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Abstract

In this thesis we study power of computation in different models, our approach pertains
to complexity theory. Our contributions span multiple topics. We show that probabilistic
automaton may not ouput non-normal number from normal inputs. We analyze possible
extensions of Agafonov’ theorem. We establish a new time hierarchy for Kolmogorov time
bounded complexity. In doing so we analyze a new kind of combinatorial game called
novelty games. We present a new proof of Mulmuley’ theorem that NC is different from P
in the algebraic setting.
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Résumé

Dans cette thèse, nous étudions la puissance de calcul de différents modèles, notre approche
se rattache à la théorie de la complexité. Nos contributions couvrent plusieurs sujets. Nous
montrons que les automates probabilistes peuvent ne pas produire de nombres non nor-
maux à partir d’entrées normales. Nous analysons les extensions possibles du théorème
d’Agafonov. Nous établissons une nouvelle hiérarchie pour la complexité de Kolmogorov
temporelle. Pour ce faire nous introduisons un nouveau type de jeux combinatoriaux ap-
pelés jeux de trouvailles. Nous présentons une nouvelle preuve du théorème de Mulmuley
selon lequel NC est différent de P dans les modèles de calcul algébrique.
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All STEM thesis must start with a concise description of the problem, an on-the-nose jest
and some meta comment. I’ve never been a funny guy but I do have 20 dollars1.

Author: ChatGPT, explain concisely what is complexity theory and add a little joke.

ChatGPT: Complexity theory is a branch of theoretical
computer science that studies the resources required to solve
computational problems, such as time and space. By classifying
problems into complexity classes, such as P, NP, and PSPACE,
complexity theory helps us understand which problems are
feasible to solve and which are inherently intractable. It
provides a framework for analyzing the efficiency of algorithms
and the boundaries of what can be computed efficiently. In
essence, complexity theory asks: "How hard is it to solve this
problem?" And as any computer scientist might quip, sometimes
the answer is, "It’s so complex, even our best algorithms need a
coffee break!"

Now we can start with the thesis.
According to Merriam Webster computing means "to determine especially by mathemat-

ical means". Computability theory asks what functions can be computed. Such a question
is only relevant within the context of a specific computation model: my table calculator can
probably compute less functions than my Macbook pro2 can. According to the Church-
Turing (CT) thesis, which is a property true if and only if the physical laws of our universe
are computable by Turing machines, my Macbook pro can actually compute all functions
that can ever be computed by any device in the universe. Stuff my macbook can compute
is for instance : the maximal element of a list, the n-th prime number, the star-height of
a regular expression. Stuff my macbook cannot compute is for instance: any function of
{0, 1}∗ 7→ {0, 1} with probability 1. Also it cannot compute if a given set of Wang tiles
paves the 2D plane. Actually the set of computable functions is not specific to my Macbook,
any device which is Turing complete has the exact same set of functions. As a matter of fact,
consumer computers have been Turing complete since many decades. This then begs the
question: why do people buy new computers ?

Maybe you yourself know the answer, the catch is that modern computers run faster
than older ones. People care about the time taken to run a program but computability theory
does not, hence the need for a new field: Complexity theory. The time taken to compute a
function, or more generally the resources needed to compute a function is the object of study
of Complexity theory. It is obvious that the time taken to compute a function will depend
on the machine you use to compute it. To level the playing field we thus devise theoretical
models and we only compare different algorithms. The efficiency of an algorithm can be
measured as the number of steps it takes to finish on our theoretical model. This number
of steps may obviously depend upon the input size, the running time of an algorithm is
therefore a function of N 7→ N. Now given a specific problem we may ask what is the
best algorithm for this problem (in the sense of which one runs the fastest). Maybe for
some problems the best algorithm run in time O(n) and for some others in O(2n). Thus
given a problem we may speak of its inherent difficulty. Now remember that the difficulty
of a problem only makes sense within a certain framework/theoretical model. The task of
complexity theorists is to study the difficulty of problems in various models. It shall hence
be what we try to do in this thesis.

1not funded by the lab
2funded by the lab
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We present the three main contributions of this PhD.

• In chapter 1 we introduce notions and give relevant background to the reader.

• In part I we extend Agafonov’ theorem to probabilistic selectors and analyze possible
extensions of the Agafonov theorem to non-regular languages. [What is randomness
when you have finite memory ?]

• In part II we show an amelioration of the time hierarchy theorem for time bounded
Kolmogorov complexity and we introduce novelty games. [How does more time al-
low writing more complex strings?]

• In part III we establish a simple proof of Mulmuley’ theorem stating that Palg 6= NCalg.
[How does parallelism help in algebraic models?]

There were 4 papers written during this thesis , the content of part I and III were published
[LSS24], [Léc23] (MFCS, FTTCS), the content of II is pending publication.
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Chapter 1

Complexity preliminaries

Notations N denotes the set of integers, N>0 denotes the set of positive integersZ denotes
the set of signed integers, Q the set of rational numbers, R denotes the set of real numbers.
For any a, b ∈ N, Ja, bK denotes the set of integers i s.t. a ≤ i ≤ b. The size of a program
p, a string w or a set S are respectively denoted by |p|, |w|, |S|, for sets we may also use
Card S or #S. There is a natural bijection between programs, Turing machines, binary strings,
integers, thus when necessary we conflate programs with their binary representation, Turing
Machines, and integer. Σ is used to denote an alphabet, Σ∗ the words over that alphabet.
{0, 1} is the alphabet composed of letters 0 and 1. ε is the empty string. Let v and w be two
words, vw, v · w or v||w are all defined as the concatenation of v and w. A language L is a
subset of Σ∗.

Let f and g be two functions of N 7→N, we write

f = o(g)
def≡ lim

n→∞

f (n)
g(n)

= 0

f = O(g)
def≡ ∃c > 0, ∃n0 ∈N, ∀n ≥ n0, | f (n)| ≤ c |g(n)|

f = Θ(g)
def≡ ∃c1, c2 > 0, ∃n0 ∈N, ∀n ≥ n0, c1 |g(n)| ≤ | f (n)| ≤ c2 |g(n)|

f = ω(g)
def≡ ∀c > 0, ∃n0 ∈N, ∀n ≥ n0, | f (n)| > c |g(n)|

1.1 Boolean computation

1.1.1 Turing machines

Definition of Turing machines

We very promptly define Turing machines, for a more detailed explanation we refer the
reader to introductory books on the subject [AB06].
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Definition 1.1: Turing machine(TM)

A multi-tape Turing machine is a machine composed of k tapes and k heads for a
certain k ∈N. It is formally defined as a 7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

• Q is a finite set of states.

• Σ is the input alphabet, excluding the blank symbol t.

• Γ is the tape alphabet, where Σ ⊆ Γ and t ∈ Γ.

• δ : Q × Γk → Q × Γk × {L, R, S}k is the transition function, with k tapes and
heads.

• q0 ∈ Q is the initial state.

• qaccept ∈ Q is the accept state.

• qreject ∈ Q is the reject state, where qaccept 6= qreject.

Each of the k heads operates independently but synchronously on their own tape ini-
tially filled with blank symbols, with the transition function δ determining the new
state, the symbols to write on each tape, and the movement direction (left, right, or
stay) for each head. When one heads reaches state qaccept or qreject the TM stops.

In the following we will only reason over Turing machines whose input alphabet is
{0; 1}.

Definition 1.2: Output of a Turing machine

Let M be a Turing machine whose input alphabet is {0; 1}, let x be a bitstring of {0, 1}∗.
Consider the computation performed by M until it stops when x is initially written on
its first tape. M(x) ∈ {0, 1}∗ is defined as the bitstring written on M first tape when
M reaches the accepting state and stops.

Turing machines can be endowed with oracles to grant them additional computing power.
An oracle is any function in {0, 1}∗ 7→ {0, 1}∗, which the TM may query by writing the de-
sired input on a specific oracle tape.

Definition 1.3: Oracle Turing machines

Let A : {0, 1}∗ 7→ {0, 1}∗ be an oracle, a machine M with access to A noted MA, is
a Turing machine with a special oracle tape and a special query state. Whenever MA

gets to the query state with x written on the oracle tape, the content of the oracle tape
gets replaced with A(x).

If a property stated for TM machines also holds for all TM with oracle access then the
result is said to relativize. Several important problems in complexity theory, e.g. Pvs.NP,
are known not to relativize, meaning for some oracle A, PA = NPA and for some oracle
B, PB 6= NPB. Hence the need for proof techniques which do not relativize.

10



Encodings

Definition 1.4: Encoding of a Turing machine #

Let M be a Turing machine. The bitstring #M ∈ {0, 1}∗ is an encoding of M such that
one can uniquely retrieve M from #M. We leave out the specific implementation de-
tails. In the following, we will conflate Turing machines with their binary encodings.

It will happen, particularly in section 4, that we need to encode and retrieve a Turing
machine (#M) and its input (x) from an element of {0, 1}∗, to that end we introduce encoding
of tuples.

Definition 1.5: Prefix-free codes

We define functions E1 and E2 from {0, 1}∗ 7→ {0, 1}∗ as E1(x) = 1|x|0x and E2(x) =
E1(|x|)x.

Theorem 1.1: Prefix free code [LV19]

E2 is a prefix code and |E2(x)| = x + 2log(|x|) + 1. E2 is being a prefix code means
that ∀x, y ∈ ({0, 1}∗)2 one can uniquely retrieve x and y from the string E2(x)y.

Definition 1.6: Encoding of tuples

Let x, y, z ∈ {0, 1}∗. We define < x, y >
def
= E2(x)y and < x, y, z >

def
= E2(x)E2(y)z. This

definition is naturally extended to any number of bitstrings inside < · >

Run-time and simulation

Definition 1.7: Running time of a TM

A Turing machine M runs in time T : N 7→ N if ∃c, ∀n, ∀x ∈ {0, 1}n,
M(x) stops before cT(n) steps, in which case we may write M ∈ DTIME(T) (and
sometimes abusively M ∈ DTIME(T(n)))

A fundamental theorem in computer science is that there is a universal Turing machine
U which can, given a description of any Turing machine M encoded as #M, and any input
x, simulate the behavior of M on x. In other words, U(#M, x) = M(x). Additionally, this
simulation incurs a time slowdown of a logarithmic factor, such that if M runs in time T(n)
on x, then U(#M, x) runs in time O(T(n) log T(n)). To this day we have no lower bound on
the optimal slowdown factor.

Theorem 1.2: Universal Turing Machine

There is a universal Turing machine U such that for any TM M, and any string x ∈
{0, 1}∗, we have that U(< #M, x >) = M(x). Moreover, if M runs in time T where
∀n, T(n) ≥ n, then U(#M, ·) runs in time CT log T where the constant depends only
upon the number of tapes and alphabet’s size of M .
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We admit this theorem, one can find its proof in [AB06]. 1

Complexity Classes

Definition 1.8: Time classes

Given a function f : {0, 1}∗ 7→ {0, 1} and a time bound function T : N 7→ N, we
say that f ∈ DTIME(T) if it is computed by a TM, i.e. there is a TM M such that
∀x ∈ {0, 1}∗, M(x) = f (x) and M ∈ DTIME(T)
Given an oracle A : {0, 1}∗ 7→ {0, 1}∗, we write f ∈ DTIMEA(T) if f is there exists a
TM M such that f is computed by MA.

The next complexity class is often presented as the class of easy problems.

Definition 1.9: Complexity class P

The complexity class P consists of all decision problems (languages) that can be solved
by a deterministic Turing machine in polynomial time. Formally, P is defined as:

P =
⋃

k∈N

DTIME(nk)

Next we introduce time-constructible function. Time constructible functions are func-
tions which are nice in the sense that the time required to compute f (n) is not much greater
than f (n). All usual functions bigger than n 7→ n are time constructible. Functions not time
constructible include the busy beaver function which grows faster than any computable
function, or the halting function which given n outputs 1 if the n-th Turing machine stops 0
otherwise.

Definition 1.10: Time-Constructible Function

A function f : N→N is called time-constructible if there exists a deterministic Turing
machine M such that, on input 1n, M halts in O( f (n)) steps and outputs f (n) in binary.

The Time Hierarchy Theorem is a fundamental result in computational complexity the-
ory that demonstrates the existence of a strict hierarchy of complexity classes based on time
bounds. Specifically, it shows that given more computational time, Turing machines can
solve strictly more problems. The proof of this theorem is made through a technique called
diagonalization which is a staple of many proofs in complexity theory. In chapter 4 we
extend this technique.

Theorem 1.3: Time Hierarchy Theorem

Let f and g be time-constructible functions such that ∀n, f (n) ≥ n and g = ω( f log f ).
Then there exists a language L that can be decided by a deterministic Turing machine
in time g but not in time f . Formally,

∃L ∈ DTIME(g) such that L /∈ DTIME( f ).

1Although in their proof they don’t require T(n) > n it seems necessary to us as you need to read the
description of #M to have a constant C only dependent upon the number of tapes and alphabet’s size of M.
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Proof

Let f and g be as in the theorem. We construct a Turing machine M such that M runs
in time g and such that L(M) /∈ DTIME( f ) (note that by definition L(M) ∈ DTIME(g)).
For any w ∈ {0, 1}∗ we define Mw as the only Turing machine such that #Mw = w.
The Turing machine M on input w simulates for g(|w|) simulation steps the universal
Turing machine U(< w, w >) = U(< #Mw, w >) and calls a the output if there was
any (note that it simulates Mw on input w for at least ω( f (|w|))) steps. If a belong to
{0, 1}M returns ¬a, otherwise it returns 0.
Now we prove that for any c ∈ R, L(M) can’t be decided by any machine N running
for c f steps. Suppose for a contradiction that machine N runs for c f (n) steps (at most)
and always outputs 0 or 1 (otherwise it does not recognize a language). There is a

constant c′ such that for any x ∈ {0, 1}∗, n def
= |x|, universal machine U runs in less

than c′c f log f (n) on input (#Ni, x). By noticing that there are infinitely many strings
w representing the Turing machine N there must exist n0 such that there are infinitely
many Turing machines (Ni)i≥n0 such that Ni = N and such that |#Ni| = i. Take i such
that ∀j ≥ i, g(j) > cc′ f log f (j) (it exists because g = ω( f log f )). Then we have a
contradiction because:

Machine Ni runs for less than c f (i) steps on input #Ni

Thus simulating U on < M#Ni , #Ni > takes less than cc′ f log f (i) < g(i) steps
Thus M(#Ni) = ¬U(< M#Ni , #Ni >) = ¬Ni(#Ni) = ¬N(#Ni)

Thus L(M) 6= L(N)

1.1.2 RAM model

Definition of RAMs The Random-Access Machine (RAM) is a theoretical computational
model used in the analysis of algorithms and computational complexity. The main differ-
ence with the TM model is that getting to a location in memory is done in constant time in
the RAM model (at least in this thesis), and several algebraic operations are considered to
take unit cost in the RAM model.
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Definition 1.11: RAM machine

A RAM is composed of infinitely many registers indexed by integers, it can execute a
finite sequence of instructions labelled from 1 to k for a certain k ∈N. The instructions
are of the following kinds:

1. w = u ◦ v, where w denotes a memory location, u and v denote either mem-
ory locations or constants. Finally, ◦ denotes a binary operation +, −, × or ⊕
(denoting bit by bit xor-ing).

2. go to l, where l is the label of some instruction.

3. if u ∆ 0 go to l, where u denotes a memory location and ∆ denotes either
<, ≤, or =.

4. u := v: Store the contents of the memory location v into the location u.

5. u :=↑ v (indirect reference): Treat the value in the memory location v as a pointer.
Store into the memory location u the value in the pointed memory location.

6. stop.

When computing with a RAM a function from {0, 1}n to {0, 1}m, we may say that the
inputs are written on the first n registers and the outputs are written on the first m registers
at the end of the computation. The implementations detail have no bearing on the expres-
sivity of the RAM model. Each instruction listed in definition 1.11 takes unit time. From a
computability standpoint there are no differences between RAM and Turing Machines.

Theorem 1.4: Equivalence between RAM and TM

Any function which can be computed by a RAM can also be computed by a Turing
Machine and vice versa.

Contrary to Turing machines, there exists a universal RAM which can simulate any other
RAM with a constant time slowdown.

Theorem 1.5: Universal RAM

There exists a universal RAM uR such that for any RAM R and any input x, uR(<
#R, x >) = R(x) and if R runs in T steps uR runs in O(T) steps. (#R is some encoding
of R)

1.1.3 Circuits

Definition of Circuits We quickly and without details recall the notion of Boolean circuits
for the reader.

14



Definition 1.12: Boolean Circuits

A circuit is a computational model that implements a Boolean function from {0, 1}n 7→
{0, 1}m for some n, m ∈N2.
Formally, a Boolean circuit C is a quadruplet (G, Op, I, O) where:

• G = (V, E) is a directed acyclic graph (DAG). The vertices V represent the logic
gates, and the edges E represent connections between these logic gates.

• I = (x1, . . . , xn) ∈ {0, 1}n denotes the tuple of n input variables of the circuit.

• O = (y1, . . . , ym) ∈ {0, 1}m denotes the set of m outputs of the circuit.

• Op : V → {AND, OR, NOT} ∪ I ∪O is a function that assigns a logical operation
to each vertex or designates a vertex as one of the n inputs of the circuit or as one
of the m outputs of the circuit.

Each NOT gate receives exactly one input, the AND and OR gates may receive arbi-
trarily many.
A boolean circuit computes a function in the obvious way. If C output (y1, . . . ym) on
input (x1, . . . , xm) we may write C(x1, . . . , xm) = (y1, . . . ym).

x1

x2

x3

AND

OR

y1

Figure 1.1: Circuit

Definition 1.13: Size, depth and fan-in of Circuits

• The size of a circuit is the total number of logic gates it contains.

• The depth of a circuit is the length of the longest path (in terms of the number of
gates) from any input to any output.

• The fan-in of a circuit is the maximum number of input any gate can have.

Circuit complexity classes

Definition 1.14: Uniform sequence of circuits

Let (Cn)n∈N be a sequence of circuits, it is said to be uniform if there is a Turing ma-
chine M such that ∀n ∈N, M(n) is a description of circuit Cn.
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Definition 1.15: Complexity class P/poly

The complexity class P/poly consists of all languages that can be decided by a non-
uniform family of polynomial-size circuits. Formally, a language L ⊆ {0, 1}∗ is in
P/poly if there exists a sequence of Boolean circuits of fan-in 2 {Cn}n∈N such that:

• Each circuit Cn has n input variables and exactly one output.

• There exists a polynomial p such that forall n the size of Cn is less than p(n).

• For all x ∈ {0, 1}n, x ∈ L if and only if Cn(x) = 1.

In part 5 we study the power of paralelizing computations, to that end we introduce
the class NC which is intended to contain all problems solvable quickly in parallel (for a
certain notion of quickness). More precisely the class NC represents all problems which you
can solve in poly-logarithmic time if you have polynomially many processors working in
parallel over a shared memory.

Definition 1.16: Complexity class NC

The complexity class NC (Nick’s Class) consists of all languages that can be decided by
a family of uniform Boolean circuits with polynomial size and polylogarithmic depth.
Formally, a language L ⊆ {0, 1}∗ is in NC if there exists a sequence of Boolean circuits
of fan-in 2 {Cn}n∈N such that:

• (Cn)n∈N is a uniform sequence of circuits

• Each circuit Cn has n input variables and exactly one output.

• The size of Cn (i.e., the number of gates) is bounded by a polynomial in n.

• The depth of Cn (i.e., the length of the longest path from an input to the output)
is bounded by O(logk n) for some constant k.

• For all x ∈ {0, 1}n, x ∈ L if and only if Cn(x) = 1.

This means that for every input length n, there is a corresponding polynomial-size,
polylogarithmic-depth circuit Cn that correctly decides membership in L for all inputs
of that length.

A very old and important question in computer science is determining if NC = P. Most
researchers believe that NC 6= P. At some point the question became so old that people
changed the question. Mulmuley showed that if the only operations you are allowed are
algebraic (+,−,×,<) then you can show that P 6= NC. In part 5 we give a simpler proof of
this theorem.

1.2 Algebraic computation

Algebraic models computation take as input numbers (N, R, . . .) and may perform algebraic
operations (+,×, . . .) in order to compute functions.

Algebraic circuits We define algebraic circuits in a similar fashion as boolean circuits. The
main differences are that algebraic circuits take n real numbers as input, output a tuple of m
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real numbers and their gates are operations over the reals.

Boolean Circuits Algebraic Circuits

Inputs x1, x2, . . . , xn in {0, 1}n

boolean bits
x1, x2, . . . , xn in Rn

real numbers

Gates AND, OR, NOT
(logical operations)

+,−,×,≤,=, constants
(arithmetic operations)

Table 1.1: Differences between Boolean circuits and algebraic circuits in terms of inputs and
gates.

Definition 1.17: Algebraic circuit

An algebraic circuit is a circuit with gates +,×,−, /,=,<,≤ of fan-in 2, and constant
gates n for all n ∈N. Its inputs are real numbers. The comparison gates =,<,≤ return
1 when true, 0 otherwise. The division gate / is over real numbers. All the other gates
are interpreted in the obvious way.

x2

1

x3

x4

>

×

+

/

Figure 1.2: Algebraic circuit

Algebraic RAMS In part III we will consider algebraic RAMs where the set of operations
and inputs are modified when compared to usual RAMs. In short ⊕ (xor-ing) is not longer
part of the instruction set, and the inputs are numbers.
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Part I

Extensions and limitations of the
Agafonov theorem
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MATHEMATICALLY INACCURATE STORY TO INTEREST THE READER

Suppose you want to make 1 million dollars but nobody will read your P 6= NP proof
, out of spite you build a robot to go to the casino and play roulette with your life

savings . It seems like a bad plan, but you know that at this casino the infinite sequence of
black-red outcome is given by a normal fixed number . Actually, you know this
number very well; it is Champernowne’s number 0 · 1 · 10 · 11 · 100 · 101 · 110 · 111 · 1000 ·
1001 · 1010 · . . . . You think you can make money, huh? Just wait . The robot, being
a bounded sub-region of R3 , cannot have infinite memory, and hence its computing
power is that of a finite automaton. For similar reasons, it may only hold finitely many
chips, let’s say it can only bet 1 dollar at a time to fix ideas. Well, Agafonov’ theorem says
that if this robot plays for an infinitely long time, it may not win money 2! Upon gaining
knowledge of this fact, you send back a new robot equipped with a randomness-generating
device (an unobserved electron’s spin in a box ), convinced that you can make money
this way. "Hmmmm, ackthuhally no ", we proved you cannot in this paper [LSS24] 3,
and we talk about it in this chapter 2. Also, we talk about other strategies you could use in
3, maybe you should read it before sending out the next robot .

2Well, actually it may win o(n) dollars over n plays but this is way less dramatic than our lie.
3Well actually only if the involved probabilities are rational numbers but saying it makes our paper less

impressive.
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In this chapter we study Agafonov theorem. In section 1.3 we define automata and nor-
mal sequences. In chapter 2 we present our result extending Agafonov theorem to proba-
bilistic automata [LSS24]. In chapter 3 we study possible extension of the Agafonov theorem
to languages sightly stronger than regular languages.

Notations The set of infinite bitstrings is noted {0, 1}ω its elements will be denoted by
Greek letters: α, β, etc. Finite sequences (elements of {0, 1}∗), or words are denoted by u, v,
w, etc.

If v, w ∈ {0, 1}∗, v ·w denotes the concatenation of v and w; the definition extends to v · α
for α ∈ {0, 1}ω mutatis mutandis.

The non-negative integers are denoted by N, and the positive integers by N>0. If n ∈ N
and α = a1a2 · · · ∈ {0, 1}ω, we denote by α≤N the finite sequence a1a2 · · · aN.

Given a set S we write Dist(S) the space of probability distributions on S. Given a prob-
ability distribution δ ∈ Dist(S), we say that δ is dyadic (resp. rational) when for all s ∈ S, δ(s)
is a dyadic number (resp. a rational number), that is a number of the form p

2k for integers
p, k.

We consider the standard probability measure Probρ∈{0,1}ω on {0, 1}ω equipped with the
least Σ-algebra induced by the cylinder sets Cw = {α | ∃α′ ∈ {0, 1}ω, α = w · α′} and such
that Probρ∈{0,1}ω Cw = 2−|w| for w ∈ {0, 1}∗. Elements of {0, 1}ω drawn according to this
measure are called fair random infinite sequence.

1.3 Introduction to automata and normal sequences

1.3.1 Deterministic automata

Definition 1.18: Deterministic finite automaton (DFA)

An automaton is defined as a 5-tuple A = (Q, Σ, δ, q0, F), where:

• Q is a finite set of states.

• Σ is a finite input alphabet.

• δ : Q × Σ → Q is the transition function, which defines the state transitions
based on the current state and input symbol.

• q0 ∈ Q is the initial state, where the computation begins.

• F ⊆ Q is the set of final or accepting states.

q0start q1 q2

a

b

b

a

a

b

Figure 1.3: Deterministic Finite Automaton: q0 is the initial state as denoted by start and q2
is a final state as denoted by double circling
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The extended transition function δ∗ : Q× Σ∗ → Q is defined recursively to describe the
effect of processing a string of input symbols from any given state. The function δ∗ thus
extends δ to handle strings of input symbols, rather than just individual symbols.

Definition 1.19: Extended Transition Function

Let A = (Q, Σ, δ, q0, F) be a deterministic finite automaton (DFA)

• Base case: For any state q ∈ Q, δ∗(q, ε) = q, where ε is the empty string.

• Recursive case: For any state q ∈ Q, any string w ∈ Σ∗, and any symbol a ∈ Σ,
δ∗(q, wa) = δ(δ∗(q, w), a).

Here, wa denotes the string w followed by the symbol a.

Definition 1.20: Language recognized by an automaton

Let A = (Q, Σ, δ, q0, F) be an automaton. The language recognized by the automaton
A, denoted L(A), is the set of all strings w ∈ Σ∗ such that the automaton, starting
from the initial state q0, reaches an accepting state after reading the entire string w.
Formally,

L(A) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F},
Explicitly, for a string w = w1w2 . . . wn, the path in the automaton is given by the
sequence of states q0, q1, q2, . . . , qn such that qi+1 = δ(qi, wi+1) for all i ∈ {0, 1, . . . , n−
1}. The string w is accepted if and only if qn ∈ F.

Definition 1.21: Regular languages

Let L be a language, L is said to be regular if L is recognized by an automaton, i.e.
there exists a DFA A such that L = L(A).

We will next define the output of an automaton. We want to use DFAs as a means of
extracting bitstrings from words. The bits that are extracted are those right after the DFA
has visited an accepting state.

Definition 1.22: Output of an automaton

Let A = (Q, Σ, δ, q0, F) be an automaton. Let w ∈ Σ∗, let n = |w|, we my write
w1, . . . , wn. Let I be the set of indices I = {i + 1; w1, . . . , wi ∈ L(A)}. Let Card I = m,
we define A(w) = wj1 ·wj2 · · ·wjm where ∀1 ≤ k ≤ m, jk ∈ I and the jk are in ascending
order.

Here we give an example of the output of automaton presented in figure 1.3 on the string
w = abaaababaaaaba The color of each letter corresponds to the state after reading the letter,
then A(w) is composed of all letters appearing after a red letter A(w) = abaab.

With automata it is easy to have a intuitive interpretation of the output of an automaton
: when the automaton reaches a accepting state it outputs the next letter of the word. This
definition may actually be extended to languages in general: Given a language L, the bits
extracted in w by L are the wi+1 where the prefix w1 . . . wi belong to L. Note that this extends
Definition 1.22.
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Definition 1.23: Output of a language

Let L be a language. Let w ∈ Σ∗, let n = |w|, we my write w1, . . . , wn. Let I be the set

of indices I = {i + 1; w1, . . . , wi ∈ L}. We define the string L(w)
def
= wj1 · wj2 · · ·wjm

where ∀1 ≤ k ≤ m, jk ∈ I and the jk are in ascending order.

In the following of this chapter we will see that outputs of automata verify some proper-
ties (namely Agafonov’s theorem 2.1), we will be interested if these properties carry over to
languages more general than regular languages.

Definition 1.23 may also be extended to infinite words in the intuitive way.

Definition 1.24: Output of a language for an infinite word

Let L be a language. Let w ∈ Σ∗, let n = |w|, we my write w1, . . . , wn. Let I be the set
of indices I = {i + 1; w1, . . . , wi ∈ L}. Let |I| = m, we define L(w) = wj1 · wj2 · · ·wjm
where j1 = min I and ∀2 ≤ k, jk = min I \ {jh; 1 ≤ h < k}.

Note that the output may be infinite or not (if we go through finitely many accepting
states).

1.3.2 Probabilistic automata

A probabilistic automaton is a computational model that extends the concept of a determin-
istic finite automaton by incorporating probabilistic state transitions.

