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French. L’apprentissage profond a profondément transformé l'intelligence artificielle, en permet-
tant aux modéles d’apprendre automatiquement des représentations complexes a partir de grandes
quantités de données. Ces progrés ont conduit & des percées majeures dans des domaines comine la
vision par ordinateur, le traitement du langage naturel et les systémes intelligents. Néanmoins, ces
modeéles restent fortement dépendants de données annotées massives, sont coliteux & entrainer, et
rencontrent des difficultés & généraliser hors des distributions vues pendant ’apprentissage. Cette
thése explore une voie prometteuse pour dépasser ces limites : l'intégration de connaissances a
priori dans les architectures d’apprentissage profond. En exploitant des informations externes ou
structurées, il devient possible de guider "apprentissage, de stabiliser I’entrainement, et d’améliorer
la robustesse des représentations. Nous étudions cette approche selon trois axes complémentaires :
Poptimisation de techniques de normalisation efficaces, ’alignement intermodal pour le traitement
de données multimodales, et la détection d’objets & vocabulaire ouvert, un cadre dans lequel les
modeéles doivent étre capables de reconnaitre des catégories non vues pendant l'entrainement, en

s’appuyant sur des connaissances sémantiques.
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Deep learning has revolutionized a wide range of disciplines by enabling models to automati-
cally learn complex patterns from vast amounts of data, outperforming traditional machine learning
approaches that rely on hand-crafted features. This capability has driven remarkable progress in
fields such as computer vision, natural language processing (NLP), speech recognition, and multi-
modal learning, powering innovations like autonomous systems, large language models, and medical
diagnostics. From image segmentation and object detection to machine translation and genera-
tive models, deep learning systems have surpassed human-level performance in many benchmarks,

fueling a new era of artificial intelligence research and commercial applications.

The hierarchical nature of neural networks allows them to capture abstract representations,
progressively building higher-level features from raw inputs. Advances in architectures — such
as transformers, convolutional networks, and graph neural networks — have expanded the scope
of tasks that deep learning can tackle, while optimizations in training strategies, regularization
techniques, and distributed computing have enabled training on ever-larger datasets. However,
these successes come with significant costs: deep models are computationally expensive to train and
deploy, often require millions of labeled examples, and struggle to generalize beyond the distribution

of their training data.

In light of these challenges, integrating prior knowledge into deep learning models has
emerged as a promising strategy to enhance efficiency and performance. By embedding domain-
specific information, models can learn more robust representations, reduce the reliance on extensive
labeled datasets, and improve generalization. For example, normalization techniques that incorpo-
rate statistical insights can stabilize training dynamics, while cross-modal alignment methods enable
better information fusion across diverse data modalities. Similarly, leveraging structured knowledge
can facilitate scalable frameworks for complex tasks like open-vocabulary object detection, where

the ability to recognize unseen categories is crucial.

This thesis investigates how prior knowledge can be systematically integrated to address the
limitations of deep learning, focusing on three interconnected areas: efficient normalization tech-
niques, effective cross-modal alignment for multimodal data representation, and scalable frameworks

for open-vocabulary object detection training.
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1.1 Prior Knowledge in Deep Learning

Prior knowledge in deep learning refers to the integration of existing information or assumptions
about a problem domain that can guide the learning process [137, 14]. This knowledge can come
from a variety of sources, such as expert insights, statistical properties of the data, or predefined
models trained on related tasks. By incorporating such knowledge, deep learning models can start
with a more informed representation, allowing them to make more efficient use of available data
and reduce the need for large labeled datasets.

One of the primary benefits of incorporating prior knowledge is that it enhances generalization.
Models are better able to avoid overfitting, especially when dealing with limited data. Additionally,
it enables faster convergence during training by guiding the model towards more meaningful feature
representations and improving robustness. This becomes particularly important in situations where
data is scarce or costly to acquire.

Prior knowledge can be integrated into deep learning models in a variety of ways. For example,
statistical knowledge can inform initialization schemes or regularization methods, domain-specific
constraints can guide the architecture of the network, and semantic relationships (e.g., between
objects in a scene) can influence how the model processes data.

The three next sections of this thesis explore how prior knowledge is specifically integrated into three

key areas: normalization techniques, cross-modal alignment, and open-vocabulary object detection.

1.2 Normalizing Deep Learning Models Using Prior Knowledge of

Data Distributions

Normalization techniques are critical in deep learning, addressing challenges such as vanishing and
exploding gradients that hinder the training of deep networks. Methods like batch normalization [5]
and layer normalization || stabilize training by rescaling activations, improving both convergence
speed and model generalization. However, many existing methods make overly simplistic assump-
tions about data distribution, which may not hold in real-world, heterogeneous datasets. Addition-

ally, these methods often lack adaptability to domain-specific tasks or low-resource settings, leading
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to inefficiencies.

To address these challenges, we introduce Context Normalization, a novel technique that
integrates prior knowledge about the data distribution to enhance performance and accelerate con-
vergence. By incorporating domain-specific statistical insights or known data properties, we guide
the normalization process to improve scalability and adaptability. Context Normalization is pre-
sented in three variants: Context Normalization, Context Normalization - Extended, and
Adaptive Context Normalization, each designed to improve deep learning models’ efficiency.
These techniques are validated across various domains, including image classification, image gener-

ation, and domain adaptation, demonstrating their effectiveness in improving training performance.

1.3 Improving Multimodal Data Representation Through Cross-

Modal Alignment Using Prior Knowledge of Modalities

Multimodal learning involves the integration and alignment of data from various modalities, such
as images, text, and audio, to capture meaningful cross-modal relationships. Vision-language mod-
els, such as CLIP [94], have shown impressive performance by jointly embedding text and visual
features. However, achieving effective cross-modal alignment requires massive datasets and substan-
tial computational resources, presenting challenges for domain-specific applications in low-resource
settings. Furthermore, existing approaches often struggle to generalize across diverse modalities,

resulting in suboptimal performance.

To address these limitations, we propose OneEncoder, a progressive alignment framework
that incorporates prior knowledge specific to the modality of the given data. By leveraging seman-
tic relationships and domain-specific knowledge relevant to each modality, our approach alleviates
resource constraints and improves generalization across different data types. We demonstrate its
application in zero-shot classification, querying, and visual question answering, utilizing modalities

such as text, image, audio, and video.
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1.4 Enhancing Open-Vocabulary Object Detection with Modality-

Specific Prior Knowledge

Traditional object detection methods are limited to recognizing only the categories seen during
training, restricting their applicability in dynamic environments where new categories frequently
emerge. Open-vocabulary object detection (OVOD) addresses this limitation by enabling models
to recognize objects beyond their training categories using textual descriptions. However, existing
OVOD methods rely on computationally intensive vision-language models and large-scale datasets,
making them difficult to deploy in resource-constrained or domain-specific settings. Balancing
generalization to unseen categories with accurate detection of seen categories remains a persistent

challenge.

To address these issues, we propose a modular framework that integrates prior knowledge
specific to the object categories and the modalities they belong to, reducing training costs while
maintaining high accuracy. By incorporating knowledge of object semantics and category relation-
ships, we enhance both the scalability and adaptability of the framework. We demonstrate the
approach through Light MDETR, an adaptation of the MDETR [58] model, and validate its per-
formance on tasks such as Phrase Grounding, Referring Expression Comprehension, and Referring

Expression Segmentation.

1.5 Thesis Objectives

The overarching goal of this thesis is to address critical challenges in deep learning related to
efficiency, scalability, and adaptability, with a particular focus on enhancing its applicability to
diverse and resource-constrained environments. By leveraging prior knowledge, the thesis aims to
propose solutions that bridge gaps in existing methodologies and contribute to the broader adoption

and effectiveness of deep learning. The specific objectives of the thesis are as follows:

1. Enhancing Training Efficiency and Generalization: Modern deep learning models often
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face challenges such as slow convergence and limited generalization when applied to complex,
heterogeneous, or domain-specific datasets. This thesis aims to develop strategies that not only
address these limitations but also improve the computational efficiency of training, making
models more practical for real-world applications. By tackling these challenges, this work
aspires to enable deep learning models to perform effectively across a wide range of tasks and

data distributions.

. Advancing Multimodal Learning: Integrating and aligning multimodal data, including
text, images, audio, and video, is crucial for capturing rich and meaningful representations.
Current approaches often require large paired datasets and significant computational resources,
which may be infeasible in many scenarios. This thesis seeks to develop frameworks that fa-
cilitate efficient and robust cross-modal alignment, improving generalization across modalities
while reducing dependence on large-scale datasets. Achieving this will open new avenues for

multimodal applications, particularly in domains with limited resources.

. Enabling Scalable Open-Vocabulary Object Detection: The ability to detect and rec-
ognize unseen object categories is vital for deploying object detection systems in dynamic
environments. However, existing methods are limited by their reliance on fixed training cate-
gories and resource-intensive vision-language models. This thesis aims to address these issues
by developing scalable and adaptable frameworks for open-vocabulary object detection. This
will expand the applicability of object detection models, particularly in low-resource and

domain-specific settings.

. Promoting Practicality and Accessibility of Deep Learning: Beyond theoretical ad-
vancements, this thesis aims to bridge the gap between research and practical deployment. The
solutions developed will prioritize resource efficiency, making them accessible to researchers
and practitioners in various domains, including those with limited computational resources.
This emphasis on accessibility ensures that the work has a tangible impact on the broader

field of artificial intelligence and its real-world applications.
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1.6 Contributions of the Thesis

This thesis makes significant contributions to the field of deep learning by addressing critical chal-
lenges in efficiency, scalability, and adaptability. The work advances both theoretical understanding
and practical implementations, validated across various domains and applications. The key contri-

butions are as follows:

1. Development of Advanced Normalization Techniques: This thesis introduces Con-
text Normalization, along with its two variants—Context Normalization-Extended
and Adaptive Context Normalization. These methods integrate prior knowledge to ad-
dress the limitations of existing normalization techniques, leading to enhanced training ef-
ficiency, faster convergence, and improved generalization. These techniques are extensively
validated on tasks such as image classification, image generation, and domain adaptation,

demonstrating their effectiveness and scalability.

2. Creation of a Progressive Cross-Modal Alignment Learning Framework for Multi-
modal Data Representation: The proposed OneEncoder framework offers a lightweight
and efficient solution for multimodal representation learning. By leveraging prior knowledge,
it enables seamless alignment across modalities—such as text, image, audio, and video—while
minimizing reliance on large-scale paired datasets. OneEncoder achieves state-of-the-art per-
formance in applications, including zero-shot classification, querying, and visual question an-

swering, highlighting its practical utility.

3. Proposing a Modular Framework for Open-Vocabulary Object Detection: Building
upon the MDETR model, this thesis presents Light MDETR, a modular framework that
addresses the challenges of scalability and adaptability in open-vocabulary object detection.
By incorporating prior knowledge, Light MDETR, achieves efficient generalization to unseen
object categories while reducing computational costs. It is validated through tasks such as
phrase grounding, referring expression comprehension, and referring expression segmentation,

showcasing its robustness and versatility.

4. Extensive Empirical Validation: The methods and frameworks proposed in this thesis
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are rigorously evaluated on a wide range of benchmark datasets and tasks spanning computer
vision and multimodal applications. This comprehensive validation underscores the effective-

ness, efficiency, and broad applicability of the proposed approaches.

5. Theoretical Insights and Practical Guidelines: This work provides an in-depth explo-
ration of the role of prior knowledge in deep learning, offering valuable theoretical insights
into its integration for improving efficiency and generalization. Additionally, practical guide-
lines for researchers and practitioners are presented, facilitating the adoption of the proposed

methods in real-world scenarios.

1.7 Overview

The thesis is structured into four main parts, each addressing critical challenges in deep learning
with the aim of improving efficiency, scalability, and adaptability across various domains. The

organization of the thesis is as follows:

e Part I: Enhancing Deep Learning Training through Advanced Normalization Tech-
niques This section examines the limitations of existing normalization methods in deep learn-
ing and introduces Context Normalization along with its two variants: Context Normalization-
Extended and Adaptive Context Normalization. These methods leverage prior knowledge
to stabilize training, accelerate convergence, and improve generalization across diverse and
domain-specific data distributions. Their effectiveness is validated in tasks such as image

classification, image generation, and domain adaptation.

e Part II: Efficient Multimodal Representation Learning This section addresses the
challenges of multimodal representation learning by proposing the OneEncoder framework.
This lightweight and progressive alignment approach reduces the dependency on large-scale
paired datasets and integrates prior knowledge to achieve efficient cross-modal alignment.
Applications of this framework are demonstrated in tasks such as zero-shot classification,
querying, and visual question answering across modalities including text, image, audio, and

video.
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e Part IIl: Modular Framework for Open-Vocabulary Object Detection This sec-
tion focuses on the challenges of open-vocabulary object detection and introduces the Light-
MDETR framework, built on the MDETR model. Light MDETR utilizes prior knowledge to
enable efficient generalization to unseen object categories while significantly reducing compu-
tational costs. The framework is validated through tasks such as phrase grounding, referring
expression comprehension, and referring expression segmentation, showcasing its adaptability

and robustness in dynamic and low-resource environments.

e Part IV: Conclusions and Future Directions The final section summarizes the key con-
tributions of the thesis and their impact on the field of deep learning. It also discusses the
broader implications of the proposed methods and outlines promising directions for future
research, including potential extensions to other domains and further refinement of the frame-

works introduced.

10
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Normalization in Deep Learning
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Efficient and stable training of deep neural networks (DNNs) is a persistent challenge, par-
ticularly in scenarios involving complex and heterogeneous data. This part examines the role of
normalization techniques in addressing these challenges, emphasizing their importance in enhanc-
ing model scalability, adaptability, and convergence.

Chapter 2 outlines the limitations of existing normalization strategies, particularly their inability to
adapt to diverse data distributions and domain-specific tasks. Building on this, Chapter 3 introduces
our proposed method Context Normalization, along with its variants Context Normalization-
Extended and Adaptive Context Normalization. These methods are designed to improve
training efficiency and generalization across applications such as image classification, image gener-
ation, and domain adaptation.

This part establishes the foundation for a deeper understanding of normalization’s impact on deep
learning and demonstrates the effectiveness of the proposed methods through detailed experimental

evaluation.

12



Chapter 2

State of the Art in Activation

Normalization for DNNs

2.1 Introduction

DNNs are powerful models characterized by stacked layers that apply linear transformations fol-
lowed by nonlinear activation functions. While their complex architectures enable effective feature
learning and strong representational power, they also present significant challenges during training.
Issues such as slow convergence, overfitting, and training instability arise due to factors like vanish-
ing gradients and sensitivity to hyperparameters.

The success of DNNs largely depends on advancements in training methodologies that address these
challenges. One crucial advancement is normalization, which enhances training stability, improves
optimization efficiency, and boosts generalization performance [54, 4, , |. Normalization tech-
niques help mitigate the difficulties associated with training deep networks, allowing them to learn
more effectively.

Normalization is commonly applied in data preprocessing, data mining, and various other domains.
It refers to a general transformation process that ensures the resulting data exhibits specific statisti-
cal characteristics. Given a dataset x € R?, normalization is defined as a function f : x — %, which
guarantees that the transformed data x meets specific statistical properties. Several key normaliza-
tion techniques exist, including centering, scaling, standardizing, decorrelating, and whitening [51].

Centering defines the transformation as:

X = fo(x) = x — E(x). (2.1)

13



State of the Art in Activation Normalization for DNNs

This operation ensures that the normalized output x has a mean of zero, expressed as: E(x) = 0.

Scaling defines the transformation as:
T = fs(x) = A 2x. (2.2)

Here, A = diag(o?,... ,03), where O’? represents the variance of the data samples for the j-th

2) — [E(x;)]?. Scaling ensures that the normalized output % has

dimension, calculated as 032- = E(x]

a unit variance, expressed as E(fci) —[E®j)PP=1forall j=1,...,d.

Standardizing is an operation that integrates both centering and scaling, defined as:
. _1
X = fa(x) = A7 2(x — E(x)). (2.3)

This process guarantees that the normalized output X possesses both zero mean and unit variance
properties.

Decorrelating defines the transformation as:

x = fq(x) = Dx (2.4)

where D = [dy, ..., d4] represents the eigenvectors of the covariance matrix ¥ = E(xx!). Decorre-
lating ensures that the correlation between different dimensions of the normalized output X is zero,
meaning that the covariance matrix E(Xx7) is a diagonal matrix.

Whitening defines the transformation as:
% = f,(x) = A 2Dx (2.5)

where A = diag(Gy,...,64) and D = [dy,...,dg] represent the eigenvalues and corresponding
eigenvectors of the covariance matrix 3. Whitening ensures that the normalized output x follows a
spherical Gaussian distribution, which can be expressed as: E(xx7) = L.

In DNNs, applying normalization methods to input data is crucial for training, as they
reduce variations in feature magnitudes. While this normalization can accelerate convergence in
networks with a single hidden layer [69], its effectiveness in multi-layer networks is less certain.
This uncertainty arises because each layer transforms the data, leading to activations that may
not retain the characteristics of the normalized inputs. Therefore, normalizing activations during

training is essential for maintaining the advantages of input normalization. By ensuring a consistent

14
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statistical distribution of activations across layers, DNNs achieve more stable and efficient training,
ultimately enhancing model performance.

Batch Normalization (BN), introduced by loffe and Szegedy in their influential work |54], has become
the dominant and widely-used technique for normalizing activations in DNNs. BN standardizes
activations using batch-level statistics, which enables the use of higher learning rates and improves
training efficiency. However, BN has limitations, particularly its dependence on batch size and the
assumption of a uniform data distribution. To mitigate the batch size dependence issue, various
single-mode normalization methods have been proposed [, , 93, , , 01]. Additionally, to
address the uniform data distribution assumption, multi-mode normalization methods have been

developed [31, 80, 57, 73].

2.2 Single-mode normalization

Single-mode normalization refers to normalization techniques that operate by standardizing activa-
tions using statistics computed from a single mode or source, such as a layer or mini-batch of data.
These methods were pioneered by Batch Normalization (BN), introduced by Ioffe and Szegedy in

their seminal work [54], which became a cornerstone of training deep neural networks.

2.2.1 Batch Normalization Method

BN normalizes activations by using the mean and variance calculated over mini-batches during
training. This approach mitigates the problem of internal covariate shift—the tendency of layer
inputs to change distribution during training—thereby allowing higher learning rates and faster
convergence. The normalization is done by centering the activations around zero with a mean of
zero and scaling them with unit variance.

Consider a 4-D activation tensor x € RNXCXHXW in 3 convolutional neural network, where N,
C, H, and W represent the batch size, number of channels, height, and width, respectively. BN
computes the mini-batch mean (up) and standard deviation (op) over the set B = {z14, : m €

[1, N] x [1, H] x [1, W]}, where x is flattened across all dimensions except the channel axis. A small

15
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constant € is included for numerical stability, as shown in Equation 2.6.

1 — 1 —
UB :mz;xi op = mz;(xi—uB)Q-Fé (26)
1= 1=

If the samples within the mini-batch come from the same distribution, the transformation
X — X, as shown in Equation 2.7, produces a normalized distribution with zero mean and unit
variance. BN then applies learnable scale () and shift (3) parameters to re-scale the normalized

data to a new distribution with mean § and standard deviation ~.

. X — B .
;= % Y =& + 3 (2.7)

During inference, rather than using the batch statistics, BN employs a moving average of the mean

2

and variance computed during training. The moving average mean p and variance - are calculated

as:

- 2

p=ai+(1—aup ¢*=as’+(1-a)oy (2.8)

Here, v is a momentum parameter that controls the update rate of the moving averages. During

inference, these moving averages are used to normalize activations as:

R T; — [ R
;= 127” Y =& + (2.9)
0“4+ €

This ensures consistency across different batch sizes during inference.

Despite its remarkable performance in stabilizing the training of DNNs, BN faces significant
limitations related to its dependency on mini-batch size. Specifically, BN’s effectiveness diminishes
when the size of the mini-batch is small. This occurs because BN relies on accurate estimates
of batch statistics (mean and variance) during training, which become less reliable with smaller
mini-batches, leading to noisy gradients and unstable updates. This limitation poses a challenge

in scenarios where memory constraints or certain applications require smaller mini-batches. To

16
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address this issue, several variants of BN have been proposed, which we will discuss in detail in

Section 2.2.2.

2.2.2 Extensions of Batch Normalization to Address Mini-Batch Dependency

To address the mini-batch dependency issue, several extensions of Batch Normalization have been
introduced, including Layer Normalization (LN) [], Instance Normalization (IN) [114], Group Nor-
malization (GN) [124], and Divisive Normalization (DN) [96], Unsupervised Batch Normalization
(UBN) [61]. In this section, we adopt the notations from [57] to illustrate that the primary distinc-
tion between these methods lies in the specific set over which the sample statistics are computed.

RNXCEXL ag50ciated

Let’s consider i = (in, ¢, iz) as a vector indexing the tensor of activations x €
with a convolutional layer where the spatial domain has been flattened. The general normalization,

X — X, is defined as:

v;
VEB; (v?) + ¢

where Ep, (z) denotes the expectation computed over a subset B; of activations. Similar to BN, the

A~

Vy = X5 — EBZ-(X>7 Ty = (2.10)

normalized activations can be further adjusted by scaling and shifting using the parameters v and
B. To derive the BN transformation (Equation 2.9) from the general normalization Equation 2.10,

it is only necessary to define the appropriate B; as:

Bi={j:jn~ €[l,N],jc € [ic],jr € [1, L]}. (2.11)

In this case, B; captures all activations within the same channel i¢ across the entire mini-batch and
spatial dimensions.

