
UNIVERSITÉ PARIS XIII – SORBONNE PARIS NORD

École doctorale Galilée [Laboratoire d’Informatique de Paris-Nord CNRS
UMR 7030]

Adaptive Learning Applied to Fraud Detection
Apprentissage Adaptatif Appliqué à la Détection de la Fraude

ParKodjo Mawuena AMEKOE

Thèse de doctorat d’ Informatiqe

Dirigée parHanane AZZAG
Et parMustapha LEBBAH

Présentée et soutenue publiquement le 03/04/2025

Devant un jury composé de :

Nicolas LABROCHE, Prof. Université de Tours, France Rapporteur
Ndèye NIANG-KEITA, Prof. CNAM Paris, France Rapportrice
Thierry CHARNOIS, Prof. Université Sorbonne Paris Nord, France Examinateur
Haytham ELGHAZEL, Mcf Université Lyon 1, France Examinateur
Hanane AZZAG, Prof. Université Sorbonne Paris Nord, France Directrice de thèse
Mustapha LEBBAH, Prof. Université Paris Saclay, France Co-directeur
Zaineb CHELLY-DAGDIA, Mcf-Hdr Université Paris Saclay, France Co-encadrante
Grégoire JAFFRE, Ing. Groupe BPCE Co-encadrant

Résumé

Titre: Apprentissage Adaptatif Appliqué à la Détection de la Fraude

Mots clefs: Apprentissage adaptatif; apprentissage automatique; Interprétabilité; Mécan-
isme d’Attention; Ensemble d’Arbres de Décision; Détection de Fraude

Résumé: La fraude aux moyens de
paiement, dont sont victimes les institutions
bancaires, peut emprunter plusieurs canaux
(par exemple : chèque, carte bancaire, vire-
ment) et entraîner d’importantes pertes finan-
cières ou des désagréments pour les clients,
notamment en cas de fausses alertes. La lutte
contre la fraude est donc une nécessité pour
les banques et se traduit par un cycle con-
flictuel entre les équipes dédiées à la sécu-
rité, qui mettent en place des algorithmes de
détection et de blocage, et les fraudeurs, qui
adaptent leurs stratégies pour les contourner.
Malgré les efforts visant à utiliser des ap-
proches de machine learning, les pertes liées à
la fraude restent significatives, se chiffrant à
des milliards de dollars chaque année. Il de-
vient alors crucial de questionner l’efficacité
des modèles de machine learning (ML) clas-
siques, qui sont par nature plus statiques et,
par conséquent, peut-être moins adaptés à un
environnement en constante évolution. Dans
cette thèse, nous explorons le domaine du ma-
chine learning adaptatif, qui vise précisément
à résoudre des problèmes comportant des re-
lations de cause à effet dynamiques. À cet
égard, nous avons étudié et proposé des so-

lutions pour évaluer l’efficacité des modèles
incrémentaux par batch ou par lot, comparés
à ceux incrémentaux par instance, en tenant
compte des défis réels de la détection de fraude
tels que le déséquilibre des classes et le retard
des étiquettes. Par ailleurs, avec la sophis-
tication croissante des solutions ML, il de-
vient courant pour les data scientists d’utiliser
des outils d’interprétabilité (comme SHAP ou
LIME), bien que la fiabilité de cette approche
reste discutable. Nous avons donc exploré
dans quelle mesure l’utilisation de modèles
Intrinsèquement Interprétables (II) peut con-
stituer une alternative pertinente pour ren-
forcer la confiance dans les systèmes ML ap-
pliqués à la lutte contre la fraude. Dans cette
optique, nous avons proposé unmodèle II basé
sur le mécanisme d’attention, qui offre l’avan-
tage de produire des explications stables, en
plus d’être à la fois interprétable et performant
sur le plan prédictif. Enfin, notre étude sur des
données réelles de virements bancaires a per-
mis de confronter les méthodes proposées et
existantes aux contraintes du monde indus-
triel, aboutissant à la formulation de recom-
mandations concrètes pour les data scientists
et/ou chercheurs travaillant sur ce sujet.

i

Abstract

Title: Adaptive Learning Applied to Fraud Detection

Keywords: Adaptive learning; Machine learning; Interpretability; Attention Mechanism;
Decision Trees Ensemble; Fraud detection

Abstract: Payment fraud, which affects
banking institutions, can occur through var-
ious channels (e.g., checks, credit cards, bank
transfers) and may result in significant finan-
cial losses or customer inconvenience, partic-
ularly in cases of false alerts. Combating fraud
is therefore essential for banks, leading to a
continuous cycle of conflict between security
teams, who implement detection and block-
ing algorithms, and fraudsters, who evolve
their strategies to bypass these measures. De-
spite efforts to employ machine learning ap-
proaches, the losses caused by fraud remain
substantial, amounting to billions of dollars
annually. This raises important questions
about the suitability of traditional machine
learning (ML) models, which are inherently
more static and, therefore, potentially less ef-
fective in a dynamic environment. In this the-
sis, we explore the field of adaptive machine
learning, which specifically addresses prob-
lems involving dynamic cause-and-effect re-
lationships. In this context, we studied and
proposed solutions to evaluate the efficiency

of batch incremental models compared to in-
stance incremental models, taking into ac-
count real-world challenges in fraud detec-
tion, such as class imbalance and label de-
lay. Moreover, as ML solutions become in-
creasingly sophisticated, it has become com-
mon for data scientists to use interpretability
tools (such as SHAP and LIME), even though
the reliability of this approach remains ques-
tionable. We have thus investigated to what
extent Inherently Interpretable (II) models can
serve as a viable alternative to enhance trust
in ML systems applied to fraud detection. To
this end, we proposed an II model based on
the attention mechanism, which offers the ad-
vantage of producing stable explanations, in
addition to being both interpretable and pre-
dictively efficient. Finally, our study on real-
world bank transfer data allowed us to test
the proposed and existingmethods against the
constraints of the industrial environment, re-
sulting in concrete recommendations for data
scientists and/or researchers working on this
topic.

iii

Que ton coeur ne soit pas vaniteux à cause de ce que tu connais, prends conseil
auprès de l’ignorant comme auprès du savant, car on n’atteint pas les limites de
l’art, et il n’existe pas d’artisan qui ait acquis la perfection. Une parole parfaite
est plus cachée qu’une pierre verte, on la trouve pourtant auprès des servantes qui
travaillent sur la meule.

PtahHotep

– iv –

Contents

Résumé i

Abstract iii

Liste des figures x

Liste des tableaux xii

Liste des abréviations xiii

1 Introduction 1
1.1 Fraude aux moyens de paiement . 1
1.2 Disposition de lutte contre la fraude aux moyens de paiments 2
1.3 Défis pour l’utilisation du Machine Learning dans la détection de la fraude 4
1.4 Contexte de la thèse . 6
1.5 Contributions . 6

1.5.1 Modèles intrinsèquement interprétables et précis dans un environ-
nement statique . 7

1.5.2 Efficacité des modèles dans des environnements évolutifs 7
1.5.3 Apprentissage automatique dans la détection réaliste de fraude :

Application à la fraude au virement bancaire 8
1.6 Plan . 8
1.7 Publications & Libraries . 18
1.8 Notation . 19

2 State Of The Art 21
2.1 Classification in Standard Machine Learning 21

2.1.1 Evaluation in classification . 22
2.1.2 Classical Machine learning models 26
2.1.3 Attention mechanism and tabular data 30
2.1.4 Predictive performance based state-of-the-art 36
2.1.5 On the Interpretability and Trustworthy question 36
2.1.6 On Imbalanced data classification 39

2.2 Classification in dynamic Environments . 41
2.2.1 Concept drift and Monitoring in Evolving Environments 41
2.2.2 Performance evaluation strategy in dynamic environments 45
2.2.3 Examples of models in learning in dynamic environments 46

v

2.2.4 Batch incremental versus Instance incremental learning 48
2.2.5 Class imbalance in dynamic environments 49
2.2.6 Label delay in learning in dynamic environments 50
2.2.7 Interpretability in learning in dynamic environments 51

2.3 Adaptive Machine Learning for fraud detection 51
2.3.1 Supervised approaches and adaptive fraud detection 52
2.3.2 Unsupervised approaches and adaptive fraud detection 52

3 Exploring Accuracy and Interpretability trade-off in Tabular Learning with
Novel Attention-Based Models 55
3.1 Introduction . 55
3.2 Existing interpretable solutions for tabular data problems 57

3.2.1 Inherently interpretable models . 57
3.2.2 Full-complexity models combined with Post hoc tools 57

3.3 TabSRAs . 59
3.3.1 TabSRAs Architecture . 60
3.3.2 SRA block . 61
3.3.3 TabSRALinear: SRA Block and Linear downstream model 62
3.3.4 On the robustness of TabSRALinear’s explanations 63
3.3.5 Improving TabSRALinear using model ensemble 65

3.4 Empirical study . 66
3.4.1 Experimental setup . 66
3.4.2 Benchmark results . 69
3.4.3 Ablation study for TabSRALinear 73
3.4.4 Real world application of TabSRALinear 75

3.5 Limitations and Recommendations . 79
3.6 Conclusion . 82

4 Evaluating the Efficacy of Instance Incremental vs. Batch Learning in De-
layed Label and Dynamic Environments 83
4.1 Introduction . 84
4.2 Problem formalization . 85

4.2.1 Label delay . 85
4.2.2 Predictive performance evaluation methodology 85

4.3 Experiment analysis . 88
4.3.1 Experiment setup . 88
4.3.2 Results on the generated benchmark 92
4.3.3 Results on the Fraud dataset . 96

4.4 Conclusion and Discussions . 99

5 Machine learning in realistic fraud detection: Application to bank transfer
fraud 101
5.1 Bank Transfer using IBAN . 101
5.2 Context and Operational constraints . 102
5.3 Construction of the target feature . 104
5.4 Data set . 105
5.5 Choice of the Machine Learning model and Adaptation Strategy 106

– vi –

5.6 Understanding of decisions and changes 109
5.6.1 Understanding the predictions . 110
5.6.2 Detecting and Understanding changes over time 110

5.7 Can model stacking help to improve predictive performance? 114
5.8 Conclusion . 116

6 Conclusion and Perspectives 117
6.1 Conclusion . 117
6.2 Perspectives . 118

6.2.1 Improve the intelligibility of TabSRA 118
6.2.2 On the use of the error analysis for drift detection and understanding 119
6.2.3 Enhance the collaboration between Expert and ML system in fraud

detection . 120

Bibliography 121

A Appendix for Chapter 3 135
A.1 Additional theoretical results . 135

A.1.1 On the Lipschitz estimate of TabSRALinear ensemble 135
A.1.2 Proof Theorem 1. 135

A.2 Additional empirical informations . 138
A.2.1 Datasets . 138
A.2.2 Additional results for TabSRAs: Visualization 140
A.2.3 Additional results on the applicative case studies 142
A.2.4 Additional results for the robustness study 143
A.2.5 Implementation details for the predictive performance evaluation . 144
A.2.6 Additional results about the predictive performance 145

– vii –

List of Figures

1.1 Pipeline typique de gestion de la fraude (non exhaustif) 3

2.1 ROC curve . 24
2.2 PR curve . 24
2.3 Illustration of binary Decision Tree . 28
2.4 Illustration of MLP . 30
2.5 Illustrative analogy between the query, key, value terminology in attention

mechanism and information retrieval in dictionaries 32
2.6 Illustration of the Multi-Head Attention . 33
2.7 Illustration of a standard process for column embedding or tokenization

within the Transformer architecture designed for tabular data 34
2.8 Generic Transformer architecture for tabular data 35
2.9 Illustration of SHAP feature attribution . 37
2.10 Illustration of the resampling . 40
2.11 Illustration of types of drift . 42
2.12 Illustration of the Hoeffding Tree . 46

3.1 Motivational example for TabSRAs . 59
3.2 TabSRAs architecture . 60
3.3 SRA Block . 61
3.4 Illustration of the reinforcement process with the ChainLink 2D: 1000 data

points. 62
3.5 Illustration of the reinforcement process with the Noisy two moons: 10000

data points. 62
3.6 Illustration of the importance of the TabSRALinear ensemble 65
3.7 Estimation of Lipschitz constant on real word datasets 73
3.8 Bank churn modeling: Effect contribution of the feature NumOfProducts . 76
3.9 Individual prediction understanding for the bank churn modeling 77
3.10 Individual prediction understanding for the credit card default dataset. . . 79
3.11 From individual to global effect understanding for the PAY_0 feature . . . 80

4.1 Illustration of the change in AUCROC over time 94
4.2 Impact of the label delay on the predictive performance 95

5.1 Illustration of processing of the bank transfer with IBAN 102
5.2 Typical fraud handling pipeline (not exhaustive) 103
5.3 Data splitting . 105

ix

5.4 Illustration of uncertainly in the EBM’s shape functions 109
5.5 Illustration of feature contribution . 110

A.1 Illustration of the reinforcement process with the Noisy two Five sphere:
250 data points . 140

A.2 Illustration of the reinforcement process with the Two moon with: 373 data
points . 140

A.3 Illustration of the reinforcement process with the Two disks: 800 data points 141
A.4 Illustration of the reinforcement process with the Rings: 1000 data points . 141
A.5 Illustration of the reinforcement process with the Dense disk: 3000 data points 141
A.6 Bank churn modeling: interaction between the Age and IsActiveMember

feature . 142
A.7 Individual prediction understanding for the credit card default dataset. . . 143
A.8 Change in predictions using input perturbationes 144

– x –

List of Tables

1.1 Notations . 19

2.1 Confusion Matrix . 23
2.2 Example of the attention matrix for machine translation 31
2.3 Comparative Disadvantages of Batch and Instance Incremental Learning . 49

3.1 Some differences between the SRA block and the classical Transformer block 61
3.2 Benchmark datasets . 68
3.3 Predictive performance of models across 59 tasks (45 datasets) 69
3.4 Relevant feature discovery capacity. Precision is used as a metric 71
3.5 Influence of the dimension of the query/key encoder dk 74
3.6 Influence of the number of ensemble H . 74
3.7 Statistics for the target feature (Exited) . 75

4.1 Tabular benchmark for incremental algorithms evaluation 89
4.2 Predictive performance on the generated benchmark in no delay setting . 93
4.3 Running time of algorithms (s) . 97
4.4 Predictive performance on the fraud dataset 98

5.1 Predictive performance on the test months 108
5.2 Effect of preprocessing on TabSRA’s performance 109
5.3 Drift quantification for XGBoost . 111
5.4 Drift quantification for TabSRA . 112
5.5 Error analysis for drift detection and understanding 114
5.6 Stacking XGBoost with a simple model . 115
5.7 Stacking TabSRA with a simple model . 115

A.1 Decision Tree (DT) . 144
A.2 Linear Models (LR) . 145
A.3 TabSRALinear . 145
A.4 EBM_S . 145
A.5 EBM . 146
A.6 Random Forest (RF) . 146
A.7 XGBoost . 146
A.8 CatBoost . 147
A.9 MLP . 147
A.10 ResNet . 147
A.11 FT Transformer . 148

xi

A.12 SAINT . 148
A.13 Predictive performance of models across 59 tasks (45 datasets) 149
A.14 Regression tasks with numerical features only 1 149
A.15 Regression tasks with numerical features only 2 150
A.16 Regression tasks with heterogeneous features 1 150
A.17 Regression tasks with heterogeneous features 2 151
A.18 Classification tasks with numerical features only 1 151
A.19 Classification tasks with numerical features only 2 152
A.20 Classification tasks with heterogeneous features 152

– xii –

Liste des abréviations

ADASYN Adaptive Synthetic. 39

ADWIN ADaptive WINdowing. 44, 46–48, 84

AI Artificial Intelligence. 37

ARF Adaptive Random Forest. 47–50

AUC Area Under the Curve. 24, 45

AUCPR Area Under the PR Curve. 24, 25, 36, 46, 53, 66, 108, 111–113, 118, 119

AUCROC Area Under the ROC Curve. 24, 25, 36, 45, 46, 66, 92, 113

AWE Accuracy Weighted Ensemble. 47, 48

AXGB Adaptive eXtreme Gradient Boosting. 48

BRF Balanced Random Forest. 52

CART Classification and Regression Trees. 28, 47

CNN Condensed Nearest Neighbor. 39

DDM Drift Detection Method. 44, 119

DT Decision Tree. 28, 29, 40, 42, 47, 57, 70, 111, 112, 115

EBM Explainable Boosting Machine. 27, 38, 39, 57, 81, 90, 106, 108, 119

ENN Edited Nearest Neighbor. 39

ERM Empirical Risk Minimization. 22

FNN FeedForward Neural Network. 29, 34

GAM Generalized Additive Model. 26, 27, 38, 39, 57, 70, 81, 106, 117–119

GBM Gradient Boosting Machines. 29

HAT Hoeffding Adaptive Tree. 46

xiii

HD Hellinger Distance. 40, 43

HT Hoeffding Tree. 46, 47, 49

IBAN International Bank Account Number. 101, 104, 105

II Inherently Interpretable. 37, 82, 116

iid independently and identically distributed. 21

LB Leveraging Bagging. 47, 50

LFR Linear Four Rates. 44

LR Logistic Regression or Linear Regression. 26, 28, 57, 70, 111, 115

MHA Multi-Head Attention. 34

ML Machine Learning. 21, 26, 27, 29, 30, 35, 39, 41–43, 51, 52, 101–106, 109, 111, 114, 115,
117–120

MLP MultiLayer Perceptron. 29, 30, 34, 42, 58, 70

NN Neural Network. 29, 36, 37, 41, 58, 64, 68–70, 81, 109, 112, 118

OHE One Hot Encoding. 31, 34, 35

OOB Oversampling based Online Bagging. 49, 50

OOT Out Of Time. 108, 114, 115

Pbr Performance-based retraining. 107, 108, 114–116

PR Precision Recall. 24

RF Random Forest. 29, 41, 47, 58, 112, 115

RNN Recurrent Neural Network. 51

ROC Receiving Operating Characteristic. 23–25

ROSE Robust Online Self-Adjusting Ensemble. 50

SGBT Streaming Gradient Boosted Trees. 49

SHAP SHapley Additive exPlanations. 37, 38, 117

SMOTE Synthetic Minority Oversampling TEchnique. 39, 40, 50

SRA Self-Reinforcement Attention. 60–62

SRP Streaming Random Patches. 48

– xiv –

TabSRA Tabular Self-Reinforcement Attention. 59, 60, 106–108, 117, 118

UOB Undersampling based Online Bagging. 49

VFDT Very Fast Decision Tree. 46

XAI eXplainable Artificial Intelligence. 36, 37, 66

XGBoost eXtreme Gradient Boosting. 29, 48, 49, 52, 58, 106–108, 112, 118

– xv –

Chapter 1

Introduction

1.1 Fraude aux moyens de paiement

Peut-être considéré comme une fraude tout acte malhonnête (par rapport aux lois ou règle-
ments en vigueur) commis dans l’intention de tromper un individu (ou un groupe d’indi-
vidus), l’objectif ultime étant de lui soutirer un bien ou des privilèges. Parmi les exemples
les plus connus de l’histoire récente, on trouve les fraudes électorales, fiscales ou infor-
matiques. L’adoption croissante des moyens de paiement scripturaux a donné naissance à
de nouvelles formes de fraudes, communément appelées fraudes aux moyens de paiement.
Celui qui commet l’acte est appelé fraudeur, tandis que celui qui subit l’acte est appelé la
victime.

Les moyens de paiement les plus couramment utilisés incluent les cartes bancaires
(paiement via des canaux électroniques, paiement sans contact, paiement mobile, ou sur
internet), les virements bancaires (instantanés ou non), les chèques et les prélèvements.

Les techniques utilisées par les fraudeurs sont parfois d’une innovation imprévisible et
peuvent varier en fonction des moyens de paiement concernés. Selon le Rapport de l’Obser-
vatoire de la sécurité des moyens de paiement 2023 de la Banque de France, les méthodes les
plus fréquentes identifiées sont les suivantes:

• Carte bancaire : Usurpation du numéro de carte (via hameçonnage, vol ou perte),
manipulation par téléphone ou en ligne pour amener la victime à valider une trans-
action non authentique.

• Chèque : La technique la plus courante consiste à utiliser des chèques volés ou per-
dus pour régler un paiement ou effectuer un encaissement direct.

• Virements bancaires : Tout comme pour les cartes bancaires, la manipulation est
souvent utilisée pour inciter la victime à valider un virement frauduleux (par exemple,
en se faisant passer pour un conseiller bancaire ou un fournisseur). Il existe égale-
ment des techniques de détournement de virements, consistant à modifier un ordre

1

Chapter 1

de virement pour récupérer les montants concernés.

Les fraudes aux moyens de paiement peuvent entraîner d’importantes pertes financières
pour les clients et les banques (ou, plus généralement, pour les Prestataires de Services
de Paiement). Elles peuvent également exposer les banques concernées à des sanctions
des régulateurs et à une perte de réputation si des systèmes ou dispositions adéquates de
gestion de la fraude ne sont pas mis en place.

Concernant les pertes financières, le Rapport de l’Observatoire de la sécurité des moyens
de paiement 2023 de la Banque de France estime à environ 1,2 milliard d’euros le montant
des fraudes aux moyens de paiement en France pour l’année 2023. Ce montant se répartit
comme suit :

• Carte bancaire : 496 millions d’euros (correspondant à un taux de fraude de 0,053 %)

• Chèque : 364 millions d’euros (correspondant à un taux de fraude de 0,078 %)

• Virement : 312 millions d’euros (correspondant à un taux de fraude de 0,001 %)

1.2 Disposition de lutte contre la fraude aux moyens de
paiments

Les dispositions généralement mises en oeuvre dans la lutte contre la fraude peuvent être
catégorisées en deux étapes: la prévention et la détection de la fraude (Dal Pozzolo [1]).
L’objectif de la prévention de la fraude est d’instaurer des lois ou des techniques visant à
décourager les intentions ou l’appétence à commettre des fraudes, ou du moins à en limiter
les conséquences le cas échéant. Les techniques de détection, quant à elles, interviennent
pour bloquer, au bon moment, certaines transactions qui ne respectent pas certaines règles
ou qui présentent une forte probabilité d’être frauduleuses.
Parmi les méthodes de prévention, on peut citer :

• Les sensibilisations régulières des usagers des moyens de paiement à certains
types de fraudes, généralement effectuées par messagerie ou par l’affichage d’alertes
lors (ou avant) la finalisation de certaines transactions ;

• L’imposition par les législateurs aux prestataires de services de paiement (et
aux banques) d’utiliser des systèmes d’authentification forte pour approuver cer-
taines transactions (par exemple, la DSP2 en Europe);

• Le plafonnement du nombre ou dumontant des transactions sur une période
donnée. Par exemple, le montant maximal de retrait peut être limité à 1 000 euros
par jour. Dans certains cas, il revient au détenteur du moyen de paiement de fixer
des seuils spécifiques ou d’ajouter des outils supplémentaires pour authentifier les
transactions ;

– 2 –

Introduction

Figure 1.1: Pipeline typique de gestion de la fraude (non exhaustif). La demande d’opération
ou de transaction est d’abord traitée par un module de vérification (par exemple, vérification
du code PIN pour les virements bancaires et paiements par carte, vérification d’identité pour
les chèques) et refusée si la transaction ne passe pas cette étape. Sinon, un score de fraude est
attribué à la demande de transaction à l’aide des modules de Machine Learning (ML) et des
Systèmes Experts. Enfin, un module de décision est utilisé pour agréger les scores des modules
ML et Expert, et pour accepter ou refuser la transaction en cours en fonction de seuils définis
par les besoins métier. Après un certain délai (par exemple, 1 jour ou 1 semaine), la véritable
nature de la transaction est supposée connue et utilisée pour améliorer à la fois le module ML
et le module d’Expert.

• La temporisation de certaines opérations . Par exemple, certaines banques retar-
dent la validation de l’ajout de nouveaux bénéficiaires pour un virement. Un autre
exemple concerne les chèques, dont l’encaissement peut être différé de quelques jours.
Il est toutefois important de noter que les clients privilégient généralement des trans-
actions fluides, ce qui peut rendre les institutions bancaires dotées d’un dispositif de
temporisation important moins attrayantes.

Dans les dispositifs de détection de fraude, on peut lister les étapes qui ne sont pas forcément
disjointes, comme l’indique la Figure 1.1:

• Vérification de la validité de certaines caractéristiques, notamment celles de préven-
tion de la fraude. Par exemple, la vérification de la conformité du code d’authentifica-
tion pour un paiement par carte bancaire en ligne ou du code PIN lors d’un paiement
sur un terminal électronique; la vérification de la date de validité de la carte bancaire;
ou encore la vérification de la suffisance des fonds sur le compte lors d’un virement.

• Utilisation d’un module d’expert : ce module repose principalement sur des règles
établies par des experts en lutte contre la fraude, basées sur leur expérience.

• Utilisation d’un système basé sur le Machine Learning (ML) : ce système s’appuie sur
les données stockées des transactions passées, dont la nature, frauduleuse ou non,
est typiquement connue. Les informations extraites du module ML, lorsqu’elles sont
intelligibles, servent généralement à enrichir les connaissances des experts et, par
conséquent, à améliorer le module Expert.

– 3 –

Chapter 1

1.3 Défis pour l’utilisation duMachine Learning dans la
détection de la fraude

Il existe plusieurs défis liés à l’utilisation du machine learning pour la détection de la fraude
dans le monde réel. Parmi ces défis, les plus connus sont :

1. Les changements dans la distribution des données au fil du temps

2. Le déséquilibre des classes (le nombre de transactions frauduleuses est généralement
très faible)

3. La nécessité d’intelligibilité des solutions ML utilisées

Les modèles traditionnels de machine learning sont construits sur l’hypothèse théorique
que la distribution des données d’entraînement est identique à celle des données de pro-
duction ou de test. Malheureusement, la distribution des données peut changer au fil du
temps, ce qui peut entraîner une baisse significative de la performance prédictive attendue
si cette modification/évolution n’est pas correctement prise en compte. Cette situation est
généralement appelée dérive conceptuelle (Gama et al. [2], Lu et al. [3], and Hinder, Va-
quet, and Hammer [4]). Concernant la fraude, la dérive conceptuelle peut être due à : (i)
un changement dans la stratégie des fraudeurs, qui développent continuellement de nou-
veaux schémas de fraude pour contourner le modèle de détection de la fraude en produc-
tion; (ii) un changement dans le comportement transactionnel des détenteurs de moyens
de paiement. Par exemple, pendant les périodes de vacances ou de fêtes, les gens peu-
vent dépenser ou utiliser plus fréquemment leurs moyens de paiement par rapport à leur
comportement habituel. Cette situation peut entraîner un changement important dans la
distribution des données d’entrée; (iii) un changement dans les législations (par exemple,
une augmentation du plafond de paiement), ou encore le développement de nouvelles so-
lutions de paiement sur les moyens de paiement existants (par exemple, Wero récemment
proposé pour les virements bancaires en Europe).
Le délai pour obtenir le retour d’information ou connaître la véritable nature des transac-
tions, comme montré dans la Figure 1.1 rend encore plus complexe le problème de change-
ment de distribution. Par exemple, pour les cartes de paiement, la nature frauduleuse d’une
transaction ne peut être constatée que si le titulaire de la carte la signale rapidement ou si
un analyste de fraude contacte le titulaire de la carte pour vérifier une transaction inhab-
ituelle. Dans le cas contraire, il est courant d’attendre jusqu’à la fin de la période de pre-
scription (1 semaine, 1 mois), où toutes les transactions non déclarées comme frauduleuses
sont généralement considérées comme légitimes. Ce délai d’obtention de retour peut donc
permettre aux fraudeurs d’utiliser des approches ou des stratégies de fraude actuellement
inconnues des systèmes de détection de fraude à plusieurs reprises, avant que les analystes
ou experts ne s’en aperçoivent. Il est donc crucial pour un système de détection de fraude
basé sur le machine learning de prendre en compte les changements au fil du temps.

Dans les contextes de paiement, le nombre de transactions frauduleuses est heureuse-
ment généralement bien plus faible que celui des transactions légitimes (par exemple, moins

– 4 –

Introduction

de 1 transaction frauduleuse pour 1000 virements bancaires légitimes en France en 2023),
une situation connue sous le nom de déséquilibre des classes. En général, les modèles de
machine learning sont développés sous l’hypothèse d’une représentation égale des classes,
de sorte que le déséquilibre des classes peut nuire à la performance ou, du moins, rendre
plus complexe la procédure d’évaluation des modèles développés. L’impact du déséquilibre
des classes est particulièrement significatif lorsqu’il est associé à un chevauchement des
classes (Dal Pozzolo [1] and Vuttipittayamongkol, Elyan, and Petrovski [5]) et à du bruit
sur les étiquettes (Krawczyk [6]). Le chevauchement des classes fait référence à la situa-
tion où les membres de deux ou plusieurs classes partagent les mêmes espaces ou zones
de caractéristiques. Dans la détection de fraude, il s’agit d’une situation courante, car les
fraudeurs tentent souvent de réaliser des transactions frauduleuses qui ressemblent autant
que possible à des transactions légitimes.
Quant au bruit sur les étiquettes, il met en évidence des situations où certaines transactions
réellement frauduleuses peuvent ne pas être signalées dans les systèmes de retour d’infor-
mation ou dans les données. Cette situation peut affecter la capacité du modèle à détecter
des fraudes similaires à l’avenir, d’autant plus que le nombre d’exemples frauduleux est déjà
faible. Il est donc essentiel de considérer des modèles de machine learning qui soient rela-
tivement robustes face au déséquilibre des classes, au chevauchement des classes et au bruit.

Troisièmement, nous considérons la nécessité d’intelligibilité, c’est-à-dire que les mod-
èles de machine learning ou leurs décisions doivent, dans une certaine mesure, être com-
préhensibles pour les Data Scientists, les experts en détection de fraude ou les régulateurs.
Les Data Scientists peuvent vouloir s’assurer que les caractéristiques apprises par les mod-
èles semblent cohérentes avec la logique métier et sont assez fiables pour passer en envi-
ronnement de production. Dans ce sens, la simple performance prédictive sur un ensemble
de test peut ne pas suffire, mais en addition, il doit être possible de comprendre certaines
décisions des modèles: Pourquoi le modèle a-t-il pris cette décision ? Quelles sont les carac-
téristiques déterminantes dans les décisions du modèle ?
Les compréhensions acquises peuvent ensuite aider à enrichir les connaissances des experts
en fraude, et ainsi augmenter la confiance dans la collaboration entre le module ML et le
module d’expert. Comme la détection de fraude implique parfois des données personnelles,
les régulateurs peuvent exiger des modèles non biaisés (par rapport à certains groupes de
personnes) de même que la justification des décisions des systèmes de prise de décision
automatique (par exemple, le RGPD : article 22 en Europe, AI ACT).
Un autre bénéfice de l’intelligibilité, c’est qu’il est souhaitable de comprendre les change-
ments qui se produisent dans la distribution des données pour une adaptation appropriée
au fil du temps.
C’est dans cette optique que la plupart des modèles de machine learning de pointe (en ter-
mes de performance prédictive, ce sont des boîtes noires) utilisés en détection de fraude se
reposent sur des outils d’interprétabilité post hoc tels que SHAP (Lundberg and Lee [7]),
LIME (Ribeiro, Singh, and Guestrin [8]) pour expliquer leurs décisions. Pourtant, la confi-
ance accordée à ces méthodes d’explicabilité est parfois remise en question.

Un dernier défi, mais non des moindres, est le temps de réponse du module basé sur le
ML. En effet, en fonction des moyens de paiement ou du pipeline de gestion de la fraude,

– 5 –

Chapter 1

les modèles ML doivent produire leurs prédictions dans un délai limité (allant de quelques
millisecondes à quelques minutes) et le coût de la maintenance de la production ne doit
pas dépasser les pertes dues à la fraude. De plus, la plupart des institutions financières
commencent à soutenir des exigences écologiques, et peuvent donc privilégier l’utilisation
de solutions frugales (lorsque cela est possible). Ces contraintes poussent à trouver un
compromis entre la performance du module ML et la consommation des ressources.

1.4 Contexte de la thèse

Cette thèse a été réalisée entre le Groupe BPCE, le Laboratoire d’Informatique de Paris Nord
(LIPN) et le DAVID Lab de l’UVSQ-Université Paris Saclay, dans le cadre d’une collabora-
tion CIFRE (Convention Industrielle de Formation par la Recherche) gérée par l’Association
Nationale de la Recherche et de la Technologie (ANRT).

Né de la fusion en 2009 des réseaux Banque Populaire et Caisse d’Épargne, le Groupe
BPCEfigure parmi les principaux acteurs bancaires en France. Fort de sonmodèle coopératif
décentralisé et de son portefeuille d’expertises (par exemple Natixis, Oney, Banque Pala-
tine), il sert plus de 36 millions de clients et traite 20% du marché des paiements français.
À ce titre, il fait face, comme ses pairs, à de nombreuses tentatives de fraude, qu’il convient
de déjouer.

Au sein du Pôle Data & IA de la Direction Digital&Payments de BPCE, un ensemble de
Data Scientists travaille sur des sujets réglementaires et sécuritaires tels que la Lutte Anti-
Blanchissement de Capitaux (LAB), la Lutte Contre le Financement du Terrorisme (LCFT)
et la Détection de Fraude aux moyens de paiements. Au-delà de l’aspect opérationnel, ces
Data Scientists se consacrent également à des Travaux de Recherche et Développement
(R&D) pour apporter plus d’innovations dans les dispositifs de BPCE.
Cette thèse, inscrite dans un cadre R&D, revêt un intérêt stratégique, tant pour apporter da-
vantage d’intelligibilité aux dispositifs de détection de fraude que pour améliorer la perfor-
mance du système, que ce soit pour réduire les pertes financières ou limiter les réclamations
des clients à cause des blocages injustifiés (faux positifs).

1.5 Contributions

Dans cette thèse, nous avons abordé les défis discutés dans la Section 1.3, en partant d’un
cadre statique où nous avons traité la question de l’intelligibilité. Par la suite, nous avons
généralisé l’approche proposée à un environnement dynamique (évolutif) englobant les
applications réelles de détection de fraude.

– 6 –

Introduction

1.5.1 Modèles intrinsèquement interprétables et précis dans un en-
vironnement statique

La première contribution de cette thèse consiste à remettre en question la nécessité d’u-
tiliser des outils post hoc pour tenter d’obtenir des solutions ML interprétables. Le principal
problème des outils d’interprétabilité post hoc est la question de la fiabilité. Un nombre
croissant d’articles comme Amoukou, Salaün, and Brunel [9], Kumar et al. [10], and Huang
andMarques-Silva [11] alertent sur le fait que les outils post hoc ne sont pas suffisants, voire
ne sont pas adaptés pour exprimer le véritable comportement (même local) d’un modèle,
dépendant du type de modèle et de la distribution sous-jacente des données (par exemple,
les interactions, les corrélations entre les variables).
Dans le Chapitre 3, nous avons exploré la possibilité de contourner le besoin d’interpréta-
bilité post hoc, sans sacrifier de manière excessive la performance prédictive. Dans cette
optique, nous avons proposé une nouvelle classe de modèles intrinsèquement interpréta-
bles, basés sur unmécanisme d’attention, appelés TabSRAs, qui, contrairement auxmodèles
linéaires ou aux modèles additifs généralisés, ne limitent pas l’ordre des interactions. Au
contraire, les contraintes de stabilité locale sont intégrées dans la conception des TabSRAs
dans le but de produire des explications similaires pour des points de données d’entrée simi-
laires. Nous avons également proposé des évaluations empiriques approfondies pourmettre
en évidence le compromis entre l’interprétabilité et la précision prédictive : les situations
où il est avantageux d’utiliser des modèles intrinsèquement interprétables et d’autres cas
où il peut être pertinent de considérer l’interprétabilité post hoc des modèles en boîte noire
en complément des modèles intrinsèquement interprétables, afin de mieux comprendre le
phénomène modélisé.

1.5.2 Efficacité des modèles dans des environnements évolutifs

La seconde contribution porte sur le choix du modèle de Machine Learning (ML) dans des
situations où les données de production arrivent au fil du temps et peuvent être sujettes
à des dérives conceptuelles. Dans ce contexte, nous avons pu constater que les solutions
fonctionnant par lots semblent clairement plus adoptées en entreprise pour des problèmes
comme la détection de fraude (ou problèmes connexes). Alors même que la quasi-totalité
des récents travaux de la littérature se focalisent sur le développement ou l’amélioration des
méthodes basées sur les algorithmes en ligne ou incrémentaux par instances (Section 2.2.4
), qui de par leur formulation peuvent sembler plus adaptées aux environnements évolutifs.
Est-ce à cause d’une mauvaise connaissance de la littérature par Data Scientists travaillant
sur ces genres de sujets? À l’opposé, est-ce parce que les modèles présentés dans la littérature
sur l’apprentissage adaptatif, basés en partie sur des solutions incrémentales par instance, ne
satisfont pas pleinement ou vraiment les exigences du secteur industriel concerné?

Nous avons examiné dans le Chapitre 4, s’il serait pertinent d’adopter des solutions
incrémentales par instance ou en ligne afin de permettre une adaptation rapide aux change-
ments. Il s’avère que dans des cas où i) l’intelligibilité est nécessaire, ii) les étiquettes devien-
nent disponibles avec un délai important et iii) les classes sont fortement déséquilibrées,

– 7 –

Chapter 1

comme dans la détection de fraude, les solutions incrémentales par lots demeurent l’option
supérieure. De plus, cette dernière option facilite l’intégration de l’humain dans la boucle
et l’inspection humaine des résultats produits par le ML, augmentant ainsi probablement
la confiance dans les pipelines de détection de fraude basés sur le ML.

1.5.3 Apprentissage automatique dans la détection réaliste de fraude
: Application à la fraude au virement bancaire

Étant donné que nous sommes dans le cadre d’un programme de doctorat appliqué (CIFRE),
une contribution majeure a été de proposer une solution d’apprentissage automatique réal-
iste pour améliorer le pipeline de détection de fraude, à la fois en termes de fiabilité et
de performance prédictive. Pour des raisons de confidentialité, les chercheurs purement
académiques sont rarement informés des conditions de travail réelles (retards dans l’éti-
quetage, contraintes de validation, contraintes de déploiement...) en détection de fraude. Et
même lorsqu’ils en sont conscients, la rareté des données réelles empêche de tester ces con-
ditions. Comme conséquence, des données hypothétiques ou synthétiques sont générale-
ment utilisées pour simuler l’apprentissage automatique dans la détection de fraude.
Grâce à notre observation du processus de validation des modèles ML en conditions réelles
et aux données fournies par le Groupe BPCE, nous avons exploré le cas de la détection de
fraude par virement bancaire. Nous reconnaissons qu’une seule étude de cas ne suffit pas
pour couvrir tous les aspects et défis liés à l’utilisation de l’apprentissage automatique dans
la détection de fraude aux paiements. Cependant, nous espérons que notre formalisation du
problème (Chapitre 5) guidera les chercheurs à intégrer certaines conditions réalistes dans
la conception de leurs solutions de détection de fraude et, inversement, aidera les praticiens
en apprentissage automatique à améliorer leurs systèmes de détection de fraude.
Les méthodes et outils explorés incluent non seulement les solutions développées dans nos
contributions précédemment mentionnées, mais aussi des pratiques déjà connues dans la
communauté des Data Scientists.

1.6 Plan

Le reste du manuscrit est organisé comme suit : Dans le Chapitre 2, nous avons introduit
l’état de l’art sur le machine learning dans un cadre statique (Section 2.1.2) avec des détails
sur l’évaluation lorsque les classes sont très déséquilibrées, sur les modèles classiques ainsi
que les modèles plus récents utilisant le mécanisme d’attention. Par la suite, nous avons
présenté les approches existantes pour la classification dans un cadre dynamique (Section
2.2) où les données arrivent au fil du temps et peuvent être soumises aux dérives. De même,
nous avons évoqué les travaux connus sur l’utilisation de l’apprentissage automatique adap-
tatif pour la détection de fraude (Section 2.3).

Le chapitre 3 contient notre première contribution sur l’interprétabilité dans un cadre
statique où nous avons présenté dans un premier temps le modèle TabSRA, son fonction-

– 8 –

Introduction

nement à l’aide des illustrations visuelles ainsi que les aspects théoriques motivant l’implé-
mentation (Section 3.3). Dans la Section 3.4, nous avons proposé une étude empirique sur
le compromis entre la performance prédictive et l’interprétabilité des modèles, y compris le
TabSRA. L’évaluation de chaque modèle ou solution sur les critères comme la performance
prédictive, la fiabilité des explications par rapport aux phénomènes modélisés, et la stabilité
des explications a permis de formuler des recommandations pratiques pour quelques situ-
ations couramment rencontrées sur les données tabulaires.
Le Chapitre 4 présente notre étude sur le choix d’algorithme de machine learning dans un
cadre dynamique, où nous avonsmis en compétition les modèles incrémentaux par instance
avec ceux par lots, avec une attention particulière sur la question du retard des étiquettes.
Par la suite, le Chapitre 5 présente une étude de cas sur la fraude au virement bancaire avec
la prise en compte des contraintes opérationnelles.

Enfin, le Chapitre 6 conclut le document avec un résumé des éléments abordés dans la
Section 6.1. Quelques perspectives pour les travaux futurs du point de vue théorique et
applicatif sont exposées dans la Section 6.2.

– 9 –

Introduction

Payment Fraud

Fraud can be defined as any dishonest act (contrary to laws or regulations in force) com-
mitted with the intent to deceive an individual (or a group of individuals), with the ultimate
aim of extracting a good or privilege. Notable examples in recent history include electoral,
tax, or cyber fraud. The growing adoption of scriptural means of payment has given rise to
new forms of fraud, commonly referred to as payment fraud. The perpetrator of the act is
called the fraudster, while the individual or entity targeted is referred to as the victim.

The most commonly used payment methods include bank cards (electronic channels,
contactless payment, mobile payment, or online payment), bank transfers (instantaneous
or otherwise), checks, and direct debits.

