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Abstract

Network Function Virtualization (NFV) is a technological innovation which aims at
making the network more adaptable, more controllable and more profitable. This tech-
nology reduces CAPEX and OPEX costs by sharing the physical resources. NFV allows
simultaneous execution of a variety of network functions over a shared network. To take
the set advantage of NFV technology, researchers are equired to resolve and meet the
challenges imposed by this technology such as placement, orchestration, management
and consolidation. Despite the immense usefulness provided by NFV, several techni-
cal problems, which we will be able to identify and deal with in this work, should be
resolved. Consolidating VNF can be considered as one of the main challenges for effec-
tive exploitation and management of VNF. The consolidation involves allocating some
virtual resources in the virtual or physical to balancing resource exploitation and mini-
mizing energy consumption. In this thesis, we present a comparative and comprehensive
study dealing with the problem of placement and consolidation of VNFs. We presented
a new classification of the VNF placement and consolidation approaches proposed in the
literature to donate academics and researchers more experiences on how to consolidate
and place elements in NFV environment so that energy and resources utilization are
optimized. In the light of this study, we proposed new adapted approaches to overcome
the insufficiencies of the approaches in literature.

Virtual Network Function (VNF) is the essential softwarization engine that extracts
network functions from dedicated hardware devices to run them as services running on
virtual machines or containers. Network services are created on Virtual Machines (VMs)
may be connected or organized in a single enclosure to take advantage of all available
resources within it. This flexibility lets physical and virtual resources to be used in a way
it guarantees efficient management and control reduce energy consumption, balance the
load and improve resource utilization, and finally minimize the cost and latency. In order
to consolidate a maximum number of VNFs into the smallest number of virtual machines
(VMs) by estimating the association relationship to a confidence measure in the context
of possibility theory, we proposed a novel approach called Fuzzy-FCA for VNF placement
based on Formal Concept Analysis (FCA) and fuzzy logic in a mixed environment that
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combines cloud and Multi Access Edge Computing (MEC) architecture. Our approach
combines Formal Concept Analysis and fuzzy logic to ensure the distribution of compute
resources to the end user in order to reduce end-to-end latency. Simulation experiments
conduced during this thesis showed have shown the efficiency of our proposal especially
in reducing latency and cost, minimizing energy consumption and balancing resource
usage over the network. Besides, Fuzzy-FCA outperforms the newer approaches like the
MultiSwarm algorithm extensively studied in the literature. To go deeper, we addressed
the issue of VNF placement while considering the chaining.

In fact, the VNF placement problem has become surrounded by other constraints that
enshrine the order of VNFs according to their chain type. This restriction requires a
method of extracting the best and shortest traffic from a chain of VNFs considering the
replication of the same type of VNF. In this context, we proposed an algorithm that
aims at finding the most appropriate location for each VNF composing the appropriate
service and the best routing to confront the traffic congestion (taking into account the
bandwidth) and minimize the transmission end to end delay of the request service (chain
of VNFs) by respecting the resources constraints (CPU, memory and storage) in a multi-
instance VNF environment. To address the issue involved by the VNF placement and
chaining, we propose an ILP modeling and a novel model of classification named Parallel
Bi-state module deep reinforcement learning (PBDRL) algorithm. Our proposal consists
in two modules, the first is MDP(Markov Decision Process) that is used to capture service
chain state transition, and the second is LSTM (Long Short-Term Memory) that enable
to detect the long-term historical of service chain and its transitions. More specifically,
our model aims at extracting the characteristics of VNF environment through MDP
and LSTM simultaneously which takes into account the dynamicity and history of NFV
environment. Thus, experimental results have shown the efficiency of our proposal which
outperforms both the NFV deep approach and LSTM algorithm. As an extension, we
proposed a hybrid algorithm which combines the two previous algorithms ; Fuzzy-FCA
and PBDRL. This algorithm addresses the issue of VNF location taking into account
the robustness and the cost of migration. The goal is to limit the cost and the delay
through respecting the quality of service and the service agreements. The simulation
results demonstrate the efficiency of our algorithm to minimize the migration cost and
the operation cost, as well as the importance of combined ILP and PBDRL algorithms
to minimize the delay and the reallocation cost.



Résumé

La virtualisation des fonctions réseau (NFV) est une des dernières innovations tech-
nologiques introduite dans le but de rendre le réseau plus flexible, plus contrôlable et
plus rentable. Cette technologie réduit le CAPEX et OPEX en partageant les ressources
physiques ou virtuelles de réseaux. Ainsi NFV permet l’exécution simultanée de diverses
fonctions réseau sur un réseau partagé. Pour améliorer l’utilisation des ressources avec
NFV, les cherchercheurs s’y sont interessés de prés, notamment pour relever les défis liés
à cette technologie comme le placement, l’orchestration, la gestion et la consolidation
de VNF (Virtual Network Function). Cette dernière peut être considérée comme l’un
des principaux enjeux pour l’exploitation et la bonne gestion de VNF. Cette consolida-
tion consiste à allouer certaines ressources virtuelles dans la même machine physique ou
entre deux ressources virtuelles tout en exploitant diverses métriques qui peuvent corre-
spondre à l’équilibrage de l’utilisation (exploitation) des ressources ou la minimisation
de la consommation d’énérgie. Dans ce travail, nous ferons et présenterons une étude
comparative et compréhensive des methodes de consolidation afin de fournir, procurer
plus d’expériences sur la manière de consolider les ressources et les critères à prendre
en compte. Les fonctions de réseau virtuel (VNF) est la base derrière la virtualisation
des réseaux et NFV. Initialement rendue par du materiel dediés, elles sont rendue avec
l’avénement de NFV sous forme logicielle tournant sur du matériel générique moins cher
qui sépare les fonctions réseau et leurs periphériques matériels dédiés, tel que les roteurs,
les pare-feu et les équilibreurs de charge, pour héberger leurs services sur des machines
virtuelles. La VNF est responsable des services réseau qui s’exécutent sur des machines
virtuelles et peuvent connecter chacune d’entre elles seules ou s’organiser dans un boîtier
unique pour utiliser toutes les ressources disponibles dans ce boîtier. Cette flexibilité
permet d’utiliser les ressources physiques et virtuelles de manière qui assure le contrôle de
la consommation d’énergie, l’équilibre dans l’utilisation des ressources et la minimisation
des coûts et de la latence. Afin de consolider les groupes VNF en un nombre minimum
de machines virtuelles (VM) avec estimation de la relation d’association à une mesure
de confiance dans le contexte de la théorie des possibilités, nous proposons une nouvelle
approche Fuzzy-FCA pour le placement VNF basée sur l’analyse de concept formelle.
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(FCA) et logique floue dans un environnement mixte basé sur des centres de données
cloud et Architecture Edge Computing (MEC) à accès multiples. Ainsi, l’inclusion de
cette architecture dans l’environnement cloud assure la distribution des ressources de
calcul à l’utilisateur final afin de réduire la latence de bout en bout. Pour évaluer et
montrer l’efficacité de notre solution, nous l’avons comparée à l’un des meilleurs algo-
rithmes étudiés dans la littérature, à savoir l’algorithme MultiSwarm. Les résultats de
la série d’expériences réalisées montrent la faisabilité et l’efficacité de notre algorithme.
En effet, nos résultats d’expérience confirment la capacité de notre algorithme à max-
imiser et équilibrer l’utilisation des ressources, à minimiser la latence et le coût de la
consommation énergétique. Pour aller plus loin, nous traitons le problème de placement
VNF en considérant les caractéristiques de chaînage VNF. Ainsi, le problème initial
de placement des VNF est desormais entouré de nouvelles contraintes qui consacrent
l’ordre des VNFs ou de leur chainage. La prise en compte de ces nouvelles contraintes
requiert la détermination d’un routage efficace minimisant les chemins tout en prenant
en compte la replication de VNF. Dans ce cadre, nous proposons un algorithme visant à
trouver la localisation la plus appropriée pour chaque VNF composant le service réseau,
permettant de pallier la congestion et de minimiser le délai de transmission de la requête
de bout en bout (chaîne de VNF) tout en verifiant les contraintes liés aux ressources de-
mandées (CPU, mémoire et stockage) dans un environnement VNF multi-instance. Pour
résoudre ces problèmes, nous proposons une modélisation ILP et un nouveau modèle de
classification nommé algorithme d’apprentissage par renforcement profond du module
bi-état parallèle (PBDRL). Cet algorithme est basé sur deux modules, le premier est
MDP (Markov Decision Process) qui est utilisé pour capturer la transition d’état de la
chaîne de service, alors que le second est LSTM (Long Short-Term Memory) qui permet
de détecter l’historique à long terme de la chaîne de service et ses transitions. Notre
modèle vise à extraire les caractéristiques de l’environnement VNF via MDP et LSTM
en tenant compte simultanément de la dynamique et de l’historique de l’environnement
NFV. Comme extension, nous avons proposé une algorithme hybride qui combine les
deux precedents algorithme de Fuzzy-FCA et PBDRL. Ce nouvel algorithme aborde le
problème de placement en tenant en consideration la migration et le cout de migration.
L’objectif est de minimiser le cout et le delai en respectant les contraintes liées à la qual-
ité de service et Service Agreements. Nos experimentations et simulations ont montré
l’efficacité de notre algorithme, notamment pour optimiser le cout de migration et le
cout d’operation, ainsi que l’importance des algorithmes combinés ILP et PBDRL pour
réduire les délais et les coûts de réallocation.
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Introduction

Context and issue

Cloud computing represented a big leap in technological evolution. Where virtualiza-

tion is considered the main driver of cloud computing, which serves to separate physical

resources to meet the demands of a gigantic data center. In fact, the growing demand

for the use on telecommunication networks represent the first reason for the advent of

network virtualization. Network Function Virtualization (NFV) creates virtual copies

of network services (firewall, router, DPI (Deep Packet Inspection)) and runs them on

virtual machines. It allows network services to be provided to operators on demand

without the need for additional hardware. In addition, NFV works to facilitate the

execution and distribution of virtualized network functions on different servers or move

and migrate them dynamically from server to other one according to the request, ie

anywhere on the network [5]. In another sense, NFV allows to create hybrid constructor

where the network functions and resources can coexist and consolidated from one host

machine to another as needed [6]. This characteristics provides a suitable environment

of the consolidation. Generally, the consolidation consists of migrating functions and

resources from their original location to another location and putting emptied locations

in deactivated mode. This aims to reduce the number of active physical devices and

therefore the number of virtual devices, leading to the improvement of the resource ex-

ploitation and to energy consumption. The majority of studies dealing with the issue of

energy minimization in virtual environments is treated in connection with the problem

of consolidation [7] [8]. Moreover, [9] tackles the problem of consolidation under inter-

ference constraint. We notice that the dimensions or the members of consolidation are

different from one approach to another. In [10], the consolidation is performed between

the VM and the server, in [7] [8] between VM and tasks, in [9] between requests and
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offers, in [3] between VNFs and servers, in [11] between VNFs and VMs, in [12] between

the software licenses. There are also several proposed approaches which are interested

this problem (VCMM) [3], heuristics [13] [14], genetic algorithms [15] [16], “Gossip-

ing” [17], etc. Some approaches do not indicate the use and exploiting of resources in

multi-dimensionality by tackling only one or some resources. Obviously, there are some

inconsistencies with consolidation, and some approaches fail to address the issues of in-

terference, machine overload, minimizing bandwidth, and so on. A set of approaches are

concerned with these contradictions, such as reduced bandwidth usage, energy savings,

migration costs [3], and interference [7]. Due to consolidation which reduces the physical

and virtual machines number, the flow of communication between virtual machines will

inevitably be reduced. Some works do not consider the importance of this factor which

also requires a large amount of energy. Some other works consider the consolidation

as migration that they model formulate by counting their cost. As an extension of the

VNF placement problem, it cannot solve the VNF placement problem without taking

into account the chaining characteristics of the VNFs. A flow of VNFs is routed in chains

according to a predefined order, which constitutes a network service chain called SFC

[6] [18]. Each service chain consists in a sequence of VNF which is organized in order on

demand and transmitted by packets called SFC request in multi-instance environment.

The main challenge is to find the appropriate placement for each VNF when consti-

tuting SFC considering the multiplicity of VNF instance and the multiplicity of path

which can satisfy the predefined order for the SFC query. Furthermore, the flow on the

router and switch is a challenge at the level of the control unit (SDN) [3] [19]. Thus, the

growing of traffic requires a high-performance routing strategy to minimize the routing

computation time. The service request (or the service chain) is also characterized by an

end-to-end delay which refers to the total time required for the traffic coming from a

given source to reach the destination.

Lately, a multiple research works has addressed the problem of VNF selection and chain-

ing. In [8], Coa et al developed a log-competitive online COATS algorithm to direct traf-

fic in an SDN network. Their algorithm aims to control the traffic by considering the

time of arrival and departure times of traffic. However, the proposed algorithm does not

address the bandwidth availability issue which considers the VNF instance multiplicity.

In [20] a new deep learning based strategy has been proposed to solve the VNF selection

and chaining problem to minimize the end-to-end delay and get the best SFC routing
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path. Note that, these two studies [20] [8] focus on the role of SDN to control traffic

in multi-instance VNF network. [21] focused on improving shared resource utilization

of edge servers and physical links within latency bounds. To distribute VNF chains

efficiently, the authors of [21] proposed two algorithms: constrained depth-first search

(CDFSA) algorithm for path selection and a path-based greedy algorithm (PGA). In

their approach, the VNF assignment is done by reusing as many VNFs as possible by

formulating and saving the problem with MILP.

Motivation and Goals

Based on recent research works dealing with the management of virtual and physical

resources in the cloud, the consolidation and placement of resources taking into ac-

count the chained structure of resources represents a recent challenge. This challenge

requires efficient and adapted strategies for the problem of consolidation and placement

according to the type and characteristics of the resources. In this context, we deal with

the placement and consolidation problem at two levels; the first at the level of VNF

itself and the second at the level of the VNF chain. Clustering and classification is a

completely clever method that the FCA [22] and Fuzzy-FCA are based on to limit the

number of active virtual machines by consolidating the maximal number of VNFs in

VM. Initially, VNFs are classified and organized according to a formal context with net-

work service (NS) to extract the concept that identifies the best placement of VNFs by

applying the different FCA rules. In the second process of Fuzzy-FCA, candidate VNF

harvested from the FCA consolidates into the most suitable VM based on the degree

of confidence [23]specified by a threshold value between 0 and 1 to avoid data uncer-

tainty. We recall that Fuzzy-FCA [24] is based on the confidence threshold to determine

the similarity between two concepts and removes one to avoid repetition and minimize

active virtual machines. In the last step, VNF (in Fuzzy-FCA processes) is placed in

adequate VM based on swarm intelligence method to ensure balance and resource ex-

ploitation maximization. This method can detect the state of the hosting machine by an

internal stimilus to calculate the equilibrium rate. The inclusion of the MEC standard

in cloud provides cloud computing capabilities and compute resources to the end user

at the edge. Also, MEC allows computing resources to be distributed over distributed

cloud data centers, which ensures end-to-end latency minimization. All these factors
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collectively take part in accomplishing the maximization in exploitation and balance of

resources distribution, minimizing latency, lowering the cost of resources and optimizing

energy consumption. However, considering the chaining criterion builds constraints and

devotes consolidation and placement of precise VNFs according to the existing routing

network. To respond to these conditions and constraints, we propose a new approach to

place and chain VNFs by considering the multiplicity of VNF instances and the networks

congestion. Our approach is based on ILP for the mathematical formulation of problem

and deep reinforcement learning to estimate the adequate classification of the VNFs in

chain according to the request.

Research Questions

The foremost research questions that outline our work are:

• To what extent the putting VNFs in the correct VM enables to decrease the cost,

latency and energy in cloud data center?

• How does Fuzzy FCA approach can contribute to place VNFs in the minimum

number of VMs so that the energy consumption of active VMs is minimized?

• How much the new approach of deep reinforcement learning can improve the first

experimental results concerning the problem of placement and consolidation con-

sidering the chaining?

• How does our approach communicates with small scale and big scale data centers

and what are the effects on cost, latency, resource exploitation balance and power

consumption?

Research Hypotheses and Thesis Contributions

Research Hypotheses

This work aims to find the best management and orchestration of resources so that

it will keep away from the waste of unused resources and energy. These objectives

based on the best placement strategies and consolidations of VNFs to decrease the
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quantity of active VMs, maximization and balance in exploitation of resources,

minimize the cost, reduce latency and energy consumption. Thus, we can use the

candidate VNFs to estimate the best placement by considering the predefined VNF

chaining and VNF instance multiplicity to minimize throughput and latency.

Thesis Contributions

The foremost contributions of our thesis concerning the problem posed above are

as follows:

– Presentation of a state of the art concerning placement and consolidation in

the cloud environment to enhance the consumption of resources and energy.

– Defining the general context for the hassle of consolidation and placement of

VNFs within side the cloud environment.

– Proposing a new approach of consolidation and placement of VNFs which

combines between FCA and Fuzzy FCA algorithm. FCA consolidates the

VNF into suitable network service (NS) to extract candidate VNFs. And the

fuzzy FCA algorithm is used to consolidate candidate VNFs into the most

suitable VMs.

– Proposing a complementary approach to the previous one taking into account

the multiplicity of VNF instances and chaining based on deep reinforcement

learning named PBDRL.

– Hybridization of the two previous approaches of Fuzzy-FCA and PBDRL to

optimize the results of placement and chaining.

– Implement our proposed approach to show their effectiveness and measure its

performance by comparing it with other approaches in the literature. Present-

ing the effect of our solution in minimizing the cost of resources for operators,

minimizing latency and energy consumption, and improving throughput in

the cloud and MEC environment.
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Implemented Methodology

In this part, we present our research methodology illustrated in Fig 2 to answer

the research questions (RQs) evoked previously. At first, the model is defined ac-

cording to multi-objectives; Minimize cost, balance resource usage, reduce latency

and power consumption. Considering chaining and network equipment, we add the

following objectives: throughput optimization and end-to-end delay minimization.

Secondly, the consolidation and placement is carried out as follows:

1. Placement of VNF: it is the migration of VNF from one VM to another more

adequate in order to minimize the number of active VMs.

2. Consolidation and placement of VNF: it is the consolidation of VNF in VM

according to their capacity.

3. Consolidation and placement of VNFs in chain (SFC): it is the placement of

VNFs in VM taking into account a pre-defined order of a chain VNFs (SFC).

4. Migration and placement of VNF : it is the process of moving a specific VNF

from one framework to another one considering the technical requirements.

In what follows, we evaluate the efficiency of our approach by comparing its per-

formance results with other approaches in the literature for both large-scale data

and unbalanced resource distribution.

Thesis Outline

This thesis is divided into five chapters including an introduction and general con-

clusion as shown in figure 1. In the introduction, we present the general background

and the context of our thesis as well as the motivation and our contributions under

research questions. The first chapter is the state of the art which presents NFV

approach to identify the main characteristics and features, show its relations with

other technologies, presents in details and explain the problem of consolidation

in cloud, as well as a list of approaches based on (FCA). The rest is the state

of the art for some approaches with discussion. In Chapter 2, we first formulate

the VNF consolidation and placement problem and then present our proposed so-

lution which is based on a combination of two algorithms; FCA algorithm and
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Figure 1: Plan of the thesis.

Fuzzy FCA. The chapter ends by giving some experimental results measuring the

performance of our solution by comparing it with Multiswarm algorithm. Consid-

ering VNF instance multiplicity and VNF chaining, Chapter 3 presents in details

our new deep reinforcement learning based approach named PBDRL developed to

consolidate VNFs during each SFC request accommodation and gives experimen-

tal results. In chapter 4, we present a hybrid approach which combines the two

approaches mentioned in the previous chapters. This hybridization aims at im-

proving the performance and meet the requirements of user and supplier. Finally,

in chapter 5, the general conclusion which summarizes our main contributions and

results, as well as a general evaluation under a critical and objective scale is given.
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Chapter 1

State of the Art

1.1 Introduction

This chapter briefly introduces the main characteristics and aspects of NFV as

a virtualization technology. Next, we will identify the relationships of NFV with

other technologies and give a detailed explanation for the VNF consolidation prob-

lem in cloud data centers. Then, we will present a specific classification of FCA

based approaches. In what follows, we show the adaptation of the consolidation

technique in different technological environments. We will also present a critical

analysis for some consolidation approaches studied with a summary of the major

findings and challenges. Finally, we conclude with a summary of VNF placement

and consolidation approaches.

1.2 Main characteristics and features of NFV

In this section, we highlight the NFV concept by presenting its relevant criteria

as architectural basis. Next, we present and study the issue of consolidation in a

cloud data centers.