Layer Normalization (LN) [1] adapts BN for architectures like recurrent neural networks (RNNs),
where temporal information is critical. Unlike BN, which normalizes across the mini-batch, LN nor-
malizes across features for each training example independently, addressing RNN-gpecific challenges
like varying batch sizes and dependencies on prior time steps. This ensures consistent normaliza-
tion across all time steps, improving training stability and convergence. LN can be formulated as
Equation 2.10 when

B; = {j tJN € [iN],jC S [1,0],jL S [I,L]}. (2.12)
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LN effectively reduces internal covariate shift in RNNs, enhancing long-range dependency capture
and performance in tasks like natural language processing and time-series forecasting. It’s also
computationally efficient and widely used in modern architectures like transformers |1 16]. However,
LN underperforms in convolutional layers, where local spatial variations are important, as it applies
the same normalization across the entire spatial domain, making it less suited for convolutional
architectures.
Instance Normalization (IN) [114] extends the ideas of BN and LN, specifically designed for
generative models and style transfer. Unlike BN, which normalizes across mini-batches, or LN, which
normalizes across all features of a single example, IN normalizes each channel independently for
each instance. This helps preserve instance-specific characteristics, making it particularly effective
in tasks like image generation and style transfer, where separating content from style is crucial for
creative manipulations and high-quality output [52, |. IN can be formulated as Equation 2.10
when

B;={j:jn €in],jc € lic],jr € [1, L]} (2.13)
However, IN can underperform in tasks like classification or CNN-based image recognition, where
capturing correlations between instances is important. Its focus on instance-specific normalization
can lead to a loss of shared statistics, limiting its effectiveness in scenarios that benefit from global
feature interactions.
Group Normalization (GIN) [124] divides channels into smaller groups and computes the mean
and variance for each group independently, making it robust to fluctuations in batch size. This
is particularly useful in tasks like object detection and segmentation, where small batch sizes are
common. GN balances the strengths of LN (G=1) and IN (G=C), providing more stable and
effective normalization by ensuring group-specific statistics are representative of the data, leading

to improved convergence and generalization. GN can be formulated as Equation 2.10 when

Bi= (i v €linl e € fickir € 1Ll go1) (214)

However, GN’s performance heavily depends on the choice of group size, requiring tuning to opti-
mize results. While it outperforms BN in small-batch scenarios, it may underperform in very deep
networks where capturing global batch statistics across all channels is crucial for effective feature

learning.
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Divisive Normalization (DN) [96] is a biologically inspired technique where each neuron’s activ-
ity is divided by a weighted combination of its neighbors’ activities, offering more dynamic control
of activations. Unlike other methods that use simple statistics, DN adjusts activations as follows:

. (%
vi=x; —Ea (X), ;= , 2.15
1 1 L( ) 1 EBZ(V2)+p2 ( )

where:

A ={j|dzi,z;) < Ra}, Bi={j|d(v,v;) <Rp},

with d representing the distance between hidden units, p the normalizer bias, and R the neighbor-
hood radius. This method enhances decorrelation of neuronal responses, reducing redundancy and
improving focus on salient features. DN has shown to improve model robustness and interpretabil-
ity, particularly in visual tasks. However, DN is computationally intensive, requiring the calculation
of weighted sums for neighboring neurons, which can slow down large networks. Additionally, DN
may underperform in convolutional networks, where global methods like BN are better at capturing
broad data distributions. Its effectiveness also depends on fine-tuning parameters like neighborhood
size and weights, adding complexity to model design. Thus, while DN has powerful benefits, its
computational cost and complexity limit its broader use.

Unsupervised Batch Normalization (UBN) [61] addresses biased batch statistics in Batch
Normalization (BN) when working with small labeled datasets. By incorporating additional unla-
beled data from the same distribution to compute batch statistics, UBN reduces the bias introduced

by small mini-batches. It is formulated as:
Bl:{]jNe [17N]7JC€ [ZC]a]LE [LL]}UU“ (216)

where U; represents the indices of unlabeled data. This approach enhances the representation of
the data distribution, leading to more accurate normalization and stable training without needing
changes to the network architecture. However, UBN relies on the assumption that the unlabeled
data is from the same distribution as the labeled data; if there is a domain mismatch, the normal-

ization may not generalize effectively.

These techniques represent a significant step forward in overcoming the challenges of mini-

batch dependency. Each method offers specific benefits suited to different DNN architectures and
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tasks. The choice of technique should be based on the model architecture and the training require-

ments, with newer methods providing a balance between flexibility and efficiency in training.

2.3 Multi-mode normalization

Multi-mode normalization standardizes activations using statistics from various sources, such as
different layers, mini-batches, or feature channels. Several methods have been proposed to enhance
this process, including Switchable Normalization (SwitchNorm) [81], Mode Normalization (Mode-
Norm) [80] and Mixture Normalization (MixNorm) [57]. These techniques address the limitations
of BN by overcoming the uniform data distribution agsumption, which can hinder performance on
diverse datasets. Overall, multi-mode normalization improves the robustness and stability of nor-
malization in DNNs.

Switchable Normalization (SwitchNorm) [31] is an advanced extension of BN that dynamically
combines multiple normalization techniques, including BN, LN, and IN, through a set of learnable
weights. Unlike BN, which assumes uniform data distribution across mini-batches and can suffer
when batch sizes are small or when data distributions are not consistent, SwitchNorm allows the
model to adaptively select the most appropriate normalization method for each layer. By leveraging
this flexibility, SwitchNorm improves performance across a variety of scenarios, particularly when
BN’s reliance on mini-batch statistics becomes unreliable, such as in tasks with small batch sizes or
non-uniform activations.

For each activation x;, SwitchNorm alters the normalization process by dynamically adjusting the

computation of the batch statistics, as shown in Equation 2.6:

Xq — ZkeQ W Uk
/2
\/ZkeQ wyoj €

Here, ) represents a set of statistics estimated using different normalization methods. In the context

T; = Yi = YT + 5. (2.17)

of SwitchNorm, 2 = {BN, LN, IN}, which means that y and o} are computed for BN, LN, and IN

using the batch B; as defined in Equations 2.11, 2.12, and 2.13 respectively. The calculations for

20



State of the Art in Activation Normalization for DNNs

these statistics can be expressed as follows:

1 , 1
k= 75 f]j-v . =

S (@) — ) (2.18)
j€eB;

il
Furthermore, wy and wj are importance ratios used to weight the means and variances, respec-
tively. Each wy, and w), is a scalar variable constrained to the range [0, 1], satisfying the conditions
Y req Wk = Land >, g w, = 1. The weights wy can be computed as follows:

eMe

wy = . ke {BN,LN,IN}, (2.19)

Zze{BN,LN,IN} e
where ApNn, ALN, and Ajy are control parameters learned during backpropagation. The weights w;

are defined similarly, using an additional set of control parameters Mgy, Af x> M-

Let © represent the set of network parameters (e.g., filters) and ® denote the set of control
parameters that define the network architecture. In SwitchNorm, the learned parameters are given
by ® = { AN, ALN, AN, Agxs ALns M- Training a DNN with SwitchNorm involves minimizing the
loss function:

1o
min = ]Z; L(y;, f(z;:©,®)),

where {z;, z; }é\/:l represents a set of training samples and their corresponding labels. The function
f(z;;0©) is the model learned by the DNN to predict z;. The parameters © and ® are optimized
jointly through backpropagation.

SwitchNorm provides a valuable integration of various normalization methods but is limited by its
dependence on BN, LN, and IN for parameter estimation. This reliance means it inherits the same
limitations as these techniques, particularly in handling non-uniform data distributions, which may
undermine its effectiveness in addressing the challenges posed by diverse data conditions.

Mode Normalization (ModeNorm) [30] introduces the concept of "modes" within the data.
A mode refers to a dominant pattern or cluster within the data distribution, representing different
subpopulations or variations in the input. ModeNorm detects these modes and normalizes the activa-
tions based on the statistics of their respective modes, rather than using the entire batch’s statistics.

This provides a more fine-grained and adaptive normalization process compared to SwitchNorm.

For each activation x;, ModeNorm adapts the normalization formula as follows:

21



State of the Art in Activation Normalization for DNNs

K

. Ti — 3

& = ng(ﬂﬁi)liuk Yyi =T + B, (2.20)
k=1 \/or + €

where gi, k € {1,..., K} are gating functions represented by a mixture of experts. For each x;,
gr(z;) € [0,1] and Zszl gr(x;) = 1. The estimators for yy and o7 are computed under the weighting
from the gating network using the indices B;:
1 2 1 2
HE = 7 Z gk(zj) - x; o) = N Z gi(x5) - (x5 — pe)”, (2.:21)
jEB; jEB;

where Ni = 3 cp. gk(2;). ModeNorm uses an affine transformation followed by softmax activation
to represent the gating networks. When the number of modes K = 1, or when the gates collapse
to a constant gi(z;) = const, ModeNorm reduces to BN. Like BN, during training, ModeNorm
normalizes activations using statistics computed from the current batch. During inference, it uses
moving averages of mean and variance, as in Equation 2.8, similarly to BN.
ModeNorm helps overcome BN’s shortcomings, especially when the data contains multiple modes
or clusters that differ significantly. It excels in scenarios with non-uniform data distributions, where
BN’s global batch statistics may be misleading. However, ModeNorm adds complexity by requiring
the identification of modes and calculating separate statistics for each mode, which can increase
computational cost and introduce additional hyperparameters. Moreover, its effectiveness depends
heavily on the accurate identification of modes, which may be challenging in complex or highly
variable datasets, potentially limiting its generalizability in certain tasks.
Mixture Normalization (MixNorm) [57] extends BN by leveraging a probabilistic approach
based on Gaussian Mixture Models (GMM). Rather than assuming a single underlying distribution
for activations in a mini-batch, MixNorm captures the multimodal nature of data by normalizing
each sample based on multiple modes. Each sample is assigned to one of several Gaussian compo-
nents, enabling a more fine-grained adaptation of normalization to the underlying data distribution.
This method improves on the limitations of BN, which can struggle with non-uniform or complex
distributions across mini-batches.
In MixNorm, the probability density function pg that characterizes the data is modeled as a GMM

with K components. The distribution for each sample x € RP is expressed as:

K

K
p(x) = Z)\kp(x\k), s.t. Vk : A\ >0, Z/\k =1, (2.22)
k=1 k=1
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where )y is the mixture coefficient for the k-th component, and p(x|k) is the Gaussian distribution

for the k-th component, given by:

x —mp) Iy x—m
p<x|k>=mexp (J Y B | “), (2.23)

with my being the mean and Xj; the covariance matrix of the k-th Gaussian. Considering K

components, MixNorm is implemented in two stages:

e Estimation of the mixture model’s parameters 0 = {Ap,mg, X : k = 1,..., K} using the
Expectation-Maximization (EM) algorithm [22].
e Normalization of each sample based on the estimated parameters and aggregation using pos-

terior probabilities.

For a given activation x;, the MixNorm transformation is formulated as:

& = i p(\%\mi) ] (2.24)
k=1 k ol +e
where p(k|x;) = % represents the probability that x; belongs to the k-th component. The
weighted mean and variance for the k-th component are computed as follows:
p(k|z;
tE TR (229
R i L) RPN (2.26)

ZleBi p(klzy)

MixNorm ensures that each sample is normalized according to the distribution it most likely belongs

JEB;

to, making it highly adaptive to complex, multimodal data distributions. MixNorm extends BN to
heterogeneous complex datasets and often yield superior performance in supervised learning tasks.

However, they are frequently computationally expensive due to the use EM algorithm.

2.4 Discussion

Activation normalization is a promising approach for addressing slow convergence and training in-

stability in DNNs. BN, a single-mode method, has shown significant success by mitigating the
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internal covariate shift issue. However, BN’s effectiveness diminishes when mini-batches are small
or when the data samples within a batch come from different distributions. To address the small
batch size problem, several single-mode alternatives such as LN, IN, GN, DN, and UBN have been
introduced.

To handle the challenge of non-uniform data distribution within mini-batches, multi-mode ap-
proaches such as SwitchNorm, ModeNorm, and MixNorm have been developed. However, this
area is relatively underexplored, and existing methods tend to be computationally expensive, often
requiring additional parameters or complex algorithms like EM in MixNorm. In the following Chap-
ter 3, we propose three new multi-mode methods aimed at accelerating DNN training convergence

and improving performance by leveraging prior knowledge-driven approaches.
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Chapter 3

Context Normalization

3.1 Introduction

In this chapter, we introduce a novel approach to normalization in deep neural networks (DNNs),
aimed at improving training efficiency and model performance. The proposed method, Context
Normalization, leverages prior knowledge to define "contexts" within the input data—groups of
samples with similar characteristics—enabling more efficient normalization and faster convergence
compared to traditional methods.

We propose three variants of Context Normalization to address different challenges in training:

- Context Normalization (CN), the base method that identifies and normalizes contexts within
the data.

- Context Normalization - Extended (CN-X), which enhances the base method by extending
its applicability to more complex data distributions.

- Adaptive Context Normalization (ACN), which further adapts to dynamic variations in data
and allows for more flexibility in real-world scenarios.

These methods are validated through extensive experiments in domains such as image classifi-
cation, image generation, and domain adaptation. In each case, we observe improvements
in convergence speed, model stability, and performance, demonstrating the broad applicability and
effectiveness of Context Normalization.

The chapter is structured as follows: Section 3.2 introduces the foundational concept of Context
Normalization (CN); Section 3.3 describes the extended version, Context Normalization - Extended

(CN-X); and Section 3.4 focuses on the adaptive variant, Adaptive Context Normalization (ACN).
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3.2 Context Normalization (CN)

CN modifies Equation 2.24 from Mixture Normalization (MN) [57], where the mixture components
are treated as modes for normalization. MN employs the Expectation-Maximization (EM) algo-
rithm to estimate the parameters of these mixture components during training. However, EM is
computationally expensive and must be applied repeatedly, as the activation distribution shifts with
updates to the DNN weights.

Instead of relying on the EM algorithm, we propose normalizing based on "contexts" that are pre-
constructed from the input data before DNN training. Each sample in the input data is assigned to
a single, unique context, with all samples within the same context sharing similar characteristics.
Further details on how these contexts are constructed will be provided in Section 3.5. Each sample
belongs to a unique context k. CN ensures that all activations from a sample are associated with
the same context k throughout DNN training.

To align with standard representations in the literature 2, let x € RV*¢*L be an activation tensor,
where N is the batch size, C is the number of channels, and L = H x W represents the flattened
spatial dimensions (height H and width W). Each activation is denoted by {x;, k;}, where z; is the
activation and k; € {1,..., K} is its context identifier, with K being the number of contexts. Each
activation x; is assigned to the context k; corresponding to the sample that produced it. Since each
activation is associated with a unique known context, we have p(k;|x;) = 1 if x; belongs to context

k;, and p(k;|x;) = 0 otherwise. Consequently, Equation 2.24 simplifies to:

. 1 Tg — Mk,

xXr; = .
Ak A /a,% +€

where \j, represents the proportion of samples in the dataset belonging to context k;. The mean

Yi = Vi i + B, (3.1)

and variance are then defined as follows:

1
My = 37— > @ (3.2)
ki wiEX(ki)
1
oh=5 D (@i ) (3.3)
i x¢6x(ki)

where x(*) denotes the subset of x containing the activations corresponding to context k;, and Ni,

represents the number of elements in x(*9). The moving averages of the mean itr, and variance
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5,%1, are updated with a momentum rate o during training, following the same approach as in BN
(see Equation 2.8). These updated statistics are then used to normalize the feature maps during

inference:

In the special case where there is only a single context (K = 1), CN reduces to standard BN.

)

We present the CN transform (Algorithm 1), applied to a set of activations x (k) of a specific context

Algorithm 1: CN Transform applied to activations of a specific context.
Input : k: context identifier;

x(k): subset of activations associated with context k;
Ak: proportion of samples in the dataset assigned to context k;
{Vk, Br}: learnable parameters;

Output: {y;} = CN{’Ykﬂk}(k’X(k)’ M)

[uny

Ny = |x®)| // number of elements

Nik . Zxﬁx(’“) x; // context mean

2

En

Nik D wexo) (T — wi)? // context variance

TN

3 0

4 for z; € x*) do

1 Ti— [k

i = A Jotte // normalize
O'k €
6 Yi = VkZi + PBr // scale and shift

5 T

7 end

k. CN can be integrated into a neural network to manipulate activations. The scaled and shifted
values y = {y;} are passed to other layers, while the normalized activations & = {Z;}, internal to
CN, have mean 0 and variance 1. Unlike BN, which normalizes across the entire mini-batch, CN
normalizes activations within context k. Each % is input to a sub-network with y = vz + 0y,
accelerating training similarly to BN but per context k.

During training, we need to propagate the gradient of loss £ through this transformation, as well
as compute the gradients with respect to the parameters of CN transform. We use chain rule, as

follows (before simplification):
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The CN transform is a differentiable operation that introduces context-normalized activations into
the neural network. This reduces internal covariate shift, accelerating training. Additionally, the
learned affine transform, like in BN, allows CN to represent the identity transformation, preserving
the neural network’s capacity.

To Context-Normalize a deep neural network, we define activations with their context identifiers
{z;, k;} and apply the CN transform on each based on its context, as outlined in Algorithm 1. Layers
that previously received x(*) (activations for context k) now take CN(k,x(*), \;). This context-based
normalization in mini-batches supports efficient training but isn’t needed during inference; like BN,
the output should depend deterministically on the input. After training, activations are normalized

using:

Ui = Vi * '
M\ [52 +e

Here, population statistics replace context-specific ones. Since the means and variances are fixed

+ B, (3.5)

at inference, normalization reduces to a linear transform for each activation. This can be combined
with the scaling by 7 and shift by Sy, resulting in a single linear transform replacing CN(k, x®), A;.).

Algorithm 2 details the training process for context-normalized deep neural networks.

Limitation. CN divides the mini-batch into multiple subgroups based on predefined con-

texts, estimates the mean and variance for each subgroup, and normalizes the activations using the
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Algorithm 2: Training a Context-Normalized Network.

[uy

©

10

11

12

13

14

15

16

17

Input : Net: Deep neural network with trainable parameters ©;
K: number of contexts;
{x,k;}, where k; € {1,..., K}: activations and corresponding context;
{\e}E_,: proportion of samples assigned to each context k;
{V, Bk}lez learnable parameters;
a: momentum;
Output: Context-normalized network for inference, Net2k
Netily < Net // Trainig CN deep neural network
for k< 1 to K do
Construct x*) with all activations for context k
Add transformation y = CNy,, 3,1 (k, x(*) A1) to Netly (Algorithm 1)
Replace the input x*) with y*) in each layer of Nety

k= ajip+ (1 —a)ux 62 = adi+ (1 — a)o}

end

Train Net{ly to optimize the parameters © U {7y, Bk},

Neticnllil — NettCrN // Inference CN deep neural network with frozen parameters
for k<1 to K do

Construct x(*) with all activations for context k

for z; € x*) do

Ti— [k
€

T = ﬁ\/ﬁ // normalize
k
Yi = YkZi + Br // scale and shift
end

inf

Replace the input x*) with y*) in each layer of Neteny

end

corresponding parameters. However, if a subgroup contains too few elements, the parameter esti-

mates may become unreliable, causing CN to face the same issues as BN with small mini-batch sizes.

To address this limitation, we propose an extension of CN, which we will discuss in Section 3.3.
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3.3 Context Normalization - Extended (CN-X)

CN-X is an enhanced version of CN designed for more robust context parameter estimation. While
CN estimates the normalization parameters (mean and variance) directly from activations within
each context, CN-X instead learns these parameters as trainable weights of the neural network.
These parameters are updated during backpropagation, making them more flexible and accurate
over time. For each context k, we define the parameter set 0 = {uy, 0%}, where py and o} are

initialized randomly, with the constraint that 0,% > 0. To normalize activations in context k,

Algorithm 3: CN-X Transform applied to activations of a specific context.
Input : k: context identifier;

x(k): subset of activations associated with context k;
Ak: proportion of samples in the dataset assigned to context k;
¢ = {{k, 02} : normalization parameters;
{Vk, Br}: learnable parameters;
Output: {y;} = CN—X{m%ﬁk}(k,x(k), Ak)

1 for x; € x*) do

~

L i ;
2 Z; Vo Jorte // normalize
3 Yi = Y&Zi + B // scale and shift

4 end

represented by x(®), Algorithm 1 is adapted to produce Algorithm 3. In this modified version,
the normalization parameters 5 are provided as inputs, and the normalization operation remains
unchanged. However, unlike in CN, where the parameters are estimated directly from x() in CN-
X these parameters are learned through the network’s training process. Algorithm 4 outlines the
process for training a neural network with CN-X. Let © represent the neural network parameters,
and ® = {¢x}X_|, where ¢ = {1k, 02}, denote the set of learnable normalization parameters. The

objective is to minimize the loss function:

N
1
gy 2 (050,90,
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Algorithm 4: Training a Context-Normalized Extended Network.

10

11

12

13

14

15

16

17

Input : Net: Deep neural network with trainable parameters ©;
K: number of contexts;
{xi, k;}, where k; € {1,..., K}: activations and corresponding context;
{)\k}lez proportion of samples assigned to each context k;
{7k, B |+ learnable parameters;
«: momentum;
Output: Context-normalized Extended network for inference, Netith «
Random initialize ¢y = {u, 02}, where k € {1,..., K} // initialize normalization
parameters
Neti'y x < Net // Trainig CN-X deep neural network
for k< 1 to K do
Construct x*) with all activations for context k
Add transformation y = CN-Xyg, ., 5.1(F, x(®). A) to Netly x (Algorithm 1)
Replace the input x*) with y*) in each layer of Net¥y.x
end
Train Net{y « to optimize the parameters © U {éy, vk, Bk}gzl
Netiél]f\I_X «— Net\ x // Inference CN-X deep neural network with frozen parameters
for k<1 to K do
Construct x*) with all activations for context k

for x; € x*) do

Ti—pug

Ao 1 .
T; = NoTRO // normalize
Yi = Yeli + Br // scale and shift

end

inf

Replace the input x*) with y*) in each layer of Netin.x

end
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where {z;, 2; }szl is the set of training samples and labels, with each sample belonging to a single
context kj € {1,..., K}. The function f(x;;©,®) is learned by the network to predict the output
y;. Both © and ® are optimized jointly via backpropagation.

This approach differs from previous methods like BN and CN, where normalization parameters ®
are often treated as separate network modules (e.g., scale and shift) and not essential for normaliza-
tion. In CN-X, ® is learned directly during training, contributing to minimizing the loss function.
Since the normalization parameters are not estimated from the activations, even small context sizes
in a mini-batch do not negatively impact the learned parameters, as they are updated as part of
the network’s weights.

