameters and their chosen values:

• Batch Sizes: We use a training batch size of 12 and a validation batch size of 32.

• Learning rates: We use a learning rate of 2e-5 for the pretrained parameters and a
learning rate of 3e-3 for the other parameters. We train all our models up to conver-
gence. For testing, we use the last model, given the limited availability of validation
data in our dataset.

• Maximum Span Length: To manage the complexity of the task, we impose a con-
straint on the maximum span length, setting it to a maximum width of K = 10. This
constraint significantly reduces the number of segments from L2 to LK.

Training Hardware and Software Libraries

• The training process is conducted on a server equipped with V100 GPUs.

• We leverage the AllenNLP library for efficient data preprocessing tasks.

• The pretrained transformer models are conveniently loaded from the HuggingFace
Transformers library.

4.4.3 Evaluation Metrics

We adopt the standardNER evaluation methodology, calculating precision (P), recall (R), and
F1 score (F), based on the exact match between predicted and actual entities.
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Figure 4.2: Performance Comparison of Models Across Various Training and Testing Set-
tings (F1 Score).
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4.5 Results

We conducted two primary experiments for theNER task: firstly, training on Modern Stan-
dard Arabic, and evaluating on dialects, and secondly, reversing this configuration, training
on individual dialects, and assessing on MSA. For both scenarios, we used the complete
dataset outlined in Table 4.1.

In addition, we conducted MSA-to-MSA experiments, where we evaluated our model on
the MSA dataset specified in Table 4.1, while the training set consisted of a random selection
of 350 sentences drawn from the original Arabic ACE dataset, using the same preprocessing
steps detailed in Section 4.2.1. The main results of our experiments are shown in Figure 4.2.

4.5.1 Main Results

Train on MSA and Test on MSA Here, both training and testing data consist of MSA
text. The performance metrics reveal that MSA-to-MSA settings consistently yield the high-
est accuracy across all tested configurations, a result that aligns with expectations given that
Modern Standard Arabic often serves as the benchmark for Arabic language tasks. Inter-
estingly, most backbone models such as ARBERTv2, mDeBERTav3, CAMeLBERT-MSA,
CAMeLBERT-Mix, AraBERTv2, and MARBERTv2 demonstrate comparable performance
with F1 scores around 87 and 86, suggesting that their architecture and training data are
well-suited for MSA-centric tasks.

Two models, however, diverge from this trend. CAMeLBERT-DA exhibits a 4% drop in
performance compared to the other language models, which can be attributed to its focus
on dialectal data during training. This specialization likely limits its ability to generalize
effectively to MSA. Similarly, mBERT performs less well, with a 4% drop in performance
compared to the other language models. As a multilingual model, mBERT may suffer from
language interference or tokenization issues, given its training on a diverse corpus where
Arabic is not the dominant language.

Train on MSA and Test on Dialects When training models on the MSA dataset, the ob-
served performance metrics indicate a hierarchical trend among the tested Arabic dialects.
The best performances are systematically obtained with the Syrian dialect, followed by the
Egyptian dialect, and finally the Moroccan dialect. This gradient could be indicative of the
linguistic similarities and differences between MSA and these dialects. The Syrian dialect
may share more syntactic and semantic features with MSA, allowing models trained on MSA
to generalize more easily to Syrian. On the other hand, the Moroccan dialect appears to be
the most divergent from MSA among the tested dialects, resulting in the lowest performance
scores. This could be due to unique lexical, grammatical, or even phonological features that
are not adequately captured when a model is trained solely on MSA data.

Train on Dialects and Test on MSA Similar to the MSA to dialects scenario, the best test
performance on MSA is obtained when models are trained on the Syrian dialect, followed
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Model Avg. F1

ARBERTv2 68.53
MARBERTv2 68.46
CamelBERT-MSA 69.02
CAMeLBERT-DA 61.88
AraBERTv2 70.00
CAMeLBERT-Mix 67.31
mBERT 61.82
mDeBERTav3 67.10

Table 4.3: Average F1 score by Language Model Trained on MSA.

by the Egyptian dialect and finally the Moroccan dialect. This pattern aligns well with the
earlier observation that models trained on MSA perform best on the Syrian dialect, thereby
suggesting a mutual linguistic affinity between Syrian and MSA. Models trained on Egyptian
also perform relatively well, reinforcing the notion of shared linguistic features between
Egyptian and MSA. Conversely, the Moroccan dialect, which was identified as the most
challenging for models trained on MSA, also proves to be the least effective training data for
models tested on MSA. This consistent underperformance across both scenarios could point
to a greater linguistic divergence between Moroccan and MSA, which may involve lexical,
syntactic, or phonological differences not easily bridged by the models in question.

We acknowledge that we conducted additional experiments training on one dialect and
testing on others. However, we are not presenting those scores in this chapter. The reason for
this is that the source dataset used to create our dialectal datasets contains some sentences
that are direct translations between dialects. This overlap between datasets could lead to
misleading performance metrics when evaluating transfer between dialects.

4.5.2 Optimal PLM Model for each setting

Optimal Language Model for MSA Training As shown in Table 4.3, when training with
the MSA dataset, AraBERTv2 emerges as the top-performing language model, with an av-
erage score of 70.00 across various Arabic dialects. The strength of this model can be at-
tributed to its well-balanced training regimen, which combines both MSA and dialectal data,
resulting in a harmonious blend of specialization and generalization.

Models explicitly trained on MSA, namely ARBERTv2 and CAMeLBERT-MSA, closely
follow in terms of performance, underscoring the effectiveness of MSA-focused training.
The lowest performance is achieved by mBERT and CAMeLBERT, possibly due to language
interference issues.

Overall, our data suggests that a balanced training approach, as exemplified by AraBERTv2,
offers the most effective strategy for tasks involving MSA and its various dialects.
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Dialect Best Model Avg. F1

Egyptian AraBERTv2 64.39
Moroccan AraBERTv2 57.87
Syrian AraBERTv2 70.38

Table 4.4: Best-Performing Language Model for Test Dialect.

Dialect Best Model Avg. F1

Egyptian ArBERTv2 57.10
Moroccan MARBERTv2 56.34
Syrian MARBERTv2 67.48

Table 4.5: Best-Performing Language Model for Train Dialect.

Entity Egyptian Moroccan MSA Syrian

FAC 45.33 46.43 79.02 59.26
PER 71.25 63.74 89.54 77.56
ORG 50.24 54.30 78.13 52.02
GPE 78.57 68.03 90.93 80.12
LOC 45.02 34.58 77.91 43.90
WEA 50.00 57.14 94.20 50.00
VEH 66.02 59.26 83.17 75.27
Avg 64.39 57.87 87.32 70.38

Table 4.6: F1 Scores by Entity Type for Dialects Trained with AraBERTv2 on MSA.

Optimal Language Models for Each Dialect Table 4.4 shows the best-performing PLM
in the setting of training on MSA and testing on a specific dialect, and Table 4.5 shows the
best-performing PLM in the setting of training on a specific dialect and testing on MSA.

However, Table 4.5 reveals a different picture when considering models trained on a spe-
cific dialect for NER on MSA. Here, AraBERTv2 only performs best for tasks involving
Egyptian Arabic. For Moroccan and Syrian dialects, MARBERTv2 shows superior perfor-
mance in transferring knowledge to identify named entities in MSA.

4.6 Error Analysis

In this section, we conduct an error analysis of the output of our system.
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Perfomance by Entity Type We first focus on the performance breakdown by entity type.
We present the detailed F1 scores achieved for each entity type in Table 4.6. The table
shows the results of experiments training on MSA data and testing on each specific dialect
(Egyptian, Moroccan, and Syrian) using AraBERTv2 as a token encoder. We observe the
following:

• High Performance for PER and GPE: Entities of type PER and GPE achieve F1 scores
above 70% for most cases and across all dialects. Reasons the model effectively iden-
tifies these entity types even with dialectal variations include their inherent salience in
language, as they refer to specific and well-defined concepts. Names of people and
places tend to be less susceptible to grammatical or morphological changes across di-
alects compared to other words. Moreover, these entity types are well-represented in
the training data, compared to other entity types. This abundance of training examples
allows the model to effectively learn the patterns and features associated with these
entities.

• Low Performance for ORG and VEH: Entities of type ORG and VEH achieve F1 scores
below 50% for most cases and across all dialects. Reasons the model struggles to
recognize these entities include greater dialectal variation, as organizations and vehicle
names might exhibit more significant variations in vocabulary or naming conventions
across dialects compared to PER and GPE entities.

Entity Types Confusion Matrix To further investigate these results, we focus on Moroc-
can results as they are the lowest. We present in Figure 4.3 the confusion matrix in terms of
percentages for entity types, with rows presenting true entity types and columns presenting
the predicted ones. This matrix reveals the type of errors where the model incorrectly as-
signs labels to entities while correctly identifying their span offsets. These errors, where the
model predicts an entity but assigns the wrong type, represent 64.07% of the total number of
entities predicted by the model.

We observe a high performance for most entity types, such as PER, GPE, VEH and WEA.
However, it’s important to consider the limited sample size for WEA (12 entities in total).
With such a small number of examples, this result might not be statistically significant.

