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French. L'apprentissage profond a profondément transformé l'intelligence arti�cielle, en permet-

tant aux modèles d'apprendre automatiquement des représentations complexes à partir de grandes

quantités de données. Ces progrès ont conduit à des percées majeures dans des domaines comme la

vision par ordinateur, le traitement du langage naturel et les systèmes intelligents. Néanmoins, ces

modèles restent fortement dépendants de données annotées massives, sont coûteux à entraîner, et

rencontrent des di�cultés à généraliser hors des distributions vues pendant l'apprentissage. Cette

thèse explore une voie prometteuse pour dépasser ces limites : l'intégration de connaissances a

priori dans les architectures d'apprentissage profond. En exploitant des informations externes ou

structurées, il devient possible de guider l'apprentissage, de stabiliser l'entraînement, et d'améliorer

la robustesse des représentations. Nous étudions cette approche selon trois axes complémentaires :

l'optimisation de techniques de normalisation e�caces, l'alignement intermodal pour le traitement

de données multimodales, et la détection d'objets à vocabulaire ouvert, un cadre dans lequel les

modèles doivent être capables de reconnaître des catégories non vues pendant l'entraînement, en

s'appuyant sur des connaissances sémantiques.
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Deep learning has revolutionized a wide range of disciplines by enabling models to automati-

cally learn complex patterns from vast amounts of data, outperforming traditional machine learning

approaches that rely on hand-crafted features. This capability has driven remarkable progress in

�elds such as computer vision, natural language processing (NLP), speech recognition, and multi-

modal learning, powering innovations like autonomous systems, large language models, and medical

diagnostics. From image segmentation and object detection to machine translation and genera-

tive models, deep learning systems have surpassed human-level performance in many benchmarks,

fueling a new era of arti�cial intelligence research and commercial applications.

The hierarchical nature of neural networks allows them to capture abstract representations,

progressively building higher-level features from raw inputs. Advances in architectures � such

as transformers, convolutional networks, and graph neural networks � have expanded the scope

of tasks that deep learning can tackle, while optimizations in training strategies, regularization

techniques, and distributed computing have enabled training on ever-larger datasets. However,

these successes come with signi�cant costs: deep models are computationally expensive to train and

deploy, often require millions of labeled examples, and struggle to generalize beyond the distribution

of their training data.

In light of these challenges, integrating prior knowledge into deep learning models has

emerged as a promising strategy to enhance e�ciency and performance. By embedding domain-

speci�c information, models can learn more robust representations, reduce the reliance on extensive

labeled datasets, and improve generalization. For example, normalization techniques that incorpo-

rate statistical insights can stabilize training dynamics, while cross-modal alignment methods enable

better information fusion across diverse data modalities. Similarly, leveraging structured knowledge

can facilitate scalable frameworks for complex tasks like open-vocabulary object detection, where

the ability to recognize unseen categories is crucial.

This thesis investigates how prior knowledge can be systematically integrated to address the

limitations of deep learning, focusing on three interconnected areas: e�cient normalization tech-

niques, e�ective cross-modal alignment for multimodal data representation, and scalable frameworks

for open-vocabulary object detection training.

3



CONTENTS

1.1 Prior Knowledge in Deep Learning

Prior knowledge in deep learning refers to the integration of existing information or assumptions

about a problem domain that can guide the learning process [137, 14]. This knowledge can come

from a variety of sources, such as expert insights, statistical properties of the data, or prede�ned

models trained on related tasks. By incorporating such knowledge, deep learning models can start

with a more informed representation, allowing them to make more e�cient use of available data

and reduce the need for large labeled datasets.

One of the primary bene�ts of incorporating prior knowledge is that it enhances generalization.

Models are better able to avoid over�tting, especially when dealing with limited data. Additionally,

it enables faster convergence during training by guiding the model towards more meaningful feature

representations and improving robustness. This becomes particularly important in situations where

data is scarce or costly to acquire.

Prior knowledge can be integrated into deep learning models in a variety of ways. For example,

statistical knowledge can inform initialization schemes or regularization methods, domain-speci�c

constraints can guide the architecture of the network, and semantic relationships (e.g., between

objects in a scene) can in�uence how the model processes data.

The three next sections of this thesis explore how prior knowledge is speci�cally integrated into three

key areas: normalization techniques, cross-modal alignment, and open-vocabulary object detection.

1.2 Normalizing Deep Learning Models Using Prior Knowledge of

Data Distributions

Normalization techniques are critical in deep learning, addressing challenges such as vanishing and

exploding gradients that hinder the training of deep networks. Methods like batch normalization [54]

and layer normalization [4] stabilize training by rescaling activations, improving both convergence

speed and model generalization. However, many existing methods make overly simplistic assump-

tions about data distribution, which may not hold in real-world, heterogeneous datasets. Addition-

ally, these methods often lack adaptability to domain-speci�c tasks or low-resource settings, leading

4
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to ine�ciencies.

To address these challenges, we introduce Context Normalization, a novel technique that

integrates prior knowledge about the data distribution to enhance performance and accelerate con-

vergence. By incorporating domain-speci�c statistical insights or known data properties, we guide

the normalization process to improve scalability and adaptability. Context Normalization is pre-

sented in three variants: Context Normalization, Context Normalization - Extended, and

Adaptive Context Normalization, each designed to improve deep learning models' e�ciency.

These techniques are validated across various domains, including image classi�cation, image gener-

ation, and domain adaptation, demonstrating their e�ectiveness in improving training performance.

1.3 Improving Multimodal Data Representation Through Cross-

Modal Alignment Using Prior Knowledge of Modalities

Multimodal learning involves the integration and alignment of data from various modalities, such

as images, text, and audio, to capture meaningful cross-modal relationships. Vision-language mod-

els, such as CLIP [94], have shown impressive performance by jointly embedding text and visual

features. However, achieving e�ective cross-modal alignment requires massive datasets and substan-

tial computational resources, presenting challenges for domain-speci�c applications in low-resource

settings. Furthermore, existing approaches often struggle to generalize across diverse modalities,

resulting in suboptimal performance.

To address these limitations, we propose OneEncoder, a progressive alignment framework

that incorporates prior knowledge speci�c to the modality of the given data. By leveraging seman-

tic relationships and domain-speci�c knowledge relevant to each modality, our approach alleviates

resource constraints and improves generalization across di�erent data types. We demonstrate its

application in zero-shot classi�cation, querying, and visual question answering, utilizing modalities

such as text, image, audio, and video.
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1.4 Enhancing Open-Vocabulary Object Detection with Modality-

Speci�c Prior Knowledge

Traditional object detection methods are limited to recognizing only the categories seen during

training, restricting their applicability in dynamic environments where new categories frequently

emerge. Open-vocabulary object detection (OVOD) addresses this limitation by enabling models

to recognize objects beyond their training categories using textual descriptions. However, existing

OVOD methods rely on computationally intensive vision-language models and large-scale datasets,

making them di�cult to deploy in resource-constrained or domain-speci�c settings. Balancing

generalization to unseen categories with accurate detection of seen categories remains a persistent

challenge.

To address these issues, we propose a modular framework that integrates prior knowledge

speci�c to the object categories and the modalities they belong to, reducing training costs while

maintaining high accuracy. By incorporating knowledge of object semantics and category relation-

ships, we enhance both the scalability and adaptability of the framework. We demonstrate the

approach through LightMDETR, an adaptation of the MDETR [58] model, and validate its per-

formance on tasks such as Phrase Grounding, Referring Expression Comprehension, and Referring

Expression Segmentation.

1.5 Thesis Objectives

The overarching goal of this thesis is to address critical challenges in deep learning related to

e�ciency, scalability, and adaptability, with a particular focus on enhancing its applicability to

diverse and resource-constrained environments. By leveraging prior knowledge, the thesis aims to

propose solutions that bridge gaps in existing methodologies and contribute to the broader adoption

and e�ectiveness of deep learning. The speci�c objectives of the thesis are as follows:

1. Enhancing Training E�ciency and Generalization: Modern deep learning models often

6
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face challenges such as slow convergence and limited generalization when applied to complex,

heterogeneous, or domain-speci�c datasets. This thesis aims to develop strategies that not only

address these limitations but also improve the computational e�ciency of training, making

models more practical for real-world applications. By tackling these challenges, this work

aspires to enable deep learning models to perform e�ectively across a wide range of tasks and

data distributions.

2. Advancing Multimodal Learning: Integrating and aligning multimodal data, including

text, images, audio, and video, is crucial for capturing rich and meaningful representations.

Current approaches often require large paired datasets and signi�cant computational resources,

which may be infeasible in many scenarios. This thesis seeks to develop frameworks that fa-

cilitate e�cient and robust cross-modal alignment, improving generalization across modalities

while reducing dependence on large-scale datasets. Achieving this will open new avenues for

multimodal applications, particularly in domains with limited resources.

3. Enabling Scalable Open-Vocabulary Object Detection: The ability to detect and rec-

ognize unseen object categories is vital for deploying object detection systems in dynamic

environments. However, existing methods are limited by their reliance on �xed training cate-

gories and resource-intensive vision-language models. This thesis aims to address these issues

by developing scalable and adaptable frameworks for open-vocabulary object detection. This

will expand the applicability of object detection models, particularly in low-resource and

domain-speci�c settings.

4. Promoting Practicality and Accessibility of Deep Learning: Beyond theoretical ad-

vancements, this thesis aims to bridge the gap between research and practical deployment. The

solutions developed will prioritize resource e�ciency, making them accessible to researchers

and practitioners in various domains, including those with limited computational resources.

This emphasis on accessibility ensures that the work has a tangible impact on the broader

�eld of arti�cial intelligence and its real-world applications.

7
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1.6 Contributions of the Thesis

This thesis makes signi�cant contributions to the �eld of deep learning by addressing critical chal-

lenges in e�ciency, scalability, and adaptability. The work advances both theoretical understanding

and practical implementations, validated across various domains and applications. The key contri-

butions are as follows:

1. Development of Advanced Normalization Techniques: This thesis introduces Con-

text Normalization, along with its two variants�Context Normalization-Extended

and Adaptive Context Normalization. These methods integrate prior knowledge to ad-

dress the limitations of existing normalization techniques, leading to enhanced training ef-

�ciency, faster convergence, and improved generalization. These techniques are extensively

validated on tasks such as image classi�cation, image generation, and domain adaptation,

demonstrating their e�ectiveness and scalability.

2. Creation of a Progressive Cross-Modal Alignment Learning Framework for Multi-

modal Data Representation: The proposed OneEncoder framework o�ers a lightweight

and e�cient solution for multimodal representation learning. By leveraging prior knowledge,

it enables seamless alignment across modalities�such as text, image, audio, and video�while

minimizing reliance on large-scale paired datasets. OneEncoder achieves state-of-the-art per-

formance in applications, including zero-shot classi�cation, querying, and visual question an-

swering, highlighting its practical utility.

3. Proposing a Modular Framework for Open-Vocabulary Object Detection: Building

upon the MDETR model, this thesis presents LightMDETR, a modular framework that

addresses the challenges of scalability and adaptability in open-vocabulary object detection.

By incorporating prior knowledge, LightMDETR achieves e�cient generalization to unseen

object categories while reducing computational costs. It is validated through tasks such as

phrase grounding, referring expression comprehension, and referring expression segmentation,

showcasing its robustness and versatility.

4. Extensive Empirical Validation: The methods and frameworks proposed in this thesis

8
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are rigorously evaluated on a wide range of benchmark datasets and tasks spanning computer

vision and multimodal applications. This comprehensive validation underscores the e�ective-

ness, e�ciency, and broad applicability of the proposed approaches.

5. Theoretical Insights and Practical Guidelines: This work provides an in-depth explo-

ration of the role of prior knowledge in deep learning, o�ering valuable theoretical insights

into its integration for improving e�ciency and generalization. Additionally, practical guide-

lines for researchers and practitioners are presented, facilitating the adoption of the proposed

methods in real-world scenarios.

1.7 Overview

The thesis is structured into four main parts, each addressing critical challenges in deep learning

with the aim of improving e�ciency, scalability, and adaptability across various domains. The

organization of the thesis is as follows:

� Part I: Enhancing Deep Learning Training through Advanced Normalization Tech-

niques This section examines the limitations of existing normalization methods in deep learn-

ing and introduces Context Normalization along with its two variants: Context Normalization-

Extended and Adaptive Context Normalization. These methods leverage prior knowledge

to stabilize training, accelerate convergence, and improve generalization across diverse and

domain-speci�c data distributions. Their e�ectiveness is validated in tasks such as image

classi�cation, image generation, and domain adaptation.

� Part II: E�cient Multimodal Representation Learning This section addresses the

challenges of multimodal representation learning by proposing the OneEncoder framework.

This lightweight and progressive alignment approach reduces the dependency on large-scale

paired datasets and integrates prior knowledge to achieve e�cient cross-modal alignment.

Applications of this framework are demonstrated in tasks such as zero-shot classi�cation,

querying, and visual question answering across modalities including text, image, audio, and

video.

9
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� Part III: Modular Framework for Open-Vocabulary Object Detection This sec-

tion focuses on the challenges of open-vocabulary object detection and introduces the Light-

MDETR framework, built on the MDETR model. LightMDETR utilizes prior knowledge to

enable e�cient generalization to unseen object categories while signi�cantly reducing compu-

tational costs. The framework is validated through tasks such as phrase grounding, referring

expression comprehension, and referring expression segmentation, showcasing its adaptability

and robustness in dynamic and low-resource environments.

� Part IV: Conclusions and Future Directions The �nal section summarizes the key con-

tributions of the thesis and their impact on the �eld of deep learning. It also discusses the

broader implications of the proposed methods and outlines promising directions for future

research, including potential extensions to other domains and further re�nement of the frame-

works introduced.

10
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Normalization in Deep Learning
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E�cient and stable training of deep neural networks (DNNs) is a persistent challenge, par-

ticularly in scenarios involving complex and heterogeneous data. This part examines the role of

normalization techniques in addressing these challenges, emphasizing their importance in enhanc-

ing model scalability, adaptability, and convergence.

Chapter 2 outlines the limitations of existing normalization strategies, particularly their inability to

adapt to diverse data distributions and domain-speci�c tasks. Building on this, Chapter 3 introduces

our proposed method Context Normalization, along with its variants Context Normalization-

Extended and Adaptive Context Normalization. These methods are designed to improve

training e�ciency and generalization across applications such as image classi�cation, image gener-

ation, and domain adaptation.

This part establishes the foundation for a deeper understanding of normalization's impact on deep

learning and demonstrates the e�ectiveness of the proposed methods through detailed experimental

evaluation.

12



Chapter 2

State of the Art in Activation

Normalization for DNNs

2.1 Introduction

DNNs are powerful models characterized by stacked layers that apply linear transformations fol-

lowed by nonlinear activation functions. While their complex architectures enable e�ective feature

learning and strong representational power, they also present signi�cant challenges during training.

Issues such as slow convergence, over�tting, and training instability arise due to factors like vanish-

ing gradients and sensitivity to hyperparameters.

The success of DNNs largely depends on advancements in training methodologies that address these

challenges. One crucial advancement is normalization, which enhances training stability, improves

optimization e�ciency, and boosts generalization performance [54, 4, 124, 136]. Normalization tech-

niques help mitigate the di�culties associated with training deep networks, allowing them to learn

more e�ectively.

Normalization is commonly applied in data preprocessing, data mining, and various other domains.

It refers to a general transformation process that ensures the resulting data exhibits speci�c statisti-

cal characteristics. Given a dataset x ∈ Rd, normalization is de�ned as a function f : x→ x̂, which

guarantees that the transformed data x̂ meets speci�c statistical properties. Several key normaliza-

tion techniques exist, including centering, scaling, standardizing, decorrelating, and whitening [51].

Centering de�nes the transformation as:

x̂ = fc(x) = x− E(x). (2.1)

13



State of the Art in Activation Normalization for DNNs

This operation ensures that the normalized output x̂ has a mean of zero, expressed as: E(x̂) = 0.

Scaling de�nes the transformation as:

x̂ = fs(x) = Λ− 1
2x. (2.2)

Here, Λ = diag(σ2
1, . . . , σ

2
d), where σ2

j represents the variance of the data samples for the j-th

dimension, calculated as σ2
j = E(x2

j )− [E(xj)]
2. Scaling ensures that the normalized output x̂ has

a unit variance, expressed as E(x̂2
j )− [E(x̂j)]

2 = 1 for all j = 1, . . . , d.

Standardizing is an operation that integrates both centering and scaling, de�ned as:

x̂ = fst(x) = Λ− 1
2 (x− E(x)). (2.3)

This process guarantees that the normalized output x̂ possesses both zero mean and unit variance

properties.

Decorrelating de�nes the transformation as:

x̂ = fd(x) = Dx (2.4)

where D = [d1, . . . ,dd] represents the eigenvectors of the covariance matrix Σ = E(xxT ). Decorre-

lating ensures that the correlation between di�erent dimensions of the normalized output x̂ is zero,

meaning that the covariance matrix E(x̂x̂T ) is a diagonal matrix.

Whitening de�nes the transformation as:

x̂ = fw(x) = Λ̃− 1
2Dx (2.5)

where Λ̃ = diag(σ̃1, . . . , σ̃d) and D = [d1, . . . ,dd] represent the eigenvalues and corresponding

eigenvectors of the covariance matrix Σ. Whitening ensures that the normalized output x̂ follows a

spherical Gaussian distribution, which can be expressed as: E(x̂x̂T ) = I.

In DNNs, applying normalization methods to input data is crucial for training, as they

reduce variations in feature magnitudes. While this normalization can accelerate convergence in

networks with a single hidden layer [69], its e�ectiveness in multi-layer networks is less certain.

This uncertainty arises because each layer transforms the data, leading to activations that may

not retain the characteristics of the normalized inputs. Therefore, normalizing activations during

training is essential for maintaining the advantages of input normalization. By ensuring a consistent
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statistical distribution of activations across layers, DNNs achieve more stable and e�cient training,

ultimately enhancing model performance.

Batch Normalization (BN), introduced by Io�e and Szegedy in their in�uential work [54], has become

the dominant and widely-used technique for normalizing activations in DNNs. BN standardizes

activations using batch-level statistics, which enables the use of higher learning rates and improves

training e�ciency. However, BN has limitations, particularly its dependence on batch size and the

assumption of a uniform data distribution. To mitigate the batch size dependence issue, various

single-mode normalization methods have been proposed [4, 114, 53, 124, 136, 61]. Additionally, to

address the uniform data distribution assumption, multi-mode normalization methods have been

developed [81, 80, 57, 73].

2.2 Single-mode normalization

Single-mode normalization refers to normalization techniques that operate by standardizing activa-

tions using statistics computed from a single mode or source, such as a layer or mini-batch of data.

These methods were pioneered by Batch Normalization (BN), introduced by Io�e and Szegedy in

their seminal work [54], which became a cornerstone of training deep neural networks.

2.2.1 Batch Normalization Method

BN normalizes activations by using the mean and variance calculated over mini-batches during

training. This approach mitigates the problem of internal covariate shift�the tendency of layer

inputs to change distribution during training�thereby allowing higher learning rates and faster

convergence. The normalization is done by centering the activations around zero with a mean of

zero and scaling them with unit variance.

Consider a 4-D activation tensor x ∈ RN×C×H×W in a convolutional neural network, where N ,

C, H, and W represent the batch size, number of channels, height, and width, respectively. BN

computes the mini-batch mean (µB) and standard deviation (σB) over the set B = {x1:m : m ∈

[1, N ]× [1,H]× [1,W ]}, where x is �attened across all dimensions except the channel axis. A small
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constant ϵ is included for numerical stability, as shown in Equation 2.6.

µB =
1

m

m∑
i=1

xi σB =

√√√√ 1

m

m∑
i=1

(xi − µB)2 + ϵ (2.6)

If the samples within the mini-batch come from the same distribution, the transformation

x → x̂, as shown in Equation 2.7, produces a normalized distribution with zero mean and unit

variance. BN then applies learnable scale (γ) and shift (β) parameters to re-scale the normalized

data to a new distribution with mean β and standard deviation γ.

x̂i =
xi − µB

σB
yi = γx̂i + β (2.7)

During inference, rather than using the batch statistics, BN employs a moving average of the mean

and variance computed during training. The moving average mean µ̄ and variance σ̄2 are calculated

as:

µ̄ = αµ̄+ (1− α)µB σ̄2 = ασ̄2 + (1− α)σ2
B (2.8)

Here, α is a momentum parameter that controls the update rate of the moving averages. During

inference, these moving averages are used to normalize activations as:

x̂i =
xi − µ̄√
σ̄2 + ϵ

yi = γx̂i + β (2.9)

This ensures consistency across di�erent batch sizes during inference.

Despite its remarkable performance in stabilizing the training of DNNs, BN faces signi�cant

limitations related to its dependency on mini-batch size. Speci�cally, BN's e�ectiveness diminishes

when the size of the mini-batch is small. This occurs because BN relies on accurate estimates

of batch statistics (mean and variance) during training, which become less reliable with smaller

mini-batches, leading to noisy gradients and unstable updates. This limitation poses a challenge

in scenarios where memory constraints or certain applications require smaller mini-batches. To
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address this issue, several variants of BN have been proposed, which we will discuss in detail in

Section 2.2.2.

2.2.2 Extensions of Batch Normalization to Address Mini-Batch Dependency

To address the mini-batch dependency issue, several extensions of Batch Normalization have been

introduced, including Layer Normalization (LN) [4], Instance Normalization (IN) [114], Group Nor-

malization (GN) [124], and Divisive Normalization (DN) [96], Unsupervised Batch Normalization

(UBN) [61]. In this section, we adopt the notations from [57] to illustrate that the primary distinc-

tion between these methods lies in the speci�c set over which the sample statistics are computed.

Let's consider i = (iN , iC , iL) as a vector indexing the tensor of activations x ∈ RN×C×L, associated

with a convolutional layer where the spatial domain has been �attened. The general normalization,

x→ x̂, is de�ned as:

vi = xi − EBi(x), x̂i =
vi√

EBi(v
2) + ϵ

, (2.10)

where EBi(x) denotes the expectation computed over a subset Bi of activations. Similar to BN, the

normalized activations can be further adjusted by scaling and shifting using the parameters γ and

β. To derive the BN transformation (Equation 2.9) from the general normalization Equation 2.10,

it is only necessary to de�ne the appropriate Bi as:

Bi = {j : jN ∈ [1, N ], jC ∈ [iC ], jL ∈ [1, L]}. (2.11)

In this case, Bi captures all activations within the same channel iC across the entire mini-batch and

spatial dimensions.

Layer Normalization (LN) [4] adapts BN for architectures like recurrent neural networks (RNNs),

where temporal information is critical. Unlike BN, which normalizes across the mini-batch, LN nor-

malizes across features for each training example independently, addressing RNN-speci�c challenges

like varying batch sizes and dependencies on prior time steps. This ensures consistent normaliza-

tion across all time steps, improving training stability and convergence. LN can be formulated as

Equation 2.10 when

Bi = {j : jN ∈ [iN ], jC ∈ [1, C], jL ∈ [1, L]}. (2.12)
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LN e�ectively reduces internal covariate shift in RNNs, enhancing long-range dependency capture

and performance in tasks like natural language processing and time-series forecasting. It's also

computationally e�cient and widely used in modern architectures like transformers [116]. However,

LN underperforms in convolutional layers, where local spatial variations are important, as it applies

the same normalization across the entire spatial domain, making it less suited for convolutional

architectures.

Instance Normalization (IN) [114] extends the ideas of BN and LN, speci�cally designed for

generative models and style transfer. Unlike BN, which normalizes across mini-batches, or LN, which

normalizes across all features of a single example, IN normalizes each channel independently for

each instance. This helps preserve instance-speci�c characteristics, making it particularly e�ective

in tasks like image generation and style transfer, where separating content from style is crucial for

creative manipulations and high-quality output [52, 140]. IN can be formulated as Equation 2.10

when

Bi = {j : jN ∈ [iN ], jC ∈ [iC ], jL ∈ [1, L]}. (2.13)

However, IN can underperform in tasks like classi�cation or CNN-based image recognition, where

capturing correlations between instances is important. Its focus on instance-speci�c normalization

can lead to a loss of shared statistics, limiting its e�ectiveness in scenarios that bene�t from global

feature interactions.