Similar to CN, in CN-X, we need to propagate the gradient of the loss function ¢ through the
transformation during training, while also computing the gradients with respect to the parameters
of the CN-X transformation. This is achieved by applying the chain rule, as outlined below (prior

to simplification):

N

o%; Oy Tk

o 1 O oy 1 5
=, . . . 2 —3
907~ ;a@i (@ = ) ( 2> (7k+¢)

o _ 1y o
aluk‘ m =1 8':%1 Ji+€

a a1 1

axi 8:2'1 )\k Ul% + €
Ny

or ol
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Br = Oyi

Limitations. CN-X methods rely on predefined contexts within the input dataset for normalization.
In domains where constructing these contexts is challenging, such approaches become difficult to
apply effectively. To address this limitation, we propose Adaptive Context Normalization (ACN), a
method that retains the strengths of both CN-X and CN without the need for predefined contexts.
We will elaborate on ACN in Section 3.4.
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3.4 Adaptive Context Normalization (ACN)

In ACN, we shift our focus from predefining contexts within the input dataset to dynamically con-
structing them during the training of the neural network. Unlike CN-X and CN, where inputs
are represented as (x;, k;)—indicating predefined contexts—ACN simplifies this representation to
just ;. ACN only requires the specification of the number of contexts, K, to be created during
the normalization process, akin to clustering algorithms that use a predefined number of clusters.
However, instead of relying on prior knowledge or fixed clusters, ACN allows the neural network
to autonomously discover a latent space of activations that adheres to a GMM. During training,
ACN incrementally clusters neuron activations without predefined partitions, enabling the model
to adapt to task-specific challenges without prior cluster information. This flexibility permits the
neural network to explore and adapt to the underlying patterns in the data independently. Since the
specific context for each activation is not predetermined, ACN utilizes Equation 2.24 to normalize
across all contexts. Unlike traditional methods such as MN, where parameters are often fixed, ACN
learns the parameters of these contexts as neural network weights during backpropagation. This
approach eliminates the need for computationally intensive algorithms like EM, enhancing efficiency
in the training process.
The GMM parameters 0 = { A\, my, X : kK = 1,..., K} are optimized in alignment with the tar-
get task. Algorithm 5 outlines the training procedure of a deep neural network using ACN as
the normalization method. Initially, the GMM parameters are randomly initialized, ensuring that
szl Ar = 1 is maintained throughout training. This integration allows the GMM parameter
estimation to become a dynamic part of the neural network, offering a more adaptive approach.
Unlike methods like MN that rely on the EM algorithm—which cannot efficiently track changes in
the activation distribution due to its high computational cost—this approach continuously updates
the GMM parameters based on shifts in the activation distribution. As the two approaches (CN
and CN-X), in ACN we need to propagate the gradient of the loss function ¢ through the trans-

formation during training. This is achieved by applying the chain rule, as outlined below (prior to
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Algorithm 5: Training a Adaptive Context-Normalized Network.

Input : Net: Deep neural network with trainable parameters ©;
K: number of contexts;
{z;}: set of activations;
{7k, Bk}lez learnable parameters;
a: momentum;
Output: Context-normalized Extended network for inference, Net!ifg
1 Initialize the parameters for each context as follows:
O = { M, tix, Sk} for k € {1,..., K}, subject to the condition that S5 | A\p =1
2 for z; € x do
3 Add transformation Z; using Equation 2.24
4 Modify each layer in Net'\ with input z; to take @; instead
5 end
6 Train NetYy to optimize the parameters © U {0, vk, Bi 1,
7 NetféN + NetW oy // Inference ACN deep neural network with frozen parameters

8 for z; € x do

K pklz:) [ xzi—pg

9 Ti=) 1 Vv <\/0T+e> // normalize
k

10 Yi = VkZi + PBr // scale and shift

11 end

12 Replace the input x with y in each layer of Net!lf,
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The ACN is a differentiable operation that integrates context-sensitive, normalized activations di-
rectly into the neural network. This method is particularly advantageous for scenarios involving
multi-modal data distributions, as it unifies normalization across multiple modes without requiring
complex, separate algorithms for estimating mode-specific parameters. Instead, ACN dynamically
adapts its normalization based on context.

In this approach, we use MN as a baseline; however, ACN is not limited to MN and can be gener-
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alized to other normalization techniques, such as ModeNorm. The key advantage lies in how ACN
enables the model to learn context-relevant parameters, which adapt based on the activation distri-
butions that shift throughout training as the network’s weights are updated via backpropagation.

By leveraging adaptive context normalization, the method allows for smoother transitions and bet-
ter performance across different data modes, ensuring more efficient parameterization without the
need for additional heavy computations during training. This flexibility makes ACN an appealing

approach for tasks where data has varying distributions or requires context-sensitive handling.

Table 3.1 shows that proposed methods (CN, CN-X, ACN), particularly when context con-
struction is well-defined, outperform traditional normalization techniques in various tasks. This
demonstrates the potential of context-driven approaches to enhance model performance, handle

non-uniform data distributions more effectively, and speed up convergence during training.

3.5 Results

In this section, we present several applications where we compare traditional normalization tech-
niques (see Section 2) with our proposed normalization methods (see Section 3). These comparisons
are demonstrated across various tasks, including image classification (Section 3.5.1), domain adapta-
tion (Section 3.5.2), and image generation (Section 3.5.3). We utilize several well-known benchmark

datasets that are widely recognized within the classification community:

e CIFAR-10: A dataset with 50,000 training images and 10,000 test images, each of size 32x 32

pixels, distributed across 10 classes [65].

e Oxford-IIIT Pet: A dataset containing images of 37 different breeds of cats and dogs, with

approximately 200 images per breed [91].

o CIFAR-100: Derived from the Tiny Images dataset, it consists of 50,000 training images and

10,000 test images of size 32 x 32, divided into 100 classes grouped into 20 superclasses [64].
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Normalization Method | Context Learning Computational Complex- | Flexibility

ity

BN No context learning; uses | Moderate; relies on batch | Low; depends on fixed batch-
batch statistics. statistics. based normalization.

LN No context learning; nor- | Low; operates on a per-sample | Moderate; works well with
malizes across features. basis. smaller batch sizes.

IN No context learning; nor- | Low; operates on per-instance | High; useful for tasks with
malizes across instances. basis. small batch sizes.

GN No context learning; nor- | Moderate; handles grouped | Moderate; adapts based on
malizes across groups. channels. groupings.

SwitchNorm Dynamically combines | High; requires combining and | High; adaptive to different
multiple normalization | selecting normalization meth- | types of activations.
techniques (BN, LN, IN) | ods.
using learned weights.

ModeNorm No context learning; nor- | High; requires mode identifica- | Very High; adaptive to mode-
malizes using modes of ac- | tion and adaptive statistics. specific distributions.
tivations identified during
training.

MixNorm No context learning; nor- | High; requires Expectation- | High; adapts to multimodal
malizes using Gaussian | Maximization (EM) for param- | data distributions.

Mixture Models (GMM). eter estimation.

CN Predefined contexts based | Low; efficient with predefined | Moderate; fixed context struc-
on the input data. contexts. ture.

CN-X Contexts learned as train- | Moderate; learns parameters | High; flexible context learning.
able parameters during | during training.
training.

ACN Contexts dynamically | Low; eliminates need for EM. Very High; learns context

learned via GMM during

training.

adaptively during training.

Table 3.1: Comparison of Normalization Techniques
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e Tiny ImageNet: A dataset that is a reduced version of the ImageNet dataset [23], containing

200 classes with 500 training images and 50 test images per class [67].

e MNIST digits: Contains 70,000 grayscale images of size 28 x 28 representing the 10 digits,

with around 6,000 training images and 1,000 testing images per class [08].

e SVHN: A challenging dataset with over 600,000 digit images, focusing on recognizing digits

and numbers in natural scene images [104].

For applying CN and CN-X, we will use three approaches to build contexts: (i) applying the k-
means algorithm to create clusters and using these clusters as contexts, (ii) utilizing superclasses,
which are groups of classes, as contexts, and (iii) treating each domain in domain adaptation as a

separate context.

3.5.1 Image Classification

To evaluate our normalization methods (CN, CN-X, and ACN) against traditional normalization
techniques (BN, LN, MixNorm, and ModeNorm) in image classification tasks, we employ the
DenseNet architecture [50], varying the number of layers to create two distinct models: a shal-
low model with 40 layers (DenseNet-40) and a deeper model with 100 layers (DenseNet-100).
DenseNet employs BN as the normalization layer. We create a corresponding DenseNet model for
each normalization technique (LN, MixNorm, ModeNorm, CN, CN-X, and ACN) by replacing the
BN layers with the specific normalization method.

In the first experiment, detailed in the section "Building Custom Contexts", we will employ the
k-means algorithm to generate clusters that will act as contexts for CN and CN-X, utilizing the
Oxford IIIT Pet, CIFAR-10, CIFAR-100, and Tiny ImageNet datasets. In the second experiment,
outlined in the section "Leveraging Predefined Contexts", we will utilize the superclass structure

(groups of classes) within the Oxford-IIIT Pet and CIFAR-100 datasets as contexts.
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Building Custom Contexts

In this study, we assume that the underlying structure of the dataset is not well understood, and
there is no clear prior knowledge regarding the contextual relationships within the data. To address
this, we need to establish these contexts before training our neural networks, specifically DenseNet-
40 and DenseNet-100, for both CN and CN-X normalization techniques. To define the contexts, we
employ the k-means clustering algorithm, treating the resulting clusters as distinct contexts. We
conduct multiple experiments by varying the number of contexts K, using values of 2, 3, 4, 6, and 8.
For a fair comparison, we maintain consistency in the number of contexts across different methods,
ensuring that the same K value corresponds to the number of mixture components in MixNorm
and the number of modes in ModeNorm. The models are trained for 200 epochs with a batch size
of 64, utilizing Nesterov’s accelerated gradient [3]. The learning rate is initially set to 0.1 and is
reduced by a factor of 10 at 50% and 75% of the total training epochs. Additionally, weight decay
is fixed at 10~% and momentum at 0.9.

Table 3.2 presents the performance comparison of CN, CN-X, and ACN on a shallow neural network
(DenseNet-40), while Table 3.3 highlights their effectiveness on a deeper network (DenseNet-100).
Across all datasets, which vary in complexity based on the number of classes, our proposed method
consistently achieves higher average accuracy. This improvement is particularly noticeable with
CN-X. Additionally, when varying the number of contexts (2, 4, 6, and 8), the performance dif-
ference remains minimal, suggesting that a large number of clusters is not necessary to achieve
optimal performance. Figure 3.3 demonstrates that CN, CN-X, and ACN achieve superior conver-
gence compared to traditional methods such as BN, LN, MixNorm, and ModeNorm. The observed
acceleration in convergence, illustrated in Figure 3.3, alongside the improved performance metrics
presented in Tables 3.2 and 3.3, indicates that our proposed method can effectively serve as a layer to
enhance model performance and accelerate convergence, even when prior knowledge of the datasets
is limited. In such cases, the k-means algorithm can be employed to generate clusters, which can
then be used as contexts for CN and CN-X.

Conversely, when we have a thorough understanding of the dataset and the contexts are well-defined,
there is no need to apply k-means clustering; instead, we can directly utilize predefined contexts.

This approach will be elaborated upon in the following section.

39



Context Normalization

method CIFAR-10 Oxford-1IIT Pet CIFAR-100 Tiny ImageNet
BN 92.07 75.63 71.35 52.20
LN 84.65 66.12 58.34 47.20
MixNorm-2  93.10 74.34 73.23 53.20
MixNorm-4  93.60 75.67 73.40 53.24
MixNorm-6  93.60 75.65 73.47 53.18
MixNorm-8  92.62 75.80 73.47 53.67
ModeNorm-2  93.32 75.87 72.90 53.16
ModeNorm-4  93.65 75.84 73.43 54.12
ModeNorm-6  93.68 75.97 73.45 54.18
ModeNorm-8 93.68 76.02 73.27 54.18
CN-2 93.87 75.98 73.88 54.15
CN-4 93.98 76.12 74.10 54.21
CN-6 93.98 76.22 74.10 54.30
CN-8 94.01 76.37 74.12 54.30
CN-X-2 94.06 75.34 73.99 54.23
CN-X-4 94.05 76.23 74.34 55.12
CN-X-6 94.13 76.35 74.23 55.09
CN-X-8 94.54 76.35 74.78 55.26
ACN-2 92.65 75.76 73.77 53.98
ACN-4 93.67 75.87 73.88 54.01
ACN-6 93.89 75.90 74.01 54.23
ACN-8 94.13 75.90 74.01 54.36

Table 3.2: Performance (accuracy %) of DenseNet-40 on CIFAR-10, Oxford-IIIT Pet, CIFAR-100,

and Tiny ImageNet. Contexts for CN and CN-X are built using k-means clusters. "2, 3, 4, 8"

represent mixture components, modes, and contexts for MixNorm, ModeNorm, and the proposed

CN, CN-X, and ACN methods.
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method CIFAR-10 Oxford-1IIT Pet CIFAR-100 Tiny ImageNet
BN 94.10 76.28 73.32 55.12
LN 85.20 66.34 60.10 47.53
MixNorm-2  94.54 76.67 74.12 55.67
MixNorm-4  94.56 76.73 74.32 55.56
MixNorm-6  94.56 76.75 74.67 55.70
MixNorm-8  95.01 76.87 74.72 55.74
ModeNorm-2 94.65 76.87 74.21 54.76
ModeNorm-4 94.67 76.84 74.34 55.01
ModeNorm-6 94.74 76.89 74.52 55.12
ModeNorm-8 94.74 76.89 74.57 55.12
CN-2 95.10 76.12 74.67 55.26
CN-4 95.76 76.92 74.72 55.17
CN-6 95.76 76.92 74.77 55.78
CN-8 95.67 76.93 74.77 55.98
CN-X-2 95.56 76.67 75.01 55.23
CN-X-4 95.76 76.87 75.10 55.76
CN-X-6 95.87 76.87 75.10 55.78
CN-X-8 96.12 77.01 75.21 55.97
ACN-2 94.76 76.67 74.78 55.22
ACN-4 94.76 76.87 74.88 55.43
ACN-6 94.87 76.89 75.10 55.88
ACN-8 95.10 76.89 75.21 55.89

Table 3.3: Performance (accuracy %) of DenseNet-100 on CIFAR-10, Oxford-IIIT Pet, CIFAR-100,

and Tiny ImageNet. Contexts for CN and CN-X are built using k-means clusters. "2, 4, 6, 8"

represent mixture components, modes, and contexts for MixNorm, ModeNorm, and the proposed

CN, CN-X, and ACN methods.
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Leveraging Predefined Contexts

Some datasets, such as Oxford-IIIT Pet and CIFAR-100, not only have a hierarchical structure
of classes but also include superclasses that group similar classes together. For instance, in the
Oxford-IIIT Pet dataset, various breeds of dogs and cats can be categorized into two superclasses:
"dog" and "cat". Similarly, CIFAR-100 contains 20 distinct superclasses. Rather than applying the
k-means algorithm to create clusters for use as contexts, we can leverage these existing superclasses
as contextual representations.

In this experiment, we employ the same models as in the previous section, specifically DenseNet-40
and DenseNet-100, to evaluate the evolution of accuracy on the CIFAR-100 and Oxford-ITIT Pet
datasets. We utilize the superclasses as contexts and implement normalization layers CN, CN-X, and
ACN. The goal is to assess whether a deeper understanding of our dataset, achieved by constructing
contexts, yields improved performance compared to relying on predefined contexts (superclasses)

present in the datasets. Tables 3.4 and 3.5 illustrate the significant impact that well-defined con-

Oxford-IIIT Pet (K=2)

model 25 epochs 50 epochs 75 epochs 100 epochs 150 epochs 200 epochs

CN 75.43 76.86 76.88 77.34 78.43 79.26
CN-X 76.12 76.77 77.98 78.66 80.02 80.98
ACN  72.34 72.56 73.10 74.22 74.90 76.13

CIFAR-100 (K=20)

model 25 epochs 50 epochs 75 epochs 100 epochs 150 epochs 200 epochs

CN 73.88 74.21 74.89 75.10 76.53 77.67
CN-X 7421 75.10 75.67 77.45 78.54 79.78
ACN  72.34 72.67 74.32 74.32 74.56 74.60

Table 3.4: Evolution of Accuracy with DenseNet-40 Utilizing Superclasses as Contexts on the
Oxford-IIIT Pet and CIFAR-100 Datasets.

texts have on the performance of CN and CN-X. Notably, when utilizing superclasses as contexts,

we achieve comparable performance in approximately 25 epochs, in contrast to the 200 epochs re-
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Oxford-IIIT Pet (K=2)

model 25 epochs 50 epochs 75 epochs 100 epochs 150 epochs 200 epochs

CN 75.43 75.67 76.98 77.89 79.34 80.23
CN-X 76.54 77.87 79.78 81.23 81.23 §2.02
ACN  73.02 74.32 75.43 77.02 77.32 77.85

CIFAR-100 (K=20)

model 25 epochs 50 epochs 75 epochs 100 epochs 150 epochs 200 epochs

CN 74.21 74.56 76.78 78.22 78.22 79.34
CN-X 73.56 75.43 75.78 79.34 79.89 81.02
ACN 7321 73.76 75.11 76.21 76.21 76.32

Table 3.5: Evolution of Accuracy with DenseNet-100 Utilizing Superclasses as Contexts on the
Oxford-IIIT Pet and CIFAR-100 Datasets.

quired when using k-means clusters, as detailed in Tables 3.2 and 3.3. Furthermore, employing
K = 2 for the Oxford-IIIT Pet dataset and K = 20 for CIFAR-100 does not markedly affect ACN
performance. This suggests that since contexts are constructed within ACN, merely increasing the
number of contexts does not guarantee enhanced model performance.

This experiment highlights the potential advantages of applying CN and CN-X for normalization
when we possess a strong understanding of the datasets, allowing us to leverage this knowledge as
prior information to construct effective contexts that yield improved performance in both shallow
and deep neural networks.

To further evaluate the versatility of CN, CN-X, and ACN, we implement the Vision Transformer
(ViT) model [26] and compare its performance against BN, LN, MixNorm, and ModeNorm on the
CIFAR-100 dataset. For CN and CN-X, we utilize superclasses as contexts with K = 20. In the
case of ACN, ModeNorm, and MixNorm, we also set K = 20 to ensure a fair comparison across
all methods. Table 3.6 demonstrates the versatility of the proposed normalization methods CN,
CN-X, and ACN. When applied to the ViT architecture, these methods maintain a performance ad-
vantage over BN, LN, MixNorm, and ModeNorm. Similarly to the results obtained with DenseNet,

the proposed normalization layers facilitate improved convergence during training and validation,
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model accuracy precision recall fl-score
BN 55.63 8.96 90.09 54.24
LN 54.05 11.82 85.05 53.82
MixNorm 53.2 11.20 87.10 54.23

ModeNorm 54.10 12.12 87.23 54.98

CN 70.76 27.59 98.60 70.70
CN-X 71.28 28.30 98.87 70.98
ACN 60.34 20.21 93.23 60.10

Table 3.6: Performance Rates (%) on the Test Set Using the ViT Architecture with Various Nor-
malization Methods—BN, LN, MixNorm, ModeNorm, CN, CN-X, and ACN—on the CIFAR-100

Dataset, Employing Superclasses as Contexts for CN and CN-X.
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Figure 3.4: Contrasting Training and Validation Error Curves in CIFAR-100 dataset when using

ViT architecture.
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as illustrated in Figure 3.4.

In this section, we demonstrate that our proposed normalization methods significantly enhance per-
formance and accelerate convergence in both shallow and deep neural networks. When predefined
contexts are not available, we illustrate the feasibility of using k-means clusters as an alternative.
Conversely, when contexts are well-defined—such as through superclasses for CN and CN-X—we
achieve improved performance. We provide evidence of this through applications with CNN archi-
tectures, specifically DenseNet-40 and DenseNet-100, as well as with the Transformer architecture
using ViT [20].

To further explore these findings, we propose an additional approach in the following section to
effectively construct contexts for CN and CN-X, demonstrating the versatility of these methods and

their applicability across various domains.

3.5.2 Domain Adaptation

In this experiment, we introduce an alternative approach to constructing contexts for CN and CN-X
in domain adaptation. Domain adaptation [33] is a technique in machine learning, particularly in
deep learning, that enables a model trained on data from one domain (source domain) to perform
well on data from a different but related domain (target domain). This is useful when labeled data
is abundant in the source domain but limited or unavailable in the target domain, which may have
different characteristics, like variations in lighting, style, or noise. By aligning feature distributions
or representations between domains, domain adaptation allows the model to generalize better across
domains, improving performance on tasks where collecting labeled data is challenging.

For CN and CN-X, we will consider two distinct contexts K = 2: the source domain and the
target domain. Using domains as contexts is motivated by the aim to incorporate domain-specific
information into the activation representations. To exemplify this, we employ AdaMatch [99], a
domain adaptation algorithm designed to align feature distributions between source and target
domains by leveraging labeled source data and a few labeled target samples. AdaMatch uses a
dynamically adjusted confidence threshold for pseudo-labeling in the target domain, improving

generalization across domains by aligning class distributions while minimizing domain shift. It
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combines the tasks of unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and
semi-supervised domain adaptation (SSDA). In UDA, we have access to a labeled dataset from the
source domain and an unlabeled dataset from the target domain, with the goal of training a model
that generalizes effectively to the target data. In this case, we use MNIST as the source dataset
and SVHN as the target dataset. These datasets include a range of variations, such as texture,
viewpoint, and appearance, and their respective domains, or distributions, are notably distinct.
The baseline model uses BN layers and is trained from scratch using Wide Residual Networks [134].
For comparison, we create additional models by individually replacing the BN layers with LN;,
MixNorm, ModeNorm, CN, CN-X, and ACN. For MixNorm, ModeNorm, and ACN, we set K = 2
to maintain consistency with CN and CN-X. Model training employs the Adam optimizer [60]
with a cosine decay schedule, gradually reducing the initial learning rate of 0.03. All models are
trained for 100 epochs. The results in Table 3.7 demonstrate that CN, CN-X, and ACN outperform
traditional normalization techniques (BN, LN, MixNorm, and ModeNorm) in domain adaptation
between MNIST and SVHN. For the MNIST source domain, all methods achieve high performance,
with CN-X achieving the best accuracy and F1-score of 99.26%. In contrast, performance differences
are more pronounced on the SVHN target domain, where CN-X leads with a significant improvement
in accuracy (54.70%), followed closely by CN at 47.63%. These results suggest that CN and CN-X
are better suited to handle domain shifts, particularly when there is a substantial difference in data
distribution, as seen between MNIST and SVHN. While ACN does not reach the peak accuracy
levels of CN-X on SVHN, it still shows a marked improvement over baseline methods like BN and LN,
achieving 33.4% accuracy in the target domain. This indicates that ACN contributes to enhanced
domain adaptation by capturing some domain-specific features, making it a viable normalization
technique for adaptation tasks, though its performance suggests it is less robust to drastic domain
shifts compared to CN and CN-X.

These results from CN and CN-X reinforce findings from previous experiments, where contexts are
clearly defined. Leveraging well-defined prior knowledge can be highly beneficial, as it allows relevant
patterns to be embedded within activation representations. This enhances the overall representation
quality and provides normalization benefits that contribute to the stability of the training process.