The techniques employed by fraudsters are sometimes unpredictably innovative and
can vary depending on the payment method concerned. According to the Rapport de l’Ob-
servatoire de la sécurité des moyens de paiement 2023 de la Banque de France, the most fre-
quently identified methods are as follows:

• Credit cards: Misappropriation of card numbers (via phishing, theft, or loss), manip-
ulation over the phone or online to coerce the victim into validating an unauthorized
transaction.

• Checks: The most common technique involves using stolen or lost checks to make
payments or perform direct deposits.

• Bank transfers: As with bank cards, manipulation is often employed to trick the
victim into authorizing a fraudulent transfer (e.g., by impersonating a bank advisor
or supplier). There are also redirection techniques, where a transfer order is altered
to divert the intended funds.

Payment fraud can lead to significant financial losses for customers and banks (or, more
generally, Payment Service Providers). Moreover, it can expose the banks concerned to
regulatory penalties and reputational damage if adequate fraud management systems or
measures are not implemented.

11

Chapter 1

Regarding financial losses, the Rapport de l’Observatoire de la sécurité des moyens de
paiement 2023 de la Banque de France estimates the total amount of payment fraud in France
for the year 2023 to be approximately 1.2 billion euros. This amount is distributed as follows:

• Credit cards: 496 million euros (corresponding to a fraud rate of 0.053%)

• Checks: 364 million euros (corresponding to a fraud rate of 0.078%)

• Bank transfers: 312 million euros (corresponding to a fraud rate of 0.001%)

Measures to Combat Payment Fraud

The measures generally implemented to combat fraud can be categorized into two steps:
fraud prevention and fraud detection (Dal Pozzolo [1]). The objective of fraud prevention
is to establish laws or techniques aimed at discouraging the intent or propensity to commit
fraud, or at least to limit its consequences when it occurs. Detection techniques, on the
other hand, intervene to block certain transactions at the right time that fail to meet spe-
cific rules or exhibit a high likelihood of being fraudulent.

Examples of prevention methods include:

• Regular awareness campaigns for users of payment methods, typically con-
ducted via messaging or by displaying alerts during (or before) the completion of
certain transactions;

• Mandates from legislators requiring payment service providers (and banks)
to implement strong authentication systems for approving certain transactions (e.g.,
PSD2 in Europe);

• Setting limits on the number or value of transactions within a given period.
For instance, the maximum withdrawal amount may be capped at 1,000 euros per
day. In some cases, the holder of the payment method can set specific thresholds or
add additional tools to authenticate transactions;

• Introducing delays for certain operations. For example, some banks delay the
approval of new beneficiary additions for transfers. Another example is the delayed
clearing of checks by a few days. However, it is important to note that customers
typically prefer seamless transactions, whichmaymake banks with significant delays
less appealing.

In fraud detection systems, the steps, which are not necessarily distinct, can be listed
(as illustrated in Figure 1.1):

• Verifying the validity of certain features, particularly those aimed at fraud preven-
tion. For example, checking the compliance of authentication codes for online card

– 12 –

Introduction

payments or PIN codes during electronic terminal payments; verifying the validity
date of the card; or ensuring sufficient funds are available in the account for a transfer.

• Using an Expert module: This module relies primarily on rules established by fraud
prevention experts, based on their experience.

• Using a Machine Learning (ML)-based system: This system leverages stored data
from past transactions, where the nature (fraudulent or not) is typically known. The
insights extracted from the ML module, when interpretable, are generally used to
enrich expert knowledge and, consequently, improve the Expert module.

Challenges for Using Machine Learning in Fraud Detec-
tion

There are several challenges associated with using machine learning for fraud detection in
real-world scenarios. Among these challenges, the most well-known are:

1. Changes in data distribution over time.

2. Class imbalance (the number of fraudulent transactions is usually very low).

3. The need for interpretability of the ML solutions used.

Traditional machine learning models are built on the theoretical assumption that the
distribution of training data is identical to that of production or test data. Unfortunately,
the data distribution may change over time, potentially causing a significant drop in pre-
dictive performance if this change is not adequately addressed. This situation is commonly
referred to as concept drift (Gama et al. [2], Lu et al. [3], and Hinder, Vaquet, and Ham-
mer [4]). In the context of fraud, concept drift may arise from: (i) changes in fraudsters’
strategies, as they continuously develop new fraud schemes to bypass the current fraud
detection model in production; (ii) changes in the transactional behavior of payment in-
strument holders. For instance, during holidays or festive periods, people may spend or
use their payment instruments more frequently compared to their usual behavior, leading
to significant shifts in the input data distribution; (iii) regulatory changes (e.g., increasing
payment limits) or the development of new payment solutions for existing instruments
(e.g., the recently proposed Wero feature for bank transfers in Europe).

The delay in receiving feedback or knowing the true nature of transactions, as illustrated
in Figure 1.1, further complicates the issue of data distribution changes. For example, in the
case of payment/credit cards, a transaction’s fraudulent nature can only be confirmed if the
cardholder quickly reports it or if a fraud analyst contacts the cardholder to verify an un-
usual transaction. Otherwise, it is common to wait until the end of the prescription period
(1 week, 1 month), after which all transactions not reported as fraudulent are generally con-
sidered legitimate. This delay in feedback allows fraudsters to exploit currently unknown

– 13 –

Chapter 1

fraud approaches or strategies repeatedly before analysts or experts become aware of them.
It is therefore crucial for a machine learning-based fraud detection system to account for
temporal changes.

In payment contexts, the number of fraudulent transactions is fortunately much lower
than that of legitimate transactions (e.g., fewer than 1 fraudulent transaction per 1,000 le-
gitimate bank transfers in France in 2023), a situation known as class imbalance. Generally,
machine learning models are developed under the assumption of equal class representa-
tion, meaning that class imbalance can negatively impact performance or, at the very least,
complicate the evaluation process of the developed models. The impact of class imbalance
is particularly significant when combined with class overlap (Dal Pozzolo [1] and Vuttipit-
tayamongkol, Elyan, and Petrovski [5]) and label noise (Krawczyk [6]). Class overlap refers
to situations where members of two or more classes share the same feature space. In fraud
detection, this is common, as fraudsters often attempt to make fraudulent transactions re-
semble legitimate ones as closely as possible.
Label noise highlights situations where some fraudulent transactions may not be flagged
in feedback systems or data. This can affect the model’s ability to detect similar frauds in
the future, especially given the already limited number of fraudulent examples. It is there-
fore essential to consider machine learning models that are robust to class imbalance, class
overlap, and noise.

Third, we consider the need for interpretability, meaning that machine learning models
or their decisions must, to some extent, be understandable for Data Scientists, fraud detec-
tion experts, or regulators. Data Scientists may wish to ensure that the features learned by
the models are consistent with business logic and reliable enough to be deployed in pro-
duction environments. In this sense, predictive performance on a test set alone may not
suffice; it must also be possible to understand certain model decisions: Why did the model
make this decision? What are the key features driving the model’s decisions?
The insights gained can then help enrich the knowledge of fraud experts, thereby increasing
confidence in the collaboration between the MLmodule and the expert module. Since fraud
detection sometimes involves personal data, regulators may require models to be unbiased
(with respect to certain groups of people) and capable of justifying the decisions made by
automated decision-making systems (e.g., GDPR: Article 22 in Europe, AI ACT).
Another benefit of interpretability is the ability to understand changes occurring in the data
distribution for appropriate adaptation over time.
In this regard, most state-of-the-art machine learning models (in terms of predictive perfor-
mance, which are often black boxes) used in fraud detection rely on post hoc interpretabil-
ity tools such as SHAP (Lundberg and Lee [7]) or LIME (Ribeiro, Singh, and Guestrin [8])
to explain their decisions. However, the trustworthiness of these explanation methods is
sometimes questioned.

A final challenge, but no less important, is the response time of the ML-based mod-
ule. Depending on the payment methods or the fraud management pipeline, ML models
must produce predictions within a limited time frame (ranging from a few milliseconds

– 14 –

Introduction

to a few minutes), and the cost of maintaining production should not exceed the losses
caused by fraud. Moreover, most financial institutions are beginning to support ecologi-
cal requirements, which may encourage the adoption of frugal solutions (when feasible).
These constraints necessitate a trade-off between the performance of the ML module and
resource consumption.

Thesis Context

This thesis was conducted in collaboration with Groupe BPCE, the Laboratoire d’Informa-
tique de Paris Nord (LIPN), and the DAVID Lab of UVSQ-Université Paris Saclay, as part
of a CIFRE (Convention Industrielle de Formation par la Recherche) partnership managed by
the Association Nationale de la Recherche et de la Technologie (ANRT).

Created in 2009 through the merger of the Banque Populaire and Caisse d’Épargne net-
works, Groupe BPCE is one of the leading banking players in France. With its decentral-
ized cooperative model and portfolio of expertise (e.g., Natixis, Oney, Banque Palatine...),
it serves over 36 million customers and processes 20% of the French payments market. As
such, it faces numerous fraud attempts, like its peers, which must be effectively countered.

Within the Data & AI Division of BPCE’s Digital & Payments Department, a team of
Data Scientists works on regulatory and security-related topics such as Anti-Money Laun-
dering (AML), Counter-Terrorism Financing (CTF), and Payment Fraud Detection. Beyond
the operational aspects, these Data Scientists are also dedicated to Research and Develop-
ment (R&D) efforts to bring more innovation to BPCE’s systems.
This thesis, conducted within an R&D framework, has strategic importance, aiming both
to enhance the interpretability of fraud detection systems and to improve system perfor-
mance, whether by reducing financial losses or limiting customer complaints caused by
unjustified blocks (false positives).

Contributions

In this thesis, we addressed the challenges discussed in Section 1.6, starting from a static
framework where we tackled the issue of interpretability. Subsequently, we generalized the
proposed approach to a dynamic (evolving) environment encompassing real-world fraud
detection applications.

– 15 –

Chapter 1

Inherently Interpretable and Accurate models in a Static Environ-
ment

The first contribution of this thesis questions the necessity of using post hoc tools to achieve
interpretable ML solutions. The main issue with post hoc interpretability tools is their re-
liability. A growing number of studies, such as Amoukou, Salaün, and Brunel [9], Kumar
et al. [10], and Huang and Marques-Silva [11], warn that post hoc tools are insufficient, or
even inadequate, to capture the true (even local) behavior of a model, depending on the
type of model and the underlying data distribution (e.g., interactions, correlations among
variables).
In Chapter 3, we explored the possibility of bypassing the need for post hoc interpretabil-
ity without excessively sacrificing predictive performance. To this end, we proposed a new
class of inherently interpretable models based on an attention mechanism, called TabSRAs,
which, unlike linear models or generalized additive models, do not constrain the order of
interactions. Instead, local stability constraints are integrated into the design of TabSRAs
to produce similar explanations for similar input data points. We also proposed extensive
empirical evaluations to highlight the trade-offs between interpretability and predictive ac-
curacy: cases where inherently interpretable models are advantageous and other situations
where the complementarity of post hoc interpretability tools with black-box models may
provide deeper insights into the modeled phenomena.

Model Efficiency in Evolving Environments

The second contribution focuses on selecting a Machine Learning (ML) model for scenar-
ios where production data arrives over time and may be subject to concept drift. In this
context, we observed that batch incremental solutions are clearly more widely adopted in
the industry for problems such as fraud detection (or related issues). This is despite the
fact that most recent research efforts focus on developing or improving methods based on
online or instance-based incremental algorithms (Section 2.2.4), which, due to their formu-
lation, may appear better suited to evolving environments. Is this due to a lack of familiarity
with the literature among Data Scientists working on these topics? Alternatively, is it because
the adaptive learning models presented in the literature, partly based on instance incremental
solutions, do not fully or adequately meet the requirements of the concerned industrial sector?
In Chapter 4, we examined whether it would be appropriate to adopt instance incremental
or online solutions to enable rapid adaptation to changes. It turns out that in cases where
i) interpretability is required, ii) labels become available with a significant delay, and iii)
classes are highly imbalanced, as in fraud detection, batch incremental solutions remain
the superior option. Moreover, this approach facilitates human-in-the-loop integration and
allows for human inspection of the results produced by ML, thereby likely increasing trust
in ML-based fraud detection pipelines.

– 16 –

Introduction

Machine Learning in Realistic Fraud Detection: Application to Bank
Transfer Fraud

Given that this work is part of an applied doctoral program (CIFRE), a major contribution
has been the development of a realistic machine learning solution to enhance the fraud de-
tection pipeline in terms of both reliability and predictive performance. For confidentiality
reasons, purely academic researchers are rarely informed about real-world conditions (la-
beling delays, validation constraints, deployment constraints, etc.) in fraud detection. Even
when they are aware, the lack of access to real-world data prevents testing under these con-
ditions. As a result, hypothetical or synthetic data is commonly used to simulate machine
learning in fraud detection.
By observing the validation process of ML models in real-world conditions and leveraging
data provided by Groupe BPCE, we explored the case of fraud detection in bank transfers.
We acknowledge that a single case study cannot cover all aspects and challenges of ap-
plying machine learning to payment fraud detection. However, we hope that our problem
formalization (Chapter 5) will guide researchers to incorporate realistic conditions into
the design of their fraud detection solutions and, conversely, help ML practitioners en-
hance their fraud detection systems.
The methods and tools explored include not only the solutions developed in our previously
mentioned contributions but also well-established practices in the Data Science community.

Outline

The remainder of the manuscript is organized as follows: In Chapter 2, we introduce the
state of the art in machine learning in a static setting (Section 2.1.2), detailing evaluation
methods for highly imbalanced classes, classical models, and more recent models using at-
tention mechanisms. We then present existing approaches for classification in a dynamic
environment (Section 2.2) where data arrives over time andmay be subject to drift. Further-
more, we discuss known works on the use of adaptive machine learning for fraud detection
(Section 2.3).

Chapter 3 contains our first contribution on interpretability in a static environnement,
where we first introduce the TabSRA model, its functionality through visual illustrations,
and the theoretical aspects motivating its implementation (Section 3.3). In Section 3.4,
we present an empirical study of the trade-off between predictive performance and inter-
pretability of models, including TabSRA. The evaluation of each model or solution based
on criteria such as predictive performance, the reliability of explanations concerning the
modeled phenomena, and the stability of explanations allowed us to formulate practical
recommendations for common scenarios encountered in tabular data.

Chapter 4 presents our study on the choice of machine learning algorithms in a dynamic
environnement, where we compare instance incremental models with batch-based ones,
with particular attention to the issue of delayed labels. Subsequently, Chapter 5 presents a

– 17 –

Chapter 1

case study on bank transfer fraud, taking into account operational constraints.

Finally, Chapter 6 concludes the document with a summary of the elements discussed
(Section 6.1). Some perspectives for future work, both theoretical and applied, are outlined
in Section 6.2.

1.7 Publications & Libraries

Publications

Papers Published in International Journals

• Amekoe, K.M., Azzag, H., Dagdia, Z.C., Jaffre, G. Exploring accuracy and interpretabil-
ity trade-off in tabular learning with novel attention-based models. Neural Comput
& Applic 36, 18583–18611 (2024). https://doi.org/10.1007/s00521-024-10163-9

• Amekoe, K.M., Lebbah, M., Jaffre, G., Azzag, H., &Dagdia, Z. C. (2024). Evaluating the
Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and Dynamic
Environments. Submitted to Machine Learning journal ECML PKDD 2025. arXiv
preprint arXiv:2409.10111.

Papers Published in International Conferences and Workshops

• Amekoe, K. M., Dilmi, M. D., Azzag, H., Dagdia, Z. C., Lebbah, M., & Jaffre, G. (2023,
October). TabSRA: An Attention-based Self-Explainable Model for Tabular Learning.
In ESANN 2023-European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (pp. 199-204).

• Amekoe, K.M., Azzag, H., Lebbah, M., Dagdia, Z.C., Jaffre, G. (2025). A New Class of
IntelligibleModels for Tabular Learning. In: Meo, R., Silvestri, F. (eds)Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD
2023. Communications in Computer and Information Science, vol 2135. Springer,
Cham. https://doi.org/10.1007/978-3-031-74633-8_16

Libraries and Code

All the codes and configurations used in our experiments (excluding certain configurations
applied to confidential fraud data) are made available to the community on the Github1 ac-
count or the Unsupervise2 project.

1https://github.com/anselmeamekoe/
2https://github.com/unsupervise/

– 18 –

https://github.com/anselmeamekoe/
https://github.com/unsupervise/
https://github.com/anselmeamekoe/
https://github.com/unsupervise/

Introduction

Additionally, we have proposed an open-source library implementing TabSRA, skorch-
tabsra3, which is the inherently interpretable model introduced in this thesis. This library
is enhanced with the Skorch package (Tietz et al. [12]) to facilitate its use for Data Scientists
and/or researchers already familiar with the sklearn library (Buitinck et al. [13]).

1.8 Notation

In this document, we will adhere to the notations listed in the Table 1.1.

Table 1.1: Notations

Symbol Meaning
x a multidimensional random variable defined over a domain X ⊂ Rp

y a unidimensional random variable defined over a domain Y
x = (x1, ..., xp) a realization of x
y a realization of y
{x1,x2, ...,xn} a sequence of n realizations of x
{y1, y2, ..., yn} a sequence of n realizations of y
ŷ an estimation of y
P(y) probability distribution of a random variable y
P(x, y) the joint probability distribution of y and x

P(y) the probability mass function P(y = y), y suppose discrete
P(y|x) the conditional distribution function of the target variable y knowing that x = x

P̂(y) an estimation of P(y)

3https://github.com/anselmeamekoe/pytabsra/

– 19 –

https://github.com/anselmeamekoe/pytabsra/
https://github.com/anselmeamekoe/pytabsra/
https://github.com/anselmeamekoe/pytabsra/

Chapter 2

State Of The Art

In this Chapter, we provide a comprehensive background on machine learning techniques
for classification tasks with a particular focus on the binary case. We present a review of
the state-of-the-art in learning with tabular data, interpretability in a static environment
encompassing the strengths and weaknesses of every approach. Subsequently, we present
the same analysis in a dynamic environment where the data distribution may change over
time. Finally, we highlight well-known works on the use of adaptive machine learning for
fraud detection.

2.1 Classification in Standard Machine Learning

The general purpose of theMachine Learning (ML) is extracting knowledge from data using
algorithms widely called models.
In the field of ML, classification tasks involve assigning an input (which is a realization
of a random vector x) to an output value y (of a response variable y) taking its values in
a finite set of categories or classes Y = {c1, ..., cK}. The case K = 2 is called binary
classification (e.g., the transaction is fraudulent or genuine, the email is spam or not), that
is, Y = {0, 1}. Sometimes, an example belonging to class 1 is referred to as positive (and
negative otherwise).

The classification problem involves learning a model called a classifier (or learner) h :
X −→ Y where X = (X1 × X2 × × Xp) is the domain of inputs or observations or
instances. In general X ⊂ Rp with p the number of characteristics, attributes/features, or
the dimension of the input space.
In classic ML, the model is trained using a finite number or sequence of instances supposed
independently and identically distributed (iid) and called training set:

Dtrain = {(xi, yi)}ni=1 ∈ (X × Y)n (2.1)

Once trained, the model h model can be used to make prediction or inference on a new
instance x:

ŷ = h(x)

21

Chapter 2

The success of the training process is usually measured using the error :

LDtrain
(h) =

1

n

n∑
i=1

l(h(xi), yi) (2.2)

with l the loss function which is typically the 0-1 loss for the binary classification task
defined by:

l(ŷ, y) = 1ŷ ̸=y =

{
1 if ŷ ̸= y
0 otherwise (2.3)

The quantityLDtrain
(h) is called empirical risk and its minimization over a predefined func-

tion spaceH is called Empirical Risk Minimization (ERM) (Shalev-Shwartz and Ben-David
[14]):

ĥ = argmin
h∈H

LDtrain
(h) (2.4)

In general, the success of the learning process is not measured using only the training error
but also using the error on an unseen set of observations usually referred to as test set. This
quantity computed on the test set is generally referred to as the generalization error and is
expected to represent an estimate of the performance of the learned model in real use (or
production setting).

Without losing generality, we will focus for the rest of this Chapter on the case of two
classes that illustrates well our problem of interest, which is fraud detection.

For many problems, it is convenient to not only predict the class given the input instance
but also to get the confidence of the model in predicting the class. In this sense, classifiers
are usually designed to estimate the posterior probability s = P(y = 1|x = x) in the case
of two classes. One famous of such models is Logistic Regression. The obtained score or the
probability s can be converted into the class label using a threshold function:

gtr(s) =

{
1 if s > tr
0 if s ≤ tr

(2.5)

The threshold is usually chosen to optimize a given evaluation metric or business metric,
typically using a test data sometimes referred to as backtest data. For some real-world use
cases, several thresholds can be used, resulting in several subclasses. The confidence score
obtained can also be used to rank instances.

For models that can not directly produce estimates of the posterior probability P (y =
1|x = x) (e.g., K-Nearest Neighbor classifier), the produced scores can be calibrated using
statistical techniques.
In the rest of this Chapter, we will refer to scoring classifier or simply classifier, a model that
can produce a score if there is no ambiguity.

2.1.1 Evaluation in classification

Classification models are usually evaluated based on the confusion matrix computed on a
set of observations, as illustrated by Table 2.1 for the binary classification case.

Well-known metrics that can be computed from the confusion matrix are:

– 22 –

State Of The Art

Table 2.1: Confusion Matrix. TP=True Positives, FP = False Positives, TN= True Negatives,
FN=False Negatives. n = TP +FP +TN+FN represents the total number of observations
in the evaluation set.

Actual class
1 0

Assigned
class

1 TP FP

0 FN TN

• Accuracy: Accuracy = TP+TN
n

.

• Precision: Precision = TP
TP+FP

.

• Recall: Recall = TP
TP+FN

. The recall is also usually called the True Positive Rate
(TPR) or Sensitivity.

• True Negative Rate: TNR = TN
FP+TN

. This also refer to as Specificity.

• False Positive Rate: FPR = FP
FP+TN

. FPR = 1− Specificity

• Fβ measures: Fβ =
1 + β2

β2

Precision×Recall
Precision+Recall

The accuracy measures how often a machine learning model correctly predicts the actual
class and is widely used as a base evaluation measure in classification. However, for imbal-
anced classification problems, the accuracy can be misleading. For example, for a problem
with 1000 instances where 99% (990) are from the class 0 (negative instances), a classifier
which always predicts 0 (no matter the input instance) will get a superior or almost perfect
accuracy (0.99) compared to another model that perfectly classified all positive examples
but misclassified 20 negative instances (0.98 of accuracy). However, TN examples and
TP examples may not have the same importance/cost in such class imbalanced situations.
To alleviate this problem, specific metrics accounting for the performance on the positive
instances such as Precision, Recall, or Fβ measures are usually used (the F1 being the
harmonic mean between the Precision and the Recall). The cost of correct and incorrect
classifications can also be used (in the evaluation) in situations where it is possible to pre-
define (specify) them (Elkan [15]).

For problems where estimating the confidence score or the posterior probability is im-
portant/provided, a threshold function (Equation 2.5) is used before computing the confu-
sion matrix or measures listed above. However, as highlighted previously, in many real-
world situations, setting this threshold may involve not only the model Developer or Data
Scientist’s abilities but also the intervention of business owners. In this situation, Data Sci-
entists may prefer using evaluation measures that do not rely too much on a predefined
threshold.
One of the widely used measures for such requirements is the Receiving Operating Char-
acteristic (ROC) (Fawcett [16]). As shown in Figure 2.1, in the ROC space, the TPR is

– 23 –

Chapter 2

Figure 2.1: ROC curve

Figure 2.2: PR curve

plotted versus the FPR for different thresholds (or equivalently the number of ranked in-
stances). In this space, (0.0, 1.0) represents a perfect achievable classification while (0.0,0.0)
and (1.0, 1.0) correspond respectively to setting the threshold such that the model always
assigns class 0 and class 1, respectively, regardless of the observations. The diagonal line
(i.e., TPR = FPR) represents the performance of a random guessing classifier referred to
as Baseline in Figure 2.1 and the classifier with the curve B is better than the one with the
curve A (the curve B dominates completely the curve A in the ROC space).

In the attempt to compare classifiers, it is more convenient to summarize the ROC curve
with a single scalar. The Area Under the Curve (AUC) is one of such scalars ranging from
0.5 (for a random guessing classifier) to 1 (a perfect classifier) in the ROC space.
Given a set of labels and assigned scores by a classifier, the AUCROC simply highlights the
probability of ranking a randomly chosen positive instance higher than a randomly cho-
sen negative example. The AUCROC is usually estimated using a trapezoidal rule or the U
statistic from Mann-Whitney U test (Fawcett [16]).

Another measure used to assess scoring classifiers is the Area Under the PR Curve
(AUCPR) which considers the Precision Recall (PR) curve instead of the ROC. In the PR
space, the Precision is plotted versus the Recall as shown in Figure 2.2. The AUCPR is
deemed to be more efficient for comparing classifiers than AUCROC for highly imbalanced
problems (Davis and Goadrich [17] and Saito and Rehmsmeier [18]).

The problem with the ROC curve is that in situations where the dataset is highly im-
balanced, an important change in the false positive rate FP may lead to a small change

– 24 –

State Of The Art

in False Positive Rate (FPR) due to the large number of True Negatives (TN). Therefore,
comparing in the ROC space may be less discriminatory, especially when the TN predic-
tions/instances have no special added value to themodeling process. On the contrary, when
using PR space, the Precision is computed helping to account for both True Positives re-
trieved (which probably have important value compared to True Negatives) as well as False
Positive examples. As a practical example, let’s consider an imbalance problemwith 100 ob-
servations of class 1 (positive examples) and 99,900 negative examples. Wewant to compare
two models A and B for a given threshold α:

• Model A predicts 100 observations to belonging to class 1 when 90 actually do

• Model B predicts 1000 observations to belonging to class 1 when 90 actually do

Hence the:

• RecallA(α) = TPRA(α) = TPRB(α) =
90

100
= 0.9

• FPRA(α) =
10

99900
= 0.0001; FPRB(α) =

910

99900
= 0.009

• PrecisionA(α) =
90

100
= 0.9; PrecisionB(α) =

90

1000
= 0.09

Using the ROC space, the Recall gap is 0 and the FPR gap is = 0.009-0.00001=0.0089. Us-
ing the PR space, the Precision gap is 0.9-0.009=0.81 and the Recall gap between is 0.
For this example, we can notice that the Precision (hence the PR space) is more discrimi-
natory between the models A and B than the FPR (the ROC space).

Regarding the estimation of the AUCPR, in contrast to the ROC space, the trapezoidal
method (the linear interpolation between points) can result in misleading or overly opti-
mistic estimates of performance (Davis and Goadrich [17] and Saito and Rehmsmeier [18]).
This is due to the fact that for a fixed Recall, the Precisionmay not be constant (for some
problems, the precision may continue to decrease as we increase the threshold even if the
recall remains the same). As a consequence, non-linear interpolation solutions are adopted
for PR (Saito and Rehmsmeier [18]) and one of the widely used resulting estimators is
Average Precision:

AP =
n∑
i=1

Precision(i).[Recall(i)−Recall(i− 1)] (2.6)

where
Precision(i) =

TPi
i

(2.7)

is the fraction representing the number of True Positives among the first i ranked instances
and Recall(i) is the corresponding recall.

In practice, both the AUCROC and AUCPR can be computed or used together whenever
possible, where the advantage of AUCROC is being insensitive to changes in class distri-
bution (for example, when the proportion of positive examples changes from the train to
test data or data sampling is used) and the one of AUCPR is being more discriminatory,
therefore useful for model selection in highly imbalanced situations.

– 25 –

Chapter 2

2.1.2 Classical Machine learning models

We consider a class of models h which, given the input data point x = (x1, ..., xp) ∈ Rp

can be formulated as

h(x) = σ−1(f(x)) (2.8)

where σ represents the link function (e.g., σ(µ) = log(µ
1−µ) for binary classification and

σ = Identity for regression tasks).

Linear Models

A Logistic Regression or Linear Regression (LR) is a transparent model obtained by a simple
linear combination of input features as follows:

f(x) = β0 + β · x
= β0 + β1x1 + ...+ βixi + ...+ βpxp

(2.9)

β = (β1, β2, ..., βp) is the regression coefficients vector and β0 is the intercept or bias term.
βi is a global importance measure of the i-th feature while βixi is the effect used in the
explanation of individual output. LRs have been used for a while as statistical models with
well-known open-source implementations such as Statsmodels (Seabold and Perktold [19])
for Python users and glm (Lüdecke et al. [20]) for R users. Another famous tool is Scikit-
learn (Pedregosa et al. [21]), the Python module that offers various optimization algorithms
and regularization means for fitting linear models in ML paradigms. Regularization meth-
ods such as LASSO (Tibshirani [22]) can be very useful in the presence of multicollinearity
situations that may impair the fitting of classic statistical LR models as well as their in-
terpretability. Recently, deep learning libraries such as Pytorch (Paszke et al. [23]) and
Tensorflow (Abadi et al. [24]) provide Linear or Dense layer options helping to optimize
linear models using gradient descent-like methods.
Due to its simplicity, a LR cannot efficiently model problems with non-linear effects (unless
the convenient non-linear term is identified and added to the model as a new feature) and
feature interactions.

Generalized Additive Models

The general formulation of a Generalized Additive Model (GAM) (Hastie and Tibshirani
[25]) is as follows:

f(x) = β0 +

p∑
i=1

fi(xi) (2.10)

where fi is a shape function that, given the i-th input feature xi produces the output
fi(xi) ∈ R. Analyzing the unidimensional shape functions can help to understand the
local and global behavior of GAMs. Linear models are a particular case of GAMs in which

– 26 –

State Of The Art

every shape function is linear, that is, fi(xi) = βixi.
Classically, GAMs were used as statistical models where typically spline functions (Wahba
[26]) are considered for fitting the shape functions. Recently, someML implementations are
proposed to ease the optimization of the shape functions of GAMs. One of such implemen-
tations is the Explainable Boosting Machine (EBM) (Nori et al. [27]), which is arguably one
of the most established implementations. EBM uses piecewise constant functions obtained
from Decision Trees (that use only one feature per tree) and a boosting mechanism to fit
the shape functions. Although the fact that GAMs can learn non-linear patterns, they are
inefficient in handling data with interactions. To alleviate this problem of interactions, Lou
et al. [28] proposed the use of pairwise interactions in the formulation of GAMs.

f(x) = β0 +

p∑
i=1

fi(xi) +
∑
i<j

fij(xi, xj) (2.11)

This latter version is sometimes referred to as Generalized Additive Models plus Interactions
(GA2Ms). In the EBM implementation ([27]), the maximum number of interaction terms fij
is controllable, helping to preserve the intelligible aspect of the overall model.

Adding pairwise terms generally raises a problem of effect identification, that is, should
the contribution/importance of a given feature be attributed to themain term or the interac-
tion terms? To solve this ambiguity, techniques such as interaction purification (Lengerich
et al. [29]), consisting of using the functional ANOVA to push interaction effects into main
effects whenever possible, or heredity constraints (Yang, Zhang, and Sudjianto [30]) are
typically used. The heredity constraints suggest that a pairwise interaction term can only
be included in the final model if at least one of its parent main effects is "important."
The principal difficulty of effect identificationwhen usingGAMs comes from the concurvity
problem (Ramsay, Burnett, and Krewski [31] and Siems et al. [32]). The concurvity refers
to the situation when the shape functions might be correlated, that is, there exist c0 ∈ R
and one-dimensional functions g1, ..., gp not all zero such that:

c0 +

p∑
i=1

gi(xi) ≈ 0

The multicollinearity is therefore a particular case of concurvity when gi(xi) = αixi. As
for linear models, the concurvity impairs seriously the interpretability of GAMs. To allevi-
ate this issue, recent works such Kovács [33] and Siems et al. [32] propose to use feature
selection or to penalize the correlation between shape functions during the training.

Due to their formulation, using GAMs with more than 2 orders of interactions can be
very tricky or difficult for humans to understand or interpret (for pairwise interactions, for
example, it is still possible to visualize 2-way or pairwise interactions heatmaps, but what
is doable for 3-way interactions? visualize interactions cubes? What about effects identifi-
cation?). However, for some problems, it might be convenient to model more than pairwise
interactions. As an alternative to GAMs, tree-based or attentionmechanism-basedmethods
can be used in such situations.

– 27 –

Chapter 2

Figure 2.3: Illustration of binary Decision Tree of depth 3 using two features x1, x2 to partition
the data space. The total number of leaf nodes is T = 4 (ranging from 1 to 4).

Decision Trees

A Decision Tree (DT) is a model that is obtained by partitioning the training data (space)
recursively, imitating a tree-like structure (i.e., if-else rules applied in a root-child node
fashion) such that similar instances (with respect to their target values) are grouped to-
gether. The splitting is generally stopped when it remains only one observation in a given
node or the termination criteria are met as shown by Figure 2.3. This terminal node is
referred to as a leaf node. DTs are generally interpretable by design and can produce trans-
parent decisions, especially when the depth of the tree is reasonable. Similar to LRs, the
Scikit-learn library offers a fast and optimized implementation of the Classification and Re-
gression Trees (CART) (Breiman [34]) which is one of the famous DTs.
Given the input instance x, the output value is:

h(x) = wq(x), q : Rp −→ T (2.12)

where q is the function that maps the input x to the corresponding leaf node index in T =
{1, 2, ..., T} with T being the total number of leaf nodes. w = (w1, w2, ..., wT) represents
the corresponding weights vector. Once the DT is fitted, the weight wt is estimated as
the proportion of training instances of class 1 falling into the leaf node t for classification
problems (and the average target value for regression problems). Contrary to LRs, DTs are
able to fit naturally some non-linear relations or interactions among features. However,
DTs may quickly overfit the train data and can be unstable to a small shift in the data
(especially the overly complex trees); therefore, pruning or regularization (for example, by
setting conditions on theminimal number of instances in the leaf nodes during the training)
is usually necessary for better generalization. These options are for instance available in the
Scikit-learn package (Pedregosa et al. [21]). In general, tree ensembles are used to improve
the generalization and the predictive performance over a single DT.

Decision Tree Ensemble

Model ensembling (or ensemble methods) consists in aggregating the decision or prediction
from different individual models (called base or weak learners) to obtain better predictive

– 28 –

State Of The Art

performance or expressiveness. In the decision tree ensemble, the base learner is a DT
model. In what follows, we list some well-known decision tree ensembles:

Random Forest. Random Forest (RF) (Breiman [35]) is one of the most popular decision
tree ensembles which fits a number of independent (parallel) DTs on various subsamples of
the dataset and uses aggregation (known as bagging or bootstrap aggregating) to improve
the predictive accuracy and control overfitting. Feature or column subsampling is also used
in Random Forest helping to empower the diversity among learned trees. Among the open
source implementations is the one provided by in Scikit-learn (Pedregosa et al. [21]). Given
the input instance x, the output value is:

h(x) =
1

M

M∑
m=1

hm(x) (2.13)

whereM is the total number of trees in the ensemble and hm(x) is the output of the mth

DT classifier as shown by the Equation (2.12).

XGBoost. In eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin [36]), DTs are
sequentially combined using a boosting mechanism, that is, the current DT regressor con-
sidered as weak learner is added to the ensemble to reduce the error (computed using the
gradient and hessian) done by the previous or the baseline classifier resulting in an overly
strong learner (with small bias) at the end of the training. XGBoost is one of the first Gradi-
ent Boosting Machines (GBM) that offers a scalable implementation with a regularization
possibility making it arguably the most used in real-life use cases and one of the leading
predictive performance state-of-the-art in tabular ML competitions. The final output of the
XGBoost model given the input x is:

f(x) =
M∑
m=1

fm(x) (2.14)

where the fm(x) ∈ R is the output or corresponding weight of themth DT regressor. Note
that for XGBoost, the final weight is converted to a score (for classification tasks) using a
Sigmoid function as shown by the Equation (2.8).
In general, a decision tree ensemble with an important number/size of learners requires
post hoc tools for explaining their decisions (they are not interpretable by design).

MultiLayer Perceptron

Also known as FeedForward Neural Network (FNN), MultiLayer Perceptrons (MLPs) are a
part of Neural Network (NN) models. Neurons of MLPs are fully connected as shown by
Figure 2.4 and are equipped with non-linear functions also referred to as activation func-
tions. MLPs are simply a sequence or composition of linear functions followed by non-linear
transformations.
That is, given the input x ∈ Rp, the final output is:

f(x) = Linear(MLPLayer(....MLPLayer(x))) (2.15)

– 29 –

Chapter 2

Figure 2.4: Illustration of two (2) hidden layers MLP of width six (6). The input layer contains
p = 5 neurons/weights representing the number of features. The output layer is made up of
one neuron meaning that the final output is a real number.

whereMLPLayer(x) = Activation(Linear(x)),Linear is a linear transformation (Equa-
tion 2.9) and Activation is the activation function (e.g., ReLU(x) = max{0,x}).

Thanks to its differentiable property, MLPs are usually optimized using gradient back-
propagation (Rumelhart, Hinton, and Williams [37]). Sometimes weight decay (or L2 pe-
nalization) is used for regularization during the training step, and dropout (Srivastava et
al. [38]) is used to empower diversity among neurons. Numerical discretization (Gorishniy,
Rubachev, and Babenko [39]) can also be used to ease the modeling of long tail distributions
with MLPs.

2.1.3 Attention mechanism and tabular data

Attention (for humans) is a cognitive capacity or function to selectively concentrate when
and where needed on a specific part of available whole information as highlighted in the
review (Niu, Zhong, and Yu [40]). This biological capacity inspired the world of ML and
impacted significantly the Deep Learning field by giving birth to the so-called attention
mechanism. The success in Machine Translation of the self-attention implementation used
in the Transformer paper (Vaswani et al. [41]) motivates several researchers in using it for
tabular or heterogeneous data (Huang et al. [42], Gorishniy et al. [43], and Somepalli et al.
[44]) to compete with tree ensemble models.

In what follows, we will use the machine translation task to provide a general back-
ground on the attention mechanism.

– 30 –

State Of The Art

Given the input sequence S of symbol representations [s1, s2,, sp], the goal of ma-
chine translation is to generate (one element at a time using a decoder) the output sequence
U = [u1,u2, ...,um] typically using an intermediate continuous representation of S noted
as [z1, z2,, zp] and obtained from an encoder (Vaswani et al. [41]).
The sequence U can be further converted into a natural language using predefined vocab-
ulary.

For example, S can be the representation of the sentence "I love you" using aOHE in pre-
defined vocabulary or corpus of d worlds or tokens, i.e., sI ∈ Rd, slove ∈ Rd and syou ∈ Rd.
Let’s assume that the translation task is to convert this sentence to French.

Table 2.2: Example of the attention matrix for machine translation

I love you
Je 0.94 0.04 0.02
t’ 0.03 0.05 0.92

aime 0.06 0.86 0.08

An example of attention visualization is proposed in the Table 2.2. We can see from
this example that the model generates the word "Je" when paying attention to the word
"I". Similarly, the model focuses more on "you" which is the third input word, to produce
"t’" (which is actually the second in the translated sentence). This example shows that the
attention mechanism can help the translation model or machine to see beyond the simple
order in the input sequence.

In machine translation, the attention mechanism can be between the encoder and de-
coder, i.e., between the input sequence (or its continuous representations) and the output
sequence, as illustrated with Table 2.2. It can also be used to learn continuous represen-
tations in both encoders and decoders (Vaswani et al. [41]). The attention matrix is also
referred to as the alignment matrix (Bahdanau [45]).

Beyond machine translation or language processing, the attention mechanismwas used
successfully in computer vision (Dosovitskiy [46]). This is done by first splitting the image
into a finite number of patches and considering each patch as a word or token analogously
to what is done in language processing.

On the Self-Attention. With further details, the encoder-decoder example illustrated
above works as follows: the decoder sends a query and obtains a response/result also called
context representation (Bahdanau [45]) which is the weighted sum of values (represen-
tations obtained from the encoder). The weights are typically obtained by computing a
similarity or alignment between the query and memory keys which are also provided by
the encoder.

The query, keys, values terminology can be explained using the analogy of information
retrieval in a dictionary data typically disposed in key : value structure.
For example, on a supermarket machine, a user searches the word "tomato" to get its price

– 31 –

Chapter 2

(a) Hard retrieval (b) Soft retrieval

Figure 2.5: Illustrative analogy between the query, key, value terminology in attention mech-
anism and information retrieval in dictionaries.

in (euros) as shown in Figure 2.5.
With the hard retrieval (Figure 2.5a), 3.50 is returned directly as the value corresponding
to title or key (noted k2) that matches exactly the user’s search or query (referred to as
q1). For the situation where there is no title that matches exactly the query, the returned
result or value can be proportional to the similarity between query and all known titles
(in memory). With this retrieval approach called soft (Figure 2.5b), the returned result is
0.5 × 3.50 + 0.5 × 3.45 = 3.475 where 0.5 corresponds to the match or similarity score
between q1 and k2, q1 and kp respectively.
In both cases, the result can be formulated as follows :

c1 =

p∑
i=1

a(q1, ki)× vi (2.16)

where a(., .) is the function that helps to compare the user’s request to the titles available
in memory. a(., .) produces a one hot vector for hard retrieval and a real-valued but nor-
malized vector for the soft retrieval.
Generally speaking, the value can be a vector (not only a real number) representing a word,
text, image, video... Also, people may want to produce results or representation for several
queries simultaneously. In this situation, the vectorization can be very useful.

The particular case where both the queries, keys, and values are obtained from the same
input (e.g., sentence, image) is known as Self-Attention (Vaswani et al. [41]).
The self-attention was found to be very useful for learning continuous representations over
input sequences without suffering too much from the problem of long-range dependencies.
For example, the self-Attention can be used for the vectorial representation of each word
in the sentence "I love you" which accounts for the similarity between these words or the
semantic.