Definition 1.25: Probabilistic Automaton

A probabilistic automaton is a 5-tuple P = (Q, Σ, δ, q0, F), where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q × Σ × Q → [0, 1] is the transition probability function, where δ(q, a, q′)
represents the probability of transitioning from state q to state q′ upon reading
symbol a, and for all q ∈ Q and a ∈ Σ, ∑q′∈Q δ(q, a, q′) = 1.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting (or final) states.

Definition 1.26: Dyadic and rational automata

P is said to be dyadic if the transition probabilities are all dyadic numbers, i.e.
∃(m, k) ∈N2, ∀(q, a, q′) ∈ Q× Σ×Q, δ(q, a, q′) = m

2k .
P is said to be rational if the transition probabilities are all rational numbers, i.e.
∀(q, a, q′) ∈ Q× Σ×Q, δ(q, a, q′) ∈ Q.

The probability of acceptance of a word w = w1w2 . . . wn ∈ Σ∗ by the probabilistic au-
tomaton P defined in 1.27 is the sum of the probabilities of all possible paths that lead from
the initial state q0 to any accepting state in F after reading the entire word w.
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q0start q1

a, 1

b, 0.2

a, 0.4

b, 1

b, 0.8 a, 0.6

Figure 1.4: Probabilistic Automaton (this one is also rational)

Definition 1.27: Probability of acceptance of a word

Let P = (Q, Σ, δ, q0, F) be a probabilistic automaton.
We let δ : Q× Σ× Q → [0, 1] be the extended transition function that gives the prob-
ability of reaching state q′ from the state q after reading the word w. It is recursively
defined as follows :

• Base case: δ∗(q, ε, q) = 1 and δ∗(q, ε, q′) = 0 for q′ 6= q, where ε is the empty
string.

• Recursive case: For w = w1w2 . . . wn and a ∈ Σ,

δ∗(q, wa, q′) = ∑
q′′∈Q

δ∗(q, w, q′′) · δ(q′′, a, q′).

The probability of acceptance of the word w by P is given by:

Pr[accept w] = ∑
q∈F

δ∗(q0, w, q),

The language recognized by a probabilistic automaton P is the set of all strings for which
the automaton ends in an accepting state with a probability greater than a given threshold θ.
For instance string abba is accepted with probability 1 · 0.2 · 1 · 0.6 + 1 · 0.8 · 0.2 · 0.6 = 0.216
by the automaton of figure 1.4.

We will not be using this notion in this thesis, on the other hand we will be interested
in the output of a probabilistic automaton. The definition is intuitively derived from the
DFA one 1.22 : on input w a probabilistic automaton P goes from state to state according to
its transition density function, when it reaches a final state it outputs the next bit read and
carries on.

Definition 1.28: Output of a probabilistic automaton

Let P = (Q, Σ, δ, q0, F) be a probabilistic automaton. Let w ∈ Σ∗, let n = |w|, Let
X1, ...Xn ∈ Qn be random variables where Xi is the state in which the automaton is in
after reading wi.
To each sequence of X1, ...Xn we may define O(X1, . . . Xn) = wj1 . . . wjk where k is the
number of indices i such that Xi ∈ F and forall h, Xjh is the h-th Xi to be in F. We
precise that O(X1, . . . Xn) is the empty string in case k = 0.
Then we define P(w) to be the random variable O(X1, . . . Xn)
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We then extend naturally this definition to infinite sequence. But first we formally define
our probability measure on {0, 1}ω. Probability theory is not the main focus of this thesis
and is only used in a very simple and direct fashion, therefore we do not incorporate all the
details but leave some references for the interested reader.

Definition 1.29: Standard Probability Measure on {0, 1}ω

Let {0, 1}ω denote the set of all infinite binary sequences. The standard probability
measure µ on this set is defined using cylinder sets. A cylinder set C(s) specified by
a finite binary string s = s1s2 . . . sn consists of all infinite binary sequences that begin
with the string s:

C(s) = {α ∈ {0, 1}ω | αi = si for i = 1, 2, . . . , n}.

The measure µ of a cylinder set C(s) is given by:

µ(C(s)) =
(

1
2

)n
.

This measure can be uniquely extended to the σ-algebra generated by the cylinder sets,
resulting in the standard probability measure on {0, 1}ω. For a detailed explanation
of this extension, see [Bil95] and [Kal02].

Thanks to this formal definition we may define fair random infinite sequences, intu-
itively those correspond to infinite sequences where each bit has probability 1/2 of being 0
and 1/2 of being 1.

Definition 1.30: Fair random infinite sequences

An infinite sequence α is said to be a fair (random) infinite sequence if it is drawn
according the the probability measure defined in Definition 1.29.
Let A be an event depending on ρ ∈ {0, 1}ω we note Probρ∈{0,1}ω(A(ρ)) or
Pρ∈{0,1}ω(A(ρ)) to speak of the probability that event A occurs where ρ is an infinite
fair random sequence.

Definition 1.31: Output of a probabilistic automaton for infinite sequences

Let P = (Q, Σ, δ, q0, F) be an automaton. Let α ∈ Σω, let n = |w|, Let X1, X2, . . . ∈ Qω

be random variables where Xi is the state in which the automaton is in after reading
wi.
To each sequence of X1, ...Xn we may define O(X1, . . . Xn) = wj1 . . . wjk where k is the
number of indices i such that Xi ∈ F and forall h, Xjh is the h-th Xi to be in F
Then we define P(w) to be the random variable limn→∞ O(X1, . . . Xn)

In the following we will use definition 1.31 as follows: Given a set A ⊂ {0, 1}ω we are
interested in the quantity P(P(w) ∈ A). Almost always set A will be the set of all normal
sequences in {0, 1}ω

1.3.3 Normal sequences

We now turn our attention to normal sequences [Bor09]. A normal sequence over {0, 1} is
an infinite sequence for which every word of length k appears with frequency 2−k. We give
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a formal definition next before resuming.

Definition 1.32: Occurrence

Let a = a1 · · · am and b = b1 · · · bn be finite sequences such that n < m. An occurrence
of b in a is an integer i with 1 ≤ i ≤ m− n + 1 such that ai . . . ai+n−1 = b1 . . . bn. If α =
a1a2 · · · is an infinite sequence and w = w1 · · ·wn is a word, we denote by ]N{w}(α)
the number of occurrences of w in a1a2 · · · aN. I.e. ]N{w}(α) = |{i; αi . . . αi+n−1 =
w1 . . . wn∧}|

Definition 1.33: Normal sequences

α ∈ {0, 1}ω is said to be normal if, ∀m, ∀w ∈ {0, 1}m, limN→∞ ]N{w}(α)/N = 2−m.

If you take a fair random sequence of {0, 1}ω, in the sense that each bit has probability
1/2 of being 1, then this sequence is normal with probability 1. In a sense being normal is
a prerequisite to being random. Concrete examples of normal sequences include Champer-
nowne’s binary sequence 0100011011000001 · · · [Cha33] (each word of {0, 1}∗ are concate-
nated in size-ascending-lexicographic order), and many more examples exist [Bug12].

With out current definition of normal sequences occurrences of a word may overlap, for
instance the string 00 appears twice in 00011011 (at the beginning) and the two occurrences
overlap. In the literature this is sometimes called the non-aligned version of normality. This
may prove tedious to reason about normal sequences, for instance it is not immediately
clear 4 why a fair random sequence must be normal in this way. A another intuitive way
of defining normality would be to say that you only counts occurrences of w ∈ {0, 1}n on
indices multiples of n, this way you get rid of overlapping occurrences. In the literature
this is sometimes called the aligned version of normality. Theorem 1.6 states that these two
notions of normality are equivalent.

Definition 1.34: Blocks

Let α = α1α2 · · · be an infinite sequence. Let i, n ∈ N>0. The ith block of size n in α,
denoted Bi

n(α), is the finite sequence α(i−1)n+1α(i−1)n+2 · · · αin.

Given a word w ∈ {0, 1}n, we write ]
(n)
N {w}(α) for the number of blocks of α of size n

that are equal to w in the prefix of size N × n:

]
(n)
N {w}(α) = Card{i ∈ [0, N − 1] | Bi

n(α) = w},

for k ∈ N and w ∈ {0, 1}k. We define freq(α, w) as the following limit, when it exists:

freq(α, w) = lim
N→∞

]
(n)
N {w}(α)

N
.

Definition 1.35: Block normality for size k

Let k ∈ N, the sequence is length-k-normal if for all words w ∈ Σk, freq(α, w) is well
defined and equal to 2−k.

4at least to us
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Definition 1.36: Block normality

The sequence α is said to be block normal if it is length-k-normal for all k.

Theorem 1.6: [NZ51; Pos61b]

Let α ∈ {0, 1}ω, α is normal iff it is block-normal

We can now get to the point of this chapter: Agafonov’theorem. Agafonov theorem states
that selection by a finite state selector preserves normality, i.e. if α is a normal sequence and
A is a DFA, then the subsequence A(α) is either finite or a normal sequence.

Theorem 1.7: Agafonov’s theorem

Let α ∈ {0, 1}ω be a sequence, then α is normal if and only if for all deterministic
automaton A, the subsequence A(α) is either finite or normal.

In chapter 2 we extend this result to probabilistic selectors. In chapter 3 we consider
models of computation which very sightly extend DFA and we consider whether Agafonov’
theorem still stands.
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Chapter 2

Extension of Agafonov’ theorem to
probabilistic automatas [LSS24]

In this section, we address the following question: do probabilistic selector verify Agafonov’
theorem. We provide a partial positive answer : in the case where the probabilities involved
are rational. More formally, we prove that given a normal sequence α and a rational proba-
bilistic selector P, the selected subsequence P(α) will be a normal sequence with probability
1.

2.1 Introduction

A finite-state selector is a deterministic finite automaton (DFA) that selects the nth symbol
from α if the length n − 1 prefix of α is accepted by the DFA. Agafonov’s Theorem [Aga68a;
Aga68b] is the celebrated result that a sequence α is normal iff any DFA that selects an infi-
nite sequence from α, selects a normal sequence. While alternative proofs, generalizations
[WK19] [KS21] – and counter-examples to generalizations [MR06] – abound, all results in the
literature consider deterministic or non-deterministic DFAs, but none consider probabilistic
computation.

The extension to probabilistic selection is quite natural – not only are the underlying no-
tions probabilistic in nature (i.e., normality of the transformed sequence), but the machinery
of finite automata and similar computational devices itself has a 60-year history [Rab63] of
being extended to probabilistic devices.

In the present section we study finite-state selectors equipped with probabilistic transi-
tions from each state. As finite-state selectors can be viewed as devices sequentially process-
ing successively larger prefixes of infinite sequences, we eschew the machinery of stochastic
languages (where the initial state is a probability distribution on the states, and a string is
accepted according to threshold rules) — instead initial and accepting states are kept “as
usual” in finite-state selectors. Probabilistic selection entails that normality may not be pre-
served in all runs of an automaton: For example, consider an automaton with two states S1
and S2, only one of which is accepting, and transitions on 0 and 1 from Si to Si (i ∈ {1, 2})
with probability 1/2 and from Si to Si+1 mod 2 with probability 1/2; then for any normal
sequence α, there is a run of the automaton on α that will select the sequence 0ω = 000 · · · .
The main result of the present paper is to show that the probability of having such runs is
zero — in fact that for any probabilistic finite-state selector A with rational probabilities and
any normal sequence α, the probability that a run of A on α will select a normal sequence is 1.
The proof progresses by treating the relatively tame case of dyadic probabilities (i.e., of the
form a/2k with a and k non-negative integers) first, and subsequently “simulating” finite-
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state selectors with arbitrary rational probabilities by “determinized” selectors with dyadic
probabilities.
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(b) Determinization

Figure 2.1: A probabilistic finite state selector and its determinization
Unlabelled edges correspond to blind transitions, i.e. transitions valid for both 0 and 1.

Contributions. We prove that (the pertinent analogue of) Agafonov’s Theorem holds
in the setting of probabilistic selection, namely that a probabilistic finite state selector with
rational probabilities preserves normality with probability 1. An added contribution is that
the proof methods involved are novel, and may be of independent interest. As in Agafonov’s
original paper, and to keep complexity simple, all results are stated for binary alphabets. We
fully expect all results to hold for arbitrary finite alphabets, mutatis mutandis.

Related work. Agafonov’s Theorem has been generalized in multiple ways beyond
finite automata (see, e.g.,[AD79; AM15; BCH15; CV20; KW75; WK19]). Conversely, it is
known that when adding trifling computational expressivity to finite-state selectors, coun-
terexamples to Agafonov’s Theorem for the resulting selectors can be constructed [MR06].
While some existing work considers preservation of more general measures by finite au-
tomata, or similar selectors [Car20b], and substantial work exists relating equidistribution to
various types of automata [SS72; BCH15] no extant work considers stochastic selection. Aga-
fonov’s Theorem itself has been proved by a multitude of different techniques, e.g. [BL92;
Car20a; BCH15]; it is conceivable that some of these can be adapted to alternative proofs, or
extensions, of the results reported in the present paper.
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2.2 Preliminaries and notation

We first define selectors which are just automata working on alphabet Σ = {0, 1}, the name
selector is there to emphasize that we use these automata as a means of extracting bits from
an infite sequence. Our results can be adapted to bigger alphabet size (the notion of normal-
ity needs also some straight forward adapting)

Definition 2.1: Finite state Selector

A finite state selector (or just selector) S is a 4-uple (Q, δ, q0, F) interpeted as proba-
bilistic automaton (Q, Σ, δ, q0, F) where Σ = {0, 1}
A selector is dyadic (resp. rational, resp deterministic) if it is also a dyadic probabilistic
automaton (resp. rational, resp. DFA) (see Definition 1.26).

We recall Agafonov theorem.

Theorem 2.1: Agafonov’s theorem

Let α ∈ {0, 1}ω be a sequence, and S a deterministic finite selector. Then α is normal if
and only if for all deterministic finite selector S , the subsequence S(α) is either finite
or normal.

2.2.1 Technical lemmas about normality

We will establish a few results on normal sequences that will be useful in later proofs. We
first define notions that will be used in the proofs.

Definition 2.2: Normality relative to a word w

Let α ∈ {0, 1}ω be a sequence, and w ∈ {0, 1}∗ a word. We say that α is w-normal if

freq(α, w)
def
= limN→∞

]N{w}(α)
N = 2−|w|.

Given ε ∈ R, we say that α is w-normal up to ε if ∃N0, ∀N > N0,
∣∣∣ ]N{w}(α)

N − 2−|w|
∣∣∣ < ε.

We now restate a weaker property for sequences than normality: being normal for words
of a fixed length k. The main lemma associated to that notion will be that if a sequence is
normal for words of length mk for a fixed integer m and all integers k, then it is normal (i.e.
normal for words of arbitrary length).

Lemma 2.1:

Let α be a sequence in {0, 1}ω. The following are equivalent:

• α is block-normal

• there exists m ∈ N>0 such that α is length-km normal for all k ∈ N.

Proof

Consider a sequence α which is length-km normal for all k ∈ N, and fix a word w ∈
{0, 1}n. We will prove that α is w-normal. We will use the length-mn normality of α.
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For this, we note that we can write:

]
(n)
N {w}(α) = Card{i ∈ [0, N − 1] | Bi

n(α) = w}

by grouping blocks Bi
n(α) by groups of size m

= ∑
w1,...,wm∈{0,1}n

Card{i ∈ {1, . . . , m} | wi = w}.](mn)
N/m{w1 · · · · · wm}(α)

by counting differently

= ∑
w1,...,wm−1∈{0,1}n

m

∑
j=1

]
(mn)
N/m{w1 · · · · · wj−1 · w · wj · wm−1}(α)

As a consequence:

freq(α, w) = lim
N→∞

]
(n)
N {w}(α)

N
by above

= lim
N→∞

1
N
· ∑

w1,...,wm−1∈{0,1}n

m

∑
j=1

]
(mn)
N/m{w1 · · · · · wj−1 · w · wj · wm−1}(α)

We sum over finitely many elements hence the interchanging

= ∑
w1,...,wm−1∈{0,1}n

m

∑
j=1

lim
N→∞

1
N
· ](mn)

N/m{w1 · · · · · wj−1 · w · wj · wm−1}(α)

by definition of freq

= ∑
w1,...,wm−1∈{0,1}n

m

∑
j=1

1
m

freq(α, w1 · · · · · wj−1 · w · wj · wm−1)

By length-mn normality of α.

= ∑
w1,...,wm−1∈{0,1}n

m

∑
j=1

2−mn

m
= 2n(m−1)2−mn = 2−n

Now the following lemma states that the proportion of blocks equal to a fixed word w
in a prefix of size N of a normal sequence asymptotically behaves as a linear function. The
proof is quite straightforward.

Lemma 2.2:

Let α be a normal sequence and w ∈ {0, 1}n. Then ]
(n)
N {w}(α) = 2−nN + o(N).

Proof

If it were not true, we would have that there exists some ε > 0 and a sequence (Ni)i∈N
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such that
∣∣∣](n)Ni
{w}(α)− 2−nNi

∣∣∣ > εNi for all i ∈ N. In other words,∣∣∣∣∣∣ ]
(n)
Ni
{w}(α)
Ni

− 2−n

∣∣∣∣∣∣ > ε.

This contradicts the normality of α since it implies that limi→∞

∣∣∣∣∣ ](n)Ni
{w}(α)
Ni

− 2−n

∣∣∣∣∣ > ε 6=

0.

In future proofs we will often want to compute the frequency of a word w ∈ {0, 1}n in α

up to index N, to do so we will want to group blocks of size n (Bj
n(α))j∈N in sets Ei of size

|Ei| = 2n such that each Ei contain all possible strings of size n. Those will be defined from
a partition (Vn

i (α))i∈N of N such that the set Vn
i (α) contains the indices of the blocks of size

n of α contained in Ei.
We introduce the Vn

i (α) : Given a size n there are 2n different words in {0, 1}n, name
them (uj)j∈J1;2nK. Vn

i (α) is a set containing for all j ∈ J1; 2nK the index of the i-th block of size
n in α equal to uj

Definition 2.3: Vn
i (α)

Let α ∈ {0, 1}ω be a normal sequence, and n ∈ N. We define θi(α) : {0, 1}n → n as
mapping a word w to the value j such that Bj

n(α) is exactly the i-th block of size n of α
equal to w. (i.e. there are exactly i− 1 indices j1 < j2 < j3 < . . . < ji−1 < j such that
∀k, Bjk

n (α) = w ∧ Bj
n(α) = w)

The sets of indices (Vn
i (α))i∈N ⊂N are then defined as the image Im(θi(α)).

This is well defined as α is normal for any i ∈ N and w ∈ {0, 1}n there always exists the
i-th block of α equal to w.

Example : α = 00 · 01 · 01 · 10 · 00 · 11 · 01 · 00 · 11 · 10 · · ·
V2

1 = {1; 2; 4; 6}, V2
2 = {3; 7; 9; 10}, V2

3 = {5; 8; . . .}. V2
1 contains the index of the first

block equal to 00, of the one equal to 01, of the one equal to 10, of the one equal to 11. V2
2

contains the index of the second block equal to 00, of the one equal to 01 etc.
The next lemma gives useful bounds on the Vn

i .

Lemma 2.3:

Let α be a normal sequence, n ∈ N. Consider the sets Vn
i (α) from Definition 2.3. We

have that maxN
i=1 max Vn

i (α) = N2n + o(N), and |[N] \⋃N/2n

i=1 Vn
i | = o(N).

Proof

This comes from the fact that for any w ∈ {0, 1}n, ](n)N {w}(α) = 2−|w|N + o(N).

The following probabilistic lemma is needed for the proof of Lemma 2.12.
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Lemma 2.4:

Let Ω1 and Ω2 be two sample spaces. Let (Xi)i∈N be an iid family of r.v. which take
value in ΩN

1 , (Yi)i∈N another iid family of r.v. which take value in ΩN
2 . Let f (X, Y) be

a function in Ω1 ×Ω2 7→ R. Suppose ∀x ∈ Ω1, ∀y ∈ Ω2, f (X0, y) and f (x, Y0) have
finite expected value and variance then

PYi

(
∑
x

[
P(X = x)

N

∑
i=1

f (x, Yi)

]
= N ×EX0,Y0( f (X0, Y0)) + o(N)

)
= 1.

Proof

This is a direct application of the law of large numbers .

2.3 Dyadic case

We first restrict to dyadic selectors of Definition 2.1 (all the transition probabilities are dyadic
numbers).

Definition 2.4: Dyadicity degree

Given a dyadic selector S, we define its dyadicity degree as the smallest integer D such
that for all states q, q′ ∈ Q and element a ∈ {0, 1}, there exists m ∈ N such that the
probability t(q, a, q′) can be written as m

2D .

We first define the determinisation of a dyadic selector. The determinisation is based
upon this classic idea. Suppose you have access to a random fair coin (and thus you have
r.v. X such that P(X = 1) = 1/2 = P(X = 0)) how can you use this coin to simulate r.v
Y such that P(Y = 1) = m

2D = 1− P(Y = 0) ? Easy, you draw X at random D times, the
sequence of throws spells out a number in binary, if it less than m then Y = 1 otherwise
Y = 0. If Y can take more that two values (but always with dyadic probabilities) we can
easily adapt the construction.

Definition 2.5:

Given a dyadic selector S = (Q, δ, q0, F) of dyadicity degree D, we define a determini-
sation Det(S) of S as the deterministic selector (Q′, δ′, q′0, F′) where:

• Q′ = Q ∪Q× {0, 1} × {0, 1}≤D−1;

• q′0 = q0 and A′ = A;

• the transition function δ′ is defined as follows:

– for all q ∈ Q, a ∈ {0, 1}, δ′(q, a) = (q, a, ε) where ε is the empty word;

– for all ((q, b, w) with q ∈ Q, b ∈ {0, 1} and w ∈ {0, 1}≤D−2, and a ∈ {0, 1},
δ′((q, b, w), a) = (q, b, w · a);

– for all (q, b, w) with w ∈ {0, 1}D−1, δ′((q, b, w), a) = q′ where q′ = φ(w ·
a) for a chosen φq,b : 2D → Q such that the preimage of any s ∈ Q has
cardinality ms where ms is defined by t(q, b)(s) = ms

2D .
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Now, the principle is that the behaviour of a dyadic selector S on the sequence α can be
simulated by the behaviour of a determinisation DetD(S) computing on an interleaving of
α and a random advice string ρ noted ID(α, ρ) (ρ this corresponds to our coin that we launch
D times). We give an example of a transition in figure 2.2. Note that this transformation
is applied to every transition in the same way, in particular the number of "intermediate
states" (in grey on the figure) is the same regardless of the transition probability (but of
course the last outgoing edges may differ). Please look at figure 2.1 in the introduction for a
full determinisation.

q0

q2

q1

1, 1/4

1, 3/4

w = 1

q0

q2

q1

1

1

0

1

0

1

0

w′ = 1r0r1 (r0,r1 are random bits)

Figure 2.2: Determinisation of one transition. Reading w on the left probabilistic automaton
is equivalent to reading w′ on the right deterministic automaton

Definition 2.6: Interwoven sequence for dyadic selectors

Let α, ρ be sequences in {0, 1}ω, and D ∈ N. The interwoven sequence ID(α, ρ) is
defined as the sequence:

α0ρ0 . . . ρD−1α1ρD . . . ρ2D−1 . . . .

Note that the interweaving of two normal sequences can be a non-normal sequence, e.g.
the interweaving of α with itself I1(α, α) is not normal.

Lemma 2.5:

Let S be a dyadic selector of dyadicity degree D. Then for all sequences α ∈ {0, 1}ω

the random variables S(α) and Det(S)(ID(α, ρ)) where ρ is a fair random infinite
sequence of {0, 1}ω have the same distribution.

Proof

This is a special case of Lemma 2.8.

Consider given a normal sequence α. We now prove that for almost all random advice
sequence ρ ∈ {0, 1}ω, the interwoven sequence ID(α, ρ) is normal. This is the key lemma
in the proof of Theorem 2.2. In order to give a reader an intuition for why Lemma 2.6 is
true: the lemma states that if you pick a normal sequence α and add (say) 10 random bits
in between each bit of α then you get with probability 1 that this is still a normal number.
If α was an infinite random sequence then the result would clearly be true, we now have to
prove it for normal α
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Lemma 2.6:

Let α ∈ {0, 1}ω be a normal sequence. Then for all D ∈ N,

Probρ∈{0,1}ω [ID(α, ρ)is normal] = 1.

Proof

In case D = 0, the interwoven sequence ID(α, ρ) is equal to α. As a consequence,
Probρ∈{0,1}ω [ID(α, ρ) is normal] is equal to 1.
We now suppose that D 6= 0. Given m ∈ N>0, we will show that ID(α, ρ) is
length-(D + 1)m normal with probability 1. This implies that for almost all ρ ∈
{0, 1}ω, the sequence ID(α, ρ) is length-(D + 1)m normal for every m ∈ N>0. By
Lemma 2.1, this implies that for almost all ρ ∈ {0, 1}ω, the sequence ID(α, ρ) is nor-
mal.
We now fix m ∈ N>0, and w ∈ {0, 1}(D+1)m. We will consider the block decomposition
of ID(α, ρ) into blocks of size (D + 1)m and prove that:

Probρ∈{0,1}ω

(
lim

N→∞

]
((D+1)m)
N {w}(ID(α, ρ))

N
= 2−(D+1)m

)
= 1.

We note that blocks of size (D + 1)m follow the pattern:

αirj . . . rj+Dαi+1rj+D . . . rj+2D . . . αi+m−1rj+(m−1)D . . . rj+mD.

We will consider bwcD = w0wD+1w2(D+1) . . . w(m−1)(D+1) the subword of w corre-
sponding to the positions of bits from α in this pattern.
We will consider the block decomposition of α into blocks of size m. Let idx(i) = j
where j is the i-th block such that Bm

j (α) = bwcD. Note that this function is well

defined because α is a normal sequence. Note that if a given block B(D+1)m
i (ID(α, ρ))

is equal to w, then bB(D+1)m
i (ID(α, ρ))cD should be equal to bwcD. We write Ñ =

]
(m)
N {bwcD}(α), note that it is the maximal i such that idx(i) < N. We also define w̄ as

the complementary subsequence of w:

w̄ = w1 . . . wDwD+2 . . . w2(D+1)−1w2(D+1)+1 . . . wm(D+1)−1.

We introduce a new notation: we will write ]
((D+1)m)
Im(idx)<N{w}(ID(α, ρ)) to denote the

number of blocks of size (D + 1)m equal to w within the blocks indexed by some
j < N in Im(idx).

P = Probρ∈{0,1}ω

(
lim

N→∞

]
((D+1)m)
N {w}(ID(α, ρ))

N
= 2−(D+1)m

)

= Probρ∈{0,1}ω

 lim
N→∞

]
((D+1)m)
Im(idx)<N{w}(ID(α, ρ))

N
= 2−(D+1)m


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Now by Lemma 2.2 we have that limN→∞ Ñ = N.2−m. Hence:

P = Probρ∈{0,1}ω

 lim
Ñ→∞

]
((D+1)m)
Im(idx)<N{w}(ID(α, ρ))

Ñ.2−m = 2−(D+1)m


= Probρ∈{0,1}ω

 lim
Ñ→∞

]
((D+1)m)
Im(idx)<N{w}(ID(α, ρ))

Ñ
= 2−Dm


= Probρ∈{0,1}ω

 lim
Ñ→∞

]
(Dm)
Im(idx)<N{w̄}(ρ)

Ñ
= 2−Dm


By the law of large numbers, we have that

Probρ∈{0,1}ω

 lim
Ñ→∞

]
(Dm)
Im(idx)<N{w̄}(ρ)

Ñ
= 2−Dm

 = 1,

which concludes the proof.

This lemma then leads to the following theorem.

Theorem 2.2: Agafonov theorem for dyadic selectors

Let α ∈ {0, 1}ω be a sequence. Then α is normal if and only if for all dyadic finite
selector S the probability that S(α) is either finite or normal is equal to 1.

Proof

The right to left implication is simply a consequence of Agafonov’s theorem (Theo-
rem 2.1) since if for all dyadic finite selector S the probability that S(α) is either finite
or normal is equal to 1, then for all deterministic finite selector S the selected subse-
quence S(α) is either finite or normal.
Now, suppose that the above implication from left to right is false. Then by
Lemma 2.5 there exists a subset R ⊂ {0, 1}ω of strictly positive measure such that
Det(S)(ID(α, ρ)) is infinite and not normal for all ρ ∈ R. Since almost for almost all
ρ ∈ {0, 1}ω the interwoven sequence ID(α, ρ) is normal, this implies that there exists
a ρ such that ID(α, ρ) is normal and Det(S)(ID(α, ρ)) is infinite and not normal. But
this contradict Agafonov’s theorem (Theorem 2.1).