By capturing domain-specific information effectively, CN and CN-X not only improve adaptation to

47



Context Normalization

MNIST (source domain)

model accuracy precision recall fl-score
BN 97.36 87.33 79.39 78.09
LN 96.23 88.26 76.20 81.70

MixNorm 98.90 98.45 98.89 98.93

ModeNorm  98.93 98.3 98.36  98.90
CN 99.17 99.17 99.17 99.17
CN-X 99.26 99.20 99.32  99.26
ACN 98.9 98.5 98.90 98.95

SVHN (target domain)

model accuracy precision recall fl-score
BN 25.08 31.64 20.46 24.73
LN 24.10 28.67 22.67 23.67

MixNorm 32.14 50.12 37.14 39.26
ModeNorm 32.78 49.87 38.13 40.20

CN 47.63 60.90 47.63  49.50
CN-X 24.70 09.74 04.70  54.55
ACN 33.4 43.83 40.28 42.87

Table 3.7: Test set accuracy (%) of AdaMatch for domain adaptation on MNIST and SVHN datasets

using various normalization techniques.
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new domains but also support smoother learning by reducing the impact of domain shifts on model
performance. This approach highlights the potential of context-driven normalization techniques to
boost model robustness in challenging cross-domain tasks, as seen with AdaMatch on the MNIST
to SVHN adaptation.

In the next section, we will examine a scenario where the application of ACN is particularly relevant
and compare its performance to single-mode normalization (BN) and multi-mode normalization

(MixNorm).

3.5.3 Image Generation

Image generation involves creating new, synthetic images by training models to understand and
replicate the features and patterns of real images. This process uses a model to learn from a large
dataset of images, capturing details like textures, colors, shapes, and spatial relationships. Gen-
erated images can range from realistic representations to imaginative interpretations, depending
on the training data and model design. An example of method that can generate such images
is Generative Adversarial Networks (GANs) [93, 21, 12]. The GAN architecture consists of two
neural networks: a generator and a discriminator, which work in tandem through a process called
adversarial training. The generator creates synthetic images starting from random noise, while the
discriminator evaluates these images, distinguishing between real images (from the training dataset)
and those generated by the model. The generator’s goal is to create images that can "fool" the
discriminator, while the discriminator aims to accurately detect real versus generated images. This
adversarial process continues until the generator produces images that are nearly indistinguishable
from real ones. GANs have a wide range of applications, including image synthesis, style trans-
fer, super-resolution imaging, and data augmentation. They are also used in fields like healthcare
for generating medical images, in entertainment for creating realistic character images, and in au-
tonomous driving for simulating varied road conditions. A common challenge encountered when
using GANs is the issue of "mode collapse". This phenomenon occurs when the generator produces
only a restricted subset of possible data, leading to a loss of diversity in the generated results. In

other words, the generator may focus on producing a specific type of data, neglecting the generation
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of other potential variations. This problem can compromise the quality and variety of the generated
data, requiring specific techniques and strategies to address and enhance the overall performance of
the GAN model. In MixNorm [57], the authors demonstrate that normalizing across multiple modes
(mixture components), rather than a single mode as in BN, can help mitigate the issue of "mode
collapse". Here, we propose to apply ACN and compare its performance to BN and MixNorm.
Notably, CN and ACN are not suited for this scenario, as generated images are produced from
random noise vectors, making it difficult to define prior knowledge about vector membership for
normalization.

Our baseline model is a Deep Convolutional Generative Adversarial Network (DCGAN) [93], specifi-
cally designed for image generation. The generator consists of a linear layer followed by four deconvo-
lutional layers, with the first three layers utilizing Batch Normalization (BN) and a LeakyReLU [33]
activation function. The linear layer maps latent space to a higher-dimensional representation, while
the deconvolutional layers progressively upsample the input into realistic images. BN stabilizes and
accelerates training, and LeakyReLU introduces non-linearity for better learning of complex map-
pings. We create two additional models by replacing the BN layers with MixNorm and ACN, using
K = 3 for MixNorm as specified in the paper [57] and matching K = 3 for ACN to ensure a fair
comparison. All models are trained on CIFAR-100 for 200 epochs using the Adam optimizer [60]
with a = 0.0002, 81 = 0, and B2 = 0.9 for both the generator and discriminator. We evaluate GAN
quality using the Fréchet Inception Distance (FID) [19], calculated every 10 epochs for efficiency.
Figure 3.5 illustrates that the DCGAN incorporating ACN exhibits not only a quicker convergence
compared to its batch-normalized (BN) and mixture-normalized (MixNorm) counterparts but also
achieves superior (lower) FID scores. Reducing the FID is crucial as it indicates that the generated
images are more similar to real images, enhancing the overall quality and diversity of the outputs.
A lower FID score suggests that the model is effectively capturing a broader range of features in the
training data, which helps mitigate mode collapse—a phenomenon where the generator produces
a limited variety of outputs. By improving the distribution of generated images and reducing the
gap between real and synthetic data distributions, ACN promotes a more stable training process
and encourages the model to explore different modes within the data, leading to richer and more

varied image generation. Figure 3.6 showcases examples of images generated by DCGANs utilizing
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Figure 3.5: ACN integrated as a normalization layer in a DCGAN. Our results show that incorpo-
rating ACN into the DCGAN generator leads to improved (lower) Fréchet Inception Distance (FID)

scores.
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BN, MixNorm, and ACN. The results reveal that multi-mode normalization techniques, such as
MixNorm and ACN, produce notably clearer object structures in the generated images compared
to those using BN. Additionally, both MixNorm and ACN demonstrate greater diversity in their
outputs, enhancing the overall richness of the generated content. This improvement in image qual-
ity and diversity underscores the effectiveness of these advanced normalization methods, paving the

way for more sophisticated and nuanced image generation in future applications.

3.6 Discussion

In this chapter, we proposed three advanced normalization methods: CN, CN-X, and ACN. We
demonstrated that single-mode normalization techniques, such as BN and LN, performed less effec-
tively than multi-mode approaches like MixNorm and ModeNorm. Our contributions centered on
multi-mode normalization methods that relied on prior knowledge to improve activation normaliza-
tion during neural network training.

CN and CN-X grouped data into predefined structures, called contexts, before training. CN used
these contexts within each mini-batch to estimate and apply normalization parameters specific to
each context, while CN-X defined these parameters as trainable weights that updated dynamically
through backpropagation. We outlined multiple methods for constructing contexts, including k-
means clustering, superclass assignments, and domain-based contexts in domain adaptation tasks.
When context construction was less straightforward, ACN provided flexibility by allowing the num-
ber of contexts to be set as a hyperparameter.

In tasks spanning classification, domain adaptation, and image generation, our proposed methods
consistently delivered superior performance compared to traditional normalization techniques. CN
and CN-X exhibited higher robustness than ACN when contexts were well-defined, emphasizing the
effectiveness of prior knowledge in enhancing neural network representation, accelerating conver-

gence, and improving performance.
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To advance this approach, we further explored how structured prior knowledge in multimodal
representations (Part IT) reduced parameter tuning costs and minimized the reliance on large labeled

datasets, achieving competitive performance with fewer resources.
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Conclusion

In this part, the focus is on the importance of activation normalization in deep neural networks
(DNNs) and the proposed advancements to address training challenges. Single-mode methods like
Batch Normalization (BN) have been successful in mitigating issues like internal covariate shift but
struggle with small batch sizes or non-uniform data distributions. To address these limitations,
multi-mode approaches like MixNorm and ModeNorm have been developed, though they are often
computationally expensive and require complex algorithms.

The proposed multi-mode normalization methods—Context Normalization (CN), Extended Context
Normalization (CN-X), and Adaptive Context Normalization (ACN)—leverage prior knowledge to
improve training convergence and performance. These methods are designed to handle more complex
data distributions and accelerate the training process. CN and CN-X group data into predefined
contexts, applying specific normalization parameters to each context within a mini-batch. CN-X
further enhances CN by making these context parameters trainable through backpropagation, thus
providing additional flexibility. ACN goes a step further by allowing the dynamic adjustment of the

number of contexts, making it highly adaptable to different training scenarios.
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Part 11

Cross-Modal Alignment Learning
(CM-AL) for Multimodal Data

Representation
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This part addresses the challenges associated with high costs, data limitations, and scala-
bility in training multimodal encoders, particularly when integrating data from different modalities
such as text, image, audio, and video. To overcome these challenges, we introduce OneEncoder, a
novel approach for cross-modal alignment learning that leverages prior knowledge to enhance the
encoder representations, reducing the dependency on large-scale paired datasets and making the
training process more efficient.

The part is structured as follows: Chapter 4 provides a review of existing methods for cross-modal
alignment learning, examining current approaches and their limitations. Chapter 5 details the
OneEncoder framework, explaining its design, the integration of prior knowledge, and its ability to
efficiently handle various modalities. The proposed framework is validated on three tasks: zero-
shot classification, querying, and visual question answering. We compare OneEncoder with

state-of-the-art methods, showcasing its improvements in efficiency and scalability.
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Chapter 4

State of the Art in Cross-Modal

Alignment Learning Techniques

4.1 Introduction

The advancement of large language models (LLMs) [111, 89, 10, 3, 28] has significantly broadened
their application across various domains beyond natural language processing, including vision, audio,
and even multimodal tasks. These models leverage vast amounts of data and sophisticated architec-
tures, allowing them to capture intricate patterns and relationships within and between modalities.
As LLMs have grown in capability, they have become increasingly integral to cross-modal learning
tasks, where the goal is to align disparate modalities—such as text, images, and audio—within a
shared semantic space. This alignment is crucial as it facilitates improved representation learning,
enabling models to leverage contextual information from one modality to enhance the learning pro-
cess in another. For instance, in applications like visual question answering, models can combine
visual data with textual queries, leading to more accurate and contextually aware predictions. Con-
sequently, the integration of LLMs into cross-modal frameworks not only boosts performance but
also opens new avenues for research in areas such as automated content generation, multimodal

sentiment analysis, and improved user interaction systems.
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4.2 Dual Modality Alignment (DMA)

DMA techniques focus on integrating representations from pairs of distinct modalities, such as
image-text, text-audio, and image-audio, to create a unified semantic space. This integration is
crucial for enabling models to understand and relate information across different types of content,
allowing for more complex and contextually rich cross-modal tasks.

Early breakthroughs in DMA include models like Flamingo [!], which introduces cross-attention |1 16]
mechanisms to align visual and textual features directly within LLMs. This architecture allows
for intricate interactions between images and text, enhancing the model’s performance in vision-
language tasks such as visual question answering by enabling each modality to directly inform the
other through a shared attention mechanism.

ConVIRT [139] pioneered contrastive learning in the medical domain, aligning medical images and
textual descriptions to facilitate cross-modal retrieval in data-limited settings. Building on this
approach, CLIP [91] extended contrastive learning to a large scale with extensive paired image-
text datasets, creating a shared representation space for open-vocabulary recognition and zero-shot
learning across general domains. CLIP’s generalization has broadened its applicability, supporting
diverse tasks that require robust understanding of visual and textual inputs without additional
fine-tuning.

ALIGN [20] builds on these ideas with a focus on robustness to noisy data, which is essential
for real-world applicability. ALIGN optimizes contrastive learning techniques to handle large and
potentially noisy image-text datasets effectively, ensuring consistent performance in more variable
environments where data quality may be less controlled.

Research in DMA has evolved from traditional image-text models to encompass various modality
pairings tailored for specific applications. Text-audio alignment |98, | utilizes self-supervised and
contrastive learning to connect audio signals with transcriptions, enhancing speech recognition and
audio retrieval. Similarly, image-audio alignment [19] combines visual and auditory data, improving
multimedia applications like audiovisual content analysis, where synchronized data offers deeper in-
sights. Text-video models [56] correlate descriptive text with video sequences, facilitating tasks such

as video summarization and action recognition by capturing temporal and semantic relationships.
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Emerging alignments are broadening the scope of cross-modal learning. For example, text-3D mod-
els [87, 48] link textual descriptions to 3D shapes, which is valuable in virtual reality and robotics
for generating accurate renderings. In neurocomputational fields, text-EEG alignment [29, 30| con-
nects language with brain activity data, supporting brain-computer interface research and assistive
technologies. Additionally, image-depth alignment [62] is vital for autonomous driving and AR/VR,
pairing visual data with depth information for safer, more accurate interpretations. Finally, text-
sensor alignment [127] integrates language with diverse sensor data, enhancing health monitoring
and smart home applications by enabling more intuitive human-computer interactions. Collectively,
these dual-modality pairings are significantly advancing cross-modal learning across various indus-

tries.

Despite these advancements, dual-modality alignment approaches face notable challenges. A
significant limitation is their reliance on extensive aligned datasets, which are expensive to curate
and may not be available for all modality pairs, particularly in niche or specialized fields. Moreover,
these approaches are typically designed to handle only two modalities at a time, which constrains
their ability to generalize to or incorporate additional modalities. This modality restriction limits the
broader applicability of DMA models, especially in scenarios where integrating information from
multiple modalities simultaneously is beneficial or required. Consequently, while dual-modality
alignment has paved the way for cross-modal alignment learning, there is a clear need for further
research to address these resource dependencies and extend current models’ capacity to work across

multiple modalities in a unified framework.

4.3 Multiple Modalities Alignment (MMA)

MMA advances the concept of dual-modality alignment by synchronizing representations from three
or more distinct modalities, creating a shared semantic space that enables more comprehensive mul-
timodal understanding. For example, AudioCLIP [11] extends CLIP’s capabilities to incorporate

audio alongside text and image data, allowing it to perform tasks that require understanding across
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audio, visual, and textual elements. This model enriches applications such as video retrieval and
audiovisual content analysis, where all three modalities provide unique yet complementary informa-
tion.

Similarly, ImageBind [39] takes multimodal alignment even further by synchronizing six modali-
ties—text, images, audio, depth, thermal, and IMU (inertial measurement unit) data. By leveraging
the zero-shot capabilities of vision-language models, ImageBind can link diverse sensory data into a
unified space without requiring aligned training data for every combination, enabling cross-modal re-
trieval and understanding tasks across a broader spectrum of sensory inputs. This alignment of het-
erogeneous modalities is particularly beneficial for applications like robotics and virtual /augmented
reality, where multi-sensory input aids in creating a rich, context-aware environment.

Another recent model, NExT-GPT [123], builds on multimodal understanding by enabling any-to-
any modality transformations. It allows for flexible input-output combinations across modalities,
which is essential for scenarios demanding complex data interaction, such as assistive technology
and interactive Al. However, NExT-GP'T still depends on large aligned datasets for training, limit-
ing its accessibility and scalability. These high demands on resources underscore the challenges of

current MMA models, which rely on computationally heavy architectures and extensive aligned data.

As the field progresses, moving from resource-intensive architectures toward more lightweight
models is essential. Lightweight MMA models aim to lower dependency on extensive training
datasets and reduce computation costs while still maintaining alignment across multiple modalities.
This shift supports practical deployment in diverse applications, such as mobile devices or edge
computing, where multimodal understanding is needed but resources are constrained. Developing
such efficient MMA models will be pivotal for expanding multimodal AT into everyday applications,

allowing high-performance interaction across multiple modalities even in resource-limited settings.
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4.4 Transitioning to Lightweight Models for Modalities Alignment

In recent advancements, researchers have optimized multimodal learning by employing frozen pre-
trained models and modality-specific tokens to align multiple data types using a single encoder.
This technique drastically reduces the need for large aligned datasets and minimizes the parameters
that need training, effectively lowering the computational demands of multimodal models [16, |-
One notable example is Meta-Transformer [138], which leverages a frozen visual encoder alongside
modality tokens, achieving strong performance across 12 distinct data modalities without requiring
individual encoders for each type. By keeping the core encoder fixed, Meta-Transformer aligns
diverse data types through minimal modifications, facilitating efficient processing across modalities
like images, text, and audio.

Building on this idea, Han et al. [16] introduced a unified framework using a frozen CLIP model
and a Universal Projection (UP) module that dynamically switches between modalities via modality
tokens. This approach aligns eight modalities within a single model architecture, using the modality
tokens to activate relevant components of the frozen encoder based on input type. These methods
represent a significant shift towards modular, parameter-efficient architectures in multimodal Al,
sidestepping the need for separate encoders for each modality. However, a current limitation lies in
integrating entirely new modalities; adding a new data type to these models often requires extensive

adjustments or even retraining to ensure cohesive alignment with existing modalities.

4.5 Discussion

This chapter explored advancements in cross-modal alignment learning (CM-AL), focusing on dual-
modality alignment (DMA) and multiple-modalities alignment (MMA). While DMA techniques,
such as CLIP and ALIGN, have shown strong performance, they are limited by their reliance on
large aligned datasets and the need to pair only two modalities. MMA approaches, like AudioCLIP
and ImageBind, extend this by integrating multiple modalities, but they too face challenges related

to data requirements and computational costs.
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Recent efforts to create lightweight models, such as Meta-Transformer, reduce these issues
by leveraging frozen pretrained models. However, integrating new modalities remains difficult.
Our proposed approach offers a solution by introducing an open, progressive alignment framework,
allowing seamless integration of new modalities without retraining. This improves scalability and
adaptability while reducing computational overhead, making our framework suitable for real-world

applications with limited resources.
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Chapter 5
OneEncoder

5.1 Introduction

To develop a lightweight approach for training multimodal systems, we leverage prior knowledge
to significantly reduce the number of tunable parameters, thereby minimizing the need for large
datasets. This strategy supports the creation of an open, flexible system that can incorporate
additional modalities in the future at a low cost.

To achieve it, we introduce OneEncoder, which progressively aligns four modalities (image, text,

audio, and video) within a single unified framework.
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Figure 5.1: Comparison of alignment methods: Standard approaches train large, modality-specific
encoders, requiring extensive data and compute. OneEncoder uses frozen encoders, a lightweight
Universal Projection (UP) module, and trains a small Alignment Layer (AL) module for new modal-

ities, enabling efficient, flexible alignment.

As shown in Figure 5.1, OneEncoder incorporates frozen, pretrained modality-specific en-
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coders alongside a lightweight Universal Projection(UP) module, a compact Alignment Layer (AL)
module, and modality tokens (referred to as "modal") to enable seamless switching between modal-
ities with shared parameters. Here, the modality token encodes prior knowledge by embedding the
modality type directly into the UP representation, allowing for a unified parameter set across diverse
modalities. Unlike conventional methods that require tuning separate encoders for each modality,
OneEncoder achieves efficiency by freezing the modality-specific encoders purely for feature extrac-
tion, thereby using a single encoder across modalities.

We propose a two-step approach for progressively training our framework across multiple modalities,
emphasizing prior knowledge to streamline parameter tuning and reduce reliance on large aligned
datasets. Specifically, we introduce a modality token as an element of prior knowledge that embeds
modality information directly into the representation. This approach enables us to use the same
parameters across modalities and achieve effective alignment with minimal tuning.

Step 1 involves pretraining the UP using image-text data, which is more widely available than
other modality data. Step 2 is consistent for all new modalities: we freeze the pretrained UP and
train only the lightweight AL to map new modalities into the shared space established by the UP.
For instance, we first align audio with image and text, then align video with image, text, and audio.
The purpose of the AL is solely to project new data into the shared space without altering the under-
lying representation. By focusing on this modular design with a compact UP and AL, OneEncoder
achieves a balance between alignment effectiveness and reduced complexity, allowing for scalable
integration of new modalities at a low cost. This method ensures robust performance even without
extensive aligned datasets.

Our contributions are summarized as follows:

e Lightweight and efficient architecture: We propose OneEncoder, which reduces com-
putational costs by using frozen pretrained encoders for feature extraction. Only a small
Universal Projection (UP) module is trained, significantly lowering training time and resource

requirements compared to methods that train large, modality-specific encoders.

e Unified representation space with modality tokens: We introduce modality tokens to

guide the UP, enabling a single set of parameters to align features from different encoders
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in the same space. This removes the need for multiple modality-specific alignment heads,

simplifying the architecture while preserving strong performance.

e Progressive and flexible modality integration: Unlike existing closed frameworks, OneEn-
coder supports progressive expansion. Using a two-step training process, new modalities are
integrated via a lightweight Alignment Layer (AL) module, without retraining the UP or

existing encoders. This makes the framework adaptable to evolving multimodal needs.

e Reduced reliance on large paired datasets: OneEncoder achieves competitive results
even with smaller paired datasets, thanks to the efficiency of the UP and the rich features
extracted from frozen encoders. This addresses a major limitation of state-of-the-art methods,

which often require vast, hard-to-collect paired data.

e Parameter efficiency and scalability: By freezing large pretrained encoders and limiting
training to the compact UP and AL modules, OneEncoder drastically reduces the number of
trainable parameters. This makes the framework more scalable and practical for real-world

scenarios with limited computational resources.

e Broad modality compatibility: The framework naturally handles diverse modalities (e.g.,
image, text, audio, video) and facilitates seamless alignment between them, without the ar-

chitectural complexity seen in many current multimodal systems.

5.2 Model Architecture: OneEncoder

Drawing from research by [138, 16], we capitalize on the robust modality transfer capabilities of
pretrained encoders. This approach allows to leverage pretrained modality-specific encoders, who
are trained on large modality-specific datasets, which are more readily available than large aligned
datasets. Within OneEncoder, we employ ViT [26] for image encoding, BERT [25] for text encoding,
Wav2Vec2 [5] for audio encoding and VideoMAE [110] for video encoding. Each model produces

RE*P a5 its output, where L represents the sequence length and D denotes the

an input token x €
token dimension. Consistent with previous research [138, 16], we also maintain the parameters of

these models frozen during training. Figure 5.2 illustrates the three primary elements comprising
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OneEncoder: modality-specific encoders, a Universal Projection (UP) module, and an Alignment

Layer (AL) module.
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Figure 5.2: OneEncoder architecture: OneEncoder uses frozen pretrained encoders, a Universal
Projection (UP) module, and an Alignment Layer (AL) module. In step 1, the UP (a Transformer
encoder) aligns text and image modalities. In step 2, the frozen UP aligns audio through the AL
(a small MLP) by pairing audio with either image or text. The UP fuses input features (xy,) and

modality tokens (ty) to switch between modalities.

Universal Projection (UP) module. Unlike existing methods that train separate modality-
specific encoders, we introduce a single encoder, UP, to align all modalities in a shared space (ref.
Figure 5.2).The UP is designed as a lightweight module with four Transformer encoder blocks [116],

and each block is composed of the following components:
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1. Multi-head self-attention [116]: A multi-head attention mechanism with four heads to

model cross-token dependencies.

2. Layer normalization [4]: Applied after the attention mechanism to stabilize training and

accelerate convergence.

3. Feedforward layers: Fully connected feedforward layers to refine representations and en-

hance expressiveness.