We also observe that the model struggles the most with entities of type location (LOC),
often misclassified as geopolitical entities (GPE) and facilities. Moreover, even with decent
performance for entities of type GPE and ORG and LOC, there an ambiguity associated with
them that leads to 31% of misclassified entity errors. These errors often concern country
or city names, such as “ �èYj�

JÖÏ @
�
HAK
BñË@” (bTl AlwlAyAt AlmtHdp; United States) which,

depending on the context, may belong to any of these categories.

4.7 Related Work

For languages like modern standard Arabic, a significant body of research exists onNER.
However, due to the inherent dialectal richness of Arabic, there is growing interest in devel-
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Figure 4.3: Entity Type Confusion Matrix, Training on MSA and Testing on Moroccan,
Using AraBERTv2..

opingNER models that can handle the variations present in spoken Arabic dialects. These
dialects differ from MSA in vocabulary, morphology, and syntax, posing unique challenges
for NER tasks.

Transfer learning has emerged as a promising approach for addressing these challenges.
By leveraging knowledge gained from pretrained language models on MSA data, researchers
can developNER models that can perform well on dialect-specific datasets with limited an-
notated data. This section will review existing research onNER for Arabic dialects and the
application of transfer learning techniques in this domain.

4.7.1 Datasets and Named Entity Recognition for MSA

NER for MSA The development of Named Entity Recognition techniques in Modern Stan-
dard Arabic has been a central focus within the Arabic NLP community. Initially, rule-based
NER systems like those described in Shaalan and Raza (2008); Abdallah et al. (2012) re-
lied on manually crafted grammatical rules and gazetteers. While effective, these systems
demanded extensive maintenance and lacked scalability. Subsequently, machine learning-
based NER methods, as demonstrated by Benajiba and Rosso (2007); Al-Qurishi and Souissi
(2021), treated NER as a classification task, leveraging large annotated datasets. This era
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also witnessed the fusion of rule-based and machine learning-based approaches through hy-
brid systems Oudah and Shaalan (2012); Meselhi et al. (2014), followed by the adoption
of deep learning techniques, which allowed for the automatic extraction of intricate features.
Deep learning, characterized by neural networks processing word and character embeddings,
marked a departure from manual feature engineering, resulting in significantly improved
accuracy and a more streamlined approach to ArabicNER. In recent years, pretrained lan-
guage models such as BERT (Devlin et al., 2019) have opened up a new era in Arabic NER.
Arabic-specific PLMs, such as AraBERT (Antoun et al., 2020) and AraELECTRA (Antoun
et al., 2021), have been meticulously developed and fine-tuned for NER tasks, offering the
advantage of context-rich information. This evolution has given rise to a multitude of high-
performance systems (Helwe et al., 2020; El Khbir et al., 2022).

NER Datasets for MSA Additionally, extensive annotation efforts have led to the creation
of high-quality MSA NER datasets. ACE 2005 (Walker and Consortium, 2005) comprises
a diverse text collection with annotations for seven entity types (PER, ORG, GPE, LOC,
FAC, VEH, WEA), three mention types (NAM, NOM, PRO), and coreference information.
ANERcorp (Benajiba et al., 2007) comprises articles from diverse sources. It includes tradi-
tional entity types (ORG, LOC, PER) and introduces a MISC (miscellaneous) type. AQMAR
(Mohit et al., 2012) comprises hand-annotated text extracted from Arabic Wikipedia articles.
It includes 28 articles categorized by domain, each tagged with named entities and custom
entity classes. Wojood (Jarrar et al., 2022) comprises text sourced from different domains
and manually annotated with 21 entity types, including both flat and nested entities.

4.7.2 Datasets and Named Entity Recognition for Arabic dialects

Few works addressedNER for Arabic dialects. Zirikly and Diab (2014) introduced an anno-
tated dataset and a named entity recognition system tailored to the Egyptian dialect. How-
ever, their evaluation focused solely on two entity types: PER and LOC. In a subsequent work,
Zirikly and Diab (2015) presented a gazetteer-freeNER system tailored to the Egyptian di-
alect, evaluated on three entity types: PER, LOC, and ORG. Additionally, Moussa and Mourhir
(2023) introduced a manually annotatedNER dataset for the Moroccan dialect, which com-
prises 4 entity types: PER, LOC, ORG and MISC.

4.7.3 Cross-Lingual NER

Cross-lingual named entity recognition (CLNER) has been largely explored for languages
with limited resources. A core challenge in cross-lingual NER is the scarcity of labeled
data for many languages. To address this, researchers have adopted knowledge transfer tech-
niques, leveraging well-annotated data in a high-resource source language, such as English,
to train models that can operate on a low-resource target language, such as Spanish or Arabic.

Successful knowledge transfer relies on resources that bridge the gap between languages.
Commonly used resources include:
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• Parallel Corpora (Fu et al., 2011; Ehrmann et al., 2011): Aligned text collections in
both source and target languages provide a gold standard for understanding how lan-
guages express similar concepts. However, creating these resources can be expensive
and time-consuming.

• Pseudo-Parallel Corpora (Qian et al., 2014): Machine translation can be used to
generate corpora where source and target language sentences are aligned, offering a
more scalable alternative to parallel corpora. However, the quality of the translation
system directly impacts the usefulness of this resource.

• Multilingual Word Embeddings and Language Models: These pretrained models
capture semantic similarities between words across languages, allowing models to
learn language-independent representations. Examples include Word2Vec (Mikolov
et al., 2013), Glove (Pennington et al., 2014), and PLMs such as mBERT (Devlin
et al., 2019).

There are two main approaches to knowledge transfer in CLNER:

• Data Transfer: These methods project labels from the annotated source data onto
unlabeled target data. This often involves parallel corpora or machine translation to
achieve alignment between source and target languages. Related work includes Jain
et al. (2019b) who leverage machine translation and bilingual dictionaries to perform
NER data transfer via annotation projection from English to Armenian, German, Span-
ish, Hindi, and Chinese.

While data transfer methods can leverage target-language specific features, the quality
of the alignment process heavily influences their performance.

• Direct Transfer: In contrast, direct transfer methods train models solely on source
language data. These methods rely on techniques like shared representations or pre-
trained multilingual language models to learn language-independent features that can
be applied to the target language. Related work includes that of Bari et al. (2020) who
transfer NER knowledge from English to Arabic, German, Spanish, and Dutch using
bilingual embeddings and direct transfer via adversarial learning. Wu et al. (2020b)
also leverage direct NER transfer from English to German, Dutch, Spanish, French,
and Chinese, using multilingual PLMs and meta-learning.

While this approach avoids the need for target-language labeled data, it may strug-
gle to capture target-specific information and can be less effective for languages with
significant typological differences.

In addition, researchers are exploring ways to combine the strengths of data and direct
transfer approaches. Hybrid methods might leverage unlabeled target data alongside source
training data to incorporate some target-language information. Additionally, knowledge dis-
tillation and multi-source training are being investigated to further enhance cross-lingual
learning.
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Our Work In contrast to prior work that often relies on parallel corpora or machine trans-
lation for knowledge transfer between distant languages, our approach leverages an existing
annotated MSA dataset for NER. We then create annotated datasets for three Arabic dialects
(Moroccan, Egyptian, and Syrian) following the same guidelines and labels from ACE05.
Our approach can be considered as a data transfer approach, specifically leveraging pro-
jection from a well-annotated source language (MSA) to low-resource target dialects (Mo-
roccan, Egyptian, and Syrian). However, our work focuses on a single language family, Ara-
bic, where dialects share significant morphological and syntactic similarities. This reduces
the challenges associated with cross-lingual alignment typically encountered in data transfer
between distant languages. We also explore PLMs trained with different data sources, some
are MSA-focused, others dialectal Arabic-focused, and also multilingual models.

Our work contributes to the exploration of dialect-specific NER within CLNER, demon-
strating the potential of data transfer within a single language family, particularly for lan-
guages with significant typological similarities.

4.8 Conclusion and Discussion

Our work investigated the effectiveness of transfer learning for named entity recognition in
Arabic dialects, specifically focusing on transferring knowledge from modern standard Ara-
bic to Egyptian, Moroccan, and Syrian dialects. We employed a range of pretrained language
models and annotated a dataset encompassing these dialects to evaluate their performance.
Our key findings are the following:

• Syrian Dialect Affinity with MSA: Models trained on MSA and tested on Syrian
data consistently achieved the highest F1 scores across different PLMs. This suggests
a strong linguistic similarity between Syrian Arabic and MSA, potentially due to his-
torical and cultural factors.

• Egyptian Dialect Performance: Models trained on MSA and tested on Egyptian data
also demonstrated promising results, indicating a closer connection to MSA compared
to Moroccan.

• Moroccan Dialect Challenges: The Moroccan dialect consistently presented the most
difficulty for all models. This is likely due to its significant linguistic divergence from
MSA, including unique vocabulary, morphology, and syntax.

• Model Performance Variation: PLMs like CAMeLBERT-DA, mBERT, and mdBER-
Tav3 consistently underperformed compared to other models.