We will now consider the case of rational selectors. The difficulty in adapting the proof
lies in the fact that the interwoven sequence has a less regular structure. In the above proof,
each block of size (D + 1)m followed the same pattern. But in the case of rational selec-
tors, the presence of feedback loops renders those pattern random, this makes the proof
significantly harder. Indeed in the dyadic case the value of a block of size (D + 1)m was in-
dependent of the value of other blocks of size (D + 1)m, in the rational case this is no longer
true, thus we cannot apply the law of large numbers. Informally to make our proof work
we divide S(α) into non adjacent blocks whose values are independent, some bits are not
contained in any blocks but we argue they are few of them and thus they don’t prevent S(α)
from being normal.
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2.4 Rational selector

2.4.1 Determinisation

The first step in extending the results to the rational case is to define the determinization.
Let’s go back to our coin parallel, let X be a random fair coin and now we want to simulate
Y such that P(Y = 1) = p

q = 1− P(Y = 0) for p, q ∈ N. Let D be the smallest integer such
that q ≤ 2D, draw X at random D times, the sequence of random throws spells out a binary
number y ≤ 2D, if y ≤ p then Y = 1, if p < y ≤ q then Y = 0, and if q < y then you repeat
the whole operation from the beginning (drawing X D times and all).

Thus there are now parts of the determinized automaton that simulates probabilistic
choices will contain feedback loops. In figure 2.3 we show how to transform one probabilis-
tic transition. When determinizing an automaton, we apply this transformation to every
transition in the automaton. Note that this transformation will applied to every transition
in the same way, in particular the number of "intermediate states" (in grey on the figure) is
the same regardless of the transition probability (but of course the last outgoing edges may
differ). To ensure that we put every probability over the same denominator before deter-
minization.

q0

q2

q1

1, 1/3

1, 2/3

w = 1

q0

q2

q1
1

1

0

1

0

1

0

0; 1

w′ = 1R
where R is random in {00, 01, 10, 11} and if
R = 00 then R = 00τR (where τ is random)

Figure 2.3: Reading w on the left is the same as reading w′ on the right.

To have the Incorporating feedback loops is enough to represent any rational distribu-
tion, as shown in the next lemma.
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Definition 2.7: Gadget

A (k, f )-gadget is a regular binary tree of depth k, extended with blind transitions
(accepting 0 or 1) from the last f leaves to the root.

·

·

·

·

·

·

·

·
·
·
·
·
·
·
·

0

1

0

1

0

1

0

1
0

1
0

1
0

1

_

_

_

Lemma 2.7:

Any rational distribution Dist(S) is simulated by a gadget.

Proof

Let p1, . . . , pk be rationals with ∑i pi = 1, and suppose pi ≤ pi+1 for all i. Consider
M the smallest common multiple of all denominators of the elements pi, and write
pi = p̃i

M . We will denote by qi = ∑i
j=1 p̃i. Note that q0 = 0 and qk = ∑i p̃i = M.

Now consider P the smallest natural number such that 2P ≥ M. We build the regular
automaton of depth P with feedback loops on 2P −M leaves. We will show that the
probability p of reaching a leaf within [qi + 1, qi+1] is equal to pi. One only need to
compute:

p =
p̃i

2P ∑
m≥0

(
2P −M

2P

)m

=
p̃i

2P
1

1− 2P−M
2P

=
p̃i

2P
2P

2P − (2P −M)
=

p̃i

2P
2P

M
=

p̃i

M
= pi

As explained in out thought experiment with coins, and following figure 2.3 we define
the interwoven sequence for rational selectors.
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Definition 2.8: ID
k (α, ρ) Interwoven sequence for rational selectors

Let α ∈ {0, 1}ω an input sequence, and ρ ∈ {0, 1}ω an advice sequence. For any
k, D ∈N we define the interwoven sequence ID

k (α, ρ) as:

α1ρ1 . . . ρi1α2ρi1+1 . . . ρi2α3 . . . ,

where i1 < i2 < . . . is the sequence of indices ij such that ρij+1 . . . ρij+1 is equal to
w1r1w2r2 . . . rmwm+1 where:

• w1, w2, . . . , wm are among the 2D − k greatest elements in {0, 1}D (considered
with the natural alphabetical order);

• wm+1 belongs to the k smallest elements in {0, 1}D;

• ri are bits in {0, 1}which we will call return bits, corresponding to feedback loops.

Now we define the determination Det(S) of rational selector S . Det(S)(α, ρ) is designed
to simulate the execution of S(α) when ρ is an infinite fair random sequence.

Since the selector is finite, one can write all rational numbers involved with a common
denominator, say k. Given a rational selector S , we will call k the rationality degree of S and
the dyadicity degree D of a rational selector S as the smallest integer such that 2D ≥ k. Each
transition will be simulated by a gadget as defined above, the feedback edges of all gadgets
will be the 2D − k last edges in the gadget, this does not depend on the specific transition
considered.

Definition 2.9: rationality degree and dyadicity degree

Let S be a rational selector, we define its rationality degree k as the smallest integer
such that all transition probabilities may be written as p

k (i.e. the common denominator
of all probabilities in S). The dyadicity degree of S is D where D is the smallest integer
such that k ≤ 2D.
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Definition 2.10: Determinization of rational selectors

Let S = (Q, δ, q0, F) be a rational selector of rationality degree k and dyadicity degree
D. We define its determinisation Det(S) as the deterministic selector (Q′, δ, q0, F) where:

• Q′ = Q ∪Q× {0, 1} ×
(
{0, 1}≤k−1 ∪ {return}

)
;

• q′0 = q0 and F′ = F;

• the transition function δ is defined as follows:

– for all q ∈ Q, δ′(q, a) = (q, a, ε) where ε is the empty list;

– for all ((q, b, w) with w ∈ {0, 1}≤k−2, δ′((q, b, w), a) = (q, b, w · a);
– for all (q, b, w) with w ∈ {0, 1}k−1 and a ∈ {0, 1}:

* if w · a belongs to the 2D − k last leaves (i.e. the 2D − k largest elements
of {0, 1}D for the natural order), then δ′((q, b, w), a) = (q, b, return);

* otherwise, δ′((q, b, w), a) = q′ where q′ = φ(w · a) for a chosen φq,b :
k → Q such that the preimage of any s ∈ Q has cardinality ms where
ms is defined by δ(q, b)(s) = ms

k ;

– for all (q, b, return) and any a ∈ {0, 1}, δ′(q, b, return) = (q, b, ε).

We note that this is a direct generalisation of the dyadic case, i.e. if the considered selector
is dyadic, then the interwoven sequence ID

2D just defined coincides with the definition from
the previous section. Similarly, the determinisation of a dyadic selector is a special case of
the determinisation of a rational selector. We can see here the difficulty in adapting the proof
to the rational case arising: instead of interweaving one block of ρ of size D between each
bit of α, we interweave a block of bits from ρ of variable length.

Note however that we carefully defined the determinisation so that the size of these
blocks does not depend on the state we’re in and thus does not depend upon the read values
αi.

First, we check that the determinisation simulates the rational selector when given ran-
dom advice strings.

Lemma 2.8:

Let S be a rational selector of rationality degree k and dyadicity degree D. Then for all
sequence α ∈ {0, 1}ω the random variables S(α) and Det(S)(ID

k (α, ρ)) where ρ is an
infinite fair random sequence, have the same distribution.

Proof

Let ρ be an infinite fair random sequence. By construction of Det(S)(ID
k (α, ρ)), for a

any two state q and q′ and letter q ∈ {0, 1} the probability of going from q to q′ whilst
reading a in Det(S)(ID

k (α, ρ)) (ignoring the gadget states in between) is equal to the
probability of going from q to q′ whilst reading a in S(α).

2.4.2 Rational selectors preserve normality

In the following, α will be a infinite sequence, not considered normal unless explicitly stated.
We will write w to denote a finite word. We denote by ρ and τ fair infinite random sequences,
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and by r a finite random sequence. Lastly, q will be the probability to loop back at the end

of a gadget, equal to 1− k
2D . We will denote by A(N)

N−→ B(N)(1± ε) the fact that

∃N0, ∀N > N0, B(N)(1− ε) < A(N) < B(N)(1 + ε).

To prove that rational selectors preserve normality, we will prove in this section that
Pρ(ID

k (α, ρ)is normal) = 1, that is the generalised version of Lemma 2.6. As in the dyadic
case, this is the crux of the problem, and the proof of the main theorem will easily follow. In
order to prove this technical lemma, we analyze a process we call F which takes a sequence
α and inserts in between every bit of α a random amount of random bits. We will then show
that if α is normal the sequence F (α) obtained in this way is normal. Finally we will argue
that normality of ID

k (α, ρ) amounts to the normality of F (α).

Definition 2.11: Random process Fq

Suppose given K ∈ N, w ∈ {0, 1}K, q ∈ [0; 1[, and τ ∈ {0, 1}ω. We define Fq(w, τ) ∈
{0, 1}∗ as the random variable described in fig. 2.4 where we consume a bit of w when
we get to state W and a bit of τ when we get to state T. The process stops when the
state W is reached and there are no more bits of w to be consumed. The output is all
the consumed bit in timely order.
We denote by Fq(w) the random variable Fq(w, τ) where τ is a fair random infinite
sequence.

Remark 1. Note that τ needs to be infinite because we have no bound on how many bits of it
we may consume.

In the following, we may not specify q and just write F (w) when the context is clear.

W T

1− q
q

1− q

q
Example: if w = 0110,
τ = 10010..., then

F (w) = 010110010,

with the sequence of states

WTTWWTWTTW.

Figure 2.4: The random process F viewed as a Markovian process.

For now F has only been defined on finite strings. We extend it to infinite strings in an
intuitive way.

Definition 2.12: F (α)

Suppose given α ∈ {0, 1}ω, K ∈ N>0, and q ∈ R. Let (Fi)i∈N be an iid family
of random variables of law F . The random variable Fq(α) is the infinite sequence
distributed as the concatenation of the Fi applied to the blocks Bi

K(α):

F0(B0
K(α))F1(B1

K(α))F2(B2
K(α)) . . . .

Note that the value of K does not change the distribution of the random variable F (α),
hence the definition is unambiguous.

In the next lemma we analyze the length of F (w).
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Lemma 2.9: Expected size of F (w)

Let q ∈ [0; 1[ and (Fi) be an iid family of random variables of law Fq. Then for all
K ∈N and for any family (wi)i∈N ∈ ({0, 1}K)N,

P

(
∑

i≤N
|Fi(wi)| = NKq−1 + o(NKq)

)
= 1.

Proof

By standard Markov chain analysis, the expected value of |Fi(wi)| is Kq−1 and its vari-
ance is finite, furthermore the Fi(wi) are independent the strong law of large number
therefore applies and we get the desired result.

In the next lemma we show that for any w we can approximate the number of w in
F (α) = F0(B0

K(α))F1(B1
K(α))F2(B2

K(α)) . . . by adding up the number of w in eachFi(Bi
K(α))

separately. Note that this is not trivial as some occurences of w may straddle two consecu-
tive Fi(Bi

K(α)). The larger K the more precise the approximation. What we gain from this
separation is that the random variable ]si−|w|{w}(Fi(Bi

K(α))) are independent and we can
apply the law of large numbers. In contrast in F (α) where we concatenate the Fi(Bi

K(α)) we
do not have independence because knowing that w appears at the end of F1(B1

K(α)) may
influence that it appears at the beginning of F2(B2

K(α)).

Lemma 2.10: Counting block by block

Let α ∈ {0, 1}ω be a normal sequence, w ∈ {0, 1}M be a word, and (Fi)i∈N

be an iid family of random variables of law F . For all K ∈ N, we write β =
F0(B0

K(α))F1(B1
K(α))F2(B2

K(α)) . . . and for all i we define si = |Fi(Bi
K(α))| and SN =

∑N
i=0 si. Then we have that[

N

∑
i=0

]si−|w|{w}(Fi(Bi
K(α)))

]
− ]SN{w}(β) < MN.

Proof

First note that we count indices up to si − |w| in ]si−|w|{w}(Fi(Bi
K(α))) because if w

appears in Fi(Bi
K(α)) it must appear before the last |w| bits. For this reason we also

mention that ]si−|w|{w}(Fi(Bi
K(α))) = ]|w|{w}(Fi(Bi

K(α))).

Then note that ]SN{w}(β) ≥
[
∑N

i=0 ]si−|w|{w}(Fi(Bi
K(α)))

]
indeed if w appears some-

where in one of the Fi(Bi
K(α)) then it also appears in β.

Therefore every w is counted in ]SN{w}(β) and not in
[
∑N

i=0 ]si−|w|{w}(Fi(Bi
K(α)))

]
appears at an index in the |w| last bits of an Fi(Bi

K(α)). There are at most |w| × N =
MN of those.

We have that ∑N
i=0 |Fi(Bi

K(α))| tends to NKq−1, thus by taking large values of K the
discrepancy MN of the number of w noticed in the previous theorem can be made negligible
when compared to the size of the string.

In the next theorem we just prove that for a random ρ the proportion of w in Fi(Bi
K(ρ))
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is approximately 2−|w||Fi(Bi
K(ρ))| on average.

Lemma 2.11: Expected number of occurrences w in F (ρ)

Let ρ ∈ {0, 1}ω be a fair random infinite sequence, q ∈ [0; 1[, and w ∈ {0, 1}M.
Let (Fi)i∈N be an iid family of random variables of law Fq. For all i, we write
si = |Fi(Bi

K(ρ))| and for all N, SN = ∑N
i=0 si. Then for any ε > 0, there exists K ∈ N

such that: ∣∣∣E(]si−|w|{K}(Fi(Bi
w(ρ))))− 2−|w|Kq−1

∣∣∣ < ε.

Proof

This result can be shown by standard analysis of fair random sequences of size Kq−1.
Indeed for a random ρ, Fi(Bi

K(ρ)) is just a random sequence of expected size Kq−1.
Let ε ∈ R. If K is large enough, there exists some ε′ ∈ R such that a random sequence
of size Kq−1 contains on average 2−|w|Kq−1 + ε′ occurrences of w where |ε′| < ε.

Lemma 2.12:

Let α be a normal sequence, for any w ∈ {0, 1}∗ and q ∈ [0, 1[, Fq(α) is w-normal with
probability 1.

Here is the intuition of the proof, given a word w and a normal number α we want to
study the occurrences of w in F (α). If α was a random number it would be trivial to show
that F (α) is normal, when α is only normal this becomes much harder because the proba-
bility of occurrence of w at a specific index i depends upon α and i in a way which is very
hard to compute. So we first divvy α up into blocks Bi

K(α) and study the sum of occurrences
of w in F (Bi

K(α)). Remember the sets VK
i of definition 2.3, we group the F (Bi

K(α)) together
according to the VK

j and now we can look at the sum of F (Bi
K(α)) for all i ∈ VK

j . So now we
have no dependency on the specific α because Bi

K(α) takes value in one and every element
of {0, 1}K when i ranges across VK

j , moreover we recognize the sum of an expected value.
By arguing that α is normal we can get upper-bound the number of i < N not included in a
VK

j where every element of VK
j is less than N.

Proof of Lemma 2.12

Let (Fi)i∈N be random independent processes F . Let α be a normal sequence. Let
w ∈ {0, 1}∗, ε′ ∈ R, and q ∈ [0; 1[. Then

P
(
Fq(α)is w-normal up to ε′

)
= 1⇔ P

(
lim

N

]N{w}(Fq(α))

N
= 2−|w| ± ε′

)
= 1.

Using Lemma 2.10 by introducing independent random variables Fi of law Fq, and
writing si = |Fi(Bi

K(α))|, the above result is implied by:

∀ε, ∃K,P

(
∑

i≤N
]si−|w|{w}(Fi(Bi

K(α)))
N−→ 2−|w|KNq−1(1± ε)

)
= 1.

Take Vi(α) as defined in definition 2.3. Call BN = {i ∈ [1; N
2K ] | max(Vi(α)) < N}. We

group the indices of blocks Bj
K(α) into sets Vi of size 2K and such that |Vi| = 2K. We
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may also change sj− |w| to sj as explained in the proof of Lemma 2.10. Then the above
is equivalent to

∀ε, ∃K,P
(

S1 + S2
N−→ 2−|w|KNq−1(1± ε)

)
= 1,

where

S1 = ∑
i∈BN

∑
j∈Vi(α)

]sj{w}(Fj(Bj
K(α))), S2 = ∑

j∈[N]\⋃i∈BN
Vi

]sj{w}(Fj(Bj
K(α))).

By Lemma 2.3, we have that |BN| = N
2K + g(N), where g(N) = o(N). The equation

can thus be further rewritten as:

P
(

T1 + T2 + T3
N−→ 2−|w|KNq(1± ε)

)
= 1,

where:

T1 = ∑
i∈[N/2K ]

∑
j∈Vi(α)

]sj{w}(Fj(Bj
K(α))),

T2 =

N
2K +g(N)

∑
i=1+N/2K

∑
j∈Vi(α)

]sj{w}(Fj(Bj
K(α))),

T3 = ∑
j∈[N]\⋃i∈BN

Vi

]sj{w}(Fj(Bj
K(α))).

We now consider each term separately.

The term T1. By construction of the Vi, as j ranges across all values in Vi, Bj
K(α) takes

all values in {0, 1}K. By creating an appropriate bijection between j and (i, r), we can
write

∑
i∈[ N

2K ]

∑
j∈Vi(α)

]sj{w}(Fj(Bj
K(α))) = ∑

i∈[ N
2K ]

∑
r∈{0,1}K

]si,r{w}(Fi,r(r)).

We recognize a sum over expectations as in Lemma 2.4. By Lemma 2.11, we can take K
big enough such that the expected value over r of ]si,r{w}(Fi,r(r)) is Kq−12−|w|(1± ε).
Thus:

∀ε, ∃K,P

 ∑
i∈[ N

2K ]

∑
j∈Vi(α)

]sj{w}(Fj(Bj
K(α)))

N−→ 2−|w|KNq−1(1± ε)

 = 1.

The term T2. We have that

∀ε, ∀K,P

 N
2K +g(N)

∑
i=1+N/2K

∑
j∈Vi(α)

]sj{w}(Fj(Bj
K(α)))

 = o(N)

 = 1,

because g(N) = o(N) and the random variable ]sj{w}(Fj(Bj
K(α))) has finite expected

value and variance (in particular constant in N).
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The term T3. We have that

P

 ∑
j∈[N]\⋃i∈BN

Vi

]sj{w}(Fj(Bj
K(α))) = o(n)

 = 1.

The sum is over o(N) terms by Lemma 2.3 and the random variable ]sj{w}(Fj(Bj
K(α)))

is of finite expected value and variance.
By combining the three results we can get that a

∀ε′ ∈ R,P(F (α)is w-normal up to ε′) = 1.

We define the sequence (εn)n∈N ∈ RN as εn = 1/(n + 1). We have that

P(∀n,F (α)is w-normal up to εn) = 1

as an intersection of countably many events of probability 1. We then get, by consid-
ering the countable intersection of these event that P(F (α)is w-normal) = 1.

aWe remind the reader of definition 2.2 for normality up to ε

Lemma 2.13:

Let α be a normal number then F (α) is normal with probability 1.

Proof

By lemma 2.12 ∀w ∈ {0, 1}∗, F (α) is w-normal with probability 1.
P(F (α)is normal) = P(∀w ∈ {0, 1}∗,F (α)is w-normal), since this is an inter-
section of countably many event of probability 1, we have that F (α) is normal with
probability 1.

Lemma 2.14:

For any positive integer D, any k ∈ [2D−1; 2D]

Pρ(ID
k (α, ρ)is normal) = 1.

Proof

Let D be a positive integer, k ∈ [2D−1; 2D]. There are 3 kinds of bits in ID
k (α, ρ): bits

from α, bits from ρ appearing inside the gadgets (we call this sequence γ) and bits
from ρ corresponding to return bits (we call this infinite sequence of bits τ). Note that
γ and τ are both independent fair random infinite sequences.
Note that in ID

k (α, ρ), we find every bit from α and τ at indices multiple of D + 1. We
define the infinite sequence y as such: ∀i ∈N, yi = ID

k (α, ρ)i(D+1).
Notice that ID

k (α, ρ) = ID(y, γ) (where the second I is from defintion 2.6). Since γ
is a fair infinite random sequence then by using theorem 2.6 if y is normal then so is
ID
k (α, ρ) with probability 1 over γ.

Thus now we only need to show that y is normal with probability 1. Notice that the
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distribution of y is the same as Fq(α) with q = 1− k
2D . Therefore by theorem 2.13 y is

normal with probability 1.

This gives the main theorem. The proof follows the proof of Theorem 2.2, using Lemma 2.14
and and Lemma 2.8.

Theorem 2.3:

Let α ∈ {0, 1}ω be a sequence. Then α is normal if and only if for all rational selector
S the probability that S(α) is either finite or normal is equal to 1.

While we think the equivalent statement to hold for general probabilistic selectors, we
believe that establishing such a result would require a different proof method. We briefly
explain why next. Given a fair random coin X simulating Y such that P(Y = 0) = a =
1− P(Y = 1) and a is irrational is possible as follows, write the binary decomposition of
a in binary a = 0.a0a1 . . . . Next draw X repeatedly and see the sequence of draws (Xi) as
a real number in [0; 1] whose (Xi) is its binary decomposition. As soon as we encounter j
such that (Xj) differs from aj we can conclude if (Xi) is bigger or less than a and compute
Y accordingly. Back to determinizing automata, the issue with this way of simulating an
irrational draw would require gadgets of infinite size and Agafonov theorem does not apply
to infinite automata.
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Chapter 3

Non-extensions of the Agafonov theorem

In this section, we study necessary and sufficient condition for languages to adhere to Aga-
fonov theorem (Theorem 2.1). To that end we naturally introduce the notion of Agafonov
languages (Definition 3.1) and ponder over possible necessary or sufficient conditions for
languages to be Agafonovesque. Extending Agafonov result to languages other than regular
has been studied before [KW75] [WK19], to the best of our knowledge languages presented
here do not appear elsewhere in the literature (except language of 3.5 which is folklore).

Definition 3.1: Agafonov languages

Let L be a language, L is said to be Agafonovesque (or to be an Agafonov language,
or to verify Agafonov’ theorem) if ∀α ∈ {0, 1}ω, α normal⇒ L(α) normal.

One important property which makes the Agafonov theorem true for automata is that
the path a random infinite string takes through the automaton visits accepting states a con-
stant fraction of the time. Said differently starting from an final state of automaton A and
exploring A using a random string, we wait on average a fixed amount of time before re-
turning to a final state (as stated later in lemma 3.1). By extending this notion of random
walk to languages, and defining the expected return time (ERT) of a language we had the
intuition that this new notion may yield necessary or sufficient conditions for a language to
be Agafonovesque. We properly define return time in section 3.1

In sections 3.2 to 3.4, we go over several natural conjectures involving ERT and Agafonov
languages. We try to give intuitions for the conjectures and subsequently disprove them. We
believe the languages we build as counter-examples to the conjecture are interesting as they
point towards difficulties worth knowing towards extending Agafonov theorem.

Notations : Let X be a random variable (r.v.) E(X) denotes its expectation.
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3.1 Return time

As we explain in 3.2 we had at some point the conjecture that languages abiding by Aga-
fonov theorem (see 3.1) all verified some condition about the average expected return time in
the language. In this section we introduce the notions of return time and tree of a language
which will be used in the following sections.

Definition 3.2: Binary labelled tree

• A finite binary labelled tree T is a strict binary tree (each node has at 0 or 2 sons)
such that each node t is labelled 0 or 1. The label of node t is written T(t). The
nodes labelled 1 are called accepting nodes. A node is represented by a bitstring
in the intuitive way (see fig. 3.1).

• An infinite binary labelled tree T is a complete infinite tree (each node has exactly
two sons, there are no leaves) and each node t is labelled 0 or 1.

Definition 3.3: Tree of a language

To each language L ⊂ {0, 1}∗ we may bijectively associate its infinite labelled binary
tree T(L) such that for all t ∈ {0, 1}∗, T(t) = 1 if and only if t ∈ L.

Next, we define oblivious languages, a standard concept, where the membership of a
string depends solely on its length.

Definition 3.4: Oblivious languages

A language L is said to be oblivious if ∀n ∈N, ∀w ∈ {0, 1}n, w ∈ L⇔ 1n ∈ L.

0

00

000

. . . . . .

001

01

010 011

1

10

100 101

11

110 111

Figure 3.1: Infinite tree cutoff at depth 3 (accepting nodes are doubly circled)

We can now introduce the return time and its derivates.
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Definition 3.5: Return time of a node

• Let w ∈ {0, 1}∗, let L be a language. We construct the random variable W as

such: W def
= w · r1r2 . . . rN where ri are random fair bits and N ≥ 1 is a random

variable defined as the smallest integer such that W ∈ L.
N is called the return time for node w.

• The expected return time ERTL(w) is defined as E(N).

• For any k ∈N, the k-moment of the return time at node w noted Rk
L(w) is defined

as E(Nk)

When the language L is clear from context we may write ERT(w). If one sees the lan-
guage L as its tree T(L), and starts exploring T(L) at random starting from w, ERTL(w) can
be seen as the expected time before this process gets back to a node labeled 1 in T(L) (the
expected time before we return in L). Note that the ERT may be infinite.

Definition 3.6: Expected return time in a tree for a node

• (For an infinite tree) Let T be a labeled infinite tree, let L be the language such
that T(L) = T, then ∀w ∈ {0, 1}∗, ERTT(w) = ERTL(w).

• (For a finite tree) Let T be a labeled finite tree. Let T be an infinite binary labelled
tree extending T in the natural way : all the nodes from T keep their label and

all new nodes are labelled 0 then for all w node of T, ERTT(w)
def
= ERTT(w)

Now we want to examine how expected return time grows as we go deeper along the
tree.

Definition 3.7: Expected return time

• Let L be a language, the expected return time at depth d ∈ N noted ERTL(d), is
said to be greater (resp. less) than a ∈ R if

∀w ∈ {0, 1}d ∩ L, ERTL(w) > a (resp. ERTL(w) < a)

• Let L be a language, the k-moment time at depth d ∈N noted Rk
L(d), is said to be

greater (resp. less) than a ∈ R if ∀w ∈ {0, 1}d ∩ L, Rk
L(w) > a (resp. Rk

L(w) < a).

• By conflating infinite binary labelled trees and languages we may speak of
ERTT(d) where T is an infinite binary labelled tree.

• Let f : N 7→ N we note ERTL = O( f ) (or abusively ERTL(d) = O( f (d))) if
∃c, ERTL(d) < c f (d). We have similar definitions for Θ and ω.

Notice the expected-return-time definition only takes into account words that are in L.
Indeed let us take the oblivious languages L = {w ∈ {0, 1}∗; ∃n ∈ N, |w| = n2}, we intu-
itively want to say that the return time of this language is linear (from an accepting node to
another there is a path of length 2n + 1), but for words of length n2 − 1 their ERT is 1, thus
we only consider words already in the language. Secondly we don’t have a precise value for
ERTd as at a given depth d there are 2d nodes of possibly different ERT and its not clear how
we should define expected return time at depth d.
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Definition 3.8: Agafonov languages

Let L be a language, L is said to be Agafonovesque (or to be an Agafonov language,
or to verify Agafonov’ theorem) if ∀α ∈ {0, 1}ω, α normal⇒ L(α) normal.
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3.2 Languages of unbounded ERT

As said in the beginning of this chapter, one important property which makes the Agafonov
theorem true for automaton is that if the automaton is in a strongly connected component
containing an accepting state it will go infinitely many times through this accepting state (at
least for normal or random infinite sequences). Even more than that, the automaton will go
through this state a constant fraction of the time, as per theorem 3.1. In this section we try
to understand if this is a sufficient condition.

Theorem 3.1: Automaton have finite return time

Let A be an automaton where every state is co-accessible (there is a path from this
state to an accepting state), then ERTL(A) = θ(1).

Proof

A random walk starting over automaton A and with a random string as input can be
seen as a random walk on a Markov chain. Thus any state (including accepting state)
are visited in finite expected time.

We expected languages not verifying this property, i.e. going through accepting states
less and less frequently, to not abide by Agafonov’ theorem, in a way we describe next.

Coming up with the conjecture We had at some point this conjecture : let L be a lan-
guage, if L is agafonovesque then it cannot be that ERTL = ω(1). The intuition behind this
conjecture lies both in theorem 3.1 and in the proof of theorem 3.2 which states that this is
indeed true for oblivious languages. It turns out that this intuition is wrong and there are
agafonovesque languages of arbitrary ERT (theorem 3.3).

Theorem 3.2: Oblivious languages of superconstant ERT are not Agafonovesque

Let L be an oblivious language, f a function from N 7→ N such that f = ω(1), if
ERTL = f , then L is not agafonovesque.

Proof

We first say that ERTL = f is properly defined because L is oblivious so all accepting
nodes at the same depth have the same ERT. To prove the theorem, we have to find a
word α ∈ {0, 1}ω such that α is normal but L(α) is not. The basic idea is to take any
normal number and change only the bits right after an accepting state.