Group Normalization (GN) [124] divides channels into smaller groups and computes the mean

and variance for each group independently, making it robust to �uctuations in batch size. This

is particularly useful in tasks like object detection and segmentation, where small batch sizes are

common. GN balances the strengths of LN (G=1) and IN (G=C), providing more stable and

e�ective normalization by ensuring group-speci�c statistics are representative of the data, leading

to improved convergence and generalization. GN can be formulated as Equation 2.10 when

Bi = {j : jN ∈ [iN ], jC ∈ [iC ], jL ∈ [1, L]|⌊ jC
C/G

⌋} (2.14)

However, GN's performance heavily depends on the choice of group size, requiring tuning to opti-

mize results. While it outperforms BN in small-batch scenarios, it may underperform in very deep

networks where capturing global batch statistics across all channels is crucial for e�ective feature

learning.
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Divisive Normalization (DN) [96] is a biologically inspired technique where each neuron's activ-

ity is divided by a weighted combination of its neighbors' activities, o�ering more dynamic control

of activations. Unlike other methods that use simple statistics, DN adjusts activations as follows:

vi = xi − EAi(x), x̂i =
vi√

EBi(v
2) + ρ2

, (2.15)

where:

Ai = {j | d(xi, xj) ≤ RA}, Bi = {j | d(vi, vj) ≤ RB},

with d representing the distance between hidden units, ρ the normalizer bias, and R the neighbor-

hood radius. This method enhances decorrelation of neuronal responses, reducing redundancy and

improving focus on salient features. DN has shown to improve model robustness and interpretabil-

ity, particularly in visual tasks. However, DN is computationally intensive, requiring the calculation

of weighted sums for neighboring neurons, which can slow down large networks. Additionally, DN

may underperform in convolutional networks, where global methods like BN are better at capturing

broad data distributions. Its e�ectiveness also depends on �ne-tuning parameters like neighborhood

size and weights, adding complexity to model design. Thus, while DN has powerful bene�ts, its

computational cost and complexity limit its broader use.

Unsupervised Batch Normalization (UBN) [61] addresses biased batch statistics in Batch

Normalization (BN) when working with small labeled datasets. By incorporating additional unla-

beled data from the same distribution to compute batch statistics, UBN reduces the bias introduced

by small mini-batches. It is formulated as:

Bi = {j : jN ∈ [1, N ], jC ∈ [iC ], jL ∈ [1, L]} ∪ Ui, (2.16)

where Ui represents the indices of unlabeled data. This approach enhances the representation of

the data distribution, leading to more accurate normalization and stable training without needing

changes to the network architecture. However, UBN relies on the assumption that the unlabeled

data is from the same distribution as the labeled data; if there is a domain mismatch, the normal-

ization may not generalize e�ectively.

These techniques represent a signi�cant step forward in overcoming the challenges of mini-

batch dependency. Each method o�ers speci�c bene�ts suited to di�erent DNN architectures and
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tasks. The choice of technique should be based on the model architecture and the training require-

ments, with newer methods providing a balance between �exibility and e�ciency in training.

2.3 Multi-mode normalization

Multi-mode normalization standardizes activations using statistics from various sources, such as

di�erent layers, mini-batches, or feature channels. Several methods have been proposed to enhance

this process, including Switchable Normalization (SwitchNorm) [81], Mode Normalization (Mode-

Norm) [80] and Mixture Normalization (MixNorm) [57]. These techniques address the limitations

of BN by overcoming the uniform data distribution assumption, which can hinder performance on

diverse datasets. Overall, multi-mode normalization improves the robustness and stability of nor-

malization in DNNs.

Switchable Normalization (SwitchNorm) [81] is an advanced extension of BN that dynamically

combines multiple normalization techniques, including BN, LN, and IN, through a set of learnable

weights. Unlike BN, which assumes uniform data distribution across mini-batches and can su�er

when batch sizes are small or when data distributions are not consistent, SwitchNorm allows the

model to adaptively select the most appropriate normalization method for each layer. By leveraging

this �exibility, SwitchNorm improves performance across a variety of scenarios, particularly when

BN's reliance on mini-batch statistics becomes unreliable, such as in tasks with small batch sizes or

non-uniform activations.

For each activation xi, SwitchNorm alters the normalization process by dynamically adjusting the

computation of the batch statistics, as shown in Equation 2.6:

x̂i =
xi −

∑
k∈Ωwkµk√∑

k∈Ωw′
kσ

2
k + ϵ

yi = γx̂i + β. (2.17)

Here, Ω represents a set of statistics estimated using di�erent normalization methods. In the context

of SwitchNorm, Ω = {BN,LN, IN}, which means that µk and σ2
k are computed for BN, LN, and IN

using the batch Bi as de�ned in Equations 2.11, 2.12, and 2.13 respectively. The calculations for
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these statistics can be expressed as follows:

µk =
1

|Bi|
∑
j∈Bi

xj , σ2
k =

1

|Bi|
∑
j∈Bi

(xj − µk)
2. (2.18)

Furthermore, wk and w′
k are importance ratios used to weight the means and variances, respec-

tively. Each wk and w′
k is a scalar variable constrained to the range [0, 1], satisfying the conditions∑

k∈Ωwk = 1 and
∑

k∈Ωw′
k = 1. The weights wk can be computed as follows:

wk =
eλk∑

z∈{BN,LN,IN} e
λz

, k ∈ {BN,LN, IN}, (2.19)

where λBN, λLN, and λIN are control parameters learned during backpropagation. The weights w′
k

are de�ned similarly, using an additional set of control parameters λ′
BN, λ

′
LN, λ

′
IN.

Let Θ represent the set of network parameters (e.g., �lters) and Φ denote the set of control

parameters that de�ne the network architecture. In SwitchNorm, the learned parameters are given

by Φ = {λBN, λLN, λIN, λ′
BN, λ

′
LN, λ

′
IN}. Training a DNN with SwitchNorm involves minimizing the

loss function:

min
{Θ,Φ}

1

N

N∑
j=1

L(yj , f(xj ; Θ,Φ)),

where {xj , zj}Nj=1 represents a set of training samples and their corresponding labels. The function

f(xj ; Θ) is the model learned by the DNN to predict zj . The parameters Θ and Φ are optimized

jointly through backpropagation.

SwitchNorm provides a valuable integration of various normalization methods but is limited by its

dependence on BN, LN, and IN for parameter estimation. This reliance means it inherits the same

limitations as these techniques, particularly in handling non-uniform data distributions, which may

undermine its e�ectiveness in addressing the challenges posed by diverse data conditions.

Mode Normalization (ModeNorm) [80] introduces the concept of "modes" within the data.

A mode refers to a dominant pattern or cluster within the data distribution, representing di�erent

subpopulations or variations in the input. ModeNorm detects these modes and normalizes the activa-

tions based on the statistics of their respective modes, rather than using the entire batch's statistics.

This provides a more �ne-grained and adaptive normalization process compared to SwitchNorm.

For each activation xi, ModeNorm adapts the normalization formula as follows:
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x̂i =

K∑
k=1

gk(xi)
xi − µk√
σ2
k + ϵ

yi = γx̂i + β, (2.20)

where gk, k ∈ {1, ...,K} are gating functions represented by a mixture of experts. For each xi,

gk(xi) ∈ [0, 1] and
∑K

k=1 gk(xi) = 1. The estimators for µk and σ2
k are computed under the weighting

from the gating network using the indices Bi:

µk =
1

Nk

∑
j∈Bi

gk(xj) · xj σ2
k =

1

Nk

∑
j∈Bi

gk(xj) · (xj − µk)
2, (2.21)

where Nk =
∑

j∈Bi
gk(xj). ModeNorm uses an a�ne transformation followed by softmax activation

to represent the gating networks. When the number of modes K = 1, or when the gates collapse

to a constant gk(xi) = const, ModeNorm reduces to BN. Like BN, during training, ModeNorm

normalizes activations using statistics computed from the current batch. During inference, it uses

moving averages of mean and variance, as in Equation 2.8, similarly to BN.

ModeNorm helps overcome BN's shortcomings, especially when the data contains multiple modes

or clusters that di�er signi�cantly. It excels in scenarios with non-uniform data distributions, where

BN's global batch statistics may be misleading. However, ModeNorm adds complexity by requiring

the identi�cation of modes and calculating separate statistics for each mode, which can increase

computational cost and introduce additional hyperparameters. Moreover, its e�ectiveness depends

heavily on the accurate identi�cation of modes, which may be challenging in complex or highly

variable datasets, potentially limiting its generalizability in certain tasks.

Mixture Normalization (MixNorm) [57] extends BN by leveraging a probabilistic approach

based on Gaussian Mixture Models (GMM). Rather than assuming a single underlying distribution

for activations in a mini-batch, MixNorm captures the multimodal nature of data by normalizing

each sample based on multiple modes. Each sample is assigned to one of several Gaussian compo-

nents, enabling a more �ne-grained adaptation of normalization to the underlying data distribution.

This method improves on the limitations of BN, which can struggle with non-uniform or complex

distributions across mini-batches.

In MixNorm, the probability density function pθ that characterizes the data is modeled as a GMM

with K components. The distribution for each sample x ∈ RD is expressed as:

p(x) =
K∑
k=1

λkp(x|k), s.t. ∀k : λk ≥ 0,
K∑
k=1

λk = 1, (2.22)
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where λk is the mixture coe�cient for the k-th component, and p(x|k) is the Gaussian distribution

for the k-th component, given by:

p(x|k) = 1

(2π)D/2|Σk|1/2
exp

(
−
(x−mk)

TΣ−1
k (x−mk)

2

)
, (2.23)

with mk being the mean and Σk the covariance matrix of the k-th Gaussian. Considering K

components, MixNorm is implemented in two stages:

� Estimation of the mixture model's parameters θ = {λk,mk,Σk : k = 1, . . . ,K} using the

Expectation-Maximization (EM) algorithm [22].

� Normalization of each sample based on the estimated parameters and aggregation using pos-

terior probabilities.

For a given activation xi, the MixNorm transformation is formulated as:

x̂i =
K∑
k=1

p(k|xi)√
λk
· xi − µk√

σ2
k + ϵ

, yi = γx̂i + β, (2.24)

where p(k|xi) = λkp(xi|k)∑K
l=1 λlp(xi|l)

represents the probability that xi belongs to the k-th component. The

weighted mean and variance for the k-th component are computed as follows:

µk =
∑
j∈Bi

p(k|xj)∑
l∈Bi

p(k|xl)
· xj , (2.25)

σ2
k =

∑
j∈Bi

p(k|xj)∑
l∈Bi

p(k|xl)
· (xj − µk)

2, (2.26)

MixNorm ensures that each sample is normalized according to the distribution it most likely belongs

to, making it highly adaptive to complex, multimodal data distributions. MixNorm extends BN to

heterogeneous complex datasets and often yield superior performance in supervised learning tasks.

However, they are frequently computationally expensive due to the use EM algorithm.

2.4 Discussion

Activation normalization is a promising approach for addressing slow convergence and training in-

stability in DNNs. BN, a single-mode method, has shown signi�cant success by mitigating the
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internal covariate shift issue. However, BN's e�ectiveness diminishes when mini-batches are small

or when the data samples within a batch come from di�erent distributions. To address the small

batch size problem, several single-mode alternatives such as LN, IN, GN, DN, and UBN have been

introduced.

To handle the challenge of non-uniform data distribution within mini-batches, multi-mode ap-

proaches such as SwitchNorm, ModeNorm, and MixNorm have been developed. However, this

area is relatively underexplored, and existing methods tend to be computationally expensive, often

requiring additional parameters or complex algorithms like EM in MixNorm. In the following Chap-

ter 3, we propose three new multi-mode methods aimed at accelerating DNN training convergence

and improving performance by leveraging prior knowledge-driven approaches.
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Chapter 3

Context Normalization

3.1 Introduction

In this chapter, we introduce a novel approach to normalization in deep neural networks (DNNs),

aimed at improving training e�ciency and model performance. The proposed method, Context

Normalization, leverages prior knowledge to de�ne "contexts" within the input data�groups of

samples with similar characteristics�enabling more e�cient normalization and faster convergence

compared to traditional methods.

We propose three variants of Context Normalization to address di�erent challenges in training:

- Context Normalization (CN), the base method that identi�es and normalizes contexts within

the data.

- Context Normalization - Extended (CN-X), which enhances the base method by extending

its applicability to more complex data distributions.

- Adaptive Context Normalization (ACN), which further adapts to dynamic variations in data

and allows for more �exibility in real-world scenarios.

These methods are validated through extensive experiments in domains such as image classi�-

cation, image generation, and domain adaptation. In each case, we observe improvements

in convergence speed, model stability, and performance, demonstrating the broad applicability and

e�ectiveness of Context Normalization.

The chapter is structured as follows: Section 3.2 introduces the foundational concept of Context

Normalization (CN); Section 3.3 describes the extended version, Context Normalization - Extended

(CN-X); and Section 3.4 focuses on the adaptive variant, Adaptive Context Normalization (ACN).
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3.2 Context Normalization (CN)

CN modi�es Equation 2.24 from Mixture Normalization (MN) [57], where the mixture components

are treated as modes for normalization. MN employs the Expectation-Maximization (EM) algo-

rithm to estimate the parameters of these mixture components during training. However, EM is

computationally expensive and must be applied repeatedly, as the activation distribution shifts with

updates to the DNN weights.

Instead of relying on the EM algorithm, we propose normalizing based on "contexts" that are pre-

constructed from the input data before DNN training. Each sample in the input data is assigned to

a single, unique context, with all samples within the same context sharing similar characteristics.

Further details on how these contexts are constructed will be provided in Section 3.5. Each sample

belongs to a unique context k. CN ensures that all activations from a sample are associated with

the same context k throughout DNN training.

To align with standard representations in the literature 2, let x ∈ RN×C×L be an activation tensor,

where N is the batch size, C is the number of channels, and L = H ×W represents the �attened

spatial dimensions (height H and width W ). Each activation is denoted by {xi, ki}, where xi is the

activation and ki ∈ {1, . . . ,K} is its context identi�er, with K being the number of contexts. Each

activation xi is assigned to the context ki corresponding to the sample that produced it. Since each

activation is associated with a unique known context, we have p(ki|xi) = 1 if xi belongs to context

ki, and p(ki|xi) = 0 otherwise. Consequently, Equation 2.24 simpli�es to:

x̂i =
1√
λki

.
xi − µki√
σ2
ki
+ ϵ

yi = γki x̂i + βki (3.1)

where λki represents the proportion of samples in the dataset belonging to context ki. The mean

and variance are then de�ned as follows:

µki =
1

Nki

·
∑

xi∈x(ki)

xi (3.2)

σ2
ki

=
1

Nki

·
∑

xi∈x(ki)

(xi − µki)
2 (3.3)

where x(ki) denotes the subset of x containing the activations corresponding to context ki, and Nki

represents the number of elements in x(ki). The moving averages of the mean µ̄ki and variance
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σ̄2
ki

are updated with a momentum rate α during training, following the same approach as in BN

(see Equation 2.8). These updated statistics are then used to normalize the feature maps during

inference:

µ̄ki = αµ̄ki + (1− α)µki σ̄2
ki

= ασ̄2
ki
+ (1− α)σ2

ki
(3.4)

In the special case where there is only a single context (K = 1), CN reduces to standard BN.

We present the CN transform (Algorithm 1), applied to a set of activations x(k) of a speci�c context

Algorithm 1: CN Transform applied to activations of a speci�c context.

Input : k: context identi�er;

x(k): subset of activations associated with context k;

λk: proportion of samples in the dataset assigned to context k;

{γk, βk}: learnable parameters;

Output: {yi} = CN{γk,βk}(k,x
(k), λk)

1 Nk = |x(k)| // number of elements

2 µk = 1
Nk
·
∑

xi∈x(k) xi // context mean

3 σ2
k = 1

Nk
·
∑

xi∈x(k)(xi − µk)
2 // context variance

4 for xi ∈ x(k) do

5 x̂i =
1√
λk
. xi−µk√

σ2
k+ϵ

// normalize

6 yi = γkx̂i + βk // scale and shift

7 end

k. CN can be integrated into a neural network to manipulate activations. The scaled and shifted

values y = {yi} are passed to other layers, while the normalized activations x̂ = {x̂i}, internal to

CN, have mean 0 and variance 1. Unlike BN, which normalizes across the entire mini-batch, CN

normalizes activations within context k. Each x̂ is input to a sub-network with y = γkx̂ + βk,

accelerating training similarly to BN but per context k.

During training, we need to propagate the gradient of loss ℓ through this transformation, as well

as compute the gradients with respect to the parameters of CN transform. We use chain rule, as

follows (before simpli�cation):
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∂ℓ

∂x̂i
=

∂ℓ

∂yi
· γk

∂ℓ

∂σ2
k

=
1√
λk
·
Nk∑
i=1

∂ℓ

∂x̂i
· (xi − µk) ·

(
−1

2

)(
σ2
k + ϵ

)− 3
2

∂ℓ

∂µk
=

1√
λk
·

 Nk∑
i=1

∂ℓ

∂x̂i
· −1√

σ2
k + ϵ

+
∂ℓ

∂σ2
k

·
∑Nk

i=1−2(xi − µk)

Nk

∂ℓ

∂xi
=

∂ℓ

∂x̂i
· 1√

λk
· 1√

σ2
k + ϵ

+
∂ℓ

∂σ2
k

· 2(xi − µk)

Nk
+

∂ℓ

∂µk
· 1

Nk

∂ℓ

∂γk
=

Nk∑
i=1

∂ℓ

∂yi
· x̂i

∂ℓ

∂βk
=

Nk∑
i=1

∂ℓ

∂yi

The CN transform is a di�erentiable operation that introduces context-normalized activations into

the neural network. This reduces internal covariate shift, accelerating training. Additionally, the

learned a�ne transform, like in BN, allows CN to represent the identity transformation, preserving

the neural network's capacity.

To Context-Normalize a deep neural network, we de�ne activations with their context identi�ers

{xi, ki} and apply the CN transform on each based on its context, as outlined in Algorithm 1. Layers

that previously received x(k) (activations for context k) now take CN(k,x(k), λk). This context-based

normalization in mini-batches supports e�cient training but isn't needed during inference; like BN,

the output should depend deterministically on the input. After training, activations are normalized

using:

ŷi = γki ·
1√
λki

· xi − µ̄ki√
σ̄2
ki
+ ϵ

+ βki (3.5)

Here, population statistics replace context-speci�c ones. Since the means and variances are �xed

at inference, normalization reduces to a linear transform for each activation. This can be combined

with the scaling by γk and shift by βk, resulting in a single linear transform replacing CN(k,x(k), λk).

Algorithm 2 details the training process for context-normalized deep neural networks.

Limitation. CN divides the mini-batch into multiple subgroups based on prede�ned con-

texts, estimates the mean and variance for each subgroup, and normalizes the activations using the
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Algorithm 2: Training a Context-Normalized Network.

Input : Net: Deep neural network with trainable parameters Θ;

K: number of contexts;

{xi, ki}, where ki ∈ {1, . . . ,K}: activations and corresponding context;

{λk}Kk=1: proportion of samples assigned to each context k;

{γk, βk}Kk=1: learnable parameters;

α: momentum;

Output: Context-normalized network for inference, NetinfCN

1 NettrCN ← Net // Trainig CN deep neural network

2 for k ← 1 to K do

3 Construct x(k) with all activations for context k

4 Add transformation y = CN{γk,βk}(k,x
(k), λk) to NettrCN (Algorithm 1)

5 Replace the input x(k) with y(k) in each layer of NettrCN

6 µ̄k = αµ̄k + (1− α)µk σ̄2
k = ασ̄2

k + (1− α)σ2
k

7 end

8 Train NettrCN to optimize the parameters Θ ∪ {γk, βk}Kk=1

9 NetinfCN ← NettrCN // Inference CN deep neural network with frozen parameters

10 for k ← 1 to K do

11 Construct x(k) with all activations for context k

12 for xi ∈ x(k) do

13 x̂i =
1√
λk
. xi−µ̄k√

σ̄2
k+ϵ

// normalize

14 yi = γkx̂i + βk // scale and shift

15 end

16 Replace the input x(k) with y(k) in each layer of NetinfCN

17 end

corresponding parameters. However, if a subgroup contains too few elements, the parameter esti-

mates may become unreliable, causing CN to face the same issues as BN with small mini-batch sizes.

To address this limitation, we propose an extension of CN, which we will discuss in Section 3.3.
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3.3 Context Normalization - Extended (CN-X)

CN-X is an enhanced version of CN designed for more robust context parameter estimation. While

CN estimates the normalization parameters (mean and variance) directly from activations within

each context, CN-X instead learns these parameters as trainable weights of the neural network.

These parameters are updated during backpropagation, making them more �exible and accurate

over time. For each context k, we de�ne the parameter set θk = {µk, σ
2
k}, where µk and σ2

k are

initialized randomly, with the constraint that σ2
k ≥ 0. To normalize activations in context k,

Algorithm 3: CN-X Transform applied to activations of a speci�c context.

Input : k: context identi�er;

x(k): subset of activations associated with context k;

λk: proportion of samples in the dataset assigned to context k;

ϕk = {µk, σ
2
k} : normalization parameters;

{γk, βk}: learnable parameters;

Output: {yi} = CN-X{ϕk,γk,βk}(k,x
(k), λk)

1 for xi ∈ x(k) do

2 x̂i =
1√
λk
. xi−µk√

σ2
k+ϵ

// normalize

3 yi = γkx̂i + βk // scale and shift

4 end

represented by x(k), Algorithm 1 is adapted to produce Algorithm 3. In this modi�ed version,

the normalization parameters θk are provided as inputs, and the normalization operation remains

unchanged. However, unlike in CN, where the parameters are estimated directly from x(k), in CN-

X these parameters are learned through the network's training process. Algorithm 4 outlines the

process for training a neural network with CN-X. Let Θ represent the neural network parameters,

and Φ = {ϕk}Kk=1, where ϕk = {µk, σ
2
k}, denote the set of learnable normalization parameters. The

objective is to minimize the loss function:

min
Θ,Φ

1

N

N∑
j=1

ℓ(zj , f(xj ; Θ,Φ)),
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Algorithm 4: Training a Context-Normalized Extended Network.

Input : Net: Deep neural network with trainable parameters Θ;

K: number of contexts;

{xi, ki}, where ki ∈ {1, . . . ,K}: activations and corresponding context;

{λk}Kk=1: proportion of samples assigned to each context k;

{γk, βk}Kk=1: learnable parameters;

α: momentum;

Output: Context-normalized Extended network for inference, NetinfCN-X

1 Random initialize ϕk = {µk, σ
2
k}, where k ∈ {1, ...,K} // initialize normalization

parameters

2 NettrCN-X ← Net // Trainig CN-X deep neural network

3 for k ← 1 to K do

4 Construct x(k) with all activations for context k

5 Add transformation y = CN-X{ϕk,γk,βk}(k,x
(k), λk) to NettrCN-X (Algorithm 1)

6 Replace the input x(k) with y(k) in each layer of NettrCN-X

7 end

8 Train NettrCN-X to optimize the parameters Θ ∪ {ϕk, γk, βk}Kk=1

9 NetinfCN-X ← NettrCN-X // Inference CN-X deep neural network with frozen parameters

10 for k ← 1 to K do

11 Construct x(k) with all activations for context k

12 for xi ∈ x(k) do

13 x̂i =
1√
λk
. xi−µk√

σ2
k+ϵ

// normalize

14 yi = γkx̂i + βk // scale and shift

15 end

16 Replace the input x(k) with y(k) in each layer of NetinfCN-X

17 end
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where {xj , zj}Nj=1 is the set of training samples and labels, with each sample belonging to a single

context kj ∈ {1, . . . ,K}. The function f(xj ; Θ,Φ) is learned by the network to predict the output

yj . Both Θ and Φ are optimized jointly via backpropagation.