The UP is designed to project different modalities into a shared representation space using
the same set of parameters. To make this possible, we introduce modality tokens, inspired by Han
et al. [46]. These tokens act as learnable parameters that help the UP distinguish and adapt to
each modality’s characteristics. During training, modality tokens are updated via backpropagation
to optimize cross-modal alignment. For a given modality m € M (e.g., {image, text} in step 1), the
modality features x,, € RI*P extracted from the frozen encoder, are fused with the corresponding

tokens ty, € R'P before being passed through the UP:
Xm = UP(tm ® xpm), (5.1)

In Equation 5.1, the fusion operation ® can be performed through either element-wise addition, as
described in [119], or cross-attention, as in [121], where the modality tokens t, act as the query,
and the modality features xy, serve as both the key and value. In the addition operation, modal-
ity tokens t,, are added element-wise to the input tokens xp,, directly injecting modality-specific
information into the input representation. This simple mechanism enhances features with mini-
mal computational overhead. In contrast, cross-attention uses t,, as the query and x,, as key and
value, enabling the model to focus on the most relevant input features for each modality. This allows

for more fine-grained interactions, adapting representations to the unique structure of each modality.

Alignment Layer (AL) module. In OneEncoder, the AL makes it easy to integrate new
modalities without retraining the entire framework. After training the UP in step 1 (Figure 5.2a),
the UP is frozen, and in step 2 (Figure 5.2b), only the AL is trained. The AL’s purpose is not to

improve the representation but to project the pretrained encoder features into the input space of
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the UP. It is a lightweight two-layer MLP, making it much smaller and faster to train than the UP.
During the forward pass for a new modality m, the AL transforms the input features x,, € RL>*P,

which are then fused with the modality tokens t,, and fed into the frozen UP for alignment:
Xm = AL(xm) (5.2)

X = UP (b © Xpm) (5.3)

Step 2 can be repeated for each new modality, allowing the framework to expand progressively.

5.3 Training Procedure

The OneEncoder alignment process follows a progressive two-step approach, as shown in Figure 5.2.
In step 1 (Figure 5.2a), the UP is trained to initialize the alignment for the initial set of modalities.
In step 2 (Figure 5.2b), new modalities can be added by training only the AL, while keeping the UP
frozen. This second step can be repeated as needed, allowing the framework to grow and support

additional modalities over time.

e Step 1: Image-Text Alignment. Using available aligned image-text datasets and advance-
ments in the field [94, 55], we train the UP to align image and text modalities in a shared
latent space. The UP’s parameters are updated using the adapted InfoNCE loss [38] for con-
trastive (image, text) representation learning by Zhang et al. [139].

During training, we sample a minibatch of K input pairs (X from the dataset. The

i &b
image’ Xtext)

1

contrastive loss between image and text for each paris (X{,,g; X]oyt) in the minibatch can be

formulated as follow:

K 5 s
Zk:l eXp(<xiZmage? Xfext>/7-)

exp((X! ,f(j T
gij _ —log ( p(< image text>/ ) > (54)

The term (X represents cosine similarity, with 7 € R" as a temperature parameter.

i &7
image’ xtext>
This loss function preserves mutual information between true pairs through representation
functions. To ensure symmetry, we introduce a similar contrastive loss from text to image:

& Nyl
gji _ IOg ( eXp(<X1mage7Xtext>/T) ) (55)

I8 - —
Ek:l eXp(<X£€mage7 Xiext)/T)
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The matching pairs are situated along the diagonal of the similarity matrix (f(iimage, %),

which serves as the target for the loss function:
exp((<§(%mage7 ii]mage> + <§(€ext’ i{ext>)/2 ’ 7_)

iy = K - N " -
Zk:l exp(«xizmage’ Xfmage> + <x‘zext7 thsfext>)/2 ’ T)

(5.6)

exXP((Rimager Kimage) T Riext> Klext)) /2 7)

7T K - - -7 o
Zkzzl exp((<xijmage’ Xfmage> + <X€ext7 X{Cext>)/2 ’ 7_)

The ultimate training loss £ (5.8) is computed by combining the two losses ¢;; and £j; and

(5.7)

averaging them over all pairs within each minibatch.

| KX
L= ﬁ Z Ztij . Eij + tjz' . Ej,‘ (5.8)

i=1 j=1
Step 2: Alignment of Future Modalities. Once the UP is trained in Step 1, it is frozen
for Step 2. In this step, a new modality m; is aligned with the already aligned image and text
modalities by selecting one (either image or text) for alignment, as illustrated in Figure 5.2b
using the audio modality. The alignment of the selected modality ensures transitive alignment
across all three modalities (image, text, and m;). During this step, only the AL is trained,
using the same loss function as in Step 1 (Equation 5.8) to update its parameters for consistent
input to the UP. This process is repeated whenever a new modality m; is introduced (e.g.,

video).

Algorithm 6 provides a detailed procedure for training the UP on text-image modalities.

Once trained, the UP is utilized in Algorithm 7 to align a new modality, denoted as mg, with the

set of already aligned modalities, M, using an intermediary modality m;, where m; must be part

of M. This alignment process is achieved by training the AL to project the new modality, mo,

into a coherent space compatible with the UP representation. After this process, the expanded set

of aligned modalities becomes M U {my}. This alignment can be repeated indefinitely, allowing

additional modalities to be aligned with those already in M.

In Algorithm 8, the OneEncoder framework is used to represent any modality in M. For

text and image modalities, only the UP is required, while for other modalities, both the UP and

AL are necessary.
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Algorithm 6: Step 1: Training the Universal Projection (UP) module on the image-

text modality

Input :image encoder; text encoder; I: minibatch of aligned images; T: minibatch
of aligned texts; UP: transformer; M = {image, text} ; {tm }mers € RV*D; 7
learned temperature parameter; ®: fusion operator

Output: Trained UP; List of aligned modalities; modality tokens

1 // Freeze the pretrained encoders
- Freeze(image encoder)

- Freeze(text _encoder)

2 // Extract feature representations of each modality
- Ximage = image_encoder(I)

- Xitext = text encoder(T)

3 // Encode each modality after selection and fusion
- Ximage - UP(timage ® Ximage)
- Kiext = UP(brext ® Xeext)

4 // Compute Loss and Update UP Parameters, timage, and tieg
- Compute Loss using Equation 5.8: £(Ximage, Kiext, T)
- Update the UP parameters, timage, and tiext using an optimizer algorithm based on

the computed loss.

5 // Return the trained UP, list of aligned modalities M, modality tokens

- return UP, M, {tm}me{image,text}
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Algorithm 7: Step 2: Align a new modality with the previously aligned modalities

Input :m; encoder; my encoder; Mi: minibatch of aligned m; modality; Mo:
minibatch of aligned mg modality; UP: pretrained transformer in algorithm 6;
M: aligned modalities; {tm }me{m;,m.} € RN*DP: modality tokens ; 7: learned
temperature parameter; ®: fusion operator; AL: Multi-layer Perceptron
Output: Trained AL; List of aligned modalities; tp,,

1 // Freeze the pretrained encoders, UP and mqy modality token

2 // Extract feature representations of each modality
- Xy, = my_encoder(My)

- Xm, — my_encoder(My)

3 Project feature representations with the AL
- X, = AL(Xy,)
- X, = AL(Xpm,)

4 // Encode each modality after selection and fusion
- Xm1 - UP(tml ® Xm1)
- sz = UP(tm, ® Xm,)

5 // Compute Loss and Update AL Parameters and t.,,
- Compute Loss using Equation 5.8: £(Xum,, Xm,, 7)
- Update the AL parameters and ty,, using an optimizer algorithm based on the

computed loss.

6 // Return the trained AL, list of aligned modalities and my modality token
- Update list of aligned modalities: M = M U {m3}
- return AL, M, tp, 71
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Algorithm 8: Inference: Encoding a Given Modality Using Pretrained UP and AL
Input : m: modality of the data to be encoded; M: minibatch of data from modality

m; UP: Universal Projection module; ALy,: Alignment Layer module for
modality m; ty,: token representing modality m; m_encoder: encoder for
modality m

Output: Encoded representation data

[uy

/ / Extract feature representations

X = m_encoder(M)

N

if m ¢ {image, text} then

[21]

// Use AL for feature projection

X — ALn(X)

4 end

W

/| Encode with the Universal Projection

X = UP(ty ® X)

6 // Return encoded representation of input data

return X

5.4 Results

In this section, we aim to use OneEncoder to align four different modalities: image, text, audio, and
video. Given the greater availability of datasets paired with text, we propose leveraging text as the

central modality for transitive alignment. The alignment process can be summarized as follows:

1. Align Image with Text: Train the UP using Algorithm 6 on the image-text modality pair.

2. Align Audio with Image and Text: Train AL,uqi, using Algorithm 7 on the text-audio

modality pairs.

3. Align Video with Image, Text, and Audio: Train ALjqe, using Algorithm 7 on the
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text-video modality pairs.

The order of alignment steps can be adjusted based on the availability of aligned data and

the specific modalities to be aligned.

5.4.1 Datasets

Training Datasets. Our goal is to achieve robust performance on downstream tasks using a

lightweight framework trained on a modest dataset. Following the approach of virTex [24], we
train the UP on a combined dataset, which includes COCO Captions [17], Flickr30K [129], and
TextCaps [106].

To train the ALyydio, we utilize the LibriSpeech Speech Recognition Alignment (SRA) [90] Dataset,
a corpus containing approximately 1,000 hours of 16kHz recorded English speech.

For the ALyigeo, we employ the Microsoft Research Video to Text (MSR-VTT) [126] dataset, a
large-scale resource designed for open-domain video captioning.

A detailed description of all datasets used in training the OneEncoder framework is provided in
Table 5.1.

Validation Datasets. For validating OneEncoder, we use various datasets, tailored either for

Dataset Type Training Size Validation Size
COCO Captions |17] | text-image pairs 413,915 202,520
Flickr30K [129] text-image pairs 158,915 _
TextCaps [106] text-image pairs 109,765 15,830
SRA [90] text-audio pairs 281,241 9,559
MSR-VTT [126] text-video pairs 6,513 497
DAQUAR [31] text-image pairs 6,794 5,673

Table 5.1: Training datasets

specific modality-based validation (e.g., classification tasks) or cross-modal validation (e.g., zero-

shot tasks). A comprehensive description of the datasets used for validation is provided in Table 5.2.
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Dataset Dataset Type Training Size Validation Size
CIFAR-10 [65] image 50,000 10,000
Oxford-IIIT Pets [91] image 3,680 3,669
CIFAR-100 [64] image 50,000 10,000
Caltech 101 [35] image 7,659 3,060
Tiny ImageNet [67] image 100,000 10,000
SST-2 [107] text 67,349 872
TREC [118] text 5,452 500
Emotion [103] text 16,000 2,000
GTZAN [113] audio 1,000 _
UrbanSound8K [101] audio 7,980 1,022
ESC-50 [92] audio 1,600 400
MSVD [12] text-video 48,779 4,291
LSMDC [74] text-video 118,081 _

Table 5.2: Validation datasets

5.4.2 Implementation Details

Architecture. The pretrained encoders for each modality are as follows: ViT-base [26] with 86M
parameters for images, BERT-base [25] with 110M parameters for text, Wav2Vec [5] with 317M
parameters for audio and VideoMAE-base [110] with 94.2M for video. Additionally, the UP con-
sists of four Transformer encoder blocks with 4M parameters, while the AL comprises a multi-layer

perceptron with 65,792 parameters. The size of modality tokens for each modality is R!*78.

Training Details. We use the AdamW optimizer [77]| with a learning rate of 0.001, 51 = 0.9,
Bo = 0.95, and a weight decay of 0.001. For step 1, we train to align image-text pairs, updating

only the UP parameters, on a single A100 GPU for 500 epochs with a batch size of 512. For step
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2, to align other modalities (audio and video) , we freeze the pretrained UP from step 1, and train
only the ALy, m € {audio, video} for 100 epochs, using the same parameters as in step 1 with a
batch size of 64.

We trained two OneEncoder variants, each utilizing a different fusion operation: addition
and scaled dot product attention [I16]. For simplicity, we refer to the model using addition
as OneEncoder-®, and the model using scaled dot product attention as OneEncoder-©.

Our objective is not to achieve state-of-the-art results, which typically demand resource-
intensive architectures and extensive hyperparameter tuning. Instead, we aim to explore the behav-
ior of frozen versus non-frozen modality-specific encoders. Specifically, we seek to demonstrate that
using frozen encoders within our OneEncoder framework can notably enhance performance and, in
many cases, yield better representations for downstream tasks. For a fair comparison, we refer to

the baseline approach, which involves training modality-specific encoders, as the Base framework.

5.4.3 Quantitative Evaluation

UP Validation Following Image-Text Modalities Training

After training the UP on a combined dataset of COCO Captions, Flickr30K, and TextCaps, we
validate the OneEncoder framework by benchmarking it against the baseline CLIP [91]. In our
method, the pretrained ViT and BERT models remain frozen during training, with only the UP’s 4M
parameters being updated. In contrast, the baseline requires training all 196 M parameters of the ViT
and BERT models. For specific tasks, we employ pretrained models: ResNet-18 |17], EfficientNet-
B0 [109], and Swin Transformer |76] for image processing, and RoBERTa [75], DistilBERT [102],

and XLNet [128] for text processing.

We encode each modality using Algorithm 8 within the OneEncoder framework and evaluate

the performance on various classification tasks.
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Zero-shot Classification is a task where a model, trained on labeled images, can classify new
images from previously unseen classes. It validates the model’s generalization capability and as-
sesses semantic understanding and transfer learning. Using the CLIP approach, we transform labels
into text descriptions ("A photo of a {label}."), encode them with a pretrained model, compute
cosine similarity with image embeddings, and use softmax to determine class probabilities.

Zero-shot image classification obviates the need for retraining pretrained models on target datasets,

model CIFAR-10 Oxford-IIIT Pets | CIFAR-100 Caltech-101 Tiny ImageNet
CLIP [94] 62.12 58.27 53.06 52.17 47.15
OneEncoder-® | 78.15 69.23 58.18 56.20 52.27
OneEncoder-© | 74.70 68.98 57.15 54.12 51.12

Table 5.3: Image-Text Alignment Validation: Zero-shot image classification is used to assess the
alignment accuracy (%) across five benchmark datasets with varying class counts, providing a

measure of the relevance and effectiveness of the image-text alignment.

evaluating their ability to generalize to unseen classes. It underscores the importance of the aligned
latent space. Results in Table 5.3 highlight superior performance of OneEncoder (OneEncoder-,
OneEncoder-®) over the baseline (CLIP) across all datasets, suggesting that training large modality-
specific encoders may not always be optimal, as demonstrated by the effectiveness of the lightweight
OneEncoder framework. We observe that additive fusion with OneEncoder-& yields better results
than scaled dot product fusion with OneEncoder-®. This phenomenon appears consistently across
most experiments, highlighting the impact of the fusion method on OneEncoder representations. A

detailed analysis is provided in Section 5.6.

Linear Classification and Fine-Tuning involve adding a linear classifier to a pretrained model,
freezing the pretrained weights and training only the linear classifier for linear classification, while
training both the pretrained model and the linear classifier for fine-tuning. Linear classification
allows for the assessment of the quality of the extracted features from the pretrained model, while

fine-tuning simulates the practical use of pretrained weights. In OneEncoder, we always freeze the
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modality-specific encoders; in the fine-tuning task, we train only the UP for image and text datasets.

In each case (Linear Classification and Fine-Tuning), we train models for 100 epochs without using

any data augmentation strategy.

The results presented in Table 5.4 demonstrate the performance of various

models on image and

Linear Classification

Model Image Classification Text Classification
CIFAR-10  Oxford-IIIT Pets CIFAR-100 Caltech-101 Tiny ImageNet | SST-2 TREC Emotion
ResNet-18 [17] 89.15 84.98 68.10 63.45 59.11 - -
EfficientNet-B0 [109] | 89.87 85.12 70.15 64.87 60.27 _ _
Swin Transformer [76] | 90.17 86.05 71.12 65.10 62.30 _ _
RoBERTa [75] -~ - _ -~ -~ 76.04 7734 59.06
DistilBERT [102] _ _ _ _ _ 77.15  76.14  68.11
XLNet [128] -~ - _ -~ -~ 79.27 7811  60.10
CLIP [94] 81.21 78.16 60.12 60.14 58.14 80.15 7824  60.23
OneEncoder-& 90.16 86.23 70.10 68.23 62.12 82.12 79.10 63.09
OneEncoder-® 89.18 86.78 68.27 65.05 60.10 80.87 78.06  61.89
Fine-Tuning
Model Image Classification Text Classification
CIFAR-10 Oxford-IIIT Pets CIFAR-100 Caltech-101 Tiny ImageNet | SST-2 TREC Emotion
ResNet-18 [17] 93.23 90.19 82.37 78.12 67.89 _ _ _
EfficientNet-B0 [L09] | 94.56 92.23 80.11 79.98 68.10 _ _ _
Swin Transformer [76] | 95.27 92.11 82.02 79.15 69.09 - _ _
RoberTa [75] _ _ _ _ _ 83.24 8545 66.13
DistilBERT [102] -~ - _ -~ -~ 82.56 83.27  63.15
XLNet [128] _ _ _ _ _ 84.72 85.67  64.11
CLIP |94] 86.76 81.90 70.87 69.67 60.15 85.15 84.24  64.56
OneEncoder-& 96.01 92.32 81.10 80.11 69.12 86.11 86.12 67.12
OneEncoder-® 95.98 93.12 80.21 78.23 69.15 85.12 86.00  66.78

Table 5.4: Linear classification and fine-tuning accuracy (%) on image and text benchmarks. Linear

clagsification trains only a linear classifier with frozen pretrained models, while fine-tuning updates

both the classifier and pretrained models. For OneEncoder, only the UP component is trained

during fine-tuning, with modality-specific encoders frozen. In contrast, baseline models are fully

retrained during fine-tuning.

text classification tasks using two training strategies: linear classification and fine-tuning. These
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approaches allow us to evaluate the models’ ability to generalize to new data, providing a compre-

hensive comparison between OneEncoder, CLIP, and other baselines.

In image classification, OneEncoder consistently outperforms the CLIP model, which uses
CLIP-ViT on image datasets. For linear classification, OneEncoder-® achieves the highest accuracy
on CIFAR-10 (90.16%), Oxford-IIIT Pets (86.23%), and Caltech-101 (68.23%), closely rivaling Swin
Transformer, which leads in CIFAR-100 (71.12%) and Tiny ImageNet (62.30%). This highlights the
efficiency of OneEncoder, especially considering that it only updates the 4M parameters of the UP,

unlike CLIP, which retrains its larger 196M parameters.

In text classification tasks, where CLIP-BERT is used as the baseline for CLIP, OneEn-
coder again demonstrates superior performance. OneEncoder-@ achieves the best results across all
datasets: SST-2 (82.12%), TREC (79.10%), and Emotion (63.09%) in the linear classification setup.
This shows its robust ability to handle diverse text modalities, outperforming specialized models

like RoBERTa, DistilBERT, and XLNet.

The fine-tuning results further emphasize the effectiveness of Onelincoder. For image clas-
sification, OneEncoder-@® delivers the highest accuracy on CIFAR-10 (96.01%), Oxford-IIIT Pets
(92.32%), and Caltech-101 (80.11%), while also performing competitively on Tiny ImageNet (69.12%),
narrowly surpassed by Swin Transformer. In text classification, OneEncoder-@ achieves the best
performance on SST-2 (86.11%), TREC (86.12%), and Emotion (67.12%), surpassing the fine-tuned
CLIP-BERT and other text-specific models.

Overall, the results illustrate that OneEncoder, with its efficient training approach and min-
imal parameter updates, outperforms CLIP and other models in both image and text tasks, demon-

strating its superior generalization and adaptability across multiple modalities.
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AL,udio Validation Following Text-Audio Modalities Training

After training the UP on image-text modalities, it is frozen and then used for aligning other modali-
ties. Specifically, for audio alignment, only the AL,uq4io with 65,792 parameters is trained within the
OneEncoder framework. This process uses a text-audio modality dataset and follows Algorithm 7
on the SRA dataset. For comparison, we also train AudioCLIP [44], an extended version of CLIP
that aligns image, text, and audio using ViT for images, BERT for text, and Wav2Vec for audio,
with a total of 513M parameters to tune.

Table 5.5 compares the performance of AudioCLIP and OneEncoder (OneEncoder-@® and OneEncoder-

Model AudioSet UrbanSound8K ESC-50
Pa@l Ral mAP | Pal R@1 mAP | Pal R@1 mAP

AudioCLIP [41] | 427 7537 27.12 | 40.10 4511 78.27 | 48.90 7821 75.12

OneEncoder-& | 5.37 76.10 28.37 | 41.11 46.12 79.65 | 47.98 80.12 75.57

OneEncoder-© | 5.10 76.06 28.10 | 40.89 45.78 79.23 | 4787 7812 74.98

Table 5.5: Performance metrics for text-audio retrieval tasks on the AudioSet, UrbanSound8K, and
ESC-50 datasets. The evaluation includes Top-1 Precision (P@1), Top-1 Recall (R@1), and mean

Average Precision (mAP) for the models: AudioCLIP, OneEncoder-@, and OneEncoder-®.

©) in text-audio retrieval. This task validates the alignment between text and audio. Evaluated
using Top-1 Precision/Recall (P@1, RQ1) and mean Average Precision (mAP), OneEncoder con-
sistently outperforms AudioCLIP across all datasets. This highlights OneEncoder’s efficient latent
space and its ability to handle cross-modal retrieval effectively. Unlike AudioCLIP, which requires
extensive encoder training, OneEncoder achieves superior results with a lightweight framework,
demonstrating its robustness with minimal dataset-specific training.

To validate transitive alignment between audio and image, we apply the zero-shot classification
method as described in Section 5.4.3, replacing text descriptions ("A photo of a {label}.") with
corresponding audio. Comparing Table 5.6 with Table 5.3, which uses text descriptions, demon-
strates that the OneEncoder framework maintains strong alignment between image and audio,

even without direct image-audio alignment. This approach is more efficient and powerful than the
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model CIFAR-10 Oxford-IIIT Pets | CIFAR-100 Caltech-101 Tiny ImageNet
AudioCLIP [14] | 61.28 58.15 52.27 51.10 46.04
OneEncoder-& | 77.01 69.02 56.07 55.37 50.18
OneEncoder-® | 74.07 66.56 55.18 53.11 50.06

Table 5.6: Image-Audio Alignment Validation: Zero-shot image classification is used to assess

the alignment accuracy (%) across five benchmark datasets with varying class counts, providing a

measure of the relevance and effectiveness of the image-audio alignment.

resource-intensive AudioCLIP, offering a cost-effective solution with superior performance.

model UrbanSound8K  ESC-50
ESResNet [45] | 85.42 91.50
AST [41] _ 95.60
ERANN [117] _ 96.10
AudioCLIP [41] | 88.32 96.12
OneEncoder-& | 89.23 96.87
OneEncoder-© | 88.86 97.02

Table 5.7: Fine-tuning accuracy (%) on UrbanSound8K and ESC-50 datasets. The table compares

baseline models with the proposed OneEncoder variants.