Take any normal word β ∈ {0, 1}ω, define w0
def
= ε and for all i > 1, wi is defined as

follows :

• Let N def
= |wi−1|, let w′i

def
= wi−1 · βN+1 · · · βN+h where h is the first occurrence

such that w′i ∈ L. Then wi
def
= wi · 0

Let α be defined as the limit of (wi)i∈N. By construction the bits selected by L(α) are
all 0, and we select infinitely many bits because L is oblivious and L is infinite, thus
L(α) = 000 · · · which is not normal.
On the other hand α<N is equal to β<N except for indices (∑n

j=0 f (j))n∈N, since |{i <
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N; ∃n ∈ N, i = ∑n
j=0 f (n)}| = o(N), one can easily check that the normality of β

entails that of α.

Next we prove the main theorem of this section, disproving our original conjecture.

Theorem 3.3: Agafonov languages of arbitrary ERT

For any E : N 7→ N, there exists a language L such that ERTL = θ(E) and L is
Agafonovesque.

Proof

This is a direct application of corollaries 3.1 and 3.2.

In order to prove theorem 3.3 we introduce several constructions

Definition 3.9: Rack and Vine trees

Let k : N 7→N, E : N 7→N be two functions. Forall n:

• (Racks) Let Bk,E(n) be the complete binary tree of depth E(n)2k(n) such that all
leaves are accepting nodes (see figure 3.2)

• (Vines) Let Fk(n) be the labelled tree such that (see figure 3.3)

– ∀0 ≤ i ≤ n, 0i is a node, 0i1 is a node,

– for two nodes u, v in Fk(n), u is a child of v iif v = u0 or v = u1

– the accepting nodes are exactly the 0i1 for i ≤ k(n)

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 3.2: A rack of depth
3

0

00

000 001

01

1

Figure 3.3: A vine of depth
3

Definition 3.10: Gluing/Sticking

Take T and H two binary labelled trees such that T is finite, H is not necessarily finite.
Let w be a leaf of T, gluing H to node w yields the tree G composed of all nodes in
{w′; (w′ is a node of T) ∨

(
w′ = w · h ∧ h is a node of H}. The labels are defined as

follows G(w′) = H(h) if w′ = w · h otherwise G(w′) = T(w′).
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Figure 3.4: Gluing a rack to a vine

We have defined racks and vines such that when glued together the expected return time
is E(n) (see fig. 3.4). We make use of it to construct trees Tk,E which are counter examples
for theorem 3.3.

Definition 3.11: Construction of Tk,E

• We define Tk,E(n) to be the finite tree obtained by sticking the root of Bk,E(n)
at the node 0k(n) of Fk(n). i.e. Tk,E(n) is the tree which represents the language
composed of all strings x such that x = 0i1 for i < k(n) or x ∈ 0k(n)(0 + 1)z(n)

where z(n) = E(n)2k(n).

• We define Tk,E to be the infinite tree defined as the limiting Ti as i tends towards
infinity where Ti defined as such: At step 0 : T0 is Tk,E(0) At step i : For each leaf
f of Ti−1, call d f the depth of f , glue tree Tk,E(d f ) to leaf f. The resulting tree is
Ti.

Next theorem justifies our construction by saying that the expected return time from the
root of the tree Tk,E(n) is equal to E(n) (in the next theorem ε represents the empty word).

Lemma 3.1: ERT(Tk,E)

∀n ∈N we have E(n) ≤ ERTTk,E(n)(ε) ≤ E(n) + 2
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Proof

This is done by direct analysis

ERTTk,E(n)(ε) =
[ k(n)−1

∑
i=0

i2−i
]
+ 2−k(n) · ERTBk,E(n)(ε)

the sum accounts for the vine part

=
[ k(n)−1

∑
i=0

i2−i
]
+ 2−k(n) · 2k(n)E(n)

This quantity is more than E(n) and less than 2 + E(n) (by convergence of ∑N
i=0 i2−i)

Corollary 3.1:

Let k, E be two functions of N 7→N, met d ∈N, ERTTk,E(d) = θ(E(d))

Proof

Let w ∈ {0, 1}d, if w is accepting then by construction of Tk,E, tree Tk,E(d) starts at w.
By lemma 3.1 we then get the desired result

Corollary 3.2:

Let E be a function from N 7→N, then there exists k ∈N 7→N, such that the language
L(Tk,E) is Agafonovesque.

Proof

Let E be a function from N 7→N. Let k be the function defined as such ∀n ∈N, k(n) =
2n + 1. Then we claim L(Tk,E) is Agafonovesque.
Recal that Tk,E it is built by gluing racks (Bk,E) and vines together Fk). Let α ∈ {0, 1}ω be
an infinite sequence (not necessarily normal at this point). There are two possibilities
as we examine the path of α through Tk,E:

• α takes finitely many racks i.e. ∃n0, ∀n, n ≥ n0 ⇒ αnis in a vine of Tk,E . Then
as far as α is concerned, starting from n0, it is as if it is being selected by a finite
automaton (the finite automaton which accepts each time it sees a 1), therefore
by Agafonov theorem if α is normal Tk,E(α) is normal.

• α takes infinitely many racks, i.e. ∀n ∈ N, ∃m ∈ N, m > n ∧
αmis the root of Bk,E(i) for a certain i. If we are in this situation we claim that
α is not normal. Indeed let us consider m a integer such that the node αm of Tk,E
is the beginning of rack Bk,E(i) for a certain i then it must be that for a certain
d, the last k(d) bits of α0, . . . , αm were all 0 (because we go through a vine before
arriving at a rack). Moreover d verifies d + k(d) = m ⇒ 3d + 1 = m ⇒ d ≈
m/3 ⇒ k(d) ≈ 2m/3. Thus we have that the fraction of 0 in α0, . . . , αm is bigger
than 2/3, since this happens for infinitely many m, α cannot be normal.
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In conclusion if α is normal then Tk,E(α) is normal.
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3.3 Almost regular languages of finite moments

If we analyze regular languages we can note that from any accepting state not only is the
expected return time finite (as well any any k-moment) but we also have only access to
finitely many states. If we look at the infinite labelled tree of a regular language the tree
becomes self similar for almost all nodes as we descend deeper in the tree (the tree becomes
self similar as soon as we enter a strongly connected component of the automaton). To
mimic this self similarity we come up with the notion of View, the View of a node w in
a tree what the node sees as it looks down the tree. We try to come up with a sufficient
condition for Agafonov languages in this direction. If a language has finitely many views
across all w ∈ {0, 1}∗ then the language is regular and thus the Agafonov theorem is already
established. To go sightly beyond we consider views until a certain depth called Viewn and
consider languages with finitely many Viewn and call those almost regular languages (see
the exact definition here 3.13). One conjecture could be that almost regular languages with
finite k-moments for all k are agafonovesque but we disprove this conjecture in theorem 3.4.
Assuming finite k-moments is important as otherwise there are trivial counter example to
this conjecture. We have not seen the notion of almost regular language defined elsewhere
and think it is interesting in its own right.

Definition 3.12: View of a language

Viewn(w, L) = {w′ ∈ Σ≤n; ww′ ∈ L}

Definition 3.13: Almost regular languages

Let L be a language it is said to be almost regular iff ∃C ∈
N, ∀n∃M, |{Viewn(w, L); w ∈ Σ≥M ⋂

L}| ≤ C

Not all regular languages are regular as implied by theorem 3.4, but the converse is true.

Lemma 3.2: Regular languages are almost regular

Let L be a language, if L is almost regular then it is regular.

Proof

Let L be a regular language, it is recognized by automaton A with at most k states,
therefore ∀n ∈ N, |{Viewn(w, L); w ∈ L}| ≤ k which is a stronger requirement than
necessary for being almost regular.

Theorem 3.4: Almost regular languages of finite moments but not Agafonovesque

There exists an almost regular language, with finite k-moments for all k i.e. ∀k ∈
N, ∃C ∈ N, ∀w ∈ L, Rk

L(w) < C (R is from definition 3.5) which does not abide by
Agafonov theorem.

Proof

Let k = n 7→ n, E = n 7→ n3

2n , then Tk,E verifies that:

• ∀k ∈N, ∃C ∈N, ∀w ∈ L, Rk
L(w) < C
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• There exists a α ∈ {0, 1}ω normal such that T(α) is not normal.

• T is almost regular.

Proofs:

• Let w ∈ L, call n def
= |w| then we have Rk

L(x) < 2−n ∗ (n + n3)k which is strictly
less than C ∈N for a certain C depending on k

• Consider an infinite sequence α′ ∈ {0, 1}ω which is the limit of sequence (αi) ∈
({0, 1}∗)N) constructed as follows. At step 0, α0 = ε. At step i, draw r ∈ {0, 1}∗

of size |αi−1|3 at random, we define αi
def
= αi−10|αi−1|r0. The 0|αi−1| part ensures

that we get always get to a rack, and the random r ensures normality, the final 0
will be the selected bit and make the output not normal. It can be easily checked
that α′ is normal (idea : let n, N ∈ N if you draw index i at random in [0; N]
α′i, . . . α′i+n were all drawn like random bits with probability closer to 1 as N
tends to infinity). Moreover Tk,E(α

′) = 00000....

• The idea is this : given n ∈ N at depth more than n every accepting node only
sees racks for the next n nodes. Formally:
Fix C = 1, let n ∈ N, fix M = n then ∀w ∈ {0, 1}≥M ∩ L, Viewn(w, L) =
{w′ ∈ {0, 1}∗; w′ ∈ (ε + (0 + 1)i−11) ∧ i ∈ [0; n]} thus ∀w ∈ {0, 1}≥M ∩
L, |{Viewn(w, L); w ∈ Σ≥M ⋂

L}| ≤ C.
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3.4 Languages of bounded return time

In the previous section we crucially relied on the fact that the return time of our language
was not bounded (it was finite but could grow as we went down the tree). One may think
that having a bounded return time must be a sufficient condition for being agafonovesque
but as we show in Theorem 3.5 this is not true. Let us first recall the definition of bounded
return time.

Definition 3.14: Bounded return time

Let L be a language, it is said to have a bounded return time if ∃C ∈ N, ∀w ∈ {0, 1}∗
if we call N the return time at node w (N is a random variable), then we have N < C.
This is equivalent to saying ∃C ∈N, ∀w ∈ L, ∀w′ ∈ {0, 1}C, ∃i ≤ C, w ·w′1 ·w′2 · · ·w′i ∈
L

Theorem 3.5:

There exists languages with bounded return time which are not Agafonovesque.

Proof

Let α ∈ {0, 1}ω be a normal sequence. Define program pα as follows :
1: Input: w
2: n← |w|
3: if w is not a prefix of α then
4: ACCEPT
5: else
6: if αn+1 = 0 then
7: ACCEPT
8: else
9: if ∀i ∈ [1, 5], αn−i 6= 0 then

10: ACCEPT
11: end if
12: end if
13: end if
Let Lα be the language recognized by pα. Basically pα accepts right before the zeros of
α and if it hasn’t been able to do that for the 5 last prefixes of α it accepts no matter
what.

Clearly Lα has finite return time, that is because if we haven’t accepted for the past 5
prefixes accept. Hence the return time is bounded by 5.

Moreover Lα(α) is not normal. We sketch the proof : notice that Lα(α<N) selects all
0 in α<N so approximately N/2 zeroes as N goes to infinity, but it only selects the 1
which come right after a sequence of five consecutive ones, so only 1/32 of them on as
N goes to infinity. Thus the limiting ratio of 1 is not 1/2 and thus Lα(α) is not normal.

The language in the proof of theorem 3.5 is not almost regular. Our guess is that any
almost regular language of bounded return time is Agafonovesque... But only because such
languages are regular. While we do not believe this conjecture to be hard to prove we leave
it for future research.
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Question

Let L be a language, if L has bounded RT and is almost regular then it is regular.
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Part II

Kolmogorov complexity
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Chapter 4

Time hierarchy for Kolmogorov
complexity

(this part should really be revisited (in particular it’s log alpha in the intro and not alpha)
In this part we improve on the state-of-the-art time hierarchy for time-bounded Kol-

mogorov complexity. More precisely, we prove that there are infinitely many n ∈ N such
that there are strings of size n which are the output of programs of size f = o(log n) running
in o(2 f T) steps but are not the output of any program of size f running in T steps. The
previous gap was exponential in 2 f . This result is established by studying a new problem in
combinatorics which we call novelty games: a list E of pk numbers in [1; N] is shared evenly
between p players, who each get to output an answer depending on their share of E. The
players must establish a communication-free strategy ensuring that one of them outputs a
number not belonging to E.

4.1 Introduction

What is Kolmogorov Complexity ? Kolmogorov complexity, named after Andreï Kol-
mogorov, is a measure of the complexity of a word. More precisely, the Kolmogorov com-
plexity of a string w ∈ {0, 1}∗, denoted as K(w) ∈ N, is the length of the shortest program
program (in a fixed programming language) that outputs w and halts. It provides a way
to quantify the information content of a string by the length of its shortest description. For
example, a string that consists of repeated patterns will have a lower Kolmogorov complex-
ity than a random string of the same length. Let us give some examples for the unfamiliar
reader. In the following paragraph we will abusively conflate programs with their binary
descriptions.

• The string 1n, which consists of n consecutive ones, has an upper bound on its Kol-
mogorov complexity of K(1n) ≤ log n + 0(1), since it can be described by a simple
program specifying the number n in binary and a for loop (the for loop accounts for the
O(1) additional bits).

• The first n bits of the binary expansion of π have an upper bound of K(π1, . . . , πn) ≤
log n + O(1), because π is a well-known mathematical constant that can be generated
by a fixed algorithm with a short description. By attaching n written in binary to a
description of this algorithm we get the upper bound.

• Any string x of size n has Kolmogorov complexity less than n+O(1) as you can always
hardcode x and return it.
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• For "almost all" random strings, their shortest description is the string itself plus a
small constant overhead for the program (this constant may depend on the specific
programming language, for instance instructions telling the program to print and
stop). This fact can be proven by a simple counting argument : each program of size
less than n prints at most one string, there are less than 2n+1 such programs but there
are 2n+10 strings of size n + 10, thus 99% of strings in {0, 1}n+10 have a Kolmogorov
complexity of at least n.

Note that given a string w ∈ {0, 1}we may in general only upper bound its Kolmogorov
complexity : we may know that there is a program of a certain size outputting w and stop-
ping but we do not know if it is indeed the smallest one. To prove that the exact value of the
Kolmogorov complexity of a string w is k we would have to prove that no programs of size
less than k can output w. But the seemingly only way to do that would be to run all programs
of size less than k and check that they don’t output s. The issue is that with no upper time
limit on the running time the programs of size less than k, how can we differentiate between
a program running for very long and eventually outputting w and a program which never
halts ? One seems to run into the halting problem which is known not to be computable...
This argument can actually be made formal: there are no computable functions f growing
to infinity such that ∀w ∈ {0, 1}∗, f (w) < K(w).

Before going any further, we want to emphasize the robustness and universal aspect of
Kolmogorov complexity. Up until now, we have discussed Kolmogorov complexity with-
out specifying the programming language used to describe the programs. This is because
Kolmogorov complexity does not depend (up to a constant) on the specific choice of the
programming language, as long as the language is Turing complete. This property implies
that the complexity of a string s in any two Turing-complete languages differs by at most
a constant independent of s. In other words, if KL(s) and KM(s) denote the Kolmogorov
complexity of s in languages L and M, respectively (KL(s) = min{|p|; L(p) = s}), then there
exists a constant cLM such that ∀s, |KL(s)−KM(s)| ≤ cLM. To sketch a proof of this, consider
two Turing-complete languages L and M. Because L is Turing complete, there exists a pro-
gram (a compiler) that translates any program written in M into an equivalent program in
L. This means that for any program p in M that outputs s, there is a corresponding program
in L whose length is at most the length of P plus a constant cLM, which is the size of the
compiler. Hence, KL(s) ≤ KM(s) + cLM. By symmetry, there also exists a constant cML such
that KM(s) ≤ KL(s) + cML.

Another property of Kolmogorov complexity relevant to our result is that for a certain
c ∈ N there are strictly more strings output by programs of size f + c than by programs of
size f . This result is easily shown by considering random strings. A random string s of size
f + c is with high probability only output by a program of size at least f + c, but (for a well
chosen c depending on the language) all strings of size f are output by a program of size
less than f + c. This gives rise to a hierarchy in Kolmogorov complexity and by denoting
[ f ] = {s ∈ {0, 1}∗; K(s) ≤ f }, we have that [ f + c] 6⊂ [ f ], or informally [ f + c] > [ f ]. In an
intuitive sense we may say that there is a strict hierarchy between Kolmogorov complexity
classes.

Prefix-free Kolmogorov complexity We mention as a clarification for the educated reader
that we do not deal in this chapter with prefix free complexity, despite the notation K some-
times used for this notion. However, we have no reason to believe our techniques wouldn’t
hold for prefix free complexity.

61



Time bounded Kolmogorov complexity An aspect of Kolmogorov complexity is that it
does not take into account the computational resources required to generate a string from its
shortest description. To address this, the concept of time-bounded Kolmogorov complexity
is introduced. Time-bounded Kolmogorov complexity, denoted as Kt(w), considers both
the length of the shortest program that outputs the string w and the time t within which the
program must run. Informally, Kt(w) is the length of the shortest binary program (in a fixed
language) that produces w within a specified time bound t.

We have seen before that for plain Kolmogorov complexity the choice of any universal
programming language has no significant bearing on the size of the smallest programs,
up to constant term. For the time version we can likewise show that the notion is robust
in the same sense : Let L be a Turing machine, let us denote Kt

L(s) = min{|p|; L(p) =
sand L(p) stops in less than t steps}. We can show that for a universal Turing machine U
abiding by theorem 1.2

∃c, ∀w ∈ {0, 1}∗, Kct log t
U (w) ≤ Kt

L(w).

We thus have a robust notion up to a log-factor slowdown. We fix a universal Turing
machine U abiding by theorem 1.2 and we formally define forall string w ∈ {0, 1}∗,

Kt(w)
def
= min{| < #M, x > |;U(< #M, x >) = w and U(< #M, x >) stops in less than t steps}

.
We remind the reader that M denotes a Turing machine (or program), and #M is its

description. Notice that the definition of Kt complexity is based on the running time of the
Universal Turing machine, i.e. the number of simulated steps.

We can define the set [ f , T](n) as the set of strings of length n output by a program of
length f (n) running in time T(n) (when simulated through U).

RAM model The notions of Kolmogorov complexity and time bounded Kolmogorov com-
plexity can be adapted simply to RAM machine rather than Turing machine. In this case
since simulation through the universal RAM machine bears only a constant slowdown we
can bypass all technical consideration over simulation time.

Context of the research Kolmogorov time bounded complexity has been studied these re-
cent years and used for breakthrough results in meta complexity [Hir+23] [LP20] [Hir18],
but not only [Che+23] [LO22]. The results are many and have strong implications regarding
existence of OWF amongst other things. In a recent result [Hir+24] it is shown that finding a
witness to Kt is as hard as evaluating Kt (under some assumptions), it is somewhat surpris-
ing to know this but yet have little insights over existence of a time-bounded-Kolmogorov
hierarchy.

Novelty games we introduce in our this paper seem quite similar to a problem known
as range avoidance problem: The Range Avoidance (AVOID) problem is: given a Boolean
circuit C : {0, 1}n → {0, 1}m for some stretch m > n, find an element y ∈ {0, 1}m outside the
range of C. This paper [RSW22] show some implications over the complexity of AVOID, in
this paper [Gaj+23] a fast algorithm is given for AVOID for circuits of NC3. We believe links
between Novelty games and the AVOID problem should be studied, this thesis does not as
the author was not aware of the existence of this problem at the (allocated) time of writing.
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Question

What links are there between the range avoidance problem and novelty games ?

Neologisms for simulating programs In order not to say "program" a bigillion times we
introduce the following nomenclature : program which simulates other programs are called
simulants, their output is called the outant. Programs which are being simulated are called
simulees, their output is called outee.

Nomenclature In order to alleviate any ambiguity we introduce the following notations:
p will denote a program. #n will denote a representation of n ∈ N, i.e. a program which
outputs n, some additional argument may be added to the representation (e.g. running
time). p(x) denotes the program p launched on input x (x is a placeholder name), in par-
ticular |p(x)| denotes the size of program p launched on x, so it is of size |p|+ |x|+ log p.
OOOut(p(x)) denotes the output of program p launched on x.

For a property A(n) depending upon integers: ∃∞n, A(n)
def≡ ∀N ∈ N, ∃n ∈ N, n >

N ∧ A(n) and ∀∞n, A(n)
def≡ ∃N ∈N, ∀n ∈N, n > N ⇒ A(n).

A hierarchy for Kt complexity We have seen that for plain Kolmogorov complexity, there
exists a hierarchy, i.e. for any f ∈ N there exists words having a description of size f + c
but no description of size f . Can this result be extended when considering Kt complexity?
Meaning, for arbitrary f , T ∈N, are there words which can be printed by programs of size f
running in 2T steps but not by programs of size f running in T steps? Stated more generally:
For arbitrary T1, T2 ∈N how do [ f , T1](n) and [ f , T2](n) compare? A first immediate remark
is that we have to restrict our considerations to words of a given size, smaller than the
allotted time bound. Indeed, the question becomes trivial otherwise: with 2000 time steps
one can write the string 11900, but this is not possible in 1800 time steps. We therefore fix a
size for our outputs and only consider time bounds larger than this size.

This open question, quoted in reference textbook [LV19], is a very natural question to ask
when it comes to time bounded Kolmogorov complexity. It is similar to the time hierarchy
theorem which states that one can solve strictly more decision problems if one allows Turing
machines to run for longer.

In his thesis [Lon86], Luc Longpré gives a first answer by proving that with exponentially
more time in the size of the programs one can output new strings. We present a sightly
different proof version here.

Theorem 4.1: Time hierarchy for Kt complexity (exponential gap) [Lon86]

Let f , T be two reasonable functions from N to N in DTIME(T(n) additionally where
T(n) ≥ n and f (n) < n and f then

∃c, ∃∞n, [ f , T](n)  [ f , c22 f T](n),

If we have additionally that f = ω(log(n)) then

∃c, ∀∞n, [ f , T](n)  [ f , c22 f T](n),
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Proof

We adapt slightly the proof of Longpré. The proof is made by diagonalization like in
the proof of the time hierarchy theorem 1.3. Here follows a sketch of the proof

We will construct a program p (remember we conflate programs with their binary
representation) which takes as input a representation of n ∈ N which is decodable in
time 2n noted #n. I.e. #n ∈ {0, 1}∗ is a program which runs in 2n steps and outputs n.
We intend p to be such thatOOOut(p(#n)) /∈ [ f , T](n) butOOOut(p(#n)) ∈ [ f , 2 f T](n). Here
is what program p(#n) does :

1. Compute the values n, f (n), T(n)

2. Iterate over all programs of size ≤ f (n) and simulates them for T(n) sim-
ulation steps on the universal Turing machine U. These 2 f+1 such pro-
grams are called (hi)i∈J0;2nK) and the program stores the output yi of hi if
there was any and if |yi| = n. Notice that there are at most 2 f+1 such yi

the yi are all the elements of [ f , T](n)

3. Output a word in {0, 1}n different from all yi

Correctness: By constructionOOOut(p(#n)) cannot be in [ f , T](n).

Running time analysis: Let us analyze the running time of p(#n) :

• step 1 runs in time O(T(n))

• step 2 in time O(2 f (n)T(n))

• step 3 in time O(n22 f (n)) = O(T(n)22 f (n)) by theorem 4.6.

So the total running time is O(22 f (n)T(n)).

Size analysis: We have that |p(#n)| ≤ |p| + log(|p|) + |#n| ≤ K2T(n) + O(1). Be-
cause f ∈ DTIME(T) where T > f we have by theorem A.3 that ∃∞n, |p(#n)| ≤
K2n(n) + O(1) ≤ f (n).
If we know that f ≥ c log(n) then ∀∞|p(#2Tn)| ≤ K2n(n) + O(1) ≤ log(n) + O(1) ≤
f (n).

Conclusion: By correctness analysis ∀n,OOOut(p(#n)) cannot be in [ f , T](n), by run-
ning time and size analysis ∃∞n,OOOut(p(#n)) ∈ [ f , 22 f T](n). Thus ∃∞n, [ f , 22 f T](n) >
[ f , T](n).
If additionally we have that f = ω(log(n)) then ∀∞n, [ f , 22 f T](n) > [ f , T](n).

Whether one can lower that 22 f (n) to something subexponential has been an open ques-
tion since Longpré’s result. The contribution of this thesis is to provide a (partial) positive
answer. We now present intuition about how to lower this gap in order to get [ f , αT] > [ f , T]

Longpré proves his result using a standard complexity technique called diagonalization.
This is the same technique as in the proof of the time hierarchy theorem (see 1.3). Let us
describe it at a high level: one considers a program (called simulant) simulating the 2 f pro-
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grams of size f (called simulees) for T steps each, hence the 2 f T time factor. The simulees
may or may not output a string (called outee). The simulant then outputs a string (called
outant) which is different from all the outees (see figure 4.1).

simulant

1 2 3 2 f

y1 y2 y3

p x

outant

simulees
outeesy2 f

∀c, x 6= yc

Figure 4.1: Longpré’ construction

In order to improve on the result, we exploit the following idea: what if we had 2 f /α
simulants each simulating α simulees ? (see figure 4.2). The simulants would therefore
run for αT, allowing us to get a better bound in the theorem. Because each simulant only
knows a fraction of the outees, the problem now becomes ensuring that at least one outant
is different from all the outees, i.e. ∃j ∈ J1; αK, ∀i ∈ J1; 2 f K, xj 6= yi. To do that the simulants
must execute some kind of strategy to ensure one of them outputs an outant different from
all outees. Establishing such a strategy is the main hurdle of this chapter.

1 α

p1 x1

yαy1

p2 x2

2 f−α 2 f

p2 f /α x2 f /α

y2 fy2 f−α

∃a, ∀c, xa 6= yc

Figure 4.2: Our construction

Forgetting the kolmogorov setting for a moment, the question can be expressed as a new
combinatorics problem presented in section 4.4, called novelty games. The problem goes as
follows (we put in parenthesis the relating notions in our Kolmogorov problem): a list E of
pk numbers (the outees) in [1; N] (size of the outees) is shared evenly between p players (the
simulants), who each get to output an answer (an outant) in [1; N] depending on their share
of E. The players must establish a communication-free strategy ensuring that at least one of
them outputs a number not belonging to E.

We establish in section 4.5 a solution to this combinatorics problem which we then use to
get a better Kolmogorov time hierarchy theorem than Longpré when f = o(log(n)). More
precisely, we prove that for any function f = o(log(n)), there exists a function α = o(2 f )
such that ∃∞n, [ f , αT](n) > [ f , T](n).

The bound f = o(log(n)) and the associated α is directly related to bounds on the so-
lution we obtain for novelty games. Better bounds for novelty games would thus translate
(modulo some technicalities) into a better bounded time hierarchy theorem. The bounds
come from the fact that N must be bigger than pk in order for a winning strategy to exist,
how much bigger determines the bound.
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The method described above and represented in figure 4.2 we name them "parallel diago-
nalization". In section 4.3 in figure 4.3 we present an even more general way of diagonalizing
which we call "parallel diagonalization with advice", the "advice" part refers to the fact that
we can give some additional information to the programs. We believe this technique may
have implications elsewhere in complexity theory. The analysis of novelty games may also
be of independent interest to researchers in combinatorics.

Question

Can parallel diagonalization with advice lead to new separation in complexity theory
? To better upper bounds for problems like MKtP ? a

aThe MKtP problem ask is a string x if of Kt complexity at least k

4.1.1 Outline

Here is a succinct outline of this chapter. In section 4.2, we establish notations and basic
facts. Section 4.3 then provides a high level view of the paper and of our technique. The
remaining sections then contain the technical material. in Section 4.4 we define the new
combinatorial problem – which we call novelty games. We also prove general results and
give winning strategies for these games on specific cases. In Section, 4.6 we formally define
the program in [ f , c2 f T](n) but not in [ f , T](n) assuming the existence of a general winning
strategy for novelty games. In Section 4.5 we present a winning strategy for novelty games.
The results are then combined in Section 4.7 to establish the main theorem of the paper.
Lastly, Section 4.8 sketches some directions for future work.

4.2 Definitions

4.2.1 Notations

Notations We will use N to denote the set of integers. Intervals {N, N + 1, . . . M} will be
denoted by [N; M], and we will abusively write [N] for [1; N]. We will write ([N]

k ) to denote
the set of multisets of size at most k included in [1, N].

For a given set {0, 1}, we write {0, 1}∗ the set of strings, i.e. finite sequences of elements
of {0, 1}. Given x and y in {0, 1}∗, |x| will denote the length of the string x, and we will
write xy the concatenation of the strings x and y.

We will abusively speak of Turing machine as programs and vice versa. In the following
we interchangeably view integers, programs and bitstrings as the same thing, meaning a
bitstring represents an integer and a program and vice versa. The output of program p(x) is
notedOOOut(p(x))

We write ∀∞n, A(n) to express that A(n) is true for all but finitely many n. We will also
write ∃∞n, A(n) to express that there are infinitely many n such that A(n).

Given two sets S and R we write S  R if S is included but not equal to R, we may also
write with the same meaning R > S.