1.2.1 Virtualization of network functions

NFV makes it possible to separate the software applications of the network func-

tions from resources, storage, and computing [25] [21]. It also allows to separate

network functions like firewalls and packet detection inspectors (DPI) and put
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them in virtual machines. On the other hand, the European Telecommunications

Standards Institute (ETSI) shows that NFV is opposite of network function, closely

related to the infrastructure in which it operates. This technology is achieved by

consolidating different types of VNF into standard material(servers, devices of

storage, etc.) that can be inserted in data centers, network nodes and near or end-

user [26]. NFV therefore makes it possible to reduce dependence on equipment,

scaling and to have very complex and personalized networks at low cost. NFV has

an architecture divided into two orchestrated layers and a MANO management

layer [25] [27] as follow:

– The Infrastructure layer: consists of physical infrastructure and the necessary

software to run the virtual machines. These infrastructures can be of all kinds:

points of presence (servers, storage), routers or switches.

– The Virtual Layer: contains the virtualized functions that run inside the

virtual machines.

– The Management layer (MANO): this layer acts a bit like a control plan.

It is responsible for establishing connections between virtual functions and

managing resources at the infrastructure layer. It is responsible for estab-

lishing connections between virtual functions and managing resources at the

infrastructure layer.

In [28], NFV is made up of the following elements: infrastructure of NFV (NFVI),

set of VNF management and orchestration blocks. NFVI is distributed in groups

form of physical nodes that make up the network. Each node is a location that can

host one or more network functions. Chaining a group of VNFs constitutes what is

called SFC (Service Function Chain) which provides a certain service. NFV man-

agement and orchestration layer allows to manage and orchestrate different VNF

simultaneously by providing a set of common functions such as run virtualization,

migration, update and integrity.

In [1], the NFV architecture comprises three components: the services layer, the

NFVI layer, and the NFV Management and Orchestration layer (NFV MANO),

as shown in Figure 1.

-Services Layer: is made up of a cluster of VNFs which can be installed into one or

more virtual machines. These virtual machines are placed in the operating system
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Figure 1.1: NFV-ETSI architecture [1].

or directly on the hardware. It is controlled by hypervisors [18] or virtual machine

monitors. An Element Management System (EMS) is typically the VNF adminis-

tration manager responsible for creation, configuration, security, performance and

monitoring. It also gives basic information needed for Operational Support System

(OSS) in a TSP environment. Thus, the OSS operates with the Business Support

System (BSS), devote the general management system which helps suppliers to

control and manage multiple end-to-end telecommunications services.

-NFVI Layer: the NFV infrastructure consists of the hardware and software that

builds an environment of NFV. NFVI operates to network connectivity between

sites, for example between data centers, hybrid, public or private clouds.

-NFV-MANO layer: called Management and Orchestration of NFV, it is divided

into an coordinator of NFVI resources and two managers, one for VNF manage-

ment (VNF manager) and the other for infrastructure management (virtualized

infrastructure managers). It also has databases used to archive modeled infor-

mation and data that determines both the distribution and the life cycle char-

acteristics of functions, services and resources. Between the different elements of

the NFV-MANO, the interfaces that can be employed for communications is de-

fined by framework. Also, to operate of VNF and functions running on traditional

equipment, it is required an orchestration with traditional network management

systems [6] [29].
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1.2.2 Service Function Chain (SFC)

A service function chain is a set of network service functions placed in a predefined

order. A network service function is a closed box responsible for a specific task on

the network. These functions are logical and can, with the help of NFV techniques,

be assigned to virtual machines or directly to physical equipment.

Figure 1.2: Chaine de fonction dans l’architecture du NFV [2]

Figure 1.2 shows the integration of a function chain into the NFV architecture. The

function chain is formed by logical links. We see that this chain has an entry point

and an exit point. Virtual functions are assigned to servers and/or network points

of presence. In this figure, we clearly see the link between virtualized network

functions and SFCs. To make this work in reality, it is necessary to define an

architecture. This definition must take into account a certain number of problems:

1.2.3 Isolation, virtualization and cloud

Virtualization and isolation are two technologies that contribute to create clouds.

Indeed, Virtualization is a technology used to generate virtual representations

of physical resources (servers, storage, networks, and other physical machines).
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Also, it isolates physical machine resources and distributes them appropriately

using a hypervisor [20] that is installed on the physical hardware. It also allows

to share the same resources providing the appropriate environment to multiple

application so that they can run on more than one platforms. Hypervisors divide

in two type; hypervisors of the first type run directly on the receiving machine

with an additional software layer removed between the virtual machines and the

primary host device. Hypervisor of the second type essentially works mainly in

the form of applications, to provide some comfort because the host machine does

not need to be specially configured to create virtual machines. Whereas clouds are

environments that separate, aggregate, and share scalable resources on a network.

Concretely, virtualization is a technology that dematerializes physical resources

while the cloud is a large and rich environment that enshrines portability. In the

traditional architecture, for each physical machine, a single operating server (OS)

is installed natively for more stability and uniformity [30]. However, the virtualized

architecture is slower than the native architecture. For this architecture, the CPU

usage can increase from 40 to 60% [19]. Indeed, the resources dedicated to the

virtualized environment reflects the real needs and requirements of the real tasks

compared to the traditional architecture where a physical or virtual machine can

share the same resources and perform the same tasks.

1.2.4 Objectives and use case

Seen that the large and increasing use of specific and proprietary device for the

network operators and the costs involved, NFV is a new direction to minimize

the amount of hardware required. Virtualization is used to avoid repeating op-

erations, installing new proprietary hardware, promote elasticity, and incurring

new purchase, installation, operating, and energy costs to maintain new network

service.

NFV’s goal is to change the method of network operators and network designers

to manage and operate the network infrastructure through the development of

virtualization. This change is made by consolidating different types of VNF into

standard commodity machines (servers, storage devices, etc) [26]. Knowing that

virtualization does not necessarily spread resources while Telecommunications Ser-

vice Providers (TSP) can buy or develop software (Network Function NF) and run
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it on physical machines. These network functions must be able to operate on basic

servers. However, flexibility, dynamic scaling of resources, and the energy saving

are very good marketing factor for NFV. To address different technical obstacles,

ETSI has recognized several pertinent scenarios [8]:

- Network Function Virtualization as a service,

- Virtualization of Mobile Core Network and IMS,

- Virtualization of the mobile base station,

- Virtualization of the domestic environment,

- Virtualization of CDN,

- and Virtualization of fixed access network functions

1.3 Relationships to other emerging technologies

1.3.1 Relationship between NFV and SFC

The characteristics of virtualization (flexibility, extensibility, dynamic scaling of

resources, energy efficiency) are the basis of a service function chain (SFC) supply

which enables VNF to be placed anywhere wherever and whenever [3].

Thus, SFC can be created by join between the different network functions. For

example, SFC dedicated to security is chained in order as follow: first in a firewall,

then in NAT, finally at the proxy level. On the other hand, the location of VNFs

with the specification of switch and routing of SFCs constitutes an important fac-

tor in efficiency of network[14] [29]. In this context, many approaches [21][27] [31]

[32] have been discussed regarding the placement of VNF for SFC requests. [31]

proposes CALVIN, is an approach allowing to manage the chains of functions of

distributed service (SFC) for the tactile Internet applications with low latency.

Indeed, CALVIN implements the VNF virtual network functionality in the kernel

space (if VNF only requires simple treatment) or in the user space (if VNF requires

advanced treatment) avoiding transmission between these two spaces to process a

specific VNF file. [27] and [32] work on the virtual function chaining, [21] studies

the problem of placement and chaining of VNFs which mainly consists of real ap-

plication time and the availability of VNFs by proposing as solution an algorithms

and mechanisms for placement and chaining in the NFV environment. In [32], the
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problem posed consists of recent network architectures of mobile which complains

from ineffectiveness of flexibility and agility to be able to integrate quickly recent

services and the ability to adapt to big industries. Under this measure, proactive

caching and other virtual network function (VNF) files that may be invoked to

perform the services in an integrated manner are considered to be based on the

detail of a new mathematical programming framework. This method is suitable

for implementation strings cache VNF and a heuristic without scale Probability-

Prior Proactive Caching-Chaining (PPCC) as a solution to increase the network

efficiency. There are also many idle servers on the network as SFC requests arrive

and leave dynamically with the evolution of resource requirements, in particular

at low load times [29] [13]. Knowing that servers in standby state consume an

average of 70% of the peak power consumed [33].

1.3.2 Relationship between VNF and NS

A set of chained VNFs constitutes a Network Service (NS), for each NS a certain

number of VNFs placed in an order and in chaining. A chain of VNF is placed in

the (NFVI) Network Function Virtualization Infrastructure. The VNFs [34] can

implement in virtual machines wich is installed in OS or directly on the hardware

and controlled by native hypervisors or VMM (Virtual Machine Monitors). Thanks

to NFV, NS doesn’t need to install of hardware and physical space, which incurs

acquisition, operation and energy costs. Depending on the NS requested, their

properties and budget constraints etc, the network service provider is identified.

The quality of these services is also discussed with the service provider. Therefore,

the NS is subject to SLA constraints to describe the QoS parameters [35] [36].

The definition of NS is mainly determined by the concept of NFP and VNF-FG

as illustrated in Figure 1.3; Network Forwarding Path (NFP) presents the path of

actual traffic flows on Virtual Links (VL).Forwarding Graph of VNF (VNF-FG)

is a key concept to know how to control traffic and user traffic where we speak of

two types of VNF-FG; VNF-FG for control traffic and VNF-FG for user traffic.

1.3.3 NFV in relation to Software Defined Networks (SDN)

NFV is specified by close relationships to an other promising and recent technolo-

gies, such as SDN [33] [37]. Thus, SDN is a networking concept that enshrines
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Figure 1.3: Network Service (NS) architecture

centralized management and enables intelligent control of individual hardware

components using software. It is a specific interface that dissociates between the

control management and the underlying data management.

NFV is in mutually collaboration with SDN at level of services and benefits, which

are worked in complementary and have the same characteristics; innovation, cre-

ativity, openness and competitiveness [13] [33].

SDN integrate to NFV and can be used to address dynamic resource management

and service coordination. By using SDN, NFV also allows dynamic and real-time

delivery of functions as well as flexible traffic redirection. While, NFV can help

SDN create dynamically a virtual service for certain service chains that involve

specialized hardware and complex tasks to deliver a new service demand [33].

1.4 VNF consolidation problem in Cloud data centers

Concisely, the consolidation of VNFs mainly consists of migrating and placing

VNFs in the most suitable location to balance the consumption of resources while

minimizing the active elements of the locations and the energy consumed. In

the literature, the most frequent locations for the allocation of VNFs are: VMs,

servers, containers, .... etc. For example, consolidation decreases the number of

servers used by moving VNF1 from server S1 to host server S2 in order to empty

and deactivate S1 as shown in Figure 3 [13]. Knowing that two criteria must be

taken into account: multiple resources of the server at the same time, such as
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Figure 1.4: Simple example of consolidating VNF into NFV [3]

CPU, RAM and I / O. This forms a multidimensional packaging problem much

more difficult than that of a single dimension and reduces the data center power

consumption by putting the servers in a low power consumption mode during their

low usage period. A virtual machine consolidation solution should create periods

of server inactivity by grouping virtual machines into as few servers as possible.

Various research studies have been carried out[10] [38] [9] [39] to solve the problem

of consolidation of VNFs, and more different techniques for solving the problem

have been proposed. It associates between two extensions derived from the same

FCA source with the same objective but in a different domain (special type of

pattern structure).

1.4.1 Consolidation with factors, reasons and requirements

Among the main factors of consolidation are: exploitation, communication and

maintenance. For exploitation factor, the consolidation is used for three main rea-

sons as shown in the table 1 below: 1) energy management, 2) load balance, 3)

fault tolerance. While the communication factor involves consolidation which is

used to improve the management and cost of communication. In addition, con-

solidation can support the system through maintenance. Thus, the consolidation

meets the main needs of cloud which aims to optimize the service quality based

on the following conditions:

• Performance: this is about ensuring good performance and avoiding violations

of service level agreements (SLAs).

• Scalability: system capability to withstand demand and service overload by

using additional resources.

16



State of the Art

• Efficiency: is based mainly on the balanced use of resources and on the

achievement of elasticity.

• Reliability: aims to maximize service reliability and machine reliability.

• Availability: reflect on the performance and robustness of the system.

The consolidation takes into account several requirements and restrictions, the

most important the capacity of the allocation, the equivalence between the ele-

ments of consolidation in CPU, memory, RAM, etc.

Table 1.1: The circumstances of consolidations: reasons, factors,requirements and restrictions

Circumstances Factors Reasons

Consolidation,
Factors and Reasons Exploitation

-Energy
management -Load
balance -Fault
tolerance

Communication

- Improve
management
-Improve cost

Maintenance Support system

Consolidation
requirements

-Performance
-Scalability
-Efficiency
-Reliability
-Availability

Consolidation
restrictions

-Memory
capacity -CPU
-RAM

1.4.2 Multi-measures based approaches

In this classification party, we find several approaches to the problem of consol-

idation taking into account multi measures. The authors in [3] approached the

problem of consolidation of VNF from several sides such as; energy, bandwidth,

migration cost by following a new method of consolidation known as VCMM (Con-

solidation Method Based on Multiple Status Characteristics of VNF). This method

exploits the intelligent characteristics of an artificial neural network [39] known as

a political network as a learning factor. It checks the state of several features

at the end of each period and predicts the likelihood that servers will be down

in the meantime following. In addition, the PSO (Particle Swarm Optimization)

algorithm [40] is applied to improve the benchmarks that are within the policy of
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networks to produce a suitable server shutdown policy. In the goal to migrate VNFs

(whose hosting servers must be deactivated), VCMM exploits a greedy method to

relocate them to a fresh optimal position.

On the other hand, in the works proposed in [9] and [8] the problem of consol-

idation was approached from a single measure. The authors in [9] followed an

Adaptive Interference-Aware (AIA) heuristic approach based on automatic place-

ment of VNFs in custom 5G network slices while avoiding interference. In addition,

[8] proposed a solution of virtual machine placement algorithm by applying the for-

mal concept analysis(FCA) grouping technique which first groups virtual machines

in communication with each other to execute a task, then consolidates a virtual

machine or set of dependent virtual machines into the fewest number of servers

and racks then consolidates dependent virtual machines into the fewest number

of servers and racks to maximize and balance resource utilization. As with other

approaches, [41] has addressed the problem of consolidation for the purpose of

reducing energy costs in data centers mentioning the effect of migration on ser-

vice response time [42] . Contrary to what prevails in most of research, in [41]

an attempt to avoid unnecessary costly VM migration by proposing a method

of migration control based on LP formulation and heuristic. Also, for the same

objective, [43] developed and exploited the pMapper structure and some server

consolidation algorithms for virtualized resources.

1.4.3 Multi-resource approaches

The multi-resource approaches are mainly aimed at achieving a balance in the

exploitation of resources [44] [45]. For example [8] provided an environment to en-

sure the maximum and balanced exploitation of resources by ensuring an optimal

allocation of virtual machines by FCA. In [38], the proposed approach consists

of a dynamic resource provisioning planner for the joint adaptive adjustment of:

admitted traffic; throughput provided and reconfiguration of resources and con-

solidation of virtual networked data center platforms. In addition, [46] proposed

a new virtual machine consolidation framework for Apache CloudStack which is

an open source cloud platform software package. This proposed framework is an

emerging architecture that brings together different systems of resource monitor-

ing, mechanisms of energy control and VM packaging algorithms.
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On the other hand, certain approaches use only a few resources specified for ex-

ample in [9], two resources have been mentioned which are memory and CPU.

Other approaches have not mentioned any resource such cases [10] [3]. Whereas,

[47] carried out a full investigation especially on the allocation of resources in the

context of NFV. This allocation consists of three stages. Thus, the first stage is

VNF-Chain Composition VNFs-CC which serves to efficiently associate the VNF

in order to generate a desired NS in the most adequate manner, respecting the

objectives of the service provider. The second step is the VNF-Forwarding Graph

Embedding VNFFGE which serves to position the location in NFVI, where the

VNFs will be placed appropriately, taking into account the individual needs and

requests and then the global requests of all NSs. The third and last step is the

VNFsSCH stage, which is used to select the preferable time to implement each

function respectively in the NFVI to decrease the total implementation time with-

out affecting the efficiency of the service and considering all the priorities and rules

between the VNFs. To reduce energy consumption and wasted resources, [13] pre-

sented a solution based on VM consolidation that focuses on the use of resources in

balanced operation and on 3-dimensions (CPU, memory, and E / S). To adapt the

VM consolidation problem in big data centers, the mentioned approach is based

on the homogeneity of the ACO (Ant Colony Optimization) meta-heuristic with

an equitable utilization of resources. But in [48], resources are studied just in their

effect on VNF placement and processing in single dimension (CPU).

1.4.4 Heuristic and meta-heuristic based approach

Consolidation issues in cloud infrastructure as a difficult NP issue are primarily

addressed through heuristic approaches. Therefore, the majority of approaches

follow the greedy heuristic model to consolidate by proposing mutations of greedy

simplified algorithms such as First Fit Decreasing (FFD) [49], Best Fit [50], Best

Fit Decreasing [51] , and so on [52] [53]. The First Fit strategy was used to select

the destination of the containers’[54] and the appropriate host. Whereas, Best

Fit strategy was used to put the attributes in objects that have the least amount

of resources available and have more capacity to pack. The comparison works in

[55] showed that ACO is better than greedy algorithm FFD through better server

utilization and less energy consumption.
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AIA (Adaptive Interference Aware) is also classified among heuristic algorithms

[56], which are used to avoid interference and to adapt the demand model by

consolidation of VNFs based on automatic placement of VNFs in custom 5G net-

work slices. Furthermore, [56] considered that excessive use of VNF resulting from

dynamic movement (input and output) of network services is a problem of VNF

consolidation. Therefore, they proposed a formulation of Linear Integer Program-

ming (ILP). Also, they proposed a greed-based heuristic for solving large-scale

issues. Heuristic algorithms differ and vary but gather in precise points like COM-

BINED which is based on FFD [57].

The meta-heuristic approaches mainly consist in genetic algorithms (GA), particle

swarm optimization (PSO) and swarm intelligence algorithms. The first family is

evolutionary approaches [58] [59] based in genetic policy, and the second family

is approaches that mimic animal movement (biology or ethology). For the latter

category, ACO [14] [60] and PSO are the commonly used methods in resource allo-

cation. Therefore, you can classify the consolidation problem among the resource

allocation problem. PSO is a stochastic technique which is based on candidate so-

lutions to develop an optimal solution to the problem e.g [61]. ACO is probabilistic

methods inspired by ant behavior and constitute a family of optimization meta-

heuristics for naturally solving complex problems. These methods are among the

meta-heuristics intended to solve the more difficult optimization problems, more

precisely the continuous variable problems.In [14], ACO is an algorithm dedicated

to dealing with the problem of placing VMs in multi-objective dimension (minimize

the waste of resources and energy consumption). Some approaches of consolidation

followed method that different from what is prevalent such as in [10] which based

on a policy of the Monte Carlo Tree Search approach. In [62] [41], another method

adopted for consolidation problem is based in constraint programming and in [62]

linear programming was used. The heuristic and meta-heuristic algorithms are

generally used for the less complex consolidation problem while in the consolida-

tion problem which considers the constraints as the chaining for the consolidation

of VNF uses other type of the more adapted algorithms [10] [27] [31].
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1.4.4.1 Consolidation based algorithms

The consolidation algorithms that are studied can classify and organize according

to the taxonomy of figure 1.5. The heuristic, meta-heuristic, clustering, LP, CP

and AI algorithm are the most common known algorithms for the cloud data cen-

ter consolidation problem. In the consolidation problem, there are two heuristic

algorithm; Greedy algorithm [49] and COMBINED [57]. This type of algorithm

aims to quickly provide a workable solution for a difficult optimization problem.

Whereas, the meta-heuristic algorithm includes genetic algorithm [63] and Swarm

intelligence algorithm. Generally, meta-heuristics aims to find the best approxi-

mate solution by learning the characteristics of a problem. This last is divided into

two algorithm classes which are PSO [61] and ACO [14] [60] . As we have seen

previously, each type of these algorithms has a derivation dedicated and adapted

according to the problem of each proposed approach. This derivation can change

the complexity of algorithms and also their type and purpose. For example, deriv-

ing Fuzzy-FCA from FCA [8] [15] changes the problem from type of uncertainty

to probabilistic [64] based on the fuzzy context. In [65], the author shows the scal-

ing of a fuzzy context into a minimum pattern structure which is a special type

of pattern structures to study the relationship between pattern structures and

FCA. Thus, this work is an extension of three dimensions; FCA, Pattern structure

and Fuzzy-FCA. It associates between two extensions derived from the same FCA

source but with different objectives and in a different domain (treat the complex-

ity of descriptions by Pattern structure and uncertainty by Fuzzy-FCA). There is

also another type of hybrid algorithm which associates between two types of algo-

rithms of different family for example in [41] associating between LP and heuristic

algorithm and in [66] [67] associating between genetic algorithm and heuristic.