Technically, given the sequence S = [s1, s2,, sp] ∈ Rp×d i.e., si = (s1i , s
2
i , ..., s

d
i), a

matrix of queries (Q ∈ Rp×dk), keys (K ∈ Rp×dk) and values (V ∈ Rp×dv) are produced

– 32 –

State Of The Art

Figure 2.6: Illustration of the Multi-Head Attention with H = 2 heads.

typically using linear projection functions. These matrices are thereafter used to compute
the attention matrix and context representation as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2.17)

whereA = softmax
(
QKT
√
dk

)
∈ Rp×p is the attentionmatrix andC = Attention(Q,K, V) ∈

R
p×dv is the context representation. The dot product between the Q and K is scaled by√
dk to reduce the influence of larger values of the projection dimension dk. Furthermore,

a softmax function is applied to convert the attention weights over each query into prob-
abilities distribution (that sum to one). This attention computation is referred to as Scaled
Dot-Product Attention (Vaswani et al. [41]).

Multi-Head Attention. Instead of using a single attention computation, the authors in
[41] proposed the use of H parallel computation of the attention mechanism of Equation
(2.17) as illustrated by Figure 2.6. Each single computation of the context matrix is called
head and the whole computation mechanism is called Multi-Head Attention:

MHA(S,H) = Concat(head1(S), ..., headH(S))W
O (2.18)

where headh(S) = Attention(Qh, Kh, Vh) ∈ R
p×dv is the h−th context representation

obtained from the input sequence S andWO ∈ RHdv×d is typically a linear matrix used to
project the new context matrix into the initial dimension i.e., Rp×d.
Concat represents here the concatenation of H matrix of the same shape.
In practice, using several or H attention heads doesn’t increase the computation cost as
dk, dv are chosen such that dk = dv = d//H (when using a single head, dk = d). Instead,
the use of the Multi-Head Attention eases the parallelization of computations.

Transformer for tabular data. The Multi-Head Attention initially proposed for lan-
guage processing was seriously investigated for tabular data. In this attempt, given an

– 33 –

Chapter 2

Figure 2.7: Illustration of a standard process for column embedding or tokenization within
the Transformer architecture designed for tabular data. The raw input x generally consists of
both numerical and categorical features. The numerical representation S is outputted by the
column embedding layer. The transformation is usually performed column-wise.

input observation x = (x1, ..., xp) ∈ Rp, each component xi is considered as a word or
token and therefore embedded to a d dimensional space similarly to text as in Vaswani
et al. [41] (An illustration is shown in Figure 2.7).

The obtained embedding S of shape Rp×d is fed to the Multi-Head Attention layer for
learning a contextual representation, as shown by Figure 2.8.
Aside from the MHA sublayer, the Transformer block used in Vaswani et al. [41], Huang
et al. [42], Gorishniy et al. [43], and Somepalli et al. [44] contains also a Position-wise
FeedForward Neural Network (FNN) sublayer and, normalization and residual connec-
tions are applied to the output of each sublayer before the next sublayer. That is, given the
embedding S of the initial input x, the input of the next FNN sublayer is:

Z = LayerNorm(S +MHA(S,H)) (2.19)

In general, several Transformer blocks (typically N = 6 blocks) are used sequentially to
learn high level concepts. The final context representation matrix CT ∈ Rd×p (Figure 2.8)
outputted by the Transformer blocks is flattened into one dimensional vector and fed to a
final Model or classifier (typically a MLP) producing the final output ŷ.
Sometimes, instead of the flattened version of the context matrix C , a one-dimensional
slice (vector) corresponding to a CLS or classification token (appended to the output of the
column embedding, i.e., S) is used as input for the final classifier as in FT-Transformer
(Gorishniy et al. [43]).

Regarding the column embedding (Figure 2.7,2.8), the simplest way to encode a cate-
gorical feature is to use a One Hot Encoding (OHE). However, in TabTransformer, SAINT,
FT-Transformer for example, a more sophisticated embedding is used consisting of project-
ing the previously obtained One Hot Encoding (OHE) vector into a continuous vector of d

– 34 –

State Of The Art

Figure 2.8: Generic Transformer architecture for tabular data

elements typically using a linear layer (such implementation is available on Pytorch1).
For FT-Transformer, numerical features are also embedded into d dimensional vector using
a linear layer. In SAINT, a ReLU is used in addition to a linear layer for the embedding of
numerical features.

Although treating categorical features as tokens is intuitive (OHE is typically used to
transform one-dimensional features into d binary features in traditional ML), it becomes
less straightforward when applied to continuous features within tabular data or environ-
ments. Consequently, first Transformer implementations for tabular data such as Huang
et al. [42] used feature embedding and the transformer block for only categorical features.
However, using the tokenization and learning the context representation of numerical (con-
tinuous) features in addition to categorical ones tends to improve the expressiveness of the
overall model (Somepalli et al. [44] and Gorishniy et al. [43]) even if at the cost of an in-
crease in the number of learnable parameters.

While the attention matrix within the encoder-decoder architecture (Vaswani et al. [41]
and Bahdanau [45]), as depicted in Table 2.2, can be utilized for interpretability in machine
translation and vision tasks (Dosovitskiy [46]), its application for tabular data remains con-

1https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

– 35 –

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

Chapter 2

siderably less direct. That is, for tabular data, what matters is to understand potential inter-
actions and to identify important input features (with respect to target prediction/feature)
which are usually one-dimensional real numbers. Unfortunately, visualizing an attention
matrix of shape (p, p) or the context representation CT ∈ Rd×p, p being the number of
features, is not enough or directly informative as an explanation measure especially when
the number of Transformer blocks (N) is greater than one (1).

In addition, the use of attention matrix or weights as an explanation measure was ques-
tioned even in language processing and vision tasks since they might be uncorrelated to
well-known feature importance measures such as gradient-based, saliency measures (Jain
and Wallace [47] and Bastings and Filippova [48]). Overall, the use of classical atten-
tion weights for explanation purposes requires a clear definition of what an explanation
is (Wiegreffe and Pinter [49] and Bastings and Filippova [48]).

2.1.4 Predictive performance based state-of-the-art

The debate on the best performing between decision tree ensemble such as Random For-
est (Breiman [35]), XGBoost (Chen and Guestrin [36]), LightGBM (Ke et al. [50]), CatBoost
(Prokhorenkova et al. [51]) and NNs such as Trompt (Chen et al. [52]), FT-Transformer
(Gorishniy et al. [43]) or SAINT (Somepalli et al. [44]), on tabular data is not settled. How-
ever, certain meta-features guide the choice of one over the other depending on the problem
(Grinsztajn, Oyallon, andVaroquaux [53], Borisov et al. [54], Gorishniy et al. [43], andMcEl-
fresh et al. [55]). Regarding NNs, they are usually differentiable, making them easy to use,
for example in multimodal settings (e.g., encoding tabular information with text, images,
etc.), multitask settings (Agarwal et al. [56]) or pretraining and finetuning context (Arik and
Pfister [57], Huang et al. [42], and Somepalli et al. [44]). Tree-based models, on the other
hand, are capable of applying abrupt thresholding to features, making them more suitable
for handling skewed feature distributions and other forms of dataset irregularities (Grin-
sztajn, Oyallon, and Varoquaux [53] and McElfresh et al. [55]). Moreover, in contrast to
NNs, which generally require a long training time owing to the gradient back-propagation
mechanism, decision tree based models are known to be relatively fast to train.

Instead of contrasting NNs and decision tree ensembles, authors such Shwartz-Ziv and
Armon [58] suggest combining the strengths of these two classes of models (using, for
example, weighting schema or blending). Such a combination helps to unify the diverse
concepts learned by models and is usually the winning option in predictive performance-
based data challenges or competitions.

2.1.5 On the Interpretability and Trustworthy question

Predictive performance-based state-of-the-art models are typically flexible enough to ex-
tract complex patterns or associations (correlations) between features.
Unfortunately, even with good Accuracy, AUCPR, AUCROC, it might still be difficult for
humans to trust the relevancy of learned correlations, the so-called trustworthy question
which involves asking, for example, if the model is fair (avoids discrimination against cer-
tain minority groups) and if it is stable. The eXplainable Artificial Intelligence (XAI) is an

– 36 –

State Of The Art

Figure 2.9: Illustration of SHAP feature attribution. Left : A backbox model outputted a score
of 0.4 to an instance having Age=65, Sex=F, BP=180, BMI=40. Right : SHAP is used to explain
this decision of the model. According to SHAP, starting from the base score/rate ϕ0 = 0.1,
Age=65 pushes it by+0.4while Sex=F has a negative contribution of−0.3. The two remaining
features have each a contribution of +0.1

emerging field with the goal to bring back trustworthiness in the use of Artificial Intelli-
gence (AI) in decision-making by obtaining human-interpretable models (Ali et al. [59]).
The XAI can be categorized into two classes: (i) use post hoc interpretability methods/tools
to explain or approximate the decision of full-complexity black box models (deep NNs, de-
cision tree ensemble) at least locally; (ii) use directly Inherently Interpretable (II).

Post hoc explanation of full-complexity models: focus on SHAP

The post hoc explanation of full-complexity models can be organized into two categories:
feature selection and feature attribution (Huang and Marques-Silva [60]). Feature selec-
tion methods involve identifying a set (or subset) of features relevant for target prediction
among which we have Anchors (Ribeiro, Singh, and Guestrin [61]) and Logic-based abduc-
tion (Marques-Silva and Ignatiev [62]). Feature attribution methods remain the most used
eXplainable AI (XAI) techniques and involve assigning relative importance to each input
feature. SHapley Additive exPlanations (SHAP) (Lundberg and Lee [7]) is a well-known
unifying framework for feature attribution, based on the Shapley values.

Given the input x = (x1, ..., xp) ∈ Rp, P = {1,, p} the set of all features, the SHAP2
feature attribution of the i−th feature is:

ϕi =
∑

E⊆P\{i}

|E|!(|P | − |E| − 1)!

|P |!
[fE∪{i}(xE∪{i})− fE(xE)] (2.20)

where xE is the restriction (values) of the input features in E. fE∪{i} and fE(xE) are two
distinct models trained respectively with/without the i−th feature. One interesting prop-
erty of SHAP is additivity; that is, the marginal contribution of each feature sums to the
output of the model as illustrated with the Figure 2.9.

2https://shap.readthedocs.io/en/latest/

– 37 –

 https://shap.readthedocs.io/en/latest/

Chapter 2

That is:

f(x)− ϕ0 = ϕ1 + ϕ2 + ...+ ϕp (2.21)

where ϕ0 is a constant baseline value.
In practical situations, it is infeasible to train amodel for all possible subsetsE ⊆ P \{i};

therefore, to compute the exact SHAP value. As a result, an approximation of this quantity
is usually estimated. Such an approximation is based on simulating the absence of fea-
tures, a process that, depending on the nature of the data (correlation, interactions between
features) and the underlying model, can result in biased approximation or huge computa-
tional costs (Chen et al. [63]).

To alleviate this problem, model-specific SHAP has been developed, among which the
well-known TreeSHAP solution (Lundberg et al. [64]) was designed for decision tree-based
models. However, even the exact SHAP computation was found misleading, for example,
in abductive explanations (Huang and Marques-Silva [60]), and non-additive learned func-
tions (Kumar et al. [10]). Overall, the question of the reliability of post hoc explanations for
instance SHAP with respect to the underlying model remains in the literature (Kumar et al.
[10], Huang and Marques-Silva [60], Amoukou, Salaün, and Brunel [9], and Ali et al. [59]).

In general, practitioners are not aware of these aspects of the post hoc interpretability
tools (probably due to the absence of ground truth explanations for real-world problems),
resulting in wrong explanations or promises to the end user. It is therefore worth noting to
recall that post hoc methods are, in general, heuristics or approximations of the underlying
model’s decision-making (which is also an approximation of a true phenomenon) and the
expectation from them should be what else can the model tell me? as stated by Lipton [65].

Inherently interpretable solutions

Although the term “inherently interpretable" may seem more general or vague, an inher-
ently interpretable model is not one whose explanation derives from a heuristic (e.g., at-
tention weight aggregation across several layers or heads, SHAP attribution...) but from an
explicit hypothesis and/or formulation resulting in transparent (white-box or glass-box) or
understandable (to humans) model decision making (Ali et al. [59]). A classical example of
such models is a statistical model in which the data are assumed to have some properties
(e.g., for linear models, the features should be independent, have a Gaussian distribution,
and have a linear relation with the target feature). In modern machine learning based in-
herently interpretable models, instead of making assumptions about the distribution of data
that are not necessarily verified, some intelligible constraints are put in the model formu-
lations resulting in partially transparent decision making. These models are sometimes
referred to as gray-box models and are expected to provide a good trade-off between the
interpretability and the modeling expressiveness (Ali et al. [59]).

Among these models, we mention Neural Additive Models (NAMs) (Agarwal et al. [56])
which present a neural implementation of the classic GAMs. NODE-G2AM (Chang, Caru-
ana, and Goldenberg [66]) and GAMI-Net (Yang, Zhang, and Sudjianto [30]) improve NAMs
by considering pairwise interactions among the features. Another well-known example is
the EBM (Section 2.1.2).

To the best of our knowledge, it is difficult to handle higher-order interactions using

– 38 –

State Of The Art

GAMs based solutions. To alleviate this problem, we propose TabSRAs (Section 3.3), an
attention-based solution that does not require an interaction identification step.

It is important to point out that EBM can capture abrupt changes. The same flexibil-
ity is possible for NAMs (using ExU activation) or NODE-G2AM by imitating the discrete
thresholding of decision trees (Popov, Morozov, and Babenko [67]). Although this property
can help increase the expressiveness or help detect bias in data (Chen et al. [68]), it may
result in discontinuities that are sometimes difficult to justify. That is, similar explanations
are expected for similar input data, the so-called stability or robustness property (Alvarez-
Melis and Jaakkola [69]). With TabSRAs, the stability can be easily controlled using the
range of attention coefficients.

2.1.6 On Imbalanced data classification

UsingML for imbalanced data classification is a challenging task as several theoretical train-
ing properties or guarantees (which typically consist in maximizing the accuracy or min-
imizing the error rate as highlighted with Equation 2.1, 2.3) are not obtained under such
conditions. Even algorithm evaluation is affected as explained in Section 2.1.1.

Techniques used to alleviate the impact of class imbalance (during the model learning)
are generally categorized in data level approaches, algorithms level approaches or hybrid ap-
proaches (Chen et al. [70], Vuttipittayamongkol, Elyan, and Petrovski [5], and Dal Pozzolo
[1]).

Data level approaches

These approaches are used to reduce the bias in class distribution or rebalance the classes
using undersampling (reducing the proportion of negative instances) and/or oversampling
(increasing the proportion of positive instances in the data distribution). The simplest way
to achieve this is to use random sampling.

Among the well-established data rebalancing methods, we note Synthetic Minority
Oversampling TEchnique (SMOTE) (Chawla et al. [71]), which consists in using linear in-
terpolation to create new synthetic positive examples. Several variants of SMOTE such as
Borderline-SMOTE (Han, Wang, and Mao [72]), DBSMOTE (Bunkhumpornpat, Sinapirom-
saran, and Lursinsap [73]), GSMOTE (Douzas and Bacao [74]) were proposed to improve the
classic SMOTE using, for instance, geometric or density information. Adaptive Synthetic
(ADASYN) is another well-known oversampling technique that exploits the minority class
density.

Regarding the undersampling, the most established methods are based on finding Near-
est Neighbors of observations. Among such techniques, we cite the Condensed Nearest
Neighbor (CNN) (Hart [75]), Edited Nearest Neighbor (ENN) (Wilson [76]) that suggest
deleting from the training data negative instances that have different labels from two out
of three of their nearest neighbors. In the same sense, Tomek [77] proposes to remove
Tomek’s link negative instances. Tomek’s link exists when two instances from different
classes are closest neighbors to each other. A practical implementation of all listed above

– 39 –

Chapter 2

(a) Initial distribution (b) Undersampled (c) Oversampled

Figure 2.10: Illustration of the resampling. Figure 2.10a shows the initial data distribution,
which is imbalanced. In 2.10b, random undersampling is used to reduce some negative in-
stances, resulting in an equal class representation. Oversampling is illustrated with 2.10c.
Instead of creating new identical copies of some positive instances as done when using ran-
dom oversampling, new synthetic positive instances are generated (in red) as typically done in
SMOTE.

techniques is available on the imbalanced-learn3.
Although these sampling techniques can help to reduce the bias in the data distribution,

they also have drawbacks. Oversampling methods usually increase the training computa-
tional cost (when producing new positive instances), the potential of overfitting (by biasing
the model decision toward the new minority examples that may not be relevant in produc-
tion or test time or that are noise) as highlighted in (Chen et al. [70]).

Undersampling techniques typically have the advantage of reducing the computational
cost (by reducing the training data size) but could lead to information loss, especially with
respect to the majority class (Vuttipittayamongkol, Elyan, and Petrovski [5]).

Algorithms level approaches

In this category, the used approach depends intrinsically on the type of algorithm. For
decision trees, for example, Cieslak and Chawla [78] used the Hellinger Distance (HD)
(which is a categorical and skew insensitive distance) as splitting criteria in the DT instead
of the Information Gain. Another technique consists in modifying the misclassification cost
in order to favor the minority class, the so-called cost sensitive learning (Elkan [15]).

Hybrid approaches

These approaches are usually used with model ensembles, where the sampled version of
the initial training data is given to each base learner. Some examples such SMOTE Bag-
ging is focused on the diversity of the ensemble. In EasyEnsemble (Liu, Wu, and Zhou

3https://imbalanced-learn.org/stable/under_sampling.html

– 40 –

https://imbalanced-learn.org/stable/under_sampling.html
https://imbalanced-learn.org/stable/under_sampling.html

State Of The Art

[79]), a boosting model typically AdaBoost (Freund, Schapire, and Abe [80]) is built on a
balanced subsample of initial training data helping to learn diverse aspects of the majority
class (therefore to reduce the information loss risk that may occur with the classic under-
sampling).

Although several authors emphasized the challenge of class imbalance for classification
tasks, others such as Japkowicz and Stephen [81], Garcı–a, Mollineda, and Sánchez [82],
Stefanowski [83], and Dal Pozzolo et al. [84] demonstrated that class overlap situations can
add more complexity to this class imbalance challenge.

Class overlap and imbalance in classifcation

Class overlap refers to the situation where observations from different classes share a com-
mon region in the data space (Vuttipittayamongkol, Elyan, and Petrovski [5]). Works such
as Garcı–a, Mollineda, and Sánchez [82], Stefanowski [83], and Santos et al. [85] pointed out
that class overlap has a more harmful impact on the classifier’s performance than class im-
balance. That is, when there is no class overlap (Vuttipittayamongkol, Elyan, and Petrovski
[5]) or classes are linearly separable (Batista, Prati, and Monard [86]), standard algorithms,
even a simple linear model, can be used for imbalanced data classification regardless of
the imbalance degree. Moreover, Vuttipittayamongkol, Elyan, and Petrovski [5] demon-
strated empirically that the (negative) effect of the class imbalance on the Random Forest
(RF) classifier’s performance depends on the class overlap as well as the number of positive
observations in the data.
Therefore, with sufficient training examples, flexible and non-linear classifiers such as tree-
based ensembles or NNs are expected to provide a good performance in highly imbalanced
and overlapping settings. In addition, using overlap-based sampling techniques, as sug-
gested by Vuttipittayamongkol, Elyan, and Petrovski [5] may help to improve the perfor-
mance whenever it is computationally feasible.

2.2 Classification in dynamic Environments

In standard ML, the test/production and train data are assumed to be generated by the
same process. However, in practice, the test data may shift for the train data, a situation
usually referred to as drift (Figure 2.11). In general, the changes in data are observed over
time, when typically the production data may arrive continuously and should be processed
conveniently. This situation is sometimes called evolving environments.

2.2.1 Concept drift and Monitoring in Evolving Environments

In ML, a concept refers to a rule that can be deduced or inferred from observed data (from a
practical point of view) using a model or, more generally, the true rule or law under the data
generating process. In supervised classification, the concept is usually used to highlight

– 41 –

Chapter 2

(a) Initial concept (b) Virtual drift (c) Concept drift

Figure 2.11: The Figure 2.11a shows an initial observed concept Pt0(x, y). Two models are
used to estimate decision boundaries Pt0(y|x) where the red one is a MLP like model and the
background is DT like partition. In the Figure 2.11b there is a virtual drift, that is, Pt0(x)
changes but doesn’t affect the learned decision boundaries. Figure 2.11c, Pt0(x) changes re-
quiring the adaptation of the red boundary: this is a concept drift. However, this change doesn’t
affect the tree-like learn model.

a link between a set of predictors (or independent features) and a target (or dependent)
variable.

There exists a concept drift (Gama et al. [87]) between two time points t0 and t1 if:

∃x,Pt0(x, y) ̸= Pt1(x, y) (2.22)

where Pt0(x, y) is the joint probability distribution (between the feature vector and the
target variable) at the time t0. It is important to point out that in practice, this definition
depends on the observed or selected samples and not the underlying data generating pro-
cess as highlighted in Hinder, Vaquet, and Hammer [4].

Using the Bayes rule, the joint probability distribution can be decomposed as follows:

Pt0(x, y) = Pt0(y|x)Pt0(x) = Pt0(x|y)Pt0(y) (2.23)

The Equation (2.23) shows that the change in the joint probability distribution can come
from (1) a change in Pt0(y|x), (2) a change in Pt0(x), (3) a change in Pt0(x|y), (4) a change
in Pt0(y) or some combinations of the previous.

In supervised classification, the changes that affect the predictive performance or at
least the decision boundary are, in general, of interest and require adaptation:

• Pt0(y|x) ̸= Pt1(y|x). This drift implies a change in the decision boundary and poten-
tially the performance of a learned ML model. In the literature (Žliobaite [88], Gama
et al. [2], Lu et al. [3], and Hinder, Vaquet, and Hammer [4]), this drift is refereed to as
real drift, concept shift or simply concept drift. The real drift can also be accompanied
by a change in Pt0(x).

– 42 –

State Of The Art

• Pt0(x) ̸= Pt1(x) and Pt0(y|x) = Pt1(y|x). This change in called virtual shift, data
shift, input shift or feature shift.

The change that may occur in the observed data distributionwith respect to one concept
can be sudden/abrupt (by switching from one concept to another within a short time), in-
cremental (consisting of many intermediate concepts before converging to a new relatively
stable concept), gradual (a new concept gradually replaces an old one over time) (Gama
et al. [2] and Lu et al. [3]). Moreover, all known concepts can also reoccur after some time
of absence.

It is important to point out that observed data in classification, for example, can exhibit
several sub-concepts (e.g., a conjunction of several decision rules can result in a positive la-
bel) and each concept can be subject to one of the listed types of drift, resulting potentially
in multiple drifts in one dataset (Giobergia et al. [89]).

The use of the ML in drifting environments usually follows three steps (Lu et al. [3]):
(1) drift detection for checking whether drift occurs or not; (2) drift understanding to under-
stand instance when (the time), how (the severity) and where (the region affected) the drift
occurs; (3) drift adaptation.

Drift detection

Drift detection refers to techniques or algorithms called drift detector used to checkwhether
a drift occurs at a particular time point or interval (equivalently between two data win-
dows). These drift detectors usually raise alerts to inform a system or humans of changes
in monitoring settings.
The drift detection can be split into four stages (Lu et al. [3] and Hinder, Vaquet, and Ham-
mer [90]):

1. Data acquisition/retrieval/selection. This step corresponds to splitting the data streams
into old (reference) window and newwindow (of recent observations). Depending on
the goal behind the drift detection, the referencewindow can be fixed (for example the
training set of a static algorithm), sliding (e.g., data collected in the last two months),
growing (e.g., the fixed reference data is completed at each timestamp with identified
non-drifted new samples).

2. Computing statistics/descriptors. For example, the mean (or cumulative mean), stan-
dard deviation are computed to summarize the distribution. Sometimes, dimension
reduction or feature embedding techniques (using kernels) are used in this step (Ra-
banser, Günnemann, and Lipton [91]).

3. Computing dissimilarity. Distancemeasures suchLp, HellingerDistance (HD), Jensen-
Shannon, Kullback-Leibler divergence are computed tomeasure dissimilarity between
the descriptors of the old and the new distribution. Under some assumptions, the dis-
similarity may have a statistical property, and typically, an important dissimilarity
value is a synonym of drift.

4. Normalization. This step is in general optional but may be necessary. For example,
the p-value must be corrected or normalized in multiple test situations.

– 43 –

Chapter 2

Depending on the used data, descriptors, dissimilarity measure, the drift detection methods
can be further categorized in performance or error based, data distribution based or multiple
hypothesis based drift detection (Lu et al. [3] and Bayram, Ahmed, and Kassler [92]).
Error based drift detector assumes the label availability and a significant change in the
model performance typically in the 0-1 loss (Equation 2.3) is a synonym of drift. Among
such methods we note Drift Detection Method (DDM) (Gama et al. [93]) and its variants
EDDM (Baena-Garcıa et al. [94]), HDDM (Frias-Blanco et al. [95]). Another well-known of
such techniques is ADaptive WINdowing (ADWIN) (Bifet and Gavalda [96]).

Although error-based methods remain the most investigated in the literature and the
building block of several adaptive algorithms (Gomes et al. [97], Bifet, Holmes, and Pfahringer
[98], Domingos and Hulten [99], and Bifet and Gavalda [96]), it has been shown recently
that the correlation between the model loss and drift is invalid (Hinder et al. [100]). In
addition, these methods may fail in detecting drift affecting subgroups of observations as
shown empirically by Giobergia et al. [89].

Data distribution based methods are generally focused on the drift in the input data,
that is Pt0(x). These methods may be computationally more expensive than error based
methods, especially for high dimension feature situations. Recent approaches in this cate-
gory are based on building virtual binary classifier where observations are labeled 0 in the
old (historical) window, and 1 in the new window. A discriminatory power significantly
greater than that of a random classifier is a synonym of a data drift (Hinder, Vaquet, and
Hammer [90]). It is important to point out that a change in input data may not imply a de-
crease in model performance. Inversely, some real drifts might occur in Pt0(y|x) affecting
potentially the model’s performance but not detectable using only data distribution based
methods as highlighted by Žliobaite [88].

Multiple hypothesis techniques are based on two previous but use multiple hypothe-
ses testing in parallel or hierarchically for the drift detection. One of such methods is the
parallel Linear Four Rates (LFR) (Wang and Abraham [101]) and its hierarchical variant (Yu
and Abraham [102]) which consist in monitoring the True Positive, False Positive, True
Negative, False Negative rates (Table 2.1).

Recently, the change in the feature attributions provided by the model or the post hoc
interpretability tools is used for drift detection purposes Haug et al. [103] andMougan et al.
[104]. Using feature attributions (instead of input data) for drift detection can help account
for dependencies among features learned by the model and avoid triggering alerts that oc-
cur in features that are informative for the models. However, the attribution-based drift
detection assumes that the explanations obtained using feature attributions are trustwor-
thy, even the ones coming from post hoc tools.

Overall, as highlighted by Hu, Kantardzic, and Sethi [105], there is no free lunch in drift
detection; there is no universal best drift detector able to detect all types of drift, even the
one using model’s error Hinder et al. [100].

Drift understanding

The when question in drift understanding makes sense when data streams are handled and
monitored using time information. It involves identifying the time point or the time inter-
val where the drift occurs.

– 44 –

State Of The Art

Regarding the where question, it helps to know or identify the region in the feature
(data) space affected by the drift. This process is sometimes referred to as drift localization
(Hinder, Vaquet, and Hammer [90]) and is very helpful when the drift doesn’t affect all the
data but some subgroups.

The evaluation of the severity of the drift (the how question) helps to judge the need
for adaptation after a drift. As explained in Lu et al. [3], the quantification of the severity
of the drift is less straightforward with error-based methods, as the monitored error might
not directly be correlated to the concept drift (Hinder et al. [100]).
The drift understanding is useful for convenient and trustful adaptation of the learning
models in evolving environments. However, this topic is still less explored in the literature,
arguably due to the fact that state-of-the-art algorithms in learning with data streams are
auto-adaptable or instance incremental (Gomes et al. [97], Bifet, Holmes, and Pfahringer
[98], Domingos and Hulten [99], Bifet and Gavalda [96], and Gunasekara et al. [106]),
and don’t necessarily need to explain their numerous detected drifts or changes to human
users/operators.

Drift adaptation

Approaches used to adapt learning models to distribution changes can be categorized into
active and passive adaptation (Bayram, Ahmed, and Kassler [92] and Dal Pozzolo [1]).

The active adaptation, also called informed adaptation, refers to the situation where
the model adaptation is preceded by thorough drift detection. This supposes that the drift
detection is trustworthy. With the passive adaptation, also called blind adaptation, the
model is constantly updated as soon as new supervised samples (labels) become available,
regardless of the fact that a drift is detected or not.

The model adaptation can consist in retraining a new model (this is the case when
the drift affects the global data distribution) or retraining partially or adjusting an existing
model.

2.2.2 Performance evaluation strategy in dynamic environments

The most common strategy used to assess the predictive performance in dynamic environ-
ments is the prequential evaluation, also known as the test-then-train strategy. In this
approach, each observation is first used for testing (updating the evaluation metric) and
then for updating the learning model. In general, prequential evaluation is often utilized
alongside a forgetting mechanism (Gama, Sebastiao, and Rodrigues [107, 108]), like a slid-
ing window or a fading factor, to emphasize recent performance. Prequential evaluation is
usually applied in settings where labels are available immediately after the observation or
after a fixed number of instances, and it is typically applied for additive metrics such as the
Accaracy.

Regarding imbalanced scoring problems, the Prequential AUC proposed by Brzezinski
and Stefanowski [109] uses a sliding window to compute AUCROC for drift detection or the
predictive performance evaluation. However, this AUC approximation typically requires a
largewindow size before achieving confident estimation (compared to additivemetrics such

– 45 –

Chapter 2

Figure 2.12: Illustration of the Hoeffding Tree. The tree starts with a single root node (at t0).
When a new instance arrives, statistics are updated and when there are sufficient accumulated
instances in a given parent node with respect to the Hoeffding inequality, there is an attempt
to split it. In this example, more than 5 instances are required for splitting a parent node and
t1, t2 highlights the split time. Each arriving instance is used only one time for updating the
statistics.

as error rate) especially for imbalanced data (Agarwal et al. [110]).
For supervised problems, observations may be stored in a buffer or chunk with vary-

ing and significant label delays. Once the labels become available, they can be used to test
and/or update/retrain the learning model. This strategy is sometimes called interleaved
chunks. The interleaved chunks approach allows the use of common batch evaluation
metrics, such as AUCROC (Bradley [111]) and AUCPR (Boyd, Eng, and Page [112]) as well
as commonly additive metrics.

2.2.3 Examples of models in learning in dynamic environments

The learning in dynamic environments is dominated by two classes of models: instance
incremental and batch incremental models (Read et al. [113]). The former models learn
from an observation or sample as it arrives incrementally. Regarding batch incremental
algorithms or systems, they store observations in batches to update an existing model or
retrain from scratch a new one.

Hoeffding Adaptive Tree (HAT)

The Hoeffding Adaptive Tree (HAT) (Bifet and Gavalda [96]) is one of the instance incre-
mental models built on top of the Very Fast Decision Tree (VFDT) or Hoeffding Tree (HT)
(Domingos and Hulten [99]). HAT uses the ADWIN (Bifet and Gavalda [96]) detector to
monitor every single node of the tree and remove drifted ones.

The HT (Figure 2.12) uses the Hoeffding bound or inequality to choose the number of
instances required for splitting nodes. The use of the Hoeffding bound helps to derive some

– 46 –

State Of The Art

theoretical guarantees, especially the well-known asymptotic convergence to the classical
DTs in a stationary environment (without drift). However, authors such as Rutkowski et al.
[114] highlighted that this guarantee does not hold for non-numerical features and splitting
measures such as information gain and Gini index, typically used for building classic DTs.
The main advantage of the HT is that every instance is used/processed only once; therefore,
it is fast enough to handle high-speed data streams.
Python packages such as River (Montiel et al. [115]), CapyMOA4, offer a fast implementation
of these algorithms.

Hoeffding tree based ensemble

Similarly to classic Decision Tree (DT), the HT has been used successfully in model ensem-
bling.

Adaptive Random Forest. Adaptive Random Forest (ARF) is an incremental version of
the standard RF built on top of the HT. Each tree is equipped with a ADWIN detector with
two possible drift thresholds, one for warming and the second for replacing the worst-
performing trees. To empower the diversity in the ensemble, the online Bagging (Oza and
Russell [116]) is used where typically each new observation (instance) is sampled using the
Poisson distribution of parameter 6, similarly to Leveraging Bagging (LB) (Bifet, Holmes,
and Pfahringer [98]).
Technically, once a new instance xt arrives, each tree hm in the ARF receives km(xt) copies
of this instance for training, km(xt) generated randomly according to Poisson(λ = 6).
ARF remains one of the famous and best performing among instance incremental algo-
rithms (Gomes et al. [97], Montiel et al. [117], and Gunasekara et al. [106]).

Batch incremental models

Ensemble learning and a performance/error based tracking of base learners dominate the
literature of batch incremental algorithms for data streams. One of such models is the Ac-
curacy Weighted Ensemble (AWE) (Wang et al. [118]) in which base classifiers (typically
C4.5, CART, SVM, Linear models) are weighted based on their expected test accuracy (es-
timated using the current training data) over time. The ensemble is made up of theM best
performing model on the current data.
Some variants such asAccuracyUpdated Ensemble (AUE, AUE2) (Brzeziński and Stefanowski
[119] and Brzezinski and Stefanowski [120]) were proposed to improve the AWE using con-
ditional updating and an instance incremental model (e.g., HT) is used as a base learner
instead of a batch learner.

Anotherwell-known batch incrementalmodel is Learn++.NSE (incremental learning for
Nonstationary Environments) (Elwell and Polikar [121]). In Learn++.NSE, an age weigh-
ing schema of learners (using a sinusoidal function) combined with a performance-based
weighing on the current training data is used to determine the importance of each learner

4https://github.com/adaptive-machine-learning/CapyMOA

– 47 –

https://github.com/adaptive-machine-learning/CapyMOA
https://github.com/adaptive-machine-learning/CapyMOA

Chapter 2

in the ensemble.
There is also one notable approach called Adaptive eXtreme Gradient Boosting (AXGB)

(Montiel et al. [117]), where new decision tree models are created and appended to the
boosted ensemble. More precisely, once the ensemble (the XGBoost model) is full, the old-
est member is removed before appending a new one (the push strategy), or older members
are directly replaced with newer ones (the replacement strategy).
Another variant of AXGB called AXGBA where the ensemble is equipped with an ADWIN
drift detector was proposed by the same author but was found less efficient compared to
the passive counterpart (where the drift or the model error was not explicitly tracked).

2.2.4 Batch incremental versus Instance incremental learning

The utility of rigorously comparing batch incremental and instance incremental approaches
is underestimated in the learning literature on evolving data streams. This is arguably due
to the preference for automatically updating the model over time and/or avoiding the stor-
age of observations in memory whenever possible (which favors instance incremental solu-
tions). Consequently, attempts to use batch incremental solutions are often biased towards
using small predefined chunks/batches/windows of instances to retrain or update an old
model automatically. Among these approaches, we cite the AWE and AXGB described in
the previous Section.

Dynamic or continuous offline optimization of batch learners (using data collected over
time, e.g., days, months) alternate with online inference (real-time prediction) is often ne-
glected in the literaturewhen comparing batch and instance incremental learning; however,
this strategy remains a widely used approach in real-world production/deployment or Hu-
man in Loop Machine Learning Operations (MLOps) because it makes human inspection
and validation (bias correction, understanding of changes) easier, thereby increasing trust-
worthiness. Among the studies that compare batch incremental and instance incremental
learning in a supervised setting, we note the work by Read et al. [113], from which we
summarize the main disadvantages of these two approaches in Table 2.3.
Their experimental result reveals the superior predictive performance (but longer running
time) of the instance incremental ensemble namely Leveraging Bagging with Hoeffding
Tree as a base learner (LB-HT) (Bifet, Holmes, and Pfahringer [98]) over a AWE using a
window of 500 observations and an ensemble of 10 learners maximum. In Montiel et al.
[117], the window size was increased to 1,000 and the number of learners to 30 for batch
incremental models; however, conclusions remain the same, i.e., the state-of-the-art in-
stance incremental solution ARF (Gomes et al. [97]) showed an overall best predictive ac-
curacy over both the batch solution AXGB proposed by the authors and the AWE strategy.
An important point missed in the comparison was hyperparameter optimization. Only a
fixed reference configuration of hyperparameters was used when comparing models for all
benchmark datasets. Can hyperparameter optimization change the final conclusion? The
authors in [117] demonstrated the influence of optimization steps on the performance of
the ensemble of XGBoost (called BXGBoost in the paper), which implies an increase of 14%
in the average accuracy, becoming the best batch incremental of their benchmarking.
Overall, to the best of our knowledge, the intra-comparison of instance incremental mod-
els reveals that ARF (Gomes et al. [97]), Streaming Random Patches (SRP) (Gomes, Read,

– 48 –

State Of The Art

Table 2.3: Comparative Disadvantages of Batch and Instance Incremental Learning

Learning Approach Main disadvantages

Batch

• Require deciding the batch/windows size for retrain-
ing/updating the model;

• Cannot learn the most recent examples until a new
batch is complete.

Instance

• Only learns a concept correctly from a large number of
examples (e.g., the convergence of HT to a batch-trained
Decision Tree is asymptotic and guaranteed only in a
stationary environment) [99, 122];

• Has fewer established results than batch learning (e.g.,
evaluation, bias correction, interpretability).

and Bifet [123]) which is similar to ARF and Streaming Gradient Boosted Trees (SGBT)
(Gunasekara et al. [106]) which is the instance incremental version of XGBoost are the
predictive performance-based leading state-of-the-art models for learning in dynamic en-
vironments.

We decided to reconsider the debate of the winning approach between the batch and
instance incremental solutions. In this sense, we designed an evaluation in accordance with
real-world (class imbalance, label delay) production scenarios and showed that batch incre-
mental solutions such as XGBoost can have a superior predictive ability with a thorough
optimization step (Chapter 4).

2.2.5 Class imbalance in dynamic environments

The class imbalance is an additional challenge for the learning in dynamic environments.
The imbalance ratio (between the negative and positive classes) can be fixed or dynamic
over time (Aguiar, Krawczyk, and Cano [124]) i.e., Pt0(y) ̸= Pt1(y). The later situation
refers to as prior (probability) shift can cause a problem of miscalibration of an already cal-
ibrated model (Dal Pozzolo et al. [84]).

The techniques used to handle imbalanced data in dynamic environments are, in gen-
eral, based on the ones used for static settings (described in Section 2.1.6) (Aguiar, Krawczyk,
and Cano [124]). The resampling techniques Ferreira et al. [125] or the cost-sensitive learn-
ing Loezer et al. [126] were successfully applied to the ARF model for imbalanced data
streams (Aguiar, Krawczyk, and Cano [124]). The resampling typically consists in modi-
fying the generated number by the Poisson distribution (used in the Online Bagging Oza
and Russell [116]) by taking into account the imbalance ratio. Another well-known such
approach is Undersampling based Online Bagging (UOB) and Oversampling based Online

– 49 –

Chapter 2

Bagging (OOB) (Wang, Minku, and Yao [127, 128]). More recently Robust Online Self-
Adjusting Ensemble (ROSE) was proposed by Cano and Krawczyk [129] and used a self-
adjustment of the Online Bagging parameter. ROSE was found empirically competitive in
situations where the imbalance ratio is dynamic, especially for multi-class classification
tasks.
Overall, for a recent survey on the imbalanced learning with online or instance incremen-
tal algorithms, we kindly invite the interested reader to Aguiar, Krawczyk, and Cano [124]
from which we note that there is no single best way to handle class imbalance in dynamic
environments.

Regarding batch incremental algorithms, one of the well-known solutions is the modi-
fication of the Learn++.NSE (Elwell and Polikar [121]) using SMOTE (the resulting model
is called Learn++.CDS) or using a class-specific weighted error metric instead of the classic
error metric which is not suited for imbalanced datasets (Learn++.NIE) (Ditzler and Polikar
[130]).

The propagation of old batches/chunks was found useful by Dal Pozzolo et al. [131] in
an empirical study on a fraud detection dataset. However, this option may increase the
need for data storage and the training time.

2.2.6 Label delay in learning in dynamic environments

When learning from data streams, there are three main possibilities regarding label avail-
ability (Gomes et al. [97]): (i) immediate, (ii) delayed with a finite time interval, and (iii)
delayed indefinitely. There are also settings where all these possibilities can occur simulta-
neously (Gomes et al. [132]).

Most studies in the supervised paradigm assume immediate availability; however, in
many real-world tasks, the label may arrive with an important delay. The (finite) delay
mechanism can be deterministic, meaning fixed for every value of the feature vector, or
(semi) stochastic, meaning it follows an unknown probability distribution (Plasse andAdams
[133]).
An example of a semi-stochastic case is fraud detection, in which the labels of fraudu-
lent transactions are quickly revealed, whereas those of genuine transactions are mostly
revealed after a fixed prescription period. Plasse and Adams [133] proposed an adaptive
Linear Discriminant Analysis classifier combined with a weighing scheme to handle the la-
beling delay using a real-world credit scoring dataset, but their analysis was limited to only
linear models, and no specific evaluation procedure was proposed. In Gomes et al. [97],
the influence of label delay was investigated using a fixed delay mechanism of 1,000 in-
stances, and the authors concluded that this resulted in an important performance drop for
the ARF and LB models. Unfortunately, the comparison did not include batch incremental
algorithms, and while stochastic delay appears to be the most common delay mechanism
in real-world problems, it was not investigated.

Grzenda, Gomes, and Bifet [134] designed a delayed evaluation framework, called con-
tinuous re-evaluation, where the goal is to assess the system’s or algorithm’s capability to
refine its predictions over time before the delayed label arrives. Although this framework
is quite interesting for flight data, it is infeasible for many problems (e.g., fraud detection
and online credit scoring) to request the model to make predictions several times for the

– 50 –

State Of The Art

same instance.
In Chapter 4, we propose a framework focused on the first time (the first request for)

prediction evaluation. Additionally, the evaluation includes the comparison of instance
and batch incremental learning in delayed dynamic environments, which, to the best of
our knowledge, is still missing in the literature.