The function log∗(n) is defined recursively as

log∗ n =

{
0 if n ≤ 1,
1 + log∗(log2 n) if n > 1.
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Naming conventions Time bounds will be written as T, program size bounds as f and
time factor as α. Since any word of size n is output by a program of size n + c and you
need at least n steps to write it in order to have interesting theorems we will consider that
f ≤ n ≤ T . We will often drop the input of functions and for instance abusively write T, f ,
and α instead of T(n) f (n) and α(n). Functions g and h will denote slow growing functions.

4.2.2 Kolmogorov related notions

We define Time-space bounded Kolmogorov complexity as it is usually defined, for instance
in the book of Li and Vitanyi [LV19, section 7.1.2], or in Longpré [Lon86].

Definition 4.1: Time-space bounded Kolmogorov complexity

Let φ be a computable function from strings to strings. Let T ∈ N, x ∈ {0, 1}∗. We
define KT

φ (x) = min{|p|; p ∈ {0, 1}∗ ∧ φ(p) outputs x and stops in T steps or less }

Theorem 4.2: Universal Kolmogorov complexity

There exists a recursive function φ0 such that for every other recursive function φ,
there is a constant c such that Kctlog(t)

φ0
(x) ≤ Kt

φ(x) for all x. The constant c depends on
φ only.

Proof

Machine U of Theorem 1.2 is a witness to this theorem.

In the following we fix U to be an efficient universal efficient Turing machine (it adheres
to theorem 4.2).

Definition 4.2: Universal time-space bounded Kolmogorov complexity

Let T ∈N2, w ∈ {0, 1}∗. We define KT(w) as

min{| < #M, x > |;U(< #M, x >) = w in T steps or less},

Note that the input received by the Turing machine U is treated as the encoding of a
pair consisting of a machine and its input, and the running time considered is the one of
the universal Turing machine, not original program M. Note that if we worked in the RAM
model this distinction would not make any difference, since simulation only incurs a con-
stant slowdonw.

We next state a theorem useful for bounding the Kt complexity of our strings.

Theorem 4.3: Kt complexity of an output

Let p, x, y ∈ {0, 1}∗, if program p on input x outputs y in t steps then for a c ∈ R,
Kct log t(y) < |p|+ |x|+ O(log(|p|)

Proof

U(< p, x >) outputs y in ct log t steps and | < p, x > | ≤ |p|+ 2 log |p|+ 1 + |x|
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Finally we introduce the object of study of this chapter.

Definition 4.3: Class of time-space bounded Kolmogorov complexity with fixed size

Let T, f be functions from N to N, and n ∈N. We define

[ f , T](n) = {w ∈ {0, 1}∗; |w| = n ∧ KT(n)(w) ≤ f (n)}.

Longpré denotes this class by [ f (n), T(n)] instead.

Reasonable functions For technical reasons we need our functions not to be too contrived,
in particular we need them to be easy to compute and not to be growing too slowly. To that
end introduce the two following notions:

Definition 4.4: Very-time-computable functions

Let f be a function from N 7→ N, f is very-time-computable (VTC) if there exists a
machine M in DTIME( f (n) + n) such that ∀n, M(n) = f (n).

The usual notion of time computability is not suitable to functions f < n hence our new
definition 4.4. Next is our definition controlling the growth rate of our functions.

Definition 4.5: Reasonable functions

A function f : N 7→N is reasonable if ∀n, M(n) = f (n) and ∀c, ∃∞n, cK2n(n) ≤ f (n)

In appendix A we study reasonable functions. We have a slightly different definition of
reasonable functions in the appendix than in definition 4.5, but no matter since the different
definitions are shown to be equivalent. Reasonability imposes a certain growth rate for our
function but this condition is not stringent at all: as shown in theorem 4.5 log∗ is a reasonable
function. For this chapter we only need the following fact whose proof is in the appendix:

Theorem 4.4: VTC functions and reasonability

If f is VTC and increasing and going to infinity then f is reasonable.

In the following all considered functions are considered to be VTC and increasing and
going to infinity and reasonable.

Theorem 4.5: Growth rate of K2n

∀c ∈N, ∃∞n ∈N , cK2n(n) ≤ log∗(n) .

Finding a word outside a list We introduce the problem OUTSIDE and efficient algorithms
for it as we will need them in proofs later. This problem is called MISSING-STRING by the
authors of [VW23]. It turns out that there seems to be deep connections between their work
and ours, we discuss it at the end of subsection 4.8.1.

68



Definition 4.6: OUTSIDEk,n

An instance of OUTSIDEk,n where k < 2n is given by k elements y1, . . . , yk ∈ {0, 1}n.
A solution to this instance is an element y ∈ {0, 1}n such that ∀i, y 6= yi.

Theorem 4.6: OUTSIDEk,n ∈ DTIME(nk2)

OUTSIDEk,n can be solved in time O(nk2) by a multi-tape Turing Machine

Proof

For each y ∈ {0, 1}n check if ∀i, y 6= yi if that is the case output y. Checking for one y
takes kn time (words have n bits here), since this happens for at most k + 1 steps this
problem is in DTIME(nk2)

In the following we prove that OUTSIDEk,n is an easier problem than sorting, thus any
sorting algorithm on multi-tape Turing machines would yield faster algorithms for OUTSIDEk,n.
Using fusion sort we may show that sorting k numbers of size n on a multi-tape TM can be
done in O(nk log(k)).

Theorem 4.7: Sorting is in O(nk log(k)) ([Rei90])

Sorting a list of size [y1, . . . yk] where ∀i ≤ k, yi ∈ {0, 1}n can be done in time
O(nk log k) by a TM

Using radix sort it might be possible to show that sorting can be performed in O(n2k)
(apparently it’s quoted in [Rei90] but it is in German 1)

Lemma 4.1: OUTSIDE is easier than sorting

Let f be the function such that the problem of sorting k numbers of {0, 1}n is in
DTIME( f (k, n)) then OUTSIDEk,n ∈ DTIME( f (k, n))

Proof

Let y1, . . . , yk be an instance of OUTSIDEk,n, sort the yi, then check for gaps of more
than 1 in the sorted list, output any number within this gap.

Theorem 4.8: OUTSIDEk,n ∈ DTIME(nk log k)

OUTSIDEk,n can be solved in time O(nk log(k)) by a multi-tape Turing Machine

Proof

Direct application of theorem 4.7 and lemma 4.1.

In the RAM model everything is much easier.

1if the reader wonders how we could quote this book for the previous theorem it is because we indepen-
dently checked theorem 4.7
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Theorem 4.9:

In the RAM model OUTSIDEk,n can be solved in time O(kn).

Proof

Let y1, . . . , yk be an instance of OUTSIDEk,n, create an array l of size k containing only
0 ; for each yi, if yi ≤ k do l[yi] = 1 (where yi is interpreted as a number in [0; 2n − 1]).
Traverse list l until you find an index j such that l[i] = 0, output j.

4.3 Goal and general strategy

High level description of the paper. Our goal is to study the question

∃∞n, [ f (n), T(n)]  [ f (n), αT(n)] ?

Longpré has shown
∃∞n, [ f (n), T(n)]  [ f (n), c22 f (n)T(n)].

The proof of Longpré follows a standard diagonalization argument. One considers a simu-
lant p(n) which runs all simulees of size f (n) or less for T(n) steps (this takes time 2 f+1T),
and then outputs a string of length n which was not the outee of any of the 2 f+1 simulees.
The simulant p(n) can be made of size KT(n)(n)+O(1) since we just gave its description (the
term O(1)) and instead of giving n as an input we can give it a representation of n decodable
in T(n) steps (the term KT(n)(n)). As a consequence the stronger result we obtain is in fact

∃∞[ f (n), T(n)]  [KT(n)(n) + O(1), c22 f (n)T(n)],

When f is bigger than log(n)+ c, one can change the quantifier ∃∞ to ∀∞, since KT(n)(n) <
log n + c for some c ∈N.

One try variant. We restate here the idea given in section 4.1 described by figure 4.2. Our
idea to prove

[ f (n), T(n)]  [ f (n), αT(n)]

is to do the following: instead of running every simulee of size ≤ f for T steps (which takes
time 2 f+1T), we only run α of them for T steps. First we divide the set of 2 f+1 simulee of
size f into chunks of size α, these chunks are called Ci for i ∈ [0, 2 f+1/α]. We then consider
2 f+1/α simulants (pi)i∈[2 f+1/α]. Simulant pi will run all the simulees of chunk Ci for T steps:
some of those may stop before T steps and we remember their outputs (there are at most α
such outees). Call those outputs c1

i , c2
i . . .. Then each program pi will look at these outees

and produce an outant which hopefully is not the output of any program of size f (not only
the outees of chunk Ci). Now of course this is where the difficulty of the approach lies: each
simulant pi only knows a fraction of the possible outputs of programs of size f , and there is
no reason to think that it can output something new. However, we only need one of those
programs to output something new. To that effect, the programs will play a collective game
ensuring that at least one of them outputs a "new" string. The second task of our programs,
after computing the values cj

i , is thus to apply a strategy ensuring that one of them succeeds
in outputting a new string.

70



As a technical note, instead of considering multiple programs pi we will have one global
program 2 p taking as input a description of n decodable in 2n steps noted #n and i, n tells it
which size we are currently looking at and i tells it to run the i-th chunk of size α of simulees
of size f (n).

Simulant p(#n, i) is of approximate size K2n(n) + f − α, this is smaller than f for in-
finitely many n for any reasonable α (which is what we need) . We even have some leeway
which allows us to cram in some additional information which we’ll use in the multiple tries
variants.

As for the running time, simulating α programs for T steps takes αT steps in total. We
then have to apply our strategy on the α inputs. The strategy needs to be described, which
adds some extra size to program p Running this strategy also adds some extra running time.
Depending upon our strategy, this extra time could be greater than αT and forbid us from
concluding.

Novelty games Regardless of size and time constraint, it is not clear for now that a strategy
may even exist. We will first explain again the combinatorial problem and then how it is
relevant to our simulants. We start from an initial list E ⊂ [1; N] of size pk. We then partition
this list E into sets of size k and give those to p players. Each of the p players may produce
an answer depending only on their k inputs. Their answer must be an element of [N].The
players collectively win if at least one of the answers given by the players is not in E. Is
there a strategy the players can apply which makes them win no matter the initial list E ?
Note that the players may agree on a common strategy, and no communications are allowed
between players during the process. This game is noted GN(p, k) and such games are called
novelty games, we describe them in section 4.4.

Relating novelty games to our parameters in the Kolmogorov setting we get : each of the
p players represent a simulant, therefore p = 2 f+1/α, and each retrieves at most α outee,
thus k = α. The answer of each simulant is an outant of {0, 1}n, thus N = 2n. List E should
be understood as the set of all outees of size n of simulees of size f or less which we are trying
to parallelize against, thus |E| ≤ 2 f+1, let us pick the worst case and just say E = 2 f+1.

Remark 2. The combinatorial approach disregards any restriction on the number of bits nec-
essary to describe the strategy and the running time of the strategy. As a consequence, once
we will have a winning strategy, we will need to take care of these aspects in order to use it
for proving our result about time-bounded Kolmogorov complexity classes.

Remark 3. Achieving a winning strategy for any list E is more than what is needed for our
specific problem. Indeed, for the intended application for time-bounded Kolmogorov com-
plexity, we only need a winning strategy when the initial list is composed of the outputs of
the programs of size ≤ f (n) running for T(n) steps.

Remark 4. The bound [N] is really important. Our simulant must answer a bitstring of size
n (recall the definition of [ f , T](n)) i.e. a integer in [N]. We are given f (n) and α(n) which
determine the number p(n) of players and the number k(n) of inputs. Now it may be that
the game GN(p(n), k(n)) has a solution when N is very large but not when N is small 3. But
for our purpose we need N to be less than 2n. This leads us to an analysis in section 4.4
of the bound B(p, k) which is the smallest N for which game GN(p, k) has a solution. This
bound B(p, k) proves to be the crux and the limiting factor of our results.

2This adds some uniformity to the programs which is not formally needed and might hinder the approach.
Without uniformity, one may give additional advice to the programs, for instance information about the in-
puts of the other programs (hence the terminology of parallel diagonalization with advice), which is morally
equivalent to the multiple tries approach detailed next.

3We will establish later in the paper that the game is indeed easier when N gets large.
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Multiple tries variant. Up until this point we have considered that simulants p(#n, i) of
size≈ K2n(n)+ f − α. As stated before, we only need the program to be of size f or less, and
since all reasonable α are much bigger than K2n(n), we can provide some extra information
(advice) to our programs. This technique can be thought of as parallel diagonalization with
advice. We present here one way of using this extra information 4.

We consider simulants p(#Tn, i, j). There are to be thought of as the j-th simulant at-
tributed to the i-th chunk of α simulees. Input j is in [1; 2α/g], where g is any reasonable
slow growing function. The size of p(#Tn, i, j) is therefore approximately KT(n) + f − α +
α− log(g) ≈ KT(n)+ f − log(g), which is smaller than f for infinitely many n. The program
p(#Tn, i, j) runs the i-th chunk of α programs of size ≤ f (n) for T(n) steps and then outputs
an outant which depends on j. You may see figure 4.3

1 α

p1
1, . . . , pj

1

x1
1

yαy1

p1
2, . . . , pj

2

2 f−α 2 f

p1
2 f /α

, . . . , pj
2 f /α

y2 fy2 f−α

∃a, ∃b, ∀c, xb
a 6= yc

xj
1

x1
2

xj
2

x1
2 f /α

xj
2 f /α

Figure 4.3: Multiple tries setting

Expressed using our combinatorics problem, each player can now propose m answers
instead of giving out a unique answer. The players collectively win the game if one of the
answers of one of the players is not in the initial list E. This game is denoted by GN(p, k, m).

For the moment, we have not been able to use the ability to use multiple tries to improve
on our solution for the one try variant, and we only came up with basic theorems. We nev-
ertheless mention it since it is a natural extension of the underlying combinatorics problem.
It might also allow us to lower the bound B(p, k, m) presented in section 4.4.

4.4 Novelty games

In this section, we introduce the combinatorial game behind our technique, under the name
of Novelty games.

We remind the reader that ([N]
k ) denotes the set of all multisets included in [1, N] of size

at most k.

4this may not be the only meaningful way to use this extra information, for instance we could consider extra
simulants working with a different ordering of simulees. This way naturally extends the previously associated
combinatorics game.
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4.4.1 Definition

Definition 4.7: GN(p, k, m)

The game GN(p, k, m) is defined as follows.

• There are p players.

• Player i receives a multiset Ai ∈ ([N]
k ); elements of Ai are called inputs.

• Each player has m tries.

• On each try a player answers an element of [1; N]

An occurrence of the game GN(p, k, m) is a specific family (Ai)
p
i=1.

A strategy SN(p, k, m) for GN(p, k, m) is a family of functions (si)i=1,...,p where

si :
(
[N]

k

)
× [m]→ [N].

The players collectively win the occurrence (Ai)
p
i=1 of GN(p, k, m) if there exists a pair

(i, j) ∈ [p]× [m] such that si(Ai, j) 6∈ ∪p
i=1Ai.

A winning strategy for GN(p, k, m) is a strategy such that all occurrences of the game
are won.

When m = 1, we may write GN(p, k) instead of GN(p, k, 1).

Definition 4.8: Oblivious strategy

When all players have the same strategy, i.e. when S = (si)
p
i=1 is such that there exists

a function s with si = s for all i = 1, . . . , p, we say that SM(p, k, m) is oblivious.

Definition 4.9: B(p, k, m)

We define B(p, k, m) as the smallest integer N such that there exists a winning strategy
for game GN(p, k, m).

We note that B(p, k, m) is always less than +∞, as proven in section 4.5.2. Establishing
an estimate of B(p, k, m) in general is open.

4.4.2 General remarks about Novelty games

Sets. The first remark is that one may only consider sets of size exactly k instead of multi-
sets of size at most k. This is because the hardest case for the strategy is when each player has
k different numbers. Indeed, suppose there exists a strategy S winning in all occurrences of
the game for which players have a set of size k (or, equivalently, a multiset of size k without
repetitions). Then one can easily construct a winning strategy for all multisets: when the
considered multiset have less than k distinct numbers, you may always add arbitrary num-
bers to have k of them. One can apply the strategy S on the resulting set. A routine check
suffices to show that this strategy is winning.

In the following, we will therefore always assume that inputs are pairwise distinct, and
that we may add arbitrary new inputs so that sets have size exactly k.
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We also note that inputs are not ordered, since we work with sets and not tuples. But we
may suppose, if need be, that they are by choosing an arbitrary order relation.

The next theorem states that the existence of strategy for inputs in [1; N] implies the ex-
istence of a strategy for inputs in [1; M] for all M > N. This motivates the definition of B.

Theorem 4.10:

Let M, N ∈ N such that M > N. If GN(p, k, m) has a winning strategy then so does
GM(p, k, m).

Proof

We treat the case M = N + 1 and then we can conclude by induction. Let S be a
winning strategy for GN(p, k, m). We define a strategy S′ for the game GM(p, k, m) as
follows. If M is not an input of strategy S′, then each player simply runs S. Otherwise,
the player replaces M by N and runs the strategy S on the resulting set. One easily
checks that S′ is a winning strategy for GM(p, k, m) since the output of S′ is in [N] ⊂
[M].

Next theorem proves the intuitive result that having more players, more inputs and less
tries makes the game harder.

Theorem 4.11:

For all p, k, m ∈N, and all a, b, c ∈ {0, 1}3,

B(p− a, k− b, m + c) ≤ B(p, k, m).

Proof

This is proven by noticing that a strategy for the game GM(p, k, m) is also a strategy for
GM(p− a, k− b, m + c): it suffices to add b random inputs, apply the strategy on those
(since there are less players, the strategy determines a map for each player – and the
maps si for i = p− a + 1, . . . , p are unused), and guess c arbitrary additional outputs.

We believe establishing recurrent relations between values of B is hard when varying
the number of players, numbers, tries or the size of the set of inputs. For instance, it is not
even clear how the inequality of theorem 4.11 can be made strict.

We now start by proving a simple lower bound on B.

Theorem 4.12: Trivial lower bound on B

For all p, k, m ∈N, B(p, k, m) ≥ pk + 1.

Proof

It is easy to realise that there are no winning strategy if N = pk: if for all i ∈ [1; p],
player i has as inputs [(i− 1)k + 1; ik], then the set of all inputs is equal to [1; pk] and
no player may output a new number.
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Another easy result to establish is that if one allows for enough tries, the value of B can
be determined (and is low).

Theorem 4.13:

For all p, k ∈N, B(p, k, k) = pk + 1.

Proof

Let N = pk + 1. Each player calls its inputs i1, . . . , ik. On its j-th try each player does
this: if ij + 1 ≤ N it answers ij + 1 otherwise it outputs 1. It’s routine to check that this
is a winning strategy.

The study of multiple tries has proven to be hard. Apart from quite obvious results, we
have not found ways to improve on the results we obtain in the one-try variant. We therefore
leave the following question for future work.

Question

Can we find a better bound for B(p, k, k− 1) than B(p, k, 1)?

We summarise the results of this paper in fig. 4.4. The proof are scattered in the paper.

Game (p, k) (p, k, i) (p, k, k)
Upper bound (kp)kp

(kp)kp
pk + 1

Reference section 4.5.2 section 4.5.2 section 4.4.2

(a) Bounds for general values p, k
Game (2, 2) (1, k) (p, 1) (2, k)
Upper bound 9 k + 1 p + 1 k32k

Reference Theorem 4.14 section 4.4.2 section 4.4.2 section 4.4.5

(b) Bounds for specific values

Figure 4.4: Bound on B (when m = 1 it is omitted)

4.4.3 Relation between novelty games and time hierarchy for Kt

In this section we establish links between B and the best result we may get in order to show
that ∃∞n, [ f , αT](n) * [ f , T](n). We ignore for now implementations of specific strategies (in
particular running time and size). We remind the reader that the goal is to have α = o(2 f ),
and hopefully showing the conjecture for all f < n. All of this leads us to studying game
GN(p, k, m) where:

• p = 2 f /α;

• k = α;

• m = k/g where g is any reasonable increasing function (thought of as slow growing);

• N = 2n.
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Our bound B(p, k, m) should be less than N because a program must answer a string of size
n (i.e. an integer of [N]). We are thus interested when α, f (or alternatively (p, k, m) with the
above equalities) are such that :

B(p, k, m) < N ⇔ ∃g reasonable and increasing , ∃∞n,B

(
2 f (n)

α(n)
, α(n),

α(n)
g(n)

)
≤ 2n.

Restricting our views to the one try setting, we make some hypothesis on the form of
B(p, k) from least to most likely, and see what is the best α and f we may get (we disregard
all potential problems with running time and size of the winning strategy).

1. Hypothesis B(p, k) ≤ (pk)c for c ∈ R. We may establish the theorem for f < n
c and

any reasonable α.

2. Hypothesis B(p, k) ≤ pk. For any α reasonable we may establish the theorem for
f < n

α .

3. Hypothesis B(p, k) ≤ kp. We may establish the theorem when 2 f < αn. For f =
ω(log(n)) this may only lead to a slight improvement when compared with Longpré’s
result.

4.4.4 Resolution of G(2, 2) case

This partial solution was chronologically the first to be proposed, by Corentin Henriet dur-
ing informal exchanges. We chose to present it since the strategy is different from the ones
presented in the next sections and it provides better bounds than in the general case.

This strategy is oblivious. We will thus define the single map s used by both players.
The strategy is winning as long as N ≥ 9, showing that B(2, 2, 1) ≤ 9 (much better than
the general bound obtained in section 4.6, which gives 216). In this specific case, we can
also prove that B(2, 2, 1) > 5 (to be compared to 4 – the general lower bound obtained in
theorem 4.12).

Definition 4.10: Strategy s

We intuitively understand our inputs as being on a "clock" from 1 to N, i.e. the succes-
sor of N is 1. Let (x, y) be our inputs ordered such that the distance between x and y
is less than the distance from y to x when read in the clockwise direction. If y = x + 1
or y = x + 2, then s(x, y) = x− 2, otherwise we define s(x, y) = x + 1.

Theorem 4.14:

B(2, 2, 1) ≤ 9.

Proof

The proof consists in verifying that s is a winning strategy. This is done by checking
every possible scenario.

Theorem 4.15:

B(2, 2, 1) > 5.

76



Proof

This is easily checked by pen and paper search.

While this strategy provides good bounds, we have not found a way to generalise it to
more players or larger sets. The next section presents a general strategy for the 2-players
case.

4.4.5 Graph strategies

This line of reasoning, and the corresponding winning strategy for G(2, k, 1) was first ob-
tained by Dmitriy Kunisky during informal exchanges.

We first define of colored graphs. These colored graphs have their edges colored with no
restriction.

Definition 4.11: Colored graphs

Let p ∈ N. A p-colored graph is a triple (V, E, C) where V is a set of vertices, E ⊆
{(x, y) ∈ V2 | x 6= y} is a set of edges, and C : E → [p] a coloring function mapping
every edge to a color (an element of [1; p]).
The graph is said to be complete when E = {(x, y) ∈ V2 | x 6= y}. We will moreover
write Gi = (V, Ei) the graph induced by selecting the edges of a given color i, i.e.
w ∈ Ei ⇔ w ∈ E ∧ C(w) = i. Given u, v ∈ V, we write u ∼ v when {u; v} ∈ E; in this

case we say that u and v are neighbors. We moreover write u i∼ v when u ∼ v and
C({u; v}) = i.

We will now define a property of colored graphs which will be used later to define a
winning strategy.

Definition 4.12: (p, k)-set property

Let p, k ∈ N. A p-colored graph G = (V, E, C) is said to have the (p, k)-set property if
for every subset of vertex A ⊆ V of size k and every color i ∈ [1; p], the vertices in A

have a mutual neighbor v in Gi, i.e. such that for all a ∈ A, a i∼ v.

We will now explain how the (p, k)-set property ensures that one can define a strategy
for p players and sets of size k from a p-colored graph. The intuition is the following: each
input will correspond to a vertex, each player will correspond to a color, and a player will
use the (p, k)-set property instantiated on its color to produce an answer.

We now recall the notion of polychromatic cycle that will be useful to discuss winning
strategies.

Definition 4.13: Polychromatic cycles

Let p ∈ N and G = (V, E, C) be a p-colored graph. A cycle c of G is said to be
polychromatic if no two edges of c have the same color.

Note that a polychromatic cycle does not necessarily use all colors. The non-existence
of polychromatic cycles will ensure that the strategy will be winning (i.e that no all player’s
answer are an input of another one). For the interested reader, graphs with no polychromatic
cycles have been studied here [Bat83; ALW11].
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Definition 4.14: Good graphs

Let p, k ∈ N, and let G be a p-colored graph. We say that G is (p, k)-good if it has the
(p, k)-set property and has no polychromatic cycles.

We now formally describe the strategy induced by a (p, k)-good graph G = (V, E, C)
with V = [1; N]. The map sG

i : ([N]
k ) 7→ [N] defining the strategy of the i-th player is defined

as sG
i (A) = y where y is any vertex (for instance, the smallest) such that ∀x ∈ A, x i∼ y. Such

a y always exists thanks to the (p, k)-set property. We can then establish that the absence of
polychromatic cycles implies that this strategy is winning.

Theorem 4.16: Good graphs make winning strategies

Let p, k ∈ N and let G be a p-colored graph with N vertices. If G is (p, k)-good, the
strategy S = (sG

i (A))i∈[1;p] is winning for the game GN(p, k, 1).

Proof

Suppose the strategy is not winning. Then there exists an occurrence A1, . . . , Ap of
the game for which the strategy fails (here Ai denotes the set of inputs of player i).
Consider a graph H where the vertices are players P1 to Pp, with a directed edge from
Pi to Pj if the answer of player i, i.e. sG

i (Ai), belongs to the set of inputs Aj of player
j. By assumption, there exists a cycle in this graph (otherwise the strategy is winning
on this occurrence). But one can check that a cycle in H implies the existence of a
polychromatic cycle in G, leading to a contradiction.

The last step is now to show that (2, k)-good graphs exist. We will then discuss, in sub-
section 4.4.5, the unlikely existence of (p, k)-good graphs for p > 2 and k ≥ 2.

Graph strategies for (2, k)

Theorem 4.17: Existence of (2, k)-good graphs

For any k ∈N, there exists a (2, k)-good graph.

Proof

We will prove that there exists an undirected uncolored graph G = ([N], E) such that
for every A ∈ ([N]

k ):

• ∃a, ∀x ∈ A, x ∼ a;

• ∃b, ∀x ∈ A, x � b.

This is sufficient to prove the existence of a (2, k)-good graph by converting every
edge to a 1-colored edge and adding a 2-colored edge for every pair of vertices x 6= y
such that x � y. Note that this graph has no polychromatic cycles of size 2 since two
vertices cannot be simultaneously neighbors and non-neighbors.
We now prove the existence of such graphs using the probabilistic method. Let G be
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an Erds-Rényi graph with edge probability 1
2 on the vertex set [1; N]. We have that :

P[G is not k-good]
≤ P[some i1, . . . , ik ∈ [N] have no mutual neighbor]

+ P[some i1, . . . , ik ∈ [N] have no mutual non-neighbor]

by symmetry

≤ 2 ·P[some i1, . . . , ik ∈ [N] have no mutual neighbor]

≤ 2
(

N
k

)
P[1, . . . , k have no mutual neighbor]

≤ 2
(

N
k

)(
1− 1

2k

)N−k

≤ 2 exp
(

k log N − N − k
2k

)
N−→∞−−−−→ 0

Thus for large enough N there thus exist (2, k)-good graphs with N vertex

Looking more closely at the proof we notice that 2 exp
(

k log N − N−k
2k

)
is less than 1

when N = O(k32k), thus giving us B(2, k) < O(k32k). The bound of section 4.5 gives a
worse bound of O(22k2 log k).

Size and running time of the graph strategy. If we want to use a strategy based on graphs
in the programs of section 4.6 to show [ f , αT]  [ f , T], we need a succinct description of such
graphs. Indeed, the program needs to be of size less than f . Note however that we have only
demonstrated the existence of a (2, k)-good graph thanks to the probabilistic method. The
best we can naively do is then to hardcode those graphs in the strategy. This would make
the strategy really large in terms of bits (close to N2 = 22n), but our programs can never be
bigger than f < n bits. Another approach is to let the programs find those graphs by itself:
every program p(#T, i) enumerates and tests graphs in ascending lexicographic order until
it finds a good graph, and then use it for its strategy. While this strategy takes O(1) bits to
describe, it takes at least 2n steps to run implying that one could only establish bounds for
T > 2n.

We also hint (but not formally prove) at a method of constructing (2, k)-good graphs with-
out using probability theory. We briefly describe such a potential graph using the notion of
pseudorandom Paley graph from number theory. A Paley graph is a graph G on a prime
number p ≡ 1 mod 4 of vertices. Vertices of G are identified with integers modulo p, and
there exists an edge i ∼ j if and only if i − j is congruent to a square modulo p, i.e. if and
only if ∃k, i − j = k2 mod p. The condition p ≡ 1 mod 4 ensures that the relation ∼ is
symmetric.