This approach di�ers from previous methods like BN and CN, where normalization parameters Φ

are often treated as separate network modules (e.g., scale and shift) and not essential for normaliza-

tion. In CN-X, Φ is learned directly during training, contributing to minimizing the loss function.

Since the normalization parameters are not estimated from the activations, even small context sizes

in a mini-batch do not negatively impact the learned parameters, as they are updated as part of

the network's weights.

Similar to CN, in CN-X, we need to propagate the gradient of the loss function ℓ through the

transformation during training, while also computing the gradients with respect to the parameters

of the CN-X transformation. This is achieved by applying the chain rule, as outlined below (prior

to simpli�cation):

∂ℓ

∂x̂i
=

∂ℓ

∂yi
· γk

∂ℓ

∂σ2
k

=
1√
λk
·
Nk∑
i=1

∂ℓ

∂x̂i
· (xi − µk) ·

(
−1

2

)(
σ2
k + ϵ

)− 3
2

∂ℓ

∂µk
=

1√
λk
·

 Nk∑
i=1

∂ℓ

∂x̂i
· −1√

σ2
k + ϵ


∂ℓ

∂xi
=

∂ℓ

∂x̂i
· 1√

λk
· 1√

σ2
k + ϵ

∂ℓ

∂γk
=

Nk∑
i=1

∂ℓ

∂yi
· x̂i

∂ℓ

∂βk
=

Nk∑
i=1

∂ℓ

∂yi

Limitations. CN-X methods rely on prede�ned contexts within the input dataset for normalization.

In domains where constructing these contexts is challenging, such approaches become di�cult to

apply e�ectively. To address this limitation, we propose Adaptive Context Normalization (ACN), a

method that retains the strengths of both CN-X and CN without the need for prede�ned contexts.

We will elaborate on ACN in Section 3.4.
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3.4 Adaptive Context Normalization (ACN)

In ACN, we shift our focus from prede�ning contexts within the input dataset to dynamically con-

structing them during the training of the neural network. Unlike CN-X and CN, where inputs

are represented as (xi, ki)�indicating prede�ned contexts�ACN simpli�es this representation to

just xi. ACN only requires the speci�cation of the number of contexts, K, to be created during

the normalization process, akin to clustering algorithms that use a prede�ned number of clusters.

However, instead of relying on prior knowledge or �xed clusters, ACN allows the neural network

to autonomously discover a latent space of activations that adheres to a GMM. During training,

ACN incrementally clusters neuron activations without prede�ned partitions, enabling the model

to adapt to task-speci�c challenges without prior cluster information. This �exibility permits the

neural network to explore and adapt to the underlying patterns in the data independently. Since the

speci�c context for each activation is not predetermined, ACN utilizes Equation 2.24 to normalize

across all contexts. Unlike traditional methods such as MN, where parameters are often �xed, ACN

learns the parameters of these contexts as neural network weights during backpropagation. This

approach eliminates the need for computationally intensive algorithms like EM, enhancing e�ciency

in the training process.

The GMM parameters θ = {λk,mk,Σk : k = 1, . . . ,K} are optimized in alignment with the tar-

get task. Algorithm 5 outlines the training procedure of a deep neural network using ACN as

the normalization method. Initially, the GMM parameters are randomly initialized, ensuring that∑K
k=1 λk = 1 is maintained throughout training. This integration allows the GMM parameter

estimation to become a dynamic part of the neural network, o�ering a more adaptive approach.

Unlike methods like MN that rely on the EM algorithm�which cannot e�ciently track changes in

the activation distribution due to its high computational cost�this approach continuously updates

the GMM parameters based on shifts in the activation distribution. As the two approaches (CN

and CN-X), in ACN we need to propagate the gradient of the loss function ℓ through the trans-

formation during training. This is achieved by applying the chain rule, as outlined below (prior to
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Algorithm 5: Training a Adaptive Context-Normalized Network.

Input : Net: Deep neural network with trainable parameters Θ;

K: number of contexts;

{xi}: set of activations;

{γk, βk}Kk=1: learnable parameters;

α: momentum;

Output: Context-normalized Extended network for inference, NetinfACN

1 Initialize the parameters for each context as follows:

θk = {λk, µk, Σk} for k ∈ {1, ...,K}, subject to the condition that
∑K

k=1 λk = 1

2 for xi ∈ x do

3 Add transformation x̂i using Equation 2.24

4 Modify each layer in NettrACN with input xi to take x̂i instead

5 end

6 Train NettrACN to optimize the parameters Θ ∪ {θk, γk, βk}Kk=1

7 NetinfACN ← NettrACN // Inference ACN deep neural network with frozen parameters

8 for xi ∈ x do

9 x̂i =
∑K

k=1
p(k|xi)√

λk

(
xi−µk√
σ2
k+ϵ

)
// normalize

10 yi = γkx̂i + βk // scale and shift

11 end

12 Replace the input x with y in each layer of NetinfACN
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simpli�cation):

∂ℓ

∂x̂i
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∂ℓ

∂yi
· γk

∂ℓ

∂σ2
k

= − 1
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∑K

l=1 λlp(xi|l))2

∂ℓ

∂γk
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N∑
i=1

∂ℓ

∂yi
· x̂i

∂ℓ

∂βk
=

N∑
i=1

∂ℓ

∂yi

The ACN is a di�erentiable operation that integrates context-sensitive, normalized activations di-

rectly into the neural network. This method is particularly advantageous for scenarios involving

multi-modal data distributions, as it uni�es normalization across multiple modes without requiring

complex, separate algorithms for estimating mode-speci�c parameters. Instead, ACN dynamically

adapts its normalization based on context.

In this approach, we use MN as a baseline; however, ACN is not limited to MN and can be gener-

35



Context Normalization

alized to other normalization techniques, such as ModeNorm. The key advantage lies in how ACN

enables the model to learn context-relevant parameters, which adapt based on the activation distri-

butions that shift throughout training as the network's weights are updated via backpropagation.

By leveraging adaptive context normalization, the method allows for smoother transitions and bet-

ter performance across di�erent data modes, ensuring more e�cient parameterization without the

need for additional heavy computations during training. This �exibility makes ACN an appealing

approach for tasks where data has varying distributions or requires context-sensitive handling.

Table 3.1 shows that proposed methods (CN, CN-X, ACN), particularly when context con-

struction is well-de�ned, outperform traditional normalization techniques in various tasks. This

demonstrates the potential of context-driven approaches to enhance model performance, handle

non-uniform data distributions more e�ectively, and speed up convergence during training.

3.5 Results

In this section, we present several applications where we compare traditional normalization tech-

niques (see Section 2) with our proposed normalization methods (see Section 3). These comparisons

are demonstrated across various tasks, including image classi�cation (Section 3.5.1), domain adapta-

tion (Section 3.5.2), and image generation (Section 3.5.3). We utilize several well-known benchmark

datasets that are widely recognized within the classi�cation community:

� CIFAR-10: A dataset with 50,000 training images and 10,000 test images, each of size 32×32

pixels, distributed across 10 classes [65].

� Oxford-IIIT Pet: A dataset containing images of 37 di�erent breeds of cats and dogs, with

approximately 200 images per breed [91].

� CIFAR-100: Derived from the Tiny Images dataset, it consists of 50,000 training images and

10,000 test images of size 32× 32, divided into 100 classes grouped into 20 superclasses [64].
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Normalization Method Context Learning Computational Complex-

ity

Flexibility

BN No context learning; uses

batch statistics.

Moderate; relies on batch

statistics.

Low; depends on �xed batch-

based normalization.

LN No context learning; nor-

malizes across features.

Low; operates on a per-sample

basis.

Moderate; works well with

smaller batch sizes.

IN No context learning; nor-

malizes across instances.

Low; operates on per-instance

basis.

High; useful for tasks with

small batch sizes.

GN No context learning; nor-

malizes across groups.

Moderate; handles grouped

channels.

Moderate; adapts based on

groupings.

SwitchNorm Dynamically combines

multiple normalization

techniques (BN, LN, IN)

using learned weights.

High; requires combining and

selecting normalization meth-

ods.

High; adaptive to di�erent

types of activations.

ModeNorm No context learning; nor-

malizes using modes of ac-

tivations identi�ed during

training.

High; requires mode identi�ca-

tion and adaptive statistics.

Very High; adaptive to mode-

speci�c distributions.

MixNorm No context learning; nor-

malizes using Gaussian

Mixture Models (GMM).

High; requires Expectation-

Maximization (EM) for param-

eter estimation.

High; adapts to multimodal

data distributions.

CN Prede�ned contexts based

on the input data.

Low; e�cient with prede�ned

contexts.

Moderate; �xed context struc-

ture.

CN-X Contexts learned as train-

able parameters during

training.

Moderate; learns parameters

during training.

High; �exible context learning.

ACN Contexts dynamically

learned via GMM during

training.

Low; eliminates need for EM. Very High; learns context

adaptively during training.

Table 3.1: Comparison of Normalization Techniques
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� Tiny ImageNet: A dataset that is a reduced version of the ImageNet dataset [23], containing

200 classes with 500 training images and 50 test images per class [67].

� MNIST digits: Contains 70,000 grayscale images of size 28× 28 representing the 10 digits,

with around 6,000 training images and 1,000 testing images per class [68].

� SVHN: A challenging dataset with over 600,000 digit images, focusing on recognizing digits

and numbers in natural scene images [104].

For applying CN and CN-X, we will use three approaches to build contexts: (i) applying the k-

means algorithm to create clusters and using these clusters as contexts, (ii) utilizing superclasses,

which are groups of classes, as contexts, and (iii) treating each domain in domain adaptation as a

separate context.

3.5.1 Image Classi�cation

To evaluate our normalization methods (CN, CN-X, and ACN) against traditional normalization

techniques (BN, LN, MixNorm, and ModeNorm) in image classi�cation tasks, we employ the

DenseNet architecture [50], varying the number of layers to create two distinct models: a shal-

low model with 40 layers (DenseNet-40) and a deeper model with 100 layers (DenseNet-100).

DenseNet employs BN as the normalization layer. We create a corresponding DenseNet model for

each normalization technique (LN, MixNorm, ModeNorm, CN, CN-X, and ACN) by replacing the

BN layers with the speci�c normalization method.

In the �rst experiment, detailed in the section "Building Custom Contexts", we will employ the

k-means algorithm to generate clusters that will act as contexts for CN and CN-X, utilizing the

Oxford IIIT Pet, CIFAR-10, CIFAR-100, and Tiny ImageNet datasets. In the second experiment,

outlined in the section "Leveraging Prede�ned Contexts", we will utilize the superclass structure

(groups of classes) within the Oxford-IIIT Pet and CIFAR-100 datasets as contexts.
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Building Custom Contexts

In this study, we assume that the underlying structure of the dataset is not well understood, and

there is no clear prior knowledge regarding the contextual relationships within the data. To address

this, we need to establish these contexts before training our neural networks, speci�cally DenseNet-

40 and DenseNet-100, for both CN and CN-X normalization techniques. To de�ne the contexts, we

employ the k-means clustering algorithm, treating the resulting clusters as distinct contexts. We

conduct multiple experiments by varying the number of contexts K, using values of 2, 3, 4, 6, and 8.

For a fair comparison, we maintain consistency in the number of contexts across di�erent methods,

ensuring that the same K value corresponds to the number of mixture components in MixNorm

and the number of modes in ModeNorm. The models are trained for 200 epochs with a batch size

of 64, utilizing Nesterov's accelerated gradient [8]. The learning rate is initially set to 0.1 and is

reduced by a factor of 10 at 50% and 75% of the total training epochs. Additionally, weight decay

is �xed at 10−4 and momentum at 0.9.

Table 3.2 presents the performance comparison of CN, CN-X, and ACN on a shallow neural network

(DenseNet-40), while Table 3.3 highlights their e�ectiveness on a deeper network (DenseNet-100).

Across all datasets, which vary in complexity based on the number of classes, our proposed method

consistently achieves higher average accuracy. This improvement is particularly noticeable with

CN-X. Additionally, when varying the number of contexts (2, 4, 6, and 8), the performance dif-

ference remains minimal, suggesting that a large number of clusters is not necessary to achieve

optimal performance. Figure 3.3 demonstrates that CN, CN-X, and ACN achieve superior conver-

gence compared to traditional methods such as BN, LN, MixNorm, and ModeNorm. The observed

acceleration in convergence, illustrated in Figure 3.3, alongside the improved performance metrics

presented in Tables 3.2 and 3.3, indicates that our proposed method can e�ectively serve as a layer to

enhance model performance and accelerate convergence, even when prior knowledge of the datasets

is limited. In such cases, the k-means algorithm can be employed to generate clusters, which can

then be used as contexts for CN and CN-X.

Conversely, when we have a thorough understanding of the dataset and the contexts are well-de�ned,

there is no need to apply k-means clustering; instead, we can directly utilize prede�ned contexts.

This approach will be elaborated upon in the following section.
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method CIFAR-10 Oxford-IIIT Pet CIFAR-100 Tiny ImageNet

BN 92.07 75.63 71.35 52.20

LN 84.65 66.12 58.34 47.20

MixNorm-2 93.10 74.34 73.23 53.20

MixNorm-4 93.60 75.67 73.40 53.24

MixNorm-6 93.60 75.65 73.47 53.18

MixNorm-8 92.62 75.80 73.47 53.67

ModeNorm-2 93.32 75.87 72.90 53.16

ModeNorm-4 93.65 75.84 73.43 54.12

ModeNorm-6 93.68 75.97 73.45 54.18

ModeNorm-8 93.68 76.02 73.27 54.18

CN-2 93.87 75.98 73.88 54.15

CN-4 93.98 76.12 74.10 54.21

CN-6 93.98 76.22 74.10 54.30

CN-8 94.01 76.37 74.12 54.30

CN-X-2 94.06 75.34 73.99 54.23

CN-X-4 94.05 76.23 74.34 55.12

CN-X-6 94.13 76.35 74.23 55.09

CN-X-8 94.54 76.35 74.78 55.26

ACN-2 92.65 75.76 73.77 53.98

ACN-4 93.67 75.87 73.88 54.01

ACN-6 93.89 75.90 74.01 54.23

ACN-8 94.13 75.90 74.01 54.36

Table 3.2: Performance (accuracy %) of DenseNet-40 on CIFAR-10, Oxford-IIIT Pet, CIFAR-100,

and Tiny ImageNet. Contexts for CN and CN-X are built using k-means clusters. "2, 3, 4, 8"

represent mixture components, modes, and contexts for MixNorm, ModeNorm, and the proposed

CN, CN-X, and ACN methods.

40



Context Normalization

method CIFAR-10 Oxford-IIIT Pet CIFAR-100 Tiny ImageNet

BN 94.10 76.28 73.32 55.12

LN 85.20 66.34 60.10 47.53

MixNorm-2 94.54 76.67 74.12 55.67

MixNorm-4 94.56 76.73 74.32 55.56

MixNorm-6 94.56 76.75 74.67 55.70

MixNorm-8 95.01 76.87 74.72 55.74

ModeNorm-2 94.65 76.87 74.21 54.76

ModeNorm-4 94.67 76.84 74.34 55.01

ModeNorm-6 94.74 76.89 74.52 55.12

ModeNorm-8 94.74 76.89 74.57 55.12

CN-2 95.10 76.12 74.67 55.26

CN-4 95.76 76.92 74.72 55.17

CN-6 95.76 76.92 74.77 55.78

CN-8 95.67 76.93 74.77 55.98

CN-X-2 95.56 76.67 75.01 55.23

CN-X-4 95.76 76.87 75.10 55.76

CN-X-6 95.87 76.87 75.10 55.78

CN-X-8 96.12 77.01 75.21 55.97

ACN-2 94.76 76.67 74.78 55.22

ACN-4 94.76 76.87 74.88 55.43

ACN-6 94.87 76.89 75.10 55.88

ACN-8 95.10 76.89 75.21 55.89

Table 3.3: Performance (accuracy %) of DenseNet-100 on CIFAR-10, Oxford-IIIT Pet, CIFAR-100,

and Tiny ImageNet. Contexts for CN and CN-X are built using k-means clusters. "2, 4, 6, 8"

represent mixture components, modes, and contexts for MixNorm, ModeNorm, and the proposed

CN, CN-X, and ACN methods.
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(a) CIFAR-10 (b) Oxford-IIIT Pet (c) CIFAR-100 (d) Tiny ImageNet

Figure 3.1: DenseNet-40

(a) CIFAR-10 (b) Oxford-IIIT Pet (c) CIFAR-100 (d) Tiny ImageNet

Figure 3.2: DenseNet-100

Figure 3.3: Training Error Trends for DenseNet-40 and DenseNet-100 with Various Normalization

Layers. The MixNorm, ModeNorm, CN, CN-X, and ACN methods are implemented using K = 8.
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Leveraging Prede�ned Contexts

Some datasets, such as Oxford-IIIT Pet and CIFAR-100, not only have a hierarchical structure

of classes but also include superclasses that group similar classes together. For instance, in the

Oxford-IIIT Pet dataset, various breeds of dogs and cats can be categorized into two superclasses:

"dog" and "cat". Similarly, CIFAR-100 contains 20 distinct superclasses. Rather than applying the

k-means algorithm to create clusters for use as contexts, we can leverage these existing superclasses

as contextual representations.

In this experiment, we employ the same models as in the previous section, speci�cally DenseNet-40

and DenseNet-100, to evaluate the evolution of accuracy on the CIFAR-100 and Oxford-IIIT Pet

datasets. We utilize the superclasses as contexts and implement normalization layers CN, CN-X, and

ACN. The goal is to assess whether a deeper understanding of our dataset, achieved by constructing

contexts, yields improved performance compared to relying on prede�ned contexts (superclasses)

present in the datasets. Tables 3.4 and 3.5 illustrate the signi�cant impact that well-de�ned con-

Oxford-IIIT Pet (K=2)

model 25 epochs 50 epochs 75 epochs 100 epochs 150 epochs 200 epochs

CN 75.43 76.86 76.88 77.34 78.43 79.26

CN-X 76.12 76.77 77.98 78.66 80.02 80.98

ACN 72.34 72.56 73.10 74.22 74.90 76.13

CIFAR-100 (K=20)

model 25 epochs 50 epochs 75 epochs 100 epochs 150 epochs 200 epochs

CN 73.88 74.21 74.89 75.10 76.53 77.67

CN-X 74.21 75.10 75.67 77.45 78.54 79.78

ACN 72.34 72.67 74.32 74.32 74.56 74.60

Table 3.4: Evolution of Accuracy with DenseNet-40 Utilizing Superclasses as Contexts on the

Oxford-IIIT Pet and CIFAR-100 Datasets.

texts have on the performance of CN and CN-X. Notably, when utilizing superclasses as contexts,

we achieve comparable performance in approximately 25 epochs, in contrast to the 200 epochs re-
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Oxford-IIIT Pet (K=2)

model 25 epochs 50 epochs 75 epochs 100 epochs 150 epochs 200 epochs

CN 75.43 75.67 76.98 77.89 79.34 80.23

CN-X 76.54 77.87 79.78 81.23 81.23 82.02

ACN 73.02 74.32 75.43 77.02 77.32 77.85

CIFAR-100 (K=20)

model 25 epochs 50 epochs 75 epochs 100 epochs 150 epochs 200 epochs

CN 74.21 74.56 76.78 78.22 78.22 79.34

CN-X 73.56 75.43 75.78 79.34 79.89 81.02

ACN 73.21 73.76 75.11 76.21 76.21 76.32

Table 3.5: Evolution of Accuracy with DenseNet-100 Utilizing Superclasses as Contexts on the

Oxford-IIIT Pet and CIFAR-100 Datasets.

quired when using k-means clusters, as detailed in Tables 3.2 and 3.3. Furthermore, employing

K = 2 for the Oxford-IIIT Pet dataset and K = 20 for CIFAR-100 does not markedly a�ect ACN

performance. This suggests that since contexts are constructed within ACN, merely increasing the

number of contexts does not guarantee enhanced model performance.

This experiment highlights the potential advantages of applying CN and CN-X for normalization

when we possess a strong understanding of the datasets, allowing us to leverage this knowledge as

prior information to construct e�ective contexts that yield improved performance in both shallow

and deep neural networks.

To further evaluate the versatility of CN, CN-X, and ACN, we implement the Vision Transformer

(ViT) model [26] and compare its performance against BN, LN, MixNorm, and ModeNorm on the

CIFAR-100 dataset. For CN and CN-X, we utilize superclasses as contexts with K = 20. In the

case of ACN, ModeNorm, and MixNorm, we also set K = 20 to ensure a fair comparison across

all methods. Table 3.6 demonstrates the versatility of the proposed normalization methods CN,

CN-X, and ACN. When applied to the ViT architecture, these methods maintain a performance ad-

vantage over BN, LN, MixNorm, and ModeNorm. Similarly to the results obtained with DenseNet,

the proposed normalization layers facilitate improved convergence during training and validation,
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model accuracy precision recall f1-score

BN 55.63 8.96 90.09 54.24

LN 54.05 11.82 85.05 53.82

MixNorm 53.2 11.20 87.10 54.23

ModeNorm 54.10 12.12 87.23 54.98

CN 70.76 27.59 98.60 70.70

CN-X 71.28 28.30 98.87 70.98

ACN 60.34 20.21 93.23 60.10

Table 3.6: Performance Rates (%) on the Test Set Using the ViT Architecture with Various Nor-

malization Methods�BN, LN, MixNorm, ModeNorm, CN, CN-X, and ACN�on the CIFAR-100

Dataset, Employing Superclasses as Contexts for CN and CN-X.

(a) Training Error (b) Validation Error

Figure 3.4: Contrasting Training and Validation Error Curves in CIFAR-100 dataset when using

ViT architecture.
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as illustrated in Figure 3.4.

In this section, we demonstrate that our proposed normalization methods signi�cantly enhance per-

formance and accelerate convergence in both shallow and deep neural networks. When prede�ned

contexts are not available, we illustrate the feasibility of using k-means clusters as an alternative.

Conversely, when contexts are well-de�ned�such as through superclasses for CN and CN-X�we

achieve improved performance. We provide evidence of this through applications with CNN archi-

tectures, speci�cally DenseNet-40 and DenseNet-100, as well as with the Transformer architecture

using ViT [26].

To further explore these �ndings, we propose an additional approach in the following section to

e�ectively construct contexts for CN and CN-X, demonstrating the versatility of these methods and

their applicability across various domains.

3.5.2 Domain Adaptation

In this experiment, we introduce an alternative approach to constructing contexts for CN and CN-X

in domain adaptation. Domain adaptation [33] is a technique in machine learning, particularly in

deep learning, that enables a model trained on data from one domain (source domain) to perform

well on data from a di�erent but related domain (target domain). This is useful when labeled data

is abundant in the source domain but limited or unavailable in the target domain, which may have

di�erent characteristics, like variations in lighting, style, or noise. By aligning feature distributions

or representations between domains, domain adaptation allows the model to generalize better across

domains, improving performance on tasks where collecting labeled data is challenging.

For CN and CN-X, we will consider two distinct contexts K = 2: the source domain and the

target domain. Using domains as contexts is motivated by the aim to incorporate domain-speci�c

information into the activation representations. To exemplify this, we employ AdaMatch [99], a

domain adaptation algorithm designed to align feature distributions between source and target

domains by leveraging labeled source data and a few labeled target samples. AdaMatch uses a

dynamically adjusted con�dence threshold for pseudo-labeling in the target domain, improving

generalization across domains by aligning class distributions while minimizing domain shift. It
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combines the tasks of unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and

semi-supervised domain adaptation (SSDA). In UDA, we have access to a labeled dataset from the

source domain and an unlabeled dataset from the target domain, with the goal of training a model

that generalizes e�ectively to the target data. In this case, we use MNIST as the source dataset

and SVHN as the target dataset. These datasets include a range of variations, such as texture,

viewpoint, and appearance, and their respective domains, or distributions, are notably distinct.