2.2.7 Interpretability in learning in dynamic environments

Although interpretability in dynamic environments is still in its early stages, the two ap-
proaches used in static settings (described in Section 2.1.5) can also be adapted to stream
or online settings. Regarding post hoc solutions, we note for example iSAGE (Muschalik
et al. [135]) which offers an incremental version of the Shapley Additive Global Importance
(SAGE) (Covert, Lundberg, and Lee [136]) tool.
Unlike static settings, interpretability also requires understanding changes that occur in
the model behaviors or, at least, in its post hoc explanations caused by incremental model
updates (Haug, Tramountani, and Kasneci [137]). Unfortunately, these approaches have to
contend with the reliability issue that post hoc methods suffer from in the static settings (as
highlighted in section 2.1.5). Therefore, authors such as Haug, Tramountani, and Kasneci
[137] favor the use of inherently interpretable models for evolving data stream problems,
where the more interpretable to humans is likely to change less over time (Haug, Broele-
mann, and Kasneci [122]).

Our experimental results (Chapter 4) reveal that state-of-the-art batch incremental in-
herently interpretablemodels, besides beingmore interpretable (their architecture orweights
change less frequently compared to instance incremental counterparts, and therefore easier
for human tracking and understanding), can have competitive or even superior predictive
performance compared to their instance incremental counterparts.

2.3 Adaptive Machine Learning for fraud detection

The use of Machine Learning (ML) for payment fraud detection requires the availability
and access to transactional information, that is, the historical transactions for the initial
modeling and the current ones for the scoring. Depending on the type of transaction and
legislation, the requester profile or identification, localization, and time information can
also be used. These information, which typically are sequences, can be exploited by the
means of sequence modeling using, for example, Recurrent Neural Network (RNN) Zheng
[138] and Branco et al. [139] or by applying feature aggregations in conjunction with clas-
sical ML models (Dal Pozzolo et al. [131] and Lucas and Jurgovsky [140]).

The usual aggregation functions are the average, min, max over a time sliding win-
dow, and the time difference information. One main advantage of the feature aggregation
solution (over the sequence modeling) is the possibility of having interpretable decision-
making (especially when the features are carefully computed). The methods and results
presented in this thesis are based on the aggregation of raw information into an observa-
tion of p features.

– 51 –

Chapter 2

The modeling approaches with aggregated features can be supervised i.e., exploiting the
label (fraud or not) during the training or unsupervised.

2.3.1 Supervised approaches and adaptive fraud detection

The supervised learning applied to the Credit Card Fraud remains the most investigated
approach in the literature (Dal Pozzolo et al. [131], Yeşilkanat et al. [141], Bayram, Köroğlu,
and Gönen [142], Adebayo et al. [143], and Cherif et al. [144]). In the supervised settings,
some past fraudulent transactions are collected (observations are labeled) and the goal is
to prevent from these frauds or similar types. Although most of the works are based on
proposing a solution (for example, for the class imbalance, overlapping) with a static train-
test data splitting, authors such Yeşilkanat et al. [141] and Bayram, Köroğlu, and Gönen
[142] made a step forward by accounting for a potential change/drift that may occur in
the data distribution over time. In Yeşilkanat et al. [141], equal number of fraudulent and
genuine cards are used over a sliding window to train the supervised model which was
nothing else than XGBoost. Bayram, Köroğlu, and Gönen [142] investigated the use of an
incremental version of XGBoost, where a new base learner (tree) is added to the initial en-
semble every day using all transactions coming from fraudulent cards. However, the label
delay is not taken into account or at least the authors didn’t explain how they handle it.
One remarkable work regarding the adaptive ML is the Ph.D. thesis by Dal Pozzolo [1].
More importantly, the authors proposed an alert feedback framework for handling the de-
lay in the label availability. Their solution was based on an ensemble of Balanced Random
Forest (BRF) (Chen, Liaw, Breiman, et al. [145]) built on a batch of observations collected
over days.

Our work aims to enrich the literature by examining seriously the efficiency of famous
online or instance incremental methods that came after Dal Pozzolo [1] (which was based
on the use of batch incremental solutions). In addition, we take into account the trustwor-
thy constraints in the use of ML by examining the possible trade-off between the predic-
tive accuracy and the interpretability. Finally, we propose an applicative example on Bank
Transfer Fraud (including the modeling, the working conditions, and requirements) which
has some similarities with Credit Card Fraud but also some particularities.

2.3.2 Unsupervised approaches and adaptive fraud detection

The unsupervised learning models are used in fraud detection by assuming that fraudulent
activities are outliers or anomalies (Ingole et al. [146], Cui, Yan, and Wang [147], and Lucas
et al. [148]). For example, an important deviation in the user’s behavior with respect to
himself or the rest of the users is considered as a potential fraudulent activity.

An important advantage of unsupervised learning is that it does not require information
about past fraud (labels); therefore, it is relatively easy to implement and adapt, especially in
dynamic environments. However, for some types of fraud, fraudsters maymimic the behav-
ior of the authentic user, resulting in an important difficulty for anomaly detectionmethods.
As a consequence, the supervised approach usually reveals significant superiority over un-
supervised ones in fraud detection when labeled information is available (Thimonier et al.

– 52 –

State Of The Art

[149]). In addition,Thimonier et al. [149] found that the well-tuned tree ensemble model
also captures the majority of frauds detected by the unsupervised methods, challenging,
therefore, the benefit of using a combination of anomaly detection and supervised mod-
els as suggested by Li et al. [150]. Carcillo et al. [151] investigated the best of both words
where the features extracted from an unsupervised model are used in addition to initial
features as input to the supervised model. The added value was not significant unless with
the k-means feature which improved the AUCPR metric (but was detrimental for the top
precision metric Equation 2.7).

Overall, an unsupervised approach can be very useful for monitoring the model and
drift detection, especially when labels become available with an important delay (Pinto,
Sampaio, and Bizarro [152]).

– 53 –

Chapter 3

Exploring Accuracy and
Interpretability trade-off in Tabular
Learning with Novel Attention-Based
Models

Apart from high accuracy, what interests many researchers and practitioners in real-life
tabular learning problems (e.g., fraud detection, credit scoring) is uncovering hidden pat-
terns in the data and/or providing meaningful justification of decisions made by machine
learning models. In this concern, an important question arises: should one use inherently
interpretable models or explain full-complexity models such as XGBoost, Random Forest with
post hoc tools? Opting for the second choice is typically supported by the accuracy metric,
but it is not always evident that the performance gap is sufficiently significant, especially
considering the current trend of accurate and inherently interpretable models, as well as ac-
counting for other real-life evaluation metrics such as faithfulness, stability, and computa-
tional cost of explanations. In this Chapter, we show through benchmarking on 45 datasets
that the relative accuracy loss is less than 4% on average when using intelligible models
such as Explainable Boosting Machine (EBM). Furthermore, we propose TabSRAs, a new
attention-based class of accurate tabular learning models with inherent intelligibility and
demonstrate both theoretically and empirically that the instantiation called TabSRALinear
is a viable option for (1) generating stable or robust explanations, and (2) incorporating
human knowledge during the training phase.

3.1 Introduction

Since the promising results of the Transformer architecture on machine translation tasks
(Vaswani et al. [41]), deep learning models continue to provide impressive performance, for
example, in languagemodeling or computer vision. Convinced by the utility of the attention
mechanism (used in the Transformer architecture), especially when modeling contextual

55

Chapter 3

information, many efforts have been made to use it in order to match or compete with the
accuracy of boosted tree models such as XGBoost (Chen and Guestrin [36]) in tabular mod-
eling (Somepalli et al. [44], Kossen et al. [153], Huang et al. [42], and Gorishniy et al. [43]).

However, the models listed above typically use complex computation mechanisms or
a large number of trees, making direct human inspections difficult. On the other hand,
interpretability is usually (i) required by regulators in real-world applications (e.g., GDPR:
Article 22 in Europe) and (ii) desired if the goal is to discover hidden patterns in the data
(e.g., in fraud detection) or to ensure that the model does not learn a bias that may lead
to significant drift in production. Therefore, recent studies, such as Lundberg and Lee [7],
Ribeiro, Singh, and Guestrin [8], and Lundberg et al. [64], have focused on developing post
hocmethods to explain, at least locally, the predictions of full-complexity or black box mod-
els. Unfortunately, although these methods provide interesting properties, they are some-
times based on some computational mechanisms (e.g., exact Shapley value computation) or
hypotheses (e.g., independence between features) that are difficult to achieve in practice,
leading to biased explanations (Amoukou, Salaün, and Brunel [9] and Kumar et al. [10]).

Still discussing interpretability, Rudin [154] provides a technical reason why an inter-
pretable model might exist among the set of accurate models in any domain and encourages
researchers to move toward finding this solution, especially for high-risk domains. As a re-
sult, a bench of inherently interpretable models (Nori et al. [27], Agarwal et al. [56], and
Chang, Caruana, and Goldenberg [66]) have been recently implemented and provide su-
perior accuracy compared to classical statistical models (e.g., linear models). Some natural
questions arise: How much accuracy are we actually sacrificing when using an inherently
interpretable model instead of a fully complex one? In light of this question, we first show
that the relative performance gap is less than 4%, considering the recent tabular learning
benchmark of 45 datasets (59 tasks) introduced by Grinsztajn, Oyallon, and Varoquaux [53].
Moreover, we show that accounting for some real-life metrics such as faithfulness, stability,
and computational cost of explanations tends to favor the choice of inherently interpretable
models. Second, we propose TabSRAs, an attention-based inherently interpretable solution,
and demonstrate its superiority in terms of the stability of explanations and flexibility of
incorporating human knowledge compared to existing solutions. Overall, the key contri-
bution of this Chapter is to examine the trade-off between accuracy and interpretability in
tabular learning by questioning the value of using post hoc tools to explain blackbox models
in an era where accurate, inherently interpretable models are available. To achieve this:

1. We propose a simple, intuitive attention based inherently interpretable models called
TabSRAs (Section 3.3). We show how to incorporate some human knowledge during
its training and demonstrate through real-world datasets its superiority in terms of
stability and flexibility for human knowledge incorporation (Section 3.4.4).

2. We thoroughly evaluate and compare state-of-the-art inherently interpretable mod-
els and their full-complexity counterparts in terms of their relative predictive perfor-
mance (Section 3.4.2).

3. We further compare baseline models based on some practical metrics (faithfulness
and stability) and demonstrate the usefulness of inherently interpretable models (Sec-
tion 3.4.2 and 3.4.2).

– 56 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

4. We provide some recommendations on the choice of a tabular learning model in set-
tings where interpretability is a key consideration (Section 3.5).

3.2 Existing interpretable solutions for tabular data prob-
lems

In this Section, we list existing interpretable solutions for tabular data investigated in this
study.

3.2.1 Inherently interpretable models

Among inherently interpretable models, we consider the well-known solutions already de-
scribed in Section 2.1.2:

• Linear models. (LR);

• EBM_S: Explainable Boosting Machine machine (EBM) without interaction terms as
part of GAMs;

• EBM: Explainable Boosting Machine machine with pairwise interaction terms;

• Decision Trees (DT).

3.2.2 Full-complexity models combined with Post hoc tools

We consider in this study the post hoc interpretability for accuracy-based state-of-the-art
models (Grinsztajn, Oyallon, and Varoquaux [53], Borisov et al. [54], Gorishniy et al. [43],
and McElfresh et al. [55]). We split these models into two categories: Decision tree ensem-
ble and Neural Nets models .

Decision tree ensemble

Generally, a decision tree ensemble with an important number/size of learners requires post
hoc tools when explaining their decisions.
Owing to the node-path structure, decision tree ensembles can be easily combined with
some model-specific post hoc interpretability tools. For example, TreeSHAP (Lundberg et
al. [64]) is a well-suited and computationally efficient SHAP explanation framework for
tree-based models. Another framework, Xreason (Ignatiev et al. [155]), aims at reasoning
(formally) regarding explanations for tree ensembles with acceptable scalability.
In our evaluation, we consider:

– 57 –

Chapter 3

• Random Forest (RF);

• XGBoost (XGBoost);

• CatBoost (Prokhorenkova et al. [51]). Similarly to XGBoost, CatBoost is also based
on the boosting mechanism. In CatBoost, the ordered boosting strategy is utilized
to address the target leakage issue that can arise in the original implementation of
XGBoost or LightGBM.Additionally, CatBoost’s implementation incorporates a built-
in method for handling categorical and text features. In recent studies, such as Chen
et al. [52] and McElfresh et al. [55], CatBoost has been shown to provide slightly
better predictive performance compared to XGBoost. Therefore, we have included it
in our predictive performance evaluation

Neural Nets.

NNs (especially deep NNs) usually require post hoc techniques for explaining their deci-
sions. Among these tools, LIME (Ribeiro, Singh, and Guestrin [8]) and KernelSHAP (Lund-
berg and Lee [7]) are model-agnostic.
DeepSHAP is a Shapley value based specific tool for NNs, inspired by DeepLIFT (Shriku-
mar, Greenside, and Kundaje [156]). In the theoretical design of these tools, the features
are assumed to be independent, and the learned functions are assumed to be linear, at least
locally. These assumptions are generally difficult to meet in real-life tabular settings; con-
sequently, these solutions are generally less reliable than their tree-based counterparts.

Based on the results from previous studies (Grinsztajn, Oyallon, and Varoquaux [53],
Borisov et al. [54], Gorishniy et al. [43], and McElfresh et al. [55]), we consider in our study
the following NNs designed specifically for tabular data (described in Section 2.1.2 and
2.1.3):

• MultiLayer Perceptron (MLP). It is a full complexity architecture that can model
nonlinear effects and interactions. It somehow provides us the achievable accuracy
by shallow and differentiable architectures.

• ResNet. ResNet is similar to MLP but includes skip connections (Gorishniy et al. [43]
and Grinsztajn, Oyallon, and Varoquaux [53]).

• FT-Transformer (Gorishniy et al. [43]). FT-Transformer combines a Feature To-
kenizer module and the classical Transformer block (Vaswani et al. [41]) resulting
in superior accuracy over the classical MLP (Gorishniy, Rubachev, Khrulkov, and
Babenko [43] and Grinsztajn, Oyallon, and Varoquaux [53]).

• SAINT (Somepalli et al. [44]). In SAINT, the attention mechanism (Vaswani et al.
[41]) is used in the contextual embedding of features. In addition, batch inter-sample
attention is used to get better representations.

In the following Section, we will introduce the proposed attention-based solution as a part
of inherently interpretable models.

– 58 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

3.3 TabSRAs

In this Section, we describe TabSRAs, our proposed inherently interpretable solution.

Motivational example.
We consider the following function:

F1(x) = 5x1 − 5x21x1>0 and y = {1p>0.5 with p = 1/(1 + e−F1(x))} (3.1)

As simple as it may seem, this function cannot be directly modeled with a linear model
due to the term 1x1>0, which forces x2 to have no effect on the output when x1 < 0. Shal-
low decision trees also are not suitable for this problem due to the linear term 5x1− 5x2 as
shown by the Figure 3.1a which highlights the original data distribution, with the yellow
color indicating the class of interest.
Is it possible to produce an intelligible intermediate representation which takes into account
interactions among features and ease the use of simple models such as linear models or deci-
sion trees?

(a) Raw data (b) Intermediate representation

Figure 3.1: Motivational example for TabSRAs. Illustration of the reinforcement process on
7500 synthetic data points with 0 mean, unit variance Gaussian distribution. The yellow color
is used for the class of interest.

The Figure 3.1b shows a possible such representation obtained by multiplying the raw
inputs with learned coefficients (the green color there represents a linear decision boundary
to separate the two classes). That is, throughmultiplication, values of x2 can be significantly
reduced, for instance, to 0 when needed (i.e., o2 ∼ 0 when x1 < 0, x2 < 0), which makes
the classes easy to separate with the downstream model (e.g. a simple linear or logistic
function). Moreover, this representation can help to understand the global behavior of the
overall model, where it is confident in predicting class 1 (in yellow color) and where it is
less confident, as highlighted by the green color (Figure 3.1b). That is what Tabular Self-
Reinforcement Attention (TabSRA) models are about.

– 59 –

Chapter 3

3.3.1 TabSRAs Architecture

TabSRAs (Figure 3.2) are based on the Self-Reinforcement Attention (SRA) mechanism. In
a nutshell, given the raw input x ∈ Rp, the SRA block (Figure 3.3) denoted as a function
a(.) : Rp −→ R

p produces an attention vector a = (a1, ..., ai, ...ap) which is further used
to produce a reinforced input o = (o1, ..., oi, ..., op) as follows:

o = a⊙ x (3.2)

where ⊙ is the element-wise multiplication.

The learned reinforced vector o represents a new feature basis, where each component
is guided by the raw input, that is, oi = aixi, helping to maintain the semantics of each
dimension. In this space, some components may be shrunk, for instance, to zero using the
attention weights ai ≥ 0. In other words, the attention vector acts like a soft instance-wise
feature selector or mask. We provide some visual illustrations of how raw data are rein-
forced in Section 3.3.2.

Figure 3.2: TabSRAs architecture. The attention vector a = (a1, ..., ap) ∈ Rp provided by the
SRA block is used to produce a reinforced vector o = (o1, ..., op) ∈ Rp.

Finally, this reinforced vector is aggregated using a highly transparent downstream
model (e.g., linear models, decision trees, or rules) to produce the final output. Because
we are interested in end-to-end training and differentiable architecture, in this work, we
consider a linear downstream model resulting in the so-called TabSRALinear architecture
(Section 3.3.3).

– 60 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

3.3.2 SRA block

In the SRA block, the input vector x = (x1, ...xi, ..., xp) ∈ Rp, is encoded into p keys in
K = [k1,k2, ...,ki, ...,kp]

T with ki = (k1i , ..., k
dk
i) ∈ Rdk using a key encoder and queries

matrix Q = [q1,q2, ...,qi, ...,qp]
T with qi = (q1i , ..., q

dk
i) ∈ Rdk using a query encoder

(Figure 3.3). Furthermore, with a Sigmoid activation function, all elements kji of K (resp.

Figure 3.3: SRA Block. The KeyEncoder (resp. QueryEncoder) produces directly p keys
(resp. queries)

qji of Q) are scalar numbers bounded in [0, 1].
The keys in K are compared to the queries Q component by component using the

scalar product as in Vaswani et al. [41]. This allows quantifying the alignment of different
transformations of the same input calculating the attention weights a = (a1, .., ai, ..., ap)
as follows :

ai =
qi · ki
dk

for i ∈ 1, · · · , p (3.3)

We further use the scaling by dk in order to reduce the magnitude of the dot-product and
to obtain dimension-free attention coefficients ai ∈ [0, 1]. Some important differences be-
tween the proposed SRA block and the vanilla Transformer block (Somepalli et al. [44],
Kossen et al. [153], Huang et al. [42], Gorishniy et al. [43], and Vaswani et al. [41]) as de-
scribed in Section 2.1.3 are summarized in Table 3.1.

Table 3.1: Some differences between the SRA block and the classical Transformer block. K ∈
R
p×dk the matrix of keys and Q ∈ Rp×dk the matrix of queries

Point Classical Transformer block SRA block
Attention weight A = softmax(QK

T
√
dk

) ∈ Rp×p a =
∑

dk
Q⊙K
dk

∈ Rp

Value encoding Yes No
Additional processing (residual
connection, LayerNorm)

Yes No

How raw data are reinforced using the SRA block.
To illustrate how the raw data is reinforced in practice using the SRA block, we use a 2D
toy dataset with the objective of facilitating the visualization.

– 61 –

Chapter 3

We consider the 2D chainLink (Ultsch [157]), the Noisy two moon as depicted in Figure 3.4
and Figure 3.5.

(a) x (b) o = a⊙ x

Figure 3.4: Illustration of the reinforcement process with the ChainLink 2D: 1000 data points.

(a) x (b) o = a⊙ x

Figure 3.5: Illustration of the reinforcement process with the Noisy two moons: 10000 data
points.

By applying SRA coefficients to this dataset, we acquired a new data representation that
enables the easy separation of classes, as shown in Figure 3.4b. Even without knowledge
of the true data-generating process, it is apparent that all observations have been moved
strategically so that a simple rule can effectively isolate nearly all yellow observations of
interest. Please refer to Appendix A.2.2 for additional visualizations.

3.3.3 TabSRALinear: SRA Block and Linear downstream model

We investigate in this work a linear combination of the reinforced features (Equation 3.2)
resulting in the additive and differentiable TabSRA model (Figure 3.2). This instantiation

– 62 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

called TabSRALinear can be formalized as follows:

σ(ŷ) = β0 + β · o
= β0 + β1o1 + ...+ βioi + ...+ βpop

= β0 + β1a1x1 + ...+ βiaixi + ...+ βpapxp

(3.4)

β = (β1, β2, ..., βp) is the linear regression coefficient vector, β0 the bias term, and a =
(a1, .., ai, ..., ap) the attention weights.

Interpretability with TabSRALinear. Using linear models to model data or phenomena
that exhibit feature interactions results in internal conflicts between input components,
poor accuracy, or even misleading interpretations. Considering these conflicts, the atten-
tion weight vector a may enhance or reduce some components (of the input vector) at
strategic and specific positions depending on the context (or the whole information in x),
resulting in an internal equilibrium. Therefore, it is natural to interpret:

• ai as the correction that the feature xi received from other features or itself (due to the
interactions) before influencing the output. On the instance level, ai = 0 corresponds
to the particular case where xi has no effect on the output.

• βiaixi as the contribution (the prediction importance) of the feature xi to the output.

Furthermore, visualizing or computing the gradient βiaixi vs. xj will help to understand
the global contribution of the feature xi as well as interactions (for i ̸= j).
Considering the important question of simulating the absence of features that arises with
some well-known XAI tools (Chen et al. [63]) as highlighted in Section 2.1.5, it is worth
nothing to point out that for TabSRALinear, the absence of the i−th feature corresponds to
the case where xi = 0. In addition, owing to interactions, an input feature can take a zero
value (i.e., xi ≈ 0) but still influence the output through other features.

Human knowledge incorporation in TabSRALinear. For some problems (e.g., credit
scoring), it is crucial to incorporate domain expert knowledge such as positive effects or
monotonic constraints with respect to some features during or after training.

In TabSRALinear, the regression coefficient βi (Equation 3.4) controls the overall “sense"
(positive or not) of the effect of the i−th feature on the output. Therefore, a positive (resp.
negative) sense constraint (knowledge) is added by setting βi ≥ 0 (resp. βi ≤ 0) during the
training. Furthermore, a monotonic increasing (resp. decreasing) constraint on the i−th
feature is added by setting at the same time βi ≥ 0 (resp. βi ≤ 0) and the attention weight
ai to a constant value, typically one. The latter constraint is equivalent to assuming that the
effect of feature i on the output is not influenced by other features, i.e., linear. A practical
use case is demonstrated in Section 3.4.4.

3.3.4 On the robustness of TabSRALinear’s explanations

In this section, we provide a theoretical analysis and justify why TabSRALinear is a viable
solution for robust self-explainability in tabular learning settings.

– 63 –

Chapter 3

Robustness remains an important topic for feature attribution based explanation sys-
tems, with the goal of designing a convenient metric to assess the similarity of explanations
provided for similar inputs (Alvarez Melis and Jaakkola [158], Alvarez-Melis and Jaakkola
[69], and Agarwal et al. [159]). This is mainly because many state-of-the-art interpretability
tools (Lundberg and Lee [7], Ribeiro, Singh, and Guestrin [8], and Lundberg, Erion, Chen,
DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, and Lee [64]) operate on a single data
point and the use of point-wise explanations to understand complex models is perhaps too
optimistic or can lead to a false sense of understanding (Alvarez-Melis and Jaakkola [69]).
To address this limitation, one might want to go beyond individual points and examine
the behavior of the models in the neighborhood of certain target points. Therefore, inter-
pretability methods or inherently interpretable models must produce explanations that are
stable or robust to local perturbations (Alvarez-Melis and Jaakkola [69]).

The TabSRALinear model is designed to produce relatively robust explanations consid-
ering the following theorem:

Theorem 1. The feature attributions produced by TabSRALinear (Equation 3.4) are locally
stable in the sense of Lipschitz, that is, for every x ∈ Rp, there exist δ > 0 and Lx ≥ 0 finite
such that:

∥x− x′∥1< δ =⇒ ∥β ⊙ a(x)⊙ x− β ⊙ a(x′)⊙ x′∥1 ≤ Lx∥x− x′∥1 (3.5)

With Lx = ∥β∥∞[∥a∥∞+La(∥x∥∞+δ)] and La ≥ 0 the Lipschitz constant of the SRA block.

The objective of Theorem 1 is not to provide the tightest bound of the Lipschitz con-
stant, but to provide some justification for the attention computation.

First, we notice the quantity ∥x∥∞ in the expression of Lx, which shows that the raw
input data should be bounded. This is a common situation when using NNs. That is, the
data scaling technique (using the minimum and maximum or the mean and standard devi-
ation) or quantile transformation is used to speed up the convergence.

We also have the term ∥a∥∞ which proves that the smaller the attention weights, the
more stable the explanations. Using the scaling of Equation 3.3, we have ∥a∥∞= 1 and we
can identify in the first term of Lx the Lipschitz constant of linear models, which is simply
∥β∥∞. Moreover, in situations where there are no interactions (and nonlinear effects) be-
tween features, almost all attention weights are expected to be constant (i.e., La ≈ 0), and
TabSRALinear is reduced to classical linear models.

We present the empirical evidence of the stability of TabSRALinear’s feature attribution
compared with that of state-of-the-art interpretability tools such as (Lundberg et al. [64]
and Lundberg and Lee [7]) in Section 3.4.2.

We kindly invite the reader to refer to Section A.1.2 for a complete proof of Theorem 1.

– 64 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

3.3.5 Improving TabSRALinear using model ensemble

(a) f(x) = x3 (b) f(x) = x2

Figure 3.6: Illustration of the importance of the TabSRALinear ensemble. A single TabSRA-
Linear (H=1) perfectly fits the monotonic function shown in Figure 3.6a. However, it struggles
to fit the quadratic example (orange in Figure 3.6b). Using an ensemble of two (H=2) Tab-
SRALinear models alleviates this problem: one TabSRALinear is specialized in fitting the first
branch of the parabolic, while the second model of the ensemble fits the other branch.

With the formulation of TabSRALinear (Equation 3.4), we assume that the learned function
is monotonic or linear around the origin, that is, x ≈ 0. In other words, the Lipschitz con-
stant (Theorem 1) is Lx = ∥β∥∞(1 + ϵ) where ϵ = Laδ −→ 0.
However, for some problems, the learned phenomena might not be monotonic around the
origin (or around a given reference value), as illustrated by the quadratic function in Figure
3.6b. For such a problem, the TabSRALinear may provide poor modeling performance.

To mitigate this problem, we propose the use of model ensembling (Section 2.1.2), in
which TabSRALinear is the base learner. To preserve the intelligibility of the overall archi-
tecture/ensemble, we found it more convenient to use the sum aggregation of the decisions
of individual TabSRALinear (Equation 3.4) as follows:

σ(ŷ) = σ(ŷ1) + · · ·+ σ(ŷh) + · · ·+ σ(ŷH)

= β1
0 + β1 · (a1 ⊙ x) + · · ·+ βh0 + βh · (ah ⊙ x) + · · ·+ βH0 + βH · (aH ⊙ x)

=
H∑
h=1

βh0 +

(
H∑
h=1

βh1a
h
1

)
x1 + · · ·+

(
H∑
h=1

βhi a
h
i

)
xi + · · ·+

(
H∑
h=1

βhpa
h
p

)
xp

(3.6)

where βh (resp. ah) is the h-th linear model’s coefficients (resp. the attention vector from
the SRA block h) and βh0 is the corresponding bias term. H represents the size or the number
of learners in the ensemble. The TabSRALinear ensemble is equivalent to the Multi-head
attention idea (described in Section 2.1.3) where context representations provided by dif-
ferent attention heads are first concatenated and thereafter transformed by a linear layer
producing a new context representation or the final output.
In general, ensembling increases the number of parameters (compared to one single base

– 65 –

Chapter 3

learner), consequently affects transparency. However, due to the additive nature, TabSRA-
Linear ensemble (Equation 3.6) preserves the interpretable aspect of TabSRALinear that is,(∑H

h=1 β
h
i a

h
i

)
xi represents the contribution or the effect of the feature xi to the output.

Nonetheless, a high number of H may result in less robust explanations (please refer to
Section A.1.1 for the theoretical proof). Therefore, we recommend considering the ensem-
ble sizeH from the set {1,2}, and for all results presented in this Chapter, including the case
study, we optimized the ensemble size H ∈ {1, 2}. Furthermore, our ablation study (Table
3.6, Section 3.4.3) indicates that increasingH beyond 2 does not significantly enhance per-
formance but instead increases running time.

Wewill refer to the TabSRALinear ensemble as TabSRALinear, andwewill use the terms
ensemble or head interchangeably.

3.4 Empirical study

In this Section, we report the key findings of the empirical comparison of inherently inter-
pretable models to each other, as well as to full-complexity counterparts. Please note that
the supplementary materials contain (1) a complete results analysis regarding the stabil-
ity of TabSRALinear’s explanations (Section A.2.4); (2) additional visualizations and results
(Section A.2).

3.4.1 Experimental setup

Evaluation metrics

Our goal is to provide concrete numerical results to help practitioners and researchers
choose between inherently interpretable solutions and explanations for full-complexity
models. Given that the main justification for explaining blackbox models is to retain pre-
dictive performance while achieving interpretability, we believe it is crucial to compare
both approaches (inherently interpretable models versus black-box models with XAI tools)
based on the following criteria:

• Predictive performance (Section 3.4.2). To assess predictive performance, we uti-
lize the coefficient of determination (R2) for regression tasks and accuracy for clas-
sification tasks in the middle-scale benchmark. For datasets in the Default benchmark
that are imbalanced, we evaluate the Area Under the ROCCurve (AUCROC), and par-
ticularly for highly imbalanced datasets such as the Credit Card Fraud dataset (Table
3.2), we measure the Area Under the Area Under the PR Curve (AUCPR) instead of
AUCROC (as discussed in Section 2.1.1).

• Faithfulness (Section 3.4.2). Given that the faithfulness of explanations provided
by blackbox models with XAI tools is often questioned in the literature (Amoukou,
Salaün, and Brunel [9] and Huang and Marques-Silva [60, 11]), we also compare the

– 66 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

two approaches based on this criterion. Specifically, we measure the precision in
identifying the truly relevant features.

• Stability/Robustness (Section 3.4.2). Which option can providemore robust/coherent
explanations, meaning similar explanations for similar inputs?

We further illustrate the unique capabilities of our proposed solution, TabSRALinear,
and knowledge incorporation through two real-world applications (Section 3.4.4).

Datasets

To evaluate the models based on the criteria listed above, we considered three types of
datasets:

• Middle-scale benchmark: Recently introduced in Grinsztajn, Oyallon, and Varoquaux
[53], it contains 45 real-world datasets (59 tasks precisely) of both numerical and
heterogeneous binary classification or regression problems. We mainly use these
datasets to assess the predictive performance of benchmark models. Note that the
authors truncated the training set to 10,000 and the test set to 50,000 in order to ease
the assessment of inductive biases of models (have homogeneous benchmarks). Also,
cross-validation is used with a number of folds ranging from 1 to 5 depending on the
test data size. Finally, in each fold, a Train/Validation/Test split is used (please refer
to Section A.2.1 for more details).

• Default benchmark: we also consider four widely used datasets in tabular learning
settings (we provide the summary in Table 3.2). We used two of these datasets to
evaluate the robustness of explanations (Credit Card Fraud, Heloc Fico) and the re-
maining for the applicative case study.

• Synthetic benchmark: we finally consider synthetic datasets to assess explanations’
faithfulness. As the ground truth for real-world datasets are generally unavailable for
this purpose, we generate three synthetic datasets based on (1) additivity: we con-
sider only additive functions. Recall that most feature attribution methods are used
to explain the additive structure in modeled phenomena (Kumar et al. [10]) and (2)
unicity: there is only one optimal explanation or feature attribution for every ob-
servation. Therefore, models that perfectly fit the data in terms of accuracy should
converge with this explanation. In this concern, we consider datasets with five fea-
tures x = (x1, x2, x3, x4, x5) of size 30,000 based on the Gaussian distribution (of
mean 0 and variance 1) as follows:

Synthetic 1: y = 5x1 − 5x2 (3.7)

Synthetic 2: y = x21 (3.8)

Synthetic 3: y = (5x1 − 5x2)1x5≤0 + (5x3 − 5x4)1x5>0 (3.9)

– 67 –

Chapter 3

Table 3.2: Benchmark datasets. CF: Categorical features

Datasets # Datapoints # features # CF Positive Class (%)
Bank Churn 10,000 9 2 20.37
Credit Default 30,000 22 3 22.16

Credit Card Fraud 284,807 29 0 0.17
Heloc Fico 10,459 23 0 47.81

Experimental details on the predictive performance evalution

Tuning. For theMiddle-scale benchmark, we conducted random hyperparameter tuning for
each inherently interpretable algorithm (described in Section 3.2.1, including TabSRALin-
ear) and CatBoost (Section 3.2.2) over a period of 9 days (216 hours) on a 64-core processor
CPU machine.

For the remaining full-complexity models (Section 3.2.2), the tuning results are reported
from the previous benchmarking (Grinsztajn, Oyallon, and Varoquaux [53]) where a 64-
Core Processor CPU machine is used for tree-based models and GPUs for NNs (please refer
to [53] for more details). In this study, we make our best effort to ensure the convergence
of algorithms, particularly NNs that have an important number of hyperparameters to tune
and, at the same time, have the fairest comparison possible. Therefore, we consider ≈ 2x
iterations per dataset for MLP, RF and ≈ 3x for XGBoost, CatBoost where x is the number
of iterations for TabSRALinear (≈ 95 per dataset). For ResNet, FT-Transformer and SAINT
which are more resource-consuming (see the training time Table 3.3), we used the same
number of iterations as TabSRALinear.

Moreover, in order to have a bootstrap-like estimate of the test score (Grinsztajn, Oyal-
lon, and Varoquaux [53]), for each algorithm and dataset we sample 50% of iterations and
repeat this process 10 times with different random seeds. Note that using all iterations once
does not change our conclusions (Section A.2.6).

Results aggregation accross datasets. We consider the test accuracy for binary classifi-
cation tasks and R2 score for regressions. To aggregate the results across datasets, we use
a metric similar to the Average Distance to the Minimum (ADTM) (Wistuba, Schilling, and
Schmidt-Thieme [160]). More precisely, for each algorithm, we divide the achieved score
by the one of the best performing for a given dataset. In this way, we get a unitless score
in [0, 1] which is further aggregated to produce the relative average score to best. We also
consider the rank and the running time (training + testing).

Data processing. Unless otherwise specified, categorical inputs are one-hot encoded for

– 68 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

Table 3.3: Predictive performance of models across 59 tasks (45 datasets). We report the rank
over all tasks, the relative test score (Accuracy/R2) and running time (training+inference) in
seconds. MRT: Mean Running Time

Model Rank Mean Test Score MRT 3

min max mean median mean median std mean median

DT 2 12 10.476 11 0.868 0.907 0.163 0.294 0.032
EBM_S 1 11 7.692 8 0.931 0.955 0.087 23.997 5.144
EBM 1 10 5.477 5 0.959 0.982 0.067 97.837 19.737
LR 7 12 11.701 12 0.760 0.839 0.232 21.124 19.716
TabSRALinear 1 12 8.225 9 0.901 0.971 0.197 47.576 38.073
MLP 1 12 6.992 8 0.924 0.973 0.159 24.165 19.256
ResNet 1 12 7.120 8 0.909 0.975 0.195 95.123 53.212
SAINT 1 12 5.625 6 0.946 0.982 0.093 216.053 126.841
FT-Transformer 1 11 5.203 5 0.944 0.984 0.109 126.589 77.465
Random Forest 1 10 4.214 4 0.985 0.992 0.021 39.030 8.252
XGBoost 1 11 2.728 2 0.988 0.998 0.029 18.254 12.561
CatBoost 1 10 2.545 2 0.991 0.999 0.021 12.176 4.025

models which do not handle them natively1, and numerical inputs are scaled2 using mean
and standard deviation to accelerate the convergence of NNs models.

3.4.2 Benchmark results

Prediction performance

In Table 3.3, we report the predictive performance results of inherently interpretable and
full-complexity models.
The main findings are:

• The relative average predictive performance gap between the overall best-performing
inherently interpretable (EBM) and the full-complexity counterpart (CatBoost) is less
than 4%.

1The Neural Networks NNs described in Section 3.2.2 include an embedding layer designed to manage
categorical features, as outlined in the work by Gorishniy et al. [43]. NNs (Section 3.2.2) are equipped with
an embedding layer for handling categorical feature (Gorishniy et al. [43]) and CatBoost also offers a native
approach for handling categorical features through a combination of target encoding (referred to as ’Borders’)
and Frequency Encoding (referred to as ’Counter’)

2Gaussian quantile transformation was used in Grinsztajn, Oyallon, and Varoquaux [53]; however, as this
transformation is not bijective/linear, we only use scaling to preserve interpretability in the initial feature
space.

– 69 –

Chapter 3

• Regarding NNs models, the inherently interpretable solution TabSRALinear provides
a very competitive performance comparedwithMLP-like architectures (MLP, ResNet)
with a gap of less than 2.5%.

For tasks where predictive performance is the only consideration, decision tree ensemble
models (such as CatBoost, XGBoost, Random Forest) are clearly preferable solutions, espe-
cially when run time is considered. Compared with tree-based models, NNs have a longer
general training time when using gradient descent optimization. This fact is highlighted
by the running time of Linear models (LR) optimized by gradient descent compared to that
of Decision Trees (DT); both are models known to be very shallow.

We can notice (Table 3.3) that the average relative test score between CatBoost and
TabSRALinear is up to 9% while the median (i.e., on 50% of datasets) is less than 3%. This
is due to the poor performance of the latter on some decision tree friendly datasets (see
the comparison results on delays_zurich_transport Table A.14 and yprop_4_1 Table A.15).
On such datasets, a simple decision tree may have superior predictive performance over
MLP-like architectures or shallow NNs. FT-Transformer and SAINT, owing to their feature
tokenization process, can still provide acceptable performance in such situations (see anal-
ysis on when the FT-Transformer is better than ResNet [43]). However, this comes with the
cost of an important number of learnable parameters. We believe that combining numer-
ical discretization (Gorishniy, Rubachev, and Babenko [39]) and TabSRALinear or simply
using piecewise constant approximators such as EBM could be a good predictive inherently
interpretable solution in such situations.

For thismiddle-scale benchmark, CatBoost significantly outperformed EBM (with a gap
above 5%) for 9/59 tasks. We argue that this is because of the difficulty of GAM based in-
herently interpretable solutions to conveniently handle higher-order interactions (above 3).
For such cases, TabSRALinear appears to be a good solution, particularly when the dataset
does not exhibit strong discontinuities or irregularities (see the results for covertype Table
A.20, pol, and sulfur Table A.15).

Faithfulness of explanations

In this part, we try to answer the following question: “Is it true that inherently interpretable
models produce more reliable explanations?" For this purpose, we consider the XAI solu-
tion, XGBoost (one of the best predictive models in Table 3.3), explained by the tree path-
dependent SHAP algorithm (TreeSHAP [64]). As justified in Section 3.2.2, this approach,
i.e., XGBoost+TreeSHAP, is arguably one of the most used solutions by practitioners. As
inherently interpretable solutions, we consider all the listed models in Section 3.2.1 except
Decision Tree (DT) as it does not produce direct feature attributions. For the datasets, we
consider the additive Synthetic benchmark (Section 3.4.1) with 80/20% Train/Test split.

The example called Synthetic 1 is linear regression friendly and only x1 and x2 are rel-
evant. The example Synthetic 2 represents a parabolic function; therefore linear regression
cannot accurately model it unless identifying and adding the convenient quadratic terms
of the raw input features. Only x1 should have non-zero importance/attribution for this
example. Finally, the Synthetic 3 borrowed from (Amoukou, Salaün, and Brunel [9]) high-

– 70 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

Table 3.4: Relevant feature discovery capacity. Precision is used as a metric. R2 (the higher,
the better) is used to evaluate the test’s predictive performance. The bold numbers denote the
best for each dataset and metric.

Datasets Models Test performance Precision

Synthetic 1

LR 1.00 1.00
TabSRALinear 1.00 1.00

EBM_S 1.00 1.00
EBM 1.00 1.00

XGBoost+TreeSHAP 1.00 1.00

Synthetic 2

LR 0.00 0.00
TabSRALinear 1.00 1.00

EBM_S 0.99 0.99
EBM 0.99 0.99

XGBoost+TreeSHAP 0.99 1.00

Synthetic 3

LR 0.50 0.52
TabSRALinear 1.00 0.99

EBM_S 0.49 0.51
EBM 0.98 0.97

XGBoost+TreeSHAP 1.00 0.78

lights interactions between the features. For this example, a perfect modeling algorithm
should use, depending on the sign of x5, the features x1 and x2 only, or alternatively, the
features x3 and x4. We restrict our analysis to those data points with x5 ≤ 0, which com-
prise ≈ 3, 300 instances. Therefore, only x1 and x2 are relevant among (x1, x2, x3, x4). We
use precision in finding the most relevant features as an evaluation metric, while the R2 is
used to assess the test’s predictive performance.

Here are the main takeaways from Table 3.4:

• An inherently interpretable model with poor predictive performance or inductive
bias can produce incorrect feature attributions or misleading discoveries. This is
highlighted by the results of LR on Synthetic 2 and EBM_S (EBM without interac-
tion terms) on Synthetic 3.

• Using post hoc interpretability tools can lead to incorrect feature attribution, although
the perfect predictive performance of the underlining model. It is the case of XG-
Boost+TreeSHAP on the Synthetic 3. This dataset highlights the feature interactions
that are well-known situations in which most post hoc explanation tools struggle to
find ‘truly’ relevant features of the underlying model (Amoukou, Salaün, and Brunel
[9], Kumar et al. [10], Huang and Marques-Silva [11], and Chen et al. [63]).