This work represents a significant step forward in Arabic NLP and aims to establish a
strong foundation for further advancements in Arabic IE tasks and within the Arabic NLP
community. However, this work acknowledges some limitations that present opportunities
for future exploration:
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• No Code-Switching: The annotated dataset did not include code-switching, a com-
mon phenomenon in real-world Arabic communication where speakers switch be-
tween languages, such as French or English, and dialects within a sentence. Devel-
oping NER models robust to code-switching scenarios will be crucial for real-world
applications.

• Limited Dialect Scope: While this work explored three dialects, including a wider
range of Arabic dialects in future studies would provide a more comprehensive under-
standing of how NER performance varies across the Arabic dialect spectrum. This can
shed light on the generalizability of transfer learning approaches for ArabicNER tasks.

• Single Annotator Bias: The annotation of our dataset relies on a single annotator,
which may be a potential source of bias. Future work should consider the involve-
ment of multiple annotators to assess inter-annotator agreement and ensure labeling
robustness.

• Nested Entity Recognition: Investigating nested NER tasks, where entities can be
contained within other entities, would further challenge and potentially improve model
performance.

By addressing these limitations and pursuing the proposed future work directions, we
can contribute to the development of more robust and generalizable NER models for a wider
range of Arabic dialects.
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Chapter 5

Information Extraction with
Differentiable Beam Search on Graph
RNNs

5.1 Introduction

The output of the information extraction task is often structured as a labeled graph. In this
graph, entities and triggers are represented by nodes, relations by edges joining two entity
nodes, and roles by edges joining a trigger node and an entity node.

Despite significant advancements in information extraction techniques, some challenges
persist, particularly in modeling the intricate dependencies between labels. Existing ap-
proaches in the literature have explored various strategies to address this issue. For in-
stance, globally-normalized CRF-based scoring functions have been employed to model
inter-instance and inter-label dependencies effectively (Yu et al., 2019). Another approach
involves using auto-regressive frameworks, which build on previous decisions to make better
predictions. This includes the work of (Luan et al., 2019) and (Wadden et al., 2019) which
uses graph convolution layers to iteratively refine node representations, although they still
use independent classifiers for labeling. Alternatively, other auto-regressive frameworks rely
on sequence labeling models with Recurrent Neural Networks (RNNs) or on Sequence-to-
Sequence models with Transformers. These models use specialized vocabularies to encode
the labeled graph, helping to capture the dependencies between different elements more ef-
fectively (Paolini et al., 2021; Lu et al., 2022; Fei et al., 2022; Liu et al., 2022).

Challenges in Modeling Label Dependencies Training autoregressive sequence models
typically involves maximizing the likelihood of each token in the reference (gold standard)
sequence given previous reference tokens. During inference, however, the unknown previous
tokens are replaced by model predictions, creating a discrepancy. The training scenario relies
on accurate past information, while inference uses potentially erroneous predictions. This
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discrepancy is known as exposure bias.

While solutions like schedule sampling (Bengio et al., 2015) attempt to bridge the gap
between training and inference by incorporating previous decoding decisions stochastically
during training, they introduce discontinuities in the training objective. This is because they
rely on greedy decisions at each time step, making it difficult for the model to learn effec-
tively using gradient-based methods.

Furthermore, when beam search, a more sophisticated decoding technique, is used in-
stead of greedy decoding, the objective function does not directly reason about the behavior
of the decoder at inference time. As a result, beam decoding can sometimes yield reduced test
performance when compared with greedy decoding (Cho et al., 2014a; Koehn and Knowles,
2017).

To address this challenge, previous work proposed a training objective that takes the
search process into account. These methods use continuous approximations of both greedy
and beam search, making the decoding stage differentiable and thus compatible with gradient-
based learning (Goyal et al., 2017, 2018). This allows the model to be “aware” of its decoding
behavior during training, leading to better performance in tasks like named entity recognition
and segmentation. However, this approach has yet to be applied to the more general case of
graph generation, which is what motivates our work.

Our Proposed Model In this work, we present a novel approach to information extraction
that incorporates differentiable beam search. This technique offers several advantages that
address the challenges of modeling label dependencies in IE:

• Exploration of Diverse Candidates: It allows the model to explore a wider range of
possible label sequences while considering the intricate dependencies between labels.

• Training-Inference Alignment: By incorporating a continuous relaxation of beam
search into training, we mitigate exposure bias.

Here’s a breakdown of our model:

1. Entity and Trigger Identification: Similar to previous work (Lin et al., 2020), we
first identify entities and triggers using a linear-chain CRF (Lafferty et al., 2001) with
a BIO tagging scheme.

2. Autoregressive Decoding: Unlike Lin et al. (2020) which uses a combination of lo-
cal classifiers with manually designed feature-based representation of the graph, we
apply RNNs on the linearized graph You et al. (2018) to sequentially assign labels to
identified nodes and potential edges between them.

3. Differentiable Beam Search Decoding: We use beam search during decoding to ex-
plore a wider range of possible label sequences. We show that the discrepancy between
training and decoding is harmful. To address exposure bias, we introduce a continuous
relaxation of beam search similar to Goyal et al. (2018). This allows the model to
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be aware of its decoding behavior during training, leading to potentially better perfor-
mance.

Contributions This work makes the following key contributions:

• We are the first to apply differentiable beam search to the more general case of infor-
mation extraction involving graph generation (§5.3).

• We demonstrate the effectiveness of our decoding-aware model through experiments
on various datasets (ACE05 and CoNLL04) and languages (English, Arabic, Chinese)
(§5.5).

• We perform ablation studies to confirm the importance of reducing the gap between
training and inference for optimal performance (§5.6.1 and §5.6.2).

• We propose a method for quantifying exposure bias, offering deeper insights into the
behavior of our model (§5.6.3).

5.2 Task Definition

Information extraction (IE) involves identifying and labeling entities, relations, triggers, and
their arguments in text data, mapping it to a labeled graph G = (V,E). V is the set of nodes
corresponding to entities and triggers, and E is the set of edges corresponding to relations
between pairs of entities or between a trigger and one of its arguments. Each graph element
(a node or an edge) is assigned a label from a set of possible types as depicted in Figure 5.1.

People started protesting in Pakistan over social inequality.
PER GPEConflict

Entity Place

PHYS

Figure 5.1: Example of an Information Extraction graph.

5.3 Model

Our model consists of two systems trained simultaneously in a multitask setup. The first sys-
tem focuses on identifying nodes of the graph using a CRF for sequence labeling (§5.3.1).
The second system tackles the generation of the labeled graph using an auto-regressive net-
work. To achieve this, we first use the identified nodes from the previous step to construct
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a linearized graph structure (see Section 5.3.2). Subsequently, this linearized graph is la-
beled using an auto-regressive model (RNN) for representation. The decoding process relies
on beam search (§5.3.3). Additionally, in Section 5.3.4, we elaborate on our approach of
relaxing the beam search, which is crucial for our search-aware training procedure.

5.3.1 Node Identification

Text Encoding Initially, the input sequence is passed through a pretrained language model
(PLM), such as BERT (Devlin et al., 2019). This process aims to generate a vector represen-
tation for each word in the sequence. Notably, if a word is fragmented into multiple word
pieces during tokenization, we ensure consistency by considering its representation as the
average of all its constituent word piece vectors.

Identification as Sequence Labeling Subsequently, the sequence of embeddings is passed
through a feed-forward layer and then fed to a CRF Lafferty et al. (2001) layer. The role of
the CRF here is to label the sequence using the BIO (Beginning, Inside, Outside) scheme,
thus facilitating the identification of spans of tokens corresponding to entities or triggers.
To accommodate potential overlaps between entities and triggers, we employ two distinct
CRFs.

Example: Considering the sentence depicted in Figure 5.1, the entity CRF yields the
sequence <B, O, B, O, O>, while the trigger CRF yields <O, O, O, O, B>.

Training and Inference In the training phase, we optimize the model parameters by min-
imizing the negative log-likelihood (Lid) of the reference BIO tag sequence. This loss func-
tion, Lid, constitutes a crucial part of the joint-training loss of our model. During inference,
we employ the Viterbi algorithm to search for the most likely tag sequence.

5.3.2 Graph Linearization

In our graph representation, nodes are represented by V = e1, . . . , en, t1, . . . , tm, where
ei denotes entities and ti denotes triggers that have been previously identified in the input
text. To ensure a consistent ordering, entities are organized based on their appearance in the
sentence (e1, . . . , en), followed by triggers in a similar order (t1, . . . , tm).

To predict the types of entities, triggers, relations, and arguments, we consider all possi-
ble pairwise relations and arguments, denoted as E = {(ei, ej) ∈ V 2}1≤i<j≤n ∪ {(ti, ej) ∈
V 2}1≤i≤m

1≤j≤n
. These pairs are treated as an ordered sequence using lexicographic order. We

construct the linearized graph sequence using the entity, relation, trigger, and argument se-
quences according to the following procedure: we iterate over the entity sequence, and at
each step, we add the current entity and all relations between it and the previously added
entities. This ensures that each relation appears after its two endpoints. Subsequently, we
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Figure 5.2: SLBS example for Figure 5.1, K = 2, |Ventity| = |Vtrigger| = 5, and |Vrelation| =
4. Hidden state h3

1 encodes the following graph path tags: PER, GPE, PHYS and h3
2 encodes:

GPE, GPE, Org-Aff.

iterate over the trigger sequence, adding at each step the visited trigger and then all possible
arguments.