The baseline model uses BN layers and is trained from scratch using Wide Residual Networks [134].

For comparison, we create additional models by individually replacing the BN layers with LN,

MixNorm, ModeNorm, CN, CN-X, and ACN. For MixNorm, ModeNorm, and ACN, we set K = 2

to maintain consistency with CN and CN-X. Model training employs the Adam optimizer [60]

with a cosine decay schedule, gradually reducing the initial learning rate of 0.03. All models are

trained for 100 epochs. The results in Table 3.7 demonstrate that CN, CN-X, and ACN outperform

traditional normalization techniques (BN, LN, MixNorm, and ModeNorm) in domain adaptation

between MNIST and SVHN. For the MNIST source domain, all methods achieve high performance,

with CN-X achieving the best accuracy and F1-score of 99.26%. In contrast, performance di�erences

are more pronounced on the SVHN target domain, where CN-X leads with a signi�cant improvement

in accuracy (54.70%), followed closely by CN at 47.63%. These results suggest that CN and CN-X

are better suited to handle domain shifts, particularly when there is a substantial di�erence in data

distribution, as seen between MNIST and SVHN. While ACN does not reach the peak accuracy

levels of CN-X on SVHN, it still shows a marked improvement over baseline methods like BN and LN,

achieving 33.4% accuracy in the target domain. This indicates that ACN contributes to enhanced

domain adaptation by capturing some domain-speci�c features, making it a viable normalization

technique for adaptation tasks, though its performance suggests it is less robust to drastic domain

shifts compared to CN and CN-X.

These results from CN and CN-X reinforce �ndings from previous experiments, where contexts are

clearly de�ned. Leveraging well-de�ned prior knowledge can be highly bene�cial, as it allows relevant

patterns to be embedded within activation representations. This enhances the overall representation

quality and provides normalization bene�ts that contribute to the stability of the training process.

By capturing domain-speci�c information e�ectively, CN and CN-X not only improve adaptation to
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MNIST (source domain)

model accuracy precision recall f1-score

BN 97.36 87.33 79.39 78.09

LN 96.23 88.26 76.20 81.70

MixNorm 98.90 98.45 98.89 98.93

ModeNorm 98.93 98.3 98.36 98.90

CN 99.17 99.17 99.17 99.17

CN-X 99.26 99.20 99.32 99.26

ACN 98.9 98.5 98.90 98.95

SVHN (target domain)

model accuracy precision recall f1-score

BN 25.08 31.64 20.46 24.73

LN 24.10 28.67 22.67 23.67

MixNorm 32.14 50.12 37.14 39.26

ModeNorm 32.78 49.87 38.13 40.20

CN 47.63 60.90 47.63 49.50

CN-X 54.70 59.74 54.70 54.55

ACN 33.4 43.83 40.28 42.87

Table 3.7: Test set accuracy (%) of AdaMatch for domain adaptation on MNIST and SVHN datasets

using various normalization techniques.

48



Context Normalization

new domains but also support smoother learning by reducing the impact of domain shifts on model

performance. This approach highlights the potential of context-driven normalization techniques to

boost model robustness in challenging cross-domain tasks, as seen with AdaMatch on the MNIST

to SVHN adaptation.

In the next section, we will examine a scenario where the application of ACN is particularly relevant

and compare its performance to single-mode normalization (BN) and multi-mode normalization

(MixNorm).

3.5.3 Image Generation

Image generation involves creating new, synthetic images by training models to understand and

replicate the features and patterns of real images. This process uses a model to learn from a large

dataset of images, capturing details like textures, colors, shapes, and spatial relationships. Gen-

erated images can range from realistic representations to imaginative interpretations, depending

on the training data and model design. An example of method that can generate such images

is Generative Adversarial Networks (GANs) [93, 21, 42]. The GAN architecture consists of two

neural networks: a generator and a discriminator, which work in tandem through a process called

adversarial training. The generator creates synthetic images starting from random noise, while the

discriminator evaluates these images, distinguishing between real images (from the training dataset)

and those generated by the model. The generator's goal is to create images that can "fool" the

discriminator, while the discriminator aims to accurately detect real versus generated images. This

adversarial process continues until the generator produces images that are nearly indistinguishable

from real ones. GANs have a wide range of applications, including image synthesis, style trans-

fer, super-resolution imaging, and data augmentation. They are also used in �elds like healthcare

for generating medical images, in entertainment for creating realistic character images, and in au-

tonomous driving for simulating varied road conditions. A common challenge encountered when

using GANs is the issue of "mode collapse". This phenomenon occurs when the generator produces

only a restricted subset of possible data, leading to a loss of diversity in the generated results. In

other words, the generator may focus on producing a speci�c type of data, neglecting the generation
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of other potential variations. This problem can compromise the quality and variety of the generated

data, requiring speci�c techniques and strategies to address and enhance the overall performance of

the GAN model. In MixNorm [57], the authors demonstrate that normalizing across multiple modes

(mixture components), rather than a single mode as in BN, can help mitigate the issue of "mode

collapse". Here, we propose to apply ACN and compare its performance to BN and MixNorm.

Notably, CN and ACN are not suited for this scenario, as generated images are produced from

random noise vectors, making it di�cult to de�ne prior knowledge about vector membership for

normalization.

Our baseline model is a Deep Convolutional Generative Adversarial Network (DCGAN) [93], speci�-

cally designed for image generation. The generator consists of a linear layer followed by four deconvo-

lutional layers, with the �rst three layers utilizing Batch Normalization (BN) and a LeakyReLU [83]

activation function. The linear layer maps latent space to a higher-dimensional representation, while

the deconvolutional layers progressively upsample the input into realistic images. BN stabilizes and

accelerates training, and LeakyReLU introduces non-linearity for better learning of complex map-

pings. We create two additional models by replacing the BN layers with MixNorm and ACN, using

K = 3 for MixNorm as speci�ed in the paper [57] and matching K = 3 for ACN to ensure a fair

comparison. All models are trained on CIFAR-100 for 200 epochs using the Adam optimizer [60]

with α = 0.0002, β1 = 0, and β2 = 0.9 for both the generator and discriminator. We evaluate GAN

quality using the Fréchet Inception Distance (FID) [49], calculated every 10 epochs for e�ciency.

Figure 3.5 illustrates that the DCGAN incorporating ACN exhibits not only a quicker convergence

compared to its batch-normalized (BN) and mixture-normalized (MixNorm) counterparts but also

achieves superior (lower) FID scores. Reducing the FID is crucial as it indicates that the generated

images are more similar to real images, enhancing the overall quality and diversity of the outputs.

A lower FID score suggests that the model is e�ectively capturing a broader range of features in the

training data, which helps mitigate mode collapse�a phenomenon where the generator produces

a limited variety of outputs. By improving the distribution of generated images and reducing the

gap between real and synthetic data distributions, ACN promotes a more stable training process

and encourages the model to explore di�erent modes within the data, leading to richer and more

varied image generation. Figure 3.6 showcases examples of images generated by DCGANs utilizing
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Figure 3.5: ACN integrated as a normalization layer in a DCGAN. Our results show that incorpo-

rating ACN into the DCGAN generator leads to improved (lower) Fréchet Inception Distance (FID)

scores.

(a) BN (b) MixNorm (c) ACN

Figure 3.6: Examples of generated images at epoch 200 are showcased for BN, MixNorm, and ACN

in Figure 3.6a,3.6b, and3.6c, respectively.
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BN, MixNorm, and ACN. The results reveal that multi-mode normalization techniques, such as

MixNorm and ACN, produce notably clearer object structures in the generated images compared

to those using BN. Additionally, both MixNorm and ACN demonstrate greater diversity in their

outputs, enhancing the overall richness of the generated content. This improvement in image qual-

ity and diversity underscores the e�ectiveness of these advanced normalization methods, paving the

way for more sophisticated and nuanced image generation in future applications.

3.6 Discussion

In this chapter, we proposed three advanced normalization methods: CN, CN-X, and ACN. We

demonstrated that single-mode normalization techniques, such as BN and LN, performed less e�ec-

tively than multi-mode approaches like MixNorm and ModeNorm. Our contributions centered on

multi-mode normalization methods that relied on prior knowledge to improve activation normaliza-

tion during neural network training.

CN and CN-X grouped data into prede�ned structures, called contexts, before training. CN used

these contexts within each mini-batch to estimate and apply normalization parameters speci�c to

each context, while CN-X de�ned these parameters as trainable weights that updated dynamically

through backpropagation. We outlined multiple methods for constructing contexts, including k-

means clustering, superclass assignments, and domain-based contexts in domain adaptation tasks.

When context construction was less straightforward, ACN provided �exibility by allowing the num-

ber of contexts to be set as a hyperparameter.

In tasks spanning classi�cation, domain adaptation, and image generation, our proposed methods

consistently delivered superior performance compared to traditional normalization techniques. CN

and CN-X exhibited higher robustness than ACN when contexts were well-de�ned, emphasizing the

e�ectiveness of prior knowledge in enhancing neural network representation, accelerating conver-

gence, and improving performance.
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To advance this approach, we further explored how structured prior knowledge in multimodal

representations (Part II) reduced parameter tuning costs and minimized the reliance on large labeled

datasets, achieving competitive performance with fewer resources.
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Conclusion

In this part, the focus is on the importance of activation normalization in deep neural networks

(DNNs) and the proposed advancements to address training challenges. Single-mode methods like

Batch Normalization (BN) have been successful in mitigating issues like internal covariate shift but

struggle with small batch sizes or non-uniform data distributions. To address these limitations,

multi-mode approaches like MixNorm and ModeNorm have been developed, though they are often

computationally expensive and require complex algorithms.

The proposed multi-mode normalization methods�Context Normalization (CN), Extended Context

Normalization (CN-X), and Adaptive Context Normalization (ACN)�leverage prior knowledge to

improve training convergence and performance. These methods are designed to handle more complex

data distributions and accelerate the training process. CN and CN-X group data into prede�ned

contexts, applying speci�c normalization parameters to each context within a mini-batch. CN-X

further enhances CN by making these context parameters trainable through backpropagation, thus

providing additional �exibility. ACN goes a step further by allowing the dynamic adjustment of the

number of contexts, making it highly adaptable to di�erent training scenarios.
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Part II

Cross-Modal Alignment Learning

(CM-AL) for Multimodal Data

Representation
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This part addresses the challenges associated with high costs, data limitations, and scala-

bility in training multimodal encoders, particularly when integrating data from di�erent modalities

such as text, image, audio, and video. To overcome these challenges, we introduce OneEncoder, a

novel approach for cross-modal alignment learning that leverages prior knowledge to enhance the

encoder representations, reducing the dependency on large-scale paired datasets and making the

training process more e�cient.

The part is structured as follows: Chapter 4 provides a review of existing methods for cross-modal

alignment learning, examining current approaches and their limitations. Chapter 5 details the

OneEncoder framework, explaining its design, the integration of prior knowledge, and its ability to

e�ciently handle various modalities. The proposed framework is validated on three tasks: zero-

shot classi�cation, querying, and visual question answering. We compare OneEncoder with

state-of-the-art methods, showcasing its improvements in e�ciency and scalability.
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Chapter 4

State of the Art in Cross-Modal

Alignment Learning Techniques

4.1 Introduction

The advancement of large language models (LLMs) [111, 89, 10, 3, 28] has signi�cantly broadened

their application across various domains beyond natural language processing, including vision, audio,

and even multimodal tasks. These models leverage vast amounts of data and sophisticated architec-

tures, allowing them to capture intricate patterns and relationships within and between modalities.

As LLMs have grown in capability, they have become increasingly integral to cross-modal learning

tasks, where the goal is to align disparate modalities�such as text, images, and audio�within a

shared semantic space. This alignment is crucial as it facilitates improved representation learning,

enabling models to leverage contextual information from one modality to enhance the learning pro-

cess in another. For instance, in applications like visual question answering, models can combine

visual data with textual queries, leading to more accurate and contextually aware predictions. Con-

sequently, the integration of LLMs into cross-modal frameworks not only boosts performance but

also opens new avenues for research in areas such as automated content generation, multimodal

sentiment analysis, and improved user interaction systems.
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4.2 Dual Modality Alignment (DMA)

DMA techniques focus on integrating representations from pairs of distinct modalities, such as

image-text, text-audio, and image-audio, to create a uni�ed semantic space. This integration is

crucial for enabling models to understand and relate information across di�erent types of content,

allowing for more complex and contextually rich cross-modal tasks.

Early breakthroughs in DMA include models like Flamingo [1], which introduces cross-attention [116]

mechanisms to align visual and textual features directly within LLMs. This architecture allows

for intricate interactions between images and text, enhancing the model's performance in vision-

language tasks such as visual question answering by enabling each modality to directly inform the

other through a shared attention mechanism.

ConVIRT [139] pioneered contrastive learning in the medical domain, aligning medical images and

textual descriptions to facilitate cross-modal retrieval in data-limited settings. Building on this

approach, CLIP [94] extended contrastive learning to a large scale with extensive paired image-

text datasets, creating a shared representation space for open-vocabulary recognition and zero-shot

learning across general domains. CLIP's generalization has broadened its applicability, supporting

diverse tasks that require robust understanding of visual and textual inputs without additional

�ne-tuning.

ALIGN [20] builds on these ideas with a focus on robustness to noisy data, which is essential

for real-world applicability. ALIGN optimizes contrastive learning techniques to handle large and

potentially noisy image-text datasets e�ectively, ensuring consistent performance in more variable

environments where data quality may be less controlled.

Research in DMA has evolved from traditional image-text models to encompass various modality

pairings tailored for speci�c applications. Text-audio alignment [98, 120] utilizes self-supervised and

contrastive learning to connect audio signals with transcriptions, enhancing speech recognition and

audio retrieval. Similarly, image-audio alignment [19] combines visual and auditory data, improving

multimedia applications like audiovisual content analysis, where synchronized data o�ers deeper in-

sights. Text-video models [56] correlate descriptive text with video sequences, facilitating tasks such

as video summarization and action recognition by capturing temporal and semantic relationships.
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Emerging alignments are broadening the scope of cross-modal learning. For example, text-3D mod-

els [87, 48] link textual descriptions to 3D shapes, which is valuable in virtual reality and robotics

for generating accurate renderings. In neurocomputational �elds, text-EEG alignment [29, 30] con-

nects language with brain activity data, supporting brain-computer interface research and assistive

technologies. Additionally, image-depth alignment [62] is vital for autonomous driving and AR/VR,

pairing visual data with depth information for safer, more accurate interpretations. Finally, text-

sensor alignment [127] integrates language with diverse sensor data, enhancing health monitoring

and smart home applications by enabling more intuitive human-computer interactions. Collectively,

these dual-modality pairings are signi�cantly advancing cross-modal learning across various indus-

tries.

Despite these advancements, dual-modality alignment approaches face notable challenges. A

signi�cant limitation is their reliance on extensive aligned datasets, which are expensive to curate

and may not be available for all modality pairs, particularly in niche or specialized �elds. Moreover,

these approaches are typically designed to handle only two modalities at a time, which constrains

their ability to generalize to or incorporate additional modalities. This modality restriction limits the

broader applicability of DMA models, especially in scenarios where integrating information from

multiple modalities simultaneously is bene�cial or required. Consequently, while dual-modality

alignment has paved the way for cross-modal alignment learning, there is a clear need for further

research to address these resource dependencies and extend current models' capacity to work across

multiple modalities in a uni�ed framework.

4.3 Multiple Modalities Alignment (MMA)

MMA advances the concept of dual-modality alignment by synchronizing representations from three

or more distinct modalities, creating a shared semantic space that enables more comprehensive mul-

timodal understanding. For example, AudioCLIP [44] extends CLIP's capabilities to incorporate

audio alongside text and image data, allowing it to perform tasks that require understanding across
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audio, visual, and textual elements. This model enriches applications such as video retrieval and

audiovisual content analysis, where all three modalities provide unique yet complementary informa-

tion.

Similarly, ImageBind [39] takes multimodal alignment even further by synchronizing six modali-

ties�text, images, audio, depth, thermal, and IMU (inertial measurement unit) data. By leveraging

the zero-shot capabilities of vision-language models, ImageBind can link diverse sensory data into a

uni�ed space without requiring aligned training data for every combination, enabling cross-modal re-

trieval and understanding tasks across a broader spectrum of sensory inputs. This alignment of het-

erogeneous modalities is particularly bene�cial for applications like robotics and virtual/augmented

reality, where multi-sensory input aids in creating a rich, context-aware environment.

Another recent model, NExT-GPT [123], builds on multimodal understanding by enabling any-to-

any modality transformations. It allows for �exible input-output combinations across modalities,

which is essential for scenarios demanding complex data interaction, such as assistive technology

and interactive AI. However, NExT-GPT still depends on large aligned datasets for training, limit-

ing its accessibility and scalability. These high demands on resources underscore the challenges of

current MMAmodels, which rely on computationally heavy architectures and extensive aligned data.

As the �eld progresses, moving from resource-intensive architectures toward more lightweight

models is essential. Lightweight MMA models aim to lower dependency on extensive training

datasets and reduce computation costs while still maintaining alignment across multiple modalities.

This shift supports practical deployment in diverse applications, such as mobile devices or edge

computing, where multimodal understanding is needed but resources are constrained. Developing

such e�cient MMA models will be pivotal for expanding multimodal AI into everyday applications,

allowing high-performance interaction across multiple modalities even in resource-limited settings.
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4.4 Transitioning to Lightweight Models for Modalities Alignment

In recent advancements, researchers have optimized multimodal learning by employing frozen pre-

trained models and modality-speci�c tokens to align multiple data types using a single encoder.

This technique drastically reduces the need for large aligned datasets and minimizes the parameters

that need training, e�ectively lowering the computational demands of multimodal models [46, 138].

One notable example is Meta-Transformer [138], which leverages a frozen visual encoder alongside

modality tokens, achieving strong performance across 12 distinct data modalities without requiring

individual encoders for each type. By keeping the core encoder �xed, Meta-Transformer aligns

diverse data types through minimal modi�cations, facilitating e�cient processing across modalities

like images, text, and audio.

Building on this idea, Han et al. [46] introduced a uni�ed framework using a frozen CLIP model

and a Universal Projection (UP) module that dynamically switches between modalities via modality

tokens. This approach aligns eight modalities within a single model architecture, using the modality

tokens to activate relevant components of the frozen encoder based on input type. These methods

represent a signi�cant shift towards modular, parameter-e�cient architectures in multimodal AI,

sidestepping the need for separate encoders for each modality. However, a current limitation lies in

integrating entirely new modalities; adding a new data type to these models often requires extensive

adjustments or even retraining to ensure cohesive alignment with existing modalities.

4.5 Discussion

This chapter explored advancements in cross-modal alignment learning (CM-AL), focusing on dual-

modality alignment (DMA) and multiple-modalities alignment (MMA). While DMA techniques,

such as CLIP and ALIGN, have shown strong performance, they are limited by their reliance on

large aligned datasets and the need to pair only two modalities. MMA approaches, like AudioCLIP

and ImageBind, extend this by integrating multiple modalities, but they too face challenges related

to data requirements and computational costs.
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Recent e�orts to create lightweight models, such as Meta-Transformer, reduce these issues

by leveraging frozen pretrained models. However, integrating new modalities remains di�cult.

Our proposed approach o�ers a solution by introducing an open, progressive alignment framework,

allowing seamless integration of new modalities without retraining. This improves scalability and

adaptability while reducing computational overhead, making our framework suitable for real-world

applications with limited resources.
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Chapter 5

OneEncoder

5.1 Introduction

To develop a lightweight approach for training multimodal systems, we leverage prior knowledge

to signi�cantly reduce the number of tunable parameters, thereby minimizing the need for large

datasets. This strategy supports the creation of an open, �exible system that can incorporate

additional modalities in the future at a low cost.

To achieve it, we introduce OneEncoder, which progressively aligns four modalities (image, text,

audio, and video) within a single uni�ed framework.

Image Image Encoder

Text Text Encoder

Audio Audio Encoder

Image Image Encoder

Text Text Encoder

Universal
Projection 

(UP)

Aligned
space for

Image and
Text

Aligned
space for

Image, Text
and Audio
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space for

Image, Text
and Audio

{modal}
Image

Projection

Text Projection
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(a) : standard method (b) : OneEncoder
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Image | Text
Encoder

Audio Audio Encoder

Universal
Projection

(UP)
Alignment Layer

(AL)

{modal}

Step 2

Image | Text

frozen trainable

Figure 5.1: Comparison of alignment methods: Standard approaches train large, modality-speci�c

encoders, requiring extensive data and compute. OneEncoder uses frozen encoders, a lightweight

Universal Projection (UP) module, and trains a small Alignment Layer (AL) module for new modal-

ities, enabling e�cient, �exible alignment.

As shown in Figure 5.1, OneEncoder incorporates frozen, pretrained modality-speci�c en-
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coders alongside a lightweight Universal Projection(UP) module, a compact Alignment Layer (AL)

module, and modality tokens (referred to as "modal") to enable seamless switching between modal-

ities with shared parameters. Here, the modality token encodes prior knowledge by embedding the

modality type directly into the UP representation, allowing for a uni�ed parameter set across diverse

modalities. Unlike conventional methods that require tuning separate encoders for each modality,

OneEncoder achieves e�ciency by freezing the modality-speci�c encoders purely for feature extrac-

tion, thereby using a single encoder across modalities.

We propose a two-step approach for progressively training our framework across multiple modalities,

emphasizing prior knowledge to streamline parameter tuning and reduce reliance on large aligned

datasets. Speci�cally, we introduce a modality token as an element of prior knowledge that embeds

modality information directly into the representation. This approach enables us to use the same

parameters across modalities and achieve e�ective alignment with minimal tuning.

Step 1 involves pretraining the UP using image-text data, which is more widely available than

other modality data. Step 2 is consistent for all new modalities: we freeze the pretrained UP and

train only the lightweight AL to map new modalities into the shared space established by the UP.

For instance, we �rst align audio with image and text, then align video with image, text, and audio.

The purpose of the AL is solely to project new data into the shared space without altering the under-

lying representation. By focusing on this modular design with a compact UP and AL, OneEncoder

achieves a balance between alignment e�ectiveness and reduced complexity, allowing for scalable

integration of new modalities at a low cost. This method ensures robust performance even without

extensive aligned datasets.

Our contributions are summarized as follows:

� Lightweight and e�cient architecture: We propose OneEncoder, which reduces com-

putational costs by using frozen pretrained encoders for feature extraction. Only a small

Universal Projection (UP) module is trained, signi�cantly lowering training time and resource

requirements compared to methods that train large, modality-speci�c encoders.

� Uni�ed representation space with modality tokens: We introduce modality tokens to

guide the UP, enabling a single set of parameters to align features from di�erent encoders

64



OneEncoder

in the same space. This removes the need for multiple modality-speci�c alignment heads,

simplifying the architecture while preserving strong performance.

� Progressive and �exible modality integration: Unlike existing closed frameworks, OneEn-

coder supports progressive expansion. Using a two-step training process, new modalities are

integrated via a lightweight Alignment Layer (AL) module, without retraining the UP or

existing encoders. This makes the framework adaptable to evolving multimodal needs.

� Reduced reliance on large paired datasets: OneEncoder achieves competitive results

even with smaller paired datasets, thanks to the e�ciency of the UP and the rich features

extracted from frozen encoders. This addresses a major limitation of state-of-the-art methods,

which often require vast, hard-to-collect paired data.

� Parameter e�ciency and scalability: By freezing large pretrained encoders and limiting

training to the compact UP and AL modules, OneEncoder drastically reduces the number of

trainable parameters. This makes the framework more scalable and practical for real-world

scenarios with limited computational resources.

� Broad modality compatibility: The framework naturally handles diverse modalities (e.g.,

image, text, audio, video) and facilitates seamless alignment between them, without the ar-

chitectural complexity seen in many current multimodal systems.

5.2 Model Architecture: OneEncoder

Drawing from research by [138, 46], we capitalize on the robust modality transfer capabilities of

pretrained encoders. This approach allows to leverage pretrained modality-speci�c encoders, who

are trained on large modality-speci�c datasets, which are more readily available than large aligned

datasets. Within OneEncoder, we employ ViT [26] for image encoding, BERT [25] for text encoding,

Wav2Vec2 [5] for audio encoding and VideoMAE [110] for video encoding. Each model produces

an input token x ∈ RL×D as its output, where L represents the sequence length and D denotes the

token dimension. Consistent with previous research [138, 46], we also maintain the parameters of

these models frozen during training. Figure 5.2 illustrates the three primary elements comprising
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OneEncoder: modality-speci�c encoders, a Universal Projection (UP) module, and an Alignment

Layer (AL) module.
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(a) Step 1: Training the Lightweight UP and Aligning Image-Text Modalities
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(b) Step 2: Freeze the Pretrained UP, Train the Compact AL, and progressively Align Audio with the

Image-Text Modalities from Step 1. This process can be extended to align additional future modalities, such

as video.

Figure 5.2: OneEncoder architecture: OneEncoder uses frozen pretrained encoders, a Universal

Projection (UP) module, and an Alignment Layer (AL) module. In step 1, the UP (a Transformer

encoder) aligns text and image modalities. In step 2, the frozen UP aligns audio through the AL

(a small MLP) by pairing audio with either image or text. The UP fuses input features (xm) and

modality tokens (tm) to switch between modalities.

Universal Projection (UP) module. Unlike existing methods that train separate modality-

speci�c encoders, we introduce a single encoder, UP, to align all modalities in a shared space (ref.

Figure 5.2).The UP is designed as a lightweight module with four Transformer encoder blocks [116],

and each block is composed of the following components:
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1. Multi-head self-attention [116]: A multi-head attention mechanism with four heads to

model cross-token dependencies.

2. Layer normalization [4]: Applied after the attention mechanism to stabilize training and

accelerate convergence.

3. Feedforward layers: Fully connected feedforward layers to re�ne representations and en-

hance expressiveness.

The UP is designed to project di�erent modalities into a shared representation space using

the same set of parameters. To make this possible, we introduce modality tokens, inspired by Han

et al. [46]. These tokens act as learnable parameters that help the UP distinguish and adapt to

each modality's characteristics. During training, modality tokens are updated via backpropagation

to optimize cross-modal alignment. For a given modality m ∈M (e.g., {image, text} in step 1), the

modality features xm ∈ RL×D, extracted from the frozen encoder, are fused with the corresponding

tokens tm ∈ R1×D before being passed through the UP:

x̂m = UP(tm ⊗ xm), (5.1)

In Equation 5.1, the fusion operation ⊗ can be performed through either element-wise addition, as

described in [119], or cross-attention, as in [121], where the modality tokens tm act as the query,

and the modality features xm serve as both the key and value. In the addition operation, modal-

ity tokens tm are added element-wise to the input tokens xm, directly injecting modality-speci�c

information into the input representation. This simple mechanism enhances features with mini-

mal computational overhead. In contrast, cross-attention uses tm as the query and xm as key and

value, enabling the model to focus on the most relevant input features for each modality. This allows

for more �ne-grained interactions, adapting representations to the unique structure of each modality.

Alignment Layer (AL) module. In OneEncoder, the AL makes it easy to integrate new

modalities without retraining the entire framework. After training the UP in step 1 (Figure 5.2a),

the UP is frozen, and in step 2 (Figure 5.2b), only the AL is trained. The AL's purpose is not to

improve the representation but to project the pretrained encoder features into the input space of
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the UP. It is a lightweight two-layer MLP, making it much smaller and faster to train than the UP.

During the forward pass for a new modality m, the AL transforms the input features xm ∈ RL×D,

which are then fused with the modality tokens tm and fed into the frozen UP for alignment:

xm = AL(xm) (5.2)

x̂m = UP(tm ⊗ xm) (5.3)

Step 2 can be repeated for each new modality, allowing the framework to expand progressively.

5.3 Training Procedure

The OneEncoder alignment process follows a progressive two-step approach, as shown in Figure 5.2.

In step 1 (Figure 5.2a), the UP is trained to initialize the alignment for the initial set of modalities.

In step 2 (Figure 5.2b), new modalities can be added by training only the AL, while keeping the UP

frozen. This second step can be repeated as needed, allowing the framework to grow and support

additional modalities over time.

� Step 1: Image-Text Alignment. Using available aligned image-text datasets and advance-

ments in the �eld [94, 55], we train the UP to align image and text modalities in a shared

latent space. The UP's parameters are updated using the adapted InfoNCE loss [88] for con-

trastive (image, text) representation learning by Zhang et al. [139].

During training, we sample a minibatch of K input pairs (x̂i
image, x̂

i
text) from the dataset. The

contrastive loss between image and text for each paris (x̂i
image, x̂

j
text) in the minibatch can be

formulated as follow:

ℓij = − log

(
exp(⟨x̂i

image, x̂
j
text⟩/τ)∑K

k=1 exp(⟨x̂i
image, x̂

k
text⟩/τ)

)
(5.4)

The term ⟨x̂i
image, x̂

j
text⟩ represents cosine similarity, with τ ∈ R+ as a temperature parameter.

This loss function preserves mutual information between true pairs through representation

functions. To ensure symmetry, we introduce a similar contrastive loss from text to image:

ℓji = − log

(
exp(⟨x̂i

image, x̂
j
text⟩/τ)∑K

k=1 exp(⟨x̂k
image, x̂

j
text⟩/τ)

)
(5.5)
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The matching pairs are situated along the diagonal of the similarity matrix (x̂i
image, x̂

i
text),

which serves as the target for the loss function:

tij =
exp((⟨x̂i

image, x̂
j
image⟩+ ⟨x̂i

text, x̂
j
text⟩)/2 · τ)∑K

k=1 exp((⟨x̂i
image, x̂

k
image⟩+ ⟨x̂i

text, x̂
k
text⟩)/2 · τ)

(5.6)

tji =
exp((⟨x̂i

image, x̂
j
image⟩+ ⟨x̂i

text, x̂
j
text⟩)/2 · τ)∑K

k=1 exp((⟨x̂
j
image, x̂

k
image⟩+ ⟨x̂

j
text, x̂

k
text⟩)/2 · τ)

(5.7)

The ultimate training loss L (5.8) is computed by combining the two losses ℓij and ℓji and

averaging them over all pairs within each minibatch.

L =
1

2 ·K

K∑
i=1

K∑
j=1

tij · ℓij + tji · ℓji (5.8)

� Step 2: Alignment of Future Modalities. Once the UP is trained in Step 1, it is frozen

for Step 2. In this step, a new modality mi is aligned with the already aligned image and text

modalities by selecting one (either image or text) for alignment, as illustrated in Figure 5.2b

using the audio modality. The alignment of the selected modality ensures transitive alignment

across all three modalities (image, text, and mi). During this step, only the AL is trained,

using the same loss function as in Step 1 (Equation 5.8) to update its parameters for consistent

input to the UP. This process is repeated whenever a new modality mj is introduced (e.g.,

video).

Algorithm 6 provides a detailed procedure for training the UP on text-image modalities.

Once trained, the UP is utilized in Algorithm 7 to align a new modality, denoted as m2, with the

set of already aligned modalities, M, using an intermediary modality m1, where m1 must be part

of M. This alignment process is achieved by training the AL to project the new modality, m2,

into a coherent space compatible with the UP representation. After this process, the expanded set

of aligned modalities becomes M∪ {m2}. This alignment can be repeated inde�nitely, allowing

additional modalities to be aligned with those already inM.

In Algorithm 8, the OneEncoder framework is used to represent any modality in M. For

text and image modalities, only the UP is required, while for other modalities, both the UP and

AL are necessary.
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Algorithm 6: Step 1: Training the Universal Projection (UP) module on the image-

text modality

Input : image_encoder; text_encoder; I: minibatch of aligned images; T: minibatch

of aligned texts; UP: transformer;M = {image, text} ; {tm}m∈M ∈ RN×D; τ :

learned temperature parameter; ⊗: fusion operator

Output: Trained UP; List of aligned modalities; modality tokens

1 // Freeze the pretrained encoders

- Freeze(image_encoder)

- Freeze(text_encoder)

2 // Extract feature representations of each modality

- Ximage = image_encoder(I)

- Xtext = text_encoder(T)

3 // Encode each modality after selection and fusion

- X̂image = UP(timage ⊗ Ximage)

- X̂text = UP(ttext ⊗ Xtext)

4 // Compute Loss and Update UP Parameters, timage, and ttext

- Compute Loss using Equation 5.8: L(X̂image, X̂text, τ)

- Update the UP parameters, timage, and ttext using an optimizer algorithm based on

the computed loss.

5 // Return the trained UP, list of aligned modalitiesM, modality tokens

- return UP,M, {tm}m∈{image,text}
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Algorithm 7: Step 2: Align a new modality with the previously aligned modalities

Input : m1_encoder; m2_encoder; M1: minibatch of aligned m1 modality; M2:

minibatch of aligned m2 modality; UP: pretrained transformer in algorithm 6;

M: aligned modalities; {tm}m∈{m1,m2} ∈ RN×D: modality tokens ; τ : learned

temperature parameter; ⊗: fusion operator; AL: Multi-layer Perceptron

Output: Trained AL; List of aligned modalities; tm2

1 // Freeze the pretrained encoders, UP and m1 modality token

- Freeze(m1_encoder)

- Freeze(m2_encoder)

- Freeze(UP)

- Freeze(tm1)

2 // Extract feature representations of each modality

- Xm1 = m1_encoder(M1)

- Xm2 = m2_encoder(M2)

3 Project feature representations with the AL

- Xm1 = AL(Xm1)

- Xm2 = AL(Xm2)

4 // Encode each modality after selection and fusion

- X̂m1 = UP(tm1 ⊗ Xm1)

- X̂m2 = UP(tm2 ⊗ Xm2)

5 // Compute Loss and Update AL Parameters and tm2

- Compute Loss using Equation 5.8: L(X̂m1 , X̂m2 , τ)

- Update the AL parameters and tm2 using an optimizer algorithm based on the

computed loss.

6 // Return the trained AL, list of aligned modalities and m2 modality token

- Update list of aligned modalities: M =M∪ {m2}

- return AL,M, tm2
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Algorithm 8: Inference: Encoding a Given Modality Using Pretrained UP and AL

Input : m: modality of the data to be encoded; M: minibatch of data from modality

m; UP: Universal Projection module; ALm: Alignment Layer module for

modality m; tm: token representing modality m; m_encoder: encoder for

modality m

Output: Encoded representation data

1 // Extract feature representations

X = m_encoder(M)

2 if m /∈ {image, text} then

3 // Use AL for feature projection

X = ALm(X)

4 end

5 // Encode with the Universal Projection

X̂ = UP(tm ⊗X)

6 // Return encoded representation of input data

return X̂

5.4 Results

In this section, we aim to use OneEncoder to align four di�erent modalities: image, text, audio, and

video. Given the greater availability of datasets paired with text, we propose leveraging text as the

central modality for transitive alignment. The alignment process can be summarized as follows:

1. Align Image with Text: Train the UP using Algorithm 6 on the image-text modality pair.

2. Align Audio with Image and Text: Train ALaudio using Algorithm 7 on the text-audio

modality pairs.

3. Align Video with Image, Text, and Audio: Train ALvideo using Algorithm 7 on the
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text-video modality pairs.

The order of alignment steps can be adjusted based on the availability of aligned data and

the speci�c modalities to be aligned.

5.4.1 Datasets

Training Datasets. Our goal is to achieve robust performance on downstream tasks using a

lightweight framework trained on a modest dataset. Following the approach of virTex [24], we

train the UP on a combined dataset, which includes COCO Captions [17], Flickr30K [129], and

TextCaps [106].

To train the ALaudio, we utilize the LibriSpeech Speech Recognition Alignment (SRA) [90] Dataset,

a corpus containing approximately 1,000 hours of 16kHz recorded English speech.

For the ALvideo, we employ the Microsoft Research Video to Text (MSR-VTT) [126] dataset, a

large-scale resource designed for open-domain video captioning.

A detailed description of all datasets used in training the OneEncoder framework is provided in

Table 5.1.

Validation Datasets. For validating OneEncoder, we use various datasets, tailored either for

Dataset Type Training Size Validation Size

COCO Captions [17] text-image pairs 413,915 202,520

Flickr30K [129] text-image pairs 158,915 _

TextCaps [106] text-image pairs 109,765 15,830

SRA [90] text-audio pairs 281,241 5,559

MSR-VTT [126] text-video pairs 6,513 497

DAQUAR [84] text-image pairs 6,794 5,673

Table 5.1: Training datasets

speci�c modality-based validation (e.g., classi�cation tasks) or cross-modal validation (e.g., zero-

shot tasks). A comprehensive description of the datasets used for validation is provided in Table 5.2.
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Dataset Dataset Type Training Size Validation Size

CIFAR-10 [65] image 50,000 10,000

Oxford-IIIT Pets [91] image 3,680 3,669

CIFAR-100 [64] image 50,000 10,000

Caltech 101 [35] image 7,659 3,060

Tiny ImageNet [67] image 100,000 10,000

SST-2 [107] text 67,349 872

TREC [118] text 5,452 500

Emotion [103] text 16,000 2,000

GTZAN [113] audio 1,000 _

UrbanSound8K [101] audio 7,980 1,022

ESC-50 [92] audio 1,600 400

MSVD [12] text-video 48,779 4,291

LSMDC [74] text-video 118,081 _

Table 5.2: Validation datasets

5.4.2 Implementation Details

Architecture. The pretrained encoders for each modality are as follows: ViT-base [26] with 86M

parameters for images, BERT-base [25] with 110M parameters for text, Wav2Vec [5] with 317M

parameters for audio and VideoMAE-base [110] with 94.2M for video. Additionally, the UP con-

sists of four Transformer encoder blocks with 4M parameters, while the AL comprises a multi-layer

perceptron with 65,792 parameters. The size of modality tokens for each modality is R1×768.

Training Details. We use the AdamW optimizer [77] with a learning rate of 0.001, β1 = 0.9,

β2 = 0.95, and a weight decay of 0.001. For step 1, we train to align image-text pairs, updating

only the UP parameters, on a single A100 GPU for 500 epochs with a batch size of 512. For step
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2, to align other modalities (audio and video) , we freeze the pretrained UP from step 1, and train

only the ALm,m ∈ {audio, video} for 100 epochs, using the same parameters as in step 1 with a

batch size of 64.

We trained two OneEncoder variants, each utilizing a di�erent fusion operation: addition

and scaled dot product attention [116]. For simplicity, we refer to the model using addition

as OneEncoder-⊕, and the model using scaled dot product attention as OneEncoder-⊙.

Our objective is not to achieve state-of-the-art results, which typically demand resource-

intensive architectures and extensive hyperparameter tuning. Instead, we aim to explore the behav-

ior of frozen versus non-frozen modality-speci�c encoders. Speci�cally, we seek to demonstrate that

using frozen encoders within our OneEncoder framework can notably enhance performance and, in

many cases, yield better representations for downstream tasks. For a fair comparison, we refer to

the baseline approach, which involves training modality-speci�c encoders, as the Base framework.

5.4.3 Quantitative Evaluation

UP Validation Following Image-Text Modalities Training

After training the UP on a combined dataset of COCO Captions, Flickr30K, and TextCaps, we

validate the OneEncoder framework by benchmarking it against the baseline CLIP [94]. In our

method, the pretrained ViT and BERT models remain frozen during training, with only the UP's 4M

parameters being updated. In contrast, the baseline requires training all 196M parameters of the ViT

and BERT models. For speci�c tasks, we employ pretrained models: ResNet-18 [47], E�cientNet-

B0 [109], and Swin Transformer [76] for image processing, and RoBERTa [75], DistilBERT [102],

and XLNet [128] for text processing.

We encode each modality using Algorithm 8 within the OneEncoder framework and evaluate

the performance on various classi�cation tasks.
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Zero-shot Classi�cation is a task where a model, trained on labeled images, can classify new

images from previously unseen classes. It validates the model's generalization capability and as-

sesses semantic understanding and transfer learning. Using the CLIP approach, we transform labels

into text descriptions ("A photo of a {label}."), encode them with a pretrained model, compute

cosine similarity with image embeddings, and use softmax to determine class probabilities.

Zero-shot image classi�cation obviates the need for retraining pretrained models on target datasets,

model CIFAR-10 Oxford-IIIT Pets CIFAR-100 Caltech-101 Tiny ImageNet

CLIP [94] 62.12 58.27 53.06 52.17 47.15

OneEncoder-⊕ 78.15 69.23 58.18 56.20 52.27

OneEncoder-⊙ 74.70 68.98 57.15 54.12 51.12

Table 5.3: Image-Text Alignment Validation: Zero-shot image classi�cation is used to assess the

alignment accuracy (%) across �ve benchmark datasets with varying class counts, providing a

measure of the relevance and e�ectiveness of the image-text alignment.

evaluating their ability to generalize to unseen classes. It underscores the importance of the aligned

latent space. Results in Table 5.3 highlight superior performance of OneEncoder (OneEncoder-⊕,

OneEncoder-⊙) over the baseline (CLIP) across all datasets, suggesting that training large modality-

speci�c encoders may not always be optimal, as demonstrated by the e�ectiveness of the lightweight

OneEncoder framework. We observe that additive fusion with OneEncoder-⊕ yields better results

than scaled dot product fusion with OneEncoder-⊙. This phenomenon appears consistently across

most experiments, highlighting the impact of the fusion method on OneEncoder representations. A

detailed analysis is provided in Section 5.6.

Linear Classi�cation and Fine-Tuning involve adding a linear classi�er to a pretrained model,

freezing the pretrained weights and training only the linear classi�er for linear classi�cation, while

training both the pretrained model and the linear classi�er for �ne-tuning. Linear classi�cation

allows for the assessment of the quality of the extracted features from the pretrained model, while

�ne-tuning simulates the practical use of pretrained weights. In OneEncoder, we always freeze the
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modality-speci�c encoders; in the �ne-tuning task, we train only the UP for image and text datasets.

In each case (Linear Classi�cation and Fine-Tuning), we train models for 100 epochs without using

any data augmentation strategy.

The results presented in Table 5.4 demonstrate the performance of various models on image and

Linear Classi�cation

Model Image Classi�cation Text Classi�cation

CIFAR-10 Oxford-IIIT Pets CIFAR-100 Caltech-101 Tiny ImageNet SST-2 TREC Emotion

ResNet-18 [47] 89.15 84.98 68.10 63.45 59.11 _ _ _

E�cientNet-B0 [109] 89.87 85.12 70.15 64.87 60.27 _ _ _

Swin Transformer [76] 90.17 86.05 71.12 65.10 62.30 _ _ _

RoBERTa [75] _ _ _ _ _ 76.04 77.34 59.06

DistilBERT [102] _ _ _ _ _ 77.15 76.14 68.11

XLNet [128] _ _ _ _ _ 79.27 78.11 60.10

CLIP [94] 81.21 78.16 60.12 60.14 58.14 80.15 78.24 60.23

OneEncoder-⊕ 90.16 86.23 70.10 68.23 62.12 82.12 79.10 63.09

OneEncoder-⊙ 89.18 86.78 68.27 65.05 60.10 80.87 78.06 61.89

Fine-Tuning

Model Image Classi�cation Text Classi�cation

CIFAR-10 Oxford-IIIT Pets CIFAR-100 Caltech-101 Tiny ImageNet SST-2 TREC Emotion

ResNet-18 [47] 93.23 90.19 82.37 78.12 67.89 _ _ _

E�cientNet-B0 [109] 94.56 92.23 80.11 79.98 68.10 _ _ _

Swin Transformer [76] 95.27 92.11 82.02 79.15 69.09 _ _ _

RoberTa [75] _ _ _ _ _ 83.24 85.45 66.13

DistilBERT [102] _ _ _ _ _ 82.56 83.27 63.15

XLNet [128] _ _ _ _ _ 84.72 85.67 64.11

CLIP [94] 86.76 81.90 70.87 69.67 60.15 85.15 84.24 64.56

OneEncoder-⊕ 96.01 92.32 81.10 80.11 69.12 86.11 86.12 67.12

OneEncoder-⊙ 95.98 93.12 80.21 78.23 69.15 85.12 86.00 66.78

Table 5.4: Linear classi�cation and �ne-tuning accuracy (%) on image and text benchmarks. Linear

classi�cation trains only a linear classi�er with frozen pretrained models, while �ne-tuning updates

both the classi�er and pretrained models. For OneEncoder, only the UP component is trained

during �ne-tuning, with modality-speci�c encoders frozen. In contrast, baseline models are fully

retrained during �ne-tuning.

text classi�cation tasks using two training strategies: linear classi�cation and �ne-tuning. These
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approaches allow us to evaluate the models' ability to generalize to new data, providing a compre-

hensive comparison between OneEncoder, CLIP, and other baselines.

In image classi�cation, OneEncoder consistently outperforms the CLIP model, which uses

CLIP-ViT on image datasets. For linear classi�cation, OneEncoder-⊕ achieves the highest accuracy

on CIFAR-10 (90.16%), Oxford-IIIT Pets (86.23%), and Caltech-101 (68.23%), closely rivaling Swin

Transformer, which leads in CIFAR-100 (71.12%) and Tiny ImageNet (62.30%). This highlights the

e�ciency of OneEncoder, especially considering that it only updates the 4M parameters of the UP,

unlike CLIP, which retrains its larger 196M parameters.

In text classi�cation tasks, where CLIP-BERT is used as the baseline for CLIP, OneEn-

coder again demonstrates superior performance. OneEncoder-⊕ achieves the best results across all

datasets: SST-2 (82.12%), TREC (79.10%), and Emotion (63.09%) in the linear classi�cation setup.

This shows its robust ability to handle diverse text modalities, outperforming specialized models

like RoBERTa, DistilBERT, and XLNet.

The �ne-tuning results further emphasize the e�ectiveness of OneEncoder. For image clas-

si�cation, OneEncoder-⊕ delivers the highest accuracy on CIFAR-10 (96.01%), Oxford-IIIT Pets

(92.32%), and Caltech-101 (80.11%), while also performing competitively on Tiny ImageNet (69.12%),

narrowly surpassed by Swin Transformer. In text classi�cation, OneEncoder-⊕ achieves the best

performance on SST-2 (86.11%), TREC (86.12%), and Emotion (67.12%), surpassing the �ne-tuned

CLIP-BERT and other text-speci�c models.

Overall, the results illustrate that OneEncoder, with its e�cient training approach and min-

imal parameter updates, outperforms CLIP and other models in both image and text tasks, demon-

strating its superior generalization and adaptability across multiple modalities.
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ALaudio Validation Following Text-Audio Modalities Training

After training the UP on image-text modalities, it is frozen and then used for aligning other modali-

ties. Speci�cally, for audio alignment, only the ALaudio with 65,792 parameters is trained within the

OneEncoder framework. This process uses a text-audio modality dataset and follows Algorithm 7

on the SRA dataset. For comparison, we also train AudioCLIP [44], an extended version of CLIP

that aligns image, text, and audio using ViT for images, BERT for text, and Wav2Vec for audio,

with a total of 513M parameters to tune.

Table 5.5 compares the performance of AudioCLIP and OneEncoder (OneEncoder-⊕ and OneEncoder-

Model AudioSet UrbanSound8K ESC-50

P@1 R@1 mAP P@1 R@1 mAP P@1 R@1 mAP

AudioCLIP [44] 4.27 75.37 27.12 40.10 45.11 78.27 48.90 78.21 75.12

OneEncoder-⊕ 5.37 76.10 28.37 41.11 46.12 79.65 47.98 80.12 75.57

OneEncoder-⊙ 5.10 76.06 28.10 40.89 45.78 79.23 47.87 78.12 74.98

Table 5.5: Performance metrics for text-audio retrieval tasks on the AudioSet, UrbanSound8K, and

ESC-50 datasets. The evaluation includes Top-1 Precision (P@1), Top-1 Recall (R@1), and mean

Average Precision (mAP) for the models: AudioCLIP, OneEncoder-⊕, and OneEncoder-⊙.

⊙) in text-audio retrieval. This task validates the alignment between text and audio. Evaluated

using Top-1 Precision/Recall (P@1, R@1) and mean Average Precision (mAP), OneEncoder con-

sistently outperforms AudioCLIP across all datasets. This highlights OneEncoder's e�cient latent

space and its ability to handle cross-modal retrieval e�ectively. Unlike AudioCLIP, which requires

extensive encoder training, OneEncoder achieves superior results with a lightweight framework,

demonstrating its robustness with minimal dataset-speci�c training.

To validate transitive alignment between audio and image, we apply the zero-shot classi�cation

method as described in Section 5.4.3, replacing text descriptions ("A photo of a {label}.") with

corresponding audio. Comparing Table 5.6 with Table 5.3, which uses text descriptions, demon-

strates that the OneEncoder framework maintains strong alignment between image and audio,

even without direct image-audio alignment. This approach is more e�cient and powerful than the
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model CIFAR-10 Oxford-IIIT Pets CIFAR-100 Caltech-101 Tiny ImageNet

AudioCLIP [44] 61.28 58.15 52.27 51.10 46.04

OneEncoder-⊕ 77.01 69.02 56.07 55.37 50.18

OneEncoder-⊙ 74.07 66.56 55.18 53.11 50.06

Table 5.6: Image-Audio Alignment Validation: Zero-shot image classi�cation is used to assess

the alignment accuracy (%) across �ve benchmark datasets with varying class counts, providing a

measure of the relevance and e�ectiveness of the image-audio alignment.

resource-intensive AudioCLIP, o�ering a cost-e�ective solution with superior performance.

model UrbanSound8K ESC-50

ESResNet [45] 85.42 91.50

AST [41] _ 95.60

ERANN [117] _ 96.10

AudioCLIP [44] 88.32 96.12

OneEncoder-⊕ 89.23 96.87

OneEncoder-⊙ 88.86 97.02

Table 5.7: Fine-tuning accuracy (%) on UrbanSound8K and ESC-50 datasets. The table compares

baseline models with the proposed OneEncoder variants.

For representation learning model validation, we �ne-tune the models on the UrbanSound8K

and ESC-50 datasets. Unlike AudioCLIP, which requires retraining all Wav2Vec parameters, OneEn-

coder only �ne-tunes the UP and the (ALaudio) for 100 epochs. Table 5.7 shows that OneEncoder-⊕

and OneEncoder-⊙ outperform AudioCLIP on both datasets, with OneEncoder-⊙ achieving the

highest accuracy on ESC-50 (97.02%) and OneEncoder-⊕ leading on UrbanSound8K (89.23%).

This demonstrates the e�ciency of the OneEncoder framework, achieving superior performance

with fewer retrained parameters compared to the more resource-intensive AudioCLIP. These results

underscore the robustness of OneEncoder for �ne-tuned representation learning across diverse audio

classi�cation tasks.
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ALvideo Validation Following Text-Video Modalities Training

After aligning the audio with both image and text modalities (Section 5.4.3), we further integrate

the video modality and align it with image, text, and audio. This alignment is performed using

Algorithm 7, following a similar approach as in audio alignment, where only the ALvideo is trained

while keeping the UP frozen. The OneEncoder variants are trained for 100 epochs on the MSR-VTT

dataset, using the text modality to align with the video modality. This alignment indirectly links

the audio and image modalities to the video through transitive alignment.

For evaluating OneEncoder in the context of text-video alignment, we benchmark its performance

against X-CLIP [82], an extended version of CLIP designed for text-video alignment.

Results on Table 5.8 demonstrate the superior performance of OneEncoder in aligning text

and video across both MSVD and LSMDC datasets. On MSVD, OneEncoder-⊕ outperforms all

models with a Recall at rank 5 (R@5) of 80.76 and Mean Rank (MnR) of 7.98 in text-to-video

retrieval. Similarly, in video-to-text retrieval, it achieves the best R@5 score (91.62) and the lowest

MnR (3.98), surpassing strong baselines like CLIP4Clip and X-CLIP. These results are particularly

remarkable given that OneEncoder is based on a lightweight framework and trained on smaller

datasets, whereas baselines like X-CLIP are large models trained on extensive datasets. Despite

this, OneEncoder achieves comparable performance, which underscores its strong results.

To validate the transitive alignment between audio and video, we convert each text descrip-

tion into audio and perform audio-video retrieval to assess alignment. Table 5.9 compares these

results with those in Table 5.8, demonstrating successful audio-video alignment. This con�rms the

e�ectiveness of the progressive alignment process, which requires minimal computational resources

while maintaining the strong performance of the OneEncoder framework.

OneEncoder outperforms baseline models due to its e�cient design. Unlike baselines that

train all parameters and require large datasets, OneEncoder only trains the parameters of the

UP and AL, reducing the model's complexity and enabling strong performance even with smaller

datasets. Its modality-speci�c alignment allows dynamic adjustment for each modality, capturing
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Retrieval performance comparison on MSVD

Model Text-to-Video Video-to-Text

R@1↑ R@5↑ MnR↓ R@1↑ R@5↑ MnR↓

CE [15] 19.8 49.0 - - - -

SSB [16] 28.4 60.0 - - - -

NoiseE [2] 20.3 49.0 - - - -

CLIP-straight [94] 37.0 64.1 - 59.9 85.2 -

Frozen [6] 33.7 64.7 - - - -

TT-CE+ [37] 25.4 56.9 - 27.1 55.3 -

CLIP4Clip-MeanP (ViT-B/32) [79] 46.2 76.1 10.0 56.6 79.7 7.6

CLIP4Clip-seqTransf (ViT-B/32) [79] 45.2 75.5 10.3 62.0 87.3 4.3

CLIP4Clip-MeanP (ViT-B/16) [79] 47.3 77.7 9.1 62.9 87.2 4.2

CLIP4Clip-seqTransf (ViT-B/16) [79] 47.2 77.7 9.1 63.2 87.2 4.2

X-CLIP (ViT-B/32) [82] 47.1 77.8 9.5 60.9 87.8 4.7

X-CLIP (ViT-B/16) [82] 50.4 80.6 8.4 66.8 90.4 4.2

OneEncoder-⊕ 49.21 80.76 7.98 65.89 91.62 3.98

OneEncoder-⊙ 47.02 79.27 8.88 65.23 89.78 4.65

Retrieval performance comparison on LSMDC

Model Text-to-Video Video-to-Text

R@1↑ R@5↑ MnR↓ R@1↑ R@5↑ MnR↓

CE [15] 11.2 26.9 96.8 - - -

MMT [37] 12.9 29.9 75.0 - - -

NoiseE [2] 6.4 19.8 - - - -

CLIP-straight [94] 11.3 22.7 - 6.8 16.4 -

MDMMT [31] 18.8 38.5 58.0 - - -

Frozen [6] 15.0 30.8 - - - -

HiT [9] 14.0 31.2 - - - -

TT-CE+ [37] 17.2 36.5 - 17.5 36.0 -

CLIP4Clip-MeanP (ViT-B/32) [79] 20.7 38.9 65.3 20.6 39.4 56.7

CLIP4Clip-seqTransf (ViT-B/32) [79] 22.6 41.0 61.0 20.8 39.0 54.2

CLIP4Clip-MeanP (ViT-B/16) [79] 23.5 43.2 54.8 22.6 50.5 50.3

CLIP4Clip-seqTransf (ViT-B/16) [79] 23.5 45.2 51.6 23.2 42.4 47.4

X-CLIP (ViT-B/32) [82] 23.3 43.0 56.0 22.5 42.2 50.7

X-CLIP (ViT-B/16) [82] 26.1 48.4 46.7 26.9 46.2 41.9

OneEncoder-⊕ 26.12 48.23 46.11 27.01 46.67 42.3

OneEncoder-⊙ 25.32 46.76 50.19 25.67 44.15 42.10

Table 5.8: Retrieval performance comparison on MSVD and LSMDC datasets. Models are evaluated

using Recall at Rank 1 (R@1) and Rank 5 (R@5) � higher is better � and Mean Rank (MnR),

where lower is better. Results are reported for both text-to-video and video-to-text retrieval tasks.82
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Retrieval performance comparison on MSVD

Model Audio-to-Video Video-to-Audio

R@1↑ R@5↑ MnR↓ R@1↑ R@5↑ MnR↓

OneEncoder-⊕ 46.34 78.45 8.13 63.43 89.12 4.15

OneEncoder-⊙ 46.78 77.32 8.97 63.78 87.78 4.98

Retrieval performance comparison on LSMDC

Model Audio-to-Video Video-to-Audio

R@1↑ R@5↑ MnR↓ R@1↑ R@5↑ MnR↓

OneEncoder-⊕ 24.37 46.32 47.32 25.23 44.56 44.20

OneEncoder-⊙ 23.32 43.13 49.32 23.21 42.12 46.57

Table 5.9: Comparison of audio-to-video and video-to-audio retrieval performance on the MSVD

and LSMDC datasets. Performance is evaluated using Recall at Rank 1 (R@1) and Rank 5 (R@5),

where higher values are better, and Mean Rank (MnR), where lower values are preferred.

inter-modal relationships more e�ectively. The two-step training process�aligning image-text pairs

(Step 1) and integrating other modalities (Step 2)�improves scalability and adaptability without

retraining the entire model. This approach makes OneEncoder computationally e�cient, less prone

to over�tting, and highly e�ective in data-constrained environments, while maintaining strong per-

formance across various tasks.

5.4.4 Qualitative Analysis

Figure 5.3 presents qualitative results of OneEncoder across image, text, audio, and video modalities.

In Step 1 (see Algorithm 6), we demonstrate that OneEncoder e�ectively retrieves images using text

queries and vice versa, highlighting the UP's ability to understand both visual and textual content,

leading to relevant retrievals through well-aligned latent space. In Step 2 (see Algorithm 7), we show

that image retrieval via audio inputs generates coherent results, with the frozen UP maintaining

alignment across modalities. This phenomenon extends to video retrieval as well, where transitive
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Figure 5.3: Qualitative results showcasing cross-modal retrieval across text, image, audio, and

video modalities. For each query, OneEncoder retrieves the most relevant data, highlighting the

e�ectiveness of its cross-modal alignment.
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alignment between audio and video also yields accurate and meaningful retrievals. These qualita-

tive results, together with quantitative analysis, underscore OneEncoder's strong performance in

progressively aligning modalities. Its lightweight framework e�ciently achieves these results even

with small aligned datasets, thanks to the use of frozen, pretrained modality-speci�c encoders.

5.5 OneEncoder on Visual Question Answering

In Section 5.4, we demonstrated that OneEncoder can be e�ciently trained using a contrastive

learning approach to align multiple modalities at a low computational cost. In this section, we

introduce an alternative alignment method tailored for Visual Question Answering (VQA) tasks

to further train OneEncoder. The goal is to illustrate the versatility of our proposed framework,

showing its ability to be applied across various domains while utilizing di�erent alignment strategies

during training.

VQA is a complex task that involves understanding both visual content and textual questions,

requiring the model to align and reason across these modalities to generate accurate answers. By

employing a specialized alignment mechanism for VQA, we aim to demonstrate OneEncoder's ability

to handle cross-modal reasoning tasks beyond retrieval, further highlighting its adaptability across

di�erent types of multimodal learning challenges. Figure 5.4 presents a comparison between the

classical VQA approach 5.4a and the OneEncoder framework 5.4b. As discussed in 5.4, OneEncoder

trains only the UP to align the textual answer with the image and question inputs, signi�cantly

reducing the number of parameters compared to the Baseline method 5.4a, which requires training

both the image and text encoders. Both methods utilize a "Prediction Head" module to generate

the textual answer.

To train both the Baseline and OneEncoder frameworks, we utilize the DAQUAR (Dataset for

Question Answering on Real-world images) [84]. For modality-speci�c encoders, we employ BEiT-

base [7], DEiT-base [112], and ViT-base [26] models as image encoders, each with 86M parameters,
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(a) Baseline: The parameters of both the Image Encoder and Text Encoder are trained.

Universal
Projection 

(UP)

what is the
color of the

cat?

Image
Encoder

Text
Encoder

Modality
Tokens

select & fuse

frozen trainable

Concat Prediction
Head white

(b) OneEncoder: The parameters of both the Image Encoder and Text Encoder are frozen, with only the

parameters of the Universal Projection (UP) module being trained.

Figure 5.4: OneEncoder architecture for the Visual Question Answering (VQA) task.

The OneEncoder framework in 5.4b trains only the UP to align the textual answer with both the

image and the textual question, unlike the baseline method in 5.4a, which trains all speci�c encoders

(image encoder and text encoder), making it more computationally expensive. Both approaches use

a "Prediction Head" to generate textual answers.
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Figure 5.5: Comparison of Trainable Parameters (in millions) between Baseline Models and OneEn-

coder Variants (OneEncoder-⊕ and OneEncoder-⊙).

while ALBERT [66] (60M parameters), BERT-base [25] (110M parameters), and RoBERTa-base [75]

(125M parameters) serve as text encoders. We construct 9 VQA models for each method (Base-

line and OneEncoder) by combining these encoder pairs: (BEiT, ALBERT), (BEiT, BERT), (BEiT,

RoBERTa), (DEiT, ALBERT), (DEiT, BERT), (DEiT, RoBERTa), (ViT, ALBERT), (ViT, BERT),

and (ViT, RoBERTa).

Since the DAQUAR dataset features simple vocabulary tokens as answers, we reformulate

the task as a classi�cation problem, using a linear layer as the "Prediction Head," where the output

dimension matches the vocabulary size, and applying cross-entropy loss. Unlike the Baseline, which

�ne-tunes the entire pretrained modality-speci�c encoders, OneEncoder freezes these encoders and

focuses solely on training the UP. The goal of this application, using the smaller DAQUAR dataset,

is to demonstrate that our framework can achieve strong performance with limited paired data,

signi�cantly reducing the number of parameters to optimize and shortening the training time re-

quired for convergence. We use four Transformer blocks with a total of 4M parameters for the

UP, and modality tokens of size R1×768. All models are trained for 100 epochs without any data

augmentation techniques.
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(a) BEiT (b) DEiT (c) ViT

(d) WUPS score

(e) BEiT (f) DEiT (g) ViT

(h) Accuracy

(i) BEiT (j) DEiT (k) ViT

(l) F1 score

Figure 5.6: Validation Performance of Baseline Models and OneEncoder Variants (OneEncoder-⊕,

OneEncoder-⊙) on the DAQUAR dataset, evaluated using Wu-Palmer Similarity (WUPS), Accu-

racy, and F1 Score.
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Figure 5.7: Example VQA Results Using the OneEncoder-⊕ Model.

Figure 5.5 provides a detailed comparison of the number of trainable parameters between

Baseline models and OneEncoder variants. Speci�cally, OneEncoder-⊕ utilizes addition-based fu-

sion, while OneEncoder-⊙ employs an attention-based fusion mechanism. Unlike the Baseline mod-

els, which train all parameters, the OneEncoder versions use Baseline models for feature extraction

but keep them frozen during training.

Figure 5.6 demonstrates that the OneEncoder architecture (OneEncoder-⊕, OneEncoder-

⊙) consistently outperforms baseline models across the three key metrics: Wu-Palmer Similarity

(WUPS) [125], Accuracy, and F1 Score. These results indicate that retraining specialized encoders

may not be essential for achieving strong performance. By freezing the encoders and only training

the UP on a small paired dataset, we can signi�cantly reduce the number of parameters to opti-

mize, minimize the need for large datasets, and shorten training times�all while yielding superior

outcomes as illustrated in Figure 5.7.
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The VQA experiment further validates the �ndings in Section 5.4, focused on contrastive

learning. OneEncoder, with its e�cient and lightweight design, can be e�ectively integrated into

any alignment-based approach, reducing parameter complexity, data requirements, and surpassing

traditional methods that rely on retraining modality-speci�c encoders.

5.6 Discussion: Addition vs. Cross-Attention Fusion in OneEn-

coder

In our experiments, we evaluated two distinct fusion strategies for integrating modality features: the

simple addition approach used by OneEncoder-⊕ and the cross-attention mechanism implemented

in OneEncoder-⊙. The results revealed a consistent trend where OneEncoder-⊕ outperformed

OneEncoder-⊙ across a range of tasks, providing insights into how the di�erent fusion methods

in�uence model behavior and performance.

5.6.1 OneEncoder-⊕: Simple Addition for Modality Integration

OneEncoder-⊕ uses a parameter-free addition operation to integrate modality features and tokens.

This approach is simple, direct, and e�cient, as it combines modality features with modality tokens

through a straightforward summation process. The lack of additional learnable parameters allows

OneEncoder-⊕ to preserve the integrity of the feature representations, enabling the model to retain

more information from each modality. This fusion strategy appears to be more stable across various

tasks, possibly because it avoids the complexities of training additional parameters that could

introduce variability or over�tting. Moreover, the simplicity of the addition mechanism helps the

model focus on the core information from each modality without being distracted by complex inter-

modality relationships.
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5.6.2 OneEncoder-⊙: Cross-Attention for Dynamic Modality Interaction

In contrast, OneEncoder-⊙ utilizes a cross-attention mechanism, which is more �exible and powerful

in its ability to model complex interactions between modality features. By using modality tokens as

queries and modality features as keys and values, OneEncoder-⊙ enables the model to dynamically

adjust its focus between the two modalities, potentially learning intricate inter-modal relationships.

However, this �exibility comes at the cost of introducing learnable parameters within the attention

mechanism. These parameters, while allowing the model to better capture interactions, can also

introduce instability in the learning process. The query-key-value structure requires careful opti-

mization to ensure that the interactions between modalities are meaningfully learned. This may

be particularly challenging with limited data, where the model might struggle to fully realize the

potential of cross-attention

5.6.3 Key Insights from Experimentation

Our experimental �ndings suggest that the additional complexity introduced by OneEncoder-⊙'s

attention mechanism may not always translate into better performance. While cross-attention o�ers

greater expressiveness, the potential for instability and the need for more extensive training data can

hinder its e�ectiveness, particularly when compared to OneEncoder-⊕'s straightforward addition

strategy. OneEncoder-⊕'s direct integration of modality features allows the model to focus on the

most salient aspects of each modality without the added burden of learning complex inter-modal

relationships.

5.7 Discussion

We introduce OneEncoder, a novel approach to multimodal representation learning that leverages

prior knowledge about modality-speci�c characteristics to streamline the learning process. By in-

corporating this information into data representation, OneEncoder reduces both the reliance on

large paired datasets and the number of parameters to tune, addressing two critical challenges in
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multimodal system design: scalability and training e�ciency.

The core idea of OneEncoder lies in utilizing pretrained, modality-speci�c encoders as �xed fea-

ture extractors, thus retaining the inherent strengths of each modality's prior representations. A

lightweight Universal Projection (UP) module, shared across all modalities, facilitates the align-

ment of these diverse representations within a uni�ed space. Importantly, OneEncoder incorporates

a modality token�a learned embedding indicating the origin of each representation�before the

projection step. This modality token encodes prior modality knowledge, ensuring that the UP can

consistently and e�ectively map diverse inputs to a common space without retraining the entire

architecture for each new task.

For contrastive learning, OneEncoder achieves e�ective alignment of text and image embeddings

within the same projection space. Notably, this is accomplished without training separate modality-

speci�c modules, as required by more resource-intensive models like CLIP. This design proves par-

ticularly advantageous on smaller datasets, where OneEncoder demonstrates superior performance

while requiring fewer computational resources. Furthermore, OneEncoder's framework is naturally

extensible to additional modalities such as audio and video through a progressive alignment strat-

egy. In this strategy, the UP remains �xed, and a compact Alignment Layer module is introduced

to adapt the output of pretrained feature extractors into the UP-compatible space. This approach

o�ers a highly scalable and �exible solution for multimodal learning, further reducing the need for

large-scale retraining while retaining compatibility across diverse modalities.

The versatility of OneEncoder is further exempli�ed through its application to tasks like visual

question answering (VQA). Here, OneEncoder not only achieves improved performance over base-

line models but does so with signi�cantly lower training costs. This underscores the e�ectiveness of

leveraging prior modality-speci�c knowledge and compact, shared representation spaces in reducing

computational overhead.

In summary, OneEncoder represents a paradigm shift in multimodal representation learning by

directly integrating prior knowledge about modality into the data representation process. This en-

ables it to signi�cantly reduce the need for extensive paired datasets and large parameter sets while

maintaining strong performance across tasks. The insights gained from this approach are a step

forward in addressing the scalability challenges of multimodal systems.
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The next part, Part III, will explore the application of OneEncoder to open-vocabulary

object detection. This involves identifying relevant concepts from rich semantic prompts before

performing object detection, showcasing the potential of OneEncoder to extend its lightweight,

scalable framework to complex downstream tasks.

93



Conclusion

In this part, we explored the challenges and solutions in multimodal representation learning, focusing

on the limitations of large paired datasets and the complexity of training systems that align multiple

modalities. In the related work, we reviewed key techniques in cross-modal alignment, highlighting

the success of models like CLIP and ALIGN, which integrate dual-modalities but struggle with

scalability and e�ciency due to their reliance on extensive datasets and separate modality-speci�c

modules.

To address these challenges, we introduced OneEncoder, a novel approach that integrates prior

knowledge of modality-speci�c characteristics to streamline multimodal learning. By utilizing pre-

trained, �xed feature extractors and a lightweight Universal Projection (UP) module, OneEncoder

reduces the computational burden and eliminates the need for training separate encoders for each

modality. The inclusion of a modality token ensures that diverse inputs are aligned in a uni�ed

space without retraining the entire model for new tasks. OneEncoder's �exibility allows for seamless

integration of new modalities, such as audio and video, through a progressive alignment strategy.

In contrast to traditional models, OneEncoder excels with fewer resources, delivering strong per-

formance on smaller datasets, such as visual question answering (VQA), while minimizing training

costs. This makes OneEncoder a scalable, e�cient, and adaptable solution to the growing demand

for multimodal systems.
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Open-Vocabulary Object Detection
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This part builds upon the work presented in Part II, focusing on the challenges of high

costs, data limitations, and scalability in training open-vocabulary object detection systems.

To address these issues, we introduce LightMDETR, a novel method designed to signi�cantly reduce

training costs while maintaining high performance. This method leverages prior knowledge, as seen

in OneEncoder (discussed in Part II), through the use of the Universal Projection module, which

allows for e�cient adaptation to unseen object categories.

The part is organized as follows: Chapter 6 presents a detailed review of object detection techniques,

encompassing both classical methods and open-vocabulary approaches. Chapter 7 introduces Light-

MDETR, emphasizing its improvements over existing frameworks by integrating prior knowledge

to reduce computational costs while maintaining robust detection across diverse object categories.

The proposed method is validated on three tasks: phrase grounding, referring expression

comprehension, and referring expression segmentation.
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Chapter 6

State of the Art in Object Detection

6.1 Introduction

Object detection is a crucial task in computer vision, focused on identifying and localizing objects

within images. Leading methods like Faster R-CNN [97], YOLO [95], and SSD [72] have shown

great success in this domain. However, these approaches are constrained by a �xed set of object

categories (e.g., 20 categories in the PASCAL VOC [32] dataset). Once trained, these detectors can

only recognize the prede�ned categories, limiting their �exibility and applicability in more open and

dynamic scenarios.

Recent works [135, 105, 43, 27] have leveraged popular vision-language models for open-vocabulary

detection by distilling vocabulary knowledge from language encoders. However, these distillation-

based approaches face signi�cant limitations due to the scarcity of diverse training data.

Inspired by the success of methods [94, 55, 133] that learn image-level visual representations from

large-scale raw image-text pairs, achieving semantically rich projection spaces for easy transfer

to downstream tasks (such as zero-shot image classi�cation and text-image retrieval), several ap-

proaches [58, 70, 43, 141, 86] have extended this to open-vocabulary object detection, aiming for

�ne-grained image understanding with object-level visual representations.