Overall, we can notice from these synthetic examples that an inherently interpretablemodel
with “good" predictive performance/inductive bias usually produces reliable feature attri-
bution. This is the case of TabSRALinear or EBM, which, with a predictive performance 2%

– 71 –

Chapter 3

lower than that of XGBoost on Synthetic 3, manages to discover the most important features
with a precision of 97%, compared with 78% for XGBoost.
It is important to point out that for EBM, we move the value of pairwise interaction terms
containing x5 to the remaining main effect. In other words, we add for example the value
of the interaction f15(x1, x5) to f1(x1), producing the contribution of x1. This is possible
because we know the ground truth; otherwise, heuristic methods such as interaction pu-
rification (Lengerich et al. [29]) are used to solve identification ambiguity problems. Recall
that TabSRALinear, thanks to its formulation, does not require any interaction purification.

Stability of explanations

We also evaluate the interpretable solutions (used in Section 3.4.2) based on the robust-
ness/stability of explanations, which involves answering the following question: “Are the
produced explanations similar for similar inputs?" For this purpose, we use two real-world
well-known numerical4 datasets: Credit Card Fraud and Heloc Fico (Table 3.2). We con-
sider the continuous notion of stability (Alvarez-Melis and Jaakkola [69]) and we estimate
the local Lipschitz constant as follows:

L̂(x) = argmax
x′∈Nϵ(x)

∥fexpl(x)− fexpl(x′)∥2/∥x− x′∥2 (3.10)

where the vector fexpl(x) is the feature attribution (the explanation) for the given observa-
tion x. For linear models, L̂(x) is equivalent to ∥β∥∞ and for TabSRALinear it is propor-
tional to Lx (Theorem 1).

We use 80/20% Train/Test split, and we generate 100 neighborsNϵ(x) by adding random
Gaussian noiseN (0, ϵ× I) to every target point x on the test data. The used perturbation
is small enough to avoid excessively changing the predictions (Section A.8). Thus, we use
ϵ = 0.001 for the Credit Card data and ϵ = 0.01 for the Heloc Fico dataset.

We can see from Figure 3.7 that the considered inherently interpretable models can pro-
duce more robust explanations than XGBoost+TreeSHAP. Due to their piecewise constant
structure, Explainable Boosting Machines (EBMs) tend to produce usually similar explana-
tions for similar inputs; however, they may also produce some outliers (see the example
of the Credit Card Fraud dataset Figure 3.7a) that arguably are due to some abrupt change
points in the learned shape functions. Regarding XGBoost+TreeSHAP, the important vari-
ability in explanations can be either explained by XGBoost’s flexibility to capture local
discontinuities or the incapacity of the interpretability tool to reproduce the correct local
variability (Alvarez-Melis and Jaakkola [69]).

Apart from the Linear models (LR), which are known to be robust and conservative,
TabSRALinear seems to be an encouraging trade-off for robust interpretability, especially
when adding predictive performance: test AUCROC for Heloc Fico (LR = 0.781; TabSRA-
Linear= 0.795; EBM_S=0.795; EBM=0.798; XGboost= 0.798) and test AUCPR for Credit Card

4For the sake of brevity, we used datasets containing only numerical features, as the notion of neigh-
borhood and Lipschtitz estimate is not trivial for categorical and discrete features. For more details, see
Alvarez-Melis and Jaakkola [69]

– 72 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

(a) Credit Card Fraud dataset:
2533 random test points

(b) Heloc Fico dataset:
1076 random test points

Figure 3.7: Estimation of Lipschitz constant on real word datasets (the lower the better). LR
= Logistic Regression, SRA=TabSRALinear, XGB_SHAP=XGBoost+TreeSHAP

Fraud5 (LR = 0.734; TabSRALinear= 0.844; EBM_S=0.831; EBM=0.834; XGboost=0.848).

3.4.3 Ablation study for TabSRALinear

To have more robust and intelligible explanations, we mentioned in Section 3.3.5 and Sec-
tion A.1.1 that it is recommended to consider the size or number of ensemble/head H ∈
{1, 2}. In this Section, we empirically show how varying some hyperparameters, such as
the number of the ensemble, can impact the predictive performance of the TabSRALinear
model. First, we provide some details on the implementation.

We use the same architecture for the key and query encoders (Section 3.3.2) which is
5This dataset is highly imbalanced therefore AUCPR is a more appropriate than AUCROC [17]

– 73 –

Chapter 3

Table 3.5: Influence of the dimension of the query/key encoder dk using the Middle-scale
benchmark. H is set to 1. Each value of dk is tuned with 17 random iterations.

dk Rank Mean Test Score Mean Running Time
min max mean median mean median std mean median

4 1 3 2.203 2 0.933 0.994 0.183 35.946 29.875
8 1 3 1.992 2 0.961 0.997 0.143 39.429 37.529
12 1 3 1.805 2 0.958 0.999 0.168 40.719 34.767

Table 3.6: Influence of the number of ensemble H using the Middle-scale benchmark. Each
value of H is tuned with 30 random iterations.

H Rank Mean Test Score Mean Running Time
min max mean median mean median std mean median

1 1 6 4.169 5 0.954 0.994 0.142 40.758 36.330
2 1 6 3.542 4 0.961 0.996 0.154 48.419 38.817
3 1 6 3.458 3 0.953 0.995 0.162 63.703 57.671
4 1 6 3.127 3 0.963 0.996 0.160 61.878 53.618
5 1 6 3.203 3 0.977 0.997 0.103 91.683 62.889
6 1 6 3.500 4 0.969 0.996 0.116 99.672 73.969

M hidden layers fully connected neural network with ReLU activation. The dimension of
i−th hidden layer is mi = pdk//2

(M−i) for i = 0, ...,M − 1 whereM ≥ 1, dk//2M ≥ 1,
p is the number of features and dk the dimension of the query/key vectors (Section 3.3.2).
With such implementation, the total number of learnable parameters in TabSRALinear is:

N = H

[
(p+ 1) + 2(2− (

1

2
)M)pdk +

1

2
(M − 1)p2dk +

4

3
(1− (

1

4
)M)p2d2k

]
(3.11)

with H the number or size of the ensemble/head.

Dimension of the query/key encoder dk. In Equation 3.11, we can notice that the num-
ber of parameters is quadratic in dk. Therefore, we recommend not setting the value dk
too high (typically consider dk ∈ [4, 8, 12]). In our experiments, dk = 8 is a good default
value (as shown in Table 3.5). Overall, it remains a tunable parameter depending on the
case study.

Number of ensemble H . Increasing the size of the ensemble/head H leads to a rise in
the number of parameters; consequently, extending the processing time, as demonstrated
in Table 3.6. However, the change in the predictive performance is not significant for the
Middle-scale benchmark. As for the trade-off between the running time and intelligibility,
we recommend optimizing H ∈ {1, 2}.

The number of hidden layers in query/key encoder M . So far, we have given the

– 74 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

results of TabSRALinear with one hidden encoderM = 1, in order to avoid learning sus-
picious interactions.

We explore the predictive performance forM = 2 utilizing theMiddle-scale benchmark.
TabSRALinear, withM = 1, emerges victorious in 31 out of 59 tasks. This outcome is not
surprising given our focus on middle-scale datasets. However, we anticipate that employ-
ingM = 2 could yield comparable or potentially superior performance for larger datasets
characterized by potentially strong interactions.

3.4.4 Real world application of TabSRALinear

In this Section, we show the value of the TabSRALinear inherently interpretable solution
considering two real-world applications: bank churnmodeling and credit default prediction
(80/20% Train/Test split).

Application 1: Bank churn modeling

This first example illustrates how one can leverage TabSRALinear’s knowledge incorpora-
tion capabilities more specifically, the negative sense constraint (described in Section 3.3.3)
to mitigate identified bias in data collection.
We consider the Bank churnmodeling dataset where the objective is to predict if a customer
is going to churn. For this type of problem, it is important to explain, or find out for cus-
tomers of interest, the characteristics that may lead them to want to close their accounts.
This enables customer services to accurately target the profiles to be contacted.

More importantly, there is one feature called NumOfProducts, which refers to the num-
ber of products purchased by a customer through the bank (Table 3.7). Intuitively, a cus-

Table 3.7: Statistics for the target feature (Exited) with respect to the feature NumOfProducts
of the churn modeling data set: fraction (Frac), number (Nb).

NumOfProducts Statistics
Frac. Exited (%) Nb. Exited Nb. of observations

1 28 1409 5084
2 8 348 4590
3 83 220 266
4 100 60 60

tomer with a highNumOfProducts is less likely to leave the bank. However, according to the
exploration of the collected data of 10000 recordings (Table 3.7), 100% of customers with 4
products have left the bank. This probably indicates a bias in the data, especially since only
60/10000 observations have 4 products. Similarly, customers with 3 products (266/10000)
have ≈ 83% as churn rate whereas for the majority of customers (with 1 and 2 products),
the risk of churn decreases with the number of products.

– 75 –

Chapter 3

(a) TabSRALinear (b) XGBoost+TreeSHAP

(c) EBMs

Figure 3.8: Bank churn modeling: Effect contribution of the feature NumOfProducts ranging
from 1 to 4

Logistic Regression (LR) is in accordance with human intuition when producing a neg-
ative coefficient for the feature NumOfProducts. Nevertheless, its overall predictive per-
formance (i.e., test AUCROC) is 0.781 compared to 0.857 and 0.874 for EBM_S and EBM
respectively. This performance gap is arguably due to nonlinear effects and interactions
present in this data (see Section A.2.3 for more details). Although their test AUCROC is
good, Explainable Boosting Machines (EBMs) exactly reproduce the bias in the data, as
shown in Figure 3.8c.

Regarding XGBoost, there is a monotonic option in which one can typically constrain
the effect of a given feature to grow monotonically (decreasing). Doing so for XGBoost, as
shown in Figure 3.8b results in a drop of the test AUCROC from 0.872 to 0.82167
In this application, the uniqueness of TabSRALinear lies in its negative weight (sense) con-
straint (Section 3.3.3) which helps maintain a test AUCROC of 0.854 in the addition of the
inherent intelligibility. That is, instead of using a global monotonic constraint (as for LR
and XGBoost), the negative weight constraint helps TabSRALinear to consider a decreasing
effect for a NumOfProducts from 1 to 2. At the same time, this constraint forces the Tab-
SRALinear to not directly use NumOfProducts to assign a high churn score for customers
with more than 3 products, highlighted by a nearly zero effect contribution (Figure 3.8a).
This is achieved by producing an attention weight close to zero for NumOfProducts. For

6Onemaywant to process theNumOfProducts in binary feature, i.e., 1 product versus more than 1 product.
This will help maintain the test AUCROC of XGBoost at approximately 0.828 for this dataset.

7The obtained explanations using TreeSHAP are not actually monotonic decreasing as they are supposed
to be Figure 3.8b. That is, the effect of the NumOfProducts for some customers with 3 products is higher than
the one of some customers with 2 products.

– 76 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

these customers, the churn risk, according to TabSRALinear, is usually due to their Age and
the fact that their Geography=Germany.

In Figure 3.9, we illustrate the feature attribution for two customers, one with a high
churn risk (score) and the remainder with a low score. Specifically, we consider a high
churn risk customer with NumOfProducts=3 (meaning that NumOfProducts should not be
an important churn risk factor/feature for this customer after the bias correction). Both Tab-
SRALinear and XGBoost+TreeSHAP indicate that Age=63 and Geography=Germany are the
two most important features. On the other hand, the low churn risk customer has 2 prod-
ucts, i.e., NumOfProducts=2, is an active member (IsActiveMember_1=1) and is a male (the
churn rate is 16% for Gender=Male and 25%, remaining).

(a) TabSRALinear

(b) XGBoost+TreeSHAP

Figure 3.9: Individual prediction understanding for the bank churn modeling.

These explanations are confirmed by our data exploration because the churn rate of
customers in Germany is twice that of other countries, and customers with Age around 60
are very likely to churn, especially when they are not active members (≈ 90% of churn

– 77 –

Chapter 3

rate). We argue that this category includes customers who are close to or at retirement age
and who are, therefore, likely to be looking for a bank that can advise them on tax, pension,
and wealth management issues. So they are apt to change banks, especially when they are
less active (interacting less with their current bank). Additional results on the interactions
of the Age and ActiveMember indicators are provided in Section A.2.3.

Application 2: Credit Card Default prediction

Another criterion for evaluating model interpretability is the human-friendliness of ex-
planations, meaning they should be concise and easily understood. In this Section, we
demonstrate that TabSRALinear provides concise explanations compared to existing solu-
tions using the credit default dataset. This dataset predicts the default probability of credit
card clients in Taiwan and includes a group of correlated features with:

• 6 related to the repayment status (ranging from -2, paid two months in advance, to 8,
eight months overdue);

• 6 related to the bill statement amount;

• 6 related to the previous payment amount.

In the case of a high default risk client shown in Figure 3.10, TabSRALinear focuses
mainly on PAY_0, which represents the repayment status in the last month before the pre-
diction. Our exploratory analysis confirms that PAY_0 is the most important risque fac-
tor for this dataset. Unlike TabSRALinear, XGBoost+TreeSHAP spreads the contribution
among the set of correlated features, resulting in less sparse feature attribution (Amoukou,
Salaün, and Brunel [9], Kumar, Venkatasubramanian, Scheidegger, and Friedler [10], and
Chen, Covert, Lundberg, and Lee [63]).

To confirm this observation, we illustrate (in Figure 3.11) using all the test points (6000
precisely), the capacity of PAY_0 to separate high default score customers (in yellow).
According to both TabSRALinear and XGBoost, the default risk becomes important from
2 months of delay in the repayment status PAY_0. In addition, TabSRALinear came up to
isolate almost its high default score (in yellow) based on PAY_0 (with the simple rule con-
tribution PAY_0> 3). For XGBoost+TreeSHAP, this separation is less clear, demonstrating
the need to add information or visualization regarding the remaining features (which are
already correlated to PAY_0). We recall that test AUCROC is very close for these two mod-
els: 0.794 for XGBoost and 0.791 for TabSRALinear.

To produce concise explanations (feature attribution), TabSRALinear shows its supe-
riority over other solutions such as XGBoost+TreeSHAP (the conclusion is the same for
EBMs, Section A.2.3). We recall that the feature attribution of TabSRAlinear becomes very
sparse for problems when one hot encoding is used for a categorical feature. That is, all ref-
erence features (with value 0) have exactly 0 effect contribution as for classic linear models.
We summarize themain takeaways from the case studies in two points:

• Full-complexity models can provide superior predictive performance. However, af-
ter performing important model diagnostics (e.g., bias correction, adding monotonic

– 78 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

(a) TabSRALinear

(b) XGBoost+TreeSHAP

Figure 3.10: Individual prediction understanding for the credit card default dataset.

constraints), their performance can drop significantly, even under an inherently in-
terpretable solution that is more flexible for knowledge incorporation (such as Tab-
SRALinear).

• When the sparsity of the explanations is an important consideration, it is worth noth-
ing to test an inherently interpretable model such as TabSRALinear, especially for
datasets with an important number of one-hot encoded features.

3.5 Limitations and Recommendations

In this study, we demonstrated through benchmarking that state-of-the-art inherently in-
terpretable machine learning models generally achieve predictive performance very close
to that of full-complexity counterparts (with less than 4% relative performance gap on 59

– 79 –

Chapter 3

(a) TabSRALinear

(b) XGBoost+TreeSHAP

Figure 3.11: From individual to global effect understanding for the PAY_0 feature of the credit
card default dataset. On x-axis, we show the number ofmonths of delay in the payment ranging
from -2 to 8.

tasks/45 datasets). However, to draw rigorous conclusions about the inductive biases of
the algorithms, the datasets were selected to ensure no concept drift between the training
and test data, balanced classes for binary classification problems, and a limited number of
10,000 observations for training data and 50,000 for test data following Grinsztajn, Oyal-
lon, and Varoquaux [53]. How would the inclusion of concept drift, class imbalance, and
big data (datasets comprising millions of observations) impact results? With respect to the
data size, our findings from the Default benchmark (Table 3.2), which includes up to 285,000
observations, and those from Chang, Caruana, and Goldenberg [66] (6 datasets with over
500,000), suggest that the performances are still comparable. However, further investiga-
tion is necessary for datasets that are (highly) imbalanced and problems involving concept
drift, and we will address this in the next Chapter.

In addition, we listed some models in Section 3.2.1 as inherently interpretable solutions,
but different regulators or stakeholders may have different requirements for the use case
(themodelmust be very transparent, such as a small set of decision rules, linearmodels with
few predictors or features). For certain classes of models, interpretability can be assessed
based on the number of parameters or complexity. For instance, in statistical models like

– 80 –

Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel
Attention-Based Models

Logistic Regression, the model’s interpretability increases as the number of predictors or
non-null parameters decreases. Similarly, in decision trees, interpretability can be assessed
based on the depth or the number of nodes. However, in models such as the Explainable
Boosting Machine (EBM) within Generalized Additive Models (GAMs), interpretability is
not directly quantified by the number of trees or parameters (which can often be in the thou-
sands), but also in terms of predictors, akin to Logistic Regression. This is because all these
trees are aggregated into a one-dimensional piecewise constant function per predictor. Sim-
ilarly, in the case of TabSRALinear, interpretability is not directly linked to the number of
parameters or weights, but rather to the predictors themselves. Therefore, merely count-
ing the number of nodes or weights does not necessarily enhance interpretability (e.g., for
feature attribution), but rather serves the purpose of transparency. Overall, we recommend
that interested readers/practitioners do not consider the term “inherently interpretable" as
generic, but instead define it based on the specific use cases and requirements.

In general, it is challenging, if not impossible, to find a single solution that offers opti-
mal performance across all metrics, including predictive performance, faithfulness, stabil-
ity, and knowledge incorporation, irrespective of the dataset or problem at hand (a concept
known as the "no free lunch theorem").
In some scenarios, accuracy may be the primary concern, while in others, interpretabil-
ity takes precedence. For tabular learning tasks, where understanding the predictions and
discovering hidden patterns is an important consideration, we recommend practitioners to
begin by using both full-complexity models (typically tree ensembles, which, in addition
to performance, are not greedy in terms of computational cost and can be easily explained
using TreeSHAP [64]) and inherently interpretable solutions (typically GAMs: piecewise
constant approach such as EBMs (Nori et al. [27]), piecewise linear approach such as GAMI-
Net (Yang, Zhang, and Sudjianto [30]), and attention-based solution such as TabSRALinear).
Depending on the available computational resources, one could begin by using default hy-
perparameters or a fixed set of hyperparameter configurations. One may opt to keep only
the inherently interpretable models if their predictive performances are comparable to those
of the full-complexity model under consideration, and discard the latter. Otherwise, it may
be advisable to also explain the full-complexitymodel using post hoc tools. After conducting
any necessary model diagnosis (e.g., bias correction), the final model can be chosen based
on the number of explanations that alignwith the data knowledge, after taking advantage of
the Rashomon effect (Müller et al. [161]) (where different “good" predictive models can offer
different explanations8). Additionally, it is important to note that inherently interpretable
solutions generally do not require additional computational cost to produce explanations.

Regarding TabSRALinear, we recommend using it with a good feature selection process
for the following reasons: (i) As NNs based model, it is more sensitive to uninformative
features compared to decision tree-based or piecewise constant approximators (Grinsztajn,
Oyallon, and Varoquaux [53]). (ii) With the current implementation, the number of learned
parameters is quadratic with respect to the number of the input features (for more details,
please refer to Section 3.4.3).

8In general, these explanations do not represent causality, but rather a potential description of the associ-
ation between the observed feature and the target variable

– 81 –

Chapter 3

3.6 Conclusion

In many tabular learning use cases, researchers and practitioners justify the choice of full-
complexity models based on their superior predictive performance over classical statistical
models (e.g., linear models). The latter, on the other hand, are favored for their trans-
parency, which usually leads to a dilemma when it comes to choosing a model for many
real-life use cases. In this study, we investigated the consideration of machine learning (ML)
based inherently interpretable (II) models. Through a thorough benchmarking, we showed
that Inherently Interpretable. II models such as Explainable Boosting Machine, can produce
a predictive performance that is usually very close to full-complexity ML models. Second,
we proposed TabSRALinear, an attention based II model that demonstrates its superiority
when the robustness of explanations and human knowledge incorporation are key consid-
erations.

In this next Chapter, wewill present the generalization of results presented in this Chap-
ter to dynamic environnements where the production or test data evolves over time and
may be subject to concept drift.

– 82 –

Chapter 4

Evaluating the Efficacy of Instance
Incremental vs. Batch Learning in
Delayed Label and Dynamic
Environments

Real-world tabular learning production scenarios typically involve evolving data streams,
where data arrives continuously and its distribution may change over time. In such a set-
ting, most studies in the literature regarding supervised learning favor the use of instance
incremental algorithms due to their ability to adapt to changes in the data distribution. An-
other significant reason for choosing these algorithms is avoid storing observations in mem-
ory as commonly done in batch incremental settings. However, the design of instance in-
cremental algorithms often assumes immediate availability of labels, which is an optimistic
assumption. In many real-world scenarios, such as fraud detection or credit scoring, labels
may be delayed. Consequently, batch incremental algorithms are widely used in many real-
world tasks. This raises an important question: "In delayed settings, is instance incremental
learning the best option regarding predictive performance and computational efficiency?"
Unfortunately, this question has not been studied in depth, probably due to the scarcity of
real datasets containing delayed information. In this Chapter, we conduct a comprehen-
sive empirical evaluation and analysis of this question using a real-world fraud detection
problem and commonly used generated datasets. Our findings indicate that instance incre-
mental learning is not the superior option, considering on one side state-of-the-art models
such as Adaptive Random Forest (ARF) and on the other side batch learning models such
as XGBoost. Additionally, when considering the interpretability of the learning systems,
batch incremental solutions tend to be favored.

83

Chapter 4

4.1 Introduction

Monitoring and adapting/updatingmachine learningmodels is a clear requirement inmany
real-world problems. This is mainly due to the changes that may occur in the data distri-
bution over time, violating the identical distribution hypothesis (between the training and
production/test datasets) usually made in a classical offline machine learning setting. Ad-
ditionally, it is impractical to store all data in memory indefinitely in tasks where data is
generated at high speed. Over the last two decades, many efforts have beenmade to develop
learning systems that respect these requirements and are able to provide predictions in real-
time. Within these solutions, we can differentiate instance incremental models, which have
the capability to update their weights or architecture using just one instance. Most state-
of-the-art models in this category are based on the Hoeffding Tree (Domingos and Hulten
[99]) and are often equipped with drift or change detection mechanisms such as ADaptive
WINdowing (ADWIN) (Bifet and Gavalda [96]). We also have batch incremental learning
systems in which the stream datasets are stored in chunks or batches that are further used
to learn a new static model or update the old one. An important consideration in the evolv-
ing data stream is label delay (Plasse and Adams [133], Grzenda, Gomes, and Bifet [134],
Gomes et al. [132], and Haug, Tramountani, and Kasneci [137]), where labels can be re-
ceived with important delays depending on the task. For example, in card fraud detection,
the true nature of a card transaction (fraudulent or genuine) is only known after some days
or weeks, unless the card owner notices an anomaly on its card and reports it immediately
to the bank. In such a situation, it is unavoidable in a supervised paradigm to store observa-
tions waiting for their labels; otherwise, semi-supervised or unsupervised systems should
be considered (Gomes et al. [132]). Besides labeling delay and for most real-world prob-
lems, it is often a requirement to store observations for some fixed periods. For instance,
banks are legally obliged to store transaction information for several months and should
make it available upon customer request. In this study, we investigate whether instance in-
cremental solutions remain the best option in such delayed situations by considering their
predictive performance and computational efficiency.

Moreover, the interpretability of automatic decision-making systems is required inmany
real work cases (e.g., GDPR, Article 22, IA Act in Europe). Regarding learning with evolving
data streams, interpretability involves understanding the decisionsmade by themodel/system,
as well as changes within the data distribution and the model itself (Haug, Broelemann, and
Kasneci [122]). We show that state-of-the-art batch incremental interpretable models out-
perform instance incremental models in terms of accuracy and explain why they might be
preferable for inherent interpretability for evolving data streams. Overall, we summarize
the contributions of this Chapter as follows:

• We designed a realistic supervised evaluation framework based on interleaved chunks,
combined with label delays (Section 4.2).

• We empirically compare instance incremental, and batch incremental algorithms on
the designed evaluation framework and revealed the superior performance of the
latter in delayed settings using benchmark tabular stream datasets and real-world
fraud modeling problem (Section 4.3).

• We analyze the performance of batch incremental models and demonstrate the im-

– 84 –

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and
Dynamic Environments

portance of storing past observations whenever possible, especially for tasks where
the target event is rare, such as fraud detection (Section 4.3.3).

4.2 Problem formalization

4.2.1 Label delay

We consider a supervised learning setting for a continuous data stream Si = {(xi, yi)}
with i = 1, ..., T where T −→ ∞, i is the unique identifier of each instance. For bi-
nary classification yi ∈ {0, 1} or yi ∈ R for regression tasks. The input feature vector is
x = (x1, ..., xp) ∈ Rp (we do not consider settings where the input dimension changes over
time).

In a delayed setting, labels are available with some delay. We denote by dt(xi) the times-
tamp when observation xi becomes available, dt(yi) is the timestamp of the corresponding
label’s arrival, and ∆t(xi) = dt(yi) − dt(xi) is the label delay. Obviously, δt(yi) ≥ dt(xi)
i.e., ∆t(xi) ≥ 0 and ∆t(xi) = 0 corresponds to the particular case where yi becomes im-
mediately available (before the observation following xi). In general, the units of delay are
seconds, minutes, days, and months, but there are also simplified settings where the delay
is evaluated in terms of instances (Gomes et al. [97] and Grzenda, Gomes, and Bifet [134]).
In such delayed settings, it is unavoidable to store observations until their labels become
available. More precisely, once available, label yi can be used to update the metric and cou-
ple {(xi, yi)} to update the learning model. Following Grzenda, Gomes, and Bifet [134], we
denote by Si = {(xi, ?)} at the timestamp dt(xi), i.e., when the label is not yet available
and Si = {(., yi)} at the timestamp dt(yi), i.e., when the label becomes available.

4.2.2 Predictive performance evaluation methodology

Algorithm 1 summarizes the learning process for instance incremental models, and algo-
rithm 2 summarizes the one for batch incremental models.

The inference is made in real-time, i.e., incrementally per instance, as in common stream
learning, but the evaluationmetric is applied to a chunk or batch of predictions (with poten-
tially varying sizes). The batch is chosen such that there are sufficient labeled observations
for consistent performance evaluation (we refer to this B_label[idB].isFull() line 13 Al-
gorithm 1 and line 11 Algorithm 2). For real-world problems, this batch is usually defined
in terms of time, for example, one day, one month of predictions, or one year, depending
on the speed of the stream and the label delay. For the instance incremental and batch
incremental methods, the observations are stored in a buffer B_X, waiting for their labels,
which may be available after some delay. The main difference in data storage between the
two learning strategies lies in the updating requirements. For instance incremental learn-
ing, every observation xi is stored in the buffer, and once its label yi becomes available,
the pair (xi, yi) is used immediately to update the model. For batch incremental learn-

– 85 –

Chapter 4

Algorithm 1 Evaluation for instance incremental models
Require: S1, S2, S3,... - data stream, f -initial pretrained model, eval_metric - evaluation

metric e.g., Accuracy, AUCROC, AUCPR.
Ensure: B_X, B_label, B_pred - buffer for storing observations, labels, predictions respec-

tively
1: for Si, i = 1, ... do
2: i← get_index(Si)
3: idB ← get_batch(Si)
4: if Si = {(xi, ?)} then ▷ New unlabeled instance arrived
5: ypred ← f(xi) ▷ Get the real-time prediction
6: B_X[idB][i].add(xi) ▷ Add the observation to the buffer
7: B_pred[idB][i].add(ypred)
8: else if Si = {(., yi)} then ▷ The label of the instance i becomes available
9: B_label[idB][i].add(yi)
10: x← B_X[idB][i].pop() ▷ get the observation and remove it from the buffer
11: train(f, {(x, yi)}) ▷ Update the model
12: end if
13: if B_label[idB].isFull() then ▷ There is enough observations for evaluation
14: result← eval_metric(B_label[idB],B_pred[idB])
15: display(idB, result)

16: update(B_label) ▷ update the buffer by deleting old labels
17: update(B_pred)
18: end if
19: end for

– 86 –

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and
Dynamic Environments

ing, observations are stored until there are enough labels for retraining or updating the
batch model (line 14 Algorithm 2). Therefore, batch incremental systems may require more
storage resources than instance incremental ones. However, in situations where delay is
significant and variable, the storage requirements can be quite similar, as highlighted in
the fraud dataset (Section 4.3.1). Without loss of generality, we assume in this study that
the number of labeled instances required for retraining or updating the supervised batch
models is equal to or greater than the number required for periodic evaluation.

Finally, our evaluation framework includes the option of using a pre-trained model at
the beginning of the stream for both instance incremental and batch incremental learning.
For many real-world problems, an initial model is typically optimized offline using data col-
lected over time before deploying a learning system. Therefore, the stream data represents
the starting point of production or deployment. This practice is becoming common in the
incremental learning literature, where a fraction of data is used either to train an initial
model before the stream begins [122] or for hyperparameter optimization (Montiel et al.
[117]).

Algorithm 2 Evaluation for batch incremental models
Require: S1, S2, S3,... - data stream, f -initial pretrained model, eval_metric - evaluation metric

e.g., Accuracy, AUCROC, AUCPR.
Ensure: B_X, B_label, B_pred, - buffer for storing observations, labels, predictions respectively
1: for Si, i = 1, ... do
2: i← get_index(Si)
3: idB ← get_batch(Si)
4: if Si = {(xi, ?)} then
5: ypred ← f(xi) ▷ Get the real-time prediction
6: B_X[idB][i].add(xi) ▷ Add the observation to the buffer
7: B_pred[idB][i].add(ypred)
8: else if Si = {(., yi)} then
9: B_label[idB][i].add(yi)
10: end if
11: if B_label[idB].isFull() then
12: result← eval_metric(B_label[idB],B_pred[idB])
13: display(idB, result)

14: if B_label.isFullForTrain() then
15: itrain, labels← Y_label.get_train_batch()
16: X ← B_X.get_batch_data(itrain)
17: train(f, {X, labels}) ▷ Update the model
18: update(B_X) ▷ update the buffer by deleting unnecessary observations
19: update(B_label)
20: update(B_pred)
21: end if
22: end if
23: end for

– 87 –

Chapter 4

4.3 Experiment analysis

4.3.1 Experiment setup

Datasets

We consider two types of datasets: (1) benchmark datasets for generated binary classifi-
cation, well-known in the literature on evolving data streams (Gomes et al. [97], Montiel
et al. [117], Gunasekara et al. [106], and Haug, Broelemann, and Kasneci [122]), denoted as
generated benchmark, and (2) a real-world bank transfer Fraud detection dataset.

Generated benchmark. The datasets in this benchmark are publicly available and are
summarized in Table 4.1:

• AGRa (Gomes et al. [97], Montiel et al. [117], and Gunasekara et al. [106]): This
dataset includes six discrete features and three continuous features. Instances are
categorized into two classes using various functions, some of which adhere to deci-
sion rules, making it conducive to decision tree analysis. An abrupt drift occurs after
every 250,000 instances (three in total).

• AGRg (Gomes et al. [97], Montiel et al. [117], and Gunasekara et al. [106]): Similar to
AGRa. Here, a gradual drift is used.

• HYPERf (Gomes et al. [97], Montiel et al. [117], and Haug, Broelemann, and Kasneci
[122]): Simulates an incremental (fast) drift by changing the equation of hyperplane
separating the two classes over time. This dataset is, therefore, linear model friendly.
The number of features is set to 10.

• SEAa (Gomes et al. [97], Montiel et al. [117], and Haug, Broelemann, and Kasneci
[122]): It comprises three continuous features (x1, x2, x3), with only the first two
being pertinent to the target class. The first two dimensions are divided into four
blocks. Within each block, an instance is assigned to class 1 if x1 + x2 ≤ θ, and
to class 0 otherwise, with θ taking values from the set 8, 9, 7, 9.5. Additionally, an
abrupt drift occurs after every 250,000 instances (three in total).

• SEAg (Gomes et al. [97] and Montiel et al. [117]): Similar to SEAa. Here, a gradual
drift is employed rather than an abrupt one.

Induce label delay in the generated benchmark. First, 10% of each dataset (100,000
instances) is reserved as offline collected data, used for hyperparameter tuning (Montiel
et al. [117]) and pretraining an initial model (Haug, Broelemann, and Kasneci [122]) in both
instance incremental and batch incremental learning. Therefore, 90% of each dataset is
used for stream (online) evaluation. Each evaluation batch (Algorithm 2) contains approx-
imately 1% of the dataset. Specifically, the evaluation batch size is generated following a
Poisson distribution with a mean of 10,000. This varying evaluation batch size effectively
reflects real-world settings, where monitoring logs of deployed learning systems must be

– 88 –

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and
Dynamic Environments

Table 4.1: Tabular benchmark for incremental algorithms evaluation. N : number of in-
stances, p: number of features, Type: Synthetic and Real. Drift A: abrupt, G: gradual, If :
incremental fast, and ?: unknown, MC: Minority Class

Datasets N p # classes Type Drift MC (%)
AGRa 1M 9 2 S A 47.17
AGRg 1M 9 2 S G 47.17

HYPERf 1M 10 2 S If 50. 00
SEAa 1M 3 2 S A 40.09
SEAg 1M 3 2 S G 40.09
Fraud ∼ 6.5 M 18 2 R ? <0.10

displayed periodically (every day, week, or year, depending on the stream’s speed). How-
ever, the number of instances may vary from one period to another.

In this study, we generated the label delay by assuming it is stochastic and follows a
Poisson distribution. More precisely, we assume that the delay ∆t(xi) for each instance
observation xi follows a Poisson distribution with a mean of α× 10, 000 instances, where
α ∈ {0, 0.1, 1, 2, 3, 4, 5, 6, 7}.

Fraud dataset. The task consists in using known information about fraudulent bank
transfer scenarios (via supervised machine learning) to assign a fraud score to each newly
added IBAN (International Bank Account Number). Specifically, the goal is to predict the
probability that a new IBAN will be used for fraudulent transfers within the next 30 days.
The motivation for investigating instance incremental learning is the variation in label de-
lay based on class labels. Most fraudulent IBANs are identified within a few days, while the
remaining IBANs are automatically labeled as genuine after 30 days. Hence, one might
question whether quickly adapting the learning model with these fraudulent instances
could yield better performance compared to a batch learning strategy, where the model
is updated only after collecting labels for at least a month. For example, in batch learning,
labels from September are collected by the end of October, and the model is updated in
early November, whereas instance incremental learning updates the model with Septem-
ber’s fraudulent data as soon as it becomes available. A key challenge is the class imbalance,
where only about 0.10% of instances are fraudulent on average. As a result, it is necessary
to store at least 99.90% of instances for 30 days due to label delay. Additionally, unlike
datasets in the Generated benchmark, this dataset may experience various types of drift,
such as gradual drift combining abrupt changes, and some concepts may reoccur over time.
The sample used in this study comprises approximately 6.5 million observations collected
from September 2021 to August 2022. The initial three months (September, October, and
November) are reserved as offline collection for hyperparameter optimization and initial
model training. The stream evaluation spans eight months (from January 2022 to August
2022), with each month comprising approximately 540,000 instances.

– 89 –

Chapter 4

Models benchmarked

We consider the following instance incremental models (described in Section 2.2.3):

• Adaptive Random Forest (ARF) [97]: This model is one of the best performing
among instance incremental algorithms (Gomes et al. [97], Montiel et al. [117], and
Gunasekara et al. [106]). We use ARF with the ADWIN detector (Bifet and Gavalda
[96]).

• Leveraging Bagging with Hoeffding Tree as base learner (LB_HT) [98]: We
include this model in our comparison as it is the best performing model in Read et al.
[113].

• Leveraging Bagging with Logistic Regression as base learner (LB_LR) [98]: We
explore in this study a non tree base learner for Leveraging Bagging. More specifically
we use the Logistic Regression (LR) with a Stochastic Gradient Optimizer (SGD).

Alongside state-of-the-art instance incremental models, we include the following glass box
algorithms for interpretability purposes, as discussed in Section 4.1:

• Logistic Regression (LR): This model can be used in both batch or instance incre-
mentalmodels. In this study, we use it as an instance incrementalmodel by combining
it with a Stochastic Gradient Optimizer (SGD)

• Hoeffding Tree (HT) [99]: This model offers interpretable and adaptive decision
rules by following paths in the tree, particularly if it’s shallow. Thus, we cap the
maximum depth at 6. Additionally, we employ Naive Bayes Adaptive for leaf predic-
tion, which enhances the performance of the traditional HT (Haug, Broelemann, and
Kasneci [122] and Gama, Rocha, and Medas [162]).

• Hoeffding Adaptive Tree (HAT): The same model as the Hoeffding Tree, but with
ADWIN (Bifet and Gavalda [96]) for drift handling.

For all instance incremental models, we used the Python-based package River (Montiel et
al. [115]). As batch incremental models, we consider:

• XGBoost [36]: It is a leading model in batch learning across various real-world ap-
plications and tabular learning competitions (as shown in Chapter 3). We make XG-
Boost adaptive by retraining it from scratch after every new batch (Algorithm 2, line
17), referred to as r_XGBoost. Following Montiel et al. [117] and Dal Pozzolo et al.
[131], we use a stacking of the last (M = 3) retrained XGBoost models, denoted
as B_XGBoost. Although stacking may increase prediction time, it helps preserve
some previously learned concepts. We don’t include Adaptive XGBoost ([117]) as it
was already outperformed by the optimized version in B_XGBoost.

• Explainable Boosting Machine (EBM) [163]: We include EBM in our compari-
son for its inherent interpretability—its shape function can be monitored to detect

– 90 –

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and
Dynamic Environments

changes over time—unlike XGBoost. Similarly to XGBoost, we used retraining from
scratch (r_EBM) and stacking (B_EBM) to make the EBM model adaptive over time.
Rather than stacking naively (M = 3) EBM models, which may compromise inter-
pretability, we merged the shape functions1 of the stacked models into a single final
EBM model.

• TabSRA [164]: This model refers to the TabSRALinear model proposed in Chapter
3. Monitoring TabSRA’s attention weights and inherent feature attributions can help
to understand changes over time. We also used the retraining (r_TabSRA) to make
the TabSRA model adaptive. In addition, we investigate the continual fine-tuning of
the weights of an initially trained TabSRA model. The learning rate is reduced over
time to avoid a catastrophic forgetting of previously learned concepts. This strategy
is named u_TabSRA.

Experiment details on the generated benchmark

Tuning step. The experiments on the Generated benchmark are done on a 64-Core Pro-
cessor CPU machine. For both instance and batch incremental models, hyperparameter
optimization is conducted for each dataset using 10% of the data (considered as offline
collected data). Specifically, 30 trials of Bayesian optimization (using Optuna [165]) are
employed, with a maximum search time of 6 hours for each model and dataset. The best
validation model (using prequential evaluation for instance incremental models and a 70/30
train/validation split for batch incremental models) is initialized at the stream’s outset and
updated over time for instance incremental models. To ensure a fair comparison, hyper-
parameter optimization is not conducted during the stream for batch incremental models;
instead, the best hyperparameter configuration obtained from offline optimization is used
for model retraining and updating, as outlined in Montiel et al. [117]. Furthermore, only
70% of the batch is used for training during the data stream (with 30% reserved, as com-
monly practiced in batch learning, for validation, post hoc analysis, early stopping, bias
correction, etc.). For simplicity, the evaluation batch in the Generated benchmark matches
the training batch (Algorithm 2, lines 11 and 14)2. For the Fraud dataset, we examined a
scenario where the evaluation batch spans one month while the training batch covers three
months (Section 4.3.3).

Finally, for all ensemble models (ARF, LB, XGBoost), the maximum number of learners
is set to 100, and for tree-based models (ARF, LB_HT, HAT, HT), the maximum depth is lim-
ited to 6 (please checkGitHub3 for information regarding the hyperparameter search space).

Evaluation metric and results aggregation. For numerous binary classification tasks,
such as fraud detection and online credit scoring, practitioners often seek the classifier’s
confidence output rather than just the binary class obtained by applying a threshold. There-

1https://interpret.ml/docs/python/examples/merge-ebms.html
2In this specific scenario, our proposed evaluation methodology aligns with interleaved chunks for batch

incremental models.
3https://github.com/anselmeamekoe/DelayedLabelStream

– 91 –

https://github.com/anselmeamekoe/DelayedLabelStream
https://interpret.ml/docs/python/examples/merge-ebms.html
https://github.com/anselmeamekoe/DelayedLabelStream

Chapter 4

fore, we suggest using AUCROC (Bradley [111]) as the evaluation metric for each stream
batch. To summarize the results across all batches (90 in total), we calculate the average
and standard deviation of the AUCROC values. Additionally, we include the running time
as a metric to assess the computational efficiency of each algorithm.

We point out that we do not use cross-validation in our evaluation process, as we cannot
alter observations’ order without introducing artificial drift (Haug, Broelemann, and Kas-
neci [122]). There are approaches of using different seeds in model training if applicable
(Gunasekara et al. [106]) or using distributed evaluation (Bifet et al. [166]). However, they
are very computationally intensive, especially when adding hyperparameters optimization
steps. For more details about the statistical significance in evaluating data streams, we re-
fer the interested readers to Bifet et al. [166], Haug, Tramountani, and Kasneci [137], and
Haug, Broelemann, and Kasneci [122].

We analyze in the next Section the results on the Generated benchmark, which contains
homogeneous datasets with well-known drift types and difficulties.

4.3.2 Results on the generated benchmark

Do instance incremental algorithms really outperform batch incremental ones?

We analyze the predictive performance (Table 4.2 and Figure 4.1) by considering first a no-
delay setting (Read et al. [113], Gomes et al. [97], Montiel et al. [117], and Gunasekara et
al. [106]), however, using an initial tuning step for both instance and batch incremental as
described in Section 4.3.1 in contrast to previous work. The key findings are:

• With an initial tuning step, the best batch incremental system with an appropriate
learning batch often achieves a comparable or even superior performance to instance
incremental systems for known unique type of drift (including abrupt, gradual, in-
cremental).