The resulting sequence is of length T = n + n(n−1)
2

+ m + nm, where n, m, n(n−1)
2

,
and nm respectively represent the number of entities, triggers, relations, and arguments. The
sequence follows a specific ordering: e1, e2, (e1, e2), e3, . . . , (en−1, en), t1, (t1, e1), (t1, e2),
. . . , (tm, en).

Example: For instance, considering the linearization of the graph depicted in Figure 5.1,
we obtain the following sequence: “People”,“Pakistan”, (“People”, “Pakistan”), “Protest-
ing”, (“Protesting”, “People”), (“Protesting”, “Pakistan”).

During training, this sequence is constructed using gold entities and gold triggers ex-
tracted from the input sentence.

5.3.3 Graph RNN with Beam Search

Encoding of Nodes and Edges The representation of a node is computed of as the average
of its token representations. The representation of an edge is constructed by concatenating
the representations of its two connected nodes. We denote the encoded sequence as x ∈
Rdx×T , and for ease of readability, we denote xi its i-th element in all the following.

Labeling Given the linearized graph x, we aim to generate a label sequence ĉ of the same
length, where each element xi is assigned a label from the corresponding task vocabulary
Vtask, where task refers to one of the four IE tasks (entity, relation, trigger, and role). To
account for graph elements that need to be removed, we include a dedicated None label in
each Vtask.

Sequence Labeling with Beam Search (SLBS), with a beam size K, is a heuristic that
approximates the most likely label sequence by keeping track of and updating K candi-
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date sequences at each step. At each step t = {1, . . . , T}, we keep track of K couples
{(ht

i ∈ Rdh , sti ∈ R)}1≤i≤K . The vector ht
i can be understood as an embedding of the i-th

beam element of the usual beam search algorithm, and is updated using a Recurrent Neural
Network as follows:

ht+1
i = RNN(xt+1, E(ĉti), ht

i) (5.1)

where xt+1 ∈ Rdx is the current instance embedding, E(ĉti) is the embedding of ĉti imple-
mented as a linear projection layer, with ĉti ∈ {1, . . . , |Vtask|} being the index of the pre-
viously selected tag, i.e. the one that best extends the i-th element of the beam. The term
“best” is defined in this context using the extension scores s̃ti,j ∈ R such that, for every beam
index 1 ≤ k ≤ K:

st+1
k = top-k-max

1≤i≤K
1≤j≤|Vtask|

(s̃ti,j) (5.2)

btk, ĉ
t
k = top-k-argmax

1≤i≤K
1≤j≤|Vtask|

(s̃ti,j) (5.3)

With
s̃ti,j = sti + ŷti,j (5.4)

The local scores ŷti,j ∈ R represent classification logits produced by feed forward networks
FFNtask when fed the hidden states ht

i:

ŷti,· = FFNtask(h
t
i) ∈ R|Vtask| (5.5)

The local score ŷti,j can be seen as the negative log-likelihood of the beam element i
having j as a tag at time step t.

In equation 5.3, btk ∈ {1, . . . , K} serve as back-pointers because they point to the beam
element whose extension produced the current state of the beam element k.

In practice, updates are made in the following order: 5.5, 5.4, 5.3, 5.2 / 5.1. Figure 5.2
illustrates an example of the first 4 steps of the SLBS procedure.

Training During training, K = 1. Hence, the model is greedily trained to minimize the
total cross-entropy Lg loss at each time step between the predicted tags and the gold ones:

Lg = −
T∑
t=1

|Vtask|∑
j=1

ytj log(σ(ŷ
t
i,j)) (5.6)

Where yt· ∈ R|Vtask| is the gold tag in its one-hot form, and σ is the softmax function.
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Total Loss The model is jointly trained to minimize the nodes identification loss and the
labeled graph generation loss: L = Lid + Lg.

5.3.4 Continuous Relaxation of Beam Search

The SLBS procedure is used as a decoding strategy with models that are trained greedily
using cross-entropy. Hence, the distribution of hidden states reached during inference does
not match that of the hidden states reached during training. In order to incorporate awareness
of the decoding strategy into the training stage, we train our model using a relaxed SLBS
procedure, by replacing the discontinuous top-k-argmax operation with the relaxed version
used by Goyal et al. (2018); Maddison et al. (2017); Jang et al. (2017); Goyal et al. (2017)
in the context of Seq2Seq models.

The following describes how we relax the SLBS procedure for IE, making it fully con-
tinuous and almost everywhere differentiable.

Continuous top-k-argmax The key ingredient is to replace the only discontinuous op-
eration of the SLBS procedure, namely the top-k-argmax operation applied to extension
scores, with a continuous approximation, taking advantage of the following asymptotic
property: for any real-valued function f defined over the vocabulary Vtask, the expression

σ(− (f(·)−mk)
2

α
)j =

e
−(f(j)−mk)2

α

|Vtask|∑
l=1

e
−(f(l)−mk)2

α

tends to δj(top-k-argmax
1≤l≤|Vtask|

(f(l))) as the temperature pa-

rameter α tends to zero, with δj being the Dirac distribution centered on the tag j, which can
also be seen as the one-hot operation, and:

mk = top-k-max
1≤l≤|Vtask|

(f(l)) (5.7)

Training with soft SLBS In the SLBS procedure, the top-k-argmax operation is used to
make tag choices ĉtk based on the extension scores s̃ti,j . In the relaxed setup, a tag choice
is no longer a binary decision. Therefore, using the previous asymptotic approximation, we
define pki,j as the set of probability distributions over tags j (cf. lines 8 and 9 of Algorithm 1)
that can be interpreted as the probability of beam element k being updated using the hidden
state coming from beam element i and extended by tag j.

Such a set of probability distributions can be first used to compute a relaxed version of
st+1
k , as the expected extension score over all origin beam elements i and extension tags j (cf.

line 11 of Algorithm 1), and then to compute a relaxed version of the one-hot representation
of the previously added tag ĉtk, denoted ĉtj,k, as the probability of j being the last tag added
to the beam element k (cf. line 13 of Algorithm 1).

Loss Computation Importantly, this set of probability distributions can be used to com-
pute the negative log-likelihood of each tag in the gold sequence, which is a problem-adapted
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local loss:

lt = − logP (jt∗) = − log(
K∑
k=1

dk(
K∑
i=1

pki,jt∗)) (5.8)

where jt∗ denotes the index of the gold tag at time step t,
∑K

i=1 p
k
i,j∗t

represents the (marginal-
ized) probability of jt∗ being the predicted tag given a beam k, that also can be interpreted as a
posterior over the set of beams 1, . . . , K, and dk being a prior over the set of beam elements.
Overall, we associate the labeled graph generation with the following global loss:

Lcl =
T∑
t=1

lt (5.9)

Unfortunately, empirical observations show numerical instability in the computation of
lt. To address this issue, one possible approach is to tightly bound it with a term that can
be stabilized using techniques such as the log-sum-exp trick. Note that the earlier trick
cannot be directly applied to lt due to the sum

∑K
k=1 being inside the log. Additionally,

we must consider the trade-off between the stable upper bound and lt (referred to as the
stabilization margin), as a larger gap between them implies a greater misalignment between
the training and inference procedures. Thus, instead of minimizing lt, we minimize the
quantity presented in line 14 of Algorithm 1. Here’s a detailed explanation:

Due to the inclusion of the sum
∑

k within the logarithm, we cannot directly apply the
log-sum-exp trick to stabilize it. We want instead to bound this quantity by the tightest upper
bound term, which can be stabilized using the log-sum-exp trick.

lt = − log(
∑
k

dk(
∑
i

pki,j∗t ))) (5.10)

= − log(
∑
k

dk(
∑
i

exp(
−wk

i,j∗t
α

)∑
i,j∗t

exp(
−wk

i,j∗t
α

)

)) (5.11)

Using the concavity of the log function, and given that dk is a prior over the set of beams,
such that

∑
k dk = 1, we can establish the following inequality:

lt ≤
∑
k

dk(− log(
∑
i

exp(
−wk

i,j∗t
α

)∑
i,j∗t

exp(
−wk

i,j∗t
α

)

)) (5.12)

=
∑
k

dk(− log(

∑
i exp(

−wk
i,j∗t
α

)∑
i,j∗t

exp(
−wk

i,j∗t
α

)

)) (5.13)
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Algorithm 1 Soft SLBS training for IE
Input: x = x1, . . . , xT , the linearized graph

1 for t=1 to T do
2 for i=1 to K do
3 ht

i ← RNN(xt+1, E(ĉt·,i), ht
i)

4 for j=1 to |Vtask| do
5 ŷti,j ← FFNtask(h

t
i)j

6 s̃ti,j ← sti + ŷti,j

7 for j=1 to |Vtask|, k=1 to K do
8 wk

i,j ← (s̃ti,j − top-k-max
1≤i≤K

1≤j≤|Vtask|

(s̃ti,j))
2

9 pki,j ← σ(
−wk

·,·
α

)i,j

10 for k=1 to K do
11 st+1

k ←
∑
i,j

pki,j s̃
t
i,j

12 for j=1 to |Vtask|, k=1 to K do
13 ĉtj,k ←

∑
i p

k
i,j

i

14 loss+ =
∑
k

dk((− log(
∑

i e
−wk

i,j∗t
+a
) + a) + (log(

∑
i,j∗t

e
−wk

i,j∗t
+b
)− b)

with a = min
i

(wk
i,j∗t

) and b = min
i,j

(wk
i,j∗t

)

Next, by applying the log-sum-exp trick to the obtained upper bound, we can derive a
stable upper bound for lt:

lt ≤
∑
k

dk((− log(
∑
i

e
−wk

i,j∗t
+a
) + a) (5.14)

+ (log(
∑
i,j∗t

e
−wk

i,j∗t
+b
)− b) (5.15)

with a = min
i

(wk
i,j∗t

) and b = min
i,j

(wk
i,j∗t

).