1.4.4.2 Discussion

In all the works, each approach has tried to choose the most appropriate method-

ology according to the complexity of the problem proposed. But, there are ap-

proaches that its algorithm derive from other existing algorithm and surpass them

on a few criteria such as in [60] ACO-BF derived from ACO. This construction of

different algorithms can classify as shown in figure 1.5. These different algorithms

have adapted with the proposed consolidation problem in a consistent way but
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Figure 1.5: Consolidation based algorithms

the majorities of these approaches have provided an adequate environment along-

side the algorithm used to associate between conflicting objectives [63] [68]. Thus,

[63] proposed a genetic algorithm in a cloud-based MEC environment to mini-

mize response time over the length of network and at the same time to provide

a highly available service. In [41], the consideration of the contradiction between

accommodation capacity and minimizing the number of active accommodation by

control algorithm presents a weakness point that can logically weaken the value

of the approach. Other approaches have used two types of algorithms such as LP

and heuristic algorithm in [66] [67] [66], between LP and Artificial Neural Network

(ANN) algorithm [68] and between genetic algorithm and heuristic in [41] which

affects the complexity of the proposed system. Furthermore, in terms of time,

heuristic algorithms are lighter in computation compared to meta-heuristics [41]

and LP [68], which explains their effect on complexity. There also other type of

algorithms discovered based on graph directed that inspired from an algorithm

(for example Almohamad’s Linear programming) to an other as in [69].

1.5 FCA-based approaches

1.5.1 Problem formalization

To formalize a problem in mathematical form, FCA (Formal Concept Analysis)

answers by bases suitable to transfer such a problem in mathematical form via
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binarization. FCA is a methodology based on computer intelligence to classify

data and generate concept from the formal context, it is used in large scale and

in different fields. Also, it determines and characterizes the relationships between

objects and attributes.

The authors in [8] proposed an approach of placement based on the classifica-

tion technique FCA which first groups the communicating virtual machines to

implement a certain task, then moves the respective virtual machines to as few

servers and racks as possible to maximize and balance resources utilization taking

into account communication between virtual machines. This approach is made

up of two techniques. The first is FCA, which allows a group of VMs and group

of tasks to interact and generate a concept. The second technique is the recruit-

ment process in Ant Colonies to place VM clusters on the fewest servers and racks.

In [70], FCA was proposed to minimize power consumption and address the schedul-

ing VMs problem by unloading tasks in MEC. More precisely, FCA was summa-

rized in rules generated by VMs and tasks which are considered as objects and

attributes of formal concept. Thus, FCA characterizes the relationships between

objects and attributes. This solution is made up of three key modules:

– Characterization of the profile of VMs based on FCA: This module is for

characterizing VM profiles using the FCA algorithm. The idea includes; (1)

a formal context on virtual machines and their performance measures is built,

(2) the corresponding conceptual network of virtual machines is then built

from the context of the constructed virtual machines. (3) Thus applying the

set of VM rules extracted from the VM profile.

– Characterization of the task profile based on FCA: Similar to the charac-

terization of VM profiles, another module consists in characterizing the task

profiles using FCA. The idea is to build the formal context of the tasks called

the task context,then possibility of generating the lattice concept according

to the tasks. Finally, extract all the task rules derived from the profile.

– Fusion / Matching: this involves linking the rules of VM and the rules of task

to obtain the best match (i.e. the appropriate allocation). Practically, it is
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the evaluation of the correspondence between the formal concepts of tasks

and VM. The task rules are efficiently merged with the VM rules arriving at

the maximum degree of similarity indicated. In other words,virtual machine-

to-task mappings are generated to minimize the movement of data between

data centers and power consumption. [15] addressed the placement problem

by proposing an FCA algorithm-based data placement approach that aims to

bring together the maximum amount of data and tasks into the fewest data

centers. And,it is carried out in four stages: 1) the hierarchical organization

of concepts(pair of tasks and data) according to rules of FCA, 2) the extrac-

tion of candidate concepts, 3) the allocation of data in cloud centers and 4)

phase of data replication.

Also, [71] proposed an approach to data placement based on the FCA algorithm

which takes into account the original data sets via different devices of communi-

cation (routers, switches,...) and the resources used in data center. This approach

aims to reduce execution time, the energy consumed of two communication mem-

bers and the cost of placement by gathering the maximum number of data sets

and tasks into the fewest storage servers (SC).

1.5.2 Classification FCA based approaches

The variety of FCA-based approaches reveals different objectives and lines of re-

search concerning consolidation as indicated in the following table 2. Thus, from

this table, we conclude that FCA has dedicated the decentralized architecture by

cutting with the centralization to guarantee fault tolerance. The table 2 also shows

that the migration is not considered with the FCA algorithm, which implies that

FCA cannot express the migration but can express the final placement of object or

attribute. Also, some approaches, besides FCA, have used other methods to sup-

port and strengthen it by adding another algorithm or providing an appropriate

architecture.
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Table 1.2: Classification of the main VNF placement approaches

Reference Objective Architecture Consolidation
components

Collaboration Migration

[6][4] The balance in
the exploitation
of resources

distributed VMs and
servers

with ACO al-
gorithm

No

[57] Minimize energy
consumption

distributed VM and tasks MEC Archi-
tecture

No

[52] Minimize data
movement, min-
imize workflow
execution time,
communication
energy consump-
tion and cost

distributed Data, tasks
and conserva-
tive storage
SC

No No

[72] Reduce data
movement be-
tween data
centers and min-
imize energy
consumption

distributed data, task and
data centers

No No

1.5.3 Limits of the studied approaches and discussion

The FCA-based Grouping-based Virtual Machine Placement (G-VMP) approach

[8] ensures the reduction of server power consumption of servers and network com-

munications flows in the flowing steps: first grouping the virtual machines com-

municating to perform a task, then allocating dependent virtual machines into the

fewest servers and racks guaranteeing greatest and adjusted utilize of resources.

This approach analyzed the placement problem in a very efficient way based on

two additional processes taking into account various measures such as; VM ca-

pacity, communication cost, balance in resource exploitation. However, grouping

communicating virtual machines together to reduce the cost of communication can

lead to interference (co-channel interference).

In [70], the FCA approach succeeded in solving the problem of scheduling virtual

machines in MEC by identifying the mapping of tasks to virtual machines. But,

this approach uses relational analysis regardless of several measures such as; cost

of communication, the balance of resources utilization and the problem of inter-

ference. In addition, duplicating FCA in two processes to generate the concept of

VMs and tasks can increase execution time. In [72], we cannot include the data

replication step among the functions of the FCA since it works in principle on
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reduction, not on replication. Therefore, replication is opposed to the principles of

FCA and the objectives of approach. In addition, it can cause data center overload

and pose the problem of consistency and interference.

1.6 Consolidation at different environmental levels

The environment directly participated in supporting and succeeding the consol-

idation technique in several works that we saw in the previous sections. This

environment is defined by an axis or a level determined for consolidation. Gen-

erally, we can see that the studied approaches dealt with different level and axes

of network such as IoT, Fog computing, 5G, data center, MEC,...etc as shown in

table 3. This variation shows the importance of consolidation at different network

levels and with their different compositions.

1.6.1 Consolidation at IoT level

The Internet of Things or IoT defines a network of physical terminals that are

directly associated with the transport of objects, whether vehicles or pedestrians,

providing intelligent transportation. However, the mobility of objects creates a

problem in determining the transport plan of these objects. In this context, [73]

proved that the main challenge is in object mobility and is the rapid variation of

network topology of VNF which necessitates frequent reconstruction by proposing

a new method of placing VNFs called Border VNF Chain Placement (BVCP).

This method is based on the division of the graph into multiple sub-graphs and

the total use of the control programs. So, IoT often deals with the placement

of VNF in chaining. Integrating IoT with VNF considers a great challenge that

requires high-level peripherals to optimize end-to-end latency. Thus, the couple

of IoT and peripheral edge constitute a main basis for IoT service virtualization

approaches [73] [68] [74]. In [75], IoT used as an agent in cloud fog environment

to solve the workflow problem.
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1.6.2 Consolidation at Fog cloud level

Fog computing is used to minimize the latency induced by remote clouds by dis-

tributing computing resources in edges. In fog computing, virtual network func-

tions can be the components of applications that can be implemented in a chain.

Thus, the placement of VNF for fog computing is mainly the placement of ap-

plication components on infrastructure nodes [76]. Applications are defined by

building blocks called micro-services. The placement algorithms of VNF consider

not entirely appropriate for the decentralized fog system [77] because the criterion

of mobility of the fog nodes and the decentralized infrastructure of end-user con-

secrates the decentralization. Thus, [77] proposes an investment strategy based on

Markov processes without centralized orchestration. Also, [78] proposes a strategy

based on the distribution of resources to avoid the centralization and follow new

strategy.

1.6.3 Consolidation at MEC level

The MEC architecture can extend the placement and distribution interval of

chained VNFs in service to accommodate critical and time-sensitive traffic. MEC

contributes in distributing compute resources to the end user in order to minimize

the latency. In this context, it is possible to associate MEC and IoT, since the

MEC infrastructure meets the requirements of IoT and provides the appropriate

environment for their proper functioning [74]. Thus, all the research that works

on IoT of objects is based on the MEC and Fog architecture because these two

environments provide very low latency. Equally, these two environments estab-

lish decentralization. Also, these two environments devote decentralization [79] by

considering the characteristics of user mobility.

1.6.4 Consolidation at 5G level

Different architectures reacted and adapted with the problem of consolidation and

placement of VNF for 5G. Mobile network operators rely on 5G technology to

respond to the market demand and with mobile data movement. Despite the

importance of 5G technology services, the importance of widening the range of

dynamic network functions has encouraged researchers to open up to VNF and
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distribute 5G network functions as VNF [80]. The 5G network is sliced to apply

VNF to each slice for the requested service. In this context, some works has

proposed to exploit a 5G structure which has a combination of an advanced cloud

server and a main cloud server to dynamically adapt with service requirements.

All the expectation mentions that the 5G network can introduce multi-service by

supporting a group of vertical use cases, like Internet of Things, remote machines,

autonomous driving and virtual reality (VR). This generation [81] makes it possible

to properly specify the placement of VNF requested for a service in each slice with

meeting the service needs and improving the quality of service.

1.7 Critical analysis of the results of some studies on

consolidation

After studying some referential works and evaluating the methods, we devote this

part to discuss the results of some works concerning consolidation at different lev-

els of environment as illustrated in table 3. Indeed, the efficiency of consolidations

can vary from one machine to another because of the heterogeneity of the plat-

forms and the resources [82]. Also, there are other factors related mainly to CPU

and workload performance as well as to different heterogeneous service levels. Fig-

ure 1.6 presented by Cho et al [4] in the context of processing the VNF placement

problem for low migration latency for efficient resource management based on con-

trol of active VMs number. This figure shows the difference between before and

after VNF migration latency based on workload. As illustrated in Figure 1.6, the

algorithm proposed by Cho et al dramatically minimizes network latency through

VNF migrations which proves the effectiveness of the VNF-Real Time Migration

(VNF-RM) algorithm. Thus, Figure 1.7 proves the dependency relation between

the number of VM and the number of migration, as well as to latency rate and

workload (Figure 1.8). Generally, the VNF-RM algorithm has succeeded in min-

imizing migration latency in order to improve resource management considering

the following factors:

– Ensure that the total number of CPU requests for each network service (VNF

chain) is not greater than the CPU capacity of the connected VMs.
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Table 1.3: Table of consolidation at environment level

Environment
level

Type of archi-
tecture

Task Connectivity
models

IoT Decentralized -provide intelligent
transportation -
integrate sensors,
software and appli-
cations to ensure
connection and ex-
change of information
between mobile objects
via the Internet

machine to ma-
chine, machine
to cloud, ma-
chine to gateway,
Back-End-Data
Sharing

MEC Decentralized -allows to distribute IT
services closer to an
end user and move from
a centralized cloud to
an edge network −Aims
to minimize response
time and provision the
suitable infrastructure
for real-time applica-
tions with high band-
width

From cloud center
to peripherals

5G Decentralized -enables new functional-
ities, in particular virtu-
alization and new archi-
tectures, conducive to
the development of con-
nected objects, appli-
cations hosted in the
cloud, passing through
various network layers-
provide access to speeds
that far exceed those of
4G, with very short la-
tency and high reliabil-
ity, while increasing the
number of simultaneous
connections per covered
area.

Full-duplex,
multi-user MIMO

Fog Decentralized store and process data
through the use of
equipment and resource
located at the edge of
cloud

works at the
intermediary
interface level
of connected
objects and cloud
environment
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Figure 1.6: Network Latency variation before and after VNF migrations [4].

– Ensure that the total width of the network bandwidth required by a network

service is not less than the available network capacity of the connected VMs.

However, this algorithm does not take into account the cost of migration and

communication interference which requires to revise the efficiency of this algorithm

on the large-scale.

Figure 1.7: The variation in the quantity of VMs according to the quantity of migration [4].
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Figure 1.8: The reduction rate of workload and number of VNF migration [4].

1.8 Major findings and challenges

1.8.1 Major findings

Based on our research regarding consolidation in cloud infrastructure, we were able

to rank the most important jobs according to shared criteria. These criteria allow

us to conclude and determine the following major discoveries: Migration during

consolidation can be a real problem of latency time whereas it can be controlled by

specific control systems to minimize response time and cost e.g VNF-RM algorithm

[59]. And, we can separate between dynamic placement and static placement by

the migration factor. Controlled migration also presented a solution to the problem

of hosting capacity and interference. Therefore, it may be necessary to balance

between the importance of migration and the benefits of consolidation. Also,

the consolidation directly affects the cost of the cloud network service for both

the customer and the provider. Thus, consolidation serves to reduce the cost of

service by reducing the number of active machines which costs more resources and

consumes more power. On the quality side, there is a great focus on quality of

service in most research [83] [9] [74] [84] with highlighting the constraints of Service

Level Agreement (SLA) violation. Highlighting on services, allows us to talk about

the relationship of SFC and VNF to provide a service (NAT, firewall, DPI, etc.),

hence a well-ordered chaining is an SFC as illustrate in previous section.
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1.8.2 Challenges

The VNF consolidation problem is a branch of the VNF placement problem, each

one have their challenges as illustrated in Figure 1.9. The VNF placement chal-

lenges are the dynamic placement as in [32] [73], real time application [21] [27],

chaining [31], big data [3] and allocation of resources [29] [46]. For VNF consoli-

dation challenges, we can mention interference [9] [85], migration cost [41] [4], the

balance in resource exploitation [29] and capacity of allocation.

Thus, the VNF placement problem is related to the general characteristics of the

VNF architecture, while the consolidation problem is related to allocation tech-

nique.

Figure 1.9: VNF placement and consolidation challenges

In fact, the conflicting in the objectives of consolidation as we seen in some works

[3] [41] [45] [4] presents a big challenge; [3] treated with conflicting goals such

as saving power, reducing bandwidth used, and reducing migration cost mak-

ing implementation in practical environments difficult. Therefore, it proposed two
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methods to create a favorable environment for consolidation. [41] involves the chal-

lenge of contradiction between accommodation capacity and reducing the number

of active accommodation by using a control algorithm based on LP formulation

and heuristic. In [45], the contradiction consists in bringing together the integra-

tion of several VNFs in a smaller number of resources and the desire to minimize

latency. However, this can negatively affect the additional latency due to the

sharing of same resources. [4] presented a real challenge to bring together low net-

work latency and VNF migration by proposing a new VNF Real-Time Migration

(VNF-RM) algorithm.

1.9 Summary of VNF placement and consolidation ap-

proaches

Table 1.4 illustrates some NFV investment approaches according to standard char-

acteristics. This table has identified for each research output 1) the objective of

the proposed approach, 2) the constraints that may appear when carrying out the

approach, 3) the proposed algorithm / approaches / policies, 4 auxiliary environ-

ment that help to provide a favorable conditions to successful of approach; and

finally 5) Suggestions for improving the proposed solutions.
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Table 1.4: Classification of the main VNF placement approaches

Ref. Objective Constraints Algorithm /
Approach

Auxiliary en-
vironment

Suggestions

[10]
– reduce re-

source usage
and opti-
mize energy
consumption
through con-
solidation
that serves
to reduce
the number
of servers
and switches
used by
prioritizing
the most en-
ergy efficient
hosts

– Lack of
available
physical
resources

– network
complex-
ity

– EE-TCA
algorithm

– No con-
sideration

– Instead of
the ’Energy
Efficient
Tree al-
gorithm
search-
based Chain
placement
Algorithm
(EE-TCA),
we propose
an algorithm
based on
the neuron
network
because the
chain struc-
ture of VNF
is similar
with it.

[21]
– Minimize re-

sponse time
for real-time
applications

– Minimize
the cost
of resource
allocation
(server,
memory and
storage)

–
protection
level

– length
of the
service
chain

– ILP and
heuristic
algorithm
named
Degree
Based
Heuristic
(DBH)

– No con-
sideration

– Adapting
the security
model to
IoT level

Other than the placement problem, VNF encountered multiple problems such as

the problem of orchestration, congestion, consolidation, etc. Consolidation ad-

dresses the problem of placement in very precise place of NFV architecture. How-

ever, there are also other pivotal criteria to consider in order to effectively manage

and consolidate VNF such as:

– Architecture: we designate by architecture, the type of architecture of the

approach (centralized, decentralized).

– Technique: this criterion designates the type of technique used in solving the

consolidation problem of virtual machines (algorithm / methodology).
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Ref Objective Constraints Algorithm or
Approach

Auxiliary en-
vironment

Suggestions

[27]
– Minimize the

delay for real-
time applica-
tions

– Minimize
the cost of
resource allo-
cation

– allocation of
resources

– deployment
time

– DBH – No consid-
eration

– We can pro-
pose another
algorithm
which can
reduce the
number of as-
signments on
the contrary of
BDH that of
dichotomous
search algo-
rithm which
divides the
assignments
in half to
facilitate the
search.

[31]
– Reduce la-

tency
– Increase scal-

ability and
flexibility

– CPU
– function ser-

vice chaining

– CALVIN – MEC – Suggest a
solution based
on on extrac-
tion of statical
features [86]
with FCA
classification.

[63]
– Minimizing

access latency
– Maximizing

service avail-
ability

– Conflicting be-
tween their two
objective

– Genetic al-
gorithm

– MEC – Suggest an-
other solution
for recent
problems such
as real-time
and security
application
problems.

[77]
– reduce the

power con-
sumed in fog
nodes and
the costs of
communica-
tion between
applications.

–
decentralization
and haven’t
central coordi-
nation.

– Markov
approx-
imation
approach.

– Fog com-
puting.

– Suggest PSO
algorithm to
distribute the
function.

– Use of resources: this concept is strongly linked to the problem of placing

virtual machines. It indicates the number of dimensions supported by an

algorithm to optimize resources usage in servers.

– Energy consumption: this criterion determines whether a solution meets the

energy saving requirement in Cloud data centers and indicates if the case

requires of energy saving that an algorithm targets to minimize.
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– Placement / Planning: to separate between VNF problems into two main

problems: planning problem and placement. Usually, the complexity of al-

location and placement operation is related to the network architecture and

the type of communication between VNF.

Table 1.5: VNF/VM consolidation approaches

Ref ArchitectureTechnical Resource
used

Energy
consump-
tion

Planning/
place-
ment

Report
(consol-
idation
basis)

[8] centralized G-VMP algo-
rithm

4-
dimensional

- in servers
- In the
commu-
nication
network

placement VMs and
tasks

[9] centralized Heuristic al-
gorithm AIA
(Adaptative
Interference
Aware)

2-
dimensional

in servers placement requests
and offre

[3] Centralized Neural net-
work and PSO
algorithm

n-
dimensional

in servers VNF and
servers

[46] decentralized A VM consolida-
tion framework
for Apache
CloudStack

2-
dimensional

in data-
center
cloud

planning VM and
plateform

[52] decentralized FCA 4-
dimensional

in servers planning VM and
tasks

[56] centralized ILP and greedy
based heuristic

n-
dimensional

in servers VNF and
severs

[87] centralized architecture
for 5G con-
trollers plane
and graphic
algorithm

n-
dimensional

in servers planning VNFs and
controllers

[74] decentralized an optimal place-
ment algorithm
based on the
Tabu Search
meta-heuristic in
cloud and MEC
infrastructure

2-
dimensional

in servers placement VNFs and
network
cloud in-
frastructure
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1.10 Conclusion

The wide diffusion of future NFV-based network models depends on several mea-

sures which should be taken into consideration when placement and consolidation

of VNF is done. VNFs are characterized by their ability to be dynamically de-

ployed according to requirements like the capacities of the NFV infrastructure

nodes, which makes it the source of management and cloud control. Recently,

the issue of VNF consolidation and location has turned on a popular topic in

the field of cloud computing focusing on the active host cost issue as the right

VNF placement can significantly minimize power consumption, workflow execu-

tion time and increase data centers efficiency. This challenge brings several NFV

problems, among them consolidation, orchestration and resource allocation. This

chapter discussed a full investigation of the VNF consolidation problem starting

from placement. At overall, our aim is to provide clear planning with a detailed

analysis of the relevant research related to VNF consolidation and including work

focused on orchestration [88], resource allocation [89], energy efficiency [90] and

VNF interference [91]. From this study, we note that all the approaches aim at

minimizing energy consumption which generally corresponds to the gain in the

first step whereas the quality of service is in the second step. In this context, we

propose in the next chapter an algorithm that brings together the quality and the

gain in consolidation of VNFs to minimize the number of active machines, reduce

latency and cost and optimize energy consumption.
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Chapter 2

Energy Aware VNF Placement

and Consolidation in Cloud

Data Centers

2.1 Introduction

The virtualized network function (VNF) is accountable for network services that

operate on virtual machines and can establish connections individually or combine

together to form a unified enclosure, utilizing all available resources within that en-

closure. This adaptability enables the utilization of physical and virtual resources

in a manner that guarantees control over power usage, resource distribution, and

cost and latency reduction. Drawing on the findings from the preceding chapter

regarding the latest advancements in VNF placement and consolidation optimiza-

tion, our proposal introduces a novel Fuzzy-FCA approach for VNF placement,

employing Formal Concept Analysis (FCA) and fuzzy logic in a mixed environ-

ment consisting of cloud data centers and Multiple access Edge Computing (MEC)

architecture that ensure the distribution of compute resources to the end user. In

the first step, VNF consolidates in NS using FCA algorithm to derive VNF candi-

date. In the subsequent step, candidate VNF migrates and consolidates into the

most suitable active VM to reduce the count of active VMs and decrease energy

usage by employing the Fuzzy FCA algorithm.
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2.2 Fuzzy-FCA-based proposed approach

In this section, we present the issue of VNF placement and elaborate on its as-

pects and outcomes. The problem of VNF placement mainly involves arranging

the physical and virtual resources in an uneven manner so that the virtual ma-

chines needed to carry out one or more tasks (VNF) are grouped together on a

single server, or else on the fewest possible number of servers. Furthermore, the

latency problem and cost associated with it necessitate careful consideration of the

significance of deploying virtual network functions (VNFs) both at the edge and

within the central cloud infrastructure [92].

2.2.1 Placement and consolidation strategy

We suggest a VNF consolidation strategy based on FCA and Fuzzy-FCA that takes

into account the sequencing order of VNF in SFC and the number of accessible

NS in order to address the problem of VNF placement. By deploying computing

resources close to the end user, the MEC environment that we suggest can reduce

end-to-end latency. Our initial goal is to reduce the cost, time (latency) required

to optimize service function and energy consumption. Therefore, reducing the

number of virtual machines and using MEC together directly results in less energy

being used to execute a service. Our VNF placement approach’s primary objective

is to reduce the number of virtual machines needed to run a VNF as a result

of maximizing resource usage and energy consumption. The problem of VNF

consolidation in cloud data centers can be characterized as the interaction of two

processes: the first process involves connecting VNF and NS, and the second

consolidates VNF in VM by allocating the chain of service function and accounting

for the number of available NS. The modeling of this issue is displayed in Fig 2.1.

Our technique (Fuzzy-FCA) is broken down into two processes to successfully han-

dle the consolidation problem: the first process groups and places the set of VNF

according to dedicated network service, and the second consolidates the set of VNF

in virtual machines. In the first process, we propose an FCA method to robustly

model the relationship between VNF and NS. The purpose of this method is to run

a large number of NSs for each VNF. At the second process level, once the VNF

groupings are defined, we apply the Fuzzy-FCA to place the VNF in the VM while
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Figure 2.1: VNF placement and consolidation proposed process.

ensuring maximum and balanced exploitation of virtual and physical resources in

all dimensions taking into account data uncertainty [64].

The first process determines the best placement of the VNF set by placing the

VNFs in the NS based on the FCA. The second process consists of consolidating

obtained VNF into the set of VM based on Fuzzy-FCA. After obtaining the FCA

rules for the VNF, we apply Fuzzy-FCA on candidate concept and VM to con-

solidate VNF into VM respecting the sequence of the set VNF. In general, the

proposed strategy is based on three main steps : (i) the first step consists on the

organization of the VNF according to a hierarchy, described by a lattice of con-

cepts, in order to group the VNF and the dependent NS in the same concept. (ii)

the second step is the selection of the candidate concepts (cc.int)(see definition 9)

of FCA and to attach them and use as VNF to the second process of Fuzzy-FCA

and (iii) the third step is the consolidation of VNF in VM (Fusion by similarity

degree function). To clarify the stages of our approach, we present some definitions

and notions on which our approach is based.
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2.2.2 Model description and problem formulation

We assume that V NF = {vnf1, vnf2, .., vnfi} is an attribute set, V M = {vm1, vm2, .., vmj}

is an object set with the context K = (V M, V NF, I), and I is the binary relation

between a VM object and a VNF attribute in order to describe our method. A

binary matrix under a table can be used to display this relationship. Knowing that

FCA-Fuzzy strategy takes a two-dimensional array as input. In this situation, Ta-

ble3.1 aids in presenting all the benchmarks taken into account when developing

our fuzzy-FCA technique. We provide the definition of formal concept and partial

order as follows to filter the relationship between objects and attributes provided in

the context table. In which, the formal concept is represented by the pair (O1, A1)

of the objects O1 and A1’s attributes such that O1 ⊑ O, A1 ⊑ A.

The formal context’s (O, A, I) Galois correspondence is made up of the two appli-

cations f and g. The function f is referred to as the dual of O, while the function

g is referred to as the dual of A [93].

The pair C = (O1, A1) is referred to as a formal concept of the formal context

(O, A, I), if and only if (O1) = A1 and (A1) = O1, where O1 ∈ O and A1 ∈ A. In

this instance, O1 is known as the extension of the concept C and A1 is known as

the intention of the same concept C. In this instance, C2 is referred to as a super-

concept of C1 and C1 is a sub-concept of C2. R(o) determines all the attributes

a applied to the object o which are brought about by the partial order relation.

Let Aff be the function of assigning a VNF partition in virtual machines with

V M × V NF → Aff . We formally define VNF placement problem by using the

following triplet :

PPV NF ≡≺ V NF, V M, Aff ≻ (2.1)

Aff denotes the procedure of allocating the group V NF in the group of the virtual

machine V M . Every vmi ∈ V M is necessary for the execution of vnfvmi ∈ V NF .

Initially, we employ the FCA approach to identify potential VNF that will be

merged into VM. This stage involves identifying the interdependence between two

VNFs that rely on one or more network services NS in conjunction as follows:
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Table 2.1: Description of parameters

FCA parameters Description
C = (O, A) is a formal concept
where O = (o1, o2, .., on) and
A = (a1, a2, .., ak).

C is a formal concept which con-
sist of object O and attribute A.

C1 = (O1, A1) and C2 =
(O2, A2) .

{C1 and C2 be two formal con-
cepts of (O,A,I)
where O1, O2: are the objects
of set O and A1, A2:are the at-
tributes of set A.

C1 ≪ C2, if and only if O1 ⊑ O
and A1 ⊑ A

C1 is partially ordered with re-
spect to C2

Ci.Int Ci.Int is the intention of the
concept ci which gives the at-
tribute of concept.

f(O) = {a ∈ A/(o, a) ∈ I}
g(A) = {o ∈ O/(o, a) ∈ I}

f and g are two functions which
constitute the Galois correspon-
dence with the application f is
called dual of O and, likewise, g
is called dual of A

V NF = {vnf1, vnf2, .., vnfi} ,
V M = {vm1, vm2, .., vmj} and
NS = {ns1, ns2, .., nst}

V NF is set of virtual network
function, V M is set of virtual
machine and NS is set of net-
work service with i, j, t ∈ IN

Remove(ci)

Eliminate(ci)

Function to delete a concept
which includes an empty at-
tribute or an empty object.
Function of elimination of con-
cepts which contain only one at-
tribute

Fuzzy-FCA parameters Description

α

T

φ

The extension of membership
value.
Given threshold value.
The extension of object mem-
bership where the membership
value between the object and
the attribute is defined by the
membership of the object.

DependencyV NF
vnfi,vnfj

= Count(nsvnfi
∩ nsvnfj

) (2.2)

This dependency is determined by the count of network service NS that use both

vnfi and vnfj . Similarly, the interdependence between two network services (NS)

is contingent upon one or more virtual machines (VM), which can be expressed in
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the following equation:

DependencyNS
nsi,nsj

= Count(vnfnsi ∩ vnfnsj ) (2.3)

This dependency is the number of virtual network function VNFs that use both

nsi and nsj .

Furthermore, the process of concept candidate extraction necessitates initially de-

termining the weight of a concept and the maximum of coverage as outlined below.

Suppose ci represents a concept, where ci.Int signifies the intention of concept ci.

The weight of concept ci, indicated as W (ci), can be expressed in the following

manner:

W (ci) = |ci.Int|
|vnfi|

(2.4)

And the highest extent that covers the collection of V M objects referred to as MC

is defined as follows:

MC =

 1 if ⋃
i∈I ci.Int = 1

0 else
(2.5)

Finally, let C = {cc1, ..., ccp} be a set of concept. We define the candidate concept,

that has a maximum weight and cover all V NF , noted by Cand(CC), as follows:

Cand(cc) =

 1 if ∑
k=0 W (ccp) = 1 and MC(cc) = 1

0 else
(2.6)

2.2.3 Hierarchical organization of network service

To generate a formal context, a set of network services and VNF can generate a

formal context from a triple (S, V, I), where S is a set of network services, V is a

VNF set, and I is a binary relationship between two series S and V. The binary

relation I takes the value 1 if the service nsi requires the virtual network function

vnfj to run, 0 otherwise. Formal context is presented in the form of tables that

show the relationships between services and modeled virtual network functions.
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In the construction stage of the Galois lattice, the circles represent concepts, and

the arcs between rectangles embody relationships from general (top) to specific

(bottom). Several algorithms have been developed to construct Galois lattices.

Galois lattice require simplification or reduction to eliminate unnecessary and re-

dundant concepts without losing information. This simplification ensures that the

main goal of minimizing the number of concepts is achieved by grouping the largest

services and virtual network functions into the same concept. The various opera-

tions to simplify the Galois lattice consist in:

−Removing concepts that have an empty object set or an empty attribute set.

Formally, a concept ci is deleted if its objects set ci.Ext is empty or its attributes

set ci.Int is empty:

Remove(ci) =

 1 if|ci.Ext| = 0 or |ci.Int| = 0

0 else
(2.7)

−Eliminate all concepts having only one attribute:

Eliminate(ci) =

 1 if|ci.Int| = 1

0 else
(2.8)

A set of candidate concepts can be extracted from the generated and simplified

Galois lattice. Concepts that have a maximum weight of 1 and cover the entire

attribute set are called concepts candidate. Therefore, to extract the VNF of the

concepts candidate, we use the maximum coverage formula as follows:

⋃
ci.Int = {v1, v2, .., vn} (2.9)

After extracting VNF from candidate concepts, we can consolidate them with

virtual machines by applying Fuzzy-FCA. Therefore, Fuzzy-FCA is based on un-

certainty information and specifies relationships between objects and attributes by

precise real values belonging to [0, 1].
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2.2.4 Fuzzy Formal Concept Analysis

Fuzzy formal concept analysis (Fuzzy-FCA) is a technique that combines fuzzy

logic and FCA technology which represents the uncertainty information as a real

number belonging to [0, 1]. It is primarily based on relational analysis, which pro-

vides a hierarchical and weighted representation in the form of clusters of fuzzy-

formal concepts [94]. Therefore, in this step, fuzzy FCA is the best method to

place the obtained VNFs on the VM based on filtering [95].

Definition 2.1. Let O be a set of objects, A be a set of attributes and I be a

fuzzy set on domain defined by: O × A. The relation (o, a) ∈ I between object

and attribute has a membership value µ(o, a) in [0, 1]. We define a fuzzy formal

context [96], noted Fuzzy-FC, by the triple given by the next equation:

Fuzzy − FC = (O, A, I = α(O, A)) (2.10)

A fuzzy formal context can also be a cross-table as shown in Table 2.2. The context

has objects representing the VM, it also has attributes representing the VNF. The

relationship between an object and an attribute is represented by a membership

value between 0 and 1. The relations that have low membership values noted by

threshold T can be eliminated. Table 2.3 shows the cross-table of the fuzzy formal

context given in Table 2.2 with T = 0.5.

Table 2.2: A cross-table of a
fuzzy formal context

O/A vnf1 vnf2 vnf3 vnf4

vm1 0.8 0.12 0.61 0.15
vm2 0.9 0.85 0.13 0.11
vm3 0.1 0.14 0.87 0.60
vm4 0.7 0.10 0.50 0.20

Table 2.3: Fuzzy formal con-
text in Table 2 with T =0.5.

O/A vnf1 vnf2 vnf3 vnf4

vm1 0.8 - 0.61 -
vm2 0.9 0.85 - -
vm3 - - 0.87 0.60
vm4 0.7 - 0.50 -

Definition 2.2. Let (O, A, I) be a fuzzy formal context with a confidence thresh-

old T . We define a fuzzy formal concept (or fuzzy concept), noted Fuzzy-FCA, by

the next equation:

Fuzzy − FCA ≡≺ (Xf = φ(X), B) ≻ (2.11)
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where X ⊑ O, B ⊑ A and B∗ = X.

Let each object O ∈ φ(X), we define the membership o by the next equation:

µg = min
m∈B

µ(o, a) (2.12)

where µ(o, a) is the membership value between object o and attribute a, which is

defined in I. Note that if B = {} then µo = 1 for every o.

Definition 2.3. Let (A1, B1) and (A2, B2) be two fuzzy concepts of a fuzzy formal

context (G, M, I). We define as follow the next notions:

- (φ(A1), B1): is the sub-concept of (φ(A2), B2), denoted as (φ(A1), B1) ⪯ (φ(A2), B2),

if and only if φ(A1) ⊑ φ(A2)(⇔ B2 ⊑ B1).

- (A2, B2): is equivalently the super-concept of (A1, B1).

Definition 2.4. Let K be a fuzzy formal context with a confidence threshold T ,

we define a fuzzy concept lattice [97] of a fuzzy formal context K as a set F (K) of

all fuzzy concepts of K with the partial order ≤ with the confidence threshold T .

Definition 2.5. Let K1 = (φ(A1), B1) be a fuzzy formal concept, K2 = (φ(A2), B2)

is sub-concept of K1. We define the similarity between K1 and K2, denoted as

Sim(K1, K2), by the following equation:

Sim(K1, K2) = |φ(A1) ∩ φ(A2)
φ(A1) ∪ φ(A2) | (2.13)

where ∩ and ∪ refer intersection and union operators on fuzzy sets, respectively.

Fig. 2.2 gives the traditional concept lattice generated from Table 2.2, without

membership values. Fig. 2.3 gives the fuzzy concept lattice generated from the

fuzzy formal context given in Table 2.3. As shown from the figures, the fuzzy

concept lattice can provide additional information, such as membership values of

objects in each fuzzy formal concept and similarities of fuzzy formal concepts.

A conceptual cluster of a concept lattice K with a similarity confidence threshold Ts

is consider as a sub-lattice SK of K which is specified by the following properties:

1. SK has a supremum concept CS that is different of all its super-concepts.

2. Any concept C is different to CS in SK must have at least one super-concept

C ′ ∈ SK such that E(C, C ′) ≻ Ts.
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Figure 2.2: An example of concept lattice of traditional FCA.

The concept hierarchy reflects the taxonomy of VNF placement in the virtual

machine, in which a VNF placement can be a super-area or sub-area of other VNF

placement.

2.2.5 Proposed Fuzzy-FCA algorithm

The first process in this approach is to apply FCA to place the optimal NS network

services on the VNFs. This algorithm states that the basic idea of our strategy is

to first find the set of VNF candidate (scj.int) that have found their placement and

then apply Fuzzy-FCA to them. This algorithm states that the principle of our

strategy is to extract the VNF with a higher capacity from the network services
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Figure 2.3: An example of fuzzy concept lattice of Fuzzy-FCA.

to host it. Our swarm intelligence-based Fuzzy-FCA is used to apply our VNF

consolidation algorithm. Knowing that all set operators on Object Sets (VNF)

are fuzzy [98] and those on Attribute Sets (VM) are net, both of which were

previously extracted from the FCA. This algorithm’s objective is to place a set of

VNF into a minimum number of virtual machines in accordance with each VNF’s

individual choice while taking into account the operating balance of physical and

virtual resources in all dimensions, latency, cost, and energy consumption. This

algorithm creates conceptual clusters from a CS concept, known as the starting

concept on a fuzzy concept lattice F (K). We select CS as the supreme of F (K),

denoted CS = sup(F (K)), to generate all of the conceptual clusters of the fuzzy

48



Energy Aware VNF Placement and Consolidation in Cloud Data Centers

concept network F (K).

Our suggested algorithm can be written as shown in the following Algorithm 1.
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Algorithm 1: Fuzzy-FCA-based VNF consolidation algorithm
1 Input: V NF ← {vnf1, vnf2, . . . , vnfi} //set of virtual network functions
2 V M ← {vm1, vm2, . . . , vmj} //set of virtual machines
3 NS ← {ns1, ns2, . . . , nsj} //set of network service
4 F(K)//concept lattice
5 Cs // starting concept
6 Ts //threshold of similarity
7 Output: Sc← V M − V NF = {≺ vmi, vnfj ≻}//set of solutions ≺ virtual

machine, subset of virtual network functions ≻
8 begin
9 // Initialization

10 V NF −NS ← empty
11 scj ← empty //subconcept VNF
12 VNF = generate Fuzzy Formal Concepts ()
13 Listweights = calculateweights (VNF)
14 sort (VNF, Listweights)
15 ListDouble Tendance
16 for i := 1 to numberVNF do
17 ListStimulus = calculateStimulus (VM)
18 ListReponceIntrene = calculateInternalReponce (VNF (X), VM)
19 end
20 for all vnfi ∈ V NF do
21 NS = generate Formal concept analysis()
22 Listweights = calculate weights(VNF)
23 Sort(NS, Listweights)
24 listdouble tendance
25 if capacity of NS ≻ V NF requirements then
26 V NF −NS.add(vnfi, nsj)
27 Find(scj.int)
28 else
29 return to 7
30 end
31 forall vmj ∈ V M do
32 Tendance = calculateTrend (ListReponceIntrene, ListStimulus)
33 Search_better_placement (Tendance, ListReponceIntrene, ListStimulus)
34 for subconcept C’of Cs in F(k) do
35 F ′(C ′)← generateclusterconceptuel(C ′, F (k), T s)
36 if E(Cs, C ′) = |Cs∪C′

Cs∩C | then
37 Sc← Sc ∪ F ′(C ′)
38 else
39 add F ′(C) to F ′(k)
40 end
41 end
42 end
43 end
44 end
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2.3 Experimental study and results analysis

2.3.1 Data Collection

We will set up the test environments and working conditions before implementing

our solution. A variable number of VM and VNF are included in our database

so that we can analyze their impacts on cost, latency, and energy. We change

the number of VMs and VNFs in each test with a difference of 10, while always

keeping in mind that the number of VMs must always be lower than the number

of VNFs, as shown in table 2.4.

Table 2.4: Sets of test data collections

Sets of tests Number of VM Number of VNF

S1 90 110
S2 100 120
S3 110 130
S4 120 140
S5 130 150
S6 140 160
S7 150 170
S8 160 180
S9 170 190
S10 180 200

These test bases are used by our graphical interface, which is required to generate

resource requests for every VNF while taking into account the resource capacities

of every VM. The requested resource values for each VNF in terms of memory,

CPU and I/ O are chosen randomly in the range [1000, 5000]. While the resource

capacity values for each virtual machine, CPU, and I/O are randomly selected

from the range[10, 000, 50, 000].

At the implementation level, we applied our solution of placement of VNF by

the principle of Fuzzy-FCA based on intelligence in swarm, where each VNF is

automatically migrated to the most appropriate VM on the basis of the received

stimulus and its internal response. Based on the findings of our experiments, we

can demonstrate the significance of our approach in placement ensuring resource

use balance and optimizing energy consumption. We also demonstrate how using

peripheral hosts (VM) reduces deployment latency and times. In terms of the
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solution’s quality and execution time, we contrast our outcome with that of the

MultiSwarm approach [99].

2.3.2 Evaluation measures

We specify the following evaluation criterion in order to assess the effectiveness,

efficiency, and scalability of our solution:

- The first criterion is packaging efficiency, which is demonstrated by the amount

of a decrease in the number of active virtual machines and has an impact on overall

energy consumption.

- The second criterion is how much energy is used by the server and network.

- The performance assessment is based on a comparison of the computational times

of various solutions to a set of test problems with varying sizes and complexities.

- To determine efficiency, a test set of varying sizes and complexities is used to

compare the computation times (convergence times) of various solutions.

- The scalability is evaluated in relation to the increase in its computation time

and the size of the test problem.

While the VNF placement solution is considered effective and efficient if it meets

the major constraints: minimal energy consumption, maximized and balanced use

of resources in all dimensions, minimum latency and cost optimized.

2.3.2.1 Packaging Efficiency

The Packaging Efficiency, noted by PacEff , criterion reflected on other criteria

such as energy consumption and unused resource. It is defined as the ratio of the

number of vnf on the active number of vm as follow:

PacEff = Numberofvnf

Numberofvm
(2.14)

Therefore, this criterion can reflect on energy consumption, unused resource, cost

and latency. So, the reduced packaging efficiency equals high energy consumption,

cost, latency and unused resource.
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2.3.2.2 Energy of server and energy of network

The server is among the major power consumer in the system. Formally, we define

the power consumption pattern of VNF, SerEne, by the next equation:

SerEne = ECP U + Ememory + EE/S (2.15)

where SerEne denotes the total energy consumption in server; ECP U , Ememory,

EE/S represent the energy consumption of CPU, memory and input/output, re-

spectively.

The network also consumes a significant amount of system power. Formally, we

can evaluate the power consumption pattern of network as follows:

NetEne = Erack + Enetwork (2.16)

where NetEne denotes the total energy consumption in network; Erack, Enetwork

represent the energy consumption of rack and network, respectively.

2.3.2.3 Latency criterion

Our solution takes into consideration a mixed environment which consists of two

types of hosts; cloud VM and MEC VM. In this case, the two types of hosts (VM)

are grouped according to the latency value only without considering in which DC

they belong. We consider D = [d1, ..., dm]T is a vector where dj is the latency of

the jth VM and m is the total number of available VM across all DCs.

Let X is a specific assignment characterized by an n-dimensional latency vector

D′ = [d1, d′
2, ..., d′

n] whose value depends on the VM which are used to host the

nV NF composing the service, we define D′ by the next formula:

D′ = X.D (2.17)

Therefore;

d′
i =

m∑
j=1

xijdj (2.18)
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where d′
i is the latency of the VM which is hosting the i−th VNF (since a VNF is

placed at exactly one VM, only a single term in the above sum will be non-zero).

We define the average latency on all deployed VNF (average assignment latency

X of elements D ’) by:

L(x) =
∑n

i=1 d′
i

n
(2.19)

2.3.2.4 Cost criterion

We consider two types of cost; the fixed cost and overload cost of VM. The fixed

cost consist of associated VM workload in terms of the number of vCPUs allo-

cated to the VM and under the assumption that more application workload). The

overload cost is the service/application requirement in terms of the number of vir-

tual CPUs for V Mi. We also mention PM cost, which is a fixed overhead as the

energy cost for keeping the physical machine in an operating state. So, X is the

assignments of resources which can cost at the VM level where:

Cv(X) = ev

n∑
i=1

pi (2.20)

with, pi is the service/application requirement in terms of the number of virtual

CPUs for V Mi.

2.3.3 Experimentation and results analysis

The experimental results are given on the basis of 10 tests, previously fixed. Dur-

ing these tests, we determine the evolution of the average latency, the cost of

resources, the energy consumed at the server and network level, the exploitation

of the used resources.

Figure 5 shows the variation in the number of active network services versus the

total number of incoming network services to Cloud each time. The comparison

figures between these two variations presented in Table 5 proves the effectiveness of

the aggregation which is directed by FCA to reduce the number of active network

service as well as to minimize the unused resources (UR) as shown in Figure 6.

The curve of unused resources increases very slowly over the course of increase in
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Table 2.5: Number of active NS compared to the total incoming NS number and Unused
resources by our Fuzzy-FCA algorithm.

Sets of tests Number of
NS

Number of active
NS

Unused resources

S1 40 8 29.15
S2 50 9 29.25
S3 60 11 28.068
S4 70 12 30.36
S5 80 13 29.38
S6 90 13 17.36
S7 100 15 24.31
S8 110 19 32.9
S9 120 27 56.32
S10 130 40 67.6

Figure 2.4: Number of active NS compared to the total incoming NS number by our Fuzzy-
FCA algorithm.

number of incoming network service then it decreases by a very large value when

the number of active NS equals 30.

Figure 7 shows a variation in average latency as a function of VM between the MEC

environment and the cloud data center. As the figures in Table 7 also show, the

average latency value decreases as the number of active virtual machines increases.

This is explained by the increase in resources used, so the more VM and vCPUs

increase, the more physical machines accelerate the latency time. Also, this is

explained by the compute resources close to the end user deployed by MEC which

can significantly reduce end-to-end latency.

1pt The decrease in latency with the increase in the number of virtual machines
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Figure 2.5: Evolution of unused resources by our Fuzzy-FCA algorithm.

Table 2.6: Average latency variation depending on number of VM by our Fuzzy-FCA algo-
rithm.

Sets of tests Number of VM Average latency (ms)

S1 8 0.125
S2 9 0.111
S3 12 0.083
S4 15 0.066
S5 17 0.058
S6 18 0.055
S7 20 0.050
S8 21 0.047
S9 22 0.045
S10 28 0.035

can also be explained by the requirement of availability and flexibility, where the

average latency does not exceed 0.043 ms for 22 virtual machines while it exceeds

0.12 ms for 8 virtual machines as mentioned in Figure 6. Here we can conclude

that the decrease in latency during the increase in number of VM mainly returns

to the sharing of the execution of the network functions on several virtual machines

which decreases the overhead and the congestion at the level of a single Virtual

machine.

Figure 8 illustrates the evolution of cost as a function of the number of VM con-

sidering the budget threshold indicated in Table 8, which also influences the result
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Figure 2.6: Average latency variation depending on number of VM by our Fuzzy-FCA algo-
rithm.

Table 2.7: Cost optimization according to the number of VMs and the Cost in % of budget
corresponding to 4 and 5 hundred dollars respectively given by our Fuzzy-FCA algorithm.

Sets of tests Set of VM Cost (in hundred
dollars)

Cost in% of bud-
get corresponding
to 4 hundred dol-
lars

Cost in% of bud-
get corresponding
to 5 hundred dol-
lars

S1 7 1.224924 31 % 24%
S2 8 1.508356 38% 30%
S3 12 2.407558 58% 47%
S4 14 2.325032 60% 48%
S5 17 2.891696 72% 58%
S6 18 3.488612 87% 70%
S7 21 4.157184 104% 83%
S8 22 4.057636 101% 81%
S9 24 4.818236 120% 96%
S10 26 4.904336 163% 98%

of energy consumption as indicated in Figure 9. The coordinate axis represents

the cost values as a part of the budget (which is the threshold equal 5, ie. 5 hun-

dred dollars) and as a function of the number of virtual machines represented on

the horizontal axis. The first and second straight line represents the maximum

of budget 1 and budget 2 (4 hundred dollars and 5 hundred dollars) that can be

fixed with the customer. For the first budget(4 hundred dollars), the cost increases

57



Energy Aware VNF Placement and Consolidation in Cloud Data Centers

Figure 2.7: Cost optimization according to the number of VMs by our Fuzzy-FCA algorithm.

according to the number of virtual machines without exceeding the budget as in

the case for 7 until 18 virtual machines, where the cost presents 98% of budget

for 18 virtual machine. While the cost exceeds the budget when the number of

VMs more than 18. For the budget 5 hundred dollars, the cost increase according

to the number of VMs without exceed the budget. Although the number of VMs

reaches the maximum (25), the cost does not exceed the budget.

Table 2.8: Comparison between Network Energy (NE) and Server Energy (SE) depending
on the number of VMs by our Fuzzy-FCA algorithm.

Sets of tests Number of VM Network Energy
(NE)

Server Energy
(SE)

% (NE/SE)

S1 9 4241 9222 45.99%
S2 11 4577 12807 35.74%
S3 12 4577 9495 48%
S4 13 4577 14772 31%
S5 14 4577 14772 27.57%
S6 15 4577 18341 30.98%
S7 16 4577 16599 24.95%
S8 18 4577 20125 22.74%
S9 19 4577 23795 20.73%
S10 24 5249 15263 34%

Regarding the energy, Figure 9 and Table 8 show that the energy consumed at

the network level is slightly increased with the increase in the number of virtual
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machines while the energy consumed at the server level is increased remarkably

with the increase in number of virtual machines. Therefore, our approach Fuzzy-

FCA serves to minimize the number of virtual machines and to balance the use

of resources by placing VNF to the most favorable virtual machines according

to capacity, memory, vCPU, and so on. The basic idea is to consolidate VNF

in the minimum number of virtual machines and put unused virtual machines in

low power mode (standby) which decreases power consumption at data center and

ensures balance in exploitation of resources. In our implementation, we set the

number of VNF (60) and we vary the number of VM on each test to determine the

number of active VM as shown in Table 9. With each test, we increase the number

of VM and we see the reduction in number made by Fuzzy-FCA which shows the

number of active virtual machines. Thus, according to the first test, the number

of active VM is 14 with a reduction value equal to 6.

From Figure 10 we see that the packaging efficiency and unused resources evolve

in terms of number of VM in a manner opposite to each other; thus when the

packaging efficiency increases, the unused resources decrease and vice versa. In

fact, the high packaging efficiency value reflects the maximization and the balance

in exploitation of the resources and consequently the minimization of the losses.

Figure 11 illustrates the difference between the simulation result of our Fuzzy-

FCA proposal and the MultiSwarm approach in terms of average latency. Both

average latency curves decrease with increasing number of VNF, but the latency

Figure 2.8: Comparison between Network Energy (NE) and Server Energy (SE) depending
on the number of VMs by our Fuzzy-FCA algorithm.
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of our approach (Fuzzy-FCA) proposal is still higher than that of MultiSwarm.

The average latency of Fuzzy-FCA and MultiSwarm tends towards 0 when the

number of VNF exceeds 200 which explains by the need at the most less response

time (availability) to respond to the most number of VNF while exceeds 0.1 ms

for MultiSwarm and 0.25 ms for our Fuzzy-FCA solution.

Figure 12 shows the difference between the execution time of our Fuzzy-FCA and

MultiSwarm algorithm as a function of increasing number of virtual machines in

Table 2.9: Packaging Efficiency (PE) versus value of Unused Resources(UR) by our Fuzzy-
FCA algorithm.

Sets of tests Sets of VNFs Total num-
ber of VM

Number of
active VM

Packaging
Efficiency
(PE)

Unused Re-
sources (UR)

S1 50 40 8 7.14 29.15
S2 60 50 9 6.66 29.25
S3 70 60 11 6.36 28.068
S4 80 70 12 6.66 30.36
S5 90 80 13 6.92 29.38
S6 100 90 13 7.69 17.36
S7 110 100 15 7.33 24.31
S8 120 110 19 6.31 32.90
S9 130 120 27 4.31 56.32
S10 140 130 30 4.66 58.08

Figure 2.9: Packaging Efficiency (PE) versus value of Unused Resources(UR) by our Fuzzy-
FCA algorithm.
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Figure 2.10: Latency depending on the number of VM for Fuzzy-FCA and MultiSwarm
approach.

use. These experiments were performed on an Intel® Celeron® N4000 and 4 GB

RAM machine (DELL Inspiron 15300). The curves show that the execution time

of our approach (Fuzzy-FCA) is always lower than the MultiSwarm approach and

increases with the increase in the number of virtual machines. It can be seen that

there is a fluctuation in the Fuzzy-FCA curve explained by other internal factors

(e.g network services).

Table 2.10: Variation of Average latency and time for Fuzzy-FCA and MultiSwarm algorithm.

Algorithm
Fuzzy-FCA MultiSwarm

Sets
of

tests
Set of
VM

Average
la-

tency(ms) Time(ms)

Average
la-

tency(ms) Time(ms)
S1 20 0.33 3.3 0.17 3.5
S2 25 0.23 3.35 0.15 3.55
S3 30 0.25 3.14 0.1 3.57
S4 35 0.2 2.96 0.059 3.58
S5 40 0.125 3 0.042 3.6
S6 45 0.09 3.04 0.033 3.65
S7 50 0.038 3.019 0.03 3.67
S8 55 0.041 3.1 0.024 3.69
S9 60 0.027 2.9 0.021 3.7
S10 65 0.02 3.06 0.018 3.75
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Figure 2.11: Execution time depending on the number of VMs for our approach Fuzzy-FCA
and MultiSwarm algorithm.

2.4 Discussion

The performance and efficiency of our approach is well illustrated in the Table

10 in comparison with MultiSwarm algorithm. This efficiency shows at two pa-

rameters; the latency and time execution. Also, we used other three performance

parameters based on our objective such as the maximization in exploitation of

resources which is shown from PE, the balance in exploitation of resources from

UR, and energy consumption optimization. The results of our approach confirm

the efficiency and importance of FCA and Fuzzy-FCA in solving the problem of

VNF placement compared to the MultiSwarm algorithm. Indeed, the MultiSwarm

approach is based on best position taking into account the speed. Our virtual

network function placement algorithm was able to guarantee a better reduction in

power consumption while ensuring a low number of active virtual machines for dif-

ferent test problems. While the MultiSwarm algorithm mainly focuses on finding

a specific region from the best swarm speed to place virtual network functions. So,

we cannot talk about the reduction of the number of active machines and about

the optimization of energy consumption in the MultiSwarm algorithm.
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2.5 Strengths and limits of our approach

From the obtained results, we conclude that our approach succeeded in achieving

the optimization of the placement of VNF by considering the balance and the max-

imization in exploitation of resources, the latency time, the cost and the consumed

energy. However, these results may not be absolutely ideal since they are slightly

bounded due to the uncertainty context. Most of the results show the impor-

tance of our proposed approach in reducing the number of active virtual machines

and thus minimizing resource consumption, cost, latency and power consumption.

Also, these results reflect the role of the confidence threshold value in specifying

the capacity of each virtual machine from the packaging efficiency based on the

uncertainty information. Also, the evolution of latency confirms the role of the

integration of MEC with the Cloud environment as part of our approach. But, on

the other hand, the fluctuations in some results show that our approach cannot

achieve a perfect result from all sides considering the uncertainty information and

the internal factors of the system. These fluctuations is clearly shown in Figure

6 such that the number of (UR) increases throughout the tests but it decreases

for test 6 when VNF equals 100 from 29.38 to 17.36, then it comes back to in-

crease later. Despite the importance and the multiplicity of possibility theorem,

the uncertainty problem remains a great obstacle to achieve ideal results.

2.6 Conclusion and future work

In this chapter, we have applied the principle of FCA grouping by invoking the

principle of labor division in swarm intelligence in a cloud environment. This ap-

proach is dedicated as a new solution for the placement of virtual network functions

that takes into account the energy consumption in the Edge and cloud data centers,

with minimized latency and the maximum and balanced exploitation of resources

(memory, CPU, I/ O ). We performed a series of tests to verify the performance

and correspondence of our proposed algorithm with the sought conditions. The

experimental results show that our virtual network function placement algorithm

performed better in terms of our objective compared to the used comparison Mul-

tiSwarm algorithm. It guarantees the minimization of the number of active virtual

machines for the allocation of VNF and the quantity of unused resources, gives

63



Energy Aware VNF Placement and Consolidation in Cloud Data Centers

high packing efficiency and reliable computation time. The experimental results

also show that our solution is based on a confidence value which gives a very ef-

ficient restriction allowing to minimize the number of concept, hence the number

of active virtual machine.

The future perspectives for this work can be articulated around two new direc-

tions. The first direction is to conduct a more in-depth comparative study that

can give academics and practitioners more knowledge on how to handle Virtual

Network Functions Placement and Consolidation in Cloud Data Centers. The sec-

ond direction is to extend this work in terms of VNF chaining criterion in relation

to placement and with two important objectives to avoid: (i) the communication

interference between different VNF and (ii) the congestion due to sharing the same

resources.
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Chapter 3

VNF Placement and

Consolidation in Chain to

Deploy SFC

3.1 Introduction

As the placement of VNF in SFC is in predefined order, this chapter represents

a continuation of the problem of consolidation and placement of VNF taking into

account the new conditions and requirements of the structure of SFC. The objective

is to find the best VNF placement and guarantee the shortest SFC path taking

into account the multiplicity of VNF instances. To avoid inefficient consolidation

of VNF that does not meet the predefined order of SFC and host requirements,

we propose a new method of placing VNF in chained VM to minimize end-to-

end latency, minimize throughput and cost. In the following section, we treat

and formulate the problematic. Then, we present in section 3.3 our model and

proposal to solve the problem. In section 3.4, we describe the NFV model and

system. In the next section 3.5, we use and present the training procedure which

is based on PG policy gradient. In section 3.6, we present experimental results

of simulations that help measure the performance of our proposal. Section 3.7 is

devoted to conclusion.
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3.2 Virtual Network Function (VNF) placement and

chaining problem

The notion of Service Function Chain (SFC) adds new challenges to the VNF

placement problem as long as it is made up of a set of VNF deployed in a predefined

order. These challenges divide in two; the first one consists in finding the best

placement of VNF taking into account multiple requirements (VM capacity, CPU,

memory, instance), and the second is to select suitable paths which connects VNF

in a predefined order while respecting routing requirements (bandwidth, delay,

etc). Each SFC provides a network service (NF) according to a specific order of

VNFs. For example the security flow can be ensured by the use of SFC which

is constituted by the VNFs according to the following order: Firewall, DPI, and

VPN. The deployment of this service is provided via commodity servers along

path connecting source to destination in an infrastructure equipped with switches

and routers. Figure 3.1 shows an example of placement and chaining of a set of

VNFs in an NFV environment. Each SFC request is bounded by a source (S) and

destination (D) which represent the physical locations on the corresponding NFV

infrastructure for the flow source and target. Each VNF should be placed in the

most suitable VM node considering the available resources. In Figure 3.1, VNF3

is placed in the VM3 along the path connecting VM7 which embeds the source S

and VM8 embeds the destination D (red lines).

Some links can be overloaded and present a risk of congestion especially when

they are used by several sessions. For example, the link (3,6) is shared by two

sessions (session S1 and session S2) which overloads it. This risk of congestion

can take place at the host node level when its resource capacities are insufficient.

In this case, an effective VNF placement and chaining algorithm can solve these

issues by finding the best VNF placement and traffic path. The main objective

is to minimize the cost of resources, reduce the end-to-end delay (avoiding traffic

congestion) and improve throughput. Generally, the problem of VNF placement

and chain is a unification between the problem of placement and chaining in order

to ensure a suitable location for the VNFs without affecting the predefined order

of the set of VNFs constituting the SFC.
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Figure 3.1: SFC request acceptance ratio in our approach

3.3 Model and problem formulation

To solve the problem of VNF placement and chaining, we propose an ILP modeling

that describes the relationship between VNF placement and chaining order in VMs.

3.3.1 Model

Let Gs = (Vs,Es) be a physical infrastructure where Vs and Es represent respec-

tively the cluster of VMs (hosts or points of presence POPs) and the cluster of

physical links connecting them. Each VM u ∈ Vs is equiped with various types

of resources R = {1, 2, 3} (memory, CPU and storage). For each type of resource

r ∈ R, the associated capacity to VM u is denoted by cr
u. Similarly, each physical

link ls is associated with a bandwidth capacity of bls and a propagation delay of

dls . Each VM resource r is associated with a unit cost wr
u and each physical link

resource is associated with a unit cost of wbw
ls

. The propagation delay on link ls is

denoted by dls whereas the switching delay on VM u is denoted by du.

In the physical infrastructure, each couple of VMs (u, v) ∈ Vs
2 are interconnected

with the use of various paths ps ∈ P. The extremity nodes of path ps are denoted

by pa
s and pb

s.
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Let Gi = (Vi,Ei) be the required service function chain i ∈ I, where Vi is the

collection of VNFs and Ei is the collection of virtual links that connect them.

li = lai lbi ∈ Ei represents a virtual link that interconnects its extremity VNFs lai

and lbi . Besides, each VNF V ∈ Vi has a resource requirement Cr, i
V and each

virtual link li ∈ Ei has a bandwidth requirement Bli . The flow processing time on

each VNF V is denoted by dV .

The end-to-end delay requirement for each service function chain i is given and

denoted by di. In addition, the end nodes Vsi and Vti of SFC i are mapped on the

physical nodes usi and uti .

3.3.2 Problem formulation

Based on the notions listed in Table 1, we formulate the placement and chaining

problem of VNFs considering all the network service requirements and constraints

as follows:

Constraints: ∑
i∈I

∑
V ∈Vi

xi
V, u × Cr, i

V ≤ cr
u ∀u ∈ Vs, r ∈ R (3.1)

∑
u∈Vs

xi
V, u −Mi = 0 ∀i ∈ I, V ∈ Vi (3.2)

xi
Vsi , usi

−Mi = 0 xi
Vti , uti

−Mi = 0 ∀i ∈ I (3.3)

∑
i∈I

∑
li∈Ei

∑
ps∈P

ols
ps
×Bli × yli

ps
≤ bls ∀ls ∈ Es (3.4)

∑
ps∈P

yli
ps
−Mi ≤ 0 ∀i ∈ I, li ∈ Ei (3.5)

xi
lai , pa

s
+ xi

lbi , pb
s
− yli

ps
≤ 1 ∀i ∈ I, li ∈ Ei, ps ∈ P (3.6)

xi
lai , pb

s
+ xi

lbi , pa
s
− yli

ps
≤ 1 ∀i ∈ I, li ∈ Ei, ps ∈ P (3.7)
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∑
ls∈Es

∑
li∈Ei

∑
ps∈P

ols
ps
×dls×yli

ps
+

∑
u∈Vs

∑
li∈Ei

∑
ps∈P

ou
ps
×du×yli

ps
+

∑
u∈Vs

∑
V ∈Vi

dV ×xi
V, u ≤ di

(3.8)

Objective:

min(ϵ1A + ϵ2B + ϵ3C −
∑
i∈I

Mi) (3.9)

where: ϵ1 + ϵ2 + ϵ3 << 1

A = ∑
i∈I

∑
ls∈Es

∑
li∈Ei

∑
ps∈P

ols
ps
× dls × yli

ps
+ ∑

i∈I

∑
u∈Vs

∑
li∈Ei

∑
ps∈P

ou
ps
× du × yli

ps

+ ∑
i∈I

∑
u∈Vs

∑
V ∈Vi

dV × xi
V, u

B = ∑
i∈I

∑
li∈Ei

∑
ps∈P

∑
ls∈Es

ols
ps ×Bli

×y
li
ps

bls

C = ∑
i∈I

∑
r∈R

∑
V ∈Vi

∑
u∈Vs

wr
u × Cr, i

V × xi
V, u + ∑

i∈I

∑
li∈Ei

∑
ps∈P

∑
ls∈Es

wbw
ls
× ols

ps
×Bli × yli

ps

The objective function maximizes the number of SFC requests in I to place and chain.

Among the possible solutions, the objective function will choose the solution which

optimizes the second part of the objective, namely a combination of (1) the delay, (2) the

ratio of the bandwidth requested by the residual bandwidth on the links and (3) the

cost of the resources. ϵ1, ϵ2 and ϵ3 (very small values) make it possible to reduce or

favor one or the other of the metrics compared to the others. For example, canceling the

values of ϵ2 and ϵ3 results in minimizing the delay while canceling ϵ1 and ϵ3 will allow

load sharing to avoid congestion of the physical infrastructure.

The constraints (3.1) and (3.4) guarantee that the resource demands of nodes and links

must not exceed the resource capacities of nodes and physical links. The constraint (3.2)

indicates that for any SFC placed, each of its VNFs must be placed on a single physical

node to prevent the multiplicity of VNF instance. If the SFC i is placed, its sources and

destinations must also be placed on given physical nodes fixed in advance (constraint

(3.3)). The constraint (3.5) ensures that a virtual link can only be mapped to at most

one physical path. Clearly, when both ends of a virtual link are mapped to the same

physical node, the virtual link will be mapped to an empty path. Otherwise, the virtual

link will be mapped to a non-empty physical path. The constraints (3.6) and (3.7) set

the value of the variable yli
ps

according to the physical nodes on which the ends of the

virtual link li are mapped: for different physical nodes, yli
ps

will be set to 1, otherwise yli
ps
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will be zero. The inequality (3.8) is used to check the delay constraint: the sum of the

propagation, switching and processing delays on the VNFs must be less than the value

di provided as an input to the problem.

3.4 Model and NFV system description

Our model is mainly built on the NFV infrastructure and SFC requests. In this work, we

try to meet the requirements of each SFC request by considering the different constraints

mentioned in the previous section (latency, VM node capacity, bandwidth, and VNF

instance) using Deep Reinforcement Learning (DRL). The NFV environment provides

the essential infrastructure to build the Deep Neural Network (DNN) to represent the

SFC service function chain topology in a set of VNFs as shown in Figure 3.2. Each

incoming SFC request is mapped to a set of VNFs in a predefined order. Each VNF

is placed in the most suitable server node according to its requirements. These nodes

are connected via multilevel switches. In this case, the network of our model can be

presented by G = (N, L), where N is the set of server nodes and L is the set of links.

With DRL methodology, the DNN corresponds to agent and PG. This agent extracts

the NFV environment state and processes it, then makes the decision to accept and

take the action of placing VNF in their corresponding node or to refuse it. If accepted,

the NFV environment sends a reward to the agent, and the agent updates the policies

according to the reward. This approach is characterized by the ability to adapt to the

dynamicity of the environment. It is based on the MDP and LSTM model which captures

dynamic network state transitions and sends them to the system agent for processing.

DRL integrates PG policy to facilitate decision-making for high-dimension MDP states

whereas historical states are guaranteed by LSTM.

3.4.1 Parallel Bi-state Module Deep Reinforcement Learning approach

for VNF placement and SFC deployment

To summarize, this work presents a demonstration of a new approach for deep rein-

forcement (DRL) based on parallel two modules of MDP to extract and capture the

dynamic state transitions of SFC and LSTM to detect the long-term historical trend of
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Table 3.1:

Parameters, variables and constants
Network service physi-
cal infrastructure

Description

G = (Vs,Es) G is a graph representing the physical infrastructure, Vs is
the set of hosts (VMs or POPs) and Es corresponds to the
set of physical links.

P P corresponds to a set of paths in the physical infrastruc-
ture. The paths ps ∈ P interconnect 2 nodes in the physical
infrastructure.

(pa
s , pb

s) pa
s and pb

s correspond to the extremity nodes o path ps.
R R = {1, 2, 3} is the set of resources. Here, we assumed 3

types of resources: memory, CPU and storage.
cr

u cr
u corresponds to the capacity in resource r ∈ R for the

physical node u ∈ Vs.
du, dls du and dls correspond respectively to the switching time of

the node u and to the propagation delay on the physical link
ls.

wr
u, wbw

ls
wr

u and wbw
ls

denote respectively the unit cost of resource r
on the node u and the cost of 1 unit of bandwidth on link
ls.

ols
ps

ols
ps

is a constant that is set to 1 for physical link ls belonging
to the physical path ps. ols

ps
is nil for ls ̸∈ ps.

usi , uti usi and uti correspond respectively to the physical nodes
which embed the source and target of SFC i.

Parameters of service
function chain request

Description

Gi = (Vi,Ei) Gi is the requested service chain i ∈ I where Vi is the set of
VNFs and Ei is the set of virtual links.

I I is the set of SFCs i arriving during the considered slot time
τ .

di di is the end-to-end delay requirement for the service func-
tion chain i

Cr, i
V , Bli Cr, i

V and Bli correspond respectively to the demand of SFC
i for resource r on the VNF node V and to the demand for
bandwidth on the virtual link li.

Vsi , Vti Vsi and Vti correspond respectively to the source and target
nodes of SFC i.

Binary variable Description
Mi Mi is set to 1 when SFC i is successfully embeded. Other-

wise, Mi is nil.
xi

V, u xi
V, u is a binary variable indicating whether or not VNF V

of SFC i is embedded into physical node u.
yli

ps
yli

ps
is set to 1 if the virtual link li is embedded into the

physical path ps. Otherwise, yli
ps

is nil.
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SFC. Then, the Policy Gradient (PG) is used in the training stage to train the VNF

environment agent and optimize reward.

Generally, our approach represents an adaptive VNF architecture based on PG that

consists of a multi-layer fully connected DNNQ based on the back-propagation (BP)

network as shown in Figure 3.3. DRL uses the PBDRL architecture which mainly con-

sists of the NFV network as an environment including the nodes (servers or VM) and

links between nodes in the network topology, the deep neural network as PBDRL agent,

state information that combines the current state transitions and historical features of

SFC, the action of the agent, reward, and policy. These components are shown in Figure

3.3 and work as follow:

- Environment provides space work for agents through which can move. The current

state of the agent and action represent the input of the environment, whereas the agent’s

reward and its next state represent the output.

- Agent takes its current state from the environment and selects an action from a list of

discrete and possible actions as a return.

- The environment measures the success or failure of an action. The reward is transferred

to the agent if the action conditions are successful or backtracked in case of failure.

- Finally, the agent uses the policy according to reward to determine the next action.

This procedure is repeated until reward converges.

Figure 3.2: Adaptive NFV/SFC environment architecture with DRL
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Figure 3.3: The architecture of PBDRL proposed approach

3.4.2 MDP and LSTM modules

To extract instantaneous (in real-time) network characteristics resulting from the prob-

abilistic entry and exit of requests, we formally present the MDP model. We also use

the LSTM model to support the data extracted by historical features. The MDP model

is described by ≺ A, P, R, γ ≻, where S is the set of discrete states, A is the set of

discrete actions, P : S × A × S is the transition probability distribution, R : S × A

is the reward function, and γ ∈ [0, 1] defines the discount factor that specific for fu-

ture reward. Mainly, MDP aims to extract and capture the dynamic state moves of

the network that can be expressed by the current state and the transition state as

Stransition = (st, at, rt, st+1), st is the current network state, at is the VNF placement

action for the requested service rt, and st+1 is the new state of the network. The LSTM

model aims at extracting the historical features of SFC placement which is defined as

Shistory = LSTM(S3). This state is concatenated with the MDP state giving a new

state: Snew
t = {Scurrent, Stransition, Shistory}. Then the agent takes the characteristics of

this state and processes it to return an action to the environment. With these various

details of the environment’s current state, the agent can find the appropriate policies

through reciprocal and continuous exchange with the environment.

73



Introduction

The PBDRL pseudo-code of our proposed approach which expresses these interactions

is shown in Algorithm 1.

3.4.3 Description of MDP module

The model of our approach is modeled mathematically as a markovian decision process

(MDP) by the following three components:

State: state capture is the most important element for extracting the characteristics

of the NFV environment. Based on this component, we can determine the inputs

of our approach as follows: let a state st ∈ S be presented as vector (Ct, Wt, It):

Cs
t = (Ct

1, Ct
2, ..C|V |t) represents the residual resources for each node, while Wt =

(W t
1, W t

2, ..W t
V ) is the remainder of the output bandwidth. I = (Wri , T j

ri
, N j

ri
, Cfi,j

, Pri)

uncovers the properties of the current VNF in processing fi,j , which includes Wri as

the requested bandwidth, T as the residual latency space, N j
r,i as the number of undis-

tributed VNFs in ri, Cfi,j
as request resources on servers, and Pr as TTL of request ri.

Bi-state transition: Snew
t = (ScurrentShistory, ht) is the state transition of MDP and

LSTM module, where Scurrent = (st, at, rt, st+1), Shistory = {P k
t,i}ni=0 and ht is the his-

torical placement sequences of the VNF and related SFCs. We note that n is the overall

number of VNF, P k
t,i is the placement sequence of VNF i with the look-back period k at

time t and at is the action of VNF placement for responding to service requirements.

Action: In our proposal work, the action is the placement of VNF in the VM node

for the deployment of the SFC requested. By associating to each VM node an integer

setting k = 1, 2, 3.., |N |, an action on a given VNF corresponds to the setting of embed-

ding VM. More precisely, if a VNF cannot be deployed, a = 0 otherwise the action a

corresponds to the setting of an embedding VM. The set of actions A is thus determined

as A = {0, 1, .., N}.

Reward action: the reward function represents the total expected cost of occupied

VMs (the expense) to deploy the incoming request.
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Algorithm 2: Parallel Bi-state Module Deep Reinforcement Learning (PBDRL)
algorithm
Data: Input: Environment NFV
Result: Policy

1 Initialization;
2 initiate time slot τ ← 1
3 while Rτ = ∅ do
4 τ ← τ + 1
5 end
6 use a request r1 from Rτ based on the arrival time
7 i← 1, j ← 1
8 for t← 1, T do
9 Initialize state Scurrent and Shistory

10 Concatenate states and get the new state
11 Perform an action a from A to place fi,j

12 if fi,j is accepted then
13 j ← j + 1, snew

t ← snew
t + 1

14 end
15 if ri is not accepted or j ≻ |ri| then
16 if ri is not accepted and j ≻ 1 then
17 back track the network state to snew

t − j + 1
18 end
19 if Rτ is all processed then
20 repeat
21 τ ← τ + 1
22 until Rτ ̸= ∅
23 introduce a new request r′

1 from Rτ

24 restart i← 1, j ← 1
25 end
26 else
27 introduce request ri+1 from Rτ
28 i← i + 1
29 end
30 end
31 Calculate request U(st, a)
32 Move the state to snew

t+1 and get the next VNF
33 Store transition (snew

t , a, U(snew
t , a)) to PG batch memory

34 end
35 for t← 1, T do
36 ut ←

∑t
q=1 γt−q(sq, a)

37 end
38 for i← 1, 10 do
39 for t← 1, T do
40 θ = θ + ∑

t α▽
∑t

i=1 πθ(si, ti)U(ti)
41 end
42 end
43
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3.4.4 Description of LSTM module

LSTM [100] is a neural network structure based on the concept of ’cell state’ in the

network (see figure 3.4). It captures information from the previous steps and consists of

different multi-gates; the input gate, the forget gate, and the output gate. The forget

gate is considered as the most important gate in LSTM because it processes the hidden

previous state ht−1 and the current input xt by applying the ’sigmoid function’ which

extracts the final value for the interval between 0(forget data) and 1 (pass it through un-

changed). Then the previous hidden state and inputs pass to the ’sigmoid’ of the input

gate while the hidden state and current inputs pass to the ’tanh’ function, followed by

multiplying ’sigmoid’ output by ’tanh’ output. The cell updates itself using these values

by multiplying the cell state with the forget gate vector and the input gate vector to

get the new, updated cell state value. In out-put gate level we can extract the value of

the next hidden state which contains the information about previous inputs. First, the

previous hidden state (ht−1) and the current state are passed to the function ’sigmoid’ as

shown in Figure 3.4. Then the new cell state Shistory generated through multiplication

Shistory − 1 wih forget vector and add its results to new hiden state (multiplied by

result of ’tanh’ and ’sigmoid’) is passed to ’tanh’. This final value lets to the network to

decides which information the hidden state ht should carry. This hidden state is used

for prediction. The main goal of LSTM is to provide short-term memory for RNNs that

can last for thousands of time steps, and thus long-term memory. LSTM is mainly used

to classify and predict based on time chain data.

3.5 Modelization and Policy Gradient PG-based training

procedure

The main objective of our PBDRL approach is to find the best VNF placement and SFC

service function chain deployment in an NFV network taking into account real-time net-

work dynamism and traffic, resource capacity, and bandwidth requirements. We exploit

the characteristics of the DRL construct that are associated with the value (e.g DQN)

of the VNF Chain neuron deepening and the NFV environment agent training policy

(Reinforcement). Based on this training policy, the placement action of a VNF has been
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Figure 3.4: The Long Short-Term Memory (LSTM) cell and its task in the sequential data
processing.

carried out with an estimated value calculated as a reward.

With PG, automatic feature architecture and end-to-end learning can be provided, thus

the domain knowledge becomes not essential. Also, PG participates to improve training

efficiency. For the problem of SFC deployment which requires a large action space, PG

provides an action space with a high dimension and improves training efficiency and

convergence toward the optimal solution. In fact, our approach integrates the Markov

Decision Process (MDP) to deal with the movements and transitions of dynamic net-

work state and capture them with ease. Therefore, we extract the resource currently

used (i,e., CPU, bandwidth, memory, etc) and SFCs execution result as MDP state.

Thus, we conclude that MDP state transitions describe dynamic network movements

which can usually be automatic and continuous. Specifically, the PG uses its compo-

nent as depicted in Figure 3.3, where the input layer represents the vector of states while

the output layer represents the probability distribution of actions.

77



Introduction

First, it is determined how many hidden layers there are and how wide each one is in

DNNQπ. Then, one hidden layer h is first used with S serving as the input layer and A

serving as the output layer. To define the width of each layer, we exploit the next useful

empirical equation |h| =2 √
|S||A|+ α. Each hidden layer has a number of nodes, the

first hidden layer for DNN with two hidden layers has a |S|2/3|A|1/3 + α nodes and the

second has a |S|1/3|A|2/3 +α nodes. In this manner, we can determine how many hidden

layers are necessary for each set of nodes. For instance, less than 200 nodes only require

three hidden layers, where the associated layers are characterized by the functions relu

and tanh, which activate the network and give the neural network non-linear properties.

To facilitate the training of the neural network, we normalize the input onto a tiny

scale (i,e, from -1 to 1). Then, we divide the resource related inputs in state s by

the maximum Cmax = max(Cv)
v∈V

. So that the demand resources Cfj,i
of the current

V NFj,i is normalized as follow:( Ct
1

Cmax
,

Ct
2

Cmax
, ...,

Ct
|v|

Cmax
). In the similar way, the band-

width related inputs and delay related inputs are respectively divided by the maxi-

mum Wmax = max(Wv)
v∈V

and maximum dmax = max(di)
i∈I

and normalized as follows:

( W t
1

W max ,
W t

2
W max , ...

W t
|v|

W max ,
dt

1
dmax ,

dt
2

dmax ,
dt

|i|
dmax).

3.5.1 VNF/SFC placement and deployment approach strategy based

on dynamic environment features

To adapt our approach to the dynamic variations of the network, we divide each request

into time slots. Generally, the deep reinforcement system in our approach selects first the

requests, then puts all requests in Rt one after one and establishes a chain of decisions

regarding whether to accept or reject each SFC. Finally, it does the updating of the

network states. The deep reinforcement strategy of our approach is based on serialization

and backtracking methods to the process of VNF processing in SFC. Our approach is

mainly based on serialization and backtracking methods of VNF processing in SFC in

order to minimize the large discrete action space. One VNF is treated within each MDP

state transition. If any VNF cannot be placed due to insufficient resources, latency issues,

or bandwidth limitations, the request can not satisfied. Thus, the deep reinforcement

strategy of our approach backtracks to the previous state. Knowing that between every

two-time slot, there are two cases:

(1) Intra time slot: our system takes one VNF of an SFC after another to conserve the
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sequence order. MDP state is changed when a VNF is rejected or accepted. As shown

in Figure 3.5, when two requests come (such as SFC1 and SFC2) in the time slot, VNF1

is processed to place it in the node considering the resource sufficiency of the hosting

server or VM, and the bandwidth capacity by the NFV deep agent. An action is then

passed to set the VNF1 on the appropriate VMs. No rewards are returned to our system

agent as SFC1 is not fully deployed. Therefore, the system enters state st+1, where the

reward U(st, a) = 0. In state St + 1, if no action is taken then SFC1 is rejected. This

is either because there are no VM nodes with enough resources to embed the VNF2, or

other constraints are not met (see ILP in pages 67 and 68). While, SFC2 is successfully

deployed by the same method in st + 3 with a reward that is the throughput of SFC2

minus the cost of the resource consumption, U(st + 3, a) = Wr2P2 − Cost(St+3, a).

To avoid multiple VNF instances, in order to improve the resource utilities and also

to choose the nearest node for the VNF instance which minimizes the traffic and the

latency, many SFCs can share the same VNF and in the same node. In this case, the

same procedures are put in place to embed the VNFs into chain in intra and inter slot

as shown in Figure 3.5.

Figure 3.5: The procedure of our model in different time slots

(2)Inter time slot: it is the time in which no request is received through a number of

consecutive time slots. So, the network state does not change and no action can happen.

As shown in Figure 3.5, at every two-time slots (i.e, τ +k,τ +k +1 ) the system removes

the timeout request and retrieves the resources. In the next time slot, a new request

arrives and the agent takes state transition and according to constraints gives an action
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or rejected the SFC. Then, a reward is calculated in two cases as follow:

U(st, a) =

 −σtC(st, a) + wriPri , si ri is accepted

0 riis rejected or not fully deployed.
(3.10)

where σt is a binary variable that defines the time slot transitions to state st, and

C(st, a) is the total cost as defined in equation 3.9. In the same context, we introduce

the reward function at state st taking into account its effect on future decision reward as:

Ust =
∑
i=0

γiU(st, a) (3.11)

with γ ∈ [0, 1] is the future reward discount factor. Algorithm 1 summarized the whole

procedure of our approach, allowing the NFV system to adaptively provision SFCs for

different requests with different QoS requirements [101] based on the sequencing and

backtracking methods.

3.5.2 Training procedure

The training procedure is divided into episodes. In each episode, all state transitions

are saved in a buffer and used for training until that episode is over. During train-

ing, the PG adaptation optimizes the SFC deployment quality based on the gradient

calculated from the deployment estimates. The main objective is to set a policy that op-

timizes the ultimate reward at the conclusion of a series of state transitions. The policy

is denoted by the formula: πΘ = P (a|s, Θ). This equation expresses the probability of

action a in the state s under parameter Θ. So the objective function is defined as follows:

ȷ(Θ) =
∑

t

πΘ(s, a)R(t) (3.12)

It represents the final reward for each episode. The policy gradient which parameterized

by Θ is formulated as follows:

▽Θȷ(Θ) = (∂ȷ(Θ)
∂Θ1

, ...,
∂ȷ(Θ)
∂Θn

) (3.13)
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Where the gradient descent of the parameter Θ is updated as follows

Θi+1 = Θi + α▽Θiȷ(Θi), (3.14)

α is the learning rate, which can be modified according to the convergence speed of the

training process. The ascending gradient related to the product sampling probabilities

and the cumulative reward associated with selected actions based on the PG algorithm

aims to maximize the final reward ȷΘ. Therefore, policies with high-reward actions

are considered in the future. At the end of each episode, the total state reward st is

calculated and transmitted to the agent. In these episodes, our system agent is trained

until the convergence of the reward. During this period, the reward does not decrease,

for that we add the discount factor γ = 1, and the noise machine to improve the training

effect, as a probability ϵ ∈ (0, 1) to select a random action at or choose at = P (a|s, Θ).

3.6 Simulation and results

3.6.1 Network description and data-set

To carry out a simulation giving reasonable results, we propose an NFV network topology

simulation based on tree architecture. We use stable-baseline3 [102] and the Proximal

Policy Optimization (PPO) algorithm [103]. In our topology of network, there are three

layers of switches for server connections. We count the number of VM nodes |V |(host or

POP) from 24 to 500, with [1000, 5000] of CPU resource and [10.000, 50.000] of memory,

each node have [1, 500] units of CPU resource and [1, 64] units of memory. We set also

the intra-pod delay between 40 to 100 µs and inter-pod delay between 50 to 200µs.

In our approach of VNF placement and SFC request deployement, we used from 1 to 6

categories of VNFs to create from 20 to 200 SFC request. Whereas, there are 6 cate-

gories VNFs (i.e, firewall, NAT, IDS, Load balancer, WAN optimizer, and low monitor)

[104] [105] [106]. These requests are characterized by Qos requirements including latency

and throughput. We assume that each VNF instance has a fixed service rate µ ranging

from 100 to 1000. In each episode, we use from 1000 to 60000 time slots. We assume

that each request has a packet arrival rate ranging from 1 to 100 packets/s. To check

the importance of our Parallel Bi-state module deep reinforcement learning approach,
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we compared it with GPLL (a greedy-based policy to find a path with the lowest la-

tency)algorithm and NGSP(non-recursive greedy) algorithm as a baseline which ensures

placing VNF of the SFCs in the nodes used with high utilization rates of the resources.

Our simulation platform is a Python-based framework and involves Tensorflow to build

the architecture of the Parallel Bi-state module and to devote deep neural network. All

the following experiments were performed on an Intel(R) Core(TM) i7-6850K with 6

cores 12 threads and Ubuntu as operating system.

3.6.2 Evaluation control parameters

We have three main parameters of evaluation control which are the number of nodes,

the number of VNFs and the resources (CPU, memory):

- VM nodes number: the number of nodes that directly affects the cost of resources

(CPU, memory) which controls the reward. Hence, when the number of nodes is de-

creased, the reward is increased.

- VNF number: the number of VNFs affects the number of trials and mainly the number

of episodes. Indeed, when the number of VNFs increases in each request, the number of

episodes also increases, as well as the requirement of each episode in bandwidth, latency,

throughput, and resources.

- resources (CPU, memory): the resources also present themselves as a setting parameter

which control the reward and the cost in our network.

While the evaluation of the effectiveness of our approach is carried out by measures

dedicated to the execution environment we used (reinforcement deep learning) which

are the reward and cost (see equation 3.15 and 3.16).

3.6.3 Evaluation measures

In order to evaluate the effectiveness of our approach, we calculate the total throughput

of accepted requests. Also, the use of the PG algorithm in our approach additionally

offers two evaluation measures which are cost and reward.
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3.6.3.1 Reward

At each network, a captured environment state is processed by the agent. If this state

meets all SFC request requirements (capacity, bandwidth, resources, etc.), a reward is

returned and a cost to the agent with the appropriate selection of VNF placement in

VM (host). As a result, an SFC is generated from the state st with reward U(st, a) with

action a denoted as follows:

U(st, a) = WrPr − Cost(st, a) (3.15)

Where WrPr is the throughput of SFC, and Cost(st, a) is the resource consumption cost.

3.6.3.2 Cost

Our work requires determining the cost of the consumed resources (CPU, memory, etc.),

as well as the cost of the bandwidth occupied by the VM server to evaluate the perfor-

mance of our approach. Generally, we can define the resource consumption cost by the

sum of VNF placement cost in time slot τ and host VNF v as follows:

∑
τ=1

∑
v∈V

zv,τ (cCv + wWv) (3.16)

where c is the unit cost of VM resource, and w is the unit cost of bandwidth.

3.6.3.3 Throughput

The total throughput of accepted requests is a measure of the rate of accepted requests

for bandwidth request Wr with marked Time to live (TTL) which can be defined as

follows: ∑
r∈R

yrWrτr, (3.17)

with yr is the binary variable set to 1 if request r is accepted, 0 otherwise.
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Figure 3.6: Evaluation data-set of request

3.6.4 Experimentation and results analysis

Training efficiency: To test the training operation in our approach, we apply it at

different scales of networks with a different number of nodes or according to operating

servers nodes as illustrated in Figure 3.6. We divide the learning network according to

episode length to show the rewarding result according to operating server nodes.
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Figure 3.7: The evolution of episode reward as a function of episode length in our approach.

Figure 3.8: The effect of using LSTM module with MDP

The curves in Figure 3.7 show that the average episode reward is slightly increased as the

average episode length increases while the average server operation (operating-server-

mean) increases with a drop when peaking at the average episode length (ep-len-mean)

level 271 which confirms that the means of operating server varies according to the qual-

ity of service offered and not according to the length of the episode. Moreover, Figure 3.8
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confirms the importance of the integration of LSTM with MDP to guarantee the opti-

mization of the reward results obtained compared to classic reinforcement learning(RL).

Total cost: Figure 3.9. can intuitively illustrate the evolution of server cost accord-

ing to operating servers for each request. As is evident in this figure, the total cost

increases as the average value of operating servers increase from 91.1 for 1.48 avg oper-

ating servers to 143 for 1.93 avg operating servers. This total cost is unevenly divided

over 3 resources CPU cost, memory cost, and bandwidth cost. The CPU cost represents

the highest percentage of total cost by 82% at the 1.48 operating servers level while the

bandwidth and memory cost represent respectively 5.59% and 11.13% of the total cost

at the same level. Confirming these results, Figure 3.10 shows that the CPU is always

the most expensive among the other resources (memory, bandwidth) because it works

on a server basis where each server processes data via its processor. This difference in

the cost of resources can be explained by the possibility of controlling memory consump-

tion, bandwidth (space) by reuse or integration while the processor could not share their

functionality with more servers to control their cost.

Acceptance ratio: Figure 3.11 shows the SFC request acceptance rate according

Figure 3.9: The total cost of operating servers for each request in our approach

to the means of operating servers. The decreases in request acceptance rate when the

average operating server increases are explained by the saturation of these servers and

their inability to accept other requests. Also, the comparison between the actual value

and new value(estimation value of PBDRL) shows the efficiency of our approach to im-

proving the request SFC acceptance ratio. However, there is a slight increase in level

1.6 operating servers since the prediction error could not be avoided. Figure 3.11 adds
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Figure 3.10: The average cost of different resources in our approach

a comparison between the acceptance rate of our approach and First Fit to show the

importance of using LSTM as a module with deep reinforcement learning.

Figure 3.11: SFC request acceptance ratio

Reward: Concerning the reward, Figure 3.13 depicts the evolution of the reward as

a function of bandwidth. The figure clearly shows that the reward increase with the

88



Introduction

Figure 3.12: comparison of SFC request acceptance ratio between our approach and First
Fit algorithm

bandwidth augmentation.

In Figure 3.14, we compare the reward of our approach with the NFV deep approach

and First Fit. This comparison shows the effectiveness of our approach by 60% more

than the NFV deep approach and 61% than the First Fit algorithm. So, for 1000 time

slots per episode until 6000-time slots per episode, the reward of our approach increases

quickly compared to NFV deep approach.

Figure 3.13: Average reward of the request according to bandwidth in our approach.
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Figure 3.14: Average reward for each request in our approach compared to NFV deep algo-
rithm and First Fit algorithm

Figure 3.15: comparison between the SFC request throughput of our approach (PBDRL)
and the algorithm of NFV deep and First Fit

Table 3.4: Sets of test data collections

Average throughput
Time slot per-episode 1000 2000 3000 4000 5000 6000

Our approach 1.55 1.56 1.58 1.59 1.57 1.59
NFV deep 1.4 1.41 1.42 1.41 1.43 1.43
First Fit 1.12 1.15 1.25 1.3 1.36 1.37
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Average throughput: the average throughput as a quality of service parameter helps

to illustrate the effectiveness of our approach to optimize the placement and deploy-

ment of SFC requests in order to minimize latency and network throughput in a cloud

infrastructure. As shown in Figure 3.15 and Table 3.4, the average throughput of our

approach is higher than other NFV deep and First Fit at each time slot per episode.

So, the average throughput of our approach reaches 1.59 for 6000-time slots per episode,

1.43 for NFV deep approach, and 1.37 for First Fit approach.

Figure 3.16: Error ratio for each request in our approach compared to NFV deep algorithm
and First Fit algorithm

In Figure 3.16, we try to show the efficiency of our approach by extracting the error

rate in comparison with the algorithm of NFV deep and First Fit. As illustrated in

the experimental results, the error rate of our approach is low compared to the NFV

deep and First Fit algorithm due to the high precision mechanisms of our approach.

The error rate of our approach increases slightly with episode length, the drop made at

episode length = 275 can be explained by the agent’s ability at this point to respond

and respect all the network constraints while minimizing the error ratio.

3.6.5 Limit of our approach

Our model is characterized by an integrated architecture that guarantees a very powerful

and efficient prediction policy. This policy is based on the use of two modules in parallel

to capture the state of the NFV environment which are: MDP to capture the spatial
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state of the environment and LSTM to capture the temporal or historical long-term

state. Also, our approach ensures high accuracy considering the filtering performed by

the forget gate of LSTM and the policy gradient used by the agent to make the best

decision. However, some issues are not solved by our approaches such as the problem of

certainty and the problem of security which is a recurrent and classic problem.

3.7 Conclusion and prospects

3.7.1 Summary

In this work, we studied the consistency of the deep learning reinforcement strategy with

the problem of VNF chaining and the SFC requests deployment in a cloud network. Our

Parallel Bi-State Deep Reinforcement Learning approach decreases the latency by im-

proving network throughput and SFC request acceptance rate. Concisely, our approach

consists of (1) ILP formulation for VNF placement and chaining and (2) placement

prediction, and deployment of SFC requests by deep reinforcement learning based on

policy gradient (PG) for action decision-making (placement of VNF for an SFC request)

considering the state of the environment and their history which is captured using MDP

and LSTM.

3.7.2 Prospects

There are two possible directions for our future work. In order to provide practitioners

and academics with more knowledge on how to solve the problem of the Reinforce-

ment learning for SFC Placements and Deployments, we first intend to conduct a more

in-depth comparative study, on other standard and recent data-sets. In the second direc-

tion, we intend to conduct further studies utilizing VNF data-sets for SFC Placements

and Deployments data-sets from different sources.
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Chapter 4

Hybrid approach for VNFs

placement and chaining

considering SFC migration cost

4.1 Introduction

The consolidation of VNFs in VM implicitly requires taking into consideration a pre-

defined order of VNFs to avoid violating SLAs and to ensure proper functioning of the

requested network service. Depending on the requested network service, an SFC which

consists of a series of VNFs connected to one another in a predefined order is generated.

For this, each placement or migration of new VNF should be maintains the same order in

the SFC and SLAs are respected. In this regard, we propose a new approach combined

FCA and Fuzzy Inference System (FIS) called Fuzzy-FCA to meet the constraints of

VNF placement in VM and Bi-state Deep Reinforcement Learning (PBDRL) algorithm

to place and migrate VNFs in chain. More precisely , our proposal aims at placing and

consolidating the VNFs in a chain according to a predefined order and ensuring the SFC

requested quality of service.

Fuzzy FCA aims at consolidating the VNF in the smallest number of VMs so that

the number of active virtual machines is reduced and the exploitation of resources is

enhanced by improving the load balancing. In this way, the latency, the cost of migra-

tion and resource and the consumption of energy are reduced. PBDRL aims at placing
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and chaining the VNF according to predefined order of VNF so that end to end delay

is minimized and the quality of service requirements are verified. The rest of chap-

ter is organized as follows: In section 4.2, we first describe the VNF placement, VNF

consolidation, VNF chaining and VNF migration problems before presenting our hybrid

algorithm which combines the algorithms proposed in the precedent chapters to improve

the placement and chaining. In section 4.3, we explain the operation of our proposal

which uses fuzzification, inference, defuzzification to improve the resource utilization,

reduce the delay and energy consumption, etc. Section 4.4 and 4.5 present simulation

we done to measure and discuss the performance of our approach. Section 4.6 is devoted

to conclusion.

4.2 Model Description

In this approach, we combine between two models we previously proposed in the follow-

ing way: the Fuzzy FCA model is used to consolidate the VNFs in the most appropriate

VM by considering the capacity constraints and resource availability before carrying out

the chaining [11]. Next, we apply the PBDRL model to place and chain the VNFs that

are already consolidated in the VMs according to the requested network services. This

approach aims at improving the gain and the quality of service (Qos) while ensuring

the minimization of the resource and migration costs, the energy consumption, the la-

tency, and the throughput. For this, we first use the FCA to group the VNFs with the

network services attached to them and exclude the others. Then, we apply Fuzzy-FCA

to consolidate candidate VNFs into the smallest number of VMs most appropriate VMs

considering their capacity and available resources. After that, we solve the problem of

placing VNFs in a chain respecting the predefined order of VNFs in a SFC in order to

meet the requirements of the migration and the requested network service. We pro-

pose the PBDRL algorithm based on neural network architecture to model the chaining

aspect of VNFs in SFC and deep reinforcement learning to place VNFs in the most

appropriate node that is chosen by the agent (PG). Figure 4.1 describes the roles of the

combined approaches in our proposal.
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Figure 4.1: Hybrid VNF placement architecture.

4.2.1 Adopted algorithm for VNF placement and chaining

In this section, we identify the algorithms adopted for placement and chaining of VNFs

for each SFC request. First, the VNFs should be place in the corresponding NSs accord-

ing to their type by applying the FCA algorithm. Next, we extract the VNF candidates

that are active and usable in the network service for use as an object in the second

Fuzzy-FCA procedure. Second, VNF candidates are consolidated into the most appro-

priate VM considering capacity constraints and resource availability according to Fuzzy

Inference System (FIS) based Fuzzy-FCA algorithm. To react with the environment, we

use swarm intelligence algorithm which can perceive the indicated environment state by

sending an internal stimulus. Finally, we use a PBDRL algorithm to place and chain the

VNFs according to a predefined order which is given by the requested SFCs. The main

objective is to solve the problem of VNFs placement respecting the chaining of VNFs

and the multiplicity of VNF instance constraints, the congestion at the links and nodes

levels, the resources, capacity and availability constraints.

4.2.2 VNFs placement and consolidation

As we have seen previously, each VNF is used to perform a specified network service.

For this, we use an FCA algorithm to place the VNFs taking into account the relation-

ship between each VNF and NS according to the context (O, A, I) disseminated by the
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concept C. Then, we apply the rules of dependence, weight, maximum coverage and can-

didate concept in order to remove and eliminate unnecessary VNFs. In what follows, we

apply the Fuzzy-FCA algorithm to consolidate the VNFs in the most appropriate VMs

according to their efficiency determined by the parameter Packaging Efficiency which is

computed as follows:

PackagingEfficiency = V NFnumber

numberofV Mactive
(4.1)

The different rules of Fyzzy-FCA were applied in order to estimate the most suitable

placement of VMs that is limited by a confidence threshold=0,6.

4.2.2.1 VNF placement and migration problem

The NFV network is characterized by a management and orchestration of predetermined

resources which poses the problem of VNF placement optimizing the routing path that is

used for SFC deployment. The arrival of new service requests requires a modification in

the placement of some VNF instances and in the path of SFC to meet the requirements

and optimize the exploitation of resources. These modifications are made by MANO, and

called migration. The placement problem differs from the migration problem because

the migration problem is starting from the current placement to find the new placement.

Generally, the system operation requires more consideration of the migration than the

placement. The placement and the migration problems are two problems that cannot

be separated since both of them affect the network performance and cost. These two

problems can be detailed as follows:

A. VNF and SFC placement problem: the VNF and SFC placement problem is

defined in particular by an NFV network with a set of service requests, VNF placement

strategy and SFC sought, considering dynamic routing to minimize the deployment cost

under the SFC chaining constraints, time frame, and available resources. Notably, the

placement problem arises during the initial deployment of VNFs and SFCs in the net-

work.

B. Migration problem of VNFs and SFCs: the migration problem consists in par-

ticular of an NFV network with a set of service requests, the current VNF and SFC

placement matrix, sought VNF and SFC placement strategy, considering dynamic

routing to minimize the cost of deployment under the chaining constraints of SFC, the
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deal and the available resources. This problem arises when it is necessary to move a

VNF from one location to another for performance or resource management reasons.

4.2.2.2 SFC/VNF migration problem model

To identify migration problem constraints and to optimize the objectives, we propose to

add the following lines to ILP model described in Chapter 3. The new parameters are

described in table 4.1:

• m = (mvv′di) is the migration decision matrix. If the ith VNF is moved from v to

v′, mvv′di = 1 else mvv′di = 0

• x = xed is the routing decision matrix. xed = 1 if request d uses link e, otherwise

xed = 0.

• z = zvdi is the SFC placement matrix after migration. zvdi = 1 if node v provides

fdi else zvdi = 0.

The migration of ith request VNF d(fdi) is from node v to node v′ if only node v provides

fdi for the current SFC placement and for the new SFC placement. The current SFC

allocation for the service request set is defined by π = πvdi according to the following

equation:

πvdi =

 1 if node v provides VNF fdi

0 otherwise
(4.2)

with the following conditions:

mvv′di ≤ πvdi, ∀v,∀v′, ∀d,∀i. (4.3)
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mvv′di ≤ zv′di,∀v,∀v′,∀d,∀i. (4.4)

πvdi + zv′di − 1 ≤ mvv′di,∀v,∀v′,∀d,∀i. (4.5)

Migration of VNF fdi from v to v′ requires high cost. To minimize this cost, we first

assumed that the system uses a minimum weight path for transporting the data and the

VNF instance in the new placement. Then, we identify the path cost ρvv′ from v to v′

and the data size Φf for VNF instance f . We can derive the VNF instance migration

cost as follows:

Gvv′fdi = ρvv′Φfdi (4.6)

Therefore, the migration cost solution is written according to the following equation:

Am1 =
∑

v,v′,d,i

mvv′diGvv′fdi (4.7)

the migration problem also includes the migration deployment cost as follows:

Am2 =
∑
d,v,i

bdzvdinfdikv (4.8)

where nf , kf are respectively the number of cores required to process one traffic unit

of VNF type f and the cost of the providing one core at node v. Am1 consists in min-

imizing the cost of migration, Am2 consists in minimizing the cost of deploying a new

application. Am3 is the reallocation cost which is defined by the sum of the migration

and deployment costs:

Am3 = Am1 + Am2 (4.9)
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Table 4.1: Migration parameters and their description

Parameters Description

bd The bandwidth capacity of demand
d

πvdi The state of the current SFC place-
ment matrix: πvdi=1 if node v pro-
vides V NF fdi else πvdi = 0.

ρvv′ the low weight path from v to v′

Gvv′fdi The migration cost of fdi from v to
v′

Φf is the data size of VNF f type
fdi the ith VNF of demand d

4.3 VNF migration and chaining based on Fuzzy-FCA sup-

ported by FIS

After identifying the constraints and formulating the VNF migration and chaining prob-

lem, we propose Fuzzy-FCA approach to improve the VNF migration and chaining pro-

cess during the placement. This approach uses Fuzzy Inference System (FIS)to select

suitable VNFs according to service requirement and SFC. It is characterized by flexibility

of decision which aims at minimizing uncertainty and finding best decision in minimum

number of rounds. At the beginning, classification and grouping of VNFs with the ap-

propriate network service is done by FCA which is based on binary values. Then, fuzzy

inference system aggregates the various VNF migration and chaining constraints based

on fuzzy values associated with linguistic terms to extract the output that describes

whether the VNF placement is favorable or not. Finally, it identifies the best VNF

placement in VM by defuzzification application. Fuzzy inference system consists of 3

elements:

1) Fuzzification is used to transform the input light values to fuzzy values.

2) Fuzzy Rule Matrix generates fuzzy number corresponding to replaceable output using

fuzzy input variables.

3) Defuzzification is the process of transforming these values back to clear values again.

This technique differs from other techniques in the input and output parameters which

are fuzzy and which are referenced by description such as high cost, wide bandwidth,

moderate flow, etc. In our system, there are 5 inputs and 2 outputs of FIS which are:

-Input1: constraint of average delay (Dm) is the total delay for all VNFs when an SFC
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is deployed.

-Input2: constraint of requested delay (Dd) is the end-to-end delay for all VNFs included

in the SFC.

-Input 3: constraint of cost requested (Cd) to meet the requirements of a service.

-Input 4: constraint of used bandwidth B which identifies the capacity of connections

between nodes.

-Input 5: constraint of capacity C which corresponds to a capacity of VM.

-Output1: VNF delay (D0) is the delay of a single VNF used to deploy the requested

SFC.

-Output2: requested SFC service cost (Cs) which can measure system performance

We propose to set U as the universe of discourse, F are the fuzzy sets which belong to

U and which can be represented by membership function uF : x ∈ [0, 1]. After identi-

fying the inputs and outputs, we can move on to the next step of choosing appropriate

membership function (MF) for each input and output. First, to model the average de-

lay by fuzzy logic, we use three fuzzy sets: F1, F2, and F3 which present membership

functions: uF1(x), uF2(x), and uF3(x). These membership functions are expressed by

the following linguistic labels: low, moderate and high, where x is number of VNFs. As

shown in Figure 4.2, uF1(x) is low for x=200, uF2(x) is membership function moderate

for x = 500, and uF3(x) is membership function high for x = 1000. F4, F5, and F6 are

the bandwidth fuzzy sets which include the membership functions uF4(y), uF5(y) and

uF6(y), where y is the number of VNFs. Where, uF4(y) is limited for y=100, uF5(y)

is good for y=300, and uF6(y) is exceeded for y=500. As shown in Figure 4.3, F7, F8,

and F9 are the fuzzy sets to model the cost constraint that is quantified by membership

functions uF7(z), uF8(z), and uF9(z), where z is the number of VMs. These sets are

associated by the following terms: acceptable, profitable and expensive. F10, F11, and

F12 are the fuzzy sets used to model the delay constraint of each VNF in SFC (D0)

which is quantified by membership function uF10(q), uF11(q), and uF12(q) where q is

the number of VNFs. These sets are defined by the terms: low, moderate, and high.

As shown in Figure 4.4, the capacity constraint is modeled by F13, F14, and F15 which

are associated with the membership functions uF13(t), uF14(t), and uF15(t), where t

is the number of VMs. These sets are classified in 3 linguistic terms: sufficient, largely

sufficient and non sufficient. Profit constraint presents the material gain of placement

of VNF in the most suitable VM which is modeled by the fuzzy set F16, F17, F18

and associated with the membership functions uF16(s), uF17(s) and uF18(s) where s
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represents the output cost as illustrated in Figure 4.4. These memberships are identified

by the following linguistic labels no profitable, limited, and profitable. The profit con-

straint induces three consequences for fuzzy sets F19, F20 and F21 which is expressed

respectively by conter-offer, reject and accept.

Figure 4.2: Delay memberships in term of VNF

Figure 4.3: Cost memberships in term of VM
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Figure 4.4: cCpacity memberships in term of VM

Figure 4.5: Cost output memberships in term of VM

4.3.0.1 Fuzzification

Fuzzification is the step of dividing input variables into categories that makes logical

sense by determining the membership functions. These membership functions sets are

determined and calculated according to the following equations:

uF1(x), uF4(y), uF7(z), uF10(q), uF13(t), uF16(s) =


0 if x ≻ d

d−x
d−c if c ≤ x ≤ d

1 if x ≺ c

(4.10)
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uF2(x), uF5(y), uF8(z), uF11(q), uF14(t), uF17(s) =


0 if x ≤ 0

b−x
b−m if m succx ≻ b

0 if x ≥ b

(4.11)

uF3(x), uF6(y), uF9(z), uF12(q), uF15(t), uF18(s) =


0 if x ≺ a

x−a
b−a if a ≤ x ≤ b

1 if x ≻ b

(4.12)

where a and b are respectively the minimal and maximal of membership in the S-

trapezoid shape. For triangular shape, a and b are the minimal membership functions

and m is the maximal membership. In Z trapezoid shape, c is the minimal membership

and d is the maximal membership.

Inference engine

FIS is a next step to apply the inference rules on the fuzzy input. It is used to generate

fuzzy outputs using fuzzy set theory, if and then rules, fuzzy reasoning process. The

rules of inference represent the computational function of the system which is based on

the experiences and the previous observations and the role of experts. Each rule consists

of two concepts; If contains the circumstances and Then contains the consequences. We

can present the inference engine for VNF placement as follows:

R1:if uF1(x) and uF4(y) and uF7(z) and uF10(q) then F17

R2: if uF1(x) and uF4(y) and uF7(z) and uF11(q) then F17

R3: if uF1(x) and uF4(y) and uF8(z) and uF10(q) then F17

R4: if uF1(x) and uF4(y) and uF8(z) and uF11(q) then F17

R5: if uF1(x) and uF4(y) and uF9(z) and uF10(q) then F17

R6: if uF1(x) and uF4(y) and uF9(z) and uF11(q) then F17

R7: uF1(x) and uF5(y) and uF7(z) and uF10(q) then F17

R8: if uF1(x) and uF5(y) and uF7(z) and uF11(q) then F17

R9: if uF1(x) and uF5(y) and uF8(z) and uF10(q) then F17
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R10: if uF1(x) and uF5(y) and uF8(z) and uF11(q) the F17

R11: if uF1(x) and uF5(y) and uF9(z) and uF10(q) the F17

R12: if uF1(x) and uF5(y) and uF9(z) and uF12(q) the F17

R13: if uF1(x) and uF6(y) and uF7(z) and uF10(q) then F17

R14: if uF1(x) and uF6(y) and uF7(z) and uF11(q) then F17

R15; if uF1(x) and uF6(y) and uF8(z) and uf10(q) the F17

R16: if uF1(x) and uF6(y) and uF8(z) and uF11(q) then F17

R17: if uF1(x) and uF6(y) and uF9(z) and uF10(q) then F17

R18: if uF1(x) and uF6(y) and uF9(z) and uF11(q) then F17

R19: if uF2(x) and uF4(y) and uF7(z) and uF10(q) then F17

R20: if uF2(x) and uF4(y) and uF7(z) and uF11(q) then F17

R21: if uF2(x) and uF4(y) and uF8(z) and uF10(q) then F17

R22: if uF2(x) and uF4(y) and uF8(z) and uF11(q) then F17

R23: if uF2(x) and uF4(y) and uF9(z) and uF10(q) then F17

R24:if uF2(x) and uF5(y) and uF9(z) and uF11(q) then F17

R25: if uF2(x) and uF5(y) and uF9(z) and uF10(q) then F17

R26: if uF2(x) and uF5(y) and uF7(z) and uF11(q) then F17

R27: if uF2(x) and uF5(y) and uF8(z) and uF10(q) then F17

R28: if uF2(x) and uF5(y) and uF8(z) and uF11(q) then F17

R29: if uF2(x) and uF5(y) and uF9(z) and uF10(q) then F17

R30: if uF2(x) and uF5(y) and uF9(z) and uF11(q) then F17

R31:if uF2(x) and uF6(y) and uF7(z) and uF10(q) then F17

R32: if uF2(x) and uF6(y) and uF7(z) and uF11(q) then F17

R33: if uF2(x) and uF6(y) and uF8(z) and uF10(q) then F17

R34:if uF2(x) and uF6(y) and uF8(z) and uF10(q) then F17

R35:if uF2(x) and uF6(y) and uF9(z) and uF10(q) then F17

R36: if uF2(x) and uF6(y) and uF9(z) and uF11(q) then F17

R37: if uF3(x) and uF4(y) and uF7(z) and uF10(q) then F17

R38: if uF3(x) and uF4(y) and uF7(z) and uF11(q) then F17

R39: if uF3(x) and uF4(y) and uF8(z) and uF10(q) then F17

R40: if uF3(x) and uF4(y) and uF8(z) and uF11(q) then F17

R41: if uF3(x) and uF4(y) and uF9(z) and uF10(q) then F17

R42: if uF3(x) and uF4(y) and uF9(z) and uF11(q) then F17

R43: if uF3(x) and uF5(y) and uF7(z) and uF10(q) then F17
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R44: if uF3(x) and uF5(y) and uF7(z) and uF11(q) then F17

R45: if uF3(x) and uF5(y) and uF8(z) and uF10(q) then F17

R46: if uF3(x) and uF5(y) and uF8(z) and uF11(q) then F17

R47: if uF3(x) and uF5(y) and uF9(z) and uF10(q) then F17

R48: if uF3(x) and uF5(y) and uF9(z) and uF11(q) then F17

R49: if uF3(x) and uF6(y) and uF7(z) and uF10(q) then F17

R50: if uF3(x) and uF6(y) and uF7(z) and uF11(q) then F17

R51: if uF3(x) and uF6(y) and uF8(z) and uF10(q) then F17

R52: if uF3(x) and uF6(y) and uF8(z) and uF11(q) then F17

R53: if uF3(x) and uF6(y) and uF9(z) and uF10(q) then F17

R54: if uF3(x) and uF6(y) and uF9(z) and uF11(q) then F17

Defuzzification

After obtaining the inference membership functions outputs, we go to the defuzzification

step to convert the fuzzy outputs to a crisp values. In this step, the fuzzy outputs of

the fuzzification step are transformed to net values. Output value is specified by x=500,

y=500 , z=400 and q=400 according to an expert determining the clear values of VMs

in terms of capacity and bandwidth and VNF in terms of delay and cost. After the

aggregation, we extract the control action by the following values:

uca=1,1,1, 0.5, 0,0,0,0,0,0

Finally, we apply center of gravity defuzzification to determine crisp output as follows:

Cr − output =
∑N

n=1 Inun∑N
n=1 un

(4.13)

4.3.1 VNF chaining for SFC request problem

In this chaining step, we propose a deep reinforcement learning-based algorithm which

uses MDP and LSTM in parallel to capture the current and historical environment tran-

sitions that it send to the agent for processing and making decision whether to execute

a placement action or not according to the indicated conditions. If the action is ac-

cepted the environment returns a reward. If the action is not accepted, the agent does a

back-track. Each SFC request is divided into an episode which includes the placement
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of VNFs in a node. During training, the PG adaptation optimizes the SFC deployment

quality based on the gradient calculated from the deployment estimates. The main

objective is to set a policy that optimizes the ultimate reward at the conclusion of a

series of state transitions. The policy is denoted by the formula: πΘ = P (a|s, Θ). πΘ

expresses the probability of action a in the state s under parameter Θ. Figure 4.6 shows

two VNF chaining modes for an SFC request. In mode 1, two VNFs from different VM

nodes are linked. In mode 2, the link is between two VNFs in the same VM node. Note

that node 2 improves the quality of service and communication efficiency, at the cost

of interference in power consumption and congestion at node level or at the link level

as shown in the figure 4.6. Therefore, we should find an effective solution to placing

and consolidating VNFs in a chain without exceeding SLA. Our approach deals with

these issues and with the dynamic variations of the network in different time slots. A

serialization and backtracking method is used to process a single VNF at each MDP

and LSTM transition state. Our system moves to the processing of next VNF in SFC

if the conditions are favorable, otherwise it returns to the previous network state. Our

PBDRL approach processes each SFC request in different time slot. At every two time

slots, two cases can be defined as:

(1) Intra time slot: when the requests arrive, the NFV system starts by, firstly, removing

the timeout requests and refreshing the network state through freeing the resources oc-

cupied by these requests. Then, it processes these requests one after the other according

to the time of their arrival. The agent processes the incoming network state and finds

the VM node with sufficient resources to place the VNF. Afterwards, the agent executes

the action of placing the VNF in the found VM node candidate. The system moves to

the next state, the agent does the same processing until the last VNF of SFC is placed.

If a VNF does not find the necessary requirements to be placed in a VM node, no action

is taken and SFC is rejected. The system backtracks to the state st and releases the

resource occupied by the previous placed VNFs. The following SFCs are treated in the

same way.

(2) Inter time slots: when no SFC request arrived at two time slots, the system removes

the timeout request and releases the occupied resources. In this case, no action is taken

and no state transition is performed.

In the case where no action is to be taken, the state is not changed. When the new

requests are received, a state transition occurs and the reward calculation is performed
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Figure 4.6: VNF consolidation

on acceptance or rejection over a series of time slots as follows:

R(sT , a) =

 −σT cost(sT , a) + wriPri , si ri is accepted

0 riis rejected
(4.14)

Where wrPr is the throughput of SFC, and σT is a binary variable indicating whether

the time slot changes after state st.

4.4 Implementation and experiment

In this section, we show the effectiveness of our VNF placement and chaining approach

in cloud infrastructure in terms of minimizing the cost of physical and virtual resources,

and delay and augmenting throughput. To implement our approach, we used a synthetic

data-set which is randomly generated. This data-set consists of a number of VM nodes

which varies from 100 to 1300, with [1000, 5000] of CPU resources and [10.000, 50.000]

of memory. Each each node have [1, 500] units of CPU resource and [1, 64] units of

memory. We also set the intra-pod delay between 40 to 100µs and inter-pod delay
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between 50 to 200µs. We compared our approach with other solutions to properly

assess its effectiveness based on 4 parameters which are: cost of resources expressed

in Equation(3.16), reward expressed in Equation(3.15), and throughput expressed in

Equation(3.17).

4.4.1 Parameter of SFC requests

In our simulation, we use from 24 to 1000 SFC requests. Each request consists of 1 to 7

VNFs among firewall, NAT, router, IDS, load balancer (LB), WAN optimizer and flow

monitor. Also, each request requires a specific quality of service in time and throughput.

We identify the service rate of each VNF between 100 and 1000. In each episode, we

use from 1 to 60 time-slots with packet arrival rate from 1 to 100 packet/s.

4.4.2 Simulation setup

To carry out the experiments, we use the Cloud-Sim simulator with fuzzy logic toolbox.

We use the Netbeans java language and the TensorFlow Java API library to build our

NFV environment and deep neural network. For configuration, we simulate the NFV

network topology based on 3 layers of switches.

4.4.3 Result and evaluation

Table 4.2: The operation cost

Number of migration
Algorithms ILP PBDRL Hybrid algorithm

10 13 14 11.2
30 16 19 12.5
50 19 19.5 15.6
100 21 23 17
150 22.5 24 19
200 26.2 29 21.4

To evaluate the performance of our approach, we compare it with algorithms that in-

clude it such as ILP, deep reinforcement learning and PBDRL. We use ILP to provide

SFC migration optimization for a service request. PBDRL uses the optimal solution ob-

tained from the ILP for estimating the best solution for the SFC chaining and migration
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Figure 4.7: The comparison of the migration cost for our approach with ILP and PBDRL
algorithm.

Figure 4.8: The comparison of the operation cost for our approach with ILP and PBDRL
algorithm.

problem.

A.Topologies of network: We evaluate our approach on 6 topologies[107]. These

topologies consist of synthetic network Barabási-Albert (BA), Waxman (WA) and Erdős-

Rényi (ER) models. BA is generated by 4 primary nodes and 4 links. WA is created

with density probability =0.7. ER is created with probability generation limit=0.2. We

identify the small topologies by BAS, WAS, ERS and the large topologies by BAL, WAL,
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Figure 4.9: Reallocation cost of our approach in term of different topology.

Figure 4.10: Computation time for our hybrid approach

ERL.

B. Performance of our approach: Figure 4.7 shows that ILP realizes a migration

cost optimization greater than PBDRL algorithm and Hybrid algorithm regardless of

the number of request changes. Also, this figure reflects the overload impact on the

cost of migration and reallocation during the arrival of new request. In figure 4.8, we

observe that the operation cost of hybrid algorithm is lower than ILP and PBDRL. The

operating cost increases when the number of migrations increases, while it is lower when

the number of migrations is limited because the operating cost increases when the cost
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of deployment increases in case of migration is rare. As illustrated in Table 4.2, this

cost varies between 11.2 and 21.4 for the hybrid algorithm and between 14 and 29 for

PBDRL.

Figure 4.9 shows that ILP achieves the best reallocation cost optimization for ERS,

WAS and BAS topology respectively whereas the hybrid algorithm ensures the lowest

computation time for large topology, as shown in Figure 4.10. This can be explained by

the role and ability of the different algorithms to provide the solution which facilitates

and accelerates the training of reinforcement algorithm and to minimize the computation

time.

Table 4.3: Table of average SFC delay in three typologies

Algorithm ERS BAS WAS

Hybrid algorithm 29 30 27
ILP 27 29 26
Before migration 24 26 24

Figure 4.11: Average SFC delay in three topologies

In terms of delay, Figure 4.11 and Table 4.3 show that our algorithm has the largest

efficiency in reducing the SFC delay before the migration which decreases slightly after

the migration in 3 different typologies. This increase is explained by the complexity

of the hybrid algorithm which is based on neural network to find the best placement

and chaining of VNFs, as well as time taken for training and policy. Also, we observe

that ILP realizes more optimized delay than the hybrid algorithm after migration which

confirms their importance in the minimization of delay in the hybrid algorithm
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4.5 Discussion

We can deduce that our approach is a combination of two complementary algorithms

Fuzzy-FCA and PBDRL, each dedicated to specific objectives. The Fuzzy-FCA algo-

rithm aims to minimize the number of active virtual machines, the cost and the latency,

to balance and maximize the exploitation of resources in order to minimize the energy

consumption. While the PBDRL algorithm aims to find the best SFC request path,

minimize delay and throughput taking into account bandwidth availability, congestion

and VNF instance multiplicity. However, this combination negatively affects the effi-

ciency of some algorithms, for example, the efficiency of ILP weakens in terms of delay

and computation time when combined in the hybrid algorithm as illustrated in figure

4.6 and figure 4.7.

4.6 Conclusion

In this work, we tackled the VNF placement problem considering chaining and migra-

tion as two factors that can improve the resource utilization while reducing the delay

and augmenting the throughput. We have proposed a hybrid algorithm which con-

sists in a combination of Fuzzy-FCA algorithm and PBDRL algorithm. We first used

Fuzzy-FCA to extract the most functional VNFs in the requested network service and

consolidate them into the smallest number of VMs while respecting the resource capacity

constraints. Then we applied the PBDRL algorithm to find the best path to place and

deploy chained VNFs for an SFC request taking while avoiding congestion, increasing

throughput, and reducing delay. The evaluation results showed that our hybrid approach

improves the performance, particularly migration cost, computation time and delay for

different topologies and scales.
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Chapter 5

Conclusion and future research

directions

5.1 Introduction

This chapter presents a general summary of the most important contributions of this

thesis and discusses the work that will carry it out in the future. In Section 5.2, we

recall the contributions and objectives achieved during this thesis. In Section 5.3, we

present some ideas and proposals for future works.

5.2 Conclusion and discussion

In this thesis, we tackled the VNF placement problem gradually. At first, we treated

it as a backpack problem and worked to find the placement of VNFs according to the

conditions and constraints that may be encountered. In the second step, we extended

the placement problem and treat it considering the VNF chaining. The objective is to

put the placement problem in parallel with the chaining problem to obtain the exact and

suitable placement for each VNF in terms of resource exploitation and in terms of proper

functioning since both are dependent on each other. In this case, the placement of VNFs

should follow a predefined order of the VNFs which constitute an SFC and a specified

network service. At first, we studied the problem of placement of VNFs in all dimensions

and ramifications arriving at their extension as an SFC. We have classified it according to

113



Conclusion and Future Research Directions

several axes and algorithms used to process it and also in terms of existing technologies.

From this study, we determined the limits, weak points and the most important missing

in the previous work. To fill the gap, we proposed various approaches aiming at solving

the placement, consolidation and chaining of VNFs. As a first contribution, we dealt

with the VNF placement problem without considering the VNF chaining. We proposed

two successive algorithms, namely FCA and Fuzzy FCA. FCA is used to group and

place VNFs for a network service, whereas Fuzzy FCA is used to consolidate the VNF

candidate which are extracted from FCA process into the most appropriate VMs. Our

solution aims at minimizing the number of active virtual machines, energy consumption,

latency and resource cost while balancing the exploitation of resources in cloud data

centers. As an extension work, we tackled the problem of placement and consolidation

of VNFs by considering the chaining relationship between the different VNFs which

should follow a predefined order. We thus proposed a new approach based on deep

reinforcement learning using two modules LSTM and MDP in parallel to capture the

state of NFV environment transitions. LSTM is used to capture historical transition

states and MDP is used to capture current transition states. An agent processes these

states on the basis of policy gradient VNF placement in VM node (the action is executed

if the conditions are favorable. The approach succeeded in following a smart strategy

able to estimate the best route for the SFC request in which each VNF placed in the VM

node meets the requirements of this node (otherwise back track is executed). We also

dealt with the problem of migration to improve the VNF placement and chaining. In

this context, we have proposed the hybridization of Fuzzy-FCA and PBDRL algorithms

in order to minimize the cost and the end-to-end delay. All of our proposals are validated

by simulation showing the enhancements achieved with our approaches compared to the

existing works.

5.2.1 Future research directions

Based on the results obtained during this thesis, we propose here some ideas and re-

search directions to complete our study:

1. VNF consolidation, reoptimize the VNF placement off-line. Generally, the VNF

placement and consolidation is done on-line. The arrival and departure of SFCs modify

the resource availability. In this way, reoptimizing in an off-line manner the placement

of VNF which incurs the migration of VNFs is a challenging problem.
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2. Protection of SFCs against the failures. To cope with the failure, the VNF can repli-

cated. In this way, various by pass routes should be configured so that the requirements

are respected even after failures.
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