• When considering interpretable solutions, batch incremental models (such as EBM
and TabSRA) offer the advantage of less frequent changes in weights and architec-
ture, making them easier for humans to follow. In addition, these models generally
outperform instance incremental models in terms of predictive performance.

An important observation regarding theGenerated benchmark is the impact of the inductive
biases of the learning model. Specifically, linear-based models like LR and LB_LR perform
poorly on piece-wise constant-like datasets (AGRa, AGRg). Conversely, tree-based models
(DT, HAT, HT) are less effective for modeling continuous (linear) data streams like HYPERf ,
although ensembling mitigates this issue (for XGBoost, EBM, LB_HT, ARF). Hence, we
emphasize the importance of alerting readers/practitioners that relying solely on average
performance measures from synthetic benchmark, which encompasses varying (unequal)
types of bias/difficulty, to select stream learning approaches may be misleading for real-
world problems.

Regarding the adaptation over time, the Hoeffding Tree (HT) appears to be more af-
fected by changes (Figure 4.1a and 4.1b) arguably due to its lack of explicit drift handling

– 92 –

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and
Dynamic Environments

Ta
bl
e
4.
2:

Pr
ed
ic
tiv

e
pe
rf
or
m
an

ce
on

th
e
ge
ne
ra
te
d
be
nc
hm

ar
k
in

no
de
la
y
se
tt
in
g.
M
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
A
U
C
RO

C
(%
),
re
po
rt
ed

fo
ra

da
ta

st
re
am

sp
lit

in
90

ba
tc
he
s.
Ita

lic
hi
gh
lig

ht
st
he

be
st
pe
rf
or
m
an

ce
w
he
n
co
m
pa
ri
ng

in
he
re
nt
ly

in
te
rp
re
ta
bl
e
(II
)m

od
el
s,
an

d
bo
ld

is
us
ed

fo
r

th
e
ov
er
al
lb
es
t-
pe
rf
or
m
in
g
m
od
el
.W

e
al
so

re
po
rt
th
e
av
er
ag
e
(r
es
p.
th
e
av
er
ag
e
no
rm

al
iz
ed

by
th
e
be
st
A
U
C
RO

C
of
th
e
gi
ve
n
da
ta
se
t)
ac
ro
ss
th
e

5
st
re
am

da
ta
se
ts
de
no
te
d
as

Av
g
(r
es
p.
N
_A

vg
),
as

w
el
la
st
he

av
er
ag
e
ra
nk

(A
vg
_R

an
k)
.T
yp
e:
II
=I
nh

er
en
tly

in
te
rp
re
ta
bl
e,
FC

=
Fu
ll
co
m
pl
ex
ity

m
od
el

M
od

el
Ty

pe
AG

R a
AG

R g
H
YP

ER
f

SE
A
a

SE
A
g

Av
g

N
_A

vg
Av

g_
Ra

nk

LB
_H

T
FC

94
.54

±
4.4

3
90
.96

±
6.7

4
93
.41

±
0.3

9
88
.90

±
0.8

9
88
.87

±
0.8

3
91
.34

98
.01

6.2
0

LB
_L

R
FC

56
.40

±
5.9

4
55
.92

±
5.5

9
94
.80

±
0.2

3
88
.83

±
0.8

8
88
.78

±
0.8

4
76
.94

83
.14

9.0
0

A
RF

FC
94
.82

±
4.1

2
92
.12

±
6.1

2
90
.36

±
1.2

9
88
.92

±
0.8

9
88
.89

±
0.8

4
91
.02

97
.67

6.0
0

r_
XG

Bo
os
t

FC
97

.3
6

±
8.1

6
96

.2
5

±
4.8

0
92
.89

±
0.9

8
88
.80

±
0.8

6
88
.75

±
0.8

7
92

.8
1

99
.5
2

5.4
0

B_
XG

Bo
os
t

FC
96
.59

±
9.1

3
95
.91

±
5.7

2
92
.27

±
1.4

0
88
.89

±
0.8

8
88
.84

±
0.8

6
92
.50

99
.21

5.8
0

H
T

II
86
.50

±
12
.52

79
.77

±
13
.69

65
.80

±
15
.17

88
.28

±
0.5

0
88
.24

±
0.4

9
81
.72

87
.92

11
.60

H
AT

II
93
.86

±
4.9

8
89
.72

±
7.2

3
89
.98

±
1.5

2
88
.38

±
0.9

0
88
.21

±
0.7

5
90
.03

96
.62

10
.80

LR
II

58
.34

±
7.4

9
58
.12

±
6.9

8
94

.8
5

±
0.2

3
88
.90

±
0.8

8
88
.86

±
0.8

4
77
.82

84
.05

7.0
0

D
T

II
96
.12

±
7.7

0
95
.09

±
4.9

0
86
.52

±
1.8

6
87
.87

±
1.2

9
87
.74

±
0.8

9
90
.67

97
.25

9.8
0

r_
EB

M
II

95
.84

±
8.2

9
95
.21

±
4.8

6
93
.43

±
0.9

7
88
.91

±
0.9

0
88
.87

±
0.8

6
92
.45

99
.16

4.4
0

B_
EB

M
II

95
.49

±
9.4

9
94
.84

±
5.6

9
92
.41

±
1.9

0
88

.9
4

±
0.9

0
88

.9
0

±
0.8

6
92
.12

98
.81

4.8
0

r_
Ta

bS
RA

II
97
.10

±
8.2

3
95
.73

±
5.2

3
93
.07

±
1.2

0
88
.89

±
0.9

1
88
.88

±
0.8

6
92
.7
3

99
.4
5

4.
20

u_
Ta

bS
RA

II
97
.1
6

±
7.7

9
95
.7
5

±
5.2

2
92
.78

±
1.2

0
88
.74

±
1.3

0
88
.83

±
0.8

5
92
.65

99
.36

6.0
0

– 93 –

Chapter 4

(a) AGRg : gradual drift (no delay) (b) HYPERf : incremental fast (no delay)

(c) AGRg : gradual drift (delay factor=7) (d) HYPERf : incremental fast (delay factor=7)

Figure 4.1: AUCROC over time. The x-axis is the identifier (ID) of the batch/chunk, which is
up to 90. The delay factor 0 corresponds to the no-delay setting, and 7 corresponds to the Poisson
stochastic delay of average of 70,000 instances. The red vertical line indicates the change point
for the SEA dataset Figure 4.1a and 4.1c.

compared to the HAT (Hoeffding Adaptive Tree). We recall that the maximum depth of the
tree is capped to 6 (for DT, HT, HAT) during the hyperparameters optimization; otherwise,
it would be challenging to consider them as inherently interpretable. Overall, we observe
that batch-based solutions (whether inherently interpretable or black box) can adapt to
changes through incremental retraining, even without explicit drift management.

An important observation from this experimentation is the hyperparameter sensitiv-
ity of tree-based instance incremental algorithms. As long as the concept4 on which the
parameters were tuned is still valid, instance incremental models with good inductive bi-
ases (tree-based ones such as ARF, LB_HT) manage to match the performance of batch
incremental counterparts (highlighted by the Figure 4.1a for AGRg dataset with Batch Id
∈ [0, 15]). However, after the change or drift (Batch Id ∈ [15, 40]) these models struggle to
converge, unlike batch learners. Yet, once the initial concept reoccurs (Batch Id ∈]40, 65[)
the models (instance incremental as well) converge to perfect AUCROC again.

Finally, we observe that for this Generated benchmark, employing stacking/updating of
4The function 5 of the Agrawal generator.

– 94 –

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and
Dynamic Environments

(a) AGRa: abrupt drift (b) AGRg : gradual drift

(c) SEAa: abrupt drift (d) HYPERf : If

Figure 4.2: Impact of the label delay on the predictive performance. The x-axis indicates the
delay factor ranging from 0 (no delay) to 7 (the Poisson stochastic delay of average 70,000 in-
stances). The best model for each category is reported to make the figures more clearer (LB_LR,
HT, u_TabSRA, B_EBM, B_EBM) as discarded. If = incremental fast drift.

models learned over different periods (B_XGBoost, B_EBM, u_TabSRA) does not yield im-
proved predictive performance; instead, it increases computational resources or running
time (Table 4.3). We argue that this is due to the simplicity of the datasets, where typically
small learning datasets (roughly 10,000 instances) suffice to learn the underlying concept.
However, for more complex tasks, we anticipate that stacking may prove beneficial, as
demonstrated in Section 4.3.3 for the Fraud dataset.

How does the label delay impact incremental algorithms?

After comparing algorithms in no delay settings, it is crucial to consider the delay setting,
which involves answering the following questions: (1) How does the label delay impact the
performance of the stream learning system? (2) Is instance incremental learning the best op-
tion regarding the predictive performance in such delayed settings?
From Figure 4.1, we can notice that the labeling delay impacts the recovery or adaptation

– 95 –

Chapter 4

of both instance and batch learners to changes, consequently affecting overall performance
(Figure 4.2), consistent with findings in Gomes et al. [97] and Gomes et al. [132]. However,
this impact tends to be limited for low-severity drift/changes. For the SEAa (Figure 4.2c)
dataset for instance (where the changes in the simulated decision functions are not sig-
nificant), the average drop in AUCROC in delayed context seems very low, even negative
for some models (for both gradual and abrupt drift) in contrast to other generated datasets
(AGRg, AGRa, HYPERf).

Besides the impact of the labeling delay on all stream learning models, we can notice
(Figure 4.2) that the best-performing batch learner usually provides similar or superior re-
sults compared to its instance counterpart regardless of the length of the delay.

Computational efficiency

In this part, runtimes of the compared models during the stream are analyzed, encompass-
ing retraining and inference, as a measure of computational efficiency. We recognize that
relying solely on runtime may not suffice, as it can vary with implementation. For tree-
based models, parameter or node count is sometimes considered (Montiel et al. [117]), yet
comparing computational efficiency across different model classes (e.g., neural networks
versus tree-based models) using this metric is challenging.

As shown in Table 4.3, state-of-the-art instance incremental learners like ARF are over
twice as costly as batch counterparts such as r_XGBoost. We argue that this is due to the ex-
plicit drift monitoring process employed in instance-based learning models. Furthermore,
employing batch model stacking (B_XGBoost, B_EBM) tends to notably increase inference
time and, consequently, the runtime of the stream.

Concerning inherently interpretable solutions, batch incremental options like EBM and
TabSRA exhibit longer runtimes compared to instance incremental models (HT, HAT, LR).
It is worth noting that the significant runtime difference between Decision Tree (DT) and
shallow instance incremental learners (HT, HAT, LR) is arguably attributed to the data fil-
tering process required for selecting new batches for model retraining/updating (Ligne 15
Algorithm 2).

4.3.3 Results on the Fraud dataset

In this Section, we compare the models using the Fraud dataset (described in Section 4.3.1).
Unlike the Generated benchmark, this dataset displays a significant class imbalance (Table
4.1), a common situation in real-world applications such as fraud detection. For this dataset,
we also consider both instance and batch incremental models presented in Section 4.3.1 ex-
cept LB_LR which tends to be particularly ineffective at modeling non-linear functions and
has high runtime demands (Table 4.3). Furthermore, we incorporate two learning strategies
for batch learners:

• Static: All batch learners are optimized using the initial offline collected datasets of
three months but are not retrained/updated during the stream. This approach saves

– 96 –

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and
Dynamic Environments

Table 4.3: Running time of algorithms (s). The average (Avg.) and standard deviation (Std.)
time (the smaller, the better) is reported from 9 delayed configurations (factor).

Model Avg. runtime Std. runtime

LB_HT 5837.58 4428.63
LB_LR 7279.24 4273.45
ARF 3702.08 2622.41
r_XGBoost 1688.97 210.53
B_XGBoost 5101.62 1186.93
HT 60.07 11.90
HAT 248.20 63.00
LR 83.93 29.07
DT 976.94 47.11
r_EBM 1456.71 403.83
B_EBM 4167.64 3244.12
r_TabSRA 2117.04 298.78
u_TabSRA 2685.77 166.45

from retraining and validation costs, but may lead to significant performance drop
after severe changes or drifts. Models trained with the static strategy will be prefixed
with static_.

• Propagate: The instance from past fixed number of chunks (months in our case) are
propagated and combined with the currently available one for retraining/updating
the batchmodel. This approachmay be very beneficial for tasks where certain groups
or categories are very underrepresented or target event is very rare (Dal Pozzolo et al.
[131]). However, this approach may add an additional cost for storing past batches
and may impair the adaptation to the newest concept, especially when the number
of past-considered chunks is important. In this study, we explore the trade-off by
investigating the combination of the two previous months (chunks) with the current
one. This situation is equivalent to the case where the learning chunk is three times
the evaluation batch (Algorithm 2). Models trained with this strategy will be prefixed
with propagate_.

Similarly to the Generated benchmark, we use an initial optimization step for the Fraud
dataset, as highlighted in Section 4.3.1. We optimize the batch incremental algorithm using
10 different parameter configurations and the instance incremental algorithms using 15
configurations5 including resampling methods (Ferreira et al. [125] and Aguiar, Krawczyk,
and Cano [167]). We consider undersampling for ARF and LB_HT, which already have a
long runtime due to online bagging, and investigate undersampling forHT andHAT. For LR,
we examine cost sensitivity by modifying the misclassification cost of positive examples in

5The experiment on this dataset is conducted on a business Google Cloud Platform provided by our data
provider, where running very long experiments is infeasible. Therefore, we used a maximum of 15 iterations
(instead of 30 for the generated datasets) as a trade-off between tunability and predictive accuracy

– 97 –

Chapter 4

Table 4.4: Predictive performance on the fraud dataset. The evaluation is done in batches of
one month, starting from January 2022 to August 2022, while predictions are made in real-
time (one instance at a time). AUCPR is used as a metric, and we also report the Average (Avg)
and Standard deviation (Std) over the 8 months. Italic highlights the best performance when
comparing inherently interpretable models (HT, HAT, LR, DT, EBM, TabSRA) models, and bold
is used for the overall best-performing model.

Model Jan Fev Mar Apr May Jun Jul Aug Avg Std
LB_HT 5.26 7.32 10.89 6.76 10.18 8.27 10.65 19.27 9.83 4.03
ARF 9.38 14.08 22.73 13.12 12.50 12.27 9.90 19.87 14.23 4.39
static_XGBoost 15.68 23.12 33.76 14.69 19.48 17.31 12.75 22.55 19.92 6.25
r_XGBoost 15.68 23.00 24.96 17.53 18.23 20.54 14.65 18.60 19.15 3.29
B_XGBoost 15.68 23.00 24.49 18.44 21.02 23.05 16.36 23.78 20.73 3.24
propagate_XGBoost 15.68 27.69 32.04 18.24 22.85 23.80 18.05 28.92 23.41 5.46
HT 4.67 10.03 15.27 7.20 6.43 4.10 6.11 16.63 8.80 4.46
HAT 1.49 0.55 1.77 1.36 0.87 1.10 2.48 5.99 1.95 1.62
LR 6.91 9.11 12.25 6.74 7.32 5.77 7.52 15.79 8.93 3.19
static_DT 7.39 10.88 12.01 4.98 4.71 4.31 4.13 6.23 6.83 2.86
r_DT 7.39 11.31 8.07 7.05 7.52 8.13 7.62 6.59 7.96 1.35
propagate_DT 7.39 13.82 14.68 10.72 10.74 9.15 8.63 19.83 11.87 3.80
static_TabSRA 12.60 17.91 23.69 11.06 13.62 8.91 9.81 20.94 14.82 5.08
r_TabSRA 12.60 14.17 22.68 15.03 15.21 13.95 11.47 20.19 15.66 3.58
u_TabSRA 12.60 19.10 26.38 16.65 18.73 19.01 13.99 19.56 18.25 3.91
propagate_TabSRA 12.60 19.24 26.74 15.52 18.88 20.56 14.41 22.86 18.85 4.35
static_EBM 13.36 20.80 25.94 12.26 14.85 16.73 9.27 14.24 15.93 4.91
r_EBM 13.36 22.03 22.92 15.33 16.85 18.06 12.72 17.49 17.35 3.45
B_EBM 13.36 20.80 25.94 17.21 17.55 21.55 15.06 22.06 19.04 3.89
propagate_EBM 13.36 22.88 24.92 16.72 17.44 21.59 15.14 26.20 19.78 4.45

the hyperparameter configuration6. The performance of instance incremental models was
particularly poor without explicitly handling class imbalance.

As shown in Table 4.4, the best batch solution, XGBoost, consistently outperforms
(over the 8 months) the best instance incremental solution, namely Adaptive Random For-
est (ARF). Similarly, the Explainable Boosting Machine (EBM) provides the best average
AUCPR among the inherently interpretable solutions, surpassing all the instance incre-
mental solutions. Besides the overall superior predictive performance of batch incremen-
tal solutions in this problem, the propagate strategy, which consists in using the tree last
months (chunks) of labeled data, tends to provide the best results. For XGBoost, the average
AUCPR gain is up to 22% compared to the retrain strategy (r_XGBoost) and 12% compared
to the stacking strategy. We argue that this is because the target event (fraudulent exam-
ples) is rare. Consequently, using only one chunk (one month) of observation should not

6https://riverml.xyz/0.9.0/examples/imbalanced-learning/

– 98 –

https://riverml.xyz/0.9.0/examples/imbalanced-learning/

Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and
Dynamic Environments

be enough to retrain a consistent learning model, and finding the best weighting combi-
nation for the stacking approach is not an easy task. This finding confirms the results of
Wang et al. [118] where the author demonstrates that varying the number of observations
in the chunks (from 3,000 to 12,000 observations) increases linearly the benefit (the number
of frauds detected) by the learning model. Particularly for the fraud dataset investigated
in our study, the number of fraudulent examples seen during the training or the updating
of the model is very crucial for the predictive performance, highlighted by the fact that
a static approach with 3 months of training data (static_XGBoost) outperforms on aver-
age the periodical retraining with 1 month (chunk) of observations (r_XGBoost). It also
indicates that some concepts may reappear over time (e.g., static_XGBoost outperforms
propagate_XGBoost for March). Overall, the results on this dataset suggest that storing
some past observations may be advantageous for the streaming learning model.

We also note an intriguing result (Table 4.4) for inherently interpretable instance incre-
mental models: Hoeffding Tree (HT) outperforms the HT equipped with the ADWIN drift
detector (HAT) in contrast to the results on the Generated benchmark (Table 4.2). We argue
that for such a dataset where the target event of interest is very rare (highly imbalanced
dataset), explicit drift handling may be biased toward negative examples. This is because
many statistical drift detectors rely on accuracy metrics or error rates. Consequently, the
HAT model may discard some parts (or branches) of the tree that are specialized in identi-
fying concepts (fraudulent schemes) that may reoccur over time.

4.4 Conclusion and Discussions

We proposed a thorough comparison between batch and instance incremental models by
examining the usefulness of the latter in situations where labels become available with
varying delays, and interpretability is crucial. Our findings on commonly used synthetic
data streams demonstrate that the best batch incremental approach (fully complex or in-
herently interpretable), combined with an effective updating strategy, provides similar or
better performance than instance incremental counterparts. Additionally, the superior per-
formance of batch learners is illustrated using a real-world fraud detection problem where
the target class is scarce. We explain why, for such a dataset, it is necessary to store some
observations while waiting for the labels due to the delay. Furthermore, we demonstrate
how storing some old but limited chunks of observations can benefit batch incremental
models, leading to up to a 22% relative improvement in AUCPR compared to using only
one chunk. Although we illustrate the usefulness of batch incremental solutions, we do
not cover the choice of the optimal batch (chunk) size, as it may depend on several factors
(e.g., the frequency of the target event, bias handling for underrepresented groups) that we
leave for future study. Nevertheless, we believe that choosing the learning batch based on
evaluation date (daily, monthly) can be a good starting point, as illustrated with the fraud
dataset.

We hope the results of this chapter will encourage and guide researchers in developing
new learning strategies for evolving data streams, bridging the gap between academic re-
search and real-world business use cases.

– 99 –

Chapter 4

In the next chapter, we will focus on a bank transfer applicative case study where addi-
tional operational constraints are discussed, encompassing the feature retrieval and aggre-
gation, model validation process, drift understanding as well as the batch size selection.

– 100 –

Chapter 5

Machine learning in realistic fraud
detection: Application to bank transfer
fraud

Bank transfer remains one of the most used payment means in France (after the payment
card). In 2023, roughly 312 million was lost due to fraudulent bank transfers. BPCE1, a key
payment service provider in France, consistently invests resources each year to innovate
and minimize both the incidence and impact of fraudulent activities in bank transfers and
other methods, such as payment cards and cheques. In this Chapter, we provide a case
study on bank transfer fraud, starting from the problem of operational constraints. Sub-
sequently, we explain the motivation behind the choice of the learning paradigm and ML
algorithms. In addition, we discuss the interpretability concerns including the understand-
ing of potential concept drifts. However, due to the confidentiality constraints, some details
are not provided. We hope that these constraints will not hide the important message of
this Chapter which is to make academic researchers aware of some operational and work-
ing conditions, and provide elements of answer to some questions faced by practitioners
working on fraud detection.

5.1 Bank Transfer using IBAN

The International Bank Account Number (IBAN) is one of the key tools for bank transfers
between institutions/companies and individuals. In the Eurozone, this type of transfer is
commonly referred to as SEPA (Single Euro Payments Area).
As illustrated in Figure 5.1, an IBAN-based bank transfer is typically processed as follows:

An IBAN holder (say, IBAN A) attempts to initiate a transfer to another user (IBAN B)
using their phone or transfer interface.
If the IBAN in question, i.e., IBAN B, has already been added or is known to the user, he

1https://www.groupebpce.com/

101

https://www.groupebpce.com/
https://www.groupebpce.com/

Chapter 5

Figure 5.1: Illustration of processing of the bank transfer with IBAN.

can select it and initiate the transfer directly. Otherwise, he must first add the IBAN, a
step verified by the IBAN Checking Sytem. Under certain conditions, the addition may be
rejected/denied or delayed (in Chapter 4, we proposed a modeling for the machine learning
module of this system).

Once the IBAN checking or verification step is validated, the IBAN B is added to the list
of IBANs known to the Issuing Bank of IBAN A (if it is the first time it has been added by a
client), and becomes visible on the interface or application of the user holding IBAN A.
At this stage, the user initiates the transfer (from IBAN A to IBAN B), and the Fraud Han-
dling System (Figure 5.2) is used to either reject or validate the transfer, in which case the
funds are credited to the account associated with IBAN B.
What is particularly interesting to note is that the fraud handling system can interact with
the list of known IBANs, segmenting them based on their type or risk of receiving a fraud-
ulent transfer even before a transfer initiation.

5.2 Context and Operational constraints

I completed my Ph.D. in a team that includes Data Scientists dedicated to fraud detection
(cheque, bank transfert) using ML and statistical techniques. As highlighted in Chapter 1
(Figure 5.2), ML systems should collaborate with Expert systems (rules) which are tradi-
tionally used in payment fraud detection.
Themain advantage of the Expert systems is that they usually produce their responses/inferences
in few milliseconds and are typically transparent, especially when the number of the used
rules is not too high. In addition, experts have the possibility to (manually) adjust their
rules in real-time depending on noticed new types of fraud or the domain knowledge.
Regarding bank transfer fraud detection, there are some operational constraints:

• For the instantaneous bank transfer, the fraud detection system (Expert system, the

– 102 –

Machine learning in realistic fraud detection: Application to bank transfer fraud

Figure 5.2: Typical fraud handling pipeline (not exhaustive).

ML system ...) should produce their responses in real-time i.e., in a few milliseconds.
This includes the data retrieval, feature aggregations and the inference time of the
ML model. For the classic bank transfers, typically, the time constraint is less and the
detection system can have up to one day to respond or even more depending on the
bank.

• The developedMLmodel should normally pass a thorough validation process to mea-
sure or quantify potential risk before the deployment or the use for business cases.
The validation time can increase with the complexity (or the blackboxness) of the
underlying ML model.

• Particularly for supervised ML systems, the labels or feedback are not obtained in
real and sometimes there may be technical problems of data injection in the informa-
tion/data impairing the real-time learning or new model or testing a model.

With more details concerning the first point, banks are mandated by regulatory guidelines
to promptly respond to instantaneous (real-time) bank transfer transactions, often within
mere seconds. Furthermore, users tend to favor banks or payment service providers that
offer faster response times for these instantaneous transfers. Consequently, an ML module
integrated into the payment pipeline generally has only a few milliseconds to approve or
reject a transaction attempt.

Regarding the ML model validation, a bank that doesn’t have a convenient validation
process for its automatic decision-making systems can be subject to serious penalties from
regulators.

For label or delay concern, it is infeasible for the investigator to contact every customer
for every single transaction in real-time in the attempt to know the true label of the trans-
action. Some customers can notice fraudulent activity on their account and report it, or the
investigator may contact some customers for particular transactions. Otherwise, transac-
tions are typically considered genuine after some prescription time.

– 103 –

Chapter 5

Given these crucial constraints/limitations, where addressing them could incur high
costs, what is the optimalway for implementing anML based fraud detectionmodulewithin
a bank transfer system (including instantaneous transfer)?

5.3 Construction of the target feature

In this Section, we elucidate the construction of the target or dependent feature:

y: the IBAN_x will be involved in a fraudulent bank transfer within the upcoming 30
days

Considering the previously described target feature leads to the use of the ML module
to periodically assign (e.g., at the start of each month or upon the addition of a new IBAN)
a fraud risk score to each beneficiary IBAN in the List of known IBANs (see Figure 5.1), op-
erating in batch mode (i.e., with tolerable latency or time delay).
The Fraud Handling System can access this score in real-time through the interaction de-
picted in (Figure 5.1), allowing it to be utilized or retrieved as needed for every initiated
transfer.

This option provides a substitute to employingML for scoring each initiated transaction
or transfer, as depicted by the green arrow in Figure 5.1. We recall that the response of the
ML in this case should be in real-time or online for instantaneous bank transfers.

Choosing online or real-time transaction inference would evidently limit the use of cer-
tain sophisticated MLmodels, which, despite their effectiveness, exhibit substantial latency
(exceeding a few milliseconds). Moreover, it is known to practitioners that the retrieval of
raw features and computation of aggregated features can quickly reduce the response time
of ML module unless an important computational resource is orchestrated and maintained.
Furthermore, real-time inference of transactions could be more reliable if we have the ca-
pability to promptly evaluate them (as automatic decision making). Unfortunately, we are
often compelled to delay the evaluation until a significant number of labels are accessible,
such as a period of one month, during which numerous unverified inferences (of transac-
tions) may be made for a single IBAN.

We argue that the advantage of the ML module should be to complement the Expert
module by extracting hidden or weak signals that are not easy to extract with simple rules
or simple models. We recall that the experts typically have the possibility to change and
deploy their (rules) module quickly due to the drift or new fraud schema they notice.
Therefore our choice is not to model directly if a transfer (transaction) emitted from an
IBAN A to an IBAN B is fraudulent or not but to interact or work on the IBAN level (Figure
5.1). That is, we model the surrogate consisting in extracting (modeling) at a fixed time,
patterns (features) that may push any known receiver IBAN B to be subject to fraudulent
activities within a time horizon or not. This horizon noted δ is typically the necessary time
(delay) to obtain the true label of an emitted transfer.

In other words, at the time tj a fraud likelihood score is assigned to each active IBAN in
the list of known IBAN (Figure 5.1) and at time tj+δ, the true label is known. It is therefore
expected that there is no drift in the concept learned by the ML model at least between

– 104 –

Machine learning in realistic fraud detection: Application to bank transfer fraud

Figure 5.3: Data splitting. OOT= Out Of Time Test data and Prod=Production. The yellow
highlights the time delay for collecting the label for transactions that occur in June 2023.

[tj, tj+δ[i.e., P̂tj(y|x) = P̂tj+δ(y|x). Otherwise, the drift should be captured by the expert
system, especially one resulting in newly fraudulent activities.

An additional benefit of utilizing batch inference for IBANs is the significant reduction
in the number of calls to the ML module, thereby lowering inference costs, given that the
average number of bank transfers an IBAN may receive in a horizon of δ typically exceeds
one.

5.4 Data set

The applicative case study presented in this work is based on a real dataset covering roughly
seventeen (17) months used to train and validate the ML module as depicted by the Figure
5.3. More precisely:

• Train and Validation set. Regardless of the adaptation strategies to changes or drifts,
12 months (from July 2022 to June 2023) is reserved for training the model (at least
the initial one). Roughly 30% of observations in this period is used for validating the
model, for hyperparameters selection and the early stopping where required.

• Label delay. Onemonth (July 2023) is used as the time necessary for getting all labeled
information of June 2023.

• Test set. 4 months (from August to November 2023) are used to test the models and
the adaptation strategie.

As highlighted in the Section 2.3.1, the used features (25 overall) are typically aggregated
information for past transactions.

The original dataset considered for this application is extremely imbalanced and huge.
Therefore, a sampling (undersampling) is used to speed up the training. More precisely,
positive (fraudulent) IBAN are conserved and a fixed number of non-fraudulent IBAN are
sampled in each category of a specific feature related to the target. As a consequence, the
results presented in this Chapter cover, on average, 600,000 observations per month.
The considered models (listed below) are ones that can model to some extent non-linear

– 105 –

Chapter 5

effects or class overlap (which may have a negative impact on the model performance).
A post-calibration/processing step is further used on the scores provided by the model,
accounting for class imbalance.

5.5 Choice of the Machine Learning model and Adapta-
tion Strategy

After constructing the target feature and choosing the inference solutionwhich is per batch,
the next question is regarding the ML model to use. We recall that our goal is to identify
which model to choose in order to bring trustworthy or at least interpretability in the use
of the ML module (Figure 5.2). The interpretability is expected to help identify some hid-
den patterns in data and understand the decisions made by the ML model for particular
examples (e.g., on request by fraud experts or business owners). At the same time, the ML
module is expected to have a good predictive performance and maintain it over time; oth-
erwise, it cannot be used for fraud detection (in risk of generating too many false alerts or
false negatives).

In such situations, based on the discussion and the recommendations of Amekoe et al.
[168] and results of the Chapter 4 we opt for testing tree models and retain one after testing
different criteria (predictive performance, accordance of obtained explanations with human
knowledge, training and inference cost):

• Tree ensemble model combined with TreeSHAP: This solution is investigated as the
one favoring the predictive performance. The post hoc interpretability tool TreeSHAP
(Lundberg et al. [64]) is used for interpretability purposes. We recall that the goal
behind this option is not to necessarily know what the model has learned, or what the
model is doing, but to instead identify additional information or hidden information that
the modeling can tell us about fraudulent activities. Therefore, the explanations (the
why question regarding the predictions) provided to fraud experts (on request) for
individual examples are explanations according to the TreeSHAP algorithm. XGBoost
(Chen and Guestrin [36]) is used as the underlying model.

• GAM based inherently interpretable model: we consider EBM (Nori et al. [27]) in this
category.

• Attention-based inherently interpretable model: in this category, we test TabSRA
(Amekoe et al. [169, 168]).

As the response of the ML module is per batch and there is an important label delay
(1 month for the majority of observations), the possible adaptation strategies can be: (1)
Periodical retraining; (2) Performance-based retraining; (3) Retraining on demand/request.
With retraining, we refer to the process of training a model from scratch, employing the
optimal architecture or parameter configuration identified during the initial training phase
(or parameter tuning). We do not investigate the partial retraining in this Chapter.

– 106 –

Machine learning in realistic fraud detection: Application to bank transfer fraud

The Periodical retraining consists in dynamically retraining the model, for example,
every month, regardless of the fact that there are drops in performance or not. This strategy
is typically a passive approach that does not necessarily require drift detection.
The Performance-based retraining approach requires the availability of labeled data.
However, the majority of labels are known after a period of one month, making this ap-
proach result in not retraining the model before the period of one month.
Another interesting approach is the retraining based on demand/request. This approach
is usedwhenever an important feature or predictive variable is identified and should be used
in the modeling. Another common situation for retraining on demand is the case where
an error is made in the modeling (e.g., data leakage) or in the data collection (or feature
computation) and, fortunately, it is noticed before affecting the model performance. We do
not explicitly cover this approach in this applicative study.

For these 3 approaches, an important question is which data to use for the retraining?
A fixed window (for example the x last months can be used every retraining), or a the dy-
namic window (of sometimes 3, 6, 9 months...) is typically used for retraining the model.
The dynamic window size can be the one maximizing the performance on a fixed test
dataset. There are also sample selection techniques that consist in selecting only obser-
vations/batches that are representative of the test set. However, this approach is trickier
and requires knowledge of dynamics that can occur after the production.

We consider a performance-based retraining strategy, where a model initially trained
is not re-trained unless its performance drops below a given threshold. A model with this
strategy will be preceded by _Pbr_. For example, XGBoost_Pbr_9m refers to a XGBoost
model used with Performance-based retraining (Pbr) and using a window of 9 months for
training the model.

We also investigated the periodical retraining of 1month. For exampleTabSRA_Dyn_6m
refers to a TabSRA model trained periodically (dynamically) every month using a sliding
window of 6 months.

XGBoost and EBM are optimized (only on the first/initial training) using 5 different
hyperparameter configurations and using early stopping (with a validation dataset for XG-
Boost). The total number of trees was set to 1,000 (100 for the early stopping round) for
XGBoost and 50,000 for EBM.

For TabSRA which has a longer training time (between 3x and 6x depending on the
number of months used for the training, x being the training time of XGBoost), we use
only one parameter configuration with the maximal number of iterations (epochs) set to
100. Learning rate scheduling (with a patience of 10 iterations) and early stopping (with a
patience of 20 iterations) are used. All the experiments are done on a Google Cloud Plat-
form (GCP) on a CPU machine (with 64 cores and 240 Go of RAM).

As shown in Table 5.1, XGBoost appears to be the best performing model in 3/4 months
and the TabSRA in November (1/4). The Performance-based retraining (Pbr) has declined
to a static approach (where the model is trained a single time) due to the absence of no-
table performance degradation from August 2023 to November 2023, thereby eliminating
the necessity for retraining. Nevertheless, degradation in performance is anticipated with
extended test or production duration.

Furthermore, the performance obtained with this strategy is consistent compared to the
periodical retraining approach for TabSRA and XGBoost especially when using 12 months

– 107 –

Chapter 5

Table 5.1: Predictive performance on the test months. AUCPR is reported as a predictive
performance measure and the bold highlights the best strategy over each test month. The red,
green, purple colors show respectively the best strategy combined with XGBoost, EBM and
TabSRA respectively. The italic indicates the best model within each strategy (e.g., _Pbr_12m).

Model August 2023 September 2023 October 2023 November 2023
XGBoost_Pbr_12m 20.23 20.00 23.00 22.58
EBM_Pbr_12m 17.98 16.83 20.14 19.34

TabSRA_Pbr_12m 19.28 18.27 22.09 23.59
XGBoost_Pbr_9m 19.31 19.48 22.95 22.25
EBM_Pbr_9m 18.07 16.64 20.49 19.24

TabSRA_Pbr_9m 19.16 17.72 21.87 23.24
XGBoost_Dyn_9m 19.31 18.89 23.27 21.92
EBM_Dyn_9m 18.07 16.19 21.31 19.03

TabSRA_Dyn_9m 19.16 17.91 21.67 23.72
XGBoost_Dyn_6m 19.71 18.41 23.56 22.87
EBM_Dyn_6m 17.77 15.40 21.64 19.18

TabSRA_Dyn_6m 17.79 16.41 20.76 23.38
XGBoost_Dyn_3m 19.43 19.68 22.82 22.57
EBM_Dyn_3m 17.62 16.96 20.88 20.44

TabSRA_Dyn_3m 18.67 16.61 21.20 22.19

for the training.
For EBM the periodical retraining seems to work better. We suspect that it is due to the
way that different shape functions are aggregated into one shape function with potential
high variance especially for highly imbalanced datasets. As shown in Figure 5.4, there is a
significant jump in the shape function which may affect the model’s decision/performance
after a small change in input features. Consequently, a frequent retraining of EBM seems
beneficial for adaptation to recent concepts.
Overall, not only window size (between 3m, 6m, 9m) appears to be the best choice in the
periodical retraining with the three models. We recall that the goal of periodical retrain-
ing is to use recent observations (small window) but train the underlying model frequently
while the Performance-based retraining (Pbr) strategy aims to use a representative (long
window) to train a stable model and to conserve it as long as possible unless there is a sig-
nificant drift requiring a retraining.

From a practical point of view, using only a validation data is not enough to estimate
the model’s performance in production, especially for non-transparent models. In general,
an Out Of Time (OOT) test/backtest data is reserved for additional evaluation; otherwise, a
shadowmodel deployment is typically considered (deploy themodel but its decision doesn’t
affect the fraud detection unless a sufficient number of labels are collected to evaluate its
performance in production). In our case, the months August 2023 and September 2023 are

– 108 –

Machine learning in realistic fraud detection: Application to bank transfer fraud

(a) Shape function feature2 (b) Shape function feature3

Figure 5.4: Illustration of uncertainty in the shape functions of EBM (EBM_Pbr_12m). There
are some abrupt changes with important variance or uncertainty zones (in gray) that are [45,
50] in Figure 5.4a and [240, 320] in Figure 5.4b. The x-axis represents the feature values and
the y-axis represents the contribution to model output (the log-odd).

Table 5.2: Effect of preprocessing on TabSRA’s performance. The performance is reported for
the strategy TabSRA_Pbr_12m. (a) corresponds to the use of Gaussian quantile transformation
and (b) is the standard scaling (using the mean and standard deviation).

Model August 2023 September 2023 October 2023 November 2023
(a) 19.28 18.27 22.09 23.59
(b) 17.84 15.07 20.14 18.72

used as out-of-time test data, and, therefore, the real production starts from November 2023
(Figure 5.3). With this consideration, _Pbr_12m (combinedwith XGBoost or TabSRA) seems
to be the most convenient approach for this case study (this decision would be challenged
if the periodical retraining demonstrates a clear superiority).
It is important to point out that, unlike EBM and XGBoost, convenient data preprocessing
or scaling was necessary for TabSRA as shown in Table 5.2, otherwise its performance
drops under that of EBM. We argue that the long tail distribution of some transaction-
related features may affect the training of NNs and particularly TabSRA’s explanations as
highlighted in the 3.3.4.

5.6 Understanding of decisions and changes

Once a goodMLmodel and the adaptation strategy are identified (herewe haveXGBoost_Pbr_12m
and TabSRA_Pbr_12m), the next step is to try to understand the decisions made by the
model and changes over time.

– 109 –

Chapter 5

(a) XGboost+TreeSHAP (b) TabSRA

Figure 5.5: Illustration of the contribution of feature1 in November 2023. The color bar indi-
cates the output score between 0 and 1. The x-axis represents the feature values and the y-axis
the contribution to model output (the log-odd).

5.6.1 Understanding the predictions

For our application, this step consists in local decision understanding i.e., identifying for
some examples why a high/low fraud score is attributed (and which features or group of
features are influential in this decision) as well as the global decision understanding. The
latter condition involves, for example, identifying trends in the effect/contribution or sum-
marizing the global importance of a given feature (relative to remaining) with one real
number. As shown in the Figure 5.5, both TabSRA and XGBoost (interpreted by TreeSHAP)
suggest a decreasing trend in the effect of the feature1. Moreover, according to these two
models, an important number of risky transactions have a value of feature1 close to 0 in
accordance with our data knowledge. A heatmap plot can be used to plot simultaneously
the contribution of all input features. We recall that the idea behind the comparison of the
explanations of the two models (with a good performance) is to identify the possible differ-
ences/contradictions in their explanations in order to see how it can help to improve the
feature engineering, but more importantly, to identify the one which agrees more with the
domain or data knowledge.

In the present application, we do not find any clear contradiction in the attributions of
the two models unless the scale of attributions, which are arguably due to the correlation
among features.

5.6.2 Detecting and Understanding changes over time

As highlighted in the Section 5.3 a concept drift occurring between the batch scoring or
inference time tj and tj + δ with δ = 1 month can not be easily detected, as the majority
of labels are disclosed at time tj + δ (Žliobaite [88]). Therefore, our goal is to detect and
understand at the inference time tj the change in the data distribution with respect to a
reference distribution or the one learned during the model training P̂t0(x). In other words,

– 110 –

Machine learning in realistic fraud detection: Application to bank transfer fraud

Table 5.3: Drift quantification for XGBoost. The first line represents the performance (Perf)
measured (in AUCPR) when the label becomes available for the XGBoost_Pbr_12m. The shift
is quantified by considering the training data as reference.

Model Valid Aug 2023 Sept 2023 Oct 2023 Nov 2023
Perf (AUCPR) 22.48 20.23 20.00 23.00 22.58

Input Shift (AUCROC) 50.05 87.90 88.67 83.50 89.12
Explanation Shift (AUCROC) 50.08 68.55 72.75 68.38 68.64

it is particularly interesting for us to identify at the time tj the change in the input data that
can negatively affect the expected performance of ML module between [tj, tj + δ[. At the
time tj + δ the collected labels can be used to evaluate (or backtest) the performance of ML
module in terms of AUCPR for example.
To test if there is a significant change, we use a virtual classifier which should identify the
difference between Bt0 , the batch of observations used for training and Btj the test batch
on which inference is done at the time tj . More practically, the artificial label yi is assigned
to every observation xi ∈ B = Bt0 ∪Btj :

yi = 1xi∈Btj

and a classifier is trained for identifying the observations having y = 1 i.e., belonging to
Btj . A performance superior to that of a random guessing model indicates that the used
process or algorithm is surely detecting a drift (Hinder, Vaquet, and Hammer [90]).
The main advantage of a virtual classifier (over statistical test-based approaches) is that it
eases the localization, that is, the regions of the data space affected by the drift. With more
details, the estimate score P̂(y|x ∈ Bt0 ∪Btj) can help to filter drifted regions/observations.
In this application, we opt for using simple or transparent models with the goal to have a
clear and interpretable understanding of changes:

• We consider a shallow Decision Tree (DT) model of maximum depth set to 4 for
identifying the changes in the initial input space. The advantage of the DTs is that
they don’t require a preprocessing (scaling) of long tail feature distribution.

• We use Logistic Regression (LR) for identifying the change in the feature attribution
(explanations). The goal behind this investigation is to identify changes that only
affect important features (Mougan et al. [104]).

As shown in Table 5.4 and 5.3 there is no shift between the train and validation data
(AUCROC ≈ 50). This is expected, as these two datasets came from the same period.
In the test periods (from August to November 2023), we notice that the changes identified
in input are clearly more important than the ones in explanations. This indicates that input
shift detection identifies changes that are deemed unimportant for the model’s decisions
or explanations. Particularly, an important input change was noticed in November 2023,
although it is one of the best performing periods of the ML models.
Regarding the explanations shift, we notice an increase in the AUCROC (therefore in iden-
tified changes) for TabSRA in October and November 2023; however, there is an increase

– 111 –

Chapter 5

Table 5.4: Drift quantification for TabSRA. The first line represents the performance (Perf)
measured (in AUCPR) when the label becomes available for the TabSRA_Pbr_12m. The shift
is quantified by considering the training data as reference.

Model Valid Aug 2023 Sept 2023 Oct 2023 Nov 2023
Perf (AUCPR) 20.16 19.28 18.27 22.09 23.59

Input Shift (AUCROC) 50.05 87.90 88.67 83.50 89.12
Explanation Shift (AUCROC) 50.06 73.86 72.93 74.79 75.89

in the performance computed when labels become available. We argue that this is due to
the fact that changes (in input density) that positively affect the model’s performance also
result in an increase of the estimate shift via AUCROC.
In addition, the use of explanations shift requires the storage of explanations obtained for
reference data (the training data in this application) in addition to the initial input data it-
self and the computation of explanations over each test or inference period, which may be
very costly, especially when using post hoc interpretability tools. For XGBoost with an ac-
ceptable depth (we consider a depth less than 4 in this application) the Tree path dependent
TreeSHAP Lundberg et al. [64] manages to provide feature attributions for roughly 600,000
observations in roughly 2 min. However, for some models such as NNs with KernelSHAP
(Lundberg and Lee [7]), the computational resources can be very important, especially for
very huge datasets.

It is important to point out that when a complex virtual classifier such as Random Forest
(RF), XGBoost is used (instead of simple or transparent models), techniques such as cross-
validation (instead of a single train/test split) are necessary to estimate/quantify the shift
(Hinder, Vaquet, and Hammer [90]).

Towards the use error analysis for drift detection and understanding

Due to the limitations of the input and explanation shift identified and highlighted in the
previous Section, we investigate the use of error analysis for monitoring (detection and
understanding) of changes that may negatively affect the model performance.
In a nutshell, given the trained model, an error is computed for every single point in the
reference data used for drift detection:

li = l(ŷi, yi) (5.1)

where l can be, for example, the 0-1 loss for classification tasks, the cross-entropy loss for
scoring tasks.
For understanding requirements, a shallow DT is used for the partition/segmentation of
the reference data Dreference = {(xi, li)}ni=1 with respect to the loss. The success of the
segmentation can be evaluated using, for instance, the empirical performance (Equation
2.1) with label li and the prediction l̂i outputted by the segmentation model.
After this step, important statistics such as the average and standard deviation of the error
are computed for every leaf node of the tree. Statistics value above a predefined thresh-
old indicate that the concerned node is risky or red-flagged. Under the no concept drift

– 112 –

Machine learning in realistic fraud detection: Application to bank transfer fraud

assumption between the inference time tj and the time tj + δ (the time when all labels be-
come available), a significant increase of the proportion of observations arriving in risky leaf
nodes (with respect to the one measured at the time t0) is synonymous with a change that
can negatively affect the expected predictive performance between the interval [tj, tj + δ[.
At the time tj+ δ, the obtained labels can additionally be used to check eventual leaf nodes
or sub-concept subject to concept drift.
The advantage of this approach over the previous ones:

• Prevent from storing all the reference data or its explanations, but instead only im-
portant statistics are stored;

• Help to split directly drift into changes that can affect negatively or positively the
expected performance, and therefore to raise alerts conveniently.

It is however important to point out that as loss function (Equation 5.1) is applied per in-
stance, non-additive evaluation metrics such AUCPR, AUCROC cannot be used (these met-
rics cannot be easily decomposed). In addition, this approach requires a thorough choice
of the reference data. For example, using the training data as reference data may result in
underestimation of expected test error especially for strong classifiers that can memorize
that training data.

We investigated for the TabSRA_Pbr_12m the error analysis based drift detection and
understanding approach by considering the training data as reference data. The minimum
number of observations in each leaf node is set to 1,000 in order to compute consistent
statistics, and the cross-entropy loss is used as the loss function (Equation 5.1).

As shown in Table 5.5, in August and September 2023, an increase in the proportion of
observations (more than 3x) in node 20 (which is a red-flagged node) corresponds to a drop
in the model’s performance (Table 5.1). Inversely, October and November 2023 indicate a
reduction in the proportion of observations in the same node. The interesting aspect of the
error approach is that it helps to identify and understand the regions affected negatively by
the drift.

Furthermore, it helps to identify the regions affected by an increase in the error or
entropy once the labels become available. For example, by doing the same analysis for XG-
Boost_Pbr_12m, we notice the variation of the predictive performance is not due to the
change in the proportion of observations in the riskiest nodes (the proportion was almost
the same over time in these nodes) but due to an increase in the entropy in some nodes over
time.

It is important to highlight that for some problems, the error measure (cross entropy
in the case study) may not be correlated to ranking metrics such as metrics such AUCPR,
AUCROC used to evaluate the model performance during the development or monitoring.
Overall, the error analysis used as drift detection and understanding techniques shows a
promising result over a well-known virtual classifier approach, especially from a compu-
tational point of view and the identification of drift that negatively affects the model’s ex-
pected performance.

– 113 –

Chapter 5

Table 5.5: Error analysis for drift detection and understanding with the model Tab-
SRA_Pbr_12m. The red nodes indicate the riskiest ones, i.e., having an average cross-entropy
greater than 0.40. The remaining columns highlight the changes in nodes’ proportion from the
reference or train data (Ref) to November 2023. The ↑ indicates an increase of more than 2x in
the proportion of riskiest nodes, and the ↓ the inverse.

Node id Error Ref Valid Aug 2023 Sept 2023 Oct 2023 Nov 2023
4 0.01 1.79 1.79 1.77 1.64 1.69 1.67
5 0.04 0.14 0.14 0.16 0.17 0.17 0.14
7 0.05 0.52 0.50 0.32 0.33 0.34 0.33
8 0.15 0.10 0.10 0.06 0.06 0.07 0.05
11 0.00 14.77 14.73 14.26 14.28 12.93 12.56
12 0.01 5.00 4.99 2.98 3.04 4.13 4.15
14 0.00 74.43 74.49 76.56 76.72 77.02 76.96
15 0.01 0.29 0.30 0.32 0.33 0.35 0.31
19 0.20 0.20 0.20 0.16 0.18 0.25 0.25
20 0.48 0.02 0.02 0.10 ↑ 0.07 ↑ 0.01 ↓ 0.01 ↓
21 0.49 0.03 0.03 0.04 0.04 0.05 0.04
24 0.04 0.04 0.95 1.00 0.93 0.92 1.04
25 0.01 1.60 1.61 2.05 1.98 1.83 2.21
27 0.10 0.14 0.14 0.21 0.20 0.19 0.24
28 0.26 0.20 0.20 0.01 0.02 0.04 0.01

5.7 Can model stacking help to improve predictive per-
formance?

One consideration that favors the choice of the Performance-based retraining (Pbr) over pe-
riodical dynamic retraining is the model validation process, encompassing the evaluation
on Out Of Time (OOT) periods. In our case, the newly developed or retrained ML model
should demonstrate a consistent performance on at least the two recent months with la-
beled data, as highlighted in the previous Section. However, these operational constraints
prevent feeding the ML module with the most recent data.

However, these constraints can probably be relaxed by the model validator if the used
model is quite simple or a transparent model demonstrates consistent performance as re-
quired for theMLmodule. Instead of considering a transparent model solely, we investigate
its combination with the robust Pbr model (obtained in the previous Section) with a stack-
ing method. The stacking refers to an ensemble technique that consists in aggregating the
predictions coming from different models using a meta model. Similarly to Dal Pozzolo [1],
the meta model is a simple weighting of scores outputted by learners in this application:

fstackT = α ∗ fPbr + (1− α) ∗ fTransparentt−δ
(5.2)

– 114 –

Machine learning in realistic fraud detection: Application to bank transfer fraud

Table 5.6: Stacking XGBoost with a simple model: XGBoost_Pbr_12m is used in combination
with a transparent model. The AUCPR is reported as an evaluation measure.

weight Model August 2023 September 2023 October 2023 November 2023
α = 0.00 DT 09.28 06.99 10.14 10.29
α = 0.50 DT 18.23 16.84 21.72 20.43
α = 0.75 DT 19.62 18.96 22.90 21.95
α = 0.80 DT 19.78 19.32 22.98 22.22
α = 0.00 LR 16.87 14.77 18.57 19.99
α = 0.50 LR 20.17 18.77 22.19 22.94
α = 0.75 LR 20.39 19.64 22.90 22.99
α = 0.80 LR 20.41 19.78 22.97 22.91
α = 1.00 - 20.23 20.00 23.00 22.58

Table 5.7: Stacking TabSRA with a simple model: TabSRA_Pbr_12m is used in combination
with a transparent model. The AUCPR is reported as an evaluation measure.

weight Model August 2023 September 2023 October 2023 November 2023
α = 0.00 DT 09.28 06.99 10.14 10.29
α = 0.50 DT 17.88 15.98 21.52 21.91
α = 0.75 DT 19.05 17.73 22.34 23.50
α = 0.80 DT 19.10 17.96 22.36 23.61
α = 0.00 LR 16.87 14.77 18.57 19.99
α = 0.50 LR 19.12 17.23 21.52 23.54
α = 0.75 LR 19.37 18.00 21.99 23.84
α = 0.80 LR 19.33 18.06 22.05 23.90
α = 1.00 - 19.28 18.27 22.09 23.59

where α ∈ [0, 1], fPbr is the obtained Pbr model in the previous Section and fTransparentt−δ

is a transparent model trained on data collected in the previous month (δ = 1).
Table 5.6 and 5.7 report the obtained performances when considering as a simple model a
DT of depth less than 5 and Logistic Regression (LR) model. The α = 0 corresponds to the
case where only the simple model is used.

We can notice that there is no significant improvement over the case where only the
fPbr is used (α close to one). We argue that this is due to the fact that there was no abrupt
change in our used data and the transparent model is not strong enough to learn new
concepts (significantly different from what the fPbr learned). That is, the results reported
by Dal Pozzolo [1] suggest that α = 0.5 could help to improve the performance of ML
module when a strong classifier (such RF) is used instead of the transparent one. However,
as highlighted previously, the use of such a complex model required a thorough model
validation using OOT test months.

– 115 –

Chapter 5

5.8 Conclusion

In this Chapter we explored a real application of machine learning in fraud detection and
highlighted some important operational constraints that guide our choice on batch infer-
ence solution. Our empirical evaluation favors the use of Performance-based retraining
(Pbr) strategy approach for the adaptation where the TabSRA proposed during our Ph.D. as
part of Inherently Interpretable (II) model provides a competitive predictive performance
with respect to XGBoost (a gap of less than 4% AUCPR on average). Particularly, for this
application where the explanations are requested only for a few observations, the solution
XGBoost+TreeSHAP seems to be a good option especially as obtained explanations are very
similar to (are in accordance with) the ones of TabSRA. However, for some problems for
which the explanations can be requested for all predictions/inferences, TabSRA can be a
more suitable solution as a good trade-off between explanations cost and predictive perfor-
mance.

Regarding the drift detection and understanding, an error-based method was investi-
gated and demonstrated very interesting results compared to the use of virtual classifiers,
especially in identifying changes that may affect negatively the expected performance.

In the next Chapter, we provide some natural extensions or perspectives for the work
presented in this Chapter and previous ones, as well as a summary of presented results.

– 116 –

Chapter 6

Conclusion and Perspectives

In this Ph.D. thesis, we addressed some issues faced by the use of Machine Learning in
payment fraud detection. Our contributions mainly focused on the interpretability and the
adaptation to changes or drifts that obviously occur over time in fraud detection settings.
In what follows, we summarize the main takeaways and present some future perspectives
of this work.

6.1 Conclusion

Considering the reliability concerns associated with black box ML models, even when
pairedwith post hoc interpretabilitymethods, our Ph.D.work begins by critically re-examining
the necessity of using post hoc tools like SHAP to interpret black box models. Instead of di-
rectly contrasting their use with inherently interpretable models, we investigated in Chap-
ter 3 the trade-off considering the predictive performance, faithfulness, and stability of
explanations. It turns out that the predictive performance gap is less than 4% on average
on the recent tabular benchmark introduced by Grinsztajn, Oyallon, and Varoquaux [53].
Is this gap acceptable? The answer will clearly depend on the use case (for which this gap
may vary slightly) and we provide an applicative example of bank transfer fraud detection
in Chapter 5.
The fidelity or reliability issue that arises with post hoc explanations (in contrast to inherent
model explanations) with respect to the underlyingMLmodel is well-known for researchers
and informed practitioners. But what about the fidelity with respect to the modeled phe-
nomenon? It turns out that an inherently interpretable or transparent model with poor
expressiveness can provide misleading discovery in the data while post hoc tools may not.
Therefore, for tasks for which discovering hidden patterns is important, we recommended
in Chapter 3 the investigation of both inherently interpretable and post hoc explanations.

The stability of predictions or explanations being an important consideration for real-
world applications and fraud detection particularly, we proposed an attention-based solu-
tion named TabSRA to complete the previous GAM based ML approaches that were not
designed with this consideration. In addition, due to its formulation, TabSRA can handle

117

Chapter 6

more than pairwise interactions without posing the problem of identification that arises
with GAMs. Finally, TabSRA eases the human knowledge incorporation as demonstrated
with the bank churn prediction case study in 2.

The second contribution is focused on the choice of the learning paradigm for evolving
data stream problems when the label may be delayed, as is the case in fraud detection. In
this sense, we propose an evaluation framework similar to the backtesting approach usually
used in real-world settings where the predictions are made in real-time, but the evaluation
is done when labels become available (typically stored in batch one day, one month depend-
ing on the speed of the stream and the delay time). Our evaluation in Chapter 4 reveals that
in such settings, online or instance incremental algorithms do not have superior perfor-
mance over batch incremental ones (trained periodically) even in no label delay situations,
unlike what the academic research on the topic makes one believe. Furthermore, the con-
sideration of class imbalance, as exhibited by the real-world fraud dataset investigated in
Chapter 4 shows a clear superior performance of batch-based solutions such as XGBoost.
In addition, the architecture or weights of batch incremental models may change less over
time; therefore, making it easier for humans to inspect. Overall, this second part of the
thesis sheds light on some limitations of existing online algorithms and invites researchers
to not neglect main real-world challenges such as class imbalance and label delay when
designing or evaluating real-time prediction or online algorithms.

As part of the applied Ph.D program, we investigate the use of the identified or de-
veloped approaches on a real world bank transfer (IBAN) fraud detection problem. We
highlighted some important operational constraints that motivate our choices. We explain
in Chapter 5 why the batch inference option for the ML module is an acceptable or justified
choice, especially when considering the time needed to retrieve and compute aggregated
features as well as the inference time for sophisticated models which have the advantage
to provide a good predictive performance. Our experimental results reveal a strong perfor-
mance of TabSRA (with a gap less than 4% AUCPR on average) with respect to a post hoc
interpretability solution combining XGBoost and TreeSHAP.

Finally, we investigated the use of the error analysis as drift detection and understanding
technique, which seems to be a promising solution, especially in identifying input changes
that may affect negatively the expected performance in the absence or delay of labels.

6.2 Perspectives

In this Section, we provide some perspectives that we judge important as a natural conti-
nuity of this work.

6.2.1 Improve the intelligibility of TabSRA

TabSRA, as part of NNs may struggle in handling some irregular and long tail distributions
(unlike tree-based models).
In the application of the Chapter 5we found that Gaussian quantile transformationwas very

– 118 –

Bibliography

useful for having a good performance in such long tail distribution situations. However,
transformations such Gaussian quantile may impair the extraction of some linear relations
(that can only be identified in the initial feature space). In the formulation

σ(ŷ) = β0 + β1a1x1 + ...+ βiaixi + ...+ βpapxp,

it would be beneficial to find an implementation of attention weights a = (a1, .., ai, ..., ap)
such that they could not only help to account for feature interactions but also the feature
scale.

A numerical feature binning or discretization (Gorishniy, Rubachev, and Babenko [39])
can be investigated (in combination with TabSRA) in order to handle irregular distributions
in which piece-wise constant approximators (such as EBM) seem to be the go-to solution.
The advantage of TabSRA or similar approaches would be to extract or learn linear relations
in some area where the latter approaches would apply an abrupt (discontinuous) thresh-
olding.

The second opportunity is to explore the situation when TabSRA may provide corre-
lated feature attributions as it is the case for linear models in multicollinearity situations
and for GAMs in concurvity settings (Siems et al. [32]). This would help to implement a
convenient regularization approach for training of TabSRA and improve the intelligibility.

6.2.2 On the use of the error analysis for drift detection and under-
standing

Due to its promising results in our applicative example in Chapter 5, the use of error analy-
sis for drift detection and understanding needs serious investigation regarding theoretical
aspects. For identifying risky nodes (red-flagged regions) we only considered the mean
error. The consideration of the standard deviation of the error can help to improve the
robustness of the approach by imitating, for example, the formulation used for Drift Detec-
tion Method (DDM) (Gama et al. [93]).

Regarding the change in the proportion of observations in each region, a statistical test
approach similar to the one used in Liu et al. [170] can be used to judge the significance
of the changes. That is, in Liu et al. [170], the ratio of proportions is expected to follow a
Gaussian distribution under the hypotheses that the data distribution is the same for the
two times (or batches).
Another important consideration is the evaluation of the success of the error segmenta-
tion in the reference data. This implies questioning first the choice of the reference data
but also the evaluation metric. For example, for highly imbalanced scoring problems such
as the fraud detection , using classic regression metrics such as R-square or mean square
error may be misleading to evaluate the segmentation of cross entropy loss or the Brier
score (Brier [171]). A promising approach is to consider the sampling of observations over
regions.

From a practical point of view, business metrics can be used to compute the error when-
ever possible (for example, the amount of fraud) instead of using the 0-1 loss, cross-entropy
that may not be always correlated to the ML model performance evaluation metrics such
as AUCPR (which is in reality a proxy of the business metric).

– 119 –

6.2.3 Enhance the collaboration between Expert and ML system in
fraud detection

To take advantage of the collaboration between the ML module and Expert scoring module
in fraud detection, it is important for the two systems to be complementary. We therefore
believe that the target feature modeled by the ML module should not only be the fraud
proxy as done in Chapter 5 but the error made by the expert system on these transactions
should also be considered in the modeling in order to enhance the diversity.

Furthermore, the fraud expert should be aware of important error regions of the ML
which typically can be provided by an error analysis.

– 120 –

Bibliography

[1] Andrea Dal Pozzolo. “Adaptive machine learning for credit card fraud detection”.
In: (2015).

[2] João Gama et al. “A survey on concept drift adaptation”. In: ACM computing surveys
(CSUR) 46.4 (2014), pp. 1–37.

[3] Jie Lu et al. “Learning under concept drift: A review”. In: IEEE transactions on knowl-
edge and data engineering 31.12 (2018), pp. 2346–2363.

[4] Fabian Hinder, Valerie Vaquet, and Barbara Hammer. “One or two things we know
about concept drift—a survey on monitoring in evolving environments. Part A: de-
tecting concept drift”. In: Frontiers in Artificial Intelligence 7 (2024), p. 1330257.

[5] Pattaramon Vuttipittayamongkol, Eyad Elyan, and Andrei Petrovski. “On the class
overlap problem in imbalanced data classification”. In: Knowledge-based systems 212
(2021), p. 106631.

[6] Bartosz Krawczyk. “Learning from imbalanced data: open challenges and future
directions”. In: Progress in artificial intelligence 5.4 (2016), pp. 221–232.

[7] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predic-
tions”. In: Advances in neural information processing systems 30 (2017).

[8] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i trust
you?" Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and datamining. 2016, pp. 1135–
1144.

[9] Salim I Amoukou, Tangi Salaün, and Nicolas Brunel. “Accurate Shapley Values for
explaining tree-based models”. In: International Conference on Artificial Intelligence
and Statistics. PMLR. 2022, pp. 2448–2465.

[10] I Elizabeth Kumar et al. “Problems with Shapley-value-based explanations as fea-
ture importancemeasures”. In: International Conference onMachine Learning. PMLR.
2020, pp. 5491–5500.

[11] Xuanxiang Huang and Joao Marques-Silva. “The Inadequacy of Shapley Values for
Explainability”. In: arXiv preprint arXiv:2302.08160 (2023).

121

[12] Marian Tietz et al. skorch: A scikit-learn compatible neural network library that wraps
PyTorch. July 2017. url: https : / / skorch . readthedocs . io / en /
stable/.

[13] Lars Buitinck et al. “API design for machine learning software: experiences from
the scikit-learn project”. In: arXiv preprint arXiv:1309.0238 (2013).

[14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[15] Charles Elkan. “The foundations of cost-sensitive learning”. In: International joint
conference on artificial intelligence. Vol. 17. 1. Lawrence Erlbaum Associates Ltd.
2001, pp. 973–978.

[16] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters 27.8
(2006), pp. 861–874.

[17] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall and
ROC curves”. In: Proceedings of the 23rd international conference onMachine learning.
2006, pp. 233–240.

[18] Takaya Saito and Marc Rehmsmeier. “The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets”. In:
PloS one 10.3 (2015), e0118432.

[19] Skipper Seabold and Josef Perktold. “Statsmodels: econometric and statistical mod-
eling with python.” In: SciPy 7.1 (2010).

[20] Daniel Lüdecke et al. “performance: An R package for assessment, comparison and
testing of statistical models”. In: Journal of Open Source Software 6.60 (2021).

[21] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal
of machine Learning research 12 (2011), pp. 2825–2830.

[22] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of
the Royal Statistical Society Series B: Statistical Methodology 58.1 (1996), pp. 267–288.

[23] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems 32 (2019).

[24] Martı–n Abadi et al. “{TensorFlow}: a system for {Large-Scale}machine learning”.
In: 12th USENIX symposium on operating systems design and implementation (OSDI
16). 2016, pp. 265–283.

[25] Trevor Hastie and Robert Tibshirani. “Generalized additive models: some applica-
tions”. In: Journal of the American Statistical Association 82.398 (1987), pp. 371–386.

[26] Grace Wahba. Spline models for observational data. SIAM, 1990.

[27] Harsha Nori et al. “Interpretml: A unified framework for machine learning inter-
pretability”. In: arXiv preprint arXiv:1909.09223 (2019).

– 122 –

https://skorch.readthedocs.io/en/stable/
https://skorch.readthedocs.io/en/stable/

Bibliography

[28] Yin Lou et al. “Accurate intelligible models with pairwise interactions”. In: Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining. 2013, pp. 623–631.

[29] Benjamin Lengerich et al. “Purifying interaction effects with the functional anova:
An efficient algorithm for recovering identifiable additive models”. In: International
Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 2402–2412.

[30] Zebin Yang, Aijun Zhang, and Agus Sudjianto. “GAMI-Net: An explainable neu-
ral network based on generalized additive models with structured interactions”. In:
Pattern Recognition 120 (2021), p. 108192.

[31] Timothy O Ramsay, Richard T Burnett, and Daniel Krewski. “The effect of con-
curvity in generalized additive models linking mortality to ambient particulate mat-
ter”. In: Epidemiology 14.1 (2003), pp. 18–23.

[32] Julien Siems et al. “Curve your enthusiasm: Concurvity regularization in differen-
tiable generalized additive models”. In: Advances in Neural Information Processing
Systems 36 (2023), pp. 19029–19057.

[33] László Kovács. “Feature selection algorithms in generalized additive models under
concurvity”. In: Computational Statistics 39.2 (2024), pp. 461–493.

[34] Leo Breiman. Classification and regression trees. Routledge, 2017.

[35] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[36] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In:
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining. 2016, pp. 785–794.

[37] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning internal
representations by error propagation, parallel distributed processing, explorations
in the microstructure of cognition, ed. de rumelhart and j. mcclelland. vol. 1. 1986”.
In: Biometrika 71.599-607 (1986), p. 6.

[38] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[39] YuryGorishniy, Ivan Rubachev, andArtemBabenko. “On embeddings for numerical
features in tabular deep learning”. In: Advances in Neural Information Processing
Systems 35 (2022), pp. 24991–25004.

[40] ZhaoyangNiu, Guoqiang Zhong, andHui Yu. “A review on the attentionmechanism
of deep learning”. In: Neurocomputing 452 (2021), pp. 48–62.

[41] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[42] Xin Huang et al. “Tabtransformer: Tabular data modeling using contextual embed-
dings”. In: arXiv preprint arXiv:2012.06678 (2020).

– 123 –

[43] Yury Gorishniy et al. “Revisiting deep learning models for tabular data”. In: Ad-
vances in Neural Information Processing Systems 34 (2021), pp. 18932–18943.

[44] Gowthami Somepalli et al. “Saint: Improved neural networks for tabular data via
row attention and contrastive pre-training”. In: arXiv preprint arXiv:2106.01342 (2021).

[45] Dzmitry Bahdanau. “Neural machine translation by jointly learning to align and
translate”. In: arXiv preprint arXiv:1409.0473 (2014).

[46] AlexeyDosovitskiy. “An image isworth 16x16words: Transformers for image recog-
nition at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[47] Sarthak Jain and Byron CWallace. “Attention is not explanation”. In: arXiv preprint
arXiv:1902.10186 (2019).

[48] Jasmijn Bastings and Katja Filippova. “The elephant in the interpretability room:
Why use attention as explanationwhenwe have saliencymethods?” In: arXiv preprint
arXiv:2010.05607 (2020).

[49] SarahWiegreffe and Yuval Pinter. “Attention is not not explanation”. In: arXiv preprint
arXiv:1908.04626 (2019).

[50] Guolin Ke et al. “Lightgbm: A highly efficient gradient boosting decision tree”. In:
Advances in neural information processing systems 30 (2017).

[51] Liudmila Prokhorenkova et al. “CatBoost: unbiased boosting with categorical fea-
tures”. In: Advances in neural information processing systems 31 (2018).

[52] Kuan-Yu Chen et al. “Trompt: Towards a Better Deep Neural Network for Tabular
Data”. In: arXiv preprint arXiv:2305.18446 (2023).

[53] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. “Why do tree-based models
still outperform deep learning on tabular data?” In: arXiv preprint arXiv:2207.08815
(2022).

[54] Vadim Borisov et al. “Deep neural networks and tabular data: A survey”. In: arXiv
preprint arXiv:2110.01889 (2021).

[55] Duncan McElfresh et al. “When Do Neural Nets Outperform Boosted Trees on Tab-
ular Data?” In: arXiv e-prints (2023), arXiv–2305.

[56] Rishabh Agarwal et al. “Neural additive models: Interpretable machine learning
with neural nets”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 4699–4711.

[57] Sercan Ö Arik and Tomas Pfister. “Tabnet: Attentive interpretable tabular learn-
ing”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 8. 2021,
pp. 6679–6687.

[58] Ravid Shwartz-Ziv and Amitai Armon. “Tabular data: Deep learning is not all you
need”. In: Information Fusion 81 (2022), pp. 84–90.

– 124 –

Bibliography

[59] Sajid Ali et al. “Explainable Artificial Intelligence (XAI): What we know and what
is left to attain Trustworthy Artificial Intelligence”. In: Information fusion 99 (2023),
p. 101805.

[60] Xuanxiang Huang and Joao Marques-Silva. “The Inadequacy of Shapley Values for
Explainability”. In: arXiv preprint arXiv:2302.08160 (2023).

[61] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-precision
model-agnostic explanations”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 32. 1. 2018.

[62] Joao Marques-Silva and Alexey Ignatiev. “Delivering Trustworthy AI through for-
mal XAI”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36.
11. 2022, pp. 12342–12350.

[63] Hugh Chen et al. “Algorithms to estimate Shapley value feature attributions”. In:
Nature Machine Intelligence (2023), pp. 1–12.

[64] Scott M Lundberg et al. “From local explanations to global understanding with ex-
plainable AI for trees”. In: Nature machine intelligence 2.1 (2020), pp. 56–67.

[65] Zachary C Lipton. “The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery.” In: Queue 16.3 (2018),
pp. 31–57.

[66] Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. “Node-gam: Neural gener-
alized additivemodel for interpretable deep learning”. In: arXiv preprint arXiv:2106.01613
(2021).

[67] Sergei Popov, Stanislav Morozov, and Artem Babenko. “Neural oblivious decision
ensembles for deep learning on tabular data”. In: arXiv preprint arXiv:1909.06312
(2019).

[68] Zhi Chen et al. “Using explainable boosting machines (ebms) to detect common
flaws in data”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer. 2021, pp. 534–551.

[69] David Alvarez-Melis and Tommi S Jaakkola. “On the robustness of interpretability
methods”. In: arXiv preprint arXiv:1806.08049 (2018).

[70] Wuxing Chen et al. “A survey on imbalanced learning: latest research, applications
and future directions”. In: Artificial Intelligence Review 57.6 (2024), pp. 1–51.

[71] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In:
Journal of artificial intelligence research 16 (2002), pp. 321–357.

[72] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. “Borderline-SMOTE: a new over-
sampling method in imbalanced data sets learning”. In: International conference on
intelligent computing. Springer. 2005, pp. 878–887.

[73] Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap.
“DBSMOTE: density-based synthetic minority over-sampling technique”. In: Ap-
plied Intelligence 36 (2012), pp. 664–684.

– 125 –

[74] Georgios Douzas and Fernando Bacao. “Geometric SMOTE: Effective oversampling
for imbalanced learning through a geometric extension of SMOTE”. In: arXiv preprint
arXiv:1709.07377 (2017).

[75] Peter Hart. “The condensed nearest neighbor rule (corresp.)” In: IEEE transactions
on information theory 14.3 (1968), pp. 515–516.

[76] Dennis L Wilson. “Asymptotic properties of nearest neighbor rules using edited
data”. In: IEEE Transactions on Systems, Man, and Cybernetics 3 (1972), pp. 408–421.

[77] Ivan Tomek. “Two modifications of CNN.” In: (1976).

[78] David A Cieslak and Nitesh V Chawla. “Learning decision trees for unbalanced
data”. In:Machine Learning and Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part I
19. Springer. 2008, pp. 241–256.

[79] Xu-Ying Liu, JianxinWu, and Zhi-Hua Zhou. “Exploratory undersampling for class-
imbalance learning”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 39.2 (2008), pp. 539–550.

[80] Yoav Freund, Robert Schapire, and Naoki Abe. “A short introduction to boosting”.
In: Journal-Japanese Society For Artificial Intelligence 14.771-780 (1999), p. 1612.

[81] Nathalie Japkowicz and Shaju Stephen. “The class imbalance problem: A systematic
study”. In: Intelligent data analysis 6.5 (2002), pp. 429–449.

[82] Vicente Garcı–a, Ramón Alberto Mollineda, and José Salvador Sánchez. “On the k-
NN performance in a challenging scenario of imbalance and overlapping”. In: Pat-
tern Analysis and Applications 11 (2008), pp. 269–280.

[83] Jerzy Stefanowski. “Overlapping, rare examples and class decomposition in learn-
ing classifiers from imbalanced data”. In: Emerging paradigms in machine learning.
Springer, 2013, pp. 277–306.

[84] Andrea Dal Pozzolo et al. “Calibrating probability with undersampling for unbal-
anced classification”. In: 2015 IEEE symposium series on computational intelligence.
IEEE. 2015, pp. 159–166.

[85] Miriam Seoane Santos et al. “A unifying view of class overlap and imbalance: Key
concepts, multi-view panorama, and open avenues for research”. In: Information
Fusion 89 (2023), pp. 228–253.

[86] Gustavo EAPA Batista, Ronaldo C Prati, and Maria C Monard. “Balancing strate-
gies and class overlapping”. In: International symposium on intelligent data analysis.
Springer. 2005, pp. 24–35.

[87] João Gama et al. “A survey on concept drift adaptation”. In: ACM computing surveys
(CSUR) 46.4 (2014), pp. 1–37.

[88] Indre Žliobaite. “Change with delayed labeling:When is it detectable?” In: 2010 IEEE
international conference on data mining workshops. IEEE. 2010, pp. 843–850.

– 126 –

Bibliography

[89] Flavio Giobergia et al. “A Synthetic Benchmark to Explore Limitations of Localized
Drift Detections”. In: arXiv preprint arXiv:2408.14687 (2024).

[90] Fabian Hinder, Valerie Vaquet, and Barbara Hammer. “One or two things we know
about concept drift—a survey on monitoring in evolving environments. Part A: de-
tecting concept drift”. In: Frontiers in Artificial Intelligence 7 (2024), p. 1330257.

[91] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. “Failing loudly: An
empirical study of methods for detecting dataset shift”. In: Advances in Neural In-
formation Processing Systems 32 (2019).

[92] Firas Bayram, Bestoun S Ahmed, and Andreas Kassler. “From concept drift to model
degradation: An overview on performance-aware drift detectors”. In: Knowledge-
Based Systems 245 (2022), p. 108632.

[93] JoaoGama et al. “Learningwith drift detection”. In:Advances in Artificial Intelligence–
SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence, Sao Luis, Maranhao,
Brazil, September 29-Ocotber 1, 2004. Proceedings 17. Springer. 2004, pp. 286–295.

[94] Manuel Baena-Garcıa et al. “Early drift detection method”. In: Fourth international
workshop on knowledge discovery from data streams. Vol. 6. Citeseer. 2006, pp. 77–86.

[95] Isvani Frias-Blanco et al. “Online and non-parametric drift detection methods based
on Hoeffding’s bounds”. In: IEEE Transactions on Knowledge and Data Engineering
27.3 (2014), pp. 810–823.

[96] Albert Bifet and Ricard Gavalda. “Learning from time-changing data with adaptive
windowing”. In: Proceedings of the 2007 SIAM international conference on data min-
ing. SIAM. 2007, pp. 443–448.

[97] Heitor M Gomes et al. “Adaptive random forests for evolving data stream classifi-
cation”. In: Machine Learning 106 (2017), pp. 1469–1495.

[98] Albert Bifet, GeoffHolmes, and Bernhard Pfahringer. “Leveraging bagging for evolv-
ing data streams”. In: Machine Learning and Knowledge Discovery in Databases: Eu-
ropean Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Pro-
ceedings, Part I 21. Springer. 2010, pp. 135–150.

[99] Pedro Domingos and Geoff Hulten. “Mining high-speed data streams”. In: Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge discovery and
data mining. 2000, pp. 71–80.

[100] Fabian Hinder et al. “On the Hardness and Necessity of Supervised Concept Drift
Detection.” In: ICPRAM. 2023, pp. 164–175.

[101] Heng Wang and Zubin Abraham. “Concept drift detection for streaming data”. In:
2015 international joint conference on neural networks (IJCNN). IEEE. 2015, pp. 1–9.

[102] Shujian Yu and Zubin Abraham. “Concept drift detectionwith hierarchical hypothe-
sis testing”. In: Proceedings of the 2017 SIAM international conference on data mining.
SIAM. 2017, pp. 768–776.

– 127 –

[103] Johannes Haug et al. “Change detection for local explainability in evolving data
streams”. In: Proceedings of the 31st ACM International Conference on Information &
Knowledge Management. 2022, pp. 706–716.

[104] Carlos Mougan et al. “Explanation Shift: How Did the Distribution Shift Impact the
Model?” In: arXiv preprint arXiv:2303.08081 (2023).

[105] Hanqing Hu, Mehmed Kantardzic, and Tegjyot S Sethi. “No free lunch theorem for
concept drift detection in streaming data classification: A review”. In: Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery 10.2 (2020), e1327.

[106] Nuwan Gunasekara et al. “Gradient boosted trees for evolving data streams”. In:
Machine Learning (2024), pp. 1–28.

[107] Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. “On evaluating stream
learning algorithms”. In: Machine learning 90 (2013), pp. 317–346.

[108] Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. “Issues in evaluation of
stream learning algorithms”. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2009, pp. 329–338.

[109] Dariusz Brzezinski and Jerzy Stefanowski. “Prequential AUC for classifier evalu-
ation and drift detection in evolving data streams”. In: New Frontiers in Mining
Complex Patterns: Third International Workshop, NFMCP 2014, Held in Conjunction
with ECML-PKDD 2014, Nancy, France, September 19, 2014, Revised Selected Papers 3.
Springer. 2015, pp. 87–101.

[110] Shivani Agarwal et al. “Generalization Bounds for the Area Under the ROC Curve.”
In: Journal of Machine Learning Research 6.4 (2005).

[111] Andrew P Bradley. “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”. In: Pattern recognition 30.7 (1997), pp. 1145–1159.

[112] Kendrick Boyd, Kevin H Eng, and C David Page. “Area under the precision-recall
curve: point estimates and confidence intervals”. In: Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech
Republic, September 23-27, 2013, Proceedings, Part III 13. Springer. 2013, pp. 451–466.

[113] Jesse Read et al. “Batch-incremental versus instance-incremental learning in dy-
namic and evolving data”. In: Advances in Intelligent Data Analysis XI: 11th Interna-
tional Symposium, IDA 2012, Helsinki, Finland, October 25-27, 2012. Proceedings 11.
Springer. 2012, pp. 313–323.

[114] Leszek Rutkowski et al. “Decision trees for mining data streams based on the Mc-
Diarmid’s bound”. In: IEEE Transactions on Knowledge and Data Engineering 25.6
(2012), pp. 1272–1279.

[115] Jacob Montiel et al. “River: machine learning for streaming data in Python”. In:
(2021).

– 128 –

Bibliography

[116] Nikunj C Oza and Stuart Russell. “Experimental comparisons of online and batch
versions of bagging and boosting”. In: Proceedings of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. 2001, pp. 359–364.

[117] Jacob Montiel et al. “Adaptive xgboost for evolving data streams”. In: 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE. 2020, pp. 1–8.

[118] HaixunWang et al. “Mining concept-drifting data streams using ensemble classifier-
s”. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining. 2003, pp. 226–235.

[119] Dariusz Brzeziński and Jerzy Stefanowski. “Accuracy updated ensemble for data
streams with concept drift”. In: International conference on hybrid artificial intelli-
gence systems. Springer. 2011, pp. 155–163.

[120] Dariusz Brzezinski and Jerzy Stefanowski. “Reacting to different types of concept
drift: The accuracy updated ensemble algorithm”. In: IEEE transactions on neural
networks and learning systems 25.1 (2013), pp. 81–94.

[121] Ryan Elwell and Robi Polikar. “Incremental learning of concept drift in nonstation-
ary environments”. In: IEEE transactions on neural networks 22.10 (2011), pp. 1517–
1531.

[122] Johannes Haug, Klaus Broelemann, and Gjergji Kasneci. “Dynamic Model Tree for
Interpretable Data Stream Learning”. In: 2022 IEEE 38th International Conference on
Data Engineering (ICDE). IEEE. 2022, pp. 2562–2574.

[123] Heitor Murilo Gomes, Jesse Read, and Albert Bifet. “Streaming random patches for
evolving data stream classification”. In: 2019 IEEE international conference on data
mining (ICDM). IEEE. 2019, pp. 240–249.

[124] Gabriel Aguiar, Bartosz Krawczyk, and Alberto Cano. “A survey on learning from
imbalanced data streams: taxonomy, challenges, empirical study, and reproducible
experimental framework”. In: Machine learning 113.7 (2024), pp. 4165–4243.

[125] Luis Eduardo Boiko Ferreira et al. “Adaptive random forests with resampling for
imbalanced data streams”. In: 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE. 2019, pp. 1–6.

[126] Lucas Loezer et al. “Cost-sensitive learning for imbalanced data streams”. In: Pro-
ceedings of the 35th annual ACM symposium on applied computing. 2020, pp. 498–
504.

[127] Shuo Wang, Leandro L Minku, and Xin Yao. “A learning framework for online class
imbalance learning”. In: 2013 IEEE Symposium on Computational Intelligence and
Ensemble Learning (CIEL). IEEE. 2013, pp. 36–45.

[128] Shuo Wang, Leandro L Minku, and Xin Yao. “Resampling-based ensemble methods
for online class imbalance learning”. In: IEEE Transactions on Knowledge and Data
Engineering 27.5 (2014), pp. 1356–1368.

– 129 –

[129] Alberto Cano and Bartosz Krawczyk. “ROSE: robust online self-adjusting ensemble
for continual learning on imbalanced drifting data streams”. In: Machine Learning
111.7 (2022), pp. 2561–2599.

[130] GregoryDitzler and Robi Polikar. “Incremental learning of concept drift from stream-
ing imbalanced data”. In: IEEE transactions on knowledge and data engineering 25.10
(2012), pp. 2283–2301.

[131] Andrea Dal Pozzolo et al. “Learned lessons in credit card fraud detection from a
practitioner perspective”. In: Expert systems with applications 41.10 (2014), pp. 4915–
4928.

[132] Heitor Murilo Gomes et al. “A survey on semi-supervised learning for delayed par-
tially labelled data streams”. In: ACM Computing Surveys 55.4 (2022), pp. 1–42.

[133] Joshua Plasse and Niall Adams. “Handling delayed labels in temporally evolving
data streams”. In: 2016 IEEE International Conference on Big Data (Big Data). IEEE.
2016, pp. 2416–2424.

[134] Maciej Grzenda, Heitor Murilo Gomes, and Albert Bifet. “Delayed labelling evalua-
tion for data streams”. In:DataMining andKnowledge Discovery 34.5 (2020), pp. 1237–
1266.

[135] Maximilian Muschalik et al. “isage: An incremental version of SAGE for online ex-
planation on data streams”. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer. 2023, pp. 428–445.

[136] Ian Covert, Scott M Lundberg, and Su-In Lee. “Understanding global feature con-
tributions with additive importance measures”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 17212–17223.

[137] Johannes Haug, Effi Tramountani, and Gjergji Kasneci. “Standardized Evaluation of
Machine LearningMethods for EvolvingData Streams”. In: arXiv preprint arXiv:2204.13625
(2022).

[138] PanpanZheng.Dynamic FraudDetection via SequentialModeling. University of Arkansas,
2020.

[139] Bernardo Branco et al. “Interleaved sequence RNNs for fraud detection”. In: Pro-
ceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining. 2020, pp. 3101–3109.

[140] Yvan Lucas and Johannes Jurgovsky. “Credit card fraud detection using machine
learning: A survey”. In: arXiv preprint arXiv:2010.06479 (2020).

[141] Ali Yeşilkanat et al. “An adaptive approach on credit card fraud detection using
transaction aggregation and word embeddings”. In: Artificial Intelligence Applica-
tions and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos
Marmaras, Greece, June 5–7, 2020, Proceedings, Part I 16. Springer. 2020, pp. 3–14.

– 130 –

Bibliography

[142] Barış Bayram, Bilge Köroğlu, and Mehmet Gönen. “Improving fraud detection and
concept drift adaptation in credit card transactions using incremental gradient boost-
ing trees”. In: 2020 19th IEEE International Conference on Machine Learning and Ap-
plications (ICMLA). IEEE. 2020, pp. 545–550.

[143] Oluwadare Samuel Adebayo et al. “Comparative Review of Credit Card Fraud De-
tection using Machine Learning and Concept Drift Techniques”. In: Int. J. Comput.
Sci. Mob. Comput 12 (2023), pp. 24–48.

[144] Asma Cherif et al. “Credit card fraud detection in the era of disruptive technologies:
A systematic review”. In: Journal of King Saud University-Computer and Information
Sciences 35.1 (2023), pp. 145–174.

[145] Chao Chen, Andy Liaw, Leo Breiman, et al. “Using random forest to learn imbal-
anced data”. In: University of California, Berkeley 110.1-12 (2004), p. 24.

[146] Shubham Ingole et al. “Service-based credit card fraud detection using oracle SOA
suite”. In: SN Computer Science 2 (2021), pp. 1–9.

[147] JipengCui, Chungang Yan, andChengWang. “ReMEMBeR: Rankingmetric embedding-
based multicontextual behavior profiling for online banking fraud detection”. In:
IEEE Transactions on Computational Social Systems 8.3 (2021), pp. 643–654.

[148] Yvan Lucas et al. “Dataset shift quantification for credit card fraud detection”. In:
2019 IEEE second international conference on artificial intelligence and knowledge en-
gineering (AIKE). IEEE. 2019, pp. 97–100.

[149] Hugo Thimonier et al. “Comparative Evaluation of Anomaly Detection Methods
for Fraud Detection in Online Credit Card Payments”. In: International Congress on
Information and Communication Technology. Springer Nature Singapore Singapore.
2024, pp. 37–50.

[150] Zhenchuan Li et al. “A hybrid method with dynamic weighted entropy for han-
dling the problem of class imbalance with overlap in credit card fraud detection”.
In: Expert Systems with Applications 175 (2021), p. 114750.

[151] Fabrizio Carcillo et al. “Combining unsupervised and supervised learning in credit
card fraud detection”. In: Information sciences 557 (2021), pp. 317–331.

[152] Fábio Pinto, Marco OP Sampaio, and Pedro Bizarro. “Automatic model monitoring
for data streams”. In: arXiv preprint arXiv:1908.04240 (2019).

[153] Jannik Kossen et al. “Self-attention between datapoints: Going beyond individual
input-output pairs in deep learning”. In: Advances in Neural Information Processing
Systems 34 (2021), pp. 28742–28756.

[154] Cynthia Rudin. “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead”. In: Nature machine intelligence 1.5
(2019), pp. 206–215.

[155] Alexey Ignatiev et al. “UsingMaxSAT for Efficient Explanations of Tree Ensembles”.
In: AAAI. 2022.

– 131 –

[156] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning important
features through propagating activation differences”. In: International conference on
machine learning. PMLR. 2017, pp. 3145–3153.

[157] AlfredUltsch. “CLUSTERINGWIHSOM:U*C”. In: Proc.Workshop on Self-Organizing
Maps (Jan. 2005).

[158] David Alvarez Melis and Tommi Jaakkola. “Towards Robust Interpretability with
Self-Explaining Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018.

[159] Chirag Agarwal et al. Rethinking Stability for Attribution-based Explanations. 2022.
arXiv: 2203.06877 [cs.LG].

[160] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. “Learning hyperpa-
rameter optimization initializations”. In: 2015 IEEE international conference on data
science and advanced analytics (DSAA). IEEE. 2015, pp. 1–10.

[161] SebastianMüller et al.An Empirical Evaluation of the Rashomon Effect in Explainable
Machine Learning. 2023. arXiv: 2306.15786 [cs.LG].

[162] Joao Gama, Ricardo Rocha, and Pedro Medas. “Accurate decision trees for mining
high-speed data streams”. In: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. 2003, pp. 523–528.

[163] Harsha Nori et al. “Interpretml: A unified framework for machine learning inter-
pretability”. In: arXiv preprint arXiv:1909.09223 (2019).

[164] KodjoMawuenaAmekoe et al. “TabSRA:AnAttention based Self-ExplainableModel
for Tabular Learning”. In: The 31th European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning (ESANN). 2023.

[165] TakuyaAkiba et al. “Optuna: A next-generation hyperparameter optimization frame-
work”. In: Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining. 2019, pp. 2623–2631.

[166] Albert Bifet et al. “Efficient online evaluation of big data stream classifiers”. In: Pro-
ceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining. 2015, pp. 59–68.

[167] G Aguiar, B Krawczyk, and A Cano. “A survey on learning from imbalanced data
streams: taxonomy, challenges, empirical study, and reproducible experimental frame-
work (2022)”. In: arXiv preprint arXiv.2204.03719 (2022).

[168] Kodjo Mawuena Amekoe et al. “Exploring accuracy and interpretability trade-off
in tabular learning with novel attention-based models”. In: Neural Computing and
Applications 36.30 (2024), pp. 18583–18611.

[169] KodjoMawuenaAmekoe et al. “TabSRA:AnAttention based Self-ExplainableModel
for Tabular Learning”. In: ESANN 2023-European Symposium onArtificial Neural Net-
works, Computational Intelligence and Machine Learning. Ciaco-i6doc. com. 2023,
pp. 199–204.

– 132 –

https://arxiv.org/abs/2203.06877
https://arxiv.org/abs/2306.15786

Bibliography

[170] Anjin Liu et al. “Regional concept drift detection and density synchronized drift
adaptation”. In: IJCAI International Joint Conference on Artificial Intelligence. 2017.

[171] Glenn W Brier. “Verification of forecasts expressed in terms of probability”. In:
Monthly weather review 78.1 (1950), pp. 1–3.

[172] Hyunjik Kim, George Papamakarios, and Andriy Mnih. “The lipschitz constant of
self-attention”. In: International Conference onMachine Learning. PMLR. 2021, pp. 5562–
5571.

[173] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems 32 (2019).

[174] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available
from wandb.com. 2020. url: https://www.wandb.com/.

– 133 –

https://www.wandb.com/

Appendix A

Appendix for Chapter 3

A.1 Additional theoretical results

A.1.1 On the Lipschitz estimate of TabSRALinear ensemble

Theorem 2. The feature attributions produced by TabSRALinear ensemble (Equation 3.6) are
locally stable in the sense of Lipschitz, that is, for all x ∈ Rp, there exist δ > 0 and Lx ≥ 0

finite such that:

∥x− x′∥1< δ =⇒ ∥
H∑
h=1

βh ⊙ ah(x)⊙ x−
H∑
h=1

βh ⊙ ah(x′)⊙ x′∥1 ≤ Lx∥x− x′∥1

(A.1)

With Lx =
∑H

h=1∥β
h∥∞

[
∥ah∥∞+Lha(∥x∥∞+δ)

]
and Lha ≥ 0 the Lipschitz constant of the

h-th SRA block.

Theorem 2 demonstrates that the Lipschitz estimate of the TabSRALinear ensemble is
theoretically additive with respect to the number of learners in the ensemble, denoted H .
Hence, a large value ofH may lead to less stable explanations. Our experimental results on
Default benchmark and the ablation study (Table 3.6) demonstrate that H = 2 is typically
sufficient to achieve strong predictive performance.
The proof of the Theorem 2 can be readily accomplished by using the fact that: (i) the fea-
ture attributions of each individual TabSRALinear in the ensemble are locally stable in the
sense of Lipschitz in accordance with Theorem 1. (ii) A finite sum of Lipschitz continuous
functions is Lipschitz continuous, as stated in Lemma 3).

A.1.2 Proof Theorem 1.

Before providing a proof of the theorem, we consider the following lemmas:

135

Lemma 3. (i) The sum of two Lipschitz continuous functions is Lipschitz continuous
(ii) The product of two Lipschitz continuous and bounded functions is Lipschitz continuous

Proof. We consider θ and ψ two functions fromR
p −→ R

p , Lθ and Lψ− Lipschitz. For all
x,x′ ∈ Rp we have:
(i)

∥(θ + ψ)(x)− (θ + ψ)(x′)∥1 = ∥(θ(x)− θ(x′)) + (ψ(x)− ψ(x′))∥1
≤ ∥θ(x)− θ(x′)∥1+∥ψ(x)− ψ(x′)∥1 Minkowski’s inequality
≤ Lθ∥x− x′∥1+Lψ∥x− x′∥1
= (Lθ + Lψ)∥x− x′∥1

(A.2)

(ii) Moreover let’s assume that θ and ψ are bounded i.e. ∥θ∥∞< ∞ and ∥ψ∥∞< ∞, then
we have:

∥(θ ⊙ ψ)(x)− (θ ⊙ ψ)(x′)∥1 = ∥θ(x)⊙ (ψ(x)− ψ(x′)) + ψ(x′)⊙ ((θ(x)− θ(x′))∥1
≤ ∥θ(x)⊙ (ψ(x)− ψ(x′))∥1+∥ψ(x′)⊙ ((θ(x)− θ(x′))∥1

using Hölder’s inequality:
≤ ∥θ(x)∥∞∥ψ(x)− ψ(x′)∥1+∥ψ(x)∥∞∥θ(x)− θ(x′)∥1
≤ Lψ∥θ(x)∥∞∥x− x′∥1+Lθ∥ψ(x)∥∞∥x− x′∥1
= (Lθ∥ψ(x)∥∞+Lψ∥θ(x)∥∞)∥x− x′∥1
≤ (Lθ∥ψ∥∞+Lψ∥θ∥∞)∥x− x′∥1

(A.3)

Lemma 4. The attention vector outputted using the SRA block is stable in the sense of Lips-
chitz, i.e., for all x,x′ ∈ Rp, there exists a constant La ≥ 0 finite such that:

∥a(x)− a(x′)∥1 ≤ La∥x− x′∥1 (A.4)

Moreover ∥a∥∞= 1.

Proof. Each component kji of the keys matrix K (resp. qji of Q) is stable in the sense of
Lipschitz as outputted by a fully connected layer [172] (linear transformations followed
by common activation such as ReLU, Sigmoid) and is bounded in [0, 1] using Sigmoid
activation. Hence for all x,x′ ∈ R

p there exists αkji > 0, αqji > 0, finite such that
|kji (x)− k

j
i (x

′)|= αkji
∥x− x′∥1 and |qji (x)− q

j
i (x

′)|= αqji
∥x− x′∥1.

– 136 –

Bibliography

Then each component of the attention vector is also Lipschitz since:

|ai(x)− ai(x′)| = | 1
dk

(

dk∑
j=1

kji (x)q
j
i (x)−

dk∑
j=1

kji (x
′)qji (x

′))|

= | 1
dk

dk∑
j=1

(kji (x)q
j
i (x)− k

j
i (x

′)qji (x
′))|

≤ 1

dk

dk∑
j=1

αji∥x− x′∥1 product and sum of Lipsctiz function

= Lai∥x− x′∥1

(A.5)

with Lai = 1
dk

∑dk
j=1 α

j
i .

Finally we have:

∥a(x)− a(x′)∥1 =
p∑
i=1

|ai(x)− ai(x′)|

≤
p∑
i=1

Lai∥x− x′∥1 using the Equation A.5

= La∥x− x′∥1

(A.6)

with La =
∑p

i=1 Lai .
Since every ai ∈ [0, 1] we have ∥a∥∞= 1.

Proof. of Theorem 1

|β · (a(x)⊙ x)− β · (a(x′)⊙ x′)| = |β · (a(x)⊙ x− a(x′)⊙ x′)|
≤ ∥β∥∞∥a(x)⊙ x− a(x′)⊙ x′∥1

(A.7)

Using A.3 and considering ψ(x) = a(x) , θ(x) = x we have ∥ψ∥∞= ∥a∥∞= 1 and ∥θ∥∞=

∥D∥∞= maxx∈D∥x∥∞ which is the overall maximal observable feature value.
Therefore:

|β · (a(x)⊙ x)− β · (a(x′)⊙ x′)| ≤ ∥β∥∞(∥a∥∞+La∥D∥∞)∥x− x′∥1 (A.8)

In the formulation of the TabSRALinear, we are not necessarily interested in global stability
or a uniform Lipschitz constant, as in Equation A.8 but rather in regional or local stability
around a given target or anchor data point.
With this consideration, given the target data point x, we can restrictD to its neighborhood
i.e.,

D = {x′ ∈ Rp/∥x− x′∥1< δ} (A.9)

– 137 –

therefore ∥D∥∞≤ ∥x∥∞+δ.
Using the Equation A.8, it results that for every x ∈ Rp, there exists a constant δ > 0 such
that ∥x− x′∥1< δ implies:

|β · (a(x)⊙ x)− β · (a(x′)⊙ x′)| ≤ ∥β∥∞(1 + La(∥x∥∞+δ)) ∥x− x′∥1 (A.10)

A.2 Additional empirical informations

A.2.1 Datasets

Middle-scale benchmark

This benchmark of 45 datasets (59 binary classification and regression tasks) is introduced
in a paper titled: Why do tree-based models still outperform deep learning on typical tabular
data? (Grinsztajn, Oyallon, and Varoquaux [53]). The main goal of this benchmark was to
identify certain meta-features or inductive biases that explain the superior predictive per-
formance of tree-based models over NNs in tabular learning. We take a step forward by
incorporating inherently interpretable models in the assessment of the predictive perfor-
mance. We provide essential details about datasets and refer the interested reader to the
original paper (Grinsztajn, Oyallon, and Varoquaux [53]) for further information. The main
criteria for selecting datasets are:

• The datasets contain heterogeneous features (this excludes images and signal datasets).

• The datasets are not high dimensional. That is, the ratio a p/n is below 1/10, p < 500
with p the number of features and n the number of observations.

• The data are I.I.D. Stream-like datasets or time series are removed.

• They are real-world data.

• The datasets are not too easy and not too small, i.e., p ≥ 4 and n ≥ 3000.

• They are not deterministic datasets. Datasets where the target is a deterministic func-
tion of the predictors of the predictors.

Furthermore, in order to keep the learning as homogeneous as possible, some subproblems
that deserve their own analysis are excluded. That is:

• The size of the datasets. In the Middle-scale regime, the training set is truncated to
10,000 and the test set to 50,000.

• There is no missing data. All data points with missing values are removed.

– 138 –

Bibliography

• Balanced classes. For classification, the target is binarised if there are several classes
by taking the two most numerous classes, and we keep half of the samples in each
class.

• Categorical features with more than 20 items are removed.

• Numerical features with less than 10 unique values are removed.

Finally, every algorithm and hyperparameters combination is evaluated on the same ran-
dom seed Train/Validation/Test split or fold. More precisely, 70% of samples for the train
set (or the percentage which corresponds to a maximum of 10,000 samples if 70% is too
high). Of the remaining 30%, 30% are used for the validation set (truncated to a maxi-
mum of 50,000 samples), and 70% for the test set (also truncated to a maximum of 50,000
samples). Depending on the size of the test set, several random seed splits/folds are used
(cross-validation). That is:

• If the test set is more than 6000 samples, we evaluate our algorithms on 1 fold.

• If the test set is between 3000 and 6000 samples, we evaluate our algorithms in 2 folds.

• If the test set is 1000 and 3000 samples, we evaluate our algorithms on 3 folds.

• If the test set is less than 1000 testing samples, we evaluate our algorithms on 5 folds.

Default benchmark

• Bank Churn. This dataset contains details of a bank’s customers, and the target
variable is a binary variable reflecting the fact whether the customer left the bank
(closed his account) or continues to be a customer. We drop the CustomerId and Sur-
name columns. We also drop the HasCrCard column, which is non really informative
https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling.

• Credit Default. The goal is to predict the default probability (for the next month) of credit
card clients in Taiwan using historical data. https://archive.ics.uci.edu/ml/
datasets/default+of+credit+card+clients. We drop the SEX column as
generally, the gender information is not used in credit scoring.

• Credit Card Fraud. For this dataset, the aim is to predict whether credit card transactions
are fraudulent or genuine. The original dataset is PCA transformed for privacy purpose.
We drop the time information in our study. https://www.kaggle.com/mlg-ulb/
creditcardfraud.

• Heloc Fico. For this dataset, the target variable to predict is a binary variable called RiskPer-
formance. The value “Bad” indicates that a consumer was 90 days past due or worse at least
once over a period of 24 months fromwhen the credit account was opened. The value “Good”
indicates that they have made their payments without ever being more than 90 days overdue.
https://community.fico.com/s/explainable-machine-learning-challenge.

– 139 –

https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://community.fico.com/s/explainable-machine-learning-challenge

A.2.2 Additional results for TabSRAs: Visualization

How raw data are reinforced using the SRA block.

(a) x (b) o = a⊙ x

Figure A.1: Illustration of the reinforcement process with the Noisy two Five sphere: 250 data
points

(a) x (b) o = a⊙ x

Figure A.2: Illustration of the reinforcement process with the Two moon with: 373 data points

– 140 –

Bibliography

(a) x (b) o = a⊙ x

Figure A.3: Illustration of the reinforcement process with the Two disks: 800 data points

(a) x (b) o = a⊙ x

Figure A.4: Illustration of the reinforcement process with the Rings: 1000 data points

(a) x (b) o = a⊙ x

Figure A.5: Illustration of the reinforcement process with the Dense disk: 3000 data points

– 141 –

A.2.3 Additional results on the applicative case studies

Bank churn modeling

(a) TabSRALinear (b) XGBoost

(c) EBMs (d) EBM

Figure A.6: Bank churn modeling: interaction between the Age and IsActiveMember feature.
(A.6b): XGBoost refers to the XGBoost+TreeSHAP feature attribution solution. (A.6c): Indicates
the main effect of the Age on the churn score for both EBM_S , EBM and (A.6d) show the
pairwise interaction for the latter.

As shown in Fig. A.6, the effect of the Age feature on the churn risk is bell-shaped
according to TabSRALinear, XGBoost+TreeSHAP, and EBMs. Moreover, there is a strong
interaction between the Age and IsActiveMember features highlighted by the important in-
fluence on the churn score of the Age (around 60) for non-active members.
To handle this interaction, the GAMs based inherently interpretable solution EBM needed
to break it down into main effect and interaction effect, which is not necessary with Tab-
SRALinear. Overall, these findings explain the poor predictive performance of the Logistic
Regression (LR) as highlighted in Section 3.4.4.

Credit Card Default

In Section 3.4.4, we demonstrate using the credit card default dataset that TabSRALinear can
generate more concise explanations compared to XGBoost+TreeSHAP. As depicted in Fig.

– 142 –

Bibliography

(a) EBM_S

(b) EBM

Figure A.7: Individual prediction understanding for the credit card default dataset.

A.7, EBMs also spread contribution among correlated features. As a result, their feature
attributions are less sparse compared to those of TabSRALinear, particularly with EBMs
having pairwise interactions, which may assign non-zero feature attribution to interaction
terms as well as main effects.

A.2.4 Additional results for the robustness study

The output of piecewise constant approximators (for instance EBMs and XGBoost) are gen-
erally more sensitive to input perturbation compared to Linear models (LR) and TabSRA-
Linear, as depicted in Fig A.8. We argue that this is due to their flexibility in producing dis-
continuities or learning irregular functions (Grinsztajn, Oyallon, and Varoquaux [53] and
McElfresh, Khandagale, Valverde, Prasad C, Ramakrishnan, Goldblum, and White [55]).

– 143 –

(a) Credit Card Fraud dataset:
2533 random test points

(b) Heloc Fico dataset:
1076 random test points

Figure A.8: Change in predictions using input perturbationes (Section 3.4.2). LR = Logistic
Regression, SRA=TabSRALinear, XGB_SHAP=XGBoost+TreeSHAP

A.2.5 Implementation details for the predictive performance eval-
uation

Search space for hyperparameters

For full-complexity models, the hyperparameter spaces are derived from the previous study
[53]. For tree-based models, the number of estimators (trees) is not tuned but rather set to
a high value: 250 for Random Forest (RF), 1000 for XGBoost, and CatBoost. For the latter,
early stopping is employed with patience 20. Default parameters for tree-based models are
ScikitLearn/XGBoost/CatBoost’s defaults.

For Neural Nets (NNs), the maximal number of epochs is set to 300 with early stopping
and checkpoint (the best model on the validation set is kept). The early stopping round
is 40 for MLP, ResNet, TabSRALinear, Linear, 10 for SAINT, and 50 for EBMs. Note that
for the model using early stopping, 20% of the training dataset is used as the validation set
(different from the validation which is in the test part).
For NNs, we used the Pytorch library (Paszke et al. [173]), the Weights and Biases platform
(Biewald [174]) for hyperparameter optimization and experiment tracking.

Table A.1: Decision Tree (DT)

Parameter Distribution Default
Max depth [2, 3, 4, 5, 6, 7] -

Min sample split [2, 3] -
Min samples leaf LogUniformInt [1.5, 50.5] -

– 144 –

Bibliography

Table A.2: Linear Models (LR)

Parameter Distribution Default
Learning rate LogUniform [1e-5,1e-2] -
Weight decay LogUniform [1e-6,1e-4] -

Learning rate scheduler [True,False] -
Use bias term [True] -
Batch size [128, 256, 512, 1024] -

Table A.3: TabSRALinear

Parameter Distribution Default
Learning rate LogUniform [1e-5,1e-2] -
Weight decay LogUniform [1e-6,1e-4] -

Learning rate scheduler [True,False] -
Use bias term encoders [True] -
Use bias term classifier [True] -

Dropout Uniform [0,0.5] -
N Head [1,2] -

Dim Head [4,8, 12] -
Batch size [128, 256, 512, 1024] -

Table A.4: EBM_S

Parameter Distribution Default
Learning rate LogUniform [1e-4,0.7] -
Max bins [128,256, 512] -

Number of interaction terms [0] -
Min samples lead IntUniform [1,100] -

Max rounds [20000] -
Inner bags [0, 5, 10, 15] -
Outer bags [8, 16, 32, 64, 128] -

A.2.6 Additional results about the predictive performance

Results of hyperpameters optimization using all iterations

In this part, we present the results of hyperparameter tuning using all iterations instead of
the use of bootstrapping as described in Section 3.4.1.

As indicated in Table A.13, utilizing all iterations once instead of employing bootstrap-
ping does not change the predictive ranking of algorithms and our conclusions (Section
A.2.6).

– 145 –

Table A.5: EBM

Parameter Distribution Default
Learning rate LogUniform [1e-4,0.7] -
Max bins [128,256, 512] -

Number of interaction terms [0, 5, 10, 15, 20, 25] -
Min samples lead IntUniform [1,100] -

Max rounds [20000] -
Inner bags [0, 5, 10, 15] -
Outer bags [8, 16, 32, 64, 128] -

Table A.6: Random Forest (RF)

Parameter Distribution Default
Max depth [None, 2, 3, 4] ([0.7, 0.1, 0.1, 0.1]) -

Num estimators 250
Criterion [gini, entropy] (classif) [squared_error, absolute_error] (regression) -

Max features [sqrt, sqrt, log2, None, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] -
Min samples split [2, 3] ([0.95, 0.05] -
Min samples leaf LogUniformInt[1.5, 50.5] -

Boostrap [True, False] -
Min impurity decrease [0.0, 0.01, 0.02, 0.05] ([0.85, 0.05, 0.05, 0.05]) -

Table A.7: XGBoost

Parameter Distribution Default
Max depth UniformInt[1,11] -

Num estimators 1000 -
Min child weight LogUniformInt[1, 1e2] -

Subsample Uniform[0.5,1] -
Learning rate LogUniform[1e-5,0.7] -

Col sample by level Uniform[0.5,1] -
Col sample by tree Uniform[0.5, 1] -

Gamma LogUniform[1e-8,7] -
Lambda LogUniform[1,4] -
Alpha LogUniform[1e-8,1e2] -

Performance per dataset

In this Section, we provide the detailed individual results for each task in the inMiddle-scale
benchmark. R2 is reported as a predictive performance metric for regression tasks, and the
Accuracy is reported for classification tasks.

– 146 –

Bibliography

Table A.8: CatBoost

Parameter Distribution Default
Max depth UniformInt[3,11] -

Num estimators 1000 -
Learning rate LogUniform[1e-5,0.7] -
L2 Leaf Reg LogUniform[1,10] -

Table A.9: MLP

Num layers UniformInt [1, 8] 4
Layer size UniformInt [16, 1024] 256
Dropout [0, 0.5] 0.2

Learning rate LogUniform [1e-5,1e-2] 1e-3
Category embedding size UniformInt [64, 512] 128
Learning rate scheduler [True, False] True

Batch size [256, 512, 1024] 512

Table A.10: ResNet

Num layers UniformInt [1, 16] 8
Layer size UniformInt [64, 1024] 256

Hidden factor Uniform [1, 4] 2
Hidden dropout [0, 0.5] 0.2
Residual dropout Uniform[0, 0.5] 0.2
Learning rate LogUniform [1e-5, 1e-2] 1e-3
Weight decay LogUniform [1e-8, 1e-3] 1e-7

Category embedding size UniformInt [64, 512] 128
Normalization [batchnorm, layernorm] batchnorm

Learning rate scheduler [True, False] True
Batch size [256, 512, 1024] 512

– 147 –

Table A.11: FT Transformer

Num layers UniformInt [1, 6] 3
Feature embedding size UniformInt [64, 512] 192

Residual dropout Uniform [0, 0.5] 0
Attention dropout Uniform [0, 0.5] 0.2

FFN dropout Uniform [0, 0.5] 0.1
FFN factor Uniform [2/3, 8/3] 4/3

Learning rate LogUniform [1e-5, 1e-3] 1e-4
Weight decay LogUniform [1e-6, 1e-3] 1e-5
kv compression [True, False] True

kv compression sharing [headwise, key-value] headwise
Learning rate scheduler [True, False] False

Batch size [256, 512, 1024] 512

Table A.12: SAINT

Num layers UniformInt [1, 2, 3, 6, 12] 3
Num heads [2, 4, 8] 4
Dropout [0, 0.5] 0.2
Layer size UniformInt [32, 64, 128] 128
Dropout [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] 0.1

Learning rate LogUniform[1e-5, 1e-3] 3e-5
Batch size [128, 256, 512, 1024] 512

– 148 –

Bibliography

Table A.13: Predictive performance of models across 59 tasks (45 datasets) using all random
hyperparameters search iterations. We report the rank over all tasks, the relative test score
(Accuracy/R2) and running time (training+inference) in seconds. MRT: Mean Runing Time

Model Rank Mean Test Score MRT
min max mean median mean median std mean median

DT 4.000 12.000 10.525 11 0.869 0.909 0.169 0.282 0.032
EBM_S 1 11 7.686 8 0.931 0.955 0.086 21.101 5.269
EBM 1 10 5.525 5 0.959 0.982 0.067 70.597 18.139
LR 8 12 11.729 12 0.763 0.840 0.230 21.837 20.462

TabSRALinear 2 12 8.008 8 0.909 0.974 0.181 48.167 38.073
MLP 1 12 7.017 8 0.928 0.975 0.140 23.840 16.970
ResNet 2 12 7.102 8 0.911 0.976 0.185 118.734 70.919
SAINT 1 11 5.669 6 0.953 0.982 0.075 253.252 131.435

FT-Transformer 1 10 5.119 5 0.949 0.984 0.096 164.446 82.789
Random Forest 1 10 4.322 4 0.986 0.993 0.019 36.497 7.918

XGBoost 1 10 2.712 2 0.990 0.998 0.021 20.001 12.591
CatBoost 1 9 2.585 2 0.991 1.000 0.020 11.318 3.596

Table A.14: Regression tasks with numerical features only. D1=Ailerons,
D2=Bike_Sharing_Demand, D3=Brazilian_houses, D4=MiamiHousing2016, D5=abalone,
D6=cpu_act, D7=delays_zurich_transport, D8=diamonds, D9=elevators, D10=house_16H

Model D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

DT 0.772 0.636 0.982 0.812 0.489 0.967 0.018 0.940 0.688 0.326
EBM_S 0.826 0.652 0.984 0.894 0.512 0.979 0.026 0.944 0.859 0.468
EBM 0.841 0.683 0.990 0.924 0.533 0.982 0.027 0.945 0.887 0.496
LR 0.819 0.280 0.803 0.720 0.476 0.666 0.005 0.929 0.815 0.229
TabSRALinear 0.838 0.644 0.983 0.922 0.514 0.964 0.012 0.942 0.902 0.484
MLP 0.836 0.674 0.994 0.909 0.576 0.977 0.013 0.942 0.915 0.481
ResNet 0.838 0.201 0.997 0.913 0.565 0.981 0.011 0.944 0.899 0.489
SAINT 0.571 0.685 0.994 0.921 0.564 0.985 0.021 0.943 0.917 0.489
FT-Transformer 0.842 0.679 0.998 0.921 0.568 0.980 0.019 0.943 0.915 0.470
Random Forest 0.839 0.687 0.993 0.924 0.551 0.983 0.031 0.945 0.837 0.502
XGBoost 0.845 0.692 0.998 0.936 0.545 0.986 0.030 0.946 0.904 0.532
CatBoost 0.857 0.703 0.996 0.936 0.546 0.986 0.028 0.946 0.913 0.488

– 149 –

Table A.15: Regression tasks with numerical features only. D11=house_sales,
D12=houses, D13=medical_charges, D14=nyc-taxi-green-dec-2016, D15= pol, D16=sulfur,
D17=superconduct, D18=wine_quality, D19= yprop_4_1

Model D11 D12 D13 D14 D15 D16 D17 D18 D19
Model

DT 0.794 0.706 0.978 0.435 0.951 0.783 0.804 0.280 0.026
EBM_S 0.842 0.781 0.979 0.516 0.845 0.733 0.883 0.336 0.048
EBM 0.876 0.817 0.979 0.538 0.923 0.769 0.888 0.392 0.056
LR 0.743 0.674 0.819 0.287 0.706 0.523 0.742 0.240 0.043
TabSRALinear 0.865 0.811 0.979 0.469 0.991 0.817 0.894 0.346 0.023
MLP 0.865 0.815 0.980 0.454 0.963 0.843 0.893 0.390 0.014
ResNet 0.866 0.825 0.979 0.469 0.955 0.807 0.892 0.366 0.013
SAINT 0.877 0.825 0.979 0.490 0.995 0.787 0.895 0.371 0.057
FT-Transformer 0.880 0.832 0.979 0.451 0.994 0.859 0.878 0.362 0.045
Random Forest 0.870 0.829 0.979 0.556 0.989 0.844 0.908 0.502 0.092
XGBoost 0.887 0.847 0.979 0.551 0.990 0.863 0.909 0.490 0.080
CatBoost 0.887 0.850 0.979 0.536 0.991 0.877 0.908 0.495 0.089

Table A.16: Regression tasks with heterogeneous features. D20=Airlines_DepDelay_1M,
D21=Allstate_Claims_Severity, D22=Bike_Sharing_Demand, D23=Brazilian_houses,
D24=Mercedes_Benz_Greener_Manufacturing, D25=SGEMM_GPU_kernel_performance,
D26=abalone, D27=analcatdata_supreme, D28=delays_zurich_transport

Model D20 D21 D22 D23 D24 D25 D26 D27 28

DT 0.037 0.384 0.789 0.984 0.574 1.000 0.497 0.980 0.056
EBM_S 0.046 0.510 0.744 0.983 0.549 1.000 0.514 0.981 0.069
EBM 0.048 0.517 0.924 0.991 0.563 1.000 0.537 0.983 0.073
LR 0.033 0.482 0.366 0.826 0.533 0.699 0.445 0.740 0.008
TabSRALinear 0.041 0.507 0.927 0.979 0.547 0.999 0.529 0.958 0.052
MLP 0.041 0.514 0.935 0.994 0.558 1.000 0.577 0.981 0.061
ResNet 0.040 0.512 0.934 0.996 0.567 1.000 0.575 0.978 0.057
SAINT 0.045 0.521 0.940 0.994 0.553 1.000 0.561 0.979 0.065
FT-Transformer 0.045 0.519 0.933 0.996 0.561 1.000 0.559 0.980 0.063
Random Forest 0.045 0.499 0.935 0.993 0.577 1.000 0.554 0.981 0.076
XGBoost 0.048 0.535 0.945 0.997 0.575 1.000 0.554 0.983 0.074
CatBoost 0.050 0.535 0.949 0.996 0.576 1.000 0.550 0.982 0.076

– 150 –

Bibliography

Table A.17: Regression tasks with heterogeneous features. D29=diamonds,
D30=house_sales, D31=medical_charges, D32=nyc-taxi-green-dec-2016, D33=particulate-
matter-ukair-2017, D34=seattlecrime6, D35=topo_2_1, D36=visualizing_soil

Model D29 D30 D31 D32 D33 D34 D35 D36

DT 0.964 0.795 0.978 0.441 0.636 0.180 0.009 1.000
EBM_S 0.987 0.853 0.979 0.521 0.670 0.180 0.049 0.935
EBM 0.989 0.885 0.979 0.563 0.679 0.186 0.053 0.993
LR 0.952 0.751 0.819 0.318 0.533 0.040 0.000 0.871
TabSRALinear 0.983 0.879 0.978 0.533 0.652 0.061 0.000 0.996
MLP 0.987 0.878 0.980 0.470 0.659 0.171 0.025 1.000
ResNet 0.987 0.882 0.979 0.486 0.662 0.176 0.019 0.998
SAINT 0.989 0.889 0.979 0.498 0.669 0.180 0.054 1.000
FT-Transformer 0.990 0.891 0.979 0.470 0.671 0.179 0.039 1.000
Random Forest 0.988 0.875 0.979 0.567 0.673 0.182 0.070 1.000
XGBoost 0.991 0.897 0.978 0.575 0.691 0.185 0.060 1.000
CatBoost 0.991 0.897 0.979 0.560 0.690 0.186 0.069 1.000

Table A.18: Classification tasks with numerical features only. D37=Bioresponse,
D38=Diabetes130US, D39=Higgs, D40=MagicTelescope, D41=MiniBooNE, D42=bank-
marketing, D43=california, D44=covertype

Model D37 D38 D39 D40 D41 D42 D43 D44

DT 0.680 0.601 0.649 0.788 0.869 0.771 0.839 0.745
EBM_S 0.772 0.605 0.686 0.828 0.915 0.799 0.879 0.752
EBM 0.775 0.606 0.707 0.850 0.924 0.803 0.890 0.777
LR 0.735 0.599 0.636 0.768 0.842 0.742 0.831 0.627
TabSRALinear 0.767 0.605 0.679 0.850 0.918 0.789 0.877 0.793
MLP 0.763 0.604 0.685 0.850 0.933 0.789 0.868 0.780
ResNet 0.766 0.604 0.689 0.858 0.936 0.786 0.870 0.790
SAINT 0.758 0.604 0.705 0.847 0.937 0.793 0.880 0.801
FT-Transformer 0.748 0.605 0.703 0.857 0.934 0.794 0.885 0.799
Random Forest 0.794 0.604 0.707 0.853 0.927 0.797 0.892 0.824
XGBoost 0.792 0.606 0.714 0.859 0.937 0.805 0.901 0.817
CatBoost 0.785 0.605 0.712 0.860 0.937 0.806 0.904 0.830

– 151 –

Table A.19: Classification tasks with numerical features only. D45=credit, D46=default-
of-credit-card-clients, D47=electricity, D48=eye_movements, D49=heloc, D50=house_16H,
D51=jannis, D52=pol

Model D45 D46 D47 D48 D49 D50 D51 D52

DT 0.752 0.699 0.775 0.566 0.693 0.823 0.715 0.915
EBM_S 0.767 0.713 0.821 0.590 0.722 0.870 0.747 0.948
EBM 0.770 0.716 0.829 0.614 0.721 0.877 0.763 0.978
LR 0.706 0.678 0.740 0.556 0.710 0.821 0.724 0.855
TabSRALinear 0.744 0.709 0.792 0.584 0.719 0.873 0.749 0.983
MLP 0.771 0.708 0.807 0.578 0.719 0.877 0.745 0.944
ResNet 0.772 0.706 0.808 0.581 0.718 0.873 0.744 0.948
SAINT 0.763 0.714 0.819 0.583 0.718 0.888 0.767 0.979
FT-Transformer 0.775 0.714 0.816 0.584 0.721 0.880 0.763 0.981
Random Forest 0.772 0.718 0.859 0.645 0.717 0.881 0.772 0.982
XGBoost 0.773 0.716 0.868 0.662 0.717 0.888 0.777 0.981
CatBoost 0.776 0.718 0.861 0.642 0.717 0.887 0.778 0.984

Table A.20: Classification tasks with heterogeneous features. D53=albert,
D54=compas-two-years, D55=covertype, D56=default-of-credit-card-clients, D57=electricity,
D58=eye_movements, D59=road-safety

Model D53 D54 D55 D56 D57 D58 D59

DT 0.637 0.660 0.760 0.698 0.767 0.565 0.727
EBM_S 0.652 0.675 0.776 0.712 0.827 0.596 0.732
EBM 0.658 0.672 0.799 0.717 0.838 0.616 0.749
LR 0.635 0.667 0.772 0.679 0.740 0.567 0.697
TabSRALinear 0.643 0.668 0.849 0.711 0.806 0.602 0.748
MLP 0.652 0.678 0.834 0.709 0.819 0.586 0.756
ResNet 0.650 0.676 0.833 0.704 0.824 0.589 0.761
SAINT 0.652 0.674 0.847 0.712 0.830 0.593 0.765
FT-Transformer 0.653 0.682 0.858 0.715 0.831 0.590 0.769
Random Forest 0.654 0.679 0.859 0.717 0.876 0.658 0.760
XGBoost 0.656 0.678 0.857 0.714 0.883 0.660 0.768
CatBoost 0.656 0.676 0.873 0.719 0.884 0.651 0.770

– 152 –

	Résumé
	Abstract
	Liste des figures
	Liste des tableaux
	Liste des abréviations
	Introduction
	Fraude aux moyens de paiement
	Disposition de lutte contre la fraude aux moyens de paiments
	Défis pour l'utilisation du Machine Learning dans la détection de la fraude
	Contexte de la thèse
	Contributions
	Modèles intrinsèquement interprétables et précis dans un environnement statique
	Efficacité des modèles dans des environnements évolutifs
	Apprentissage automatique dans la détection réaliste de fraude : Application à la fraude au virement bancaire

	Plan
	Publications & Libraries
	Notation

	State Of The Art
	Classification in Standard Machine Learning
	Evaluation in classification
	Classical Machine learning models
	Attention mechanism and tabular data
	Predictive performance based state-of-the-art
	On the Interpretability and Trustworthy question
	On Imbalanced data classification

	Classification in dynamic Environments
	Concept drift and Monitoring in Evolving Environments
	Performance evaluation strategy in dynamic environments
	Examples of models in learning in dynamic environments
	Batch incremental versus Instance incremental learning
	Class imbalance in dynamic environments
	Label delay in learning in dynamic environments
	Interpretability in learning in dynamic environments

	Adaptive Machine Learning for fraud detection
	Supervised approaches and adaptive fraud detection
	Unsupervised approaches and adaptive fraud detection

	Exploring Accuracy and Interpretability trade-off in Tabular Learning with Novel Attention-Based Models
	Introduction
	Existing interpretable solutions for tabular data problems
	Inherently interpretable models
	Full-complexity models combined with Post hoc tools

	TabSRAs
	TabSRAs Architecture
	SRA block
	TabSRALinear: SRA Block and Linear downstream model
	On the robustness of TabSRALinear's explanations
	Improving TabSRALinear using model ensemble

	Empirical study
	Experimental setup
	Benchmark results
	Ablation study for TabSRALinear
	Real world application of TabSRALinear

	Limitations and Recommendations
	Conclusion

	 Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label and Dynamic Environments
	Introduction
	Problem formalization
	Label delay
	Predictive performance evaluation methodology

	Experiment analysis
	Experiment setup
	Results on the generated benchmark
	Results on the Fraud dataset

	Conclusion and Discussions

	Machine learning in realistic fraud detection: Application to bank transfer fraud
	Bank Transfer using IBAN
	Context and Operational constraints
	Construction of the target feature
	Data set
	Choice of the Machine Learning model and Adaptation Strategy
	Understanding of decisions and changes
	Understanding the predictions
	Detecting and Understanding changes over time

	Can model stacking help to improve predictive performance?
	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives
	Improve the intelligibility of TabSRA
	On the use of the error analysis for drift detection and understanding
	Enhance the collaboration between Expert and ML system in fraud detection

	Bibliography
	Appendix for Chapter 3
	Additional theoretical results
	On the Lipschitz estimate of TabSRALinear ensemble
	Proof Theorem 1.

	Additional empirical informations
	Datasets
	Additional results for TabSRAs: Visualization
	Additional results on the applicative case studies
	Additional results for the robustness study
	Implementation details for the predictive performance evaluation
	Additional results about the predictive performance