6.2 Traditional Object Detection

Traditional object detection methods have undergone a signi�cant evolution, starting with frame-

works that utilized separate networks for classi�cation and localization, progressing to uni�ed archi-
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tectures optimized for both computational e�ciency and accuracy. Early methods like R-CNN [40]

relied on a two-stage process, where the �rst stage generated region proposals using algorithms like

Selective Search, and the second stage performed feature extraction using a Convolutionnal Neural

Network (CNN). Bounding box regression (t) and classi�cation (c) were treated as separate tasks.

The localization task optimized bounding box coordinates (x, y, w, h) using a regression loss, often

de�ned as Smooth L1 loss:

Lloc =
∑

i∈{x,y,w,h}

smoothL1(ti − t̂i), (6.1)

where ti and t̂i represent the ground truth and predicted box parameters, respectively. Classi�cation

is optimized using a cross-entropy loss (Lcls), leading to the combined loss:

L = Lcls + λLloc, (6.2)

where λ is a hyperparameter balancing the two terms. Despite its accuracy, R-CNN is computa-

tionally expensive due to redundant feature extraction. Fast R-CNN [girshick2015fast] improved

e�ciency by sharing feature maps across proposals using RoI pooling, while Faster R-CNN [97] fur-

ther streamlined the process by introducing a Region Proposal Network (RPN). The RPN generates

object proposals by sliding a small network over the feature map, predicting objectness scores (p)

and bounding box deltas (∆x,∆y,∆w,∆h) for prede�ned anchor boxes. The RPN loss function

combines objectness classi�cation and regression:

LRPN =
1

Ncls

∑
i

Lcls(pi, p∗i ) +
λ

Nreg

∑
i

p∗iLloc(ti, t∗i ), (6.3)

where p∗i is the ground truth label indicating whether the anchor is positive, and Ncls and Nreg are

normalization factors.

Single-stage detectors like YOLO [95] and SSD [72] aimed to simplify the pipeline by predicting

object classes and bounding boxes directly from the feature map, removing the need for region

proposals. YOLO divides the image into a grid of size S×S, where each grid cell predicts B bounding

boxes and C class probabilities. The YOLO loss function combines classi�cation, localization, and

object con�dence terms:

LYOLO =
S2∑
i=0

B∑
j=0

1
obj
ij

[
Lcoord + Lconf + Lcls

]
, (6.4)
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where 1objij is an indicator for the presence of an object in cell i and box j. SSD enhanced this

by introducing anchor boxes at multiple scales and aspect ratios, predicting class probabilities and

bounding box o�sets for each anchor.

To handle challenges like class imbalance, RetinaNet introduced Focal Loss, which modi�es cross-

entropy to focus learning on hard-to-classify examples:

LFocal = −αt(1− pt)
γ log(pt), (6.5)

where pt is the predicted probability for the target class, γ adjusts the focus on hard examples, and

αt balances positive and negative samples.

More recently, transformer-based architectures like DETR [11] have rede�ned object detection.

DETR replaces anchor-based mechanisms with learnable object queries, using a transformer encoder-

decoder [116] to match queries with objects in the image. DETR optimizes a combination of

classi�cation and bounding box regression, using a Hungarian matching cost for alignment:

LDETR =

N∑
i=1

[
Lcls(ci, ĉi) + 1

obj
i Lbox(bi, b̂i)

]
, (6.6)

where N is the number of object queries, ci is the true class, and bi represents bounding box coordi-

nates. Deformable DETR [142] re�ned this by focusing attention on sparse, key regions, improving

convergence speed and computational e�ciency.

Through these advancements, object detection has transitioned from labor-intensive multi-stage

pipelines to e�cient, uni�ed systems leveraging innovative loss functions, multi-scale feature learn-

ing, and attention mechanisms, continually improving scalability, speed, and accuracy.

While these models are highly e�ective within their de�ned scope, their limitation lies in their

inability to generalize beyond the �xed set of categories, making them less adaptable in dynamic

environments.

This limitation has paved the way for open-vocabulary object detection methods, driven by advances

in models like CLIP [94].
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6.3 Open-vocabulary Object Detection (OVD)

OVD builds on traditional object detection techniques by enabling the identi�cation and localiza-

tion of objects from a large set of categories, including those that were not present during training.

Model trained separately on the concepts "cat" and "white," can infer and detect a "white cat"

during inference by dynamically combining learned embeddings of "cat" and "white" in a shared

vision-language space. This capability is achieved by leveraging external knowledge, such as pre-

trained language models, to generalize the detection task to unseen classes. In contrast to classical

methods, which require each object class to be de�ned during training, OVD systems aim to predict

new classes by associating visual features with textual descriptions or embeddings of unseen objects.

Early Approaches and Region-Based OVD

Traditional object detection pipelines, such as Faster R-CNN, perform detection by generating re-

gion proposals through a Region Proposal Network (RPN), followed by bounding box regression

and class prediction through fully connected layers. The output is typically a �xed set of categories

that the model was trained on. To extend this to open-vocabulary detection, methods like Vision-

Language Detectors (ViLD) [43] replace the �xed classi�cation layer with a mechanism that uses

text embeddings from pre-trained language models such as CLIP.

In ViLD, the model �rst generates region proposals via RPN and computes visual feature represen-

tations for each region. These visual features fi are then compared to class embeddings tj obtained

from a pre-trained vision-language model, typically CLIP. The similarity between the visual fea-

ture and the text embedding for each class is computed using a similarity function such as cosine

similarity:

sij = sim(fi, tj) · pobj(fi), (6.7)

where sim(fi, tj) denotes the cosine similarity between the visual feature fi and the text embedding

tj , and pobj(fi) is the objectness score (i.e., the likelihood that the region contains an object). The

model is trained using a combination of a bounding box regression loss Lbox and a contrastive loss

Lsim, which encourages the visual features to be closer to the correct textual embedding:

L = Lbox + λLsim, (6.8)
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where λ is a hyperparameter balancing the two losses. This formulation allows the model to recog-

nize new object categories as long as there exists a textual embedding for those categories.

Grounded Language-Image Pre-training (GLIP)

GLIP [70] is another method that improves open-vocabulary object detection by pre-training a

model with a joint objective of grounding language (associating textual descriptions with visual

features) and detecting objects. Unlike ViLD, which primarily relies on CLIP embeddings, GLIP

uses a grounding loss that explicitly aligns regions in an image with their corresponding text descrip-

tions. During training, the model is provided with image-caption pairs and learns to align image

regions with corresponding words from the caption. The grounding loss used in GLIP is based on

contrastive learning, where the model learns to associate each image region with the correct textual

description.

The GLIP model uses a Vision Transformer (ViT) [26] backbone to extract features from an image,

and each image region is matched with a textual embedding via cosine similarity. The total loss

function consists of a bounding box regression loss Lbox, a classi�cation loss Lcls, and the grounding

contrastive loss Lgrounding, which is computed as follows:

Lgrounding = −
∑
j

log
exp(sim(fi, tj))∑
k exp(sim(fi, tk))

, (6.9)

where fi is the visual feature vector for region i, and tj is the embedding for word j. The ground-

ing loss ensures that the correct textual description is closer in the embedding space to the visual

features of the corresponding region. This approach allows the model to generalize well to unseen

categories by relying on textual descriptions, even for categories that were not included in the train-

ing set.

Modulated Detection Transformer (MDETR)

MDETR [58] is a transformer-based architecture designed for open-vocabulary object detection,

where the input consists of both image patches and textual descriptions. The key innovation of

MDETR is its use of a transformer encoder-decoder architecture that processes both modalities

simultaneously, allowing the model to reason about the relationships between the visual and textual

information. MDETR uses a tokenized representation of the input text, where each word or phrase

is transformed into a �xed-length embedding. The image is split into patches, which are processed

by the transformer encoder along with the text tokens. The resulting embeddings are used to pre-
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dict both bounding boxes and class labels for detected objects.

MDETR extends traditional object detection by using a modulated attention mechanism, where

textual embeddings are used to modulate the attention weights in the visual feature extraction pro-

cess. This allows the model to focus more on image regions that are relevant to the provided textual

descriptions. The output of the model is a set of bounding boxes and class labels, where the class

labels are predicted based on the similarity between visual features and textual embeddings. The

overall loss function combines bounding box regression Lbox, classi�cation Lcls, and a contrastive

loss Lcontrastive, which ensures alignment between the visual and textual modalities.

Open-World Learning Vision Transformer (OWL-ViT)

OWL-ViT further advances OVD by using a vision transformer architecture pre-trained on large-

scale image-text datasets like CLIP. This model is designed to recognize both seen and unseen

object categories by associating image patches with text descriptions in a shared embedding space.

OWL-ViT adapts the traditional object detection pipeline by incorporating a large number of po-

tential object categories, not limited to those seen during training. The transformer architecture is

capable of handling varying levels of semantic ambiguity, and the model's contrastive objective helps

it generalize to novel categories by learning better alignment between image features and textual

descriptions.

The loss function in OWL-ViT combines the standard object detection losses (bounding box re-

gression and classi�cation) with a contrastive loss that forces the visual features to be close to the

correct textual embeddings for both seen and unseen categories. The model's ability to process

large-scale text-image data enables it to detect objects from classes that were not part of the train-

ing set, making it a highly e�ective solution for open-vocabulary object detection.

The evolution of open-vocabulary object detection has been a progressive integration of vision-

language models into traditional object detection pipelines. From methods like ViLD, which use

CLIP embeddings to generalize to new categories, to transformer-based models like MDETR and

OWL-ViT, which jointly process visual and textual modalities, each step has made it possible to

detect a wider array of objects without requiring explicit retraining for every new class. The key

mathematical principles across these methods involve aligning visual features with text embeddings

via contrastive losses, making OVD a highly �exible and scalable approach for real-world object
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detection tasks.

Despite their superior generalization capabilities, these open-vocabulary methods are resource-

intensive, requiring substantial computational power and large-scale datasets for training, primarily

due to the reliance on extensive pre-trained models for text and image encoding. Nonetheless, they

represent a signi�cant advancement in object detection, o�ering the ability to detect a vast range

of objects, including those unseen during training.

To tackle the challenges associated with the extensive training required for open-vocabulary object

detection methods, we propose a new method based on prior knowledge, that signi�cantly reduces

training demands while maintaining performance. Our approach can be seamlessly integrated into

any existing open-vocabulary object detection system, ensuring more e�cient training without com-

promising the model's e�ectiveness.

6.4 Discussion

Open-vocabulary object detection (OVD) represents a signi�cant leap forward in the �eld of com-

puter vision, o�ering the ability to detect a wide variety of objects, including those not present during

training. By leveraging powerful vision-language models like CLIP, OVD systems can generalize

detection tasks to unseen categories by associating visual features with textual descriptions. The

integration of transformer-based architectures, such as MDETR and OWL-ViT, enhances this capa-

bility by allowing the model to process both visual and textual information simultaneously, thereby

improving detection accuracy. However, challenges remain, particularly regarding computational

e�ciency, as these models require extensive resources for training and inference. Additionally, the

alignment between visual features and textual embeddings remains a complex task, and scalability

becomes an issue as the number of potential object categories increases. Despite these challenges,

OVD o�ers immense potential for real-world applications, and future research could focus on op-

timizing model architectures, incorporating prior knowledge, and reducing the need for large-scale

retraining to make these systems more e�cient and adaptable.
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Chapter 7

LightMDETR

7.1 Introduction

Open-vocabulary object detection methods face limitations primarily due to the extensive training

requirements needed to align visual and textual embeddings e�ectively. Training often involves

large-scale datasets and sophisticated vision-language models like CLIP, requiring signi�cant com-

putational resources and time. This process can be particularly challenging when attempting to

balance generalization across unseen categories while maintaining accuracy on seen categories. Ad-

ditionally, the reliance on massive pre-training makes it di�cult to adapt these methods to domain-

speci�c tasks or smaller datasets without considerable �ne-tuning e�orts.

To address this challenge, we propose a Lightweight Modular Framework for Low-Cost Open-

Vocabulary Object Detection Training. Similar to the approaches introduced in Parts I and II, our

method leverages prior knowledge to unify the parameter representation of distinct modalities, such

as image and text. This uni�ed representation minimizes the number of parameters that need to be

�ne-tuned during training, signi�cantly reducing computational overhead. To validate the e�cacy

of the proposed framework, we integrate it into MDETR, a state-of-the-art model for multimodal

detection.

In addition to enhancing general object detection, our proposed framework excels in tasks

like Phrase Grounding, Referring Expression Comprehension, and Referring Expression

Segmentation. These applications involve identifying and localizing objects in images based on
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textual descriptions, ranging from simple phrases to complex referring expressions. Our method's

ability to leverage a uni�ed representation and lightweight architecture reduces computational com-

plexity while maintaining high accuracy across these tasks:

� Phrase Grounding: The framework enables e�cient grounding of textual phrases to corre-

sponding image regions, allowing for accurate mapping even in challenging open-vocabulary

scenarios.

� Referring Expression Comprehension: By aligning visual and textual modalities, the

system improves comprehension of textual descriptions and enhances localization performance,

especially for unseen or ambiguous expressions.

� Referring Expression Segmentation: Our lightweight architecture extends its capabilities

to pixel-level segmentation tasks, enabling precise identi�cation and segmentation of objects

described in text with minimal additional computational costs.

To validate its performance, we demonstrate the integration of our framework into MDETR,

showcasing its ability to lower training costs while maintaining or improving performance on tasks

such as phrase grounding and referring expression tasks. The chapter is organized as follows:

Section 7.2 provides a detailed overview of MDETR, while Section 7.3 presents our proposed method,

showcasing its integration into MDETR to lower training costs and improve performance.

7.2 MDETR

MDETR is built on the traditional object detection system DETR [11]. DETR is an end-to-end

object detection model built with a convolutional residual network backbone and a Transformer

Encoder-Decoder [116] architecture. The encoder processes �attened 2D image features from the

backbone, while the decoder uses learned object queries, which serve as slots to detect objects in

the image. Through cross-attention, the decoder predicts embeddings for each object query, which

are then decoded into bounding boxes and class labels. DETR is trained using Hungarian matching

to align the predicted objects with ground-truth, utilizing a combination of L1 loss and Generalized
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IoU [115] for bounding box supervision.

MDETR extends DETR by integrating both visual and textual information into a uni�ed framework.

Unlike DETR, which classi�es objects into �xed categories, MDETR associates detected objects

with spans of text. It encodes images using a ResNet [47] backbone and text via a pre-trained

language model (RoBERTa [75]), projecting both into a shared embedding space (ref. Fig. 7.1).

These features are concatenated and processed through a joint transformer encoder. The transformer

decoder then cross-attends to this combined representation, predicting object bounding boxes linked

to the text.

For training, MDETR employs two additional key loss functions to align image and text data the

soft token prediction loss and the contrastive alignment loss. The soft token prediction loss

(Lsoft_token) guides the model to predict a uniform distribution over the tokens in the text that

correspond to each detected object, rather than predicting discrete class labels. Given a maximum

Figure 7.1: MDETR Architecture: Visual features are extracted via ResNet and textual features

through RoBERTa. Both are projected into a shared embedding space, concatenated, and processed

by a transformer encoder-decoder, which predicts object bounding boxes and their alignment with

the text.

token length L and a set of predicted bounding boxes, the loss for each object is computed by

predicting the probability distribution over possible token positions. Speci�cally, if oi represents

the embedding of the i-th object and tj denotes the j-th token, the soft token prediction loss is

designed to minimize the discrepancy between predicted token spans and the true token spans in the
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text. The contrastive alignment loss enforces that the embeddings of visual objects and their

corresponding text tokens are closely aligned in the feature space. This loss is calculated using:

Lo =
1

N

N−1∑
i=0

1

|T+
i |

∑
j∈T+

i

− log

(
exp(o⊤i tj/τ)∑L−1

k=0 exp(o
⊤
i tk/τ)

)
(7.1)

Lt =
1

L

L−1∑
i=0

1

|O+
i |
∑
j∈O+

i

− log

(
exp(t⊤i oj/τ)∑N−1

k=0 exp(t⊤i ok/τ)

)
(7.2)

where τ is a temperature parameter set to 0.07, T+
i is the set of tokens aligned with the i-th

object, and O+
i is the set of objects aligned with the i-th token. The total loss is the average of

these two components:

Lcontrast =
1

2
(Lo + Lt) (7.3)

The overall training loss for MDETR combines the bounding box losses (L1 and GIoU), soft

token prediction loss, and contrastive alignment loss:

Ltotal = Lbbox + Lsoft_token + Lcontrast (7.4)

with

Lbbox = LL1 + LGIoU (7.5)

where LL1 is the L1 loss calculated as:

LL1 =
1

N

N∑
i=1

∥b̂i − bi∥1 (7.6)

and LGIoU is the Generalized Intersection over Union loss:

LGIoU = 1− IoU+
area(C − (A ∪B))

area(C)
(7.7)

where b̂i and bi are the predicted and ground truth bounding boxes, respectively, and C is the

smallest enclosing box covering both A and B.

Training the pretrained feature extractors ResNet and RoBERTa, as depicted in Figure 7.1,

is both unnecessary and costly. To address this challenge, a lightweight modular framework is pro-

posed, designed to be seamlessly integrated into any open-vocabulary object detection system. This
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framework reduces training costs by minimizing the number of tunable parameters while maintaining

or enhancing the performance of the baseline object detector. The core innovations of this approach

include freezing the backbone of pretrained models and introducing a "Universal Projection" (UP)

module that shares parameters to represent both visual and language data. To ensure the UP e�ec-

tively processes data from di�erent distributions (visual and language) using the same parameters, a

learnable "modality token" is incorporated, enabling e�cient switching between the two modalities.

This framework is applied to MDETR, resulting in Lightweight MDETR (LightMDETR), whose

e�cacy is validated on tasks such as phrase grounding, referring expression comprehension, and

segmentation.

The main contributions of this work are as follows:

� A lightweight approach for open-vocabulary object detection systems is introduced, signi�-

cantly reducing the number of parameters to tune, thereby improving training e�ciency.

� This approach is applied to the MDETR architecture, resulting in two variants: LightMDETR,

which trains only the UP module, and LightMDETR-Plus, which extends LightMDETR with

a cross-fusion layer between text and image modalities to enhance representation capabilities.

� The framework achieves its e�ciency by training only the UP module while freezing all pre-

trained specialized backbone models for images and text. The inclusion of the "modality

token" within the UP module enables e�ective switching between image and text modalities.

7.3 LightMDETR

We depict the LightMDETR architecture in Fig. 7.8. The image is encoded by a frozen ResNet

backbone, producing feature vectors O, while the text is encoded by a frozen RoBERTa model,

yielding feature vectors T . Both image and text features are projected into a shared embedding

space, with the "Universal Projection" (UP) module being the only trained component in the

backbone. The UP acts as a lightweight encoder, adapting the frozen feature representations for

the target task. To handle both modalities, an early fusion method combines the features with a
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Figure 7.2: LightMDETR Architecture: Visual and textual features are extracted via frozen ResNet

and RoBERTa, then projected into a shared embedding space. A lightweight Universal Projection

(UP) module, the only trainable component, processes early fused modality features using a learn-

able "modality token" tm. The UP outputs are concatenated and fed into a Transformer encoder-

decoder (DETR) to predict object bounding boxes.

learnable "modality token" tm, speci�c to each modality (image or text). This approach allows the

UP to encode both types of features as follows:

OUP = UP (O ⊗ timage)

TUP = UP (T ⊗ ttext)

(7.8)

where⊗ denotes the fusion operation (e.g., addition, multiplication, concatenation, or cross-attention).

The outputs OUP and TUP are then concatenated, similar to MDETR, and used as input for the

transformer encoder-decoder (DETR) to predict object bounding boxes.

In MDETR, image and text features are encoded separately and only concatenated before

being passed into DETR. However, as shown in [70], early fusion of image and text features can

make visual features language-aware, allowing predictions to be conditioned on the text prompt.

Building on this idea, we introduce an enhanced version of LightMDETR, called LightMDETR-

Plus, shown in Fig. 7.3. LightMDETR-Plus adds three key components: a cross-fusion layer with

Multi-Head Attention (MHA) [116], and two projection layers that re�ne MHA outputs before they

are processed by the UP.
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Figure 7.3: Architecture of LightMDETR-Plus: LightMDETR-Plus extends LightMDETR (ref.

Figure 7.2) by introducing a cross-fusion layer prior to the UP thereby enhancing the model's

representation capabilities.

The MHA takes as input the ResNet and RoBERTa encoder outputs, denoted as O and T ,

respectively. The transformations are expressed as:

O(q) = OW (q,O), T (q) = TW (q,T ), Attn =
O(q) · (T (q))⊤√

d
,

T (v) = TW (v,T ), OF = SoftMax(Attn) · T (v) ·W (out,O),

O(v) = OW (v,O), TF = SoftMax(Attn⊤) ·O(v) ·W (out,T ),

(7.9)

where {W (symbol,O),W (symbol,T ) : symbol ∈ {q, v, out}} are trainable parameters that play similar

roles to those of query, value, and output linear layers in MHA [116], respectively, and d corresponds

the output dimension.

After applying the cross-fusion mechanism with the Multi-Head Attention approach, a projection

is performed using P1 and P2:

OP1 = P1(OF +O),

TP2 = P2(TF + T ).

(7.10)

The resulting OP1 and TP2 are then fed into the UP, following a similar process as in Light-

MDETR, as described by:

OUP = UP (OP1 ⊗ timage),

TUP = UP (TP2 ⊗ ttext).

(7.11)
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The proposed lightweight framework for open-vocabulary object detection is modular. Sim-

ilar to MDETR, we use an end-to-end approach and the same loss function 7.4 to train both

LightMDETR and LightMDETR-Plus. To validate these methods, we compare their performance

to MDETR on downstream tasks, including phrase grounding, referring expression comprehension,

and segmentation (ref. 7.4).

7.4 Results

7.4.1 Pre-training

For the pre-training task, we adopt the MDETR approach, which leverages modulated detection to

identify and detect all objects referenced in the corresponding free-form text.

For a fair comparison, we use the same combined training dataset as in [58], which integrates

multiple image collections, including Flickr30k [129], MS COCO [71], and Visual Genome (VG) [63].

Flickr30k contains 31,783 images with detailed annotations for 158,915 region descriptions, primar-

ily focused on objects and actions within the scenes. MS COCO contributes approximately 118,000

images, annotated with over 886,000 segmentations covering a wide range of common objects in

diverse contexts. Visual Genome adds 108,077 images, with more than 5.4 million region descrip-

tions and dense object annotations. For annotations, referring expressions datasets for �ne-grained

object references is leveraged, VG regions for detailed object-location relationships, Flickr entities

for linking text descriptions with image regions, and the GQA train balanced set, which provides

1.7 million questions linked to object and scene graphs, enhancing the dataset's ability to support

complex reasoning tasks. This combined dataset ensures robust and comprehensive training, cov-

ering a diverse range of objects, contexts, and linguistic references.

For both LightMDETR and LightMDETR-Plus, a frozen pre-trained RoBERTa-base [75]

is used as the text encoder, which consists of 12 transformer layers, each with a 768-dimensional
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hidden state and 12 attention heads, totaling 125M parameters. The visual backbone is a frozen

pre-trained ResNet-101 [47], with 44M parameters. The only trainable component in both models

is the UP module (see Fig. 7.2 and 7.3), composed of four transformer layers with four attention

heads, contributing 4M trainable parameters. In LightMDETR-Plus, projection layers P1 and P2

add a single transformer layer each, with 787,968 parameters. The modality tokens timage and ttext

are initialized randomly. By freezing both pre-trained encoders, the number of trainable backbone

parameters is reduced from 169M in the original MDETR to 4M in LightMDETR and 5M in

LightMDETR-Plus (ref. Fig. 7.4).

Figure 7.4: Comparison of trainable backbone parameters (in millions) during training between

MDETR, LightMDETR, and LightMDETR-Plus.

For the fusion operation in the UP, as described in Equation 7.8, an addition method is
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employed. All models are pre-trained for 40 epochs with an e�ective batch size of 64.

7.4.2 Dowstream Tasks

The proposed method is evaluated on three downstream tasks: phrase grounding, referring expres-

sion comprehension, and segmentation. To ensure a fair comparison, the same experimental setup

as MDETR is adopted. Further details are available in the original paper.

Phrase grounding

is a task of identifying the �ne-grained correspondence between phrases in a sentence and objects

(or regions) in an image. We use the Flickr30k entities dataset for this task, and evaluate models

performance in terms of Recall@k. For each sentence in the test set, 100 bounding boxes are

predicted and use the soft token alignment prediction to rank the boxes according to the score given

to the token positions.

Method Val Test

R@1 R@5 R@10 R@1 R@5 R@10

MDETR 82.5 92.9 94.9 83.4 93.5 95.3

LightMDETR 83.98 93.15 94.20 83.87 94.10 95.17

LightMDETR-Plus 84.02 93.56 94.9 83.80 94.66 95.23

Table 7.1: Comparison of phrase grounding performance on the Flickr30k dataset. Evaluation is

reported using Recall at top 1, 5, and 10 predictions (R@1, R@5, R@10) on both validation and

test splits.

As shown in Table 7.1, both LightMDETR and its extended version, LightMDETR-Plus,

demonstrate competitive performance compared to MDETR. LightMDETR-Plus achieves the high-

est R@1 and R@5 on the validation set, with a slight improvement over LightMDETR and MDETR.

On the test set, LightMDETR-Plus also outperforms the other models in R@5, demonstrating its ef-

fectiveness in grounding phrases more accurately. Overall, these results highlight that LightMDETR
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and LightMDETR-Plus not only reduce the number of trainable parameters but also maintain or

slightly improve performance on this task.

Figure 7.5: An illustration of LightMDETR on modulated detection. The model is designed to

identify the root of a phrase as the positive token span, as demonstrated in these �gures.

Referring expression comprehension

entails locating an object in an image using a textual description to predict a bounding box. We �ne-

tune both models on speci�c datasets�RefCOCO [59], RefCOCO+ [131], and RefCOCOg [85]�for

�ve epochs, while keeping ResNet-101 and RoBERTa frozen. During inference, the models leverage

the ∅ label to rank the 100 predicted bounding boxes, thereby improving the accuracy of object

identi�cation based on the provided expression. Table 7.2 presents a comparison of our models,

LightMDETR and LightMDETR-Plus, against other detection models on RefCOCO, RefCOCO+,

and RefCOCOg. RefCOCO and RefCOCO+ are evaluated using person vs. object splits: "testA"

includes images with multiple people, while "testB" includes those with multiple objects. There is

no overlap between training, validation, and testing images. RefCOCOg is split into two partitions.

Results presented in Table 7.3 showcase the precision performance of our models, LightMDETR

and LightMDETR-Plus, in comparison to MDETR on the RefCOCO, RefCOCO+, and RefCOCOg

datasets. Precision at rank k (P@k) indicates the percentage of correct predictions within the top
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Method RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

MAttNet [132] 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27

ViLBERT [78] - - - 72.34 78.52 62.61 - -

VL-BERT [108] - - - 72.59 78.57 62.30 - -

UNITER [18] 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77

VILLA [38] 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71

ERNIE-ViL [130] - - - 75.95 82.07 66.88 - -

MDETR 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89

LightMDETR 86.77 88.50 82.00 79.56 83.28 70.60 82.02 79.67

LightMDETR-Plus 86.80 88.76 81.78 79.10 84.12 71.07 81.06 80.81

Table 7.2: Accuracy performance comparison between our proposed models, LightMDETR and

LightMDETR-Plus, and other detection models in the referring expression comprehension task on

the RefCOCO, RefCOCO+, and RefCOCOg datasets. For testing, RefCOCO and RefCOCO+

datasets are evaluated using person vs. object splits: "testA" includes images with multiple people,

while "testB" includes images with multiple objects from other categories. RefCOCOg features two

distinct data partitions.
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Method RefCOCO RefCOCO+ RefCOCOg

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

MDETR 85.90 95.41 96.67 79.44 93.95 95.51 80.88 94.19 95.97

LightMDETR 85.92 95.48 96.76 79.24 93.83 95.26 80.97 94.87 96.30

LightMDETR-Plus 85.37 95.52 96.73 77.98 93.85 95.47 80.24 94.26 96.56

Table 7.3: Precision performance comparison between our proposed models, LightMDETR and

LightMDETR-Plus, and MDETR in the referring expression comprehension task on the RefCOCO,

RefCOCO+, and RefCOCOg datasets.

k ranked results. Speci�cally, P@1 measures precision at the top-1 prediction, P@5 within the top

5, and P@10 within the top 10.

Proposed models demonstrate competitive performance, with LightMDETR achieving the

highest precision at P@1 on RefCOCO (85.92%) and RefCOCOg (80.97%), surpassing MDETR

slightly on these datasets. Furthermore, LightMDETR-Plus leads in P@5 on RefCOCO (95.52%)

and P@10 on RefCOCOg (96.56%), highlighting the e�ectiveness of our lightweight approach. Al-

though MDETR performs marginally better on RefCOCO+, LightMDETR closely follows, validat-

ing our hypothesis that freezing the backbone and training only the UP module allows our models

to achieve comparable, if not superior, performance with reduced computational complexity.

Referring expression segmentation

Referring expression segmentation involves pinpointing and delineating objects in images using tex-

tual cues, as demonstrated with the PhraseCut dataset [122]. This dataset features images sourced

from VG, complete with segmentation masks for a variety of expressions, many of which refer to

multiple objects. Following the approach of MDETR, our training unfolds in two phases. Initially,
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Figure 7.6: An illustration of LightMDETR on segmentation with the model �ne-tuned on phrase-

Cut.

we �ne-tune our pre-trained model for 10 epochs while keeping ResNet-101 and RoBERTa frozen,

optimizing for precise bounding box predictions and employing box AP for early stopping. In the

subsequent phase, we freeze the network weights and focus on training a segmentation head for 35

epochs, implementing a learning rate adjustment at 25 epochs, supervised by a blend of Dice/F1

loss [34] and Focal loss [100]. During inference, we assign each predicted box a con�dence score of

1−P (∅), �ltering out those below a threshold of 0.7. Ultimately, we consolidate the masks from the

selected boxes into a uni�ed binary mask corresponding to the referring expression. The results in

Method M-IoU Pr@0.5 Pr@0.7 Pr@0.9

RMI [13] 21.1 22.0 11.6 1.5

HULANet [132] 41.3 42.4 27.0 5.7

MDETR 53.1 56.1 38.9 11.9

LightMDETR 53.45 56.98 39.12 11.6

LightMDETR-Plus 53.87 57.07 39.27 11.82

Table 7.4: Validation of Referring Expression Segmentation using the mean intersection-over-union

(IoU) between predicted and ground-truth masks, alongside precision Pr@I, where success is de�ned

as the predicted mask achieving an IoU with the ground-truth that exceeds the threshold I.
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Table 7.4 highlight the e�ectiveness of our proposed methods, LightMDETR and its enhanced vari-

ant LightMDETR-Plus. Both methods demonstrate superior performance compared to MDETR,

achieving a mean intersection-over-union (M-IoU) of 53.45 and 53.87, respectively. Notably, they

also exhibit improved precision at various thresholds, particularly at Pr@0.5 and Pr@0.7, with

LightMDETR-Plus leading the metrics.

Downstream tasks such as phrase grounding, referring expression comprehension, and seg-

mentation demonstrate that our proposed lightweight framework signi�cantly enhances the e�ciency

of open-vocabulary object detection training. By considerably reducing the number of trainable pa-

rameters, it maintains or even improves performance on these tasks as illustrated in Fig. 7.5 and 7.6.

7.5 Discussion

A novel method for training open-vocabulary object detection systems is presented, signi�cantly

reducing the number of parameters to tune by leveraging prior knowledge. The approach employs

specialized pre-trained encoders for text and images, which remain frozen during training. The

only trainable component is a lightweight module, termed the "Universal Projection" (UP) module,

designed to e�ciently encode features from both text and image encoders using shared parameters.

A learnable parameter, referred to as the "modality token" (prior knowledge), is introduced

to identify the source of each feature. This token is integrated into the UP representation, enabling

seamless transitions between text and image feature processing. By relying on this lightweight

design and the use of pre-trained encoders, the number of trainable parameters is minimized without

compromising performance.

When applied to the MDETR model, this method achieves superior accuracy and precision

across tasks such as phrase grounding, referring expression comprehension, and segmentation. Be-

yond MDETR, the approach is adaptable as a modular framework for other open-vocabulary object

detection systems, reducing training costs while maintaining high performance.
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This approach reinforces the principles outlined in Part I and Part II, demonstrating the

critical role of leveraging prior knowledge in enhancing model representation. By utilizing pre-

trained encoders and shared parameters, the method e�ectively capitalizes on existing knowledge,

leading to improved performance across various tasks. This strategy not only strengthens the

model's representational capacity but also addresses signi�cant challenges in deep learning, such as

the high cost of training and the extensive dataset requirements typically needed to develop robust

models.

Reducing reliance on large-scale datasets and prolonged training cycles is particularly im-

pactful, as it mitigates resource constraints while maintaining competitive accuracy and precision.

By embedding prior knowledge into the architecture, the method aligns with modern trends in e�-

cient deep learning, where performance improvements are achieved through intelligent design rather

than brute-force data expansion. This highlights the importance of exploring similar approaches to

further optimize the balance between computational e�ciency and model e�ectiveness.
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Conclusion

In this part, we focus on the advancements in open-vocabulary object detection (OVD) and a novel

method that leverages prior knowledge to address key challenges in the �eld. OVD has emerged

as a breakthrough in computer vision, allowing systems to detect objects not seen during training

by associating visual features with textual descriptions, enabled by models like CLIP. Transformer-

based architectures like MDETR and OWL-ViT enhance this capability by processing both visual

and textual information together, improving detection accuracy. However, despite its potential,

OVD faces challenges related to computational e�ciency, resource consumption, and the complexity

of aligning visual features with textual embeddings, particularly as the number of possible object

categories expands.

The proposed method introduces a solution to these issues by leveraging pre-trained encoders

for both text and images, reducing the need for extensive retraining. The core of the approach is

the lightweight Universal Projection (UP) module, which e�ciently encodes features using shared

parameters, minimizing the number of trainable parameters. A modality token is also incorporated

to identify the source of each feature, facilitating smooth transitions between text and image pro-

cessing. This approach not only maintains high performance across various tasks, including phrase

grounding and segmentation, but also reduces training costs and mitigates resource constraints.

By using pre-trained encoders and minimizing the number of parameters to tune, the method

e�ectively capitalizes on existing knowledge, o�ering a scalable and e�cient alternative to tradi-

tional OVD approaches. This aligns with the modern trend in deep learning to improve performance

through intelligent design, reducing the reliance on large datasets and lengthy training cycles. Ul-

timately, the method enhances model representational capacity, improving accuracy and precision

while addressing the computational and scalability challenges inherent in OVD.
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Part IV

Conclusions and Future Directions
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The challenges of training deep neural networks have drawn signi�cant research interest,

driven by the dual objectives of enhancing model representations for improved task adaptation

and performance, and reducing the number of parameters to tune. Achieving these goals not

only lowers training costs but also minimizes reliance on large datasets, broadening the models'

applicability across diverse domains. This dissertation explores the integration of prior knowledge

into training processes, examining its impact across a wide range of applications to validate the

concept. The work centers on two primary problems: leveraging prior knowledge to normalize neural

network activations during training for better representation, and incorporating prior knowledge in

multimodal systems to reduce training costs and the dependency on large datasets while maintaining

strong performance.

7.6 Enhancing Neural Network Representations with Prior Knowledge-

Based Normalization.

In Chapter 3, we introduced two normalization techniques, Context Normalization (CN) and Con-

text Normalization Extended (CN-X), which leverage prede�ned structural information, referred

to as "contexts", to improve neural network representations. These methods incorporate prior

knowledge to enhance the quality of normalization, resulting in better model performance. For

scenarios where prede�ned contexts are unavailable or di�cult to construct, we proposed an alter-

native: Adaptive Context Normalization (ACN), which dynamically constructs contexts and learns

normalization parameters as part of the neural network's weights. While ACN o�ers �exibility, it

is generally outperformed by CN and CN-X when meaningful prede�ned contexts are available, as

demonstrated through various experiments.

The �ndings in this thesis open several avenues for future research that go beyond the immediate

scope of image processing and have the potential to inform new lines of inquiry for subsequent

researches.

1. Extending Normalization to Self-Supervised Learning Frameworks

The proposed normalization techniques can be adapted for self-supervised learning (SSL), where

prede�ned or dynamically constructed contexts could serve as inductive biases to guide feature
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learning. In SSL frameworks, such as contrastive or masked prediction models, integrating CN and

CN-X may help encode more meaningful latent structures, particularly when data lacks explicit

labels. Future research could investigate how context-based normalization a�ects the pretraining

phase and its subsequent in�uence on downstream tasks.

2. Exploring Normalization in Federated Learning (FL)

In federated learning, models are trained across distributed, decentralized datasets while preserving

privacy. Introducing CN and CN-X into FL settings could improve local model representations by

incorporating domain-speci�c contexts at each client. Research could explore how context-aware

normalization impacts convergence rates, generalization, and privacy guarantees in FL.

3. Integration with Large-Scale Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) often process data with complex structural dependencies. Extend-

ing CN and CN-X to graph settings could involve de�ning contexts as node clusters, communities, or

hierarchical graph structures. This approach may enhance representation quality for applications

like social network analysis, drug discovery, or recommendation systems. Similarly, ACN could

adaptively construct contexts in dynamic graphs, opening up new directions for scalable graph pro-

cessing.

4. Normalization in Dynamic and Nonstationary Environments

ACN's adaptability could be re�ned to handle dynamic and nonstationary environments where data

distributions evolve over time. For instance, ACN could be applied to continual learning settings,

where contexts adapt to new tasks or domains without forgetting previous knowledge. This research

could investigate how context construction and parameter initialization strategies in�uence model

stability and plasticity.

5. Context-Driven Model Compression

The integration of prede�ned contexts in CN and CN-X could inspire new techniques for model

compression. By leveraging context-based representations, it may be possible to design models with

fewer parameters but comparable or improved performance. This could extend to creating e�cient

architectures for edge devices, where computational and storage constraints are critical.

6. Optimization and Theoretical Analysis of Context Selection

One of the key open questions is how to construct and select contexts optimally. Future research

123



could formalize the relationship between context quality, representation power, and model perfor-

mance. This could involve developing optimization algorithms for automated context selection or

exploring theoretical guarantees for context-based normalization in neural networks.

7. Broader Applications Across Modalities

While the thesis focused on image processing, the principles behind CN, CN-X, and ACN could

extend to domains such as robotics, reinforcement learning, and complex control systems. For

example, contexts could represent task hierarchies or state abstractions in reinforcement learning

environments, enabling more e�cient policy learning.

8. Extending ACN with Meta-Learning Approaches

The performance of ACN is highly dependent on initialization. Future work could explore meta-

learning techniques to enable ACN to learn optimal initialization strategies across tasks. By doing

so, ACN could generalize more e�ectively to unseen domains, making it a robust alternative to CN

and CN-X in real-world applications.

The perspectives outlined here demonstrate the broad applicability and potential impact

of normalization techniques based on prior knowledge. By extending these ideas to self-supervised

learning, federated learning, GNNs, and other emerging �elds, future research can open new frontiers

in neural network design and optimization, driving progress across a wide range of AI applications.

7.7 Leveraging Prior Knowledge to Reduce Training Costs in Mul-

timodal Systems

In Chapters 5 and 7, we presented a novel approach for training multimodal systems at a lower cost

by signi�cantly reducing the number of parameters to tune compared to traditional methods. This

was achieved through the integration of prior knowledge into model representations, enabling the

reuse of shared parameters to encode multiple modalities. This design leverages trainable modality-

speci�c parameters, referred to as "modality tokens," which allow the model to adapt e�ectively to
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di�erent input types without requiring a separate set of parameters for each modality.

By reducing the number of parameters to tune, this approach addresses a critical bottleneck: the

reliance on large paired datasets, which are often scarce in certain domains, thereby limiting the ap-

plicability of multimodal systems. Beyond reducing computational costs, the incorporation of prior

knowledge enhances model performance, outperforming traditional, resource-intensive methods.

For future work, this strategy could be extended to large language models (LLMs) and other

foundational AI architectures, with the goal of eliminating the need for modality-speci�c models

and moving towards a universal encoder capable of processing diverse data types. Integrating

modality tokens into such systems would enable seamless handling of multimodal inputs�such as

text, images, audio, and more�using a shared architecture, signi�cantly reducing development and

training overhead.

Key propositions for future exploration include:

1. Developing a universal encoder framework: Designing a single, adaptable encoder that

can process di�erent modalities by leveraging modality tokens and prior knowledge. This would

eliminate the need to build and maintain separate models for each modality.

2. Extending modality tokens to unstructured and semi-structured data: Investigating

how these tokens could represent diverse data types such as time-series, or tabular data in addition

to text, images and videos.

3. Dynamic token learning: Creating mechanisms to dynamically learn and adjust modality

tokens during training, allowing the universal encoder to generalize across unseen modalities or

tasks.

4. Uni�ed multimodal LLMs: Incorporating the universal encoder approach into LLM archi-

tectures to process and generate multimodal content, leveraging transfer learning across modalities.

5. Low-resource domain adaptation: Applying this methodology to domains with limited

paired data, such as combining medical imaging with textual diagnostics or low-resource languages

with audio.

6. E�cient �ne-tuning: Exploring how the integration of prior knowledge and a universal en-

coder design can streamline �ne-tuning for multimodal tasks, further reducing costs and training

time.
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7.8 Exploring Neural Network Design through Game Theory and

Statistical Mechanics

While normalization techniques like CN, CN-X, and ACN have proven e�ective in enhancing neu-

ral network representations, they may not fully capture the complexity of feature interactions in

high-dimensional spaces. To address this, we are exploring a novel neural network architecture,

NEUROGAME, which integrates principles from game theory and statistical mechanics to

create more e�cient and accurate models.

In this framework, neurons are conceptualized as players in a cooperative game, where their acti-

vation values correspond to a set of actions. Neural layers are treated as sequential games, and the

learning process is driven by a payo� function quanti�ed through the Shapley value, linked to

an energy function. During training, neurons are iteratively evaluated and �ltered based on their

contributions to the overall network objective. Only the most contributive neurons�those forming

strong coalitions�propagate information to the next layer, reducing redundant computations and

improving both e�ciency and accuracy.

The NEUROGAME framework draws inspiration from statistical mechanics, where the �ow of

information between neurons is governed by probabilistic principles. The transmission of activation

signals across layers follows a Gibbs distribution, introducing a natural form of regularization. This

design enables the network to dynamically balance exploration and exploitation, stabilizing training

and mitigating over�tting.

Potential Research Directions:

� Combining Normalization with Game-Theoretic Learning: Investigate how CN, CN-

X and ACN can be combined with NEUROGAME, where normalization provides a stabilized

training signal, and game-theoretic selection re�nes the network topology.

� Dynamic Network Pruning and Regularization: Use the NEUROGAME framework

for dynamic pruning, where underperforming neurons are gradually excluded based on their
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marginal contribution. The winning coalition forms a sparse yet powerful representation, and

neurons outside the coalition are naturally dropped, providing adaptive regularization.

� Generalization and Transfer Learning: Explore whether the coalition-building process in

NEUROGAME enhances generalization, particularly in low-data regimes or transfer learning

settings, by promoting more structured, high-impact feature representations.

� Scalability and Large-Scale Architectures: Adapt the approach to scale with larger ar-

chitectures (e.g., transformers or graph neural networks), leveraging game-theoretic dynamics

to control complexity in deep, multimodal models.

� Energy-E�cient Neural Networks: Investigate how the statistical mechanics-inspired

signal transmission can lead to energy-e�cient models, where computational resources are

focused only on the most impactful neurons, potentially enabling deployment on resource-

constrained devices.

By bridging theoretical insights from game theory and statistical mechanics with practical advance-

ments in neural network design, NEUROGAME represents a promising step forward. This hybrid

approach opens new possibilities for building more adaptive, interpretable, and high-performance

AI systems, capable of learning and evolving in dynamic, real-world environments.

The detailed methodology and initial results for the NEUROGAME framework can be found in our

ongoing research paper: https://arxiv.org/abs/2410.12264.
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Summary

Deep learning has revolutionized various �elds, yet several challenges remain, particularly in terms

of training e�ciency, model adaptability, and scalability in multimodal and open-vocabulary set-

tings. This thesis addresses these challenges by incorporating prior knowledge into deep learning

architectures, focusing on three primary areas: normalization techniques, multimodal representa-

tion learning, and open-vocabulary object detection. Through these innovations, we aim to enhance

model performance, reduce computational costs, and improve generalization in resource-constrained

environments.

The contributions of this work are organized into three key areas:

1. Normalization with Prior Knowledge

This thesis introduces novel normalization techniques that integrate prior knowledge to enhance

training e�ciency and representation quality. These techniques are designed to overcome the limi-

tations of existing methods, which often assume simplistic data distributions that may not hold in

complex, real-world scenarios:

� Context Normalization (CN) and Context Normalization Extended (CN-X): These

methods incorporate prede�ned domain-speci�c contexts to improve task performance and

model stability.

� Adaptive Context Normalization (ACN): This approach dynamically constructs context

during training, allowing for better adaptability to changing data distributions or situations

where prede�ned contexts are di�cult to de�ne.

Applications: Image classi�cation, domain adaptation, and image generation.
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2. Multimodal Representation Learning

In the realm of multimodal systems, the challenge lies in e�ciently aligning di�erent modalities

such as text, image, audio, and video. This work presents OneEncoder, a lightweight framework

designed to progressively align multimodal representations using minimal resources:

� OneEncoder Framework: A framework that uses simple addition for progressive modality

alignment, reducing computational overhead.

� OneEncoder-⊕: A variant of OneEncoder employing addition as the fusion technique for

modality alignment.

� OneEncoder-⊙: A re�ned version using cross-attention as the fusion technique for more

complex alignment.

Applications: Zero-shot classi�cation, querying, and visual question answering across diverse modal-

ities.

3. Open-Vocabulary Object Detection

In open-vocabulary object detection (OVOD), models are expected to generalize to new, unseen

categories using textual descriptions rather than relying on pre-trained labels. This thesis presents

the following advancements in OVOD:

� LightMDETR: A modular framework built on MDETR that reduces training complexity

while enhancing object detection performance by leveraging prior knowledge.

� LightMDETR-Plus: An improved version of LightMDETR that incorporates attention

mechanisms to enhance its adaptability to novel categories.

Applications: Phrase grounding, referring expression comprehension, and referring expression seg-

mentation.
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By addressing these challenges, this thesis demonstrates how prior knowledge can improve

deep learning models' scalability, e�ciency, and adaptability in multimodal and open-vocabulary

settings. The proposed methods are validated across a range of tasks, showcasing their potential

to improve performance in real-world applications, especially when computational resources are

limited.
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Research Implementations

During this thesis, several research implementations were developed to support and validate the

proposed methodologies. The following GitHub repositories contain the source code of these imple-

mentations, enabling reproducibility and further exploration of the research contributions:

� Context Normalization: Implementation of a normalization layer based on prior knowledge

to enhance neural network representations.

Source code available: https://github.com/b-faye/prior-knowledge-norm.

� OneEncoder: Lightweight framework for progressive alignment of modalities in deep learning

models.

Source code available: https://github.com/b-faye/OneEncoder.

� LightMDETR: Modular framework for low-cost training of open-vocabulary object detection.

Source code available: https://github.com/b-faye/lightmdetr.

� NEUROGAME: Game theory and statistical mechanics-driven neural network design for

e�cient learning and adaptive regularization.

Source code available: https://github.com/b-faye/neurogame.
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