Finding a mutual neighbor of x1, . . . , xk then amounts to solving the system of equations
{y− xi = z2

i } in variables y, z1, . . . , zk. One may check, using character sum estimates, that
many integers y satisfying these equations exist, for any choice of z1, . . . , zk, as long as p is
sufficiently large.
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Graph Strategies for (p, k)

We now turn our attention to (p, k)-good graphs. Unfortunately, we have not been able to
prove or disprove the existence of such graphs for p > 2. However, we can establish that
their are no complete (p, k)-good graphs (note that the (2, k)-good graphs we came up with
are complete).

Definition 4.15: Complete graph

A p-colored graph G is said to be complete if there is a (colored) edge between any
two vertices.

Definition 4.16: Connectivity for color i

A p-colored graph G is said to be connected for color i if there is a i-colored path
between any two vertices in G

Theorem 4.18: ([Bat83])

Let G be a complete p-colored graph. If G has no polychromatic cycles, then G is
connected for at most 2 colors.

Theorem 4.19:

There are no complete (p, k)-good graphs for p > 2 and k ≥ 2.

Proof

Let G = (V, E, C) be a complete (p, k)-good graph. Then for any color i and any two

vertices u, v ∈ V, there exists w ∈ V such that u i∼ w and v i∼ w. This implies that u
and v are connected for every color. Whenever there are p ≥ 3 colors, this contradicts
Theorem 4.18

Can graph strategies be salvaged? Graph strategies provide, in the case p = 2, better
bounds than the general strategy defined below. However it is unclear if (p, k)-good graphs
exist.

Another graph based approach would be to consider uncolored but directed graphs with
the following properties:

• there exists no cycles of length less than p;

• for any set i1, . . . ik there exists a vertex b such that ∀j ∈ [1; k], ij → b.

Such graphs can be used straightforwardly to define a winning strategy for the game G(p, k, 1)
:every player answers a common directed neighbor of its k−inputs using the second prop-
erty. The fact that the strategy is winning follows from the first property. However, the
existence of such graphs also remains an open question at the moment.

Question

Do (p, k)-good graphs exists ?
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Question

Let p, k > 3, does there finite directed graphs G = (V, E) such that no directed cycles
of length less than p exist and for any set i1, . . . ik ∈ V there exists a vertex b such that
∀j ∈ [1; k], (ij, b) ∈ E ?

81



4.5 General Strategy for (p, k)

We now exhibit an oblivious strategy for any number of players and inputs. We start by
detailing the (3, 2) case which is naturally generalized to any (p, k).

4.5.1 Strategy for (3,2)

We expose a strategy for game GN(3, 2) when N = 157, the reason for such an N will be
made apparent later. All player will execute function F(3,2) : N2 7→ N defined in 4.18. We
will see inputs as number in base m = 15.

Definition 4.17: Writing in base m

Let x ∈ N, m ∈ N, x = xk...x2x1
m, where the xi ∈ [0; m− 1] are uniquely defined to

verify x = ∑k−1
i=0 xi+1.mi.

We may drop the m if we specify the base beforehand.

Definition 4.18: F(3,2)

The function F(3,2) is defined on [0, 157] as follows:
Let x, y ∈ N, let x7x6x5x4x3x2x1 and y7y6y5y4y3y2y1 denote their notation in base 15.

F(3,2)(x, y) def
= x3x2y3y2x1y1ν15 (4.1)

= x3.156 + x2.155 + y3.154 + y2.153 + x1.152 + y1.15 + ν (4.2)

where ν ∈ {0, . . . , 14} is the smallest number such that ∀i ∈ [1; 7], ν 6= xi and ν 6= yi

Note that by definition F(3,2)(x, y) is necessarily different from x and y. And ν in the
definition exists because m = 15. ν could have been taken to be any number different from
all xi and yi, not necessarily the minimum.

Theorem 4.20:

The function F(3,2) provides an oblivious winning strategy for 3 players with 2 inputs.

Proof

We will denote by a, b the numbers given to player 1, by c, d the numbers given to
player 2, and by e, f the numbers given to player 3. The goal is to show that if each
player applies the function F(3,2) then they always collectively win the game.
As in the definition above, we write a = a7a6a5a4a3a2a1 the base 15 representation of
a, b = b7b6b5b4b3b2b1 the base 15 representation of b, etc.
If F(3,2)(a, b) is different from c, d, e, f , the players have won the game. Suppose now
that we are in the case where F(3,2)(a, b) ∈ {c, d, e, f }. Without loss of generality, we
can suppose that F(3,2)(a, b) = c. We have in particular that: c0 6= ai for all i ∈ [1, 7],
c0 6= bi for all i ∈ [0, 6] c3 = a1, c6 = a2, and c7 = a3.
We now consider the result produced by player 2, that is F(3,2)(c, d). Once again, if this
value is different from a, b, e, f then the game is won. If this is not the case, there are
two cases.
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The first case is F(3,2)(c, d) ∈ {a, b}. We now show that this is impossible. By definition,
F(3,2)(c, d) is different modulo 15 from all ci (i ∈ [1, 7]), but c2 is the remainder modulo
15 of b and and c3 is the remainder modulo 15 of a. Hence the value of F(3,2)(c, d)
modulo 15 is different from the values of a, b modulo 15.
The second case is F(3,2)(c, d) ∈ {e, f }. Without loss of generality, we suppose
F(3,2)(c, d) = e. We will now have to show that F(3,2)(e, f ) 6∈ {a, b, c, d}. Let us write
z = z7z6z5z4z3z2z1 the representation of F(3,2)(e, f ) in base 15. By definition of F(3,2),
z0 6= ei for all i ∈ [1, 7]. But since F(3,2)(c, d) = e and F(3,2)(a, b) = c, we have the
following properties: e2 = d1, e3 = c1, e6 = c2 = b1, e7 = c3 = a1. Thus z1 is different
from a1, b1, c1, and d1. This proves that F(3,2)(e, f ) 6= a, b, c, d, and therefore the game
is won.

The function behind the strategy can be explained informally as follows. We call an-
tecedent of x any a such that ∃b, F(a, b) = x. Given two arguments x, y, we make it so that
their digits when written in base m correspond to the remainders modulo m of their an-
tecedents through F. Here m will be chosen to be equal to 15, as explained below. Remind
that we need no cycles of size 6 3 to appear, i.e. player 1 answering an input of player 2,
player 2 answering an input of player 3 and player 3 answering an input of player 1. Thus
we keep track of the values of such remainder up to depth-2 antecedents (i.e. antecedents
of antecedents). For instance, x will be written as x = x7x6x5x4x3x2x1 in base m, and we
understand:

• x2, x3 as the remainders of the antecedents of x,

• x4, x5 as the remainders of the antecedents of x2,

• x6, x7 as the remainders of the antecedents of x3.

Similarly, we suppose the writing of y = y7y6y5y4y3y2y1 to keep track of the remainders
modulo m of the antecedents of y.

The function F(3,2) then just implements this notion of keeping track of the antecedents,
while producing a fresh value modulo m. More precisely, given x = x7x6x5x4x3x2x1 and
y = y7y6y5y4y3y2y1, the function F will pick a value ν 6∈ {x1, . . . , x7, y1, . . . , y7}. Since there
are 14 values in the latter set, choosing m = 15 ensures that this is always possible. The
function is then defined as

F(3,2)(x7x6x5x4x3x2x1, y7y6y5y4y3y2y1) = x3x2y3y2x1y1ν.

The following illustration should clarify the definition of F(3,2).
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Figure 4.5: Construction tree for F(3,2)
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4.5.2 General strategy for (p,k)
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Figure 4.6: Construction for F(3,k)

We now expose the general strategy. The construction follows the (3, 2) case of figure 4.5.
The reader may look at figure 4.6 to see further generalization. Coming up with a formal
strategy from figure 4.6 is then just a matter of counting how many digits we need to keep
track of antecedent. This then leads to a base m big enough so that ν can be different from
all those digits. Once we have these two ingredients we know N the smallest integer such
that our inputs live in [1; N] and our strategy works.

Let us explain the construction in plain English: the main insight of the strategy was to
book-keep the remainders modulo m of the potential antecedents up to depth 2. For general
(p, k), we will therefore keep track of the remainders of potential antecedents up to depth
p − 1. This means that for each of the k arguments, we will need values modulo m of the
potential 1 + k + k2 + k3 + · · ·+ kp−1 antecedents. Since there are k arguments, this means
that we will be manipulating k(1 + k + k2 + k3 + · · ·+ kp−1) values modulo m, and produce
a fresh value. This implies that m should be greater or equal to 1 + k(1 + k + k2 + k3 + · · ·+
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kp−1) = kp+1−1
k−1 .

Now, since we need to book-keep 1 + k + k2 + k3 + · · ·+ kp−1 = kp−1
k−1 antecedents, we

need to work with numbers with kp−1
k−1 digits and thus:

N ≥ m
kp−1
k−1 ≥

(
kp+1 − 1

k− 1

) kp−1
k−1

.

We will here suppose that N is minimal, i.e. the above inequality is in fact an equality.
We introduce the notation k(d) = kd−1

k−1 ; by convention, we define k(0) = 0. Suppose given

arguments xi ∈ [0, N]. We write those in base m = kp+1−1
k−1 as follows:

xi =
p−1

∑
d=0

kd−1

∑
c=0

xi(d, c)mk(d)+c.

As a quick sanity check this does have k(p) digits as ∑
p−1
d=0 ∑kd−1

c=0 1 = k(p), and it’s routine

to check that mk(d)+c does iterate through every mi for i ∈ J0; k(p)− 1K. As a matter of a fact if
you look at figure 4.6 and generalize it for (p, k), then you get that xi(d, c)mk(d)+c corresponds
to the c-th digit at depth d of the tree.

The definition of F(p,k) then simply generalises the definition of F(3, 2) given above.

Definition 4.19: F(p,k)

For any p, k we define the function F(p,k) as follows:

F(p,k)(x0, . . . , xk−1) = ν +
p−1

∑
d=1

k−1

∑
i=0

kd−1−1

∑
c=0

xi(d− 1, c)mi.k(d−1)+c,

where ν is a value different from all xi(d, c) (say the smallest one for a deterministic
function).

Let us explain the formula: to construct F(p,k)(x0, . . . , xk−1) one simply reads the nodes
of figure 4.6 in a Breadth First Search (BFS) way and interprets the labels as digits in base m.

Following the proof of Theorem 4.20, one can establish that the strategy where every
player uses F(p,k) is winning, leading to the following result.

Theorem 4.21:

B(p, k, 1) ≤
(

kp+1−1
k−1

) kp−1
k−1 .

We will instead use this bound which is easier to manipulate.

Corollary 4.1:

For large values of p and k, B(p, k, 1) ≤ (kp)kp
.

86



4.6 Formal description and analysis of the programs

Here we described and analyze formally the programs used to show [ f , αT] * [ f , T]. The
functions f (n), α(n) and T(n) are all assumed to be VTC and reasonable as per definition
4.4 and 4.5.

In the following, we will often drop the arguments of the functions and write, for in-
stance, f instead of f (n). We also suppose w.l.o.g. that T(n) > n and f < n. Indeed, if
T(n) < n, then it is not possible to write any string of length n in the allocated time, and if
f ≥ n then all inputs have a description of size bounded by f and there are no gap in the
hierarchy. We also assume for simplicity that 2 f+1 is divisible by α.

For all p, k, m, N ∈ N, we have a winning strategy SN(p, k, m) = (σN
i (p, k, m))i∈[p] for

the game GN(p, k, m), where σN
i is the map defining the strategy for player i. The following

definition of programs does not depend on the specific strategy considered, but it should be
clear that their analysis will be dependent on this choice.

4.6.1 One try variant

We formally define the program which is intended to output a string in [ f , αT](n) and not in
[ f , T](n) with strategy SN(p, k, 1). We then proceed with the size and running time analyses.

Algorithm 1 Program p(< #n, i >)

1: Input: < #n, i > a string from {0, 1}∗ (encoding <> from definition 1.6) where:
#n ∈ {0, 1}∗ – the smallest program outputting n in 2n steps or less
i ∈ {0, 1} f+1−log(α) – the chunk number, ranging from 1 to 2 f+1

α
2: Procedure:
3: Run #n as a program and call n its output
4: Compute f (n), T(n), and α(n)
5: Create an empty list l to store outees
6: for j = 0 to α− 1 do
7: Simulate program number (i− 1) 2 f+1

α + j for T(n) simulation steps
8: if it output a value of size n then
9: Add the output to list l

10: end if
11: end for
12: Output: Run the strategy σN

i

(
2 f (n)

α(n) , α(n), 1
)

on l (seen as a multiset) where N = 2n, and
output the answer.

Size analysis. We now analyze the size of p(#n, i):

• #n is of size K2n(n) (by definition);

• i is an integer in [1; 2 f+1/α], hence it is of size f + 1− log(α).

• < #n, i > is of size K2n(n) + f − log(α) + O(log(K2n(n))) from definition 1.6;

• the program p is of size O(1).

Thus for large n, p(< #n, i >) is of size less than 2K2n(n) + f − log(α) + O(1). Since α is
reasonable, this is strictly less than f (n) for infinitely many values of n.
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Running time analysis. Steps 3 to 11 take O(αT) steps to compute. The running time of
step 12 depends on the specific strategy SN(2 f /α, α) we choose to implement. Hopefully
this running time can be kept in O(αT), we assume it for now.

Correctness analysis. Suppose that the strategy S2n
(2 f (n)

α(n) , α(n)) used in the program is a

winning strategy for the game G2n
(2 f (n)

α(n) , α(n)). Let #n be a program outputting n. Then, by

construction, there exists i ∈ [1, 2 f /α] such thatOOOut(p(< #n, i >)) is a string of size n which
is not the output of any program of size f in less than T steps.

Conclusion Size and running time analysis are meant to prove that OOOut(p(< #n, i >)) is
in [ f , αT](n). Correctness analysis shows that for at least one i, OOOut(p(< #n, i >)) is not in
[ f , T](n). Thus showing [ f , T](n)  [ f , αT](n).

4.6.2 Multiple tries variant

The multiple tries setting is quite similar to the one try setting, except that we will have an
additional input j indicating which try is computed. We formally define the program which
is intended to output a string in [ f , αT](n) and not in [ f , T](n) when the strategy SN(p, k, m)
is winning. In the following g is a function such that g and log g are VTC and reasonable, g
is thought of as slowly growing (take for instance g = log∗)

Algorithm 2 Program p(E2(#n)ij)

1: Input: E2(#n)ij A string from {0, 1}∗ where: E2 from definition 1.5
#n ∈ {0, 1}∗ – the smallest program outputting n in 2n steps or less
i ∈ {0, 1} f+1−log(α) – the chunk number, ranging from 1 to 2 f+1

α

j ∈ {0, 1}log(α)−log(g) – the try’s number, ranging in [1; α/g].
2: Procedure:
3: Retrieve #n from E2(#n)ij
4: Run #n as a program and call n its output
5: Compute f (n), T(n), and α(n)
6: Retrieve i and j from E2(#n)ij possible since we know f (n) and α(n)
7: Create an empty list l to store outees
8: for k = 0 to α− 1 do
9: Simulate program number (i− 1) 2 f+1

α + k for T(n) simulation steps
10: if it output a value of size n then
11: Add the output to list l
12: end if
13: end for
14: Output: Run the strategy σN

i (2 f (n)

α(n) , α(n), j) on l (seen as a multiset) where N = 2n.

Size analysis. We analyze the size of p(E2(#n)ij):

• #n is of size K2n(n) (by definition);

• i is of size f − log(α);

• j is of size log(α)− log(g);
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• E2(#n)ij is of size ≤ 2K2n(n) + f − log α + O(1);

• the program p is of size O(1).

As a consequence, p(E2(#n)ij) is of size less than 2K2n(n) + f − log(g) + O(1). By reason-
ability of log(g) this is ≤ f (n) for infinitely many n.

Running time and correctness. The analysis is similar to the one try case.

4.7 Results

We now combine the program of section 4.6 and the general strategy described in section
4.5.2 for the game GN(p, k, 1) with N = (kp)(k

p). We obtain in this way the following result
which improves on the result by Longpré.

Theorem 4.22: Kt hierarchy in the TM model

We place ourselves in the TM model. Let T and f be increasing VTC functions of
N 7→ N in DTIME(T(n)) such that T(n) ≥ n log(n) and f (n) = o(log(n)). Let α =

max( f 2 f

log n ,
√

f ). Then:

∃c ∈ R, ∃∞n, [ f , cαT](n) * [ f , T](n)

Or abusively:
∃∞n, [ f , O(αT)](n) * [ f , T](n).

T(n) being greater than n log n comes from the running time of the strategy

Proof

The proof consists of two parts. First, we analyze the bound B(p, k) which will give us
the restrictions on f and α. We will then check that there are programs implementing
the general strategy and having the proper size and running time.
Let us recall that that we need B(p, k) = (kp)(k

p) to be bounded above by 2n since the
outant needs to be of size N. Here we have:

• p = 2 f+1/α

• k = α

• pk = 2 f+1

• We need (kp)kp ≤ 2n

We can then compute:

(kp)kp ≤ 2n ⇔
kp p log(k) ≤ n ⇔

α2 f+1/α2 f+1/α log(α) ≤ n ⇔
2 f+1/α log α + f + 1− log α + log log α ≤ log n ⇔
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This inequality may only be satisfied if f (n) = o(log n). Under this assumption, taking

any α ≥ f 2 f

log n makes the inequality hold. We actually set α = max( f 2 f

log n ,
√

f ). Note
that α and log(α) are VTC and increasing to infinity and thus reasonable by theorem
4.4. The max(·,

√
f )) is necessary as we need α to be reasonable even when f =

o(log log(n)), the square-root may be replaced by some other function. Note that α =
o(2 f ) which is necessary to improve on the result of Longpré.
Now, consider the programs p(< #n, i >) from subsection 4.6.1, with f = o(log(n))

and α = f 2 f

log n . We recall that i ranges in [1; 2 f+1/α] and that #n is the smallest program
outputting n in 2n steps. The infinite sequence of (nj)j∈N we consider are all the values
of n such that 3K2n(n) < log(α(n)) in ascending order. This is an infinite sequence by
reasonability of α. We now claim that:

1. Size of the program ∀∞, ∀i, j ∈ N, p(< #nj, i >) is of size ≤ f (nj).

2. Running time of the program with a proper implementation of the strategy of
section 4.4.5,p(< #nj, i >) runs in cαT(nj) for all j ∈N.

3. Correctness for all j ∈ N, there exists i ∈ [2 f (nj)/α(nj)], such that no program
of size f (nj) running for T(nj) steps outputs a string equal toOOOut(p(< #n

j , i >));
moreoverOOOut(p(< #nj, i >)) is of size nj.

Once those 3 points are established, it follows that ∀j ∈ N,OOOut(p(< #nj, i >)) ∈
[ f , cαT](nj) \ [ f , T](nj), and thus ∃∞n, [ f , O(αT)](n) * [ f , T](n).

Size of the program. We first check that ∀∞ j, ∀i, p(< #nj, i >) is of size less than
f (nj) . Our program has the same structure as the program described in section 4.6
and the strategy of section 4.5.2 may be described in O(1) bits. Therefore the size of
p(< #nj, i >) is less than

2K2nj(nj) + f − log(α) + c

By definition of the nj this is less than than f (nj) for all but finitely many j.

Running time of the program. We check that our program runs in time less than
cαT(nj) for all nj. In particular this involves checking that one can implement the
strategy of section 4.5.2 in time O(αT).

• Retrieving nj from #nj is done in ≤ 2nj ≤ 2T(nj) steps for all j by definition.

• Computing f (nj), T(nj) is done in≤ T(nj) steps by supposition on f and T. One
can check that it is also possible to compute α(nj) in O(T(nj)) steps.

• Simulating the execution of the i-th chunk of size α of programs of size f i.e.
getting the α inputs for our strategy takes time O(αT) as explained in section
4.6.

• Lastly, we describe an efficient implementation of the strategy described in 4.5.2.
First we have α inputs written in base 2 which we must convert base m ≥ kp =

o(n). Notice that the strategy works if we take base m = 2dlog kpe, and converting
a binary number to a base 2m can be done "for free" by considering chunks of
size m. Thus we set m = 2dlog kpe ≤ 2kp
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In the strategy we receive α inputs which are bitstrings of size n that we view as
numbers of kp digits written in base m. We call our inputs x1, . . . xα and denote
by xi

j the j-th digit of xi in base m. We call the output of our strategy y; y written

in base m is of the form y = xi1
j1

. . . xiK
jK

ν where xil
jl

are digits of our inputs taken

according to the strategy and ν is chosen to be different from all xi
j∀i, j ∈ [kp].

We represent our inputs in figure 4.7

To compute the digits xil
jl

we have to do a BFS on the tree described in figure 4.6.
This can be done in O(αn log(αn)) = O(α log(n)) = O(αT)

To compute ν we have to solve OUTSIDElog(m),αm, using theorem 4.6 and the
fact that m log m = O(n) this can be done in time O(nα(log(m) + log(α))) ≤
O(nα log n) = O(αT)

Correctness. This follows from the argument outlined in paragraph correct-

ness of section 4.6.1, and by the fact that S2nj
(2 f (nj)+1

α(nj)
, α(nj), 1) is winning.

10100101001011001 1010010100101101001010101· · · 1010010100101101

101001010010110100101010101010010101010101101001010010110100101010101010010101010101101001

n

log m
x1

1

α

kp

input x1

input xα

Figure 4.7: Binary representation of our inputs in the strategy.

Note several things about our result:

• In the proof the only part which makes our result ∃∞ instead of ∀∞ is that f = o(log(n))
for all other f the result would be ∀∞.

• When f is not in DTIME(T), the result may still stand with adjustments. For instance,
we can indicate the value f (n) to p for a cost of log f (n) bits.

• Our results hold under oracles.

91



Theorem 4.23: Kt hierarchy in the RAM model

Let T and f be increasing VTC functions of N 7→N in DTIME(T(n)) such that T(n) ≥
n and f (n) = o(log(n)). Let α = max( f 2 f

log n ,
√

f ). Then:

∃c ∈ R, ∃∞n, [ f , cαT](n) * [ f , T](n)

Or abusively:
∃∞n, [ f , O(αT)](n) * [ f , T](n).

Proof

The proof is the same as in the TM case. The part which differs is checking that we can
implement the strategy in time O(nα). This presents no significant issue.
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4.8 Additional links and musings for future work

4.8.1 Links with the time hierarchy theorem with advice

For completeness and potential future work, we show in this subsection what the time hier-
archy (for Turing machine with advice) implies about a hierarchy for temporal Kolmogorov
complexity. It turns out we get a hierarchy, but for a different notion of Kolmogorov com-
plexity (see definition 4.24). We also show that the result of theorem 4.22 is indeed not
easily obtainable from an analysis of the time hierarchy theorem. Lastly we mention recent
advancements in the domain 5.

A function g ∈ {0, 1}∗ 7→ {0, 1} is said to be computable in time T with advice of size
f if there is a Turing machine which can compute g in time O(T) when given an "advice"
string of size f (n) for inputs of size n (the advice is the same for every string x). We define
complexity classes with advice in the following standard way.

Definition 4.20: DTIME(T)/ f

Let T, f ∈ N 7→ N, a function g : {0, 1}∗ 7→ {0, 1} is in DTIME(T)/ f if there exists a
TM M such that:

∃c ∈N, ∀n, ∃a ∈ {0, 1} f (n), ∀x ∈ {0, 1}n, M(x, a) = g(x) in cT(n) steps or less

By folklore results do have time hierarchy theorems for complexity classes with small
amounts of advice.

Theorem 4.24: Time hierarchy theorem for complexity classes with advice [SW14]

Let T : N 7→ N be a time computable function such that T(n) ≥ n and α : N 7→ N be
an increasing function computable in DTIME(T(n)) such that α(n) ∞−→ ∞ and α is VTC
then: DTIME(αT log T) 6⊂ DTIME(T)/n

Proof

Let M be the TM defined as such : For all n ∈ N and all inputs x ∈ {0, 1}n, M

simulate the advice-taking TM N def
= M|x| on input x and advice x for αT(n) steps ;

if there was any output M reverses it, otherwise M outputs 1. This simulation can
be done in cNαT log T where c only depends on the TM being simulated. Thus M ∈
DTIME(αT log T).
Consider TM N ∈ DTIME(T)/n with advice sequence (an)n∈N, note that an is a string
of size n. We have that on all input N can be computed in exactly less than dT steps
for a specific d. Consider n an integer such that n (in binary) is a representation of N
and cNTα log T(n) > dT(n). Such n do exist. Now consider x = an, we have that
M(x) = M(an) = ¬M|x|(x, x) = ¬N(an, an). Thus M 6= N for all N ∈ DTIME(T)/n.

In order to relate these notions to Kt complexity we introduce the following.

5This subsection is the results of informal talks with Shuichi Hirahara, it is a last minute addition, hence the
very last paragraph of this section discussing recent advancements in the domain is not satisfying as the guy
writing this thesis could not read the paper in the allocated time.
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Definition 4.21: Truth table of a function tt( f )

Let f : {0, 1}n 7→ {0, 1}, we define tt( f ) as the string of size 2n being equal to the truth
table of f . Formally

∀i ∈ [0; 2n − 1], tt( f )i = f (i)

where i is interpreted as it binary representation over n bits in f (i).

Definition 4.22: fn

Given a function f ∈ {0, 1}∗ 7→ {0, 1}, we define fn as the function f restricted to
{0, 1}n

Next we defined an alternate definition of Kolmogorov complexity. We relate it to the
usual notion in lemma 4.2.

Definition 4.23: Kbt Bit-wise temporal Kolmogorov complexity a

aThis may have another name in the literature

Let x ∈ {0, 1}∗ and t ∈N, we define Kbt as:

Kbt(x) def
= min{|p| ∈ {0, 1}∗|∀i ∈ [0, |x| − 1],U(< p, i >) = xi in less than t steps}

where U(< p, i >) is meant as program p running on input i as simulated by U an
efficient universal TM.

With this new notion of Kolmogorov complexity we can define its associated class.

Definition 4.24: [T, f ]b

Let T, f be two functions of N 7→N then we define

[T, f ]b(n)
def
= {x ∈ {0, 1}n|KbT(n)(x) ≤ f (n)}

Note that contrary to [T, f ] it makes sense to consider functions T < n for [T, f ]b. For
instance ∀n, 0n ∈ [O(1), O(1)]. We will still restrict ourselves to function f ≤ n however, for
similar reasons to the case [T, f ].

Relating definition 4.24 and 4.3 note that we have the following inclusions.

Lemma 4.2: Comparison between the two Kolmogorov classes [T, f ]b and [T, f ]

For all T, f functions of N 7→N computable DTIME(T) we have:

∀n ∈N, [T, f ]b(n) ⊂ [O(2nT), f + 2K2n
(n) + O(1)](n)

and
∀n ∈N, [T, f ](n) ⊂ [T + n, f + O(1)]b(n)

With the precision that the "big O(·)" mean that there exists a constant such that this
is true.
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Proof

[T, f ] ⊂ [T + n, f + O(1)]b : If x can be printed in time T by a program of size f , then
so can a singular bit of x (with some minor time and program adjustments).

[T, f ]b(n) ⊂ [O(2nT), f + 2K2n
(n) + O(1)](n) : Take x ∈ [T, f ]b(n), there is by defini-

tion a program p of size f which prints any bit of x in time T (through the simulation
of a universal TM). Consider program p′ which takes as input a representation of n
decodable in 2n steps, and then runs p for every bit i ∈ [0; n − 1] to retrieve x. This
takes time O(2nT) and program p′ is of size less than f + 2K2n

(n) + O(1).

We can now give an alternative definition of DTIME(T)/ f which relates it to Kb

Lemma 4.3: Alternate definition of DTIME(T)/ f

Let f , T two functions of N 7→N, let

A def
=

⋃
c∈N

DTIME(T)/( f + c)

and

B def
= {g : {0, 1}∗ 7→ {0, 1}|∃c ∈N, ∀n ∈N, KbcT(n)(tt(gn)) ≤ f (n) + c}

then

A = B.

Proof

A ⊂ B

Let g ∈ DTIME(T)/ f then it is solved by a Turing machine M ∈ DTIME(T(n)) and
with advice bits sequence αn such that ∀n, αn ≤ f (n) + c thus we have < M, αn >≤
O(1) + f (n) and M runs in time less than cT(n). Ergo for a certain c KbcT(n)(tt(gn)) ≤
f (n) + c.

B ⊂ A

Let g ∈ B, consider αn the program of size ≤ f (n) + c which computes gn in cT(n)
steps or less, i.e. ∀i ∈ {0, 1}n, α(i) = tt(gn)i. The result follows immediately.