For representation learning model validation, we fine-tune the models on the UrbanSound8K

and ESC-50 datasets. Unlike AudioCLIP, which requires retraining all Wav2Vec parameters, Onekn-

coder only fine-tunes the UP and the (ALy,qi0) for 100 epochs. Table 5.7 shows that OneEncoder-®

and OneEncoder-® outperform AudioCLIP on both datasets, with OneEncoder-® achieving the

highest accuracy on ESC-50 (97.02%) and OneEncoder-@® leading on UrbanSound8K (89.23%).

This demonstrates the efficiency of the OneEncoder framework, achieving superior performance

with fewer retrained parameters compared to the more resource-intensive AudioCLIP. These results

underscore the robustness of OneEncoder for fine-tuned representation learning across diverse audio

classification tasks.
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ALyideo Validation Following Text-Video Modalities Training

After aligning the audio with both image and text modalities (Section 5.4.3), we further integrate
the video modality and align it with image, text, and audio. This alignment is performed using
Algorithm 7, following a similar approach as in audio alignment, where only the AL,;q4e, is trained
while keeping the UP frozen. The OneEncoder variants are trained for 100 epochs on the MSR-VTT
dataset, using the text modality to align with the video modality. This alignment indirectly links
the audio and image modalities to the video through transitive alignment.

For evaluating OneEncoder in the context of text-video alignment, we benchmark its performance

against X-CLIP [82], an extended version of CLIP designed for text-video alignment.

Results on Table 5.8 demonstrate the superior performance of OneEncoder in aligning text
and video across both MSVD and LSMDC datasets. On MSVD, OneEncoder-® outperforms all
models with a Recall at rank 5 (R@5) of 80.76 and Mean Rank (MnR) of 7.98 in text-to-video
retrieval. Similarly, in video-to-text retrieval, it achieves the best R@Q5 score (91.62) and the lowest
MnR (3.98), surpassing strong baselines like CLIP4Clip and X-CLIP. These results are particularly
remarkable given that OneEncoder is based on a lightweight framework and trained on smaller
datasets, whereas baselines like X-CLIP are large models trained on extensive datasets. Despite

this, OneEncoder achieves comparable performance, which underscores its strong results.

To validate the transitive alignment between audio and video, we convert each text descrip-
tion into audio and perform audio-video retrieval to assess alignment. Table 5.9 compares these
results with those in Table 5.8, demonstrating successful audio-video alignment. This confirms the
effectiveness of the progressive alignment process, which requires minimal computational resources

while maintaining the strong performance of the OneEncoder framework.

OneEncoder outperforms baseline models due to its efficient design. Unlike baselines that
train all parameters and require large datasets, OneEncoder only trains the parameters of the
UP and AL, reducing the model’s complexity and enabling strong performance even with smaller

datasets. Its modality-specific alignment allows dynamic adjustment for each modality, capturing
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Retrieval performance comparison on MSVD

Model Text-to-Video Video-to-Text
R@17t R@57T MnRJ] RQ17T R@571 MnRJ]

CE [15] 19.8 49.0 - - - -
SSB [16] 28.4 60.0 - - . -
NoiseE [2] 20.3 49.0 - - - -
CLIP-straight [94] 37.0 64.1 - 59.9 85.2 -
Frozen [6] 33.7 64.7 - - - -
TT-CE-+ [37] 25.4 56.9 - 27.1 55.3 -
CLIP4Clip-MeanP (ViT-B/32) [79] 46.2 76.1 10.0 56.6 79.7 7.6
CLIPAClip-seqTransf (ViT-B/32) [79] | 45.2 75.5 10.3 62.0 87.3 4.3
CLIP4Clip-MeanP (ViT-B/16) [79] 47.3 T 9.1 62.9 87.2 4.2
CLIP4Clip-seqTransf (ViT-B/16) [79] 47.2 T 9.1 63.2 87.2 4.2
X-CLIP (ViT-B/32) [82] 47.1 77.8 9.5 60.9 87.8 4.7
X-CLIP (ViT-B/16) [22] 50.4 80.6 8.4 66.8 90.4 4.2
OneEncoder-® 49.21 80.76 7.98 65.89 91.62 3.98
OneEncoder-® 47.02 79.27 8.88 65.23 89.78 4.65

Retrieval performance comparison on LSMDC

Model Text-to-Video Video-to-Text
RQ11 R@57 MnR| RQ@11 R@57 MnRJ|
CE [15] 11.2 26.9 96.8 - - -
MMT [37] 12.9 29.9 75.0 - - -
NoiseE [2] 6.4 19.8 - - - -
CLIP-straight [04] 11.3 22.7 - 6.8 16.4 -
MDMMT [31] 18.8 38.5 58.0 - : -
Frozen [0] 15.0 30.8 - - - -
HiT [9] 14.0 31.2 - _ _ _
TT-CE+ [37] 17.2 36.5 - 17.5 36.0 -
CLIP4Clip-MeanP (ViT-B/32) [79] 20.7 38.9 65.3 20.6 39.4 56.7
CLIP4Clip-seqTransf (ViT-B/32) [79] | 22.6 41.0 61.0 20.8 39.0 54.2
CLIP4Clip-MeanP (ViT-B/16) [79] 23.5 43.2 54.8 22.6 50.5 50.3
CLIP4Clip-seqTransf (ViT-B/16) [79] | 23.5 45.2 51.6 23.2 42.4 47.4
X-CLIP (ViT-B/32) [22] 23.3 43.0 56.0 22.5 42.2 50.7
X-CLIP (ViT-B/16) [32] 26.1 48.4  46.7 26.9 46.2 41.9
OneEncoder-® 26.12 48.23 46.11 27.01 46.67 42.3
OneEncoder-©® 25.32 46.76 50.19 25.67 44.15 42.10

Table 5.8: Retrieval performance comparison on MSVD and LSMDC datasets. Models are evaluated

using Recall at Rank 1 (R@1) and Rank 5 (R@5) — higher is better — and Mean Rank (MnR),

where lower is better. Results are reported for bggh text-to-video and video-to-text retrieval tasks.
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Retrieval performance comparison on MSVD

Model Audio-to-Video Video-to-Audio
R@1T R@51 MnR| | R@1t R@5t MnRJ

OneEncoder-@ | 46.34 78.45 8.13 63.43 89.12 4.15

OneEncoder-© | 46.78 77.32  8.97 63.78 87.78 4.98

Retrieval performance comparison on LSMDC

Model Audio-to-Video Video-to-Audio
R@11 R@51 MnR| | R@17 R@51 MnR|

OneEncoder-& | 24.37 46.32 47.32 | 25.23 44.56 44.20

OneEncoder-® | 23.32 43.13 49.32 23.21 4212  46.57

Table 5.9: Comparison of audio-to-video and video-to-audio retrieval performance on the MSVD
and LSMDC datasets. Performance is evaluated using Recall at Rank 1 (R@1) and Rank 5 (R@5),

where higher values are better, and Mean Rank (MnR), where lower values are preferred.

inter-modal relationships more effectively. The two-step training process—aligning image-text pairs
(Step 1) and integrating other modalities (Step 2)—improves scalability and adaptability without
retraining the entire model. This approach makes OneEncoder computationally efficient, less prone
to overfitting, and highly effective in data-constrained environments, while maintaining strong per-

formance across various tasks.

5.4.4 Qualitative Analysis

Figure 5.3 presents qualitative results of OneEncoder across image, text, audio, and video modalities.
In Step 1 (see Algorithm 6), we demonstrate that OneEncoder effectively retrieves images using text
queries and vice versa, highlighting the UP’s ability to understand both visual and textual content,
leading to relevant retrievals through well-aligned latent space. In Step 2 (see Algorithm 7), we show
that image retrieval via audio inputs generates coherent results, with the frozen UP maintaining

alignment across modalities. This phenomenon extends to video retrieval as well, where transitive
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results showcasing cross-modal retrieval across text, image, audio, and

effectiveness of its cross-modal alignment.

For each query, OnekEncoder retrieves the most relevant data, highlighting the
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alignment between audio and video also yields accurate and meaningful retrievals. These qualita-
tive results, together with quantitative analysis, underscore OneFEncoder’s strong performance in
progressively aligning modalities. Its lightweight framework efficiently achieves these results even

with small aligned datasets, thanks to the use of frozen, pretrained modality-specific encoders.

5.5 OneEncoder on Visual Question Answering

In Section 5.4, we demonstrated that OneEncoder can be efficiently trained using a contrastive
learning approach to align multiple modalities at a low computational cost. In this section, we
introduce an alternative alignment method tailored for Visual Question Answering (VQA) tasks
to further train OneEncoder. The goal is to illustrate the versatility of our proposed framework,
showing its ability to be applied across various domains while utilizing different alignment strategies

during training.

VQA is a complex task that involves understanding both visual content and textual questions,
requiring the model to align and reason across these modalities to generate accurate answers. By
employing a specialized alignment mechanism for VQA, we aim to demonstrate OneEncoder’s ability
to handle cross-modal reasoning tasks beyond retrieval, further highlighting its adaptability across
different types of multimodal learning challenges. Figure 5.4 presents a comparison between the
classical VQA approach 5.4a and the OneEncoder framework 5.4b. As discussed in 5.4, OneEncoder
trains only the UP to align the textual answer with the image and question inputs, significantly
reducing the number of parameters compared to the Baseline method 5.4a, which requires training
both the image and text encoders. Both methods utilize a "Prediction Head" module to generate

the textual answer.

To train both the Baseline and OneEncoder frameworks, we utilize the DAQUAR (Dataset for
Question Answering on Real-world images) [21]. For modality-specific encoders, we employ BEiT-

base [7], DEiT-base [112], and ViT-base |26] models as image encoders, each with 86M parameters,
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(b) OneEncoder: The parameters of both the Image Encoder and Text Encoder are frozen, with only the

parameters of the Universal Projection (UP) module being trained.

Figure 5.4: OneEncoder architecture for the Visual Question Answering (VQA) task.

The OneEncoder framework in 5.4b trains only the UP to align the textual answer with both the

image and the textual question, unlike the baseline method in 5.4a, which trains all specific encoders

(image encoder and text encoder), making it more computationally expensive. Both approaches use

a "Prediction Head" to generate textual answers.
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coder Variants (OneEncoder-& and OneEncoder-©).

while ALBERT [66] (60M parameters), BERT-base [25] (110M parameters), and RoBERTa-base |75]
(125M parameters) serve as text encoders. We construct 9 VQA models for each method (Base-
line and OneEncoder) by combining these encoder pairs: (BEiT, ALBERT), (BEiT, BERT), (BEiT,
RoBERTa), (DEIiT, ALBERT), (DEiT, BERT), (DEiT, RoBERTa), (ViT, ALBERT), (ViT, BERT),
and (ViT, RoBERTa).

Since the DAQUAR dataset features simple vocabulary tokens as answers, we reformulate
the task as a classification problem, using a linear layer as the "Prediction Head," where the output
dimension matches the vocabulary size, and applying cross-entropy loss. Unlike the Baseline, which
fine-tunes the entire pretrained modality-specific encoders, OneEncoder freezes these encoders and
focuses solely on training the UP. The goal of this application, using the smaller DAQUAR dataset,
is to demonstrate that our framework can achieve strong performance with limited paired data,
significantly reducing the number of parameters to optimize and shortening the training time re-
quired for convergence. We use four Transformer blocks with a total of 4M parameters for the
UP, and modality tokens of size R1*7%®  All models are trained for 100 epochs without any data

augmentation techniques.
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Figure 5.6: Validation Performance of Baseline Models and OneEncoder Variants (OneEncoder-@,

OneEncoder-®) on the DAQUAR dataset, evaluated using Wu-Palmer Similarity (WUPS), Accu-

racy, and F1 Score.
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Question: what is on the left side of
the white oven on the floor and on
right side of the blue armchair ?
Answer: Garbage bin

Question: what is the mat kept close  Question: what is the object close to
to the box ? the refrigerator ?
Answer: Yoga mat Answer: Magnet

Question: what is on the refrigerator ~ Question: how many televisions are Question: what is below the rolled
door ? there ? blanket ?
Answer: Picture Answer: 1 Answer: Carton

Figure 5.7: Example VQA Results Using the OneEncoder-& Model.

Figure 5.5 provides a detailed comparison of the number of trainable parameters between
Baseline models and OneEncoder variants. Specifically, OneEncoder-@ utilizes addition-based fu-
sion, while OneEncoder-® employs an attention-based fusion mechanism. Unlike the Baseline mod-
els, which train all parameters, the OneEncoder versions use Baseline models for feature extraction

but keep them frozen during training.

Figure 5.6 demonstrates that the OneEncoder architecture (OneEncoder-®, OneEncoder-
®) consistently outperforms baseline models across the three key metrics: Wu-Palmer Similarity
(WUPS) [125], Accuracy, and F1 Score. These results indicate that retraining specialized encoders
may not be essential for achieving strong performance. By freezing the encoders and only training
the UP on a small paired dataset, we can significantly reduce the number of parameters to opti-
mize, minimize the need for large datasets, and shorten training times—all while yielding superior

outcomes as illustrated in Figure 5.7.
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The VQA experiment further validates the findings in Section 5.4, focused on contrastive
learning. OneEncoder, with its efficient and lightweight design, can be effectively integrated into
any alignment-based approach, reducing parameter complexity, data requirements, and surpassing

traditional methods that rely on retraining modality-specific encoders.

5.6 Discussion: Addition vs. Cross-Attention Fusion in OneEn-

coder

In our experiments, we evaluated two distinct fusion strategies for integrating modality features: the
simple addition approach used by OneEncoder-@® and the cross-attention mechanism implemented
in OneEncoder-®. The results revealed a consistent trend where OneEncoder-& outperformed
OneEncoder-® across a range of tasks, providing insights into how the different fusion methods

influence model behavior and performance.

5.6.1 OneEncoder-@: Simple Addition for Modality Integration

OneEncoder-@ uses a parameter-free addition operation to integrate modality features and tokens.
This approach is simple, direct, and efficient, as it combines modality features with modality tokens
through a straightforward summation process. The lack of additional learnable parameters allows
OneEncoder-@ to preserve the integrity of the feature representations, enabling the model to retain
more information from each modality. This fusion strategy appears to be more stable across various
tasks, possibly because it avoids the complexities of training additional parameters that could
introduce variability or overfitting. Moreover, the simplicity of the addition mechanism helps the
model focus on the core information from each modality without being distracted by complex inter-

modality relationships.
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5.6.2 OneEncoder-¢: Cross-Attention for Dynamic Modality Interaction

In contrast, OneEncoder-® utilizes a cross-attention mechanism, which is more flexible and powerful
in its ability to model complex interactions between modality features. By using modality tokens as
queries and modality features as keys and values, OneEncoder-® enables the model to dynamically
adjust its focus between the two modalities, potentially learning intricate inter-modal relationships.
However, this flexibility comes at the cost of introducing learnable parameters within the attention
mechanism. These parameters, while allowing the model to better capture interactions, can also
introduce instability in the learning process. The query-key-value structure requires careful opti-
mization to ensure that the interactions between modalities are meaningfully learned. This may
be particularly challenging with limited data, where the model might struggle to fully realize the

potential of cross-attention

5.6.3 Key Insights from Experimentation

Our experimental findings suggest that the additional complexity introduced by OneEncoder-®’s
attention mechanism may not always translate into better performance. While cross-attention offers
greater expressiveness, the potential for instability and the need for more extensive training data can
hinder its effectiveness, particularly when compared to OneEncoder-®’s straightforward addition
strategy. OneEncoder-@’s direct integration of modality features allows the model to focus on the
most salient aspects of each modality without the added burden of learning complex inter-modal

relationships.

5.7 Discussion

We introduce OneEncoder, a novel approach to multimodal representation learning that leverages
prior knowledge about modality-specific characteristics to streamline the learning process. By in-
corporating this information into data representation, OneEncoder reduces both the reliance on

large paired datasets and the number of parameters to tune, addressing two critical challenges in
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multimodal system design: scalability and training efficiency.

The core idea of OneEncoder lies in utilizing pretrained, modality-specific encoders as fixed fea-
ture extractors, thus retaining the inherent strengths of each modality’s prior representations. A
lightweight Universal Projection (UP) module, shared across all modalities, facilitates the align-
ment of these diverse representations within a unified space. Importantly, OneEncoder incorporates
a modality token—a learned embedding indicating the origin of each representation—before the
projection step. This modality token encodes prior modality knowledge, ensuring that the UP can
congistently and effectively map diverse inputs to a common space without retraining the entire
architecture for each new task.

For contrastive learning, OneEncoder achieves effective alignment of text and image embeddings
within the same projection space. Notably, this is accomplished without training separate modality-
specific modules, as required by more resource-intensive models like CLIP. This design proves par-
ticularly advantageous on smaller datasets, where OneEncoder demonstrates superior performance
while requiring fewer computational resources. Furthermore, OneEncoder’s framework is naturally
extensible to additional modalities such as audio and video through a progressive alignment strat-
egy. In this strategy, the UP remains fixed, and a compact Alignment Layer module is introduced
to adapt the output of pretrained feature extractors into the UP-compatible space. This approach
offers a highly scalable and flexible solution for multimodal learning, further reducing the need for
large-scale retraining while retaining compatibility across diverse modalities.

The versatility of OneEncoder is further exemplified through its application to tasks like visual
question answering (VQA). Here, OneEncoder not only achieves improved performance over base-
line models but does so with significantly lower training costs. This underscores the effectiveness of
leveraging prior modality-specific knowledge and compact, shared representation spaces in reducing
computational overhead.

In summary, OneEncoder represents a paradigm shift in multimodal representation learning by
directly integrating prior knowledge about modality into the data representation process. This en-
ables it to significantly reduce the need for extensive paired datasets and large parameter sets while
maintaining strong performance across tasks. The insights gained from this approach are a step

forward in addressing the scalability challenges of multimodal systems.
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The next part, Part III, will explore the application of OneEncoder to open-vocabulary
object detection. This involves identifying relevant concepts from rich semantic prompts before
performing object detection, showcasing the potential of OneEncoder to extend its lightweight,

scalable framework to complex downstream tasks.
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Conclusion

In this part, we explored the challenges and solutions in multimodal representation learning, focusing
on the limitations of large paired datasets and the complexity of training systems that align multiple
modalities. In the related work, we reviewed key techniques in cross-modal alignment, highlighting
the success of models like CLIP and ALIGN, which integrate dual-modalities but struggle with
scalability and efficiency due to their reliance on extensive datasets and separate modality-specific
modules.

To address these challenges, we introduced OneEncoder, a novel approach that integrates prior
knowledge of modality-specific characteristics to streamline multimodal learning. By utilizing pre-
trained, fixed feature extractors and a lightweight Universal Projection (UP) module, OneEncoder
reduces the computational burden and eliminates the need for training separate encoders for each
modality. The inclusion of a modality token ensures that diverse inputs are aligned in a unified
space without retraining the entire model for new tasks. OneEncoder’s flexibility allows for seamless
integration of new modalities, such as audio and video, through a progressive alignment strategy.
In contrast to traditional models, OneEncoder excels with fewer resources, delivering strong per-
formance on smaller datasets, such as visual question answering (VQA), while minimizing training
costs. This makes OneEncoder a scalable, efficient, and adaptable solution to the growing demand

for multimodal systems.
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Part 111

Open-Vocabulary Object Detection
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This part builds upon the work presented in Part II, focusing on the challenges of high
costs, data limitations, and scalability in training open-vocabulary object detection systems.
To address these issues, we introduce Light MDETR, a novel method designed to significantly reduce
training costs while maintaining high performance. This method leverages prior knowledge, as seen
in OneEncoder (discussed in Part IT), through the use of the Universal Projection module, which
allows for efficient adaptation to unseen object categories.

The part is organized as follows: Chapter 6 presents a detailed review of object detection techniques,
encompassing both classical methods and open-vocabulary approaches. Chapter 7 introduces Light-
MDETR, emphasizing its improvements over existing frameworks by integrating prior knowledge
to reduce computational costs while maintaining robust detection across diverse object categories.
The proposed method is validated on three tasks: phrase grounding, referring expression

comprehension, and referring expression segmentation.

96



Chapter 6

State of the Art in Object Detection

6.1 Introduction

Object detection is a crucial task in computer vision, focused on identifying and localizing objects
within images. Leading methods like Faster R-CNN [97], YOLO [95], and SSD [72] have shown
great success in this domain. However, these approaches are constrained by a fixed set of object
categories (e.g., 20 categories in the PASCAL VOC [32] dataset). Once trained, these detectors can
only recognize the predefined categories, limiting their flexibility and applicability in more open and
dynamic scenarios.

Recent works [135, , 13, 27] have leveraged popular vision-language models for open-vocabulary
detection by distilling vocabulary knowledge from language encoders. However, these distillation-
based approaches face significant limitations due to the scarcity of diverse training data.

Inspired by the success of methods [941, 55, | that learn image-level visual representations from
large-scale raw image-text pairs, achieving semantically rich projection spaces for easy transfer
to downstream tasks (such as zero-shot image classification and text-image retrieval), several ap-
proaches [58, 70, 13, , 86] have extended this to open-vocabulary object detection, aiming for

fine-grained image understanding with object-level visual representations.

6.2 Traditional Object Detection

Traditional object detection methods have undergone a significant evolution, starting with frame-

works that utilized separate networks for classification and localization, progressing to unified archi-
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tectures optimized for both computational efficiency and accuracy. Early methods like R-CNN [40]
relied on a two-stage process, where the first stage generated region proposals using algorithms like
Selective Search, and the second stage performed feature extraction using a Convolutionnal Neural
Network (CNN). Bounding box regression (t) and classification (c) were treated as separate tasks.
The localization task optimized bounding box coordinates (x,y,w, h) using a regression loss, often

defined as Smooth L1 loss:
Lioe= Y smoothpi(t; —£), (6.1)

ie{z,y,w,h}
where t; and ¢; represent the ground truth and predicted box parameters, respectively. Classification

is optimized using a cross-entropy loss (L¢s), leading to the combined loss:
L=2Lgs+ )\Elom (6.2)

where A is a hyperparameter balancing the two terms. Despite its accuracy, R-CNN is computa-
tionally expensive due to redundant feature extraction. Fast R-CNN |girshick2015fast| improved
efficiency by sharing feature maps across proposals using Rol pooling, while Faster R-CNN [97] fur-
ther streamlined the process by introducing a Region Proposal Network (RPN). The RPN generates
object proposals by sliding a small network over the feature map, predicting objectness scores (p)
and bounding box deltas (Az, Ay, Aw, Ah) for predefined anchor boxes. The RPN loss function

combines objectness classification and regression:

1
N, cls

A
Lrpy = > Las(pi,p}) + I > 0i Lioe(ti, t), (6.3)

reg

where p; is the ground truth label indicating whether the anchor is positive, and Ngs and Npeg are
normalization factors.

Single-stage detectors like YOLO [95] and SSD [72] aimed to simplify the pipeline by predicting
object classes and bounding boxes directly from the feature map, removing the need for region
proposals. YOLO divides the image into a grid of size Sx.S, where each grid cell predicts B bounding
boxes and C' class probabilities. The YOLO loss function combines classification, localization, and
object confidence terms:

S?2 B

EYOLO = Z Z ﬂ?jbj |:£(200rd + Econf + £cls ; (6'4)
i=0 j=0
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where ]l;-)]bj is an indicator for the presence of an object in cell ¢ and box j. SSD enhanced this
by introducing anchor boxes at multiple scales and aspect ratios, predicting class probabilities and
bounding box offsets for each anchor.

To handle challenges like class imbalance, RetinaNet introduced Focal Loss, which modifies cross-

entropy to focus learning on hard-to-classify examples:

Lrocal = —ou(1 — py)7 log(py), (6.5)

where p; is the predicted probability for the target class, v adjusts the focus on hard examples, and
ay balances positive and negative samples.

More recently, transformer-based architectures like DETR [11] have redefined object detection.
DETR replaces anchor-based mechanisms with learnable object queries, using a transformer encoder-
decoder [116] to match queries with objects in the image. DETR optimizes a combination of
classification and bounding box regression, using a Hungarian matching cost for alignment:

N

LpETR = Z [Las(ci, &) + 10 Loy (bi, )], (6.6)
=1

where N is the number of object queries, ¢; is the true class, and b; represents bounding box coordi-
nates. Deformable DETR [112] refined this by focusing attention on sparse, key regions, improving
convergence speed and computational efficiency.

Through these advancements, object detection has transitioned from labor-intensive multi-stage
pipelines to efficient, unified systems leveraging innovative loss functions, multi-scale feature learn-
ing, and attention mechanisms, continually improving scalability, speed, and accuracy.

While these models are highly effective within their defined scope, their limitation lies in their
inability to generalize beyond the fixed set of categories, making them less adaptable in dynamic
environments.

This limitation has paved the way for open-vocabulary object detection methods, driven by advances

in models like CLIP [91].
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6.3 Open-vocabulary Object Detection (OVD)

OVD builds on traditional object detection techniques by enabling the identification and localiza-
tion of objects from a large set of categories, including those that were not present during training.
Model trained separately on the concepts "cat" and "white," can infer and detect a "white cat"
during inference by dynamically combining learned embeddings of "cat" and "white" in a shared
vision-language space. This capability is achieved by leveraging external knowledge, such as pre-
trained language models, to generalize the detection task to unseen classes. In contrast to classical
methods, which require each object class to be defined during training, OVD systems aim to predict
new classes by associating visual features with textual descriptions or embeddings of unseen objects.
Early Approaches and Region-Based OVD

Traditional object detection pipelines, such as Faster R-CNN, perform detection by generating re-
gion proposals through a Region Proposal Network (RPN), followed by bounding box regression
and class prediction through fully connected layers. The output is typically a fixed set of categories
that the model was trained on. To extend this to open-vocabulary detection, methods like Vision-
Language Detectors (ViLD) [43] replace the fixed classification layer with a mechanism that uses
text embeddings from pre-trained language models such as CLIP.

In ViLD, the model first generates region proposals via RPN and computes visual feature represen-
tations for each region. These visual features f; are then compared to class embeddings t; obtained
from a pre-trained vision-language model, typically CLIP. The similarity between the visual fea-
ture and the text embedding for each class is computed using a similarity function such as cosine
similarity:

sij = sim(fi, t;) - pobj(fi), (6.7)

where sim(fj, t;) denotes the cosine similarity between the visual feature f; and the text embedding
t;, and pop;(f;) is the objectness score (i.e., the likelihood that the region contains an object). The
model is trained using a combination of a bounding box regression loss Lo« and a contrastive loss

Lsim, which encourages the visual features to be closer to the correct textual embedding:

L = Lpox + ALgim, (6.8)
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where A is a hyperparameter balancing the two losses. This formulation allows the model to recog-
nize new object categories as long as there exists a textual embedding for those categories.
Grounded Language-Image Pre-training (GLIP)

GLIP [70] is another method that improves open-vocabulary object detection by pre-training a
model with a joint objective of grounding language (associating textual descriptions with visual
features) and detecting objects. Unlike ViLD, which primarily relies on CLIP embeddings, GLIP
uses a grounding loss that explicitly aligns regions in an image with their corresponding text descrip-
tions. During training, the model is provided with image-caption pairs and learns to align image
regions with corresponding words from the caption. The grounding loss used in GLIP is based on
contrastive learning, where the model learns to associate each image region with the correct textual
description.

The GLIP model uses a Vision Transformer (ViT) [26] backbone to extract features from an image,
and each image region is matched with a textual embedding via cosine similarity. The total loss
function consists of a bounding box regression loss Ly,0x, & classification loss Ljs, and the grounding

contrastive 10ss Lgrounding, Which is computed as follows:

| exp(sim(f;, t;))
ﬁgroundlng Z 1 Zk eXp(Slm(fu tk)) (69)

where f; is the visual feature vector for region 4, and t; is the embedding for word j. The ground-
ing loss ensures that the correct textual description is closer in the embedding space to the visual
features of the corresponding region. This approach allows the model to generalize well to unseen
categories by relying on textual descriptions, even for categories that were not included in the train-
ing set.

Modulated Detection Transformer (MDETR)

MDETR [58] is a transformer-based architecture designed for open-vocabulary object detection,
where the input consists of both image patches and textual descriptions. The key innovation of
MDETR is its use of a transformer encoder-decoder architecture that processes both modalities
simultaneously, allowing the model to reason about the relationships between the visual and textual
information. MDETR uses a tokenized representation of the input text, where each word or phrase
is transformed into a fixed-length embedding. The image is split into patches, which are processed

by the transformer encoder along with the text tokens. The resulting embeddings are used to pre-
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dict both bounding boxes and class labels for detected objects.

MDETR extends traditional object detection by using a modulated attention mechanism, where
textual embeddings are used to modulate the attention weights in the visual feature extraction pro-
cess. This allows the model to focus more on image regions that are relevant to the provided textual
descriptions. The output of the model is a set of bounding boxes and class labels, where the class
labels are predicted based on the similarity between visual features and textual embeddings. The
overall loss function combines bounding box regression Loy, classification Lqg, and a contrastive
loss Leontrastive; which ensures alignment between the visual and textual modalities.

Open-World Learning Vision Transformer (OWL-ViT)

OWL-VIiT further advances OVD by using a vision transformer architecture pre-trained on large-
scale image-text datasets like CLIP. This model is designed to recognize both seen and unseen
object categories by associating image patches with text descriptions in a shared embedding space.
OWL-VIiT adapts the traditional object detection pipeline by incorporating a large number of po-
tential object categories, not limited to those seen during training. The transformer architecture is
capable of handling varying levels of semantic ambiguity, and the model’s contrastive objective helps
it generalize to novel categories by learning better alignment between image features and textual
descriptions.

The loss function in OWL-ViT combines the standard object detection losses (bounding box re-
gression and classification) with a contrastive loss that forces the visual features to be close to the
correct textual embeddings for both seen and unseen categories. The model’s ability to process
large-scale text-image data enables it to detect objects from classes that were not part of the train-
ing set, making it a highly effective solution for open-vocabulary object detection.

The evolution of open-vocabulary object detection has been a progressive integration of vision-
language models into traditional object detection pipelines. From methods like ViLLD, which use
CLIP embeddings to generalize to new categories, to transformer-based models like MDETR and
OWL-VIiT, which jointly process visual and textual modalities, each step has made it possible to
detect a wider array of objects without requiring explicit retraining for every new class. The key
mathematical principles across these methods involve aligning visual features with text embeddings

via contrastive losses, making OVD a highly flexible and scalable approach for real-world object
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detection tasks.

Despite their superior generalization capabilities, these open-vocabulary methods are resource-
intensive, requiring substantial computational power and large-scale datasets for training, primarily
due to the reliance on extensive pre-trained models for text and image encoding. Nonetheless, they
represent a significant advancement in object detection, offering the ability to detect a vast range
of objects, including those unseen during training.

To tackle the challenges associated with the extensive training required for open-vocabulary object
detection methods, we propose a new method based on prior knowledge, that significantly reduces
training demands while maintaining performance. Our approach can be seamlessly integrated into
any existing open-vocabulary object detection system, ensuring more efficient training without com-

promising the model’s effectiveness.

6.4 Discussion

Open-vocabulary object detection (OVD) represents a significant leap forward in the field of com-
puter vision, offering the ability to detect a wide variety of objects, including those not present during
training. By leveraging powerful vision-language models like CLIP, OVD systems can generalize
detection tasks to unseen categories by associating visual features with textual descriptions. The
integration of transformer-based architectures, such as MDETR and OWL-ViT, enhances this capa-
bility by allowing the model to process both visual and textual information simultaneously, thereby
improving detection accuracy. However, challenges remain, particularly regarding computational
efficiency, as these models require extensive resources for training and inference. Additionally, the
alignment between visual features and textual embeddings remains a complex task, and scalability
becomes an issue as the number of potential object categories increases. Despite these challenges,
OVD offers immense potential for real-world applications, and future research could focus on op-
timizing model architectures, incorporating prior knowledge, and reducing the need for large-scale

retraining to make these systems more efficient and adaptable.
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Chapter 7

Light MDETR

7.1 Introduction

Open-vocabulary object detection methods face limitations primarily due to the extensive training
requirements needed to align visual and textual embeddings effectively. Training often involves
large-scale datasets and sophisticated vision-language models like CLIP, requiring significant com-
putational resources and time. This process can be particularly challenging when attempting to
balance generalization across unseen categories while maintaining accuracy on seen categories. Ad-
ditionally, the reliance on massive pre-training makes it difficult to adapt these methods to domain-

specific tasks or smaller datasets without considerable fine-tuning efforts.

To address this challenge, we propose a Lightweight Modular Framework for Low-Cost Open-
Vocabulary Object Detection Training. Similar to the approaches introduced in Parts I and 11, our
method leverages prior knowledge to unify the parameter representation of distinct modalities, such
as image and text. This unified representation minimizes the number of parameters that need to be
fine-tuned during training, significantly reducing computational overhead. To validate the efficacy
of the proposed framework, we integrate it into MDETR, a state-of-the-art model for multimodal

detection.

In addition to enhancing general object detection, our proposed framework excels in tasks
like Phrase Grounding, Referring Expression Comprehension, and Referring Expression

Segmentation. These applications involve identifying and localizing objects in images based on
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textual descriptions, ranging from simple phrases to complex referring expressions. Our method’s
ability to leverage a unified representation and lightweight architecture reduces computational com-

plexity while maintaining high accuracy across these tasks:

e Phrase Grounding: The framework enables efficient grounding of textual phrases to corre-
sponding image regions, allowing for accurate mapping even in challenging open-vocabulary

scenarios.

e Referring Expression Comprehension: By aligning visual and textual modalities, the
system improves comprehension of textual descriptions and enhances localization performance,

especially for unseen or ambiguous expressions.

o Referring Expression Segmentation: Our lightweight architecture extends its capabilities
to pixel-level segmentation tasks, enabling precise identification and segmentation of objects

described in text with minimal additional computational costs.

To validate its performance, we demonstrate the integration of our framework into MDETR,
showcasing its ability to lower training costs while maintaining or improving performance on tasks
such as phrase grounding and referring expression tasks. The chapter is organized as follows:
Section 7.2 provides a detailed overview of MDETR, while Section 7.3 presents our proposed method,

showcasing its integration into MDETR to lower training costs and improve performance.

7.2 MDETR

MDETR is built on the traditional object detection system DETR [L1]. DETR is an end-to-end
object detection model built with a convolutional residual network backbone and a Transformer
Encoder-Decoder [116] architecture. The encoder processes flattened 2D image features from the
backbone, while the decoder uses learned object queries, which serve as slots to detect objects in
the image. Through cross-attention, the decoder predicts embeddings for each object query, which
are then decoded into bounding boxes and class labels. DETR is trained using Hungarian matching

to align the predicted objects with ground-truth, utilizing a combination of L1 loss and Generalized
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IoU [115] for bounding box supervision.

MDETR extends DETR by integrating both visual and textual information into a unified framework.
Unlike DETR, which classifies objects into fixed categories, MDETR associates detected objects
with spans of text. It encodes images using a ResNet [47] backbone and text via a pre-trained
language model (RoBERTa [75]), projecting both into a shared embedding space (ref. Fig. 7.1).
These features are concatenated and processed through a joint transformer encoder. The transformer
decoder then cross-attends to this combined representation, predicting object bounding boxes linked
to the text.

For training, MDETR employs two additional key loss functions to align image and text data the
soft token prediction loss and the contrastive alignment loss. The soft token prediction loss
(£soft_tokm) guides the model to predict a uniform distribution over the tokens in the text that
correspond to each detected object, rather than predicting discrete class labels. Given a maximum

7

2D positional

embedding JEE with |IISIBEWS jurps over
D) afence in front of a yellow tree ()

ResMNet

A cat with white paws jumps over
a fence in front of a yellow tree

Figure 7.1: MDETR Architecture: Visual features are extracted via ResNet and textual features
through RoBERTa. Both are projected into a shared embedding space, concatenated, and processed
by a transformer encoder-decoder, which predicts object bounding boxes and their alignment with

the text.

token length L and a set of predicted bounding boxes, the loss for each object is computed by
predicting the probability distribution over possible token positions. Specifically, if o; represents
the embedding of the i-th object and ¢; denotes the j-th token, the soft token prediction loss is

designed to minimize the discrepancy between predicted token spans and the true token spans in the
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text. The contrastive alignment loss enforces that the embeddings of visual objects and their

corresponding text tokens are closely aligned in the feature space. This loss is calculated using:

13 exp(o] t;/T
Lo= ;0 T > —log <ZL_1p( : (0%2/7)) (7.1)

; —oex
i jerr k=0 €XP

L—-1 T

1 1 exp(t; 0;/7)

I DI (e "2
L i=0 |Ol ‘ jGOT"— k=0 exp(tiTOk/T>

where T is a temperature parameter set to 0.07, T;r is the set of tokens aligned with the i-th

object, and OZF is the set of objects aligned with the i-th token. The total loss is the average of

these two components:

1
Econtrast = 5(160 + fCt) (73)

The overall training loss for MDETR combines the bounding box losses (L1 and GIoU), soft

token prediction loss, and contrastive alignment loss:

Liotal = Lubox + Esoft_token + Leontrast (74)
with
Lipor = L1 + Larov (7.5)

where L1 is the L1 loss calculated as:

1o s
L= N;Hbi — billx (7.6)

and Lgrou 1s the Generalized Intersection over Union loss:

area(C — (AU B))

Loroy =1 —ToU
Glotl oL area(C)

(7.7)

where b; and b; are the predicted and ground truth bounding boxes, respectively, and C is the

smallest enclosing box covering both A and B.

Training the pretrained feature extractors ResNet and RoBERTa, as depicted in Figure 7.1,
is both unnecessary and costly. To address this challenge, a lightweight modular framework is pro-

posed, designed to be seamlessly integrated into any open-vocabulary object detection system. This
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framework reduces training costs by minimizing the number of tunable parameters while maintaining
or enhancing the performance of the baseline object detector. The core innovations of this approach
include freezing the backbone of pretrained models and introducing a "Universal Projection" (UP)
module that shares parameters to represent both visual and language data. To ensure the UP effec-
tively processes data from different distributions (visual and language) using the same parameters, a
learnable "modality token" is incorporated, enabling efficient switching between the two modalities.
This framework is applied to MDETR, resulting in Lightweight MDETR (Light MDETR), whose
efficacy is validated on tasks such as phrase grounding, referring expression comprehension, and
segmentation.

The main contributions of this work are as follows:

e A lightweight approach for open-vocabulary object detection systems is introduced, signifi-

cantly reducing the number of parameters to tune, thereby improving training efficiency.

e This approach is applied to the MDETR architecture, resulting in two variants: Light MDETR,
which trains only the UP module, and Light MDETR-Plus, which extends Light MDETR with

a cross-fusion layer between text and image modalities to enhance representation capabilities.

e The framework achieves its efficiency by training only the UP module while freezing all pre-
trained specialized backbone models for images and text. The inclusion of the "modality

token" within the UP module enables effective switching between image and text modalities.

7.3 Light MDETR

We depict the Light MDETR architecture in Fig. 7.8. The image is encoded by a frozen ResNet
backbone, producing feature vectors O, while the text is encoded by a frozen RoBERTa model,
yielding feature vectors T. Both image and text features are projected into a shared embedding
space, with the "Universal Projection" (UP) module being the only trained component in the
backbone. The UP acts as a lightweight encoder, adapting the frozen feature representations for

the target task. To handle both modalities, an early fusion method combines the features with a
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Figure 7.2: Light MDETR Architecture: Visual and textual features are extracted via frozen ResNet
and RoBERTa, then projected into a shared embedding space. A lightweight Universal Projection
(UP) module, the only trainable component, processes early fused modality features using a learn-
able "modality token" t,,. The UP outputs are concatenated and fed into a Transformer encoder-

decoder (DETR) to predict object bounding boxes.

learnable "modality token" t,,, specific to each modality (image or text). This approach allows the

UP to encode both types of features as follows:

Oup = UP(O & timage) (7.8)

Tup = UP(T ® tiext)

where ® denotes the fusion operation (e.g., addition, multiplication, concatenation, or cross-attention).
The outputs Oyp and Typ are then concatenated, similar to MDETR, and used as input for the

transformer encoder-decoder (DETR) to predict object bounding boxes.

In MDETR, image and text features are encoded separately and only concatenated before
being passed into DETR. However, as shown in [70], early fusion of image and text features can
make visual features language-aware, allowing predictions to be conditioned on the text prompt.
Building on this idea, we introduce an enhanced version of Light MDETR, called Light MDETR-
Plus, shown in Fig. 7.3. Light MDETR-Plus adds three key components: a cross-fusion layer with
Multi-Head Attention (MHA) [116], and two projection layers that refine MHA outputs before they

are processed by the UP.
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Figure 7.3: Architecture of Light MDETR-Plus: Light MDETR-Plus extends Light MDETR (ref.
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Figure 7.2) by introducing a cross-fusion layer prior to the UP thereby enhancing the model’s

representation capabilities.

The MHA takes as input the ResNet and RoBERTa encoder outputs, denoted as O and T,

respectively. The transformations are expressed as:

0@ . (T@)T

V-

TO = TW®T) | Op = SoftMax(Attn) - TC) . W(©ut:0), (7.9)

0@ — ow @0 7@ — TW(qu), Attn =

oW = oW Tp = SoftMax(Attn ) - O . peutD)
where {WW(symbol.O) ‘yp7(symbol.T) - guimhol € {q,v,out}} are trainable parameters that play similar
roles to those of query, value, and output linear layers in MHA [116], respectively, and d corresponds
the output dimension.
After applying the cross-fusion mechanism with the Multi-Head Attention approach, a projection

is performed using P; and Ps:

Tp2 = PQ(TF + T)

The resulting Op, and Tp, are then fed into the UP, following a similar process as in Light-

MDETR, as described by:

OUP = UP(OP1 ®timage)) (7 11)

Typ = UP(Tp, ® trext)-
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The proposed lightweight framework for open-vocabulary object detection is modular. Sim-
ilar to MDETR, we use an end-to-end approach and the same loss function 7.4 to train both
Light MDETR and Light MDETR-Plus. To validate these methods, we compare their performance
to MDETR on downstream tasks, including phrase grounding, referring expression comprehension,

and segmentation (ref. 7.4).

7.4 Results

7.4.1 Pre-training

For the pre-training task, we adopt the MDETR approach, which leverages modulated detection to

identify and detect all objects referenced in the corresponding free-form text.

For a fair comparison, we use the same combined training dataset as in [58], which integrates
multiple image collections, including Flickr30k [129], MS COCO [71], and Visual Genome (VG) [63].
Flickr30k contains 31,783 images with detailed annotations for 158,915 region descriptions, primar-
ily focused on objects and actions within the scenes. MS COCO contributes approximately 118,000
images, annotated with over 886,000 segmentations covering a wide range of common objects in
diverse contexts. Visual Genome adds 108,077 images, with more than 5.4 million region descrip-
tions and dense object annotations. For annotations, referring expressions datasets for fine-grained
object references is leveraged, VG regions for detailed object-location relationships, Flickr entities
for linking text descriptions with image regions, and the GQA train balanced set, which provides
1.7 million questions linked to object and scene graphs, enhancing the dataset’s ability to support
complex reasoning tasks. This combined dataset ensures robust and comprehensive training, cov-

ering a diverse range of objects, contexts, and linguistic references.

For both Light MDETR and Light MDETR-Plus, a frozen pre-trained RoBERTa-base [75]

is used as the text encoder, which consists of 12 transformer layers, each with a 768-dimensional

111



Light MDETR

hidden state and 12 attention heads, totaling 125M parameters. The visual backbone is a frozen
pre-trained ResNet-101 [17], with 44M parameters. The only trainable component in both models
is the UP module (see Fig. 7.2 and 7.3), composed of four transformer layers with four attention
heads, contributing 4M trainable parameters. In Light MDETR-Plus, projection layers P, and P
add a single transformer layer each, with 787,968 parameters. The modality tokens t;mqge and tieqt
are initialized randomly. By freezing both pre-trained encoders, the number of trainable backbone
parameters is reduced from 169M in the original MDETR to 4M in LightMDETR and 5M in
Light MDETR-Plus (ref. Fig. 7.4).
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Figure 7.4: Comparison of trainable backbone parameters (in millions) during training between

MDETR, Light MDETR, and Light MDETR-Plus.

For the fusion operation in the UP, as described in Equation 7.8, an addition method is

112



Light MDETR

employed. All models are pre-trained for 40 epochs with an effective batch size of 64.

7.4.2 Dowstream Tasks

The proposed method is evaluated on three downstream tasks: phrase grounding, referring expres-
sion comprehension, and segmentation. To ensure a fair comparison, the same experimental setup

as MDETR is adopted. Further details are available in the original paper.

Phrase grounding

is a task of identifying the fine-grained correspondence between phrases in a sentence and objects
(or regions) in an image. We use the Flickr30k entities dataset for this task, and evaluate models
performance in terms of Recall@k. For each sentence in the test set, 100 bounding boxes are
predicted and use the soft token alignment prediction to rank the boxes according to the score given

to the token positions.

Method Val Test
R@1 R@5 R@10 | R@1l R@5 R@10

MDETR 82.5 92.9 94.9 | 834 93.5 95.3
Light MDETR 83.98 93.15 94.20 | 83.87 94.10 95.17
Light MDETR-Plus 84.02 93.56 94.9 83.80 94.66 95.23

Table 7.1: Comparison of phrase grounding performance on the Flickr30k dataset. Evaluation is
reported using Recall at top 1, 5, and 10 predictions (R@1, R@5, R@10) on both validation and

test splits.

As shown in Table 7.1, both LightMDETR, and its extended version, Light MDETR-Plus,
demonstrate competitive performance compared to MDETR. Light MDETR-Plus achieves the high-
est R@1 and R@b) on the validation set, with a slight improvement over Light MDETR and MDETR.
On the test set, Light MDETR-Plus also outperforms the other models in R@5, demonstrating its ef-

fectiveness in grounding phrases more accurately. Overall, these results highlight that Light MDETR
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and LightMDETR-Plus not only reduce the number of trainable parameters but also maintain or

slightly improve performance on this task.

the door: 0.98
I

the house: 0.87

<
B T R
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2 dogs and 1 cat inside the A black dog. A white dog. A flag next to the door
house A black cat

Figure 7.5: An illustration of LightMDETR on modulated detection. The model is designed to

identify the root of a phrase as the positive token span, as demonstrated in these figures.

Referring expression comprehension

entails locating an object in an image using a textual description to predict a bounding box. We fine-
tune both models on specific datasets—RefCOCO [59], RefCOCO+ [131], and RefCOCOg [85]—for
five epochs, while keeping ResNet-101 and RoBERTa frozen. During inference, the models leverage
the () label to rank the 100 predicted bounding boxes, thereby improving the accuracy of object
identification based on the provided expression. Table 7.2 presents a comparison of our models,
Light MDETR and Light MDETR-Plus, against other detection models on RefCOCO, RefCOCO+,
and RefCOCOg. RefCOCO and RefCOCO+ are evaluated using person vs. object splits: "testA"
includes images with multiple people, while "testB" includes those with multiple objects. There is
no overlap between training, validation, and testing images. RefCOCOg is split into two partitions.

Results presented in Table 7.3 showcase the precision performance of our models, Light MDETR
and Light MDETR-Plus, in comparison to MDETR on the RefCOCO, RefCOCO+-, and RefCOCOg

datasets. Precision at rank k (P@k) indicates the percentage of correct predictions within the top
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Method RefCOCO RefCOCO+ RefCOCOg
val testA testB| val testA testB| val  test
MA¢ttNet [132] 76.65 81.14 69.99|65.33 71.62 56.02|66.58 67.27
ViLBERT [7§] - - - | 72.34 7852 62.61| - -
VL-BERT [108] - - - | 7259 7857 62.30| - -
UNITER [18] 81.41 87.04 74.17|75.90 81.45 66.70 | 74.86 75.77
VILLA [38] 82.39 87.48 74.84|76.17 81.54 66.84|76.18 76.71
ERNIE-ViL [130] - - - | 75.95 82.07 66.88| - -
MDETR 86.75 89.58 81.41|79.52 84.09 70.62|81.64 80.89
Light MDETR 86.77 88.50 82.00|79.56 83.28 70.60 |82.02 79.67
Light MDETR-Plus 86.80 88.76 81.78 | 79.10 84.12 71.07|81.06 80.81

Table 7.2: Accuracy performance comparison between our proposed models, Light MDETR and

Light MDETR-Plus, and other detection models in the referring expression comprehension task on

the RefCOCO, RefCOCO+, and RefCOCOg datasets. For testing, RefCOCO and RefCOCO-+

datasets are evaluated using person vs. object splits: "testA" includes images with multiple people,

while "testB" includes images with multiple objects from other categories. RefCOCOg features two

distinct data partitions.
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Method RefCOCO RefCOCO+ RetfCOCOg

pa@l P@5 PQ@l10| P@Ql P@5 P@l10| P@l P@5 PQ10

MDETR 85.90 95.41 96.67|79.44 93.95 95.51|80.88 94.19 95.97

Light MDETR 85.92 95.48 96.76|79.24 93.83 95.26 |80.97 94.87 96.30

Light MDETR-Plus 85.37 95.52 96.73 | 77.98 93.85 95.47|80.24 94.26 96.56

Table 7.3: Precision performance comparison between our proposed models, Light MDETR and
Light MDETR-Plus, and MDETR in the referring expression comprehension task on the RefCOCO,
RefCOCO+, and RefCOCOg datasets.

k ranked results. Specifically, P@Q1 measures precision at the top-1 prediction, P@5 within the top
5, and P@10 within the top 10.

Proposed models demonstrate competitive performance, with Light MDETR, achieving the
highest precision at P@1 on RefCOCO (85.92%) and RefCOCOg (80.97%), surpassing MDETR
slightly on these datasets. Furthermore, Light MDETR-Plus leads in P@5 on RefCOCO (95.52%)
and P@10 on RefCOCOg (96.56%), highlighting the effectiveness of our lightweight approach. Al-
though MDETR performs marginally better on RefCOCO+, Light MDETR closely follows, validat-
ing our hypothesis that freezing the backbone and training only the UP module allows our models

to achieve comparable, if not superior, performance with reduced computational complexity.

Referring expression segmentation

Referring expression segmentation involves pinpointing and delineating objects in images using tex-
tual cues, as demonstrated with the PhraseCut dataset [122|. This dataset features images sourced
from VG, complete with segmentation masks for a variety of expressions, many of which refer to

multiple objects. Following the approach of MDETR, our training unfolds in two phases. Initially,
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Figure 7.6: An illustration of Light MDETR on segmentation with the model fine-tuned on phrase-
Cut.

we fine-tune our pre-trained model for 10 epochs while keeping ResNet-101 and RoBERTa frozen,
optimizing for precise bounding box predictions and employing box AP for early stopping. In the
subsequent phase, we freeze the network weights and focus on training a segmentation head for 35
epochs, implementing a learning rate adjustment at 25 epochs, supervised by a blend of Dice/F1
loss [34] and Focal loss [100]. During inference, we assign each predicted box a confidence score of
1— P(0), filtering out those below a threshold of 0.7. Ultimately, we consolidate the masks from the

selected boxes into a unified binary mask corresponding to the referring expression. The results in

Method M-IoU Pr@0.5 Pr@0.7 Pr@0.9
RMI [13] 21.1 22.0 11.6 1.5
HULANet [132] 41.3 42.4 27.0 5.7
MDETR 53.1 56.1 38.9 11.9
Light MDETR 53.45  56.98 39.12 11.6
Light MDETR-Plus | 53.87 57.07 39.27  11.82

Table 7.4: Validation of Referring Expression Segmentation using the mean intersection-over-union
(IoU) between predicted and ground-truth masks, alongside precision Pr@7, where success is defined

as the predicted mask achieving an IoU with the ground-truth that exceeds the threshold I.
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Table 7.4 highlight the effectiveness of our proposed methods, Light MDETR and its enhanced vari-
ant Light MDETR-Plus. Both methods demonstrate superior performance compared to MDETR,
achieving a mean intersection-over-union (M-IoU) of 53.45 and 53.87, respectively. Notably, they
also exhibit improved precision at various thresholds, particularly at Pr@0.5 and Pr@0.7, with
Light MDETR-Plus leading the metrics.

Downstream tasks such as phrase grounding, referring expression comprehension, and seg-
mentation demonstrate that our proposed lightweight framework significantly enhances the efficiency
of open-vocabulary object detection training. By considerably reducing the number of trainable pa-

rameters, it maintains or even improves performance on these tasks as illustrated in Fig. 7.5 and 7.6.

7.5 Discussion

A novel method for training open-vocabulary object detection systems is presented, significantly
reducing the number of parameters to tune by leveraging prior knowledge. The approach employs
specialized pre-trained encoders for text and images, which remain frozen during training. The
only trainable component is a lightweight module, termed the "Universal Projection" (UP) module,

designed to efficiently encode features from both text and image encoders using shared parameters.

A learnable parameter, referred to as the "modality token" (prior knowledge), is introduced
to identify the source of each feature. This token is integrated into the UP representation, enabling
seamless transitions between text and image feature processing. By relying on this lightweight
design and the use of pre-trained encoders, the number of trainable parameters is minimized without

compromising performance.

When applied to the MDETR model, this method achieves superior accuracy and precision
across tasks such as phrase grounding, referring expression comprehension, and segmentation. Be-
yond MDETR, the approach is adaptable as a modular framework for other open-vocabulary object

detection systems, reducing training costs while maintaining high performance.
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This approach reinforces the principles outlined in Part I and Part 1I, demonstrating the
critical role of leveraging prior knowledge in enhancing model representation. By utilizing pre-
trained encoders and shared parameters, the method effectively capitalizes on existing knowledge,
leading to improved performance across various tasks. This strategy not only strengthens the
model’s representational capacity but also addresses significant challenges in deep learning, such as
the high cost of training and the extensive dataset requirements typically needed to develop robust

models.

Reducing reliance on large-scale datasets and prolonged training cycles is particularly im-
pactful, as it mitigates resource constraints while maintaining competitive accuracy and precision.
By embedding prior knowledge into the architecture, the method aligns with modern trends in effi-
cient deep learning, where performance improvements are achieved through intelligent design rather
than brute-force data expansion. This highlights the importance of exploring similar approaches to

further optimize the balance between computational efficiency and model effectiveness.
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Conclusion

In this part, we focus on the advancements in open-vocabulary object detection (OVD) and a novel
method that leverages prior knowledge to address key challenges in the field. OVD has emerged
as a breakthrough in computer vision, allowing systems to detect objects not seen during training
by associating visual features with textual descriptions, enabled by models like CLIP. Transformer-
based architectures like MDETR and OWL-ViT enhance this capability by processing both visual
and textual information together, improving detection accuracy. However, despite its potential,
OVD faces challenges related to computational efficiency, resource consumption, and the complexity
of aligning visual features with textual embeddings, particularly as the number of possible object

categories expands.

The proposed method introduces a solution to these issues by leveraging pre-trained encoders
for both text and images, reducing the need for extensive retraining. The core of the approach is
the lightweight Universal Projection (UP) module, which efficiently encodes features using shared
parameters, minimizing the number of trainable parameters. A modality token is also incorporated
to identify the source of each feature, facilitating smooth transitions between text and image pro-
cessing. This approach not only maintains high performance across various tasks, including phrase

grounding and segmentation, but also reduces training costs and mitigates resource constraints.

By using pre-trained encoders and minimizing the number of parameters to tune, the method
effectively capitalizes on existing knowledge, offering a scalable and efficient alternative to tradi-
tional OVD approaches. This aligns with the modern trend in deep learning to improve performance
through intelligent design, reducing the reliance on large datasets and lengthy training cycles. Ul-
timately, the method enhances model representational capacity, improving accuracy and precision

while addressing the computational and scalability challenges inherent in OVD.
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Part IV

Conclusions and Future Directions
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The challenges of training deep neural networks have drawn significant research interest,
driven by the dual objectives of enhancing model representations for improved task adaptation
and performance, and reducing the number of parameters to tune. Achieving these goals not
only lowers training costs but also minimizes reliance on large datasets, broadening the models’
applicability across diverse domains. This dissertation explores the integration of prior knowledge
into training processes, examining its impact across a wide range of applications to validate the
concept. The work centers on two primary problems: leveraging prior knowledge to normalize neural
network activations during training for better representation, and incorporating prior knowledge in
multimodal systems to reduce training costs and the dependency on large datasets while maintaining

strong performance.

7.6 Enhancing Neural Network Representations with Prior Knowledge-

Based Normalization.

In Chapter 3, we introduced two normalization techniques, Context Normalization (CN) and Con-
text Normalization Extended (CN-X), which leverage predefined structural information, referred
to as "contexts", to improve neural network representations. These methods incorporate prior
knowledge to enhance the quality of normalization, resulting in better model performance. For
scenarios where predefined contexts are unavailable or difficult to construct, we proposed an alter-
native: Adaptive Context Normalization (ACN), which dynamically constructs contexts and learns
normalization parameters as part of the neural network’s weights. While ACN offers flexibility, it
is generally outperformed by CN and CN-X when meaningful predefined contexts are available, as
demonstrated through various experiments.

The findings in this thesis open several avenues for future research that go beyond the immediate
scope of image processing and have the potential to inform new lines of inquiry for subsequent
researches.

1. Extending Normalization to Self-Supervised Learning Frameworks

The proposed normalization techniques can be adapted for self-supervised learning (SSL), where

predefined or dynamically constructed contexts could serve as inductive biases to guide feature
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learning. In SSL frameworks, such as contrastive or masked prediction models, integrating CN and
CN-X may help encode more meaningful latent structures, particularly when data lacks explicit
labels. Future research could investigate how context-based normalization affects the pretraining
phase and its subsequent influence on downstream tasks.

2. Exploring Normalization in Federated Learning (FL)

In federated learning, models are trained across distributed, decentralized datasets while preserving
privacy. Introducing CN and CN-X into FL settings could improve local model representations by
incorporating domain-specific contexts at each client. Research could explore how context-aware
normalization impacts convergence rates, generalization, and privacy guarantees in FL.

3. Integration with Large-Scale Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) often process data with complex structural dependencies. Extend-
ing CN and CN-X to graph settings could involve defining contexts as node clusters, communities, or
hierarchical graph structures. This approach may enhance representation quality for applications
like social network analysis, drug discovery, or recommendation systems. Similarly, ACN could
adaptively construct contexts in dynamic graphs, opening up new directions for scalable graph pro-
cessing.

4. Normalization in Dynamic and Nonstationary Environments

ACN’s adaptability could be refined to handle dynamic and nonstationary environments where data
distributions evolve over time. For instance, ACN could be applied to continual learning settings,
where contexts adapt to new tasks or domains without forgetting previous knowledge. This research
could investigate how context construction and parameter initialization strategies influence model
stability and plasticity.

5. Context-Driven Model Compression

The integration of predefined contexts in CN and CN-X could inspire new techniques for model
compression. By leveraging context-based representations, it may be possible to design models with
fewer parameters but comparable or improved performance. This could extend to creating efficient
architectures for edge devices, where computational and storage constraints are critical.

6. Optimization and Theoretical Analysis of Context Selection

One of the key open questions is how to construct and select contexts optimally. Future research
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could formalize the relationship between context quality, representation power, and model perfor-
mance. This could involve developing optimization algorithms for automated context selection or
exploring theoretical guarantees for context-based normalization in neural networks.

7. Broader Applications Across Modalities

While the thesis focused on image processing, the principles behind CN, CN-X, and ACN could
extend to domains such as robotics, reinforcement learning, and complex control systems. For
example, contexts could represent task hierarchies or state abstractions in reinforcement learning
environments, enabling more efficient policy learning.

8. Extending ACN with Meta-Learning Approaches

The performance of ACN is highly dependent on initialization. Future work could explore meta-
learning techniques to enable ACN to learn optimal initialization strategies across tasks. By doing
80, ACN could generalize more effectively to unseen domains, making it a robust alternative to CN

and CN-X in real-world applications.

The perspectives outlined here demonstrate the broad applicability and potential impact
of normalization techniques based on prior knowledge. By extending these ideas to self-supervised
learning, federated learning, GNNs, and other emerging fields, future research can open new frontiers

in neural network design and optimization, driving progress across a wide range of Al applications.

7.7 Leveraging Prior Knowledge to Reduce Training Costs in Mul-

timodal Systems

In Chapters 5 and 7, we presented a novel approach for training multimodal systems at a lower cost
by significantly reducing the number of parameters to tune compared to traditional methods. This
was achieved through the integration of prior knowledge into model representations, enabling the
reuse of shared parameters to encode multiple modalities. This design leverages trainable modality-

specific parameters, referred to as "modality tokens," which allow the model to adapt effectively to
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different input types without requiring a separate set of parameters for each modality.

By reducing the number of parameters to tune, this approach addresses a critical bottleneck: the
reliance on large paired datasets, which are often scarce in certain domains, thereby limiting the ap-
plicability of multimodal systems. Beyond reducing computational costs, the incorporation of prior
knowledge enhances model performance, outperforming traditional, resource-intensive methods.
For future work, this strategy could be extended to large language models (LLMs) and other
foundational Al architectures, with the goal of eliminating the need for modality-specific models
and moving towards a universal encoder capable of processing diverse data types. Integrating
modality tokens into such systems would enable seamless handling of multimodal inputs—such as
text, images, audio, and more—using a shared architecture, significantly reducing development and
training overhead.

Key propositions for future exploration include:

1. Developing a universal encoder framework: Designing a single, adaptable encoder that
can process different modalities by leveraging modality tokens and prior knowledge. This would
eliminate the need to build and maintain separate models for each modality.

2. Extending modality tokens to unstructured and semi-structured data: Investigating
how these tokens could represent diverse data types such as time-series, or tabular data in addition
to text, images and videos.

3. Dynamic token learning: Creating mechanisms to dynamically learn and adjust modality
tokens during training, allowing the universal encoder to generalize across unseen modalities or
tasks.

4. Unified multimodal LLMs: Incorporating the universal encoder approach into LLM archi-
tectures to process and generate multimodal content, leveraging transfer learning across modalities.
5. Low-resource domain adaptation: Applying this methodology to domains with limited
paired data, such as combining medical imaging with textual diagnostics or low-resource languages
with audio.

6. Efficient fine-tuning: Exploring how the integration of prior knowledge and a universal en-
coder design can streamline fine-tuning for multimodal tasks, further reducing costs and training

time.
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7.8 Exploring Neural Network Design through Game Theory and

Statistical Mechanics

While normalization techniques like CN, CN-X, and ACN have proven effective in enhancing neu-
ral network representations, they may not fully capture the complexity of feature interactions in
high-dimensional spaces. To address this, we are exploring a novel neural network architecture,
NEUROGAME, which integrates principles from game theory and statistical mechanics to
create more efficient and accurate models.

In this framework, neurons are conceptualized as players in a cooperative game, where their acti-
vation values correspond to a set of actions. Neural layers are treated as sequential games, and the
learning process is driven by a payoff function quantified through the Shapley value, linked to
an energy function. During training, neurons are iteratively evaluated and filtered based on their
contributions to the overall network objective. Only the most contributive neurons—those forming
strong coalitions—propagate information to the next layer, reducing redundant computations and
improving both efficiency and accuracy.

The NEUROGAME framework draws inspiration from statistical mechanics, where the flow of
information between neurons is governed by probabilistic principles. The transmission of activation
signals across layers follows a Gibbs distribution, introducing a natural form of regularization. This
design enables the network to dynamically balance exploration and exploitation, stabilizing training
and mitigating overfitting.

Potential Research Directions:

e Combining Normalization with Game-Theoretic Learning: Investigate how CN, CN-
X and ACN can be combined with NEUROGAME, where normalization provides a stabilized

training signal, and game-theoretic selection refines the network topology.

e Dynamic Network Pruning and Regularization: Use the NEUROGAME framework

for dynamic pruning, where underperforming neurons are gradually excluded based on their
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marginal contribution. The winning coalition forms a sparse yet powerful representation, and

neurons outside the coalition are naturally dropped, providing adaptive regularization.

e Generalization and Transfer Learning: Explore whether the coalition-building process in
NEUROGAME enhances generalization, particularly in low-data regimes or transfer learning

settings, by promoting more structured, high-impact feature representations.

e Scalability and Large-Scale Architectures: Adapt the approach to scale with larger ar-
chitectures (e.g., transformers or graph neural networks), leveraging game-theoretic dynamics

to control complexity in deep, multimodal models.

e Energy-Efficient Neural Networks: Investigate how the statistical mechanics-inspired
signal transmission can lead to energy-efficient models, where computational resources are
focused only on the most impactful neurons, potentially enabling deployment on resource-

constrained devices.

By bridging theoretical insights from game theory and statistical mechanics with practical advance-
ments in neural network design, NEUROGAME represents a promising step forward. This hybrid
approach opens new possibilities for building more adaptive, interpretable, and high-performance
AT systems, capable of learning and evolving in dynamic, real-world environments.

The detailed methodology and initial results for the NEUROGAME framework can be found in our

ongoing research paper: https://arxiv.org/abs/2410.12264.
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Summary

Deep learning has revolutionized various fields, yet several challenges remain, particularly in terms
of training efficiency, model adaptability, and scalability in multimodal and open-vocabulary set-
tings. This thesis addresses these challenges by incorporating prior knowledge into deep learning
architectures, focusing on three primary areas: normalization techniques, multimodal representa-
tion learning, and open-vocabulary object detection. Through these innovations, we aim to enhance
model performance, reduce computational costs, and improve generalization in resource-constrained
environments.

The contributions of this work are organized into three key areas:

1. Normalization with Prior Knowledge

This thesis introduces novel normalization techniques that integrate prior knowledge to enhance
training efficiency and representation quality. These techniques are designed to overcome the limi-
tations of existing methods, which often assume simplistic data distributions that may not hold in

complex, real-world scenarios:

e Context Normalization (CN) and Context Normalization Extended (CN-X): These
methods incorporate predefined domain-specific contexts to improve task performance and

model stability.

e Adaptive Context Normalization (ACN): This approach dynamically constructs context
during training, allowing for better adaptability to changing data distributions or situations

where predefined contexts are difficult to define.

Applications: Image classification, domain adaptation, and image generation.
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2. Multimodal Representation Learning

In the realm of multimodal systems, the challenge lies in efficiently aligning different modalities
such as text, image, audio, and video. This work presents OneEncoder, a lightweight framework

designed to progressively align multimodal representations using minimal resources:

e OneEncoder Framework: A framework that uses simple addition for progressive modality

alignment, reducing computational overhead.

e OneEncoder-®: A variant of OneEncoder employing addition as the fusion technique for

modality alignment.

e OneEncoder-®: A refined version using cross-attention as the fusion technique for more

complex alignment.

Applications: Zero-shot classification, querying, and visual question answering across diverse modal-

1ties.

3. Open-Vocabulary Object Detection

In open-vocabulary object detection (OVOD), models are expected to generalize to new, unseen
categories using textual descriptions rather than relying on pre-trained labels. This thesis presents

the following advancements in OVOD:

e Light MDETR: A modular framework built on MDETR that reduces training complexity

while enhancing object detection performance by leveraging prior knowledge.

e Light MDETR-Plus: An improved version of LightMDETR that incorporates attention

mechanisms to enhance its adaptability to novel categories.

Applications: Phrase grounding, referring expression comprehension, and referring expression seg-

mentation.
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By addressing these challenges, this thesis demonstrates how prior knowledge can improve
deep learning models’ scalability, efficiency, and adaptability in multimodal and open-vocabulary
settings. The proposed methods are validated across a range of tasks, showcasing their potential
to improve performance in real-world applications, especially when computational resources are

limited.
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mentations, enabling reproducibility and further exploration of the research contributions:

Context Normalization: Implementation of a normalization layer based on prior knowledge
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efficient learning and adaptive regularization.

Source code available: https://github.com/b-faye/neurogame.
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