Total Loss The model is jointly trained to minimize the nodes identification loss and the
labeled graph generation loss: L = Lid + Lcl.
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Dataset Split SENT ENT REL EVT ARG

ACE05-R Train 10,051 26,473 4,788 - -
Dev 2,424 6,338 1,131 - -
Test 2,050 5,476 1,151 - -

CoNLL04 Train 922 3,377 1,283 - -
Dev 231 893 343 - -
Test 288 422 422 - -

ACE05-E Train 19,240 47,554 7,159 4,419 6,607
Dev 901 3,423 728 468 759
Test 676 3,673 802 424 689

ACE05-CN Train 6,841 29,657 7,934 2,926 5,463
Dev 526 2,250 596 217 403
Test 547 2,388 672 190 332

ACE05-AR Train 2,936 26,031 3,712 1,830 3,176
Dev 382 3,256 498 234 401
Test 371 2,925 392 204 334

Table 5.1: Statistics of the Used ACE05 and CoNLL04 Datasets.

5.4 Experimental Setup

5.4.1 Datasets

We evaluate our model on 2 datasets and 3 different languages: ACE05 (Walker and Con-
sortium, 2005) for English, Arabic, and Chinese, and CoNLL04 Roth and Yih (2004). For
English ACE05, we consider two versions from the literature: ACE05-R, which involves
entity and relation extraction, and ACE05-E+, which includes entity, relation, and event ex-
traction. We follow the data splits and preprocessing of Luan et al. (2019) and Lin et al.
(2020) for ACE05-R and ACE05-E+. For Chinese data, we use the same preprocessing and
splits of Lin et al. (2020) and refer to it by ACE05-CN. For Arabic data, we use the same pre-
processing and splits of El Khbir et al. (2022) and refer to it by ACE05-AR. Thus, CoNLL04
involves 4 entity types and 5 relation types, and ACE05 involves 7 entity types, 6 relation
types, 33 event types, and 22 argument types. Table 5.1 provides statistics of the datasets,
where SENT, ENT, REL, EVT, ARG denotes respectively the number of sentences, enti-
ties, relations, event triggers and event arguments.

5.4.2 Evaluation Metrics

We use micro F1 measure for evaluation. Entity and event trigger predictions are correct
when the type and boundaries match the gold data. For relations and event arguments, we
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adopt boundaries evaluation (Taillé et al., 2020), a nonstrict and undirected evaluation. A
relation or an argument is correct if the type and boundaries match the gold data. Addition-
ally, we report average F1 scores (AVG) across all tasks for global assessment. We average
scores from 3 runs and select the model with the highest average F1 on the dev set.

5.4.3 Settings and Hyperparameters

Pretrained Language Model For the PLMs, we use bert-large-cased Devlin et al. (2019)
for the ConLL04, ACE05-R, and ACE05-E+ datasets, bert-large-arabertv2 Antoun et al.
(2020) for the ACE05-AR dataset, and bert-large-chinese for the ACE05-CN dataset. We
fine-tune the hyperparameters on ACE05-E+ and apply the same settings to the other ACE05
datasets.

Hyperparameter Tuning We perform a hyperparameter search for the beam size (K) with
values in {4, 10, 16, 20, 22} and select K = 10 based on performance. For the temperature
parameter (α), we explore values in {0.1, 0.5, 1, 2, 5, 10} and retain α=1. We use a uniform
prior for dk. Additional hyperparameters used in our experiments include the Adam opti-
mizer, with a BERT learning rate of 1e-5, BERT weight decay of 1e-5, and BERT dropout
of 0.5. We also implement gradient clipping at 5.0, a learning rate of 1e-4, weight decay of
1e-4, and dropout of 0.4. The hidden sizes are set to 256 for the RNN, 150 for FFNnode, and
600 for FFNedge.

Computaional Resources Our experiments run on an Nvidia GEForce RTX 2080 GPU
with 8 GB of RAM. The estimated computational budget for each training epoch is approx-
imately 3 GPU minutes for ConLL04, 10 GPU minutes for ACE05-R, 20 GPU minutes for
ACE05-E+, 6 GPU minutes for ACE05-AR, and 5 GPU minutes for ACE05-CN.

5.5 Results and Analysis

Main Results The main results of our experiments on ConLL04 and ACE05 data, along
with some literature results, are presented in Tables 5.2 and 5.3. We begin by establish-
ing a baseline with the Sequence Labeling Beam Search model (SLBS), trained through a
greedy approach and decoded using beam search (§5.3.3). This foundational model provides
a crucial benchmark against which subsequent enhancements are evaluated.

We then present the results of the Soft Sequence Labeling Beam Search (SSLBS) model,
trained with a relaxed beam search strategy and decoded using beam search (§5.3.4).

The results show that the SSLBS model outperforms the baseline, as evidenced by the
average F1 score enhancement across all used datasets. Specifically, the SSLBS model
demonstrates enhancements of 1.4, 0.3, 0.8, 2.0, and 1.1 F1 score points on the ConLL04,
ACE05-R, ACE05-E+, ACE05-CN, and ACE05-AR datasets, respectively. This observation
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Model CoNLL04 ACE05-R ACE05-E+

ENT REL AVG ENT REL AVG ENT REL EVT ARG AVG

Wang and Lu (2020)× 90.1 73.8 81.9 89.5 67.6 78.5 - - - - -
Wadden et al. (2019)∗ + - - - 88.4 63.2 75.8 - - - - -
Zhong and Chen (2021)∗ - - - 88.7 66.7 77.7 - - - - -
Ye et al. (2022)∗ - - - 89.8 69.0 79.4 - - - - -
Zhang and Ji (2021)† - - 88.7 67.2 77.9 91.0 62.8 72.7 57.7 71.0
Nguyen et al. (2022b)† - - - - - - 91.7 64.9 74.6 61.2 73.1
Lin et al. (2020)⋄ - - - 88.8 67.5 78.1 89.6 58.6 72.8 54.8 69.0
Nguyen et al. (2021a)⋄ - - - 88.9 68.9 78.9 91.1 63.6 73.3 57.5 71.4
Nguyen et al. (2022a)⋄ - - - 88.9 69.5 79.2 91.0 65.4 74.8 59.9 72.7
SLBS ⋄ 90.0 68.6 79.4 88.9 68.2 78.6 91.4 63.8 73.3 55.6 71.0
SSLBS ⋄ 90.1 71.4 80.8 88.5 69.2 78.9 91.2 64.0 75.0 56.9 71.8

Table 5.2: Performance on English. Models grouped in the same group of rows use the
same encoder for word representations; ×: albert-xxlarge, ∗: bert-base, †: roberta-large, ⋄:

bert-large. Models marked with a + sign use extra training data.

ACE05-CN

Model ENT REL EVT ARG AVG

Lin et al. (2020)⋄ 88.5 62.4 65.6 52.0 67.1
Nguyen et al. (2021a)⋄ 88.7 65.1 66.5 54.9 68.8

Nguyen et al. (2022b)∗ 89.2 68.3 74.3 60.0 72.9

SLBS† 88.6 64.8 65.9 49.6 67.3
SSLBS† 89.2 67.1 68.3 52.4 69.3

ACE05-AR

Model ENT REL EVT ARG AVG

El Khbir et al. (2022)× 85.1 62.9 63.6 51.8 66.0
SLBS× 85.3 63.1 62.0 51.6 65.5
SSLBS× 84.6 63.1 63.9 55.0 66.6

Table 5.3: Performance on Chinese and Arabic. ⋄:bert-multilingual-cased, ∗:xlm-roberta-
large, †:bert-large-chinese, ×:bert-large-arabertv2

strongly indicates the superiority of the decoding-aware training strategy over traditional
greedy training methods.

Comparison to other works For English, we compare our model to Lin et al. (2020),
Nguyen et al. (2021a), and Nguyen et al. (2022a) since we use the same PLM as an encoder.
Among these works, SSLBS has the second-best relation and average F1 scores on ACE05-
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R, the best trigger F1 score, and the second-best entity, relation, and average F1 score on
ACE05-E+. In addition, we consider other joint IE models such as Wadden et al. (2019);
Zhang and Ji (2021); Nguyen et al. (2022b), as well as models that focus solely on joint ERE
Wang and Lu (2020); Zhong and Chen (2021); Ye et al. (2022). While these models employ
various techniques such as span graph propagation Wadden et al. (2019), manually-designed
global features Lin et al. (2020); Zhang and Ji (2021), global type dependency regularization
Nguyen et al. (2021a), and dependency-induced graphs with simulated annealing Nguyen
et al. (2022a), the SSLBS model implicitly learns graph representations through the hidden
states of the network.

For Arabic and Chinese, SSLBS exhibits comparable performance to other existing ap-
proaches, with the trigger and argument tasks showcasing substantial performance gains.

Overall, while SSLBS does not surpass all SOTA models, it still achieves competitive
scores. To ensure fairness in comparisons, evaluating with the same PLM is preferable Taillé
et al. (2020). However, the focus of our work is on integrating the decoding procedure
into training, rather than exploring different PLM parameters. We make our code publicly
available for further investigations.

5.6 Ablation Studies

5.6.1 Effect of Forward/ Prediction Beam Sizes

To ensure alignment between training and inference objectives, we investigate the impact of
different beam sizes on our model’s performance. We denote here fbs, the forward beam
size used during training, and pbs the prediction beam size used during inference. Figure 5.3
shows the obtained average F1 scores, with a fixed temperature α=1, for ACE05-E+ dataset.

We notice that the diagonal of the matrix, corresponding to fbs=pbs, is prevailing. This
indicates that the model achieves its best results when the training closely aligns with the
inference process.

In addition, we notice that the scores of the over-diagonal, corresponding to fbs > pbs,
consistently outperform those of the under-diagonal, corresponding to fbs < pbs. This sug-
gests that a model trained with a larger beam size has a broader exposure to potential options
during training, enabling it to better handle search errors that occur when decoding with a
smaller beam size. Conversely, the lowest score is obtained for the {fbs = 10, pbs = 22}
combination, which highlights a performance decline when the beam size used during decod-
ing is larger than that during training. These insights emphasize the importance of aligning
beam sizes to enhance model performance and generalization.
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Figure 5.3: Effect of fbs and pbs on performance - ACE05-E+ Data.
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Figure 5.4: Effect of Sequence Ordering on Performance - CoNLL04 Data.

5.6.2 Effect of Sequence Ordering

We perform experiments to explore the impact of varying sequence orders during both the
training and testing phases. For all previous experiments, we have adhered to the sequence
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MODEL
TF no TF

SLBS SSLBS SSLBS SSLBS SSLBS SLBS SSLBS SSLBS SSLBS SSLBS
α = 0.01 α = 0.1 α = 1 α = 10 α = 0.01 α = 0.1 α = 1 α = 10

EB 258.7 146.2 142.4 25.7 82.3 163.3 544.6 39.6 3.7 112.0

FVC 192 8 15 21 30 35 15 13 15 22

ENT
REL
AVG

89.4
69.5
79.4

90.2
66.7
78.4

90.1
68.3
79.2

90.3
71.3
80.8

89.9
70.3
80.1

90.1
69.2
79.6

90.0
67.3
78.6

90.4
68.3
79.3

90.3
71.3
80.8

89.5
67.6
78.6

Table 5.4: Exposure Bias Quantification.

order outlined in §5.3.2, denoted here as the left-to-right (LTR) order. However, to com-
prehensively assess our model’s performance, we introduce two alternative sequence orders:
the right-to-left (RTL) order and a random (Random) order. In the RTL order, we maintain
fixed node positions while rearranging the edges in a right-to-left fashion. Conversely, the
Random order involves a random reordering of edges while keeping node positions constant.
We conduct these experiments on ConLL04, and the results are depicted in Figure 5.4.

We observe a dominant trend along the diagonal in Figure 5.4, which indicates that the
model consistently excels when tested on the same order it was trained on, thus when training
and inference are aligned. Notably, training and testing with the LTR ordering consistently
yield the best performance, possibly because the LTR order aligns well with the natural
sequential dependencies of the data.

Additionally, training the model with the Random order and testing it with different or-
ders (last column) demonstrates superior adaptability and robustness compared to training
with either LTR or RTL. The model’s ability to adapt to novel sequence arrangements stands
out in this scenario.

5.6.3 Exposure Bias Quantification

We assess exposure bias in two settings: SLBS and SSLBS (with various temperature α
values). We also explore the use of Teacher Forcing (TF) and model predictions (no TF) in
both settings. We conduct these experiments on ConLL04, training the model for 150 epochs
and reporting results of the last epoch in Table 5.4.

Exposure bias refers to the gap between a model’s training and testing conditions. We
quantify exposure bias by computing the Kullback-Leibler divergence between the distribu-
tions of training hidden states Phtrain and decoding hidden states Phtest . We practically compute
this using an N -samples Monte-Carlo scheme:

DKL(Phtrain ||Phtest) ≈
hi∼Phtrain

1

N

N∑
i=1

log

(
Phtrain(hi)

Phtest(hi)

)
(5.16)

Besides, we approximate these hidden state distributions Phtrain and Phtest as Gaussian
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Figure 5.5: Effect of Temperature on Performance - SSLBS - ACE05-E+ Data.

Mixtures Reynolds (2009), using 5 components.

Practically, the trained models make little to no use of certain hidden dimensions. To
streamline calculations and reduce noise in hidden states, we employ Principal Component
Analysis (PCA) F.R.S. (1901) to retain the principal components explaining 95% of the
variance in training hidden states. These dimensionally reduced hidden states are then used
to fit GMMs approximating Phtrain and Phtest . Note that the number of principal components
required to explain 95% of the variance in training hidden states serves as a measure of the
vectorial complexity of a model’s hidden states. In this context, these states inhabit a lower-
dimensional hyperplane than that of the latent space. This measure, which we call Features
Vectorial Complexity (FVC), is reported in Table 5.4, alongside the exposure bias values
(EB), the application of teacher forcing (TF/ no TF), and the F1 scores for entities (ENT),
relations (REL), and their average (AVG).

In Table 5.4, we observe that an increase in exposure bias is associated with lower F1
scores. We compute the Spearman correlation between performance (AVG) and exposure
bias (EB) values for all models, as well as specifically for SSLBS models. The resulting cor-
relation coefficients are -0.59%, and -89% indicating a robust negative association between
these two variables, which validates our initial observation, highlighting the adverse effect
of exposure bias on performance.

5.6.4 Effect of the Temperature parameter

We conducted experiments on ACE05-E+ varying the temperature parameter α in the range
{0.1, 0.5, 1, 2, 5, 10} to study its impact on performance. As shown in Figure 5.5, the model
with an intermediate temperature (α = 1) achieved the highest performance, indicating better
training stability and model confidence calibration.
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5.7 Related Work

Prior research has approached entity recognition (ER) and relation extraction (RE) as sep-
arate tasks Zhou and Su (2002); Zelenko et al. (2002); Kambhatla (2004), and others ad-
dressed both entity and relation extraction (ERE) tasks jointly Chan and Roth (2011); Yu
et al. (2019). Recent works address the four tasks of entity, relation, trigger, and argument
extraction jointly Luan et al. (2019); Wadden et al. (2019); Lin et al. (2020); Zhang and Ji
(2021); Nguyen et al. (2022b).

Seq2Seq Models Some works proposed Sequence-to-Sequence architectures for ERE. While
Miwa and Bansal (2016) used an encoder-decoder architecture with attention, they relied on
expensive trees. In contrast, Yu et al. (2019) reformulated ERE as a single sequence labeling
task but did not handle overlapping relations effectively. To our knowledge, we are the first
to recast the four tasks as a joint sequence labeling problem.

Exposure Bias Solutions Exposure bias is a known issue in Seq2Seq models across vari-
ous NLP domains. Solutions include reinforcement learning models (Ranzato et al., 2016),
beam search training schemes with sequence-level cost functions (Wiseman and Rush, 2016),
and differentiable relaxations of beam search procedures Goyal et al. (2018). These meth-
ods have been applied to tasks such as NER and CCG Supertagging, demonstrating their
effectiveness. Many researchers have tried to address this issue using various techniques:

• Schedule sampling: This method gradually replaces reference tokens with model pre-
dictions as training progresses, forcing the model to become more reliant on its own
predictions and reducing the mismatch between training and inference.

• Curriculum learning: This technique starts with easier prediction tasks and gradually
increases the difficulty, allowing the model to learn effective strategies before tackling
more complex scenarios.

• Knowledge distillation: This involves training a smaller, faster model to mimic the
predictions of a larger, more accurate model. By focusing on replicating the “good”
decisions of the large model, the smaller model can be less susceptible to exposure
bias.

• Auxiliary losses: These additional losses encourage the model to attend to specific
aspects of the input or produce intermediate outputs that are closer to the desired labels,
guiding the model’s learning process and reducing the impact of exposure bias.

Our work Our approach, similar to that of You et al. (2018), uses linearization to transform
graph structures into sequential representations. However, while You et al. (2018) explicitly
models the generative process, our work centers on predicting graph-related tasks. Our con-
tinuous beam search procedure, inspired by Goyal et al. (2018), integrates four tasks into
the procedure, optimizes a task-specific loss, and utilizes a straightforward RNN recurrence
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to implicitly combine contributions from various beam elements for computing subsequent
steps.

5.8 Conclusion and Discussion

In this work, we addressed the challenge of information extraction graph generation. We
proposed a two-step approach:

• Sequence Labeling with Beam Search (SLBS): We first reformulated the problem as
a sequence labeling task using autoregressive models. During decoding, we employed
beam search to improve performance by considering a set of top candidate sequences.
This initial model, however, relied on a greedy selection process during beam search,
limiting its learning potential.

• Soft Sequence Labeling with Beam Search (SSLBS): To overcome this limitation,
we introduced SSLBS. Unlike SLBS, SSLBS leverages a differentiable beam search
approach during training. This key innovation allows the model to learn from all
candidate sequences within the beam, not just the single, greedily chosen one. This
richer learning process enables SSLBS to achieve superior performance compared to
the baseline SLBS model.

Through ablation studies, we gained valuable insights into factors influencing model
performance:

• Beam Size Alignment: We observed that aligning beam sizes during training and
inference leads to optimal performance. This suggests that the model benefits from
consistency in the search space during both phases. However, using a larger training
beam with a smaller inference beam size demonstrates some model adaptability. This
opens possibilities for exploring strategies to reduce computational cost at inference
time while maintaining accuracy.

• Sequence Ordering: The model performs best when the training and testing order of
entity and relation sequences are aligned. However, training with random order shows
a degree of adaptability. This suggests that the model can learn to handle different
ordering scenarios to some extent. Future work could investigate methods to further
improve this adaptability and make the model less sensitive to ordering variations in
real-world data.

• Exposure Bias: The strong negative correlation between exposure bias and F1 scores
highlights the importance of mitigating this challenge, where models struggle to gen-
eralize when trained and tested under different conditions. SSLBS demonstrates an
advantage in this regard, potentially due to its differentiable formulation. Exploring ad-
ditional techniques to reduce exposure bias in joint information extraction tasks could
be a fruitful direction for future research, leading to models that are more generalizable
and robust to real-world data variations.
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• Temperature Parameter: The optimal performance achieved with an intermediate
temperature value suggests good training stability and model calibration in SSLBS.
This parameter controls the exploration-exploitation trade-off during beam search.
Further investigation into the role of the temperature parameter in different informa-
tion extraction settings could provide valuable insights for model tuning, potentially
leading to improved performance across various datasets and tasks.

This work opens new avenues for exploring differentiable beam search techniques in
information extraction tasks. The model demonstrates promising results, outperforming
baselines and achieving competitive scores. However, this work also acknowledges some
limitations. Future research can address these limitations by:

• Exploring strategies for reducing computational cost at inference: While SSLBS demon-
strates strong performance, beam search can be computationally expensive. Investigat-
ing techniques to reduce the beam size or exploring approximate inference methods
could make the model more practical for large-scale deployments.

• Addressing vanishing gradients with decreasing temperature: The temperature param-
eter α controls the model’s confidence in its predictions. However, as α decreases, the
model can experience vanishing gradients, hindering training. This creates a trade-off
between the stability and the accuracy of the predictions.

• Improving model adaptability to sequence ordering: While SSLBS shows some adapt-
ability to different ordering scenarios, further improvements in this area involve mak-
ing the model learn such an ordering itself.
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Chapter 6

Conclusion

In this thesis, we have explored various facets of information extraction, addressing several
core tasks: entity extraction (EE), relation extraction (RE), event trigger extraction (ETE),
and event argument extraction (EAE). Our primary focus was on the Arabic language, given
its rich linguistic nuances and complexities. By addressing its particularities, we aimed to
enhance the efficiency and accuracy of IE tasks through the development of novel method-
ologies specifically tailored to the challenges posed by Arabic and its diverse dialects.

The body of work presented in this thesis spans three significant contributions, each
tackling distinct challenges and introducing innovative solutions to advance the field of in-
formation extraction. In Chapter 3, we presented ArabIE, the first neural joint IE model
designed for Modern standard Arabic (MSA), addressing the intricacies of Arabic morphol-
ogy and syntax. In Chapter 4, we focused on cross-dialectal named entity recognition (NER),
leveraging cross-lingual transfer learning to extend IE capabilities to various Arabic dialects.
Finally, in Chapter 5, we introduced a novel approach to IE using differentiable beam search
on graph recurrent neural networks to model the interdependencies between different IE
tasks more effectively. This last work extends beyond Arabic-specific models, demonstrat-
ing broader applicability in general information extraction tasks across multiple languages.

In the following sections, we summarize the key findings, implications, and future direc-
tions of each work, reflecting on the advancements, limitations, and impact of our contribu-
tions to information extraction for Arabic and beyond.

6.1 Joint Entity, Relation, and Event Extraction for Arabic

6.1.1 Objectives and Achievements

The first objective of this thesis was to develop a robust joint IE model for Modern Standard
Arabic, addressing the unique morphological and syntactic challenges of the language. To
achieve this, we introduced ArabIE, the first neural joint IE model for Arabic. ArabIE simul-
taneously tackles four essential tasks: named entity recognition, relation extraction, event
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trigger extraction, and event argument extraction.

ArabIE leverages BERT as a token encoder and uses two models trained in a multitask
fashion. Conditional Random Fields (CRFs) are used for node identification, encompass-
ing entities and triggers, while feed-forward networks (FFNs) are used for both node and
edge classification, encomassing entities, relations, triggers, and arguments classification.
To handle Arabic’s complex morphology, we explored two tokenization approaches during
the preprocessing steps: morphological tokenization and augmented BIO tags. Our key re-
sults and findings include:

• Comparable Results to SOTA models: ArabIE demonstrated good performance on
the ACE 2005 benchmark, achieving results comparable to leading models for other
languages. Specifically, ArabIE achieved an average of 65.84 F1 points on all tasks
when using the morphological tokenization approach. In comparison, state-of-the-art
models have achieved 68.95 F1 points for English, 67.12 for Chinese, and 56.62 for
Spanish on the corresponding ACE datasets. This performance is significant for the
first Arabic information extraction model, highlighting its competitive edge.

• Morphological Tokenizer Superiority: The morphological tokenizer, which seg-
ments words into morphemes, proved to be the most effective approach, achieving
a performance increase of 2 F1 points compared to other tokenization methods. This
approach preserved valuable subword information better than other techniques. Con-
versely, the augmented BIO tags method, which concatenates labels for subword enti-
ties, resulted in an increased label set size and was less effective.

• Impact of Annotation Omissions: Despite the ACE 2005 dataset being of high qual-
ity and granularity, error analysis revealed significant discrepancies in annotation qual-
ity within the gold standard data. In a sample of 32 sentences, nearly 23.5% contained
annotation errors, particularly concerning triggers and roles. The model often pre-
dicted correct events according to the annotation guidelines but was penalized due to
omissions by annotators. These inconsistencies posed challenges for model training
and evaluation, highlighting the need for robust evaluation metrics beyond traditional
accuracy measures.

6.1.2 Limitations

Despite its success, ArabIE faces some limitations, including:

• Random Entity Selection: After tokenizing the words, projecting entities onto tokens
is not always perfect due to inconsistencies between the morphemes and entities of the
gold data, or the tokenizer failing to produce valid morphemes. This issue can lead to
significant data loss, with an estimated 1% of data being affected. When a subword still
holds multiple entities after tokenization, the model randomly selects one entity and
discards the others. This exclusion of relevant information impacts the model’s overall
accuracy. Future research should focus on developing more sophisticated methods
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for entity selection during tokenization to mitigate data loss. For instance, exploring
character-based tokenization might provide a more granular approach, allowing the
model to capture multiple entities within a single token more effectively.

• Tokenization-Vocabulary Mismatch: The mismatch between the vocabularies gen-
erated by tokenizers and the BERT model used for token encoding can significantly
affect performance. This discrepancy occurs because the tokenizer’s output may not
perfectly align with the BERT vocabulary, resulting in suboptimal token representa-
tions and potentially reducing the accuracy and effectiveness of the model. Training a
custom BERT model specifically on the output of the chosen tokenizer could address
this issue, ensuring that the token representations are more aligned and accurate.

• Limited Inter-Task Communication: There is restricted communication between
tasks in the model due to the employed greedy decoding strategy, which does not ex-
plicitly account for task dependencies. Effective inter-task communication is crucial
for capturing relationships among entities, relations, and events. The lack of such
communication can result in isolated predictions, reducing overall coherence and ac-
curacy. In Chapter 5, we addressed this by incorporating techniques that consider these
dependencies, leading to significant performance improvements.

6.1.3 Future Directions

This work establishes a robust baseline for Arabic information extraction systems, showcas-
ing notable performance across four critical tasks: named entity recognition, relation extrac-
tion, event trigger extraction, and event argument extraction. The methodologies and models
developed here are versatile and can be directly applied or adapted for various real-world
applications. For instance, in automated news aggregation, these models can streamline
compiling and categorizing news articles by accurately identifying key entities and events.
In social media monitoring, extracting nuanced relationships and event triggers can signifi-
cantly enhance the understanding of public sentiment and trends.

For the Arabic NLP research community, this work serves as a critical foundation for
further exploration. Researchers can leverage the findings and models presented here to
develop more advanced systems. The detailed error analysis and insights into the impact of
tokenization strategies offer valuable directions for future research. Understanding where
current models fall short allows to target specific areas for improvement, such as refining
tokenization methods to better capture the complexities of Arabic morphology or developing
more sophisticated annotation techniques to minimize errors. These insights can drive the
creation of more accurate and reliable IE systems.
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6.2 Cross-Dialectal Named Entity Recognition in Arabic

6.2.1 Objectives and Achievements

The second objective was to extend IE capabilities to Arabic dialects, which are widely used
in everyday communication but pose significant challenges due to their linguistic diversity.
To this end, we conducted a comprehensive study on cross-dialectal named entity recogni-
tion, leveraging cross-lingual transfer learning from MSA to Arabic dialects. This approach
aimed to bridge the linguistic gap and enable effective entity extraction across different di-
alects.

To extend NER capabilities to Arabic dialects, we employed a span-based NER model
built on top of a pretrained language model (PLM) encoder. This model was trained on MSA
data and tested on dialectal data to leverage cross-lingual transfer learning. The process
began with the manual annotation of NER datasets for Moroccan, Egyptian, and Syrian
dialects, chosen to capture the broad linguistic diversity within the Arabic-speaking world.
These dialects span North Africa, the Middle East, and the Levant, and Egyptian and Syrian
Arabic are widely understood due to cultural influence. The PLM encoder, fine-tuned on
MSA data, provided robust contextual embeddings that captured the linguistic nuances of
the text. The span-based model then identified and classified named entities within these
embeddings. Evaluation was conducted using standard metrics such as precision, recall, and
F1 score to measure the model’s performance across different dialects. Our key contributions
and findings include:

• Creation of Manually Annotated NER Datasets: We developed NER datasets for
Moroccan, Egyptian, and Syrian dialects through manual annotation, adhering to high-
quality LDC guidelines. These datasets have been made publicly available for future
research.

• Effectiveness of Cross-Lingual Transfer Learning: The model demonstrated strong
generalization capabilities to different dialects, particularly Syrian Arabic, achieveing
the highest F1 scores across various PLMs. Using AraBERTv2 as the PLM, the model
trained on MSA achieved F1 scores of 59.44 for Egyptian, 55.23 for Moroccan, and
66.97 for Syrian dialects. This success in zero-shot settings highlights the potential of
cross-lingual transfer learning to overcome data scarcity and deliver high performance
in dialectal NER tasks.

• Linguistic Affinity Findings: Our results revealed that Syrian Arabic has the clos-
est linguistic affinity to MSA, resulting in higher NER performance across all tested
PLMs, followed by Egyptian and then Moroccan dialects.

6.2.2 Limitations

This preliminary study presents a good starting point for dialectal NER but faces some limi-
tations, including:
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• Single Annotator Bias: The dataset relies on a single annotator, which may introduce
bias and affect the reliability of the labels. Single annotator bias can lead to subjec-
tive interpretations influencing the consistency and accuracy of annotations. Future
work should consider the involvement of multiple annotators to assess inter-annotator
agreement and ensure labeling robustness.

• Limited Dialect Scope: Our work was limited to only three Arabic dialects: Mo-
roccan, Egyptian, and Syrian. This narrow focus does not capture the full linguistic
diversity of Arabic, which includes many other dialects with unique features. A more
comprehensive study across multiple dialects would provide a broader understanding
of the challenges and solutions in Arabic NER.

Besides these two limitations, the dataset created for this work is relatively small, com-
prising a total of 1,592 annotated sentences across MSA and the three dialects, and a total
of 5,787 annotated entities. While zero-shot transfer learning demonstrated decent perfor-
mance, the limited size of the dataset could hinder the model’s generalizability to other ap-
plications, particularly those involving domain-specific entities. A larger and more diverse
dataset would enable better training and evaluation, enhancing the robustness and applica-
bility of the model.

6.2.3 Future Directions

As stated before, this preliminary work shows significant potential for advancing dialectal
IE. The model can be directly used for general domain NER on written MSA, Egyptian,
Moroccan, and Syrian dialects, benefiting both research and practical applications, such as
extracting information from newspapers, social media, and other text sources. However,
real-life communication in dialects presents several challenges that need further study and
innovative solutions.

Many social media users do not write their everyday communications in Arabic script but
use Latin letters to phonetically represent Arabic words, known as “Arabizi”. This poses a
unique challenge for NER models trained on Arabic script. Future research should focus on
developing models that can handle Arabizi by incorporating character-level embeddings and
creating annotated datasets in this script. This adaptation will make the model applicable to
a broader range of text inputs.

Another challenge in real-life dialectal Arabic communication is code-switching, where
speakers mix words from different languages within the same sentence. For instance, Egyp-
tian dialect often includes English words, while Moroccan dialects may mix French and En-
glish. Creating models to manage code-switching is a key research area, requiring strategies
to process multiple languages within a single sentence.

A promising direction is integrating advanced LLMs like GPT-4, via prompting or fine-
tuning, to enhance the performance and generalization capabilities of the NER model. These
models can capture more nuanced linguistic features and better handle the complexities of
dialectal and code-switched texts, providing more accurate and context-aware entity recog-
nition.
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6.3 Information Extraction with Differentiable Beam Search
on Graph RNNs

6.3.1 Objectives and Achievements

The third major objective of this thesis was to model the interdependencies between dif-
ferent IE tasks more effectively. To achieve this, we employed autoregressive models and
beam search techniques, developing a novel approach that frames information extraction as
a sequence labeling problem, using autoregressive models to label a linearized IE graph.

We introduced two models in this work: Sequence Labeling with Beam Search (SLBS)
and Soft Sequence Labeling with Beam Search (SSLBS). SLBS leverages a linear-chain Con-
ditional Random Field (CRF) with a BIO tagging scheme for node identification (entities and
triggers) and uses an auto-regressive Recurrent Neural Network (RNN) with beam search
decoding for labeled graph generation. This model is trained in a greedy way using teacher
forcing but decoded with a beam search strategy, which induces exposure bias, or train-eval
inconsistency, leading to reduced performance. To address this issue, SSLBS aligns train-
ing and inference using a differentiable beam search procedure during training, allowing the
model to account for its decoding behavior during training, thus mitigating exposure bias.
Our key findings and contributions include:

• Alignment of Training and Inference: By integrating a differentiable beam search
into the training process, SSLBS aligns the training and inference procedures, sig-
nificantly improving model performance. The effectiveness of our model was vali-
dated through extensive experiments on the ACE05 dataset (covering English, Arabic,
and Chinese) and the CoNLL04 dataset. The results demonstrated that SSLBS signif-
icantly outperforms SLBS in terms of F1 scores across all datasets. Specifically, The
SSLBS model demonstrated improvements of 1.4, 0.3, 0.8, 2.0, and 1.1 on average
F1 score points on CoNLL04, ACE05-R, ACE05-E+, ACE05-CN, and ACE05-AR,
respectively.

• Ablation Studies: We conducted ablation studies to examine the impact of aligning
training and evaluation processes on model performance. Key findings include:

– Beam Size Alignment: Using the same beam size for both training and inference
led to optimal performance. This alignment ensured consistency and reduced
discrepancies between the two stages, highlighting the importance of maintaining
identical conditions during both phases.

– Sequence Ordering: Maintaining a consistent sequence order during both train-
ing and testing enhanced model performance. Training with random orders demon-
strated the model’s adaptability to different scenarios but resulted in slightly re-
duced performance compared to consistent ordering.

• Exposure Bias Quantification: We quantified exposure bias by computing the Kullback-
Leibler divergence between the distributions of training hidden states and decoding
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hidden states. Lower exposure bias values correlated strongly with higher F1 scores,
underscoring the negative impact of train-eval discrepancies.

6.3.2 Limitations

Despite the advancements made with the SSLBS model, several limitations persist, includ-
ing technical limitations such as vanishing gradients. The use of temperature parameters in
the continuous relaxation of beam search helps control the model’s confidence in its predic-
tions. However, as the temperature decreases, gradients can vanish, leading to difficulties in
training stability and convergence. This trade-off between stability and accuracy needs to be
carefully managed to prevent degradation in model performance.

Moreover, the model’s adaptability to different sequence ordering scenarios remains a
challenge. The current approach may struggle with variations in the order of entity and rela-
tion sequences, affecting its ability to generalize across diverse data structures. Consistency
in sequence ordering during training and inference is crucial, but the model needs to be more
robust to different ordering to handle various real-world scenarios effectively.

In addition to these limitations, in real-life scenarios, limitations include the computa-
tional expense of beam search. While enhancing the quality of generated sequences, requires
significant computational resources. This high computational cost makes it challenging to
apply the model to large-scale datasets or real-time applications. The computational over-
head can hinder the practical deployment of the model in resource-constrained environments.
Techniques like adaptive beam search, where the beam size is dynamically adjusted based
on the complexity of the task, could help balance performance and computational efficiency.

6.3.3 Future Directions

This work contributes to the broader goal of improving the accuracy and robustness of IE
systems, laying a foundation for further advancements in the field of information extraction,
and offering a range of practical applications. The model can be directly applied to auto-
mated text analysis tasks, such as information extraction from news articles, social media
posts, and academic papers. Our approach can also be used to build and update knowledge
graphs by accurately extracting entities, relations, and events from text.

Techniques for softening decoding strategies may benefit other NLP tasks such as trans-
lation, sentiment analysis, and summarization, where exposure bias and sequence alignment
issues similarly affect performance. By addressing these common challenges, our methods
can enhance the accuracy and reliability of various NLP applications.
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