Thus a function of g ∈ DTIME(T)/ f + O(1) can be seen as a sequence of function (gn :
{0, 1}n 7→ {0, 1})n∈N which verify ∃c ∈N, ∀n ∈N, KbcT(n)(tt(gn)) ≤ f (n) + c} .

Theorem 4.25: Hierarchy for Kbt

Let f , T two functions from N 7→N such that f (n) = o(log(n)),then

∃c ∈N, ∃∞n, [cT log T, c]b(n) > [T, f ]b(n)
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Proof

Let T be a time computable function, by theorem 4.24 there exists a function g ∈
DTIME(T log T) and g 6∈ DTIME(T)/n.

• g ∈ DTIME(T log T) entails by lemma 4.3

∃d, ∀n, KbdT log T(n)(tt(gn)) ≤ d

Call N = 2n the size of gn

⇒∃d, ∀n, tt(gn) ∈ [dT log T(n), d](N)

⇒∃d, ∀n, tt(gn) ∈ [dT log T(log(N)), d](N) (∗)

In the rest of the proof we fix d a witness to property (∗).

• g 6∈ DTIME(T)/n entails

∀c, g 6∈ DTIME(T(n))/o(n)

by lemma 4.3
==========⇒∀c, ∃∞n, KbcT(n)(tt(gn)) ≤ o(n) + c.

Call N = 2n the size of gn

⇒∀c, ∃∞n, tt(gn) /∈ [cT(n), o(n) + c](N)

⇒∃∞n, tt(gn) /∈ [T(log N), o(log N)](N)

Combining both results we get:

∃∞n, tt(gn) ∈ [dT log T(log N), d](N) \ [T(log N), o(log(N))](N)

Defining T′(n) def
= T(2n)

⇒∃∞N, [dT′ log(T′), d](N) > [T′, o(log N)](N)

Which proves the theorem.

Theorem 4.25 which is quite simple to prove is to be compared with theorem 4.22. It
would seem that by combining lemma 4.2 and theorem 4.25 we can get a hierarchy for
regular Kolmogorov classes [T, f ] à la theorem 4.22 but that is not the case. The reason
is that a 2n time factor appears when writing [T, f ]b ⊂ [2nT, f +O(K2n

(n))] and 2n is always
bigger than 2 f so we don’t get any improvements when compared with Longpré’s result.

Recent advancement in the time hierarchy theorem (THT) with advice In paper [VW23]
the authors come up with better "local" algorithms for the MISSING-STRING problem (the
problem we call OUTSIDE in definition 4.6) and derive a better THT with advice. They also
show various implications of the existence of better algorithms for the MISSING-STRING
problem. Their approach seems very related to ours.

Question

How can we relate the analysis of games G(p, k, n) to the analysis of the MISSING-
STRING problem on circuits ? To that of the THT with advice ?
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4.8.2 Establishing lower bounds for any strategy

We now sketch a promising way to reason about winning strategies for novelty games. This
could be used either to construct new ones, or establish lower bounds for B(p, k, m). The
idea is to study the smallest number of antecedents any element y in the image of f : ([N]

k )→
[N] may have. The hope is that by analyzing such restrictions we get lower bounds on N.

Definition 4.25: (x̂j
i(x))

Given a sequence (xi)i∈k ∈ Nk, an element x ∈ N and some j ∈ [1; k], we will denote
by (x̂j

i(x)) the sequence such that x̂j
i(x) = x if i = j and x̂j

i(x) = xi otherwise.

Definition 4.26: Antecedents of a function f A f (x)

Let f be a function, ([N]
k )→ [N]. We define A f (y) as the set

A f (y) = {x | ∃(xi) ∈ [N]k, ∃j ∈ [1; k], f (x̂j
1(x), . . . , x̂j

k(x))) = y}.

The set A f (y) contains all values of x such that there is a way to complete x with other
numbers in order to produce y by the function f . Said differently: A f (y) =

⋃
B∈ f−1(y) B.

We naturally extend the definition to apply to sets of number.

Definition 4.27: Ai
f (B)

Let B ⊂ [N], then A f (B) =
⋃

y∈BA f (y).
We define A1

f (B) = A f (B) and for any i ∈N∗, Ai
f (B) = Ai−1

f (A f (B)).

If B = {x} we abusively write Ai
f (x) instead of Ai

f ({x}).

Definition 4.28: Non self-hitting (NSH) functions

Let f be a function ([N]
k )→ [N]. We say that f is non self-hitting if ∀B ∈ ([N]

k ), f (B) 6∈ B.

It is easy to prove that we need only consider strategies which are non self hitting.

Theorem 4.26:

If there is a winning strategy for the game G(p, k, m), then there is a strategy with no
self hitting functions winning for game G(p, k, m).

As a consequence, all considered functions from now on will be supposed to be non-self
hitting.
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Theorem 4.27: Equivalence theorem for (2, k)

Let f be an NSH function ([N]
k )→ [N], there exists g such that ( f , g) is a valid strategy

for the game G(2, k, 1) if and only if

∀x1, . . . , xk ∈ [N]k,
n⋃

i=0

A f (xi) 6= [N].

Proof

For the right to left implication, it is clear that if the property is satisfied then there
exists a function g such that

∀x1, . . . , xk, g({x1, . . . , xk}) ∈ [N] \
n⋃

i=0

A f (xi).

To prove the the converse implication, suppose there exists x1, . . . , xk such that⋃n
i=0A f (xi) = [N], and call a = g({x1, . . . , xk}). We know a belongs to

⋃n
i=0A f (xi)

and we can WLOG suppose that it belongs to A f (x1). Then there exists a set B of
size k such that a ∈ B and f (B) = x1. Therefore, the strategy fails on occurence
(B, {x1, . . . , xk}), leading to a contradiction.

Corollary 4.2:

Let f be an NSH function([N]
k )→ [N]. If

∀x1, . . . , xk ∈ [N]k,
n⋃

i=0

|A f (xi)| <
N
k

,

then there exists g such that ( f , g) is a valid strategy for the game G(2, k, 1).

Following this line of thought, our idea to establish lower bounds for B is to study a
subclass of strategies on which it is easier to reason and then claim that any winning strategy
can be reduced to a function of this subclass. To that end we introduce balanced function, a
balanced function is a function whose every image has the same number of antecedents.

Definition 4.29: Balanced functions

A function f : ([N]
k )→ [N] is balanced if

∀y ∈ [N],
∣∣∣|A f (y)| −

1
N

(
N
k

)∣∣∣ ≤ 1.

A strategy is said to be balanced if the functions for players are all balanced functions.

The strategy we described for the game G(2, 2, 1) and for G(p, k, 1) are functions which
on top of being NSH, oblivious and balanced have lots more symmetries. Thus we may
have to consider additional symmetries to our functions in order to establish lower bounds
efficiently. We leave the following questions for future work:
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Question

1. Can we reduce our analysis of general winning strategies to winning strategies
with many symmetries ?

2. For game G(p, k) and for a certain function h, can we get lower bounds for func-
tions with many symmetries of the form

∀x1, . . . , xk ∈ [N]k,
n⋃

i=0

|Ap
f (xi)| < h(N, k, p) ?
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Part III

Algebraic computation [Léc23]
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Chapter 5

NC vs P in the algebraic world

In this chapter we give an alternate and simpler proof of the fact that PRAM without bit
operations (shortened to iPRAM for integer PRAM) as considered in paper [Mul99] cannot
solve the maxflow problem. To do so we consider the model of PRAM working over real
number (rPRAM) which is at least as expressive as the iPRAM models when considering
integer inputs. We then show that the rPRAM model is as expressive as the algebraic version
of NC : algebraic circuits of fan-in 2 and of polylog depth noted NCalg. We go on to show
limitations of the NCalg model using basic facts from real analysis : those circuits compute
low degree piece wise polynomials. Then, using known results we show that the maxflow
function is not a low-degree piece-wise polynomial. Finally we argue that NCalg is actually
a really limited class which limits our hope of extending our results to the boolean version
of NC.

5.1 Overview

A fundamental question in computer science is whether one can solve a problem faster if
one has more computers, i.e. if the ability to parallelize your computations yields faster
algorithm. It’s evident that for some problem the answer is yes, parallelization does yield
faster algorithm, for instance checking if every bit of a bitstring is 1 can be done in O(1) in
parallel but requires O(n) with a TM. Though it’s to be noted that apart from trivial "you
have to check all the bits" argument (so for super-linear bounds) we do not know of any
problem provably made faster by parallelization. In any case the converse case is of high
interest, i.e. is there a problem which cannot be made faster through parallelization, where

the steps to solve the problem are inherently sequential ? This problem is known as P ?
= NC

where P is the class of problem solvable by a sequential algorithm running in polynomially
many steps and NC is the class of problems solvable in polylog time by polynomially many
computers. This question as most other non trivial questions in complexity theory is un-
solved. One candidate problem not to be in NC is the maxflow problem which is proven
P-complete under NC reductions, meaning if this problem is in any NC then so is all of P.
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Definition 5.1: Maxflow problem

Given a directed graph G = (V, E) with a source node s ∈ V, a sink node t ∈ V, and a
capacity function c : E → N>0 that assigns a non-negative capacity to each edge, the
objective is to find a flow function f : E→N>0 that satisfies the following conditions:
1. Capacity Constraint: For every edge (u, v) ∈ E,

0 ≤ f (u, v) ≤ c(u, v)

2. Flow Conservation: For every node v ∈ V \ {s, t},

∑
u:(u,v)∈E

f (u, v) = ∑
w:(v,w)∈E

f (v, w)

3. Flow Value: The value of the flow is defined as the total flow out of the source node
s (which is equal to the total flow into the sink node t):

| f | = ∑
v:(s,v)∈E

f (s, v)− ∑
u:(u,s)∈E

f (u, s)

The goal is to maximize the flow value | f |.

s t
10

5

15

4
10 10

10

Figure 5.1: Instance of the maxflow problem. The optimal flow is 15.

In computer science when a lower bound is too hard to prove researchers may restrict
algorithms to a certain class. For instance the fastest sorting algorithms we have run in
time DTIME(n log(n)) and in the special case where we only consider algorithms based on
comparisons we may prove that it is an optimal lower bound, but proving the same result
for general algorithm would be a major result.

Back to maxflow, to get a hold of this problem Mulmuley in 1999 published a paper
[Mul99] showing that if you consider only algorithms which perform algebra (+, ∗, /,>)
and basic loop and memory manipulation then you can prove that the maxflow problem
cannot be solved in polylogarithmic time by polynomially many algebraic machines. These
restrictions make sense as intuitively these would be the operations you want to use to
solve the maxflow problem and indeed common algorithms for the maxflow problem are
algebraic. The main thing algebraic algorithms prevent (or rather make costly) is accessing
bits of the capacities in the flow-graph. Mulmuley’s proof is based on quite advanced math-
ematics, our contribution is to simplify considerably his proof and give another insight on
the gap between proofs in the algebraic world and the usual bit world.
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5.2 Introduction

5.2.1 Previous work

An important question in complexity theory is determining if P = NC, where P is the set
of languages solvable by a polynomial time Turing machine and NC the set of languages
solvable by uniform family of poly-logarithmic depth, polynomial size circuit. It is thought
that P 6= NC but no one has come close to proving it. The maxflow problem is a problem in
P where the inputs are directed graphs whose edges are labelled with integers called capac-
ities, a specified node s called the source, a specified node t called the sink, and an integer
threshold k, the input is in the language if a flow greater than k units may flow from s to t.
The maxflow problem is known to be P complete with regards to NC reductions [GSS82],
meaning that membership of the maxflow problem to NC is equivalent to P = NC. In his
celebrated result [Mul99], Mulmuley defines a computation model called integer PRAMs
(iPRAM) without bit operation which is akin to the PRAM model except that inputs are in-
tegers (instead of bits) and the usual bit operations are replaced by multiplication, addition
and comparison (all of those take Ω(1) time regardless of the size of the integers). He then
proves that the maxflow problem cannot be computed by iPRAM with polynomially many
processors running in polylogarithmic time. The model of iPRAM with polynomially many
processors running in polylogarithmic time is basically an algebraic version of NC, which
we denote by NCalg, where the inputs are now integers and the gates multiplication, addi-
tion and comparison, and the fan-in of each gate is at most 2.1 Moreover it was also known
that the maxflow problem does have algebraic algorithm (working only using multiplication
and addition) running in polynomial time, so in short Mulmuley proved that the maxflow
problem is not in the algebraic version of NC yet it is in the algebraic version of P. So in the
algebraic world NC 6= P.

Size of inputs For now we have very loosely spoken of “polynomial time”, “poly-logarithmic
depth”... it is to be understood that we mean "polynomial time in the size of the input", but
what is the size of an input? It may seem trivial, but we insist upon it to clarify any future
misconceptions. In the bit world (where languages are subsets of {0, 1}∗, and inputs bit-
strings), the size of the input is its number of bits. In the algebraic world (where languages
can be thought of as subsets of N∗ and inputs strings of numbers) the size of an input is its
number of numbers. For instance let us consider a specific instance of a maxflow problem,
say a weighted directed graph G with 10 nodes given via its matrix representation, two in-
tegers to specify which node is the source and which is the sink, and a integer threshold k.
In the algebraic world the size of this instance is 102 + 2 + 1 = 103. In the bit world we do
not have enough information to conclude because we do not know the bitlength of the ca-
pactities. This is just to shed light on the difference between the two models, in the algebraic
one only the number of integers count, no matter their bitlength. Now when showing im-
possibility results, for instance that maxflow is not in the algebraic version of NC, we will on
top of it prove that the impossibility still stand even if we restricts integers to be of bitlength
polynomial in the size of the input (i.e. polynomial in the number of numbers). This is in-
teresting because it "levels the playing field" between the algebraic world and the bit world,
if the algebraic world comes short of solving the maxflow problem it will not be because of
inputs of very large bitlengths2.

1making the fan-in to be arbitrary wouldn’t change the model, we can replace a large fan-in gate with a low
height tree of gates

2This is how size was handled in [Mul99] hence our choice. Another way of defining the size of inputs in
the algebraic world, perhaps more intuitive or familiar to some readers, is to include the bitlength of the inputs
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5.2.2 Our result

In this chapter we show that maxflow is not in the algebraic version of NC called NCalg

(subsequently also not in iPRAM). We detail things as follows: our technique for showing
the result. Contributions and differences between our paper and Mulmuley’s. Discussion
on the meaning of this result.

Technique

The different PRAM models and algebraic circuits are equivalent. Firstly we consider
(in order to use real analysis) real PRAM noted rPRAM (introduced in [SPL22]). rPRAM are
akin to iPRAM except inputs are real numbers instead of integers, on which we can perform
addition, multiplication, division and comparison3. We argue efficiently that rPRAM are at
least as potent as iPRAM when we restrict the inputs to integers (iPRAM are not defined
otherwise). Then we consider the non-uniform4 family of algebraic circuits whose inputs
are (multiple) real numbers, whose gates are multiplication, addition, division, comparison
(all of fan-in 2), whose depth is poly-logarithmic in the size of the input and whose largeness
is polynomial in the size of the input. We call this class NCalg, it is to be thought of as the
algebraic equivalent of NC. We then give an argument to show that under a reasonable
time slowdown and largeness blow up, NCalg can simulate rPRAM with polynomially many
processors running in poly-logarithmic time. Now we can focus our attention on proving
lowerbounds for NCalg which is much simpler than with rPRAM or iPRAM (but any lower
bounds for NCalg entail ones for rPRAM and iPRAM). Considering NCalg instead of iPRAM is
one of the key ingredient to the simplicity of our proof, the other one being restricting our
attention to algebraic circuit over one variable.

NCalg is really limited. First we prove by induction that a family of algebraic circuits whose
input is only one number are really simple functions: they are piece-wise polynomials 5

and each of those polynomials is of small degree (we bound the degree and the number
of different polynomials by the depth of the circuit, see 5.3). So for instance any function
f : R 7→ R with too many slope changes cannot be computed by an algebraic circuit of
small depth.

Problem Then we explain how one can use this result over one input algebraic circuits to
limit the complexity of algebraic circuits over multiple inputs: let us say we want to prove
that a family of functions gn : Rn 7→ R is not computable in NCalg (i.e. with depth polylog(n))
then one just needs to find a family of functions fn : R 7→ Rn computable with a circuit of
depth polylog(n) such that gn ◦ fn (which is now a function from R to R so we can use our
theorem) is complex enough not to be computed by algebraic circuits of depth polylog(n).
Since fn is computable by such circuits then it must be gn which is not. Now for the maxflow
problem specifically: call gn : Rn2 7→ R the function which takes a weighted directed graph
given as its matrix representation and returns its maximum flow (the source is node 1 and
the sink node n). One simply needs to find a simple function fn : R 7→ Rn2

such that gn ◦ fn

in the size. As a side note changing size like this would strengthen the class NCalg and our proofs would still
work.

3the division is probably superfluous when considering the decision version of a problem (we might be
able to simulate it using multiplication and addition) but it makes our model more potent in the general case.
In any case if the goal is only to prove the original result of Mulmuley, one may (on second reading) disregard
the division operation in the rest of the paper, it would make proofs even simpler

4uniformity never plays a role so we may as well not restrict our circuits
5actually polynomial fractions but this is an unimportant detail
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is too complex to be computed by circuits of depth polylog(n). Such a family of functions
fn has been know for a long time ([Car83], Mulmuley even gives his own in [Mul99]), and
they are actually very simple since they are affine functions, so definitely computable by
algebraic circuits even of depth 1. Then we simply conclude that gn in not computable by
circuits of NCalg.

Contributions and differences

The contributions of this paper are twofold. Firstly the simplicity of the proof when com-
pared with Mulmuley’s. We use very basic (univariate) polynomial analysis to limit the
complexity of algebraic circuits, and then we use a known result about the parametric com-
plexity of the maxflow problem to immediately conclude. Thanks to our proof this quite
famous result may be proven to researchers or student in an hour or so. Secondly, because
of the simplicity of the proof we feel it is much easier to understand the true limitations of
NCalg (therefore iPRAM) and reveal that they are basically humongous and why even basic
functions cannot be computed in this model of computation. Mulmuley knew about these
limitations but we are more pessimistic than him. Additionally our technique exposes the
fundamental and non-trivial link between computing on inputs of large bitlength and com-
puting functions on many inputs of smaller bitlengths : we show that functions over one
input cannot be computed even if we restrict the inputs to x ∈ [0, 2nd

] (where d is an inte-
ger) and we use it to conclude that some function g over e ∈ N inputs cannot be computed
even if we restrict its domain to [0, 2n]e. The technique that Mulmuley uses is based on
much more complicated mathematics and with a model (iPRAM) on which proofs are clum-
sier that on circuits. He basically uses the same plan and gives the same argument for the
non-membership of maxflow to iPRAM: iPRAM may only compute "simple" multivariate-
polynomial-like functions but using parametrization we can show that maxflow is not a
simple function. To be clear, most of our mathematical arguments may be - from a logically
formal standpoint - already contained in Mulmuley’s but we do not think it makes this paper
redundant at all. Those arguments were not readily apparent in Mulmuley. It is only after
careful examination that one realizes that our mathematical arguments are embedded in the
ones of Mulmuley’s. Our proof, because we limit the expressiveness of univariate circuits to
polynomial of low degree, very clearly exposes the shortcomings of the expressivity of the
algebraic model. Those shortcomings were was not as apparent in Mulmuley’s paper, be-
cause he deals with harder concepts (more or less multivariate polynomials): limitations on
such objects do not seem as restrictive, and it still seems that we can compute "interesting"
functions in iPRAM, so it gives a false sense of how expressive the class iPRAM is. On the
other hand the approach used by Mulmuley, although it lacks in simplicity, may allow one
to add operations on top of addition and multiplication, for instance he claims his results
are still valid if one allows computing the parity of an integer. It is not immediately clear
that our proof techniques can be salvaged if we add such an operation (adding the parity
function allows us to create a polynomial with exponentially many pieces). Also Mulmuley
shows that randomness still does not allow us to compute the maxflow problem. We do not
consider randomness in this paper, our educated guess is that our technique can be fitted to
include randomness.

One last hiccup is that for what seems could be purely technical reasons we were not
able to show that the decision version of the maxflow problem cannot be computed in NCalg.
We only show that the search version (taking a graph and outputting its maximal flow) is
not in NCalg. At the end of the chapter we give promising leads to solve this slight issue.
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Discussion

As explained before we believe our results shed light on the lack of potency of the models
considered by Mulmuley and consequently ours. We are still far from proving that NC 6= P.
To cement that idea we show that trivial problem for bit complexity class, like checking the
parity of a bitstring (its last bit is 0) is obviously in NC (its even in AC0), but it is not in NCalg.
This was known of Mulmuley but he somewhat disregards it, we argue later in the paper
that it should not be disregarded. We, very humbly, think it somewhat dampens the hope of
using such techniques to prove P 6= NC, or at the very least that closing the gap using such
techniques will be quite involved. Secondly we warn the reader: although the maxflow is
special in the bit complexity class P, as it is complete, it is as far as we can tell not special
in the algebraic world: we could not find general reductions from problems in algebraic-P
to the algebraic maxflow problem. The maxflow problem is only special in the sense as it
has an intuitive translation from the bit world to the algebraic world: every capacity gets
mapped to one number. If we had taken another problem like primality testing for instance,
the translation would not make much sense. Indeed in primality testing we have a number
x and must determine if it is prime, its intuitive translation in the algebraic world would
be similar: we have an integer x and must determine if it is prime. The issue is that in the
algebraic world our input size would now be 1 (we have 1 number) and so circuits should
now be of constant size.

All of that being said it is still interesting in its own right to know that the maxflow prob-
lem cannot be solved in poly-logarithmic time by polynomially many processors. Indeed
algorithms used to solve the maxflow problem are, to our knowledge, all algebraic, they do
not use the bitwise representation of numbers, only their absolute value. So it gives credible
reason to believe P 6= NC.

5.3 Equivalence between PRAMS and algebraic circuits

We will start with definitions of classes iPRAM, rPRAM and NCalg. Our definition of iPRAM
is taken almost verbatim from Mulmuley’s paper [Mul99]. Our definition of rPRAM is taken
from [SPL22]

The iPRAM model (what Mulmuley calls PRAM without-bit operations) is like the usual
PRAM model [JaJ11], the main difference being that its input are integers (instead of bits)
and it does not provide instructions for any bit operations such as ∧, ∨, or extract-bit. The
model provides usual arithmetic (+, −, ×), comparison (=, ≤, <), store, indirect reference,
and branch operations. Each memory location can hold an integer; a rational number is
represented by a pair of integers – its numerator and denominator – both of which can be
accessed by the processors separately. The processors share a global memory. The model
does not provide instructions for truncation or integer division with rounding. The lower
bounds are proved in the conservative unit-cost model in which each operation is assigned
unit cost regardless of the bitlengths of the operands. Our definition is also sightly stronger
than Mulmuley’s, in the sense that in his setting indirect addressing is not allowed to depend
on the input, for instance we may not use a capacity as an address. There are no such
restrictions in our model.
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Definition 5.2: iPRAM

A iPRAM is composed of p ∈N processors working over integers which share a global
memory on top of their own memory, both kind of memories are made of infinitely
many registers labelled by an integer and each contain an integer. These processors
receive integers as inputs and don’t have access to any bit operation. Each processor
executes a program which is a sequence of instructions. The instructions are of the
following kinds:

1. w = u ◦ v, where w denotes a memory location, u and v denote either memory
locations or constants. Finally, ◦ denotes a binary operation +, −, ×, ≤, <, =.
The comparison operations return 1 if true 0 otherwise

2. go to l, where l is the label of some instruction.

3. if u ∆ 0 go to l, where u denotes a memory location and ∆ denotes either
<, ≤, or =.

4. u := v: Store the contents of the memory location v into the location u.

5. u :=↑ v (indirect reference): Treat the value in the memory location v as a pointer.
Store into the memory location u the value in the pointed memory location.

6. stop.

Instructions over memory may modify the internal memory of the processor or the
global shared memory, a flag distinguishes the two cases. All instructions take unit
time to operate.
The processors run synchronously in parallel. We work in the CREW model meaning
that no two processors may write at the same time at the same location of the global
memory.

Definition 5.3: rPRAM

The rPRAM model is like the iPRAM model except the inputs are real numbers and we
have an additional / (divide) gate (it is not the euclidian division). Furthermore each
value is now stored in a memory location represented by a real number, e.g. we have
an instruction store value x in cell y where both x and y are real numbers. We may
also retrieve the content of a memory cell indexed by y a real number.

Notice that even though our memory cells are labelled by real numbers, at most polyno-
mially many labels can be instantiated over the course of a computation using polynomially
many processors and running in poly-logarithmic time.

In the following definition we define what it means to compute with an iPRAM or a
rPRAM, there is nothing special about our definition except that the programs are non uni-
form.
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Definition 5.4: Computing with iPRAM and rPRAM

Let R be an iPRAM, let (x1, . . . , xn) be integers we write R(x1, . . . , xn) = (y1, . . . , yn)
if when starting R with global shared memory initialized with (x1, . . . , xn) (the i-th
register contains xi) we end up with y1, . . . , yn written in the first n register of the
global shared memory when all the processors of R have stopped.
Let (ni)i∈N be a sequence of integers. Given a sequence of function ( fi)i∈N : Ni 7→
Nni , we say ( fi) is computed by sequence (Ri)i∈N if ∀i, ∀x1, . . . xn, fi(x1, . . . , xi) =
Ri(x1, . . . , xi).
The definition is similar for rPRAM working with R instead of Nand where "the first i
registers" become the "registers of address 1 to i"

In order to meaningfully compare the two models (iPRAM and rPRAM) we may restrict
our view to integer inputs, in this setting it is clear enough that any computation made by
an iPRAM can be made by a rPRAM.

Theorem 5.1:

Let (ni)i∈N be a sequence of integers. Let (Ri)i∈N be an iPRAM computing a function
from Ni to Nni , there is a sequence (R′i)i∈N of rPRAM such that ∀i, ∀(x1, . . . , xi) ∈
Ni, Ri(x1, . . . , xi) = R′i(x1, . . . , xi)

Definition 5.5: Algebraic circuit

An algebraic circuit is a circuit with gates +,×,−, /,=,<,≤ of fan-in 2, and constant
gates n for all n ∈N. Its inputs are real numbers. The comparison gates =,<,≤ return
1 when true, 0 otherwise. All other gates are interpreted in the obvious way.

We define Palg the class of polynomial size algebraic circuits in the natural way.

Definition 5.6: Palg

Cn is a sequence of Palg if each Cn is an algebraic circuit of fan-in 2, working over n
inputs, the size of each circuits grows polynomial in n and the depth polynomial in n.

We define NCalg, this class is non-uniform unlike its boolean counterpart.

Definition 5.7: NCalg

Cn is a sequence of NCalg ( polylog-depth algebraic circuits) if each Cn is an algebraic
circuit of fan-in 2, working over n inputs, the size of each circuits grows polynomial
in n and the depth polylogarithmically in n.

We restrict the largeness of log-depth algebraic circuits to polynomials. If unrestricted
they could be meaningfully bigger, indeed, even if we work with fan in 2 a circuit of depth
logd(n) could be of largeness as big as 2logd(n) which is bigger than any polynomial for d > 1.
Mulmuley considers such circuits in his paper, for simplicity we do not although our results
would still stand. We now sketch a proof that NCalg (circuits) and rPRAM (prams) with
polynomially many processors and of running time polylogarithmic define the same class
of functions.
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Theorem 5.2:

NCalg (circuits) and rPRAM (prams) with polynomially many processors and of run-
ning time polylogarithmic define the same class of functions.

Proof

It is not hard to see that one can simulate a circuit using a real PRAM. Just have one
processor per gate.

The other direction is not so trivial, here is a sketch of the proof. Let us consider p pro-
cessors in parallel running for k steps. Our circuit will consist of k layers (li)k

i=1, each
layer is meant to simulate one instruction step for all processors, each layer contains a
certain number of gates in charge of computation (described later) and a certain num-
ber of gates representing the internal memory state of each processor (each processor
modifies at most k internal addresses over the whole run), on top of that there is an
additional number of gates representing the state of the shared memory. In order to
deal with the processor accessing and modifying the shared memory we need to be
careful, indeed the index of the cell accessed by a processor is unknown across a range
of infinitely many indices, to deal with this issue we use a trick known as dynamic
addressing, each memory cell will be represented by a pair of gates one containing the
actual content and one containing the index of the cell. Only kp memory cells can be
used at most by the processors so we add to each layer 2kp gates representing the state
of the shared memory (index and content). Moreover all operations on the memory
(like checking if a certain memory cell given by its address is empty) can be simulated
using a overhead of O(log(kp)). We now consider that there is only one processor
in our rPRAM and we describe how it can be simulated by a circuit in NCalg. For p
processors it will just be a matter of gluing the different circuits in parallel. For each
processor and for each layer we have O(1) gates representing the whole program run
by the processor, a gate representing the label of the current instruction. If we knew
in advance the instruction meant to be executed and since we can access the shared
memory as described above it would be easy to see that we could simulate any of
the 6 instructions. Since we can’t predict the current instruction we glue circuits each
implementing one of the 6 instructions with a condition to check if the instruction of
the current label indeed corresponds to that implemented by the circuit. In total our
circuit is of size polynomial in pk and of depth O(k log(pk)).

5.4 Limitations of log-depth algebraic circuits

In this section we give a direct proof that log-depth algebraic circuits over one variable
compute piece-wise polynomial fractions of low degree and few pieces (namely less than
2n if the depth is polylog(n)). This is detailed in main theorem 5.3.

Definition 5.8: Interval

A set I over R is an interval if there exists a, b ∈ (R ∪ {−∞;+∞})2 two real numbers
such that I = [a, b] or I =]a, b] or I = [a, b[ or I =]a, b[.a

asince some reader may no be familiar with these notations: ]a, b] is equal to [a, b]r a
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Definition 5.9: Comparison of intervals

Let I and J be two non-empty, non-intersecting intervals over R. We write I < J
if ∀x ∈ I, ∀y ∈ J, x < y. Let us have a collection of r intervals (Ii)

r
i=0, we write

I1 < I2 < . . . < Ir to indicate that they are given in order and they are all non-empty
and non-intersecting.

Definition 5.10: Interval cut and pieces

Given a family (Ii)1≤i≤r of r intervals, I1 < I2 < . . . < Ir we say it is an interval cut of
size r if I1, I2, . . . , Ir partitions R. Each Ii is called a piece.

In the following we may use as a shorthand the notation I for a family of r intervals
(Ii)1≤i≤r.

Definition 5.11: Intertwining interval cuts

Given an interval cut of size n I1 < I2 < . . . < In and an interval cut of size m
J1 < J2 < . . . < Jm. There is at least one interval cut of k-pieces K1, . . . , Kk such that
∀h ∈ [k], ∃i, j, Kh ⊂ Ii ∧ Kh ⊂ Jj, if k is minimal then we call K1, . . . , Kk an intertwining
of I and J.

Note in the previous definition that when k is minimal it is smaller than n + m (this
is not hard to see). As an example of what is an intertwining consider the family I =
(] − ∞; 0], ]0;+∞[) and J = (] − ∞; 1], ]1;+∞[), then one possible value of an intertwin-
ing is (]−∞; 0], ]0; 1], ]1;+∞[).

Definition 5.12: Piece-wise polynomial fraction

A function f over D ⊂ R is said to be a piece-wise polynomial fraction if there exists
n ∈ N \ {0} and an interval cut I1 < I2 < . . . < In and n polynomial fractions
f1, f2, . . . , fn such that ∀i ∈ J1; nK, ∀x ∈ Ii ∩ D, f (x) = fi(x). a

Given such an interval cut I1 < I2 < . . . < In we may say f is a piece-wise polynomial
fraction over I. The number of pieces of a piece-wise polynomial fraction is the small-
est number n such that there exist I1 < I2 < . . . < In as described above. Let us write
c the function which takes a piece-wise polynomial fraction f and return its number
of pieces (we extend c to also take circuits as inputs when they compute piece-wise
polynomial fractions).

aJ1; nK denotes the integers in the interval [1; n]

For clarification the poles of a polynomial fraction do not add new pieces, for instance
the function f (x) = 1

x2−1 defined for all x ∈ R \ {−1; 1} is a one piece polynomial fraction. If
one wanted to have functions defined over the whole of R it would be no issue as whenever
performing a division we could add a comparison gate in the circuit to verify that we are
not dividing by 0, and if so return an arbitrary value.
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Definition 5.13: Augmented degree of a polynomial fraction

Let F = P
Q be a polynomial fraction over R, meaning that P and Q are coprime

polynomials over R, then we define its augmented degree noted d(F) as d(F) =
d(P) + d(Q) + 1 (where d(P) and d(Q) denote the usual degree of polynomials)

Definition 5.14: Augmented degree of a piece-wise polynomial fraction

Let f be a piece-wise polynomial fraction over R with a minimal interval cut I1 <
. . . < In and f1, . . . , fn the associated polynomial fractions then we define d( f ) =
max0≤i≤nd( fi).
It is routine to check that this definition does not depend on the chosen interval cut.

This is the main theorem of the paper on which we derive all impossibility results of
section 5.5.

Theorem 5.3:

A circuit P of depth k taking only one input, computes a function which is a piece-wise
polynomial fraction. Let us call with c(P) its number of pieces and d(P) its augmented

degree, then d(P) ≤ 2k and c(P) ≤ 2
k2+3k

2

Proof

We prove the result for each gate by induction on the depth of the gate, both that we
do indeed compute a piece-wise polynomial fraction and that the bounds are correct.
Let us denote ck the maximal number of pieces of a function computed by a gate at
depth k. Let us denote dk the maximal augmented degree of a function computed by

a gate at depth k. We are going to prove that dk ≤ 2k and ck ≤ 2
k2+3k

2 by induction.

For depth k = 1 the function computed is either f = (x 7→ x) or g = (x 7→ 1). Notice
that d( f ) = 2, c( f ) = 1, d(g) = 1 and c(g) = 1. Therefore d1 ≤ 21 and c1 ≤ 22

Going from k to k + 1: Let us consider a gate called p at depth k + 1. Our induction

hypothesis is that dk ≤ 2k and ck ≤ 2
k(k+1)

2 .

Multiplication gate: p = p1 ∗ p2. Let r = c(p1) and m = c(p2) we con-
sider the interval cuts of p1 and p2 which we denote I1 < . . . < Ir and
J1,< . . . < Jm, let us consider K1, . . . , Kk an intertwining of I and J such that
k < r + m, note that p is a piece-wise polynomial fractions over K. Therefore

c(p) ≤ c(p1) + c(p2) ≤ 2 ∗ ck ⇒ c(p) ≤ 2 ∗ ck ≤ 2
(k+1)(k+2)

2 . By reasoning over each
piece of the interval cut K we have that d(p) ≤ d(p1) + d(p2) ≤ 2dk.

Addition and division gate work in a similar fashion.

Comparison gate: p = (p1 ≤ p2). Let us define n = c(p1) and m = c(p2)
and let A0 ≤ A1 ≤ . . . ≤ An be the pieces of p1, B0 ≤ B1 ≤ . . . ≤ Bm the
pieces of p2. Let I0 ≤ I1 ≤ . . . ≤ Ir be an intertwining of A and B. For all
i, p1 and p2 are both polynomial fraction over Ii and we can canonically write
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pi,1 =
qi,1
ti,1

and pi,2 =
qi,2
ti,2

. We want to count the number of pieces of p, to that
end we focus on each Ii one by one. Notice that over Ii any new piece of p con-
tained in Ii may only occur on places where pi,1 − pi,2 changes sign, moreover
pi,1 = pi,2 ⇔ qi,1 ∗ ti,2 − ti,1 ∗ qi,1 = 0. But the polynomial qi,1 ∗ ti,2 − ti,1 ∗ qi,1 has at
most d(p1) + d(p2)− 1 roots, therefore over Ii we "add" at most d(p1) + d(p2) pieces.
Since we have at most r ≤ n + m = c(p1) + c(p2) pieces Ii, we have that cp is at most

(d(p1) + d(p2)) ∗ (c(p1) + c(p2)) ≤ 2dk ∗ 2ck ≤ 2 ∗ 2k ∗ 2 ∗ 2
k2+3k

2 ≤ 2
(k+1)2+3(k+1)

2 . And
d(p) is equal to 1 ≤ 2k+1.

So no matter the last computation gate the induction hypothesis still holds at depth

k + 1 therefore dk ≤ 2k+1 and ck ≤ 2
(k+1)2+3(k+1)

2 . This concludes the proof.

5.5 Problems not in NCalg

In this section using theorem 5.3 we will present different problems not in NCalg, including
the maxflow problem. As a warm up we will begin by showing that the mod 2 function (or
bit extraction as Mulmuley calls it in his paper) cannot be computed by algebraic circuits of
small depth. But first let us properly define what we mean by computing a function.

In the beginning of this paper we have proved that NCalg is at least as expressive as
iPRAM when only considering integer inputs. Therefore given a family of functions fn and
a family of intervals Dn such that fn : Dn 7→ R there are two ways to meaningfully analyze
its computability in NCalg. The first one is the obvious one: is there a sequence of circuits
Cn ∈ NCalg such that ∀λ ∈ Dn, Cn(λ) = fn(λ). The second one focuses only on integers
inputs: is there a sequence of circuits Cn ∈ NCalg such that ∀k ∈ N

⋂
Dn, Cn(k) = fn(k). If a

sequence of function cannot be computed on the integers by circuits of NCalg then it cannot
be computed by iPRAM and it surely cannot be computed on the whole of Dn. When tack-
ling problems we will often consider both version of computability.

Here is the general scheme for proving that a decision problem (the function returns
either 0 or 1 depending on membership in a specified language) is not computed by an
algebraic circuit of low depth. Take a subset L of Rn which will be the decision problem
and restrict your view to [0, 2m]n, n is to be thought as the number of inputs and m as the
bitlength of the integers we work with. Often in problems we only consider n and take m
to be polynomial in n, it makes sense as in the bit world we may in polynomial time, only
work with at most polynomial bit length integers. If L is complex enough the hope is that
there will a lot of alternations inside the hypercube [0, 2m]n between areas belonging to L and
areas not belonging to L. For instance if n = 1 (which is the only case studied by theorem
5.3), L is complex if [0, 2m]

⋂
L is equal to the union of exponentially many disjoint intervals

(exponential in m) 6 . Indeed in that case L cannot be recognized (meaning returning 1
when the output is in L, 0 otherwise) by an algebraic circuit of depth polylogarithmic in
m because those cannot compute piece-wise polynomial fraction with exponentially many
pieces. When n is not equal to 1 we need not worry, one must simply find an integer c
and a one dimensional curve f : [0; 2mc

] 7→ [0; 2m]n called parametrization, such that as λ
ranges across [0; 2mc

], f goes through many alternations of L and LC (the complementary
of L), and such that f is expressible using a circuit of NCalg. Then no circuit of NCalg may

6actually any interval is the union of exponentially many disjoint ones, so more precisely we should require
that L is not equal to the union of less than exponentially many intervals
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recognize L, otherwise a circuit for L composed with a circuit for f would yield a piece-wise
polynomial function with exponentially many pieces. In our proof for maxflow we use a
linear parametrization, but in general it does not need be linear. This parametrization trick
may not work in some instances, meaning there probably exists problems over Rn not in
NCalg but such that no parametrization goes through exponentially many alternation of L
and LC. For instance, in the decision version of the maxflow problem we fail to come up
with a proper parametrization to show that it does not belong to NCalg. Is it because such
parametrization does not exist or because we could not find it ? We do not know.

5.5.1 Bit extraction

We start with proving that the mod 2 function cannot be computed by a circuit of small
depth. Although the mod 2 function can be defined on R we only look at the mod 2 function
on J0; 2mK(= [0; 2m] ∩N) and we prove that on integer inputs no circuit of depth polylog(m)
may always agree with the mod 2 function.

The next lemma states that no piece-wise polynomial fraction with few pieces or low
augmented degree can agree with the mod 2 function on many consecutive integers.

Lemma 5.1:

Let f be a piece-wise polynomial fraction over R, if ∀k ∈ J0; NK, f (k) = k%2 then
d( f ) ∗ c( f ) ≥ N

10

Proof

Let f be a piece-wise polynomial fraction as described in the theorem and call c its
number of pieces, I1, . . . , Ic its pieces. Assume c is less than N/10 (otherwise the theo-
rem is proved), there must be a piece Ij containing at least N/c integers of J0; NK. We
remind that over Ij f is a polynomial fraction which we note P

Q , since k 7→ k%2 has
N/2c zeroes over Ij, so must P, P also cannot be the zero function because k 7→ k%2
is equal to 1 for some integers in Ij, therefore P is of degree at least N/2c. Therefore
d( f ) ∗ c ≥ (N/2c) ∗ c ≥ N/10.

The next theorem states that no circuit of polylog(n) depth may compute the mod 2 func-
tion (we only consider the first 2n integer inputs).

Theorem 5.4:

Let c and d be two positive real numbers, for any function family fn computed by
a circuit family of depth c logd(n), there exists N ∈ N such that ∀n > N, ∃k ∈
J0; 2nK, fn(k) 6= k%2.

Proof

Let (Cn)n be a sequence of circuits of depth kn = O(c logd(n)). Since n 7→ n%2 is a
function with one input, we may consider (Cn)n to be a sequence of circuits with one
input. For any n, the function computed by Cn is a piece-wise polynomial fraction f .

By theorem 5.3 we have that c( f ) ≤ 2
k2
n+3kn

2 and d( f ) ≤ 2kn therefore c( f )d( f ) = o(2n).
Therefore for large enough n, using Lemma 5.1, f cannot coincide with n 7→ n%2 for
all integers in J0; 2nK.
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It was already known to Mulmuley that the problem of computing the last bit was a
hard problem for NCalg, from our understanding and if we recap his views informally : he
dismisses it because there is no polynomial-depth circuit for this problem either7, so it is not
so interesting. Indeed he considers that the size of this problem is 1 : we are given 1 number
and are asked to return its last bit. Ìn theorem 5.5 prove that a very similar set has no circuits
in NCalg yet it has polynomial-depth circuits.

Theorem 5.5:

The set
{(x1, . . . , xn) ∈Nn; xn%2 = 0∧ xn < 2n} .

has polynomially bounded arithmetic circuits which agree with it over [[0; 2n]], but
none in NCalg.

Proof

Let us call A the set of the theorem. One can check that xn is less than 2n and if so
retrieve with a circuit of size linear in n the last bit of xn (using standard dichotomic
search). So set A has polynomially bounded circuits.
On the other hand setting all xi but xn to 0 we already know that the set

{(0, . . . , 0, xn) ∈Nn; xn%2 = 0∧ xn < 2n} .

is not in NCalg by a proof similar to the one of theorem 5.4. Therefore the set A is not
in NCalg either.

Now we would like to take a moment to ponder over what the last theorem means with
regards to the algebraic approach. When presented with Mulmuley’s original result we were
told this three-part story: One wants to prove that P 6= NC. Maxflow is P-complete, so we
just need to prove that Maxflow is not in NC. It is too hard, but fortunately we can prove
that the algebraic version of Maxflow is not in the algebraic version of NC. Surely this has
drawn us closer to proving P 6= NC? Well it seems to us that the last theorem dampens
that assumption, we have an example of a trivial problem for bit complexity classes which
is not in NCalg (yet has polynomial size circuits !). So then arises the question why bother
with maxflow when trivial problems already are not in NCalg ? In our opinion, this remark
is valid in the context of assessing the computational power of NCalg and thus the extent
to which impossibility results are meaningful. However there are still good reasons to care
about the maxflow problem : first of all, even though maxflow is a P-complete problem in
the bit world, there is no obvious guarantee (at least to us) that maxflow is complete in the
algebraic world, so a proof that a trivial problem is not in NCalg could not entail anything
regarding maxflow, secondly it is interesting in its own right to know if maxflow can be
solved fast in parallel using only algebraic operations.

Taking the results to the bit world A direct way to get NC 6= P would be to add gates in
our model which can extract the bits of our inputs. Of course by adding such gates the whole
advantage of the algebraic approach is lost: reasoning over boolean functions is notoriously
hard. As a naive approach we propose the following: studying algebraic circuits endowed
with sin gates (as in the sinus function). The justification is as follows : sin can be seen as
a continuous version of the mod 2 function with period 2π. By dividing the input with
appropriate multiples of 1

π we could in this way retrieve bits from our algebraic input, thus

7we note : unless the bitlength is part of the size
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establishing bounds for NCalg sin would yield bounds in the bit world. We can then restrict
ourselves to the study of the set of functions polynomial in sin closed under application of
sin. The hope is that because we deal with trigonometric functions and basic algebra we can
leverage the trigonometric equations (sin a sin b = 2 sin a+b

2 cos a−b
2 ...) to have a tractable

analysis.

Question

Can we add gates to our models (e.g. the sinus function) and extend our results to the
bit world ?

5.5.2 Bijections from N to N2

Before going on to the maxflow problem we focus on the problem of computing a bijection
between N and N2. If our model could do this we could reduce problems over n inputs to
problems over 1 input by repeatedly applying the bijection (the same way in the bit world
problems over N2 might as well be problems over N by associating a number to each pair
of number). We do not directly prove that no bijection exists however we prove that we
cannot inverse the usual Cantor pairing function. Using similar arguments one may be able
to prove that no bijection between N and N2 may be computed by a circuit of low depth.

Theorem 5.6:

Let f : N×N 7→ N be the usual Cantor pairing function f (n, m) = 1
2(m + n)(m +

n + 1) + m. This function is bijective and its reciprocal f−1 cannot be computed over
J0; 2nK by an algebraic circuit of depth polylogarithmic in n .

Proof

Consider the function g(x, y) = (x < y). (it returns either 0 or 1) The function g( f−1)

has 2
n
2 alternations between 0 and 1 over J0; 2nK therefore it cannot be computed by

a circuit of NCalg (by arguments used to prove theorem 5.1 and 5.4) . But g can be
computed by a circuit of NCalg (< is a gate of NCalg) therefore it must be f−1 which
cannot be computed by a circuit of NCalg.

5.5.3 Maxflow

Now we focus our attention to the maxflow problem. In the maxflow problem we are given a
network (an directed graph) of edges with specified capacities, a threshold k, a two specified
nodes s and t, the question then asked is can a flow of size k flow from s to t.

Definition 5.15: Maxflow problem

An instance of an algebraic maxflow problem of size n2 is a directed graph with n
nodes with each edge (as much as n2) labelled with a real number called capacity. It is
represented by its adjacency matrix representation. We say that a circuit A solves the
algebraic maxflow problem on size n2 if on any instance of size n2 it returns the max-
imal flow from node 1 to node n. We say that a circuit A solves the integer maxflow
problem on size n2 if on any instance containing only integers it returns the maximal
flow from node 1 to node n
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Definition 5.16: Decision maxflow problem

An instance of a decision maxflow problem of size n2 is an undirected graph with n
nodes with each edge (as much as n2) labelled with a real number called capacity and
a threshold k. The graph is represented by its adjacency matrix representation. We
say that a circuit A solves the decision maxlow problem on size n2 if on any instance
of size n2 it returns 1 if the maximal flow from node 1 to node n is greater than k, 0
otherwise. We say that a circuit A solves the integer decision maxflow problem on
size n2 if on any instance containing only integers it returns whether the maximal flow
from node 1 to node n is greater than k.

This gives us 4 variants of the maxflow problem. We can of course further limit the com-
plexity of these problem by only requiring algorithms solving them to work on an interval
Dn instead of the whole of R. In his paper [Mul99] Mulmuley proves that all 4 cannot be
solved by circuits of iPRAM even if we only consider polynomial size bit lengths integer, i.e
Dn = [0, 2nc

]. We will now give a simple proof that the algebraic maxflow problem cannot
be solved by circuits of NCalg. We introduce for that the linear parametrization version of the
maxflow problem. For a given size n2, each capacity c is now an affine function of parame-
ter λ where the coefficients a and b are integers of bitlength polynomial in n (c = a + b ∗ λ).
Given p, q ∈ Z2 this defines for all λ ∈ [p, q] an instance G(λ) of the maxflow problem.
Let I be the function such that I(G(λ)) returns the maximal flow from node 1 to node n. It
has been proven in [Car83] and [Mul99] that there is a family Gn(λ) of linearly parameter-
ized graph with polynomial-bit-length parameters and O(n2) edges, such that I(Gn(λ)) has
O(2n) breakpoints (slopes changes) over [0, T] with T = 2n+1.

Theorem 5.7:

The algebraic maxflow problem cannot be computed by circuits of NCalg

Proof

Let us suppose there is a family of circuits Cn ∈ NCalg such that Cn computes the
algebraic maxflow problem for size n2 graphs. Then Cn must return the correct value
on Gn(λ) for all λ. Consider Bn a circuit of depth 1 and O(n2) largeness taking λ as
input and outputting Gn(λ) (represented via its adjacency matrix). Then the circuit
Cn(Bn(λ)) is a circuit of NCalg with one input computing I(Gn(λ)) which is a linear
function with 2n breakpoints, but such a function cannot be computed by a circuit of
NCalg by theorem 5.3, contradiction.

Theorem 5.8:

The integer algebraic maxflow problem cannot be computed by circuits of NCalg

Proof

We sketch an idea of proof only. Consider the construction of Mulmuley, notice that
the breakpoints of I(Gn(λ)) are more than distance 2 away from each other, scale
everything up by a factor of 2n (one may create the integer 2n in log(n) depth circuits
using repeated squaring) so that now the breakpoints are 2n away from each other,
this gives you a function I′(λ) which is piece wise linear with each piece containing
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2n integers, argue that any piece-wise polynomial fraction which agrees with I′ must
have a large number of pieces or a large augmented degree (like in Lemma 5.1), then
conclude.

The last remaining piece remaining is the decision version, but we come across a slight
hiccup: solvability of the decision version of a problem means being able to compute its
epigraph, indeed the decision version asks us to compute (x, y) 7→ (y < f (x)). Intuitively
speaking it would be very strange if we could in our algebraic setting compute the epi-
graph of function but not its graph. The solvability of the decision version should entail
the solvability of the search version (up to a given precision) by way of dichotomic search:
if we can compute (x, y) 7→ (y < f (x)) then we can approximately compute x 7→ f (x) in
a similar time (for instance the time is multiplied by log( f (x)) if we want to be precise up
to the closest integer). Unfortunately in NCalg for functions outputting values exponential
in n, we cannot reduce the complexity of the decision version to that of the search version
via dichotomic search (we would need a depth log(2n) = n but we only have polylog(n)
depth). Looking closer at the construction of Mulmuley in [Mul99], the function I(Gn(λ))
does output for most λ ∈ [0, 2n] values bigger than O(2n).

We now give leads to tackle what looks to us to be only a technical issue. The most
promising idea would be to find a family of function fn computable with low depth circuits
and close enough to I(Gn(λ)), i.e. such that the difference fn(λ) − I(Gn(λ)) = O(nd) for
many inputs, we could then use dichotomic search to find the value of I(Gn(λ)). This might
actually be possible because looking closer at Mulmuley’s construction I(Gn(λ)) vaguely
grows in λlog(n) which is a polynomial in λ (we can hardcode log(n) for every n), so an
algebraic circuit of low depth may compute it. The technical part is properly analyzing the
growth rate of the function I(Gn(λ)).

In case this fails another idea would be to fiddle around a bit with Mulmuley’s construc-
tion to directly deal with the decision version. Yet another approach would be to analyse
circuits of NCalg with 2 inputs but it would certainly complicate the mathematics. Finally
there is hope that for non pathological functions f we may prove in general that uncom-
putability of f entails the uncomputability of (y, x) 7→ y < f (x).

Question

Can we prove that the decision versions of the maxflow problem cannot be decided
by circuits of NCalg using our techniques ?
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Appendix A

Reasonable functions

In this appendix we study reasonable functions for the purpose of use in part II. We first
recall the definition of reasonable functions as stated in chapter 4, the notion of reasonability
is meant to capture functions which to infinity not too slowly. The ultimate goal of this chap-
ter would be to establish that the composition of two reasonable functions is a reasonable
function. We leave it as an open question for now.

Definition A.1: Very-time-computable functions

Let f be a function from N 7→ N, f is very-time-computable (VTC) if there exists a
machine M in DTIME( f (n) + n) such that ∀n, M(n) = f (n).

Definition A.2: d-reasonable function

Let d ∈ N, and f : N 7→ N be an increasing function, it is d-reasonable if
∀c, ∃∞n, cKdn(n) ≤ f (n)

This is not the same definition as in chapter 4, but it is equivalent to it by theorem A.1.

Definition A.3: Reasonable functions

A function f : N 7→N is reasonable if there exist d ∈N such that f is d-reasonable.

One can notice in the definition of reasonable functions that there is an exponential dis-
crepancy between the size of n which is log(n) and the running time which is dn. This
discrepancy was all we needed in part 4 but may seem a bit arbitrary in general, in the fol-
lowing definition we define a more natural notion, this notion may be more deserving of
the epithet "reasonable". In any case theorem A.1 states that all of these notions are actually
equivalent.

Definition A.4: Ultra-reasonable functions

Let f ∈ N 7→ N, f is said to be is ultra-reasonable if f is increasing and such that
∀ε ∈ R+, ∀c, ∃∞n, cK(1+ε) log(n)(n) ≤ f (n)

Fact A.1:

Any ultra-reasonable function is 1-reasonable
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Definition A.5: Iterated logarithm log(k)(n)

Let k ∈ N. The k-iterated logarithm, denoted by log(k)(n) : N 7→ N, is defined
recursively as follows:

• log(1)(n) = blog(n)c, where log(n) is the logarithm of n in base 2.

• For k > 1, log(k)(n) = blog(log(k−1)(n))c.

Next we define the arrow operation in a sightly unusual way

Definition A.6: ↑k (Arrow Operation)

For natural numbers a and k, a ↑k: N 7→ is defined recursively as:

a ↑1 (n) = an,

a ↑k+1 (n) = a(a↑k(n)).

Noted differently:

a ↑k (n) = aa·
··

an

︸ ︷︷ ︸
k times

.

Fact A.2: 2 ↑k is easily computable

For any k ∈N, n 7→ 2 ↑k (n) can be computed in less than 1.1 · 2 ↑k−1 (n)steps

Proof

This is entailed by the fact that for k = 1, n 7→ 2n is computed in time n + O(log(n))
(reminder that the bitsize of 2n is n).

Lemma A.1:

Let f be d-reasonable, then f (log log) is ultrareasonable.

Proof

Let c ∈ N, Take n such that #dn is a description of n of size f (n)/c decodable in dn
steps, infinitely many such n must exist by reasonability of f . Consider program p
which takes as input #dn, decodes it, and outputs 22n

. Note that program p runs in
time dn + 2 · 2n (by fact A.2) and the size of p is≤ f (n)

2c +O(1) ≤ f (n)
c for n big enough.

We thus have that:

∃∞n, Kdn+2n
(22n

) ≤ f (n)
c

,

⇒ ∃∞m, Kd log log m+log m(m) ≤ f (log log(m))

c

Hence f (log log) is ultrareasonable.
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Corollary A.1:

Let f be reasonable, k ∈N then f (log(k)) is reasonable.

Fact A.3:

Let f , g be two functions such that f ≤ g, if f is reasonable then g is reasonable.

As a direct corollary of fact A.3 and lemma A.1 we have that :

Theorem A.1: Equivalence between d-reasonability and ultrareasonability

Let f be a reasonable function then it is 1-reasonable and ultrareasonable.

Lemma A.2:

Let f be reasonable, let h : N 7→ N be the function h(n) def
= min( f (n), n), then h is

reasonable

Proof

We have two possibilities:
Either we have ∀∞n, h(n) = f (n) and then h is reasonable.
Or ∃∞n, h(n) = n, but for all of these n we have a program p of size log(n) which
prints n in log(n) + O(1) steps thus ∃∞n, K2 log(n)(n) ≤ h(n)

Theorem A.2:

Let f be d-reasonable, k ∈ N, let h : N 7→ N be the function h(n) def
=

min( f (n), log(k)(n)), then h is reasonable.

Proof

f reasonable
⇒min( f , n 7→ n) reasonable

corollary A.1
⇒ (min( f , n 7→ n)) ◦ log(k) reasonable

log is increasing
⇒ min

(
f ◦ log(k), log(k)

)
reasonable

fact A.3
⇒ min( f , log(k)) reasonable

Definition A.7: Inverse of a function in N 7→N

Let f ∈N 7→N, its inverse noted f−1 is defined as f−1(n) = min{m; f (m) ≥ n}

The following theorem is used liberally in chapter 4
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Theorem A.3:

If f is VTC and increasing and going to infinity then f is ultrareasonable

Proof

We define first define program p which is meant to compute f−1.

Algorithm 3 Program p(n) to compute f−1(n)
1: Input: n
2: Initialize: i← 0
3: while True do
4: if f (i) ≥ n then
5: return i
6: else
7: i← i + 1
8: end if
9: end while

Given that h(n) def
= min( f (n), log(n)) is VTC and less than f , h being reasonable entails

reasonability of f , we may thus WLOG consider in the following that f ≤ log(n).
It’s routine to check that p computes f−1. The run-

ning time of p is ≤ log(n) + Σ f−1(n)
i=0 f (i) + i ≤ 2( f−1(n))2

( we read n and then execute the program, moreover f−1(n) ≥ n ). The function

n 7→ 2 f−1(n) is computed in less than 3( f−1(n))2 + log(n) steps which is less than
2 f−1(n) steps hence:

∀n, K2 f−1(n)
(2 f−1(n)) ≤ n

Using the fact that f grows to infinity

⇒ ∃∞n, Kn(n) ≤ f (log(n)) ≤ f (n)

We leave the two following questions unanswered. We believe these questions to be
tractable.

Question

• If f is reasonable then its inverse f−1 is reasonable ?

• Let f and g be two reasonable functions then f ◦ g is reasonable